diff --git a/code/unsupervised_DT/decision_tree.py b/code/unsupervised_DT/decision_tree.py index bfba35be1143836458dd6cf1a684add864da03cd..a2f1a73bd8b693b76627a5608f64d45d9699d20f 100644 --- a/code/unsupervised_DT/decision_tree.py +++ b/code/unsupervised_DT/decision_tree.py @@ -302,8 +302,8 @@ if __name__ == '__main__': min_users = 50 os.getcwd() path = os.path.dirname(os.path.realpath(__file__)) -print(path+ "/dt/train_embed.csv") -H_users = fromDFtoArray(path+ "/dt/train_embed.csv",False,'f') +print(path+ "/files_for_dt/train_embed.csv") +H_users = fromDFtoArray(path+ "/files_for_dt/train_embed.csv",False,'f') dim = H_users.shape[1] n = H_users.shape[0] @@ -327,7 +327,7 @@ for i in range(len(partitions)): writer.writerow(row) f.close() ''' -partitions_init = fromDFtoArray(path+ "/dt/train_partitions.csv",False,'f') +partitions_init = fromDFtoArray(path+ "/files_for_dt/train_partitions.csv",False,'f') # Step 2: take the partition with max silhouette value best_init_part = np.argmax(partitions_init[:,2]) @@ -373,7 +373,7 @@ for i in range(1,len(theClusters)): # Validation with questionnaires print("") -file = path+ "/dt/train_user_quest_label.csv" +file = path+ "/files_for_dt/train_user_quest_label.csv" quest = fromDFtoArray(file,False,'f') questClusters = [] for i in range(len(quest)): @@ -392,4 +392,4 @@ compare_clusters(dtClust, questClusters, quest) #print(partitions_init) - \ No newline at end of file +