# Copyright 2018 The Cornac Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Example for Maximum Margin Matrix Factorization on MovieLens 100K dataset""" import cornac # Load MovieLens 100K dataset, and binarise ratings using cornac.data.Reader feedback = cornac.datasets.movielens.load_feedback( variant="100K", reader=cornac.data.Reader(bin_threshold=1.0) ) # Define an evaluation method to split feedback into train and test sets ratio_split = cornac.eval_methods.RatioSplit(data=feedback, test_size=0.2, verbose=True) # Instantiate MMMF model mmmf = cornac.models.MMMF(k=10, max_iter=200, learning_rate=0.01, verbose=True) # Use NDCG@10 for evaluation ndcg = cornac.metrics.NDCG(k=10) # Put everything together into an experiment and run it cornac.Experiment(eval_method=ratio_split, models=[mmmf], metrics=[ndcg]).run()