diff --git a/.gitignore b/.gitignore
index fb14214040395ec62d55235abe14d361050b9ed8..bc9151e930259a561fe87533ff7090d52fab9389 100644
--- a/.gitignore
+++ b/.gitignore
@@ -6,4 +6,6 @@ setup.cfg
 dist/*
 samples/*
 NetBone.egg-info/*
-/.idea/*
\ No newline at end of file
+/.idea/*
+build/*
+netbone.iml
\ No newline at end of file
diff --git a/examples/example.ipynb b/examples/example.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..3bf700f2d47a9c5c9a273d34d56eca02e91a4908
--- /dev/null
+++ b/examples/example.ipynb
@@ -0,0 +1,1411 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "source": [
+    "# Requirements"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "*netbone* is available on [Pypi](https://pypi.org/project/netbone). But make sure you have Python version 3.10 or higher and it's a good idea to use conda, virtualenv, or pyenv."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "!pip install netbone"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Once installed, the *netbone* package can be imported simply"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "pycharm": {
+     "name": "#%%\n"
+    },
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:09:31.518867700Z",
+     "start_time": "2023-07-02T17:09:31.046948300Z"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "import netbone as nb"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "# Toy Example"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "To cover all users needs we separated the calculation process from the filtering process in *netbone*. Thus, the process of extracting the backbone follows:\n",
+    "1. Apply a backbone extraction method to run the computation process\n",
+    "2. Apply a filter to extract the backbone"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "To illustrate the usage of *netbone*, we consider the high salience skeleton method with the Les Misérables network. We chose this extraction technique because it can be associated with the three filtering methods provided by *netbone*. The *netbone* package can handle two types of inputs: a *networkx* graph or a *DataFrame*. In this example, we will load the Les Misérables network from *networkx* and apply the *high_salience_skeleton()* method."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "pycharm": {
+     "name": "#%%\n"
+    },
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:09:31.891964700Z",
+     "start_time": "2023-07-02T17:09:31.888314900Z"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "import networkx as nx\n",
+    "g = nx.les_miserables_graph()\n",
+    "\n",
+    "b = nb.high_salience_skeleton(g)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "The resulting scores can be examined using the *to_dataframe()* function as shown below:"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "outputs": [
+    {
+     "data": {
+      "text/plain": "           source          target  weight  distance  in_backbone  salience\n0        Napoleon          Myriel       1  1.000000         True  1.000000\n1          Myriel  MlleBaptistine       8  0.125000         True  0.987013\n2          Myriel     MmeMagloire      10  0.100000         True  0.987013\n3          Myriel    CountessDeLo       1  1.000000         True  1.000000\n4          Myriel        Geborand       1  1.000000         True  1.000000\n..            ...             ...     ...       ...          ...       ...\n249         Babet          Brujon       3  0.333333        False  0.025974\n250    Claquesous    Montparnasse       2  0.500000        False  0.025974\n251    Claquesous          Brujon       1  1.000000        False  0.000000\n252  Montparnasse          Brujon       1  1.000000        False  0.000000\n253        Child1          Child2       3  0.333333        False  0.025974\n\n[254 rows x 6 columns]",
+      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>source</th>\n      <th>target</th>\n      <th>weight</th>\n      <th>distance</th>\n      <th>in_backbone</th>\n      <th>salience</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>Napoleon</td>\n      <td>Myriel</td>\n      <td>1</td>\n      <td>1.000000</td>\n      <td>True</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>Myriel</td>\n      <td>MlleBaptistine</td>\n      <td>8</td>\n      <td>0.125000</td>\n      <td>True</td>\n      <td>0.987013</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>Myriel</td>\n      <td>MmeMagloire</td>\n      <td>10</td>\n      <td>0.100000</td>\n      <td>True</td>\n      <td>0.987013</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>Myriel</td>\n      <td>CountessDeLo</td>\n      <td>1</td>\n      <td>1.000000</td>\n      <td>True</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>Myriel</td>\n      <td>Geborand</td>\n      <td>1</td>\n      <td>1.000000</td>\n      <td>True</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>...</th>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n    </tr>\n    <tr>\n      <th>249</th>\n      <td>Babet</td>\n      <td>Brujon</td>\n      <td>3</td>\n      <td>0.333333</td>\n      <td>False</td>\n      <td>0.025974</td>\n    </tr>\n    <tr>\n      <th>250</th>\n      <td>Claquesous</td>\n      <td>Montparnasse</td>\n      <td>2</td>\n      <td>0.500000</td>\n      <td>False</td>\n      <td>0.025974</td>\n    </tr>\n    <tr>\n      <th>251</th>\n      <td>Claquesous</td>\n      <td>Brujon</td>\n      <td>1</td>\n      <td>1.000000</td>\n      <td>False</td>\n      <td>0.000000</td>\n    </tr>\n    <tr>\n      <th>252</th>\n      <td>Montparnasse</td>\n      <td>Brujon</td>\n      <td>1</td>\n      <td>1.000000</td>\n      <td>False</td>\n      <td>0.000000</td>\n    </tr>\n    <tr>\n      <th>253</th>\n      <td>Child1</td>\n      <td>Child2</td>\n      <td>3</td>\n      <td>0.333333</td>\n      <td>False</td>\n      <td>0.025974</td>\n    </tr>\n  </tbody>\n</table>\n<p>254 rows × 6 columns</p>\n</div>"
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "b.to_dataframe()"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:09:32.467234500Z",
+     "start_time": "2023-07-02T17:09:32.467234500Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "The high salience skeleton method exhibits a bimodal distribution of scores centered around 0 and 1. The default approach of this method is to keep only edges with scores greater than 0.8. In *netbone*, it can be accomplished using the *boolean_filter()*. However, in that case, two nodes are missing from the extracted backbone in this particular example. To fix this issue, users can adjust the threshold by using the *threshold_filter()* function. One can use a threshold of 0.7 to retain all the network nodes. Additionally, users can control the size of the backbone using the *fraction_filter()*, such as keeping 15% of the network. The following code shows how to do it in *netbone*:"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "pycharm": {
+     "name": "#%%\n"
+    },
+    "is_executing": true
+   },
+   "outputs": [],
+   "source": [
+    "from netbone.filters import boolean_filter, threshold_filter, fraction_filter\n",
+    "\n",
+    "backbone1 = boolean_filter(b)\n",
+    "backbone2 = threshold_filter(b, 0.7)\n",
+    "backbone3 = fraction_filter(b, 0.15)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "To illustrate the usage of the extracted backbones, we plot them using *netowrkx*."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "pycharm": {
+     "name": "#%%\n"
+    },
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:09:34.653828200Z",
+     "start_time": "2023-07-02T17:09:33.208159100Z"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": "<Figure size 1800x1200 with 4 Axes>",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABYcAAAPPCAYAAACfU3TUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xc5Zn3/8/0ot4lq9qy5d47Nm6YZlwpIUBMSIAkJLApm7bJA9lNyPKk/J7NBkghIYSO44YN7t2Wbbl3Nav3NtKoTC/n94esQbKKZWNcr/fr5Rf2Ofc55z5nBiO+c811qxRFURBCCCGEEEIIIYQQQghxW1Ff7wkIIYQQQgghhBBCCCGEuPYkHBZCCCGEEEIIIYQQQojbkITDQgghhBBCCCGEEEIIcRuScFgIIYQQQgghhBBCCCFuQxIOCyGEEEIIIYQQQgghxG1IwmEhhBBCCCGEEEIIIYS4DUk4LIQQQgghhBBCCCGEELchCYeFEEIIIYQQQgghhBDiNiThsBBCCCGEEEIIIYQQQtyGtNd7AkIIIYQQN7sNGzZQVFSEwWDga1/7Gjqd7npPSQghhBBCCCEuSSqHhRBCCCE+h5MnT/KjH/2I1157jcjISAmGhRBCCCGEEDcNCYeFEEIIccuYN28eQ4cO5ac//ek1uZ7D4eAnP/kJPp+PJ554gocffviaXLc/KioqGDp0KEOHDmXNmjVXfJ41a9YEzlNRUXEVZ3h7uRbvzVdffTXwWt3IrtZ7U9w4li9fztChQ1m+fPn1nooQQgghLpOEw0IIIcQN5NChQ4HQ5NVXX73e07nqOgKEjl+vv/56v47785//3OW4GyWA+M1vfkNJSQmTJ0/mP/7jP673dEQ/+Hw+Nm3axA9/+EPuvfdeJk6cyJgxY5g3bx7PPPMM7733Hi0tLdd7muISOn9oMXToUH7/+99f8piOv3/mzZt3DWYohBBCCHFzkHBYCCGEENfN+vXrr+q4a2nfvn18+OGHJCQk8L//+7/STuImcPToURYvXsz3vvc9PvnkE0pKSmhra8PlclFZWcm+ffv41a9+xd13382//vWv6z1dcRnef/99LBbL9Z4GP/3pTyWAFkIIIcRNRRakE0IIIcQ1ZzAYcLlclJSUcOrUKcaOHdvr2NOnT1NUVNTluN7s3Lnzqs+1J83NzfzsZz/DYDDw2muvERUVdU2uK67c5s2b+dGPfoTb7QZg6tSpLFq0iIEDB6LX66mqqmLXrl18+umnWK1WXnzxRYqLi/nJT35yVa5/Ld6bL7zwAi+88MIXfp0bkd1u54033pAKfiGEEEKIyyThsBBCCCGuuejoaKKiojh9+jTr1q3rMxzuqBoeO3YsDQ0NVFZWXqtp9iosLIx9+/Zd72mIfsrOzuaHP/whHo8HnU7Hb37zGx544IEuY8aMGcN9993H1772Nb71rW9RXV3NP/7xD5KTk3n88cev08xFf0RERNDU1MSHH37I008/TWxs7PWekhBCCCHETUPaSgghhBDiuli6dCkAGzZswOPx9DjG6/WyYcMGAJYsWXKtpiZuIX6/nx//+MeB91hPwXBnw4YN4+2338ZsNgfGV1VVXZO5iivzzDPPAOByufjrX/96nWcjhBBCCHFzkcphIYQQ4hZ0+vRp/vWvf3HkyBHq6upQFIX4+HimT5/OV7/6VdLS0no9tqWlhffff5/du3dTVFSE3W4nJCSEyMhIBg4cyIwZM7j33ns/dyuFBQsW8Morr2C1Wtm7dy933XVXtzF79+6lsbERnU7H/fffz5tvvtnnOefNm0dlZSXLli3j//7f/9ttv8vlYsWKFWzbto38/Hza2toICgoiMjKS5ORkZsyYwfz580lKSurx/IqisGXLFjZs2MDp06dpbGzEaDSSmprK3LlzWb58OaGhoT0e+9Of/pS1a9eSmJjIzp07qaur4+2332b37t1UVVVht9t55513mDp1KtDeumL79u0cPHiQ7Oxsqqur8Xg8hIWFMWzYMO655x6WLVuGXq+/1KMO2LRpEytWrCAvLw+bzcaAAQOYP38+zz77LGFhYf0+z9V+NgDFxcW89957HDp0iMrKSjweD+Hh4URFRTFixAjuvPNO5s+ff1n3C+3tHM6fPw/AnDlz+gyGO6SmpvL888/z29/+FqfTyTvvvMNPf/rTLmNeffVVXnvtNQDy8vJobW3lnXfeYdu2bVRUVNDa2sorr7zCgw8+CFz6vQng8Xj44IMPWL9+PUVFRWg0GlJSUli8eDGPP/44dXV1gX9POp+7tzld7OI5FBYW8tZbb3HgwAHq6uoIDQ1l/PjxPPvss4wbN67X51NXV8e2bds4dOgQubm51NXV4fV6iYiIYNSoUSxatIj77rsPtfra1KGMHj2auXPnsmvXLlasWMEzzzxDQkLCFZ/P6/Wydu1atm7dSk5ODlarlaCgIAYPHszdd9/NY489hsFg6HJM52cPUFlZydChQ7udOy8vj8bGRqZPnw7Af/3Xf/HlL3+527if//znrFq1CoCvfOUrvPjii93G/POf/+SVV15Bo9Fw+PBhgoODu405evQoK1as4NixY9TX12MwGEhKSmL27Nl89atfJTIyssdncOjQIZ588kkA3nnnHSZPnsyaNWtYt24dhYWFNDY2snTp0l7fyz355JNP+OlPf4rX62XcuHG88cYbn/vvHSGEEEJ8fhIOCyGEELcQr9fLyy+/zIcffthtX3FxMcXFxaxcuZKXXnqJL33pS93GFBYW8tRTT1FXV9dle1NTE01NTRQWFrJ9+3b8fj9f+cpXPtdcIyIiuPPOO9m5cyfr1q3rMRxet24dAHfeeWevIUZ/1dXV8bWvfY2CgoIu25ubm2lubqa4uJi9e/dSW1vbY5/ZxsZGvvOd73D8+PEu291uN2fOnOHMmTN88MEH/OlPf+qzTQbAyZMn+da3vkVTU1OvY5YtW9ZjC42GhgYyMzPJzMzko48+4o033iAmJqbP6wH87Gc/Y/Xq1V22FRcX87e//Y2PP/6Yf/7znwwePPiS5+nJ5302mzZt4kc/+lG3CvL6+nrq6+vJzc1lzZo1fPLJJ2RkZFzW3D7++OPA7zvCrv740pe+xB//+EecTidr167lJz/5CSqVqsexJSUlfP3rX/9cLU9aWlp4+umnOX36dJft586d49y5c2zYsIFf/vKXV3z+i23dupUf//jHOByOwDaLxcL27dvZtWsXv//971mwYEG343w+H7Nnz8bv93fbV1dXx86dO9m5cyerVq3i1VdfJSgo6KrNuS/f/e532b17Nx6Phz//+c9X/KzKysp47rnnuv09YbVaOXr0KEePHuXDDz/kr3/9a58fsvUlMjKSwYMHU1BQwKFDh3oMhw8fPhz4/aFDh3o8T8eYYcOGdQuG/X4/L7/8Mu+//36X7W63m5ycHHJycnj//ff53//9X2bMmNHnfF0uF08//TQHDhzo1/315L333uPll19GURRmzJjBa6+9FqjOF0IIIcT1JeGwEEIIcQv5+c9/HgjDZs2axaJFi0hLS0OlUpGbm8vbb7/N+fPnefHFF4mOjmbevHldjv/Rj35EXV0dOp2ORx55hFmzZhEdHY2iKNTV1XH69Gm2bNly1ea7ZMkSdu7cya5du2hpaelSWdra2squXbsC4z6vl19+ORD4LF68mHvuuYfY2FjUajUWi4WzZ8+yY8eOHo+12+185StfobCwEJ1Ox4MPPsjs2bNJSEjAbrdz9OhR3nrrLRoaGnj22WcDFcI9sdlsvPDCC7hcLr71rW8xY8YMjEYj+fn5XUJen8/H2LFjmTNnDiNGjCAqKgqPx0NFRQXr169n3759ZGdn84Mf/IB33323z3v/4IMPOHPmDGPGjOGpp54iNTUVi8XCxx9/zMaNG6mvr+fpp59mw4YNPVYf9uXzPpuGhgZ+9rOf4fF4iIqK4oknnmDcuHFERETgcrkoLy/n6NGjbN269bLm1eHo0aMAmEwmpk2b1u/jQkJCmDRpEpmZmVitVgoKChgyZEiPY//t3/6Nuro6li9fzrx58wgNDaW0tJQBAwb0+3rf//73A8Hw+PHjWb58OampqTQ2NrJ+/Xo++eQTfvGLX/T7fH3Jy8tj48aNxMTE8PWvf51Ro0ahKAqZmZm88cYbuFwuXnzxRaZNm9btQxlFUQCYNm0as2bNIiMjg8jISGw2G+Xl5axcuZITJ06wf/9+fvnLX/Kb3/zmqsz5UoYPH87dd9/N1q1bWbNmDc8++yzJycmXdY66ujoee+wxGhoaCAoK4tFHH2X69OlER0fT2trK/v37eeeddygpKeGZZ55h7dq1hISEAPD4449z77338oc//IEdO3YQGxvb5zcdJk+eTEFBAUeOHOm2r7a2lrKyssCfCwoKaGxs7PJaKIrCsWPHAALfNujs97//fSAYTkpK4tlnn2XEiBE4HA527tzJ+++/T2trK9/85jdZtWoVw4YN63Wuv//978nLy2PevHk8+OCDDBgwgIaGBmw22yWeaLvXXnuNV199FYB7772X3//+95f9DQAhhBBCfHEkHBZCCCFuEVu2bAkEwy+//DKPPPJIl/2jR49m8eLFfOMb3yArK4uXX36ZWbNmodW2/zhQXl7OuXPngPYWCD1VBs+fP5/vf//7tLS0XJU5dwRpLS0tbN68uUs18+bNm3G5XISGhnYLsS+Xy+Vi586dAHz961/vsTJ4zpw5PP/881it1m77/r//7/+jsLCQkJAQ3nrrLUaPHt1l/6RJk1i0aBGPPvoo9fX1/OEPf+B3v/tdj3OxWq2YzWY+/PDDLoHMmDFjuox7++23e6xMnDBhAosXL2b16tX87Gc/4/Dhwxw8eDDwNfWenDlzhtmzZ/OnP/0p8HoDzJ49m8GDB/PHP/6RmpoaXn/99R6fTV8+77PZvXs3drsdaP+a/MWVwePHj2fx4sX8/Oc/DwST/VVbWxuozh42bBgajeayjh85ciSZmZkA5Obm9hoOnz9/nr///e9dKjBHjRrV7+ts27YtcJ277rqLV199tctcZ82axYgRI65a0Jqdnc3IkSN5++23A+EmwLhx40hJSeFHP/oRbW1trF+/nqeeeqrLsRqNhs2bN5OamtrtvFOmTOGhhx7ij3/8I6+//jrr1q3jueeeu+IK28v1wgsvsH37djweD3/605945ZVXLuv4l156iYaGBhISEnj33Xe7hctTp07lvvvu44knnqC8vJw333yT733vewBERUURFRUV+IBLp9P1WeU+ZcoUPvzwQ+rr6yksLCQ9PT2wLysrC4AhQ4bgdDopLy/n8OHD3HfffYExubm5gb+rJk+e3OXceXl5vPXWWwBkZGTw/vvvd/ngberUqcyYMYNvfvObeDweXnzxRVauXNnrXPPy8vj2t7/Nd7/73V7H9ERRFH79618HPrx65JFH+OUvf3nN2o0IIYQQon/kv8xCCCHELaJjIaa77767WzDcwWAw8NJLLwHtPTE7f3W5vr4+8PtJkyb1eh2VSnXV+kTq9Xruv/9+ANavX99lX0dLifvuu+9zV5lZrdZAy4K+7g0gPDy8y58bGxsDwcm//du/dQs/OyQmJvLtb38baG+T0Pnr+hd75pln+qzUAy4ZqD300EOMGDECgO3bt/c5Vq/X86tf/apLMNzhueeeC4RYq1evxu1293muzq7Gs2loaAAgLCyszzDNYDBgNBr7PTegS9uO6OjoyzoW6NJXu6cPDTosW7bskl/N78tHH30EtN/jL3/5yx5D7K997WuMHDnyiq9xsf/+7//uEgx3WLRoEbGxscBnVdedqVSqHoPhzr7zne8QERGBoiiBD2WuhYyMjECAum7dOkpKSvp9bH5+fuCbCi+++GKvVccjRozg8ccfB+jWpuVyTJkyJfD7zn8PA4Fq4ilTpgTGXTym489qtbrb32kffvhhoO3Hr371qx57fc+aNYuHHnoIaO9Rf3E7k87S0tJ4/vnn+3VfHbxeLz/5yU8CwfDTTz/Nyy+/LMGwEEIIcQOS/zoLIYQQt4Da2tpA1W9H2Nqb9PR0IiIiADhx4kRge+eWBmvXrv0CZtmzxYsXA+1BVEVFBdAeXHcEU1ejpURERAQ6nQ5oD428Xm+/j83MzMTlcgGXfrYdFXwejyfwevSk4577S1EU6uvrKS4uJj8/P/CrI8TLzc3t8/gZM2YQFxfX4z61Ws3SpUuB9v7Lfc37Ylfj2XS87zoW4Lua2traAr83mUyXfXznnqidz3WxRYsWXfa5O3i93sB7/c477+w1xFapVJf9vulNRkZGrx9OqFSqwIcO5eXllzyX3++ntraWoqKiwPuysLCQ+Ph44NLvzavt+eefR6PR4PP5uiwQdykdLWVMJhNz5szpc2zHe7muro7q6uormmd0dDSDBg0Ceg9++xMODxs2rFv4e/DgQQAGDx7c58KCnb+p0XFMTxYsWHBZVfcul4vnn38+8AHfv//7v/PjH/+438cLIYQQ4tqSthJCCCHELeDMmTOB3//gBz/gBz/4Qb+O66jaBEhOTmbSpEkcPXqUf/7zn2RmZnLPPfcwZcoUxo0bd0XhWn9MmjSJ5ORkysvL+eSTT3juuedYt24diqKQmJjIxIkTP/c19Ho9CxYsYN26dWzZsoV77rmH++67j6lTpzJhwoQeKyg7nD17NvD7mTNn9vuanSuxOzObzf3uhbp7924+/PBDjhw50md/z74WtgN6rejt0Lmlxfnz5xk/fny/5nc1nk3n1iLPP/88U6ZMYd68eUyaNInhw4dfdiuIzjr3T+5oXXE5Oj/zvnoxDx069LLP3aGsrAyn0wlwycrgy2lV0ZeOULI3Hd8M6O09pygK69evZ9WqVZw+fTow/55c6r15taWnp7Nw4ULWrVvHhg0beO6557q0bOhNx3vZ4XAEwvH+qK+vJyEh4YrmOnnyZIqKirr0Ha6traW0tBSVSsWUKVMClfyd+w4rihL4QKFzBTK0LzjXUTF9cauaiw0fPhydTofH4yE/P7/XcZfz/rbZbDz99NMcOXIEtVrNf/7nf/Loo4/2+3ghhBBCXHtSOSyEEELcAhobG6/ouItDnf/3//5fIBgsKCjgT3/6E0899RSTJ0/mK1/5Ch9++GGgUvRq6qiI7Kg062gxsXjxYlQq1VW5xksvvcTcuXOB9srkN998k2984xtMnTqVhx9+mDfffLPH6lCLxXJF1+stMOvpK94XUxSFn//853zzm99k9+7dl1z4qa9wDrq2R7jU/r7aJ1zsajybiIgI/vznPxMXF4eiKBw6dIhXXnmFhx56iClTpvDCCy8Evu5/uTq3COn8QUh/db6/i9uNdPZ52qx07t99qdfp4sXhrtSlPujp+Op/R2uCzlwuF9/4xjf48Y9/zOHDhy/53rvU/i/C888/j1arxe/3BxZCu5Sr/e95f3QsJNfRdxjg0KFDQHvVb2RkJPHx8SQnJ6MoSqBaOC8vr9d+w83NzYHfX6qVik6nC7yvOx93sct5f587dy4Qdn/5y1+WYFgIIYS4CUjlsBBCCHEL8Pl8gd///ve/73el18X/0x8XF8dHH33EwYMH2bp1K0eOHKGgoACPx8ORI0c4cuQI//jHP3jjjTcYOHDgVZv/kiVLeP311ykuLua9996juLgYuPz2C30JDg7mL3/5C6dPn2bTpk0cOnSI3NxcfD4fZ86c4cyZM7z55pu8/vrrXSpnOwIynU7HmjVr+n29jq/VX6w/lbCrVq1i1apVQHt131e/+lXGjBlDXFwcJpMpcI4f//jHgUC9L5cK2C93obcOV+vZTJo0iW3btrFlyxb27NnD0aNHqampoa2tja1bt7J161ZmzpzJa6+9dlkV7HFxcURERNDU1EReXh4+n++yKpGzs7MDv++rR/TnqW6+2fz5z39m7969QHvV6uOPP87IkSOJjo7GaDQGguUnnniix57F10JKSgpLlixh9erVbN68mdzc3Ev2+O54LyclJfHnP/+539dKSkq64nl2DnYPHz5Menp6l37DHaZMmdJlUbqOkFilUnULhzvrzwdr/fl3/3L6BA8ZMgSv10txcTErVqxg8uTJLFiwoN/HCyGEEOLak3BYCCGEuAV0rmpUqVR9LuzVH9OnT2f69OlA+9fCDx48yIoVK8jKyqKsrIzvf//7fPzxx5/rGp2lpqYyfvx4Tpw4wW9/+1ug/SvRl/r6+5UYM2ZM4OvWbW1tHD58mDVr1rBt2zYsFgsvvPAC27dvDyx+1vFsPR4P4eHhgT6/X6SORd5SUlL46KOPel2IrXPVaV8uVTXbufK8rwrZi13NZ2MwGFi8eHHgA4Hy8nJ2797Ne++9R0lJCZmZmfzP//wPP/vZz/p9TpVKxcSJE9m+fTsOh4ODBw/2u/1Fa2trINwMDw9n8ODBl39T/dC5kvxS1atX+g2Bq0VRlMCHFhMnTuTtt9/uNTjs73vzi/Ltb3+b9evX4/F4ePXVV3n99df7HN/xXrZYLAwaNKjHxRuvttjYWNLS0igpKeHw4cM89thjXfoNd5gyZQqrV68O7Ov459ChQ7t9wNf5z721tung9XoDFcNXa5HRiIgIfv/73/Pkk09SUlLCj370I9RqdWChQCGEEELceKSthBBCCHEL6Nwjc//+/Vf13BERESxYsIC3336befPmAZCTkxPoa3m1dISCHW0rrsZCdJcSHBzMvHnzeO2111i+fDnQHqgcO3YsMOaLfLa9OX/+PAB33XVXr8Gwoij9Xjyuc0/qS+0fMmRIP2f5xT6b5ORkli9fzurVqwOVxps2bbrs8yxbtizw+3fffbffx61YsSLQMmDp0qVXrb3JxVJSUjAYDEDXHs49udT+L5rVag0Ejvfff3+vwbDNZgtU/18vSUlJPPTQQwBs3779kv+uDB8+HGjvOXz8+PErvu7lvk86QuAjR45QW1tLSUlJoN9wh2nTpgHtrX4sFkuP1cUd9Ho9aWlpAJw+fbrPa2dnZ+PxeAA+9weKncXFxfHOO++QmpqK1+vl3//936/6YpNCCCGEuHokHBZCCCFuAampqYHKxg0bNlBVVfWFXKejmhiu/kJTCxYsICgoCL1ej9lsvuZfRe7t3mbNmoVOpwPgn//8J16v9wufS0ebEIfD0euYHTt2UFdX16/z7d+/v9exfr+ftWvXAu3Vg5daFK2za/FsgoODAwvqXcl7bt68eYEK9N27d7Nhw4ZLHlNaWhqoNDUYDDz55JOXfd3+0mq1gdYAmZmZvVZ5dywCdz11bl/T13tz1apVgdDxenruuefQ6/UA/PGPf+xz7F133RX4/d///vcrvmbH9ToWkruUjoC3vr6ejz76CPis33CHzn2H33vvvUC/4Z7CYfjs77KCggJOnjzZ67U7qsA7H3O1xMXF8fbbb5OcnIzX6+V73/seO3bsuKrXEEIIIcTVIeGwEEIIcYt47rnngPbK2+eff77Pr6C73W7ef//9LovL5eTkkJOT0+sxiqJw4MABoL06LjEx8SrNvF14eDjHjx/nzJkznDhx4qotvgUE+nX2pXPla+c+onFxcTz44IMA5Obm8tJLL/UZgloslkBbiCuVmpoKwK5du3pcKKqsrIz/+q//6vf53G43L730Updwr8Mbb7xBfn4+AA899FAg3OqPq/Fs9u3b12fI3draGqiAvJL+rmq1mt/+9reBEPsnP/kJGzdu7HV8bm4uTz31FHa7HWjv63y13+sX61i0y+Vy9fo6vfXWW/2uFP+iREZGBtpgbNy4sccA9PTp0/zhD3+4xjPrWXx8fODZ7t69O1CR35MxY8YEWo7s2bPnkmFyRUUFn376abftMTExQPt7vacFLi/WOeDtqGzvKfTt2NYxRqVSMWnSpB7P+dhjjwWqul988UVaW1u7jcnMzAyEw51b7VxNCQkJvPPOOyQmJuLxePjud7/L7t27r/p1hBBCCPH5SM9hIYQQ4gaVk5PTr0W+Jk6cSGpqKgsXLiQzM5O1a9dy7tw5FixYwKOPPsqUKVOIjIzEbrdTXl7O0aNH2bZtG1arlaVLlwa+0p6Tk8N//Md/MHr0aObOnRtYZMrr9VJRUcGaNWsCAepdd911TXrvXi1VVVU8+eSTDB48mPnz5zN69OjA/Gtqati4cWOgZcGIESMYO3Zsl+N/8pOfcOLECfLz81m9ejWnTp3iS1/6EiNHjiQoKIiWlhYKCgo4cOAAe/bsISMjg0ceeeSK57t06VJ++9vfUltby5e//GWeeeYZhgwZgsvlIisri7fffhu3283IkSP7FRiOGjWKXbt28dhjj/HUU0+RmpqKxWLh448/DlTSxsfH8+1vf/uy5/p5n82GDRt47rnnuOOOO5gxYwYZGRmEhYVhs9nIz8/n/fffp7a2FmgPva7E6NGj+e1vf8uPf/xjPB4P3//+91mxYgULFy5k0KBB6HQ6qqur2blzJ59++mkg4H7yySf5yle+ckXXvBz33HMPM2fOJDMzkx07dvDEE0/w5JNPkpqaSmNjI+vXr2f9+vWMGTMmEJR/UW0u+qJWq1m0aBHvv/8+OTk5PPHEEzz11FOkpKTQ1tbGnj17+OCDDzCbzcTGxl711jNX4pvf/CYrV67E6XResvL8v//7v3nooYeor6/n9ddfJzMzk4ceeoiMjAwMBgNWq5W8vDz27dtHVlYW8+fPZ+HChV3OMWHCBKC9Iv8Xv/gFy5cvJzw8PPB6dXzw0yEuLo7U1FRKS0sDIW5v4fDq1asDY4YMGUJERESP9zF06FC+9rWv8eabb5Kfn8+yZct49tlnGT58OE6nk127dvHuu+/i8/nQ6XT88pe/7MeTvDIDBgzg3XffZfny5VRWVvLCCy/w+uuvM2vWrC/smkIIIYS4PBIOCyGEEDeoHTt29OtruK+88kogcPj1r39NVFQUb731Fk1NTfzlL3/hL3/5S4/Hmc1mNBpNt+1nzpzps0ftxIkT+fWvf93Pu7ixFBQUUFBQ0Ov+9PR0Xn311W7BW1BQEO+++y4//OEP2bdvHwUFBfz3f/93r+cJDg7+XPN88sknOXDgAJmZmRQVFXVbhM1oNPKb3/yGPXv29CscfuKJJzhy5Ahr1qzh+9//frf9MTExvPnmm4SEhFz2XK/Gs/F4POzZs4c9e/b0eQ8dfaGvxIIFC4iJieEXv/gFhYWFZGVlkZWV1ePYsLAwvve97/H4449f8fUu1//8z//w9NNPc/r0aU6cOMGJEye67B8xYgS/+MUvAn10Oz7Uuda+//3vc/z4cXJycjh9+jQ/+MEPuuwPDw/n1Vdf5Y9//OMNEQ7HxMTw+OOP849//OOSY+Pi4lixYgXf/e53OXPmDKdOneLUqVO9jg8KCuq2bdq0aYwbN46TJ0/y6aefdqsuzsvL63bM5MmTKS0tBejWb7jzeTubOnVqn/fywx/+EIfDwQcffEB5eTkvvfRStzEhISH84Q9/CPRb/qIkJiby9ttvs3z5cqqrq3n++ef585//zIwZM77Q6wohhBCifyQcFkIIIW4hGo2GH/3oRzz88MP861//Iisri8rKStra2jAajQwYMIBhw4Yxc+ZM5s+f32Wxs4ULF5KYmMiBAwc4evQoNTU1WCwWvF4vUVFRjBgxggceeIAFCxb0uhDVjWrSpEmsWLGC/fv3c/jwYaqrq2loaMDtdhMWFsawYcO45557WLZsWa9tFcLDw/n73//OwYMHWb9+PcePH6eurg63201wcDDJycmMGTOG2bNnB76efqV0Oh1//etf+fDDD/n4448pLCxEURTi4uKYPn06Tz75JOnp6X2GqRd75ZVXmDFjBitWrCA/Px+73c6AAQOYP38+3/jGNwgLC7vi+X6eZ/Ozn/2MefPmsX//fs6ePUt9fT2NjY1oNBri4+OZMGECDz/8MBMnTrzi+XWYPHkyn3zyCVu2bGHHjh2cOXOGhoYGvF4vkZGRpKenM3v2bJYsWfK5nseVCA0N5YMPPuCDDz5g3bp1FBcXo1KpSElJYcGCBXz1q1+lqKgoMP7zfgBxpUJCQvjwww9566232LRpE6WlpWg0GhISEpg9ezZf/epXAwsI3iieffZZPvroo0CrkL4kJiaycuVKduzYwcaNGzl16lTg78GQkBBSU1MZP3488+bN67Gtg1qt5s033+Tvf/87u3btoqysDIfDgaIovV5zypQpgRYPF/cb7hAfH09KSgplZWUAgT7VvVGr1fziF7/ggQce4KOPPuLYsWM0NDSg1+tJTk4OvFZXs31PX5KTk3nnnXdYvnw5NTU1fPvb3+Yvf/nLVe91LIQQQojLp1L6+klFCCGEEEIIcUNYt24dP/7xjwHYtm0bKSkp13lGQgghhBDiZndzlf0IIYQQQghxm+roDx0ZGUlycvJ1no0QQgghhLgVSDgshBBCCCHEdVZbW4vT6ex1/8qVKwNtRJYuXXpdFqQTQgghhBC3Huk5LIQQQgghxHW2f/9+fve73/HAAw8wZcoUBgwYgN/vp7y8nI0bN7J9+3YAoqOjefbZZ6/zbIUQQgghxK1CwmEhhBBCCCFuAI2Njbz77ru8++67Pe6PiYnhjTfeuGaLiAkhhBBCiFufLEgnhBBCCCHEddbY2MiWLVvYt28fhYWFNDU1YbPZCAkJIT09nblz5/LlL3+Z4ODg6z1VIYQQQghxC5FwWAghhBBCCCGEEEIIIW5DsiCdEEIIIYQQQgghhBBC3Iak57AQQghxHVgsrfTnuzsqFURFhfR7/M1A7unmIPd047vV7gfknm4WX9Q9dZxXCCGEENeOhMNCCCHEdaAoXNb/UF/u+JuB3NPNQe7pxner3Q/IPd0sbsV7EkIIIW430lZCCCGEEEIIIYQQQgghbkMSDgshhBBCCCGEEEIIIcRtSMJhIYQQQgghhBBCCCGEuA1Jz2EhhBBCCCGE+IL4/X6cTicej/uW6c+rUnFF96TRaFGrpT5JCCGEuJFIOCyEEEIIIYQQV5miKLS0NOJwtFFfr8bv91/vKV1VjY1Xdk8mUzChoZGoVKovYFZCCCGEuFwSDgshhBBCCCHEVdYRDAcHR2A2G/H5rveMri6NRoXP1/+yYUVRcLtdtLU1ARAWFvVFTU0IIYQQl0HCYSGEEEIIIYS4ivx+XyAYDg4ORatV4/XeWpXDV3JPer0BgLa2JkJCIqTFhBBCCHEDkP8aCyGEEEIIIcRV5LtQJtwRhorPdDwTn897nWcihBBCCJBwWAghhBBCCCG+ENJXtzt5JkIIIcSNRcJhIYQQQgghhBBCCCGEuA1JOCyEEEIIIYQQQgghhBC3IVmQTgghhBBCCCFuUL/+9X+yadOn3bZPmTKd//f/Xu3XOVpamnnzzb9y+HAWdXW1hIWFM2vWHJ555jmCg4MD4x5+eBE1NdVdjn3iia/y3HMvdDtnc7OVr3zly9TX17Fp0y5CQkIu886EEEIIcSOQcFgIIYQQQgghbmBTp97Bz372UpdtOp2+38c3NNTT0FDPd77zPQYOHERNTTW/+90rNDTU8/LLv+0y9plnvsWiRUsDfzaZzD2e89e//iXp6YOpr6/r/40IIYQQ4oYj4bAQQgghhBBC3MD0eh1RUdFXfPygQYP59a9/F/hzYmIS3/jGt/nVr17E6/Wi1X72v4Vms/mS11q7dhWtra089dQzZGUduOJ5CSGEEOL6k57DQgghhBBCCHET+/Wv/5Pnn//GZR1js7URFBTUJRgGeP/9t1mw4C6eeupx3n77TTweT5f9xcVF/POff+MXv/glKpXqc89dCCGEENeXVA4LIYQQQgghxA3swIFM7r77zi7bnnjiqzz11DMAREVF4/f7+32+5mYr//zn31m8+MEu2x955MtkZAwjJCSUnJxz/PWvr1FdXcVPf/oiAG63m//8z5/z7W9/l/j4BMrKyj/nnQkhhBDiepNwWAghhBBCCCFuYOPHT+SHP/yPLttCQ0MDv//Wt57v97lstjZ+9KPvkZY2iK9/vWu18aOPPhH4/eDBQwgJCeH//J+f8NxzLxAWFs5f//oaaWlp3Hvvgiu8EyGEEELcaCQcFkIIIYQQQogbmMlkIikp+XOfx2638e///m+YTGb++79/162lxMVGjhwNQEVFBWFh4Rw7dpSiogJ2754KgKIoACxcOJ8nn/w6Tz/9zc89RyGEEEJcWxIOCyGEEEIIIcQtzmZr4wc/eAGdTsdvfvP/MBgMlzwmPz8PILBA3a9//VtcLicAGo2as2fP8sorv+T11/9GYmLSFzd5IYQQQnxhJBwWQgghhBBCiBuY2+3BYmnosk2j0RIeHg7AX/7yGvX1dbz44i97PN5ut/H97z+Py+XkpZd+hc3Whs3WBkB4eAQajYazZ09z7twZJkyYRFBQMDk52bz66v9j5sxZxMfHA3QJgLVaNRZLIwCpqQMJCQm52rcthBBCiGtAwmEhhBBCCCGEuIEdOnSAJUvu67ItJSWVDz5YDYDF0kBtbU2vx+fm5pCdfRaARx9d2mXfypXrSUgYgE6nZ8eObbz11t9wuz3Ex8ezaNFSnnjiq1f3ZoQQQghxQ1EpHY2ihBBCCHHNNDS00p//AqtUEB0d0u/xNwO5p5uD3NON71a7H7h17snjcWOxVBMVlYBOp0erVeP1+q/3tK6qK72ni59NZx2vvxBCCCGuHfX1noAQQgghhBBCCCGEEEKIa0/CYSGEEEIIIYQQQgghhLgNSTgshBBCCCGEEEIIIYQQtyEJh4UQQgghhBBCCCGEEOI2JOGwEEIIIYQQQgghhBBC3IYkHBZCCCGEEEIIIYQQQojbkPZ6T0AIIYQQQogbldXhodnpASDMqCPcpLvOMxK3m1//+j/ZtOlTvvnN51m+/KnA9r17d/Ozn/2QzMyj/T7Xm2/+lbfe+lu37Uajke3bM7tc72JpaYN4771/Xf4NCCGEEOKGJuGwEEIIIYQQFylptHOiopnsmlbsHh8AZr2GUfEhjE8KJyXCdJ1nKG4ner2B999/myVLHiQ0NPSKz/PYY8tZuvShLtu++91vM3z4iE5//iHf+tbzgT/7fD6eeupx5s6964qvK4QQQogbl7SVEEIIIYQQopNj5VbeOVLOwdJGNGpICDWQEGpAo4LM4kbePlzGiYrm6z1NcRuZNGkKUVFRvPfeW5/rPGazmaio6MCvxsZGSkqKWLhwSWBMcHBwlzG5uTm0trbwwAOLP+9tCCGEEOIGJOGwEEIIIYQQF+TVtfHJuRoURSE90kykWY9eo0avURNp1jM4yozPr/DJuRoK6m3Xe7riNqHRqPnGN77DqlX/oq6uttdxM2dOYuPGT/p93k8//Zjk5BTGjh3fx5h1TJo0hfj4hMuasxBCCCFuDhIOCyGEEEIIASiKQlZJEy6vn4RQIyqVqtsYlUpFQqgBm9tHVmkjiqJch5mK29Hs2XMZMiSDN9/8a69jUlJSCQoK7tf53G43W7du7lI1fLGGhgYOHTrAwoVLL3e6QgghhLhJSDgshBBCCCEEUNnspNBiIyZI3+c4lUpFTJCeggYb1S2uazQ7IeC5515g8+YNFBcX9bj/gw9WM3v23H6da8+endjtNu6774Fex2za9AnBwcHMmjXnSqYrhBBCiJuALEgnhBBCXAc9FCT2Oa6/428Gck83h9vxnhpsblweH0FhBug0xu/3o1Z3rakIMWqot7losLlIDDd+QTPu2+34Gt0svqj5jxs3gSlTpvHGG69z//2LPte5Pv10HXfccSdRUdE97lcUhQ0b1nPvvQvQ6XSf61o9Uam6P6eb/XUXQgghbkYSDgshhBDXQVRUyBc6/mYg93RzuJ3uKbjFjcGgIyjos7C3paWFv//978ydM5fxE7r2ZTW0eggJNRMdfX2f0e30Gt0snE4njY1qNBoVWm37Bwsd/7xcKpUKleqz83znO//Gk08+RkpK6hWft6qqkuPHj/K73/1Pr8cfO3aUiopylixZ1uuYK7m2369CrVYTERGE0Xh9PlgRQgghxGckHBZCCCGuA4ullf60KlWp2kOS/o6/Gcg93Rxux3vyOVx4vF6srQ70GjX1dXVk7t+HWq0hOiYOu/2zFhJurx+v14fP6aKhofUa3sVnbsfX6Gbh8bjx+/34fAperx+tVo3X67+icymKgqIogePT0tK5++77WLlyBUCX8z7++EN885vPX7K1xLp1HxMVFc3kydN7ndf69WsZMWIUqamDehxzpffk8yn4/X6ammzodJ4u+zpefyGEEEJcOxIOCyGEENeBonBZwcfljr8ZyD3dHG6ne0qLDCI2yEBDqwtnYzVFRQXo9QaioqLQ6/XQ6Zj6NjcJIQZSI8zX/fncTq/RzeKLnvuzzz7Hrl3bu20vKyvFZmvr81i/38+mTZ9y//0L0Wg0PY5pa2tj9+6dfPe7P7wq8+3Jzf4aCyGEELcKCYeFEEIIIYQADFo1o2KMvLWnAI3TSlBQMGAjJCQYjeazH5vtbh9Or48JyeHoNLK+s/hi/fzn/9ltW3x8Ajt3Hui2PTPz6CXPp1arWbNmQ59jgoOD2bFjf7/nKIQQQoibl/w0K4QQQgghBFBdXUXViR3Eq9vw6ENRjKEoKERERKHVaPD5FerbXFS1OJmYFM6UlPDrPWUhhBBCCCE+F6kcFkIIIYQQt71Tp05QVFRIkNHAfQlhHKt1UdSmwaYJwaoYKW12o1J5iTTruHtoLLPTo6RqWAghhBBC3PQkHBZCCCGEELctr9fLjh3bMJvNaDQaBg5MJy8vh4nREYyMVHPE5cBkdjBlWCwRZj1DY4MJNsiP0EIIIYQQ4tYg5Q5CCCGEEOK21NxsZc2alaSnp9Pc3ExGxjCKigqYOnU6DoeDyuJ8lt4xhmFBLuYPjWVicrgEw+KyKLLiWjfyTIQQQogbi4TDQgghhBDitlNcXMTmzRuZP/8e8vPzSU8fTHNzM4MGpVNQkM+UKdMoLS1h1KjR13uq4iak0WgAcLtd13kmN56OZ9J5kUchhBBCXD/yX2QhhBBCCHHbUBSFAwf2Y7VaWbbsYXbu3E5KSioRERGcP5/HnDnzKC0twefzERISisFguN5TFjchtVqDyRRMW1sTAGazEZ/vOk/qKvP7Vfh8/a8CVhQFt9tFW1sTJlMwarXUKQkhhBA3AgmHhRBCCCHEbcHpdLJq1WYiImKZOnU627dvITExkSFDMli7dhWLFy/jwIF9TJ06nQMHMhk7dtz1nrK4iYWGRgLQ1taE3a7G7/df5xldXWr1ld2TyRQceDZCCCGEuP4kHBZCCCGEELe8+vp6du7cytKlCzEYQtm+fStxcfGMHj2WTZs2cMcdM/F6PdhsNuLjEzh37izPPPNNFEWRHqniiqhUKsLCoggNjSA01EBTk41b5a2kUkFERNBl35NGo5WKYSGEEOIGI+GwEEIIIYS4peXkZJOdfZZFi5aSmBjHypUfExkZxdix48nOPkdwcDApKals27aZqVOn09xsxe12ER+fgM/nQ6uVH5nFlVOr1RiNRnQ6zy0VDt9q9ySEEELcruRjWyGEEEIIcUvy+Xzs3LmN2toali17GLPZzPbt2wkJCWHChElYrU2cO3eGGTPupKWlGYfDQXx8AmfPniE1dSAqlQqXy4VeL32HhRBCCCHErUnKIIQQQgghxC2nra2NzZs3MHr0WIYOHYaiKGRm7iU2NoKhQ8fg9frYtm0L99xzH2q1mkOHDjJ16nQAjh8/yp13zgHA7XZhMOiv453cmBpsbiw2N4qiEGzQMiDMiFqlut7TEkIIIYQQl0nCYSGEEEIIcUupqCgnM3Mv8+ffS3R0NAAHDmSi0WiZMWMGDQ2t7N+/j1GjxhAWFh6oGo6Li8flclFfX8/gwUMAcLvdUjncSWmTnSOlVnJqW2lze1EUMOo0pEaYmJgczpgBoRISCyGEEELcRCQcFkIIIYQQtwRFUTh+/ChVVZUsW/YwBkN7qJuVdQBFUbjjjhkAlJaWYLfbGT58BECXquGiokLCwsIIDg4GkLYSnZypamHd2WpanF6ig/TEBJtRAXaPjyKLnUKLncpmJ/cNi0WjloBYCCGEEOJmID2HhRBCCCHETc/tdrNx46d4vT4WLlwSCIYPHz6E2+1mxow7AbDb7Rw8uJ958+YDdKkaBjhx4igjR47qcl5pKwHlTQ7Wna3B7fWTHmUm3KRDrVKhUqkI0mtJjTARYdKyr9BCVknj9Z6uEEIIIYToJwmHhRBCCCHETa2pqZG1a1cxatRopk6dhupCW4OjRw9js7Vx552zUalUKIrChg0bmDNnHnp9e+CblXUgUDXs9/spLS1lxIjPwmGpHG53vMJKs9NDYpgx8HwvFmbUYdKpOVRqxenxXeMZCiGEEEKIKyHhsBBCCCGEuGkVFJxn27Yt3H//A6SmpgW2nzhxjJaWZubMmRcIM0+ePE5iYiLx8QkANDdbcTqdgarhysoKVCoViYlJgfPIgnRgdXg4W9NKlFnXazDcITpIT12bi/P1tms0OyGEEEII8XlIOCyEEEIIIW46fr+fffv2UFxcyIMPPkJoaFhg36lTJ2hoqGfu3PmBMLO+vp6SkmKmT58eGNfea/iOwJ9zcrJJTExEo9EEtrlcsiBdo92NzeUl1PDZciU+n4+y8jL8itJlrE6jRrlwjBBCCCGEuPHJgnRCCCGEEOKm4nA42Lx5A4MHD2H06Nld9p05c5qamhruuee+QDDs8XjYsWMrixYtCWz7rGo4LnBsXl5uYNG6Dm63tJVQFFAALjw7t9vNkaOHOX7sKGqNmsce+wqREZGdDrgwXgghhBBC3PAkHBZCCCGEEDeN2toadu3awdy5dwXaQXQ4d+4sFRXl3Hffgi7tD/bs2cmUKVMJDg4ObMvK6lo1bLFYcDrtDBqU3uWc0lYCQo1aTDoNdrcXn6ONg1n78Xq9aLTtFdYupzMw1udXUIAQg/xvhhBCCCHEzUB+ahNCCCGEEDeFM2dOU1CQz+LFyzCbzV325eRkU1JSzP33P9AlGC4oOI9arWbQoMGBbc3NVtxuV5eq4YKC8wQFBRPRuQIWaSsB7X2EB0YY2Xoij5byfIKDg2lpaSYiIhKn00FVVRUJCQMAaLR7iDTryIgJvsRZhRBCCCHEjUDCYSGEEEIIcUPzer3s2rUdk8nMkiUPolZ3XTYjPz+PgoLzPPDAoi77WltbOHbsCA899KUu4y+uGgbIy8shPX0wF2tvK3H7Vg4rikJ+fh7Fh/bSYgvBGB6DSQs6nQ6v14tKpaKltQWPx4MPNVanh7uGxBBilP/NEEIIIYS4GchPbUIIIYQQ4obV2trC5s0bGT9+IoMHD+m2v6DgPHl5OSxY0DUY9vv9bNu2hbvuuget9rMfeZuamnC5XMTGxga22e12mpoaueOOmd3O7/f7uyxQdzuxWCzs3bsLl8uN0WkhTePHYk7Fo1YTblBRX1+H0WhEo9ORW1aNKSyKcQPCmDM46npPXQghhBBC9JOEw0IIIYQQ4oZUWlpCVtYB7r77XiIjuweORUUFnDt3hoULl3QLcA8fPkR6+mCio6O7bM/MzGTatK5Vw0VFhWi1WpKTU7pdo3OLituF2+3m4MH9NDdbiYqK5tChg6AozBkSgzFlIDuzK6l3+HEZI9FoNLRhwmRrZeGkDGYPjsGouz3DdCGEEEKIm5H60kOEEEIIIYS4dhRF4dChLM6ePcOyZQ/3GAwXFxdx+vQpHnhgcbdguLq6ivr6WsaMGddlu9XahNvt7lI1DFBYeJ7IyCgMhtu7t7CiKOTl5bJmzUqSkpIJD48gK+sAiqIwfvwEFi9eiq34FP9nyVRGa+uIaT5PsqeSDKWKp8bHMMBbJ8GwEEIIIcRNRsJhIYQQQghxw3C5XHz66Tq0Wg0LFizssd9vaWkJJ04cY+HCJV1aRnQcv2fPLubPv7db1W9W1kFmzuzaOsLr9VJTU83AgelX/2ZuIhaLhY8/Xo3F0sCDDz5Cfn4eWVkHALjzztnMn38vRUWFJCUlExYajK6tlghXLYmqFtLDNMRFhZOdfRZFUa7znQghhBBCiMshbSWEEEIIIcQNoaGhge3btzBz5iySkpJ7HFNeXsbRo4dZvHhZt2AYYMeObcyYcScmk6nLdqu1CY/HQ1xcHA0NrYHtZWWlqFQqBg4c2OP1bvWw0+12k5V1AKu1iblz7yIoKJj169dSWFiASqXi3nvvZ8yYcfh8vsDifg6HA6fTiVqtxmg0EhoaSk1NDYmJSZSWlpCW1vOzFEIIIYQQNx6pHBZCCCGEENddXl4uu3fvYOHCxb0Gw5WVFRw6dJBFi5ai0+m67T937iyhoaE99g7OyjrYrdcwtLeU0On0xMbGddvn9/tv2Z7DXVtIJLF48TL0egMrVnxAYWEBWq2WZcseDrTmOH36JCNHjkKn02G1NgEQHByCRqMhKCiYurpaxo2bwMmTx6/jXQkhhBBCiMsllcNCCCGEEOK68fv97N27G7/fx7JlD3frH9yhurqKAwcyL4SY3VtNNDU1kpNzjgcffKTbvo6q4ZiYmC7bFUWhpqaG2Ni4HkNgt9uNXn/r9SFubLSwZ88u4uLiefjhR9FqtTQ3W1m1agUWiwWj0cSDDz4cCOldLhf5+Xk88siXAWhqag+HIyIiAPD5vACYTCaMRhMWi4WoqO59ooUQQgghxI1HwmEhhBBCCHFd2Gw2Nm/ewPDhIxkxYmSv42pra9i3bw+LFy/rcdE4n8/Htm1buPfe+1Gru38xrreq4bq6Onw+X69tENxuFwZD9yD6ZnVxC4nw8PZwt66ujlWrVtDW1kpISCiPPPJloqOjA8cdOXKIyZOnBJ5tR+VweHgEzc1W3G43SUnJ1NbWMGHCJI4dO8w999x/7W9QCCGEEEJcNgmHhRBCCCHENVdVVcnevbuZN+9uYmNjex1XW1vLnj27WLRoKUajsccxmZl7GTNmHGFh4d32NTU19lg1DO0tJVQqVa/hsMt1a1QOK4pCfn4eJ04cY/LkKcyaNSewr7y8jLVrV+F0OomOjuGRRx4lJCQ0sL+trZW6ulpmzLgzsM1qtQIQGRlJc7MVj8dDYmISFRUVTJkylba2Nux2O2az+VrdohBCCCGEuELSc1gIIYQQQlwziqJw8uRxjhw5xNKlD/UZDNfX11/oQ7yk2wJzHUpKinE6nQwbNrzH/YcOZfVYNQztPYyNRiNBQUE97m+vHL65w+HGRgsff7wai6WBhx9+lPT0IYF9+fl5rFz5EU6nk6SkZB577CtdgmGA/fszueOOmV3abnRUDkdGtreOcLvdDBiQSHV1JQDjxk3g1KkTX/StCSGEEEKIq0Aqh4UQQgghxDXh8XjYvn0r4eHhLF68rM/F3hoaGtixYyuLFi3ttQLVZrORlXWgxz7D0F417PV6e6wabm1twePx9Lr4HbT32u2pv/HNoKOFRFNTY5cWEh1OnDjG9u1bURSFIUMyWLhwSbdF/urr6/F6vcTHJ3TZ3tFzuKOvsMfjRq/X4/F4UBSFgQMHcfhwFpMnT0Wrlf/dEEIIIYS4kclPa0IIIYQQ4gtntTaxZcsmpkyZxsCBg/oc29hoYfv2LSxcuKTXql5FUdi+fQtz597Va4DbW69hgMLCArRaba8tJeDmXJBOURTOn8/n+PGj3VpIdOzfv38fBw5kAjB27HjuvvveHns1Hziwjzlz5nXZ5na7sdnaAIiOjrmwzQO0VxI3NDQQExPD8OEjyMnJZvToMVf7FoUQQgghxFUk4bAQQgghhPhCFRUVcvToYe67b0GPfYE7a2pqZOvWzSxcuJjg4OBex504cYwBAxKJi4vv9Tw+n6/LwmqdlZQU4/f7SUxMCmzz+hVKLHbO1rRQ1+amvKqZIIOOIqoZER/KwEgzGnXv1c7XW2OjhT17dhEXF8/DDz/arWrX7/ezbduWQMuHGTPu7NYyokNZWSmhoWHdXq+OfsNGo4nQ0PYWFB6PG4Dk5BQqK8uJiYlhxIhRrFmzklGjRvdZIS6EEEIIIa4vCYeFEEIIIUS/KIpCg81Ns8OLT1EwaNXEhxgw6jS9jj94cD8tLS0sW/Zwt7YFF2tutrJlyyYeeGARwcEhvY6rq6ujrKyUJUse7HVMX1XDbrcbt9uDyWRCo9HgVxROVDRzpMxKudWB169g0qqxOr04FC37ixo5VGolJcLElJQIxiaGor6BAk+3283BgwewWpt6bCEB7S09PvnkYwoK2hfhu/vuexk3bkKP51MUhaysAyxatLTbvo5+w+Hh4eh07RXbXq8Xn89HYmISO3duZ9y4Ceh0OhITkygrKyU1Ne2q3asQQgghhLi6JBwWQgghhBB98voVCurbOFnVQn5dGw63Dz8KWrWa6CA945PCGBUfQnTwZy0YnE4nW7ZsJC1tINOnz7hk9WhLSzObNm3g/vsf6LYoWmcej4edO7excOGSXs/Z2Gjps2q4tLQEo9FAcnIKXp+fLXn17C+yoFGpiAvWB8Jub4ufyFAjwcFBODw+ypsclDY5qG11MX9oDNrrXEWsKAo5OTns2LGHSZO6t5Do4HA4WLNmJZWVFWi1WhYuXEJGxtBez5ubm0Na2qAeFwHsqByOiIjo0s7D4/FgNptxOh2BbePGTWD79i0SDgshhBBC3MAkHBZCCCGEEL1yeHx8craWExXN+BWFKLOOmCA9KhV4fQoWu5sN52rJKmli0cg4RiaEUldXx86d25g9ey4JCQMueY3W1hY2bvy0X20ndu/ewZQp0/psOdFX1TBAQcF5/H4/qWkD2Z7fwN5CC9FBOsKMXSubfV4fGk17UGzSaUiJMGF1eNhd0IBGDfMzYq5by4TGRgt79+4iI2MQDz/8KBpNzz/Wt7Q0s3LlCiyWBoxGI8uWPUxyckqv5/V6vZw6dYKHH360x/1WayMA4eERaDQaNBoNPp8Pt9uF0WgkJCSUlpZmQkPDCA4OxmAwYrFYAovXCSGEEEKIG4uEw0IIIYQQokcur4+Pz1RztLyZxFADQfrPfnQsryjHYW+vEvUrCnm1agqKi0l2luCqLmDs2HFkZR0A2itcFUXp8vuOPzudDk6cOM6oUaPZvHljt/2d/1xbW0NTUyOVlZXs2bPronO3j7fZ2igqKqKiouyi40GlAqNRy8GDh1AUOFVm4ZwvBp3ipV7lw+Gw09raSkxMDCpUqNQqEhMTuzyTcJMORYF9hRYGRgYxOKbnBfO+KG63m6ysz1pIDB6cQkNDKxceVxf19fWsWrWC1tYWQkJCefjhR4mJienz/CdPHmfMmHHd+hV3aGr6rK0EgE6nx+dzBBalS0pKpry8nJEjwwCYOHEyx44d5p577r/COxZCCCGEEF8kCYeFEEIIIUSPDhRaOFHRQnKYEdNFfYWtVistLc2BP/sVhco2L9UKTAuLpLS05JLnd7vd5OfnMWhQOhaLBYvF0utYl8tFQUE+w4ePpK6uttdx58/nk5iYFGh/0JlKBY2NThRFQaXWUOHS4Vb5UbtaqG624nQ6AdDrdYSEhKJSVGh6CEkjzDoaHR5OVTVfs3BYURTOn8/n+PGjTJ7c3kKir6Lliopy1qxZidPpJCoqikce+TKhoWF9XsPpdFJUVMgjj3y51zGf9Rxu72us1+twOh2BRemSkpI4dOggI0eOAiA2Npa2tjbsdjtms/lyblkIIYQQQlwD6us9ASGEEEIIcePx+PxkFVkw6tSYdBpaWlvIzj6Hz+8HoHMu6fN5sTTUE6rxoAuNxqrufTG5wPk9Hs6fz2PgwEGXDA0VRaGoqICBA9NRq3v/8dXhcABKn+ezWCyoVGrMUQk0+I04muqora0JBMMALS0t+P1+/H5/r9eLNOvIrmmloc3V941eBY2NFj7+eDX19XU89NCXSE8f0uf48+fz+de/PsTpdJKYmMRjjy2/ZDAMkJV1gKlTp/faKsPn89HS0gK09xwGAovSud3t4XBoaBjNzc1djhs3bjynTp245PWFEEIIIcS1J5XDQgghhBCim/P1NiqaHMSY9VTXVFNcXITf76ewsIAhQzIC45xOJy0tzURERKLT6WjFTz1hxNDcaxWCx+MhPz+XtLRBBAVduvK2oqKcyMioS4bIFRXlJCYm9zmmtbUVp9NNs0NFg78Nja2xS9DtdDrw+xX8/goSE5Noa23F6/UGwtAO4UYtBRY7BQ22LgvxXU0dLSSamhqZO/euQLVuX06dOsHWrZtRFIX09MEsXrwMnU53yeNaWpqxWpv6XDyuudmKoijodDqCgtp7PncsSufxtLeVUKlUGI2mLpXCAwemc/jwISZPntpruwohhBBCCHF9yE9nQgghhBCim5pWF16vj9LqEurqalEUhYaGeiorK6itrcFgMFJWVoperyc2Ni5QYWvAg11lwK3oMOLpdl6v10t+fh6pqQP7FQy3tLTgcDhISuo79LXb7VyqaritrY2Wlhaqqqox6hMgRkEF+P1+PB43Drsdl8uN1+elqakRnU5HXl4uLreLpMRkUlJSAlW1KpUKtQrsHv8l7+Fy9dRCoj/HHDy4n8zMvQCMHj2We++9v89K684yM/cxY8asPsd0tJQICwsPPIeO4LmjchjaW0tUVlYEPkRQqVQMHz6C3NwcRo0a3a/5CCGEEEKIa0PCYSGEEEII0Y21pZXi0hK0bQ1Ae2uDmppq7DYb5WWlaHU6tFotBoMBh8NBaGgYZrMJtAYUnRZ/D3XD7cFwLikpqQQHB19yDl6vl7KyEoYNG9Frq4MOlZUVvVYNty9mV8vp0ydxudoXT3O32fAGO/A0WvD7fPgutJHovBheUVEhFksDAwYk4fV6aW1tISNjaKBaFgV8/h5WgvscGhst7Nmzi9jYOB566Ev9qvr1+/1s27aFkyfbWzdMnz6DmTNnXfKZdaitrUGtVl9ysbqOPs6dq6g/qxzuHA6ncPbs6S4V5iNGjGLNmpWMHDmq3/MSQgghhBBfPAmHhRBCCCFEF8XFRezftwenPxyltYX6+jqsVisejyfQc9jj8eD3+9Hr9TidDux2GxqNFn1QKCpDEGerTxCiBZPJhMlkQq83UFFRTlpaGiEhl+5JrCgKxcWFpKSkXrIVQXvVMJjNZhRFweVy4XDYsdls1NfXUVlZic3Whs3WhkqlQlFA3diANsqN3+tDUZRAMOz3d60EbmlpISysDUXx09TUSFV1FWNGjyU+Ph5UoNdenSU8PB4PWVkHaGy09LuFBLQH6OvWrSU/Pw+VSsVdd93NhAmTLuvaBw5kMn/+PZccd/FidAB6fXtLjc6Vw9HR0VgsDV2O1el0JCYmUVZW2mfrCiGEEEIIcW1JOCyEEEIIIYD2QDYr6wBbt26mosFBlXEg7oZyfBeCYBUqVIDy2QGoVKpA/1lFUfBojRi8ToL1GhSfF4ulAYfDQUNDA6GhoRd60ZowmcwYjaZOvzd2qSitr6/DaDT1upCaoii43W7sdjv5+bmEhARz+vQp7HYbPp8Pt9uF1dqMy+XE5/Ph8bhxOp0oioJWq0PTakGr+EGtRfG6Aue8mFqlxuPxEBERCYDL5eLoscMEhUYQHJuCzhOCokRecTVs5xYSkyZN4c47Z/f7WKfTybvvruL8+Xw0Gg0LFy5h6NBhl3X9oqJCoqNjCAkJveTYpqaOcDg8sE2vb69s7ug5DO1tJHQ6HW63+7Mqa2DcuAns2LFVwmEhhBBCiBuIhMNCCCGEEIKqqireffctDh8+RG1tNU6PH/3kSPRhMdjqK1D8CoriR6VSXei3q0Kt1mAwGD87iUqFWm9CV1OAtame6OgYhg4dTllZCYMHZ6DTaXE4HDgc7ZXGFksDXq/3wqEqjEYjJpMZtVpNU1Mjw4ePDFSk2u12HA47drsNu92O3W7H6/Xi8XhobW0JnMfr9dLcbKWtrQ2Px9Ne7exrrw7WaDSo1WqMRiNqpwW1swWCw/FZazsl3p1uB9BoNWg0mkD4azQaMRqNtCkGvC111J9vZuXp/SQkDCAjYxixsbH9DoobGy3s3bubmJjYfreQ6NDa2sKqVSuw21vQ6w0sW/YwKSmp/T4e2ttRHDlyiKVLH+rX+I62Ep0rh3W69vC3c+UwQHz8AKqrq7oEwcHBwej1BiwWC1FRUZc1VyGEEEII8cWQcFgIIYQQ4jZltTaRm5vL0aOH2LNnF/X1dfh8fszmIKJMRtzuBmrVKXh8ChqNGpVahc/nQwWo1Gq0Wi2RkZEEBQXR3NxMm1+LyuNA11qNoijU1dWSm5tNamoaERHhXYPkC9xu94XA2E5raytWaxOlpSXodHqqq6sCFak6nQ6tVodOp73wz/aexy0tLYSGhuLz+bBarbS1teD1+vD7/Wg0akwmE2q1GofDgUajQavVoNFoURQ/zrIzaDPuRKVSo6h83QJirVZLbGwcKpUKl8sZmL8f8Kk0hLtrqSjz8MADi9Dr9WRnn2X37lri4xMYOnQYcXHxPQbFnVtIzJ49N1CV3F8NDQ2sWvURra0txMVFc999S4iNjbuscwCcO3eWIUMyMBgMlxyrKArNzVbg0j2HoX1RupKS4m5VwhMnTubYscPcc8/9lz1fIYQQQghx9Uk4LIQQQghxG2lpaSY3N5e8vByqq6uwWBo4fz4fu91OaGhYIMxUqaAp5yDOBDem+MH4m6vxOB1o1Br8ih+dVkt0TAwpyamgUmEMjyfY7cFccwa/WYuihFJTU0N8fAJarY6iokKSk1PJyMhAo9HS1tZKW1sbTqcTj6c9IPb7fbhcLgYOHEhQUAgej7t98Ti3C7fbHfjl8Tjwer1oNBp0Oi0qlYrGxga8Xh9mc1CgQridKrDInFqtJjw8DLVaQ1tbK86GYtSJw1FHJ+OuK0WtUuGnPQhVqVTtIXlUNGGhYbTZWtvbTqhUtGIiRHEQpbRgs/lYufIjZsy4kzlz5gHtC7zl5eWyZ88uYmJiGTp0GAMGJAJQUHCeY8eOXHYLiQ6VlRWsXr0Sp9NBZGQkTz/9NF6vhh46YvTJ4/Fw7twZHnnky/0a31GdrVaru7T66KgcdrkurhxO4NChg93OExsbS1tb24X2IubLm7QQQgghhLjqJBwWQgghhLjFtbW1kpeXS25uDpWVFWi1WpKTU3C5XJw/n4/P5+tWPdrWZqPFUovBexiV0QihCWhNLrytFlReN6lpg0hKTCZlyAgsdg9RWjXzM2KYOWgJpaUl/OlPrxIfn4DBYLzQDsJOaWkJeXm5REZGkJiYjF6vD7RpiI6OwWptQqvVkZ4+ODCP4OAQoqOjiY6OITo6mqioaNRqNefOneFvf/srdXW1NDU14vX68Hq9gfYSarU6UG2sKH5CQkIxmYzceedMTp48TWNjIyY1KEUH8aXPRBeTittSAR4XKkCv0xEaFsbw4SNITEyisrICu8NNsaUVs8/BIKUGPT6gPUzOzNxLRUU5DzywmPj4BOLjE1AUhfr6evLzc9m6dRMVFRWMGjWGZcse7le17sUKC8+zfv3HeDweEhIG8PDDXyI8PJyGhtbLPtexY0cZP34iGo2mX+M7WkqEhYV1Ct479xzuGg5rNBoURcHn83W7xrhx4zl9+iTTpt1x2fMWQgghhBBXl4TDQgghhBC3IJvNRn5+Lnl5uZSXl6FWq0lLG8j99y+kra2Vt99+k+rq6m7HmUwm3G43LS1WzGYzfpcNX/Z2/FGpqOOGoQ2NRW8woo4YQLPajMvrZ/yAYFLNPoJsFezceZwdO7YSHByM0+mkpKSY1taWLteoqnJQW9vefiExMSkQ4jocDh588GHi4uKJjo4hKioak8kEtPcSLioq5NixIxw9epjs7Gxqa6uJjIwC2hdTUxQl0IfY621fRE+vN2C32zAa9TidLtavX09zczNqtRq1WgPOSrxtm9AOnYUmLB6134ditxIWFsyI4SNJSkyizeXDbYygpqGcmaOHoC8/hr3B1e3ZlZQU8/bb/2DRoiUkJ6egUqmIiIhAURQiI6OYNWsOtbW1rFu3hoiICIYMGUpKSmqXsLU3Z86cYsuWTfj9fgYNSmfx4mUYDPpLHtcTu91OeXkpU6dO6/cxVmvHYnQRXbb31nMYIC4unrq6WhISBnTZPnBgOocPH2LSpClotfK/I0IIIYQQ15P8NCaEEEIIcYtwOBycP59HTk425eVlAKSkpHLffQtITx9CbW0N69at5cCBfbhcXcNNo9FIfHwCdXW1tLa24fP5UatVgIJO5cdXX4DKUozLFEV0+lCCtY2EhwQTrBRTdspCGe3hbEFBPhERkYGK4PDwcJqaGikrK6WtrQ2dTofJZMZsNmMwGPF4PEyePBWrtYknnniSuLjPeuf6fD6KigrIycmhoCCfxkYLJSUlWK1NWCwWQkNDu9xDx6J2AwYkEh0dQ3h4OCqViuzsc6hU7eGty+VCq9Xi87UvrmezteFtacbX8BHa6FSMyaMIGjAYbVQczSozuTVWQs1GRiWEMT3CSaLZyfi5j7Nr13ZOnDje7TVoa2tlxYoPmDlzFpGRURw/frRLC4n09CFA+2J0+fl5HDlyiJCQUDIyhpKamtatylZRFLKyDrBv3x4ARo0aw7333t/vit+eZGXtZ/r0Gf1eOA+gqak9HO7cbxg69xz2dDsmMTGJiorybuGwSqVi+PAR5ObmMGrU6MudvhBCCCGEuIokHBZCCCGEuIk5nU4KCs6Tm5tNSUkxiqKQnJzC/Pn3MGTIUIKCgqipqWb9+rUcPnyI4uJC/H5/4HidTkdSUjJGo4ny8lKcTueFRd28gIJGo8HpdKDV6rC3taK0tuAz+WltKiU8OQWPKRXoCIbPEx4eQXR0TKBVRFRUNNHR0URGRtHS0sKxY0doaKjvcg8bN36CwWAgKSmZ0NDQCwvZ5ZCfn4fDYcfpdFJeXkp9fT2KouDxeFCp2ucO7S0kIiIiiY6OISIioktwarPZ8Hg8FBUV4PF4MBgMGAxGIiOjaGy04Ha7UKnUqLwefLUFKK3VYMnHkDyQGPN4DM0aNBo/rrAggiIj2HT2NGoURo4cTUxMLLt37+xWNWu323jjjT8zePAQnn/+u1169HaIjIxi2rQ7mDbtDqzWJvLz8zl+/ChmcxBDhw4lNXUgarWanTu3cfz4MQCmTp3OrFlzLivU7dBkd2OxebBYrRRZHEyOTris4zsqh8PCwrts73gNeqocTkxM4vTpkz2eb8SIUaxdu4qRI0dd0f0IIYQQQoirQ8JhIYQQQoibjNvtpqDgPHl5ORQVFeLz+UhKSmbevPlkZAwjODgYgKamRnbu3Ma5c2cpKiqgtrY2cA6NRkNCwgDCwyOoqCinqamItrZWmpoaaWlpbwOh1+suLPCmDQR4QUFBgVYCOp0OvV5PVFQ05eVlzJ9/D1OmTCM6Oprg4JAeQ78xY8aSl5fL/v17sVgs2GxttLQ0M2BAIu+++09ee+0PREfHkpCQgN/vp7Kygurqqi6BdktLC2FhYURERBAdHUtkZGSP7QkURSE7+xwWSwMtLS0YjUb0egMREVG0trZit9tRqdSYTHpcLhUqlZrQ0FBSY0NZtmAey5Y9hMViobHRQlNTIxaLBY1Gw1tv/Y2UlPZQvL0iuQSfz4PBYKS52Yrf72fw4CFotVref/9dFi9eSmJiUq+vZ3h4BFOmTGXKlKm0tDSTn5/HsWNHOXfuDE6nk4iISO6++14mTpx8We8Tv6JQZLFzpqqFczWttLm8VFZVEROdwuuZxYwdEMqohFCSwo2XDGg7eg5HRER22f5Z5XD3cFiv1+PxeAIL/HWm0+lISBhAWVkpqalpl3VfQgghhBDi6pFwWAghhBDiC+Dy+nF5fahVKsx6DerPWR3ZXv1aSG5uNkVFhYFFyWbNmsPQocO6VKe2tbWRlbWfkydPYLfbycvLwWq1Bnrxms1BGAwGKirKOXXqBHq9HofDcaFquA0AjUZNTEwMoKatrRWVSkVISAhhYeGkpw8mKCiIRx55jHHjxrNjx1bGjh3HmDHjLnkfKpWKYcOGM2RIBrt37+T11/8XtVqNxWLpNP8icnOzAQWj0RQIFlUqFQaDkYSEBMaNmxCoWu3teeXn51JRUYbT6UStVhMUFERcXCx2uwObrQ2NRoPBYMBut2MwGANVxVFRMQwdOpyQkFBCQkJJSxsYOK+iKKxc+RGTJk3B5XLR2GghPT2DLVs2cuzYEYKCgjGZTJw8eQKj0YTJZCI7+wwzZsxm1qzZREZGYTQae513aGgYo0aNoaDgPDqdDpvNRlBQMFVVlQQFBTNoUHogkO2L1+dnW149B0oacXv9RJh1RGq9+M0q0uJCabJ72VXQwJFyK/OGRHPHwMhe36OKovSj53D3thLQXiFtsViIjo7utm/8+Ins2LFVwmEhhBBCiOtIwmEhhBBCiKvEryiUWBycqW4mu6YNj8+PWqUiKkjPhOQwhseGEGLs/49fXq+XkpJicnKyKSw8j9vtJi4ununTZzJs2LBuQZ3D4WDPnp1kZu6jpaWZ+vp6Skvb++wqioLJZCYsLAyNRnOhSthKaGgoNpsNl8t1YZwfnU7H0KHDyMgYTE5OHiEhIURERKJSgVarJSkpGYDY2Fh27dpOTExsv4JhAIvFQm5uNrm52Rw+fIihQ4fhdrspL28Pce12Oy0tzRfaWrRXOMfHJzBoUDoxMbGUlBSTnJzSZzBss7WRm5tDW1sbNpsNr9dDbGwcYWHhaLVaVCo1RqMRv9+PoijodDpCQkJwOp2YzWYiIyPJyMjo8dwqlYpZs+Zw+vRJ7rnnfpqaGqmvr2P58qcIDg5h06ZPaW1tweFwXPhlp7a2lg8/fJctWzYyZEgGYWHhREVFERERSWRkJFFRUURGRhEaGobdbmPlyhXU19cREhLK8uVfIzU1DZvNRkFBPhs2rEej0ZCePoTBgwcDId3m6FcUtuTVs7ewgSiznvBwHQqQk32+vaJZrSYmWE90kI4Gm5uNOXWogDsGRvZYQWy32wM9qsPCurbI6FgUr6fKYYCkpGQqK8t7DIeDg4PR6w00NlouLCx4Y7E6POTVtWFzeYkM0jM0NhiT7sp7PQshhBBC3IgkHBZCCCGEuArsbi+rT1VzqrIZl9dPuEmHSafBryhUWh0UWWzEhRhZODKOobHBvZ7H5/NRWlpMbm4uBQX5OJ1OoqNjmDp1OkOHDiMyMgpFUWhpaaaw8Dz19Q3U19dx8uRxzp49jdPpRFEUWltbaW62AmAwGAgPD0evN7TP1W7H4bCTnJyMy+XC7XYTHh5BU1MjwcHBzJw5i4SEBFwuO1qtBlCRlpZGS0tLoLJYURROnDjGgAGJjBs3oc9n09xsJScnh9zcbOrq2ltbNDQ0oNFoAm0K9HoDZ86cornZis/nQ6fTYza3L1ynVquprq660GtYhclk6vVa9fX1FBaex+v1XriWiuDgYCIiIhkwIBGTSc+5c9nY7fbAs4mOjqa5uRkAs9nM4MEZ3dondBYfn8Dhw1ls2PAJHo+b2bPnBsYnJSWzfv3abn2VfT4fDocDj8dDUlIyarWK6uoqsrPPBhZzc7vdFBUVACoiIyNZvHgper0el8tFUFAQY8eOZ+zY8djtdgoLz7Np0wZCQ03ExiaRnj4k8Fxyalo5UNJITJCeUGN7iN7U2EhISEiXqmOVSkVMsAHaXOw430BqpJmk8O7PtuN9FBIS2i2U76gc9nq9+Hy+bgvlJSYmsXv3TsaOHd/js5w4cTLHjh3h7rvv6/V5Xw+FDTbWnqmmrtUFKlChIi3SzJfGDSAq6NKV20IIIYQQNwsJh4UQQgghPie3188nR8o5VNpEQoiBYEPXH7HCTTp8foWKZierTlbxpfEDGBLzWUDs9/spKysNLMLmdDqIiopi/PiJJCUloygKDQ0NHDqURUNDPRZLA263O7C9rKwEp9MZOFdjowWHw4FOpyM8PIKIiEiCgsyYTGas1iaioqIZMiSD+vo6CgsLCAkJoaGhHqPRyMyZs4iJiQUI9ChOSEhArzcSHOzH5/OhKAplZaXMmjW31z64bW2t5OXlkpubQ2VlRZd9LpeT2toahg8fgc1mo7S0mKamJoKDg0lNnYbf76O+vqFLNarL5eL06ZMXKoDDiImJ7VLlqigKpaUlgWt1VO8OGJCI0WhkwoRJKIqfs2dPBVokmEwmTCYzcXEJWCwWjEYjERERjBgxstfXumPhvYaG9vl94xvf7jKP6Oholi9/iu3bt3LmzKnAdo1GE+gFXVCQz+zZc1m4cElgrjk52axduwqdTo9Go2bAgESysg6SlXUQgODgECIjIy/8aq80njt3HgMGRHPkyCm2bt2E3+9n0KB0jraF4vcrgWBYURSqqioZPnxEj/cUHaSn0GLnbHVLj+FwU1P784qIiOi2r3PY7PF4uoXDQUFB2O22Xp9nbGxsoP+z2Wzuddy15Pb62ZhTi8XmZlCUGbVKhcfnp7DBxo78er40PvF6T1EIIYQQ4qqRcFgIIYQQ4nM6XmHlcHEjiWFGzL187VyjVpESbqS0ycmG7Dq+Mc1AQ20VeXk55OXlYrVa0Wq1REVFERsbh9fr4fjxoxw8uL/H81mtVkpLiwOVvCqVCrVaTUtLC2ZzEMOHjyQxMQmz2YxKpcLtdlNYeJ6EhERiYmKwWCwUFRUC7e0otFotU6ZMCwTDPp+P+vp6dDo9ycmpREZGUlRUhMlkory8FJPJxPTpd3SZk91u5/z5PHJysikvL0NRlG7zVhSFwsJCEhMTKSwsoKWlmejoGFJTBxIUFBQYl5KSRk1NNZWVFXg8HjweNyqVCp/Px/nz+VRWVpCUlEJMTEygv3DHomk2mw2PxxNoRxEREYHBYODcuTO0trbicrkDC+lFRkZSV1cHtFcNh4dHMmTI0B6feVNTI3v27CI6Oobly58iM3Mv5eVlgcXpOuh0Ou6//wGSkpLZvn1LoDK4g8/nY+fO7VRUlHPffQ/Q0FDPgQOZREZGMWLEKB566EsEBQXhdrsDC+E1Nrb/qqqq4uzZM3i9XlQqCA0NwmAIIiIikrCwcE4XVbC7UoVJp8LojiQqMorGRgsxMTHdgtsOKpWKMKOOk5UtzBwU1e3DjY4wPSwsvNuxGo0GjUaDz+fD7Xb12E85JCSUlpbmLn2xOxs3bjynT59k2rQ7etx/rZVZHVQ3O0kMNeLzevECXo+HmCA95+tttDg9geBdCCGEEOJmJ+GwEEIIIcTn4PX5OVbejEGnxqzXQPc89DMqFSa/jcNnSzi/cwXemvOBXsChoe1f2W9qagpUavbEZrNRV1eL0+kkPDyCAQMSMZvbqzNLS0sZO3Yc8fEJqNXqwDEtLS2UlZUycOAggoKCaG1t4fz5vEB4q9PpGD58JLGxcYFjGhsb8fl8pKYOutBnOIVz585eWCAtiGHDhgPtFb3nz+eTm5tNSUkxfr+/z+dVWlqCSgXNzc3Ex8czZEjPvX01Gg2JiUnExydQXV3FqVMnuoSLdrud/PxcCgsLcLtdgeDT5XJhNpsZOnQoer2B5ub2ULKurpampkaamprQajVER8cQFRVNfHw8+fl5F9pVmElLSyM2NrbLXDweD4cOHaShob5LC4lp0+7gk08+Jjk5pcdevaNHjyE+PoH169d0WXCvQ35+HqdOncTv9xMUFERa2kCWLn0oUI2r1+uJi4snLi6+y3EdbUUaGy0oiovCwjIsFguVlZUUt6loVQ8Ah428xjo8Hg/NzVYyLgTe4eHtQfnFIkxaypud1La6egiHre1jeqgchvbWEj6fo9dF6ZKSkqmoqGDEiJ7D4YED0zl8+BCTJ0+90Mbk+vL5FXwKoPg5ceI4DZYG4uLiSB82Gp8CXn9f/5ILIYQQQtxcJBwWQgghhPgcShodVDQ7GBQXit/j7bLP6XTSZG2isdFCXV0dTU2NuFwu/MEx2BUDo2JiCQkJ6TFYhPbFv6KioomOjkGv11NYWEBFRTkDBw4KjFEUhcrKCnw+H+PGjUer1XbZV1NTTUtLC8OGDUer1eJwOMjJycbn82E0GgkODkGn05KUlNTl2vX1dYSGhhIbG4deryc6OprKynJiY+MZMCCR1tZWPv54NUVFhYHF4/qi1+ux223Y7TaGDRvRJbzuS0df4sGDMzCZTFRVVeLz+QCw2200NjaiKAp6vZ6YmFgyMoaRlJREYeF5YmLisFrbexgXFxfT0tKC3+8nOjoWs9nM2LHjycvLweVqr3g1mUyMHz8h8Hp0tJA4duwIkyZNYcaMO7u8ViaTibS0QeTm5vTasiEmJobly7/G1q2byc4+22VfZWUFJSXFqNVq5s6dz4MPPtLl9euNSqUiLCyc8PBwoqNDSE8fQUeRdmZBHatOlBOt9+GwOygtKyY4OJiTp45jabBgMpt46qtPd6vw1ahV+PwKHl/3cL+jcvjiBRA76PU6nE5HH4vSJXHkyKFe23WoVCqGDRtOTk42o0ePvuT9f9EGhBoJN2o5nlOA3+clLCwch9NJTmklM0amE26SqmEhhBBC3DokHBZCCCGE+ByanR78fjDqNNg7hcNtNht5uTkUFbeHpxqNBpPJTFhYOH5DCFpCCFGcqGj/2n1UVBTR0THExLRXtEZFRWMwGLDZbGRl7efgwSPdFvzyeDw4HA5iY2MDi8118Pl8FBUVYjKZyMgYGmgt0bEAWkREBElJKdTUVDFwYHqXY91uN1arlWnTpqBSwZAhQzlx4jgtLa1ERERy5MghIiMju7VLuJjBYCA9fQgGg57c3Pb+w5cTDHeorCwnNTUNo9FIQsIAKirKyc3NDiwip1arCQ+PQKfT0dhoISjIjNPZvtBeaGgoJSVFOBx22tpaiY+PR6vVMXbsOHQ6LRUV5SiKgtlsJjLys5YSnVtIPPTQl7otxNZhwoSJrFq1giFDMnoNdvV6PQ88sIiUlBS2b9+K1+uluLiIqqpKABISBuB0Oti48RPuuef+HlszXIrL5aKhoZ7K8mqam1txupqora2lpqYKUOH1eFCrVYSEhJGdfY5x48Z3eR38CmhUKrSa7q9NRyV7eHh4j9fuWJTO7e45HA4LCw+8Vr0ZOXI0a9euYtSoUf242y9WsEFDkLWYZpuNxKQM9BooKClH31TPEHMS6l4+zBFCCCGEuBlJOCyEEEII8Tn4FaVbJ4nWtlY2bvyUiopyoqKiSE5OxWAwoNcbMJvNeHVmgk0mHp8xk5jomB7DQLfbzYEDmRw+nNVj6BYTE0tjo6XH0NLhcFBUVEBiYnIg0PP5fOTkZON0OklOTiEpKZna2hoGD87oVrnc0FBPXFw8QUFBVFfXcfz4UU6cOI7N1kZDQwPwWSB4Ma1Wy+DBQxg2bARarZb9+/dRVVXJ+fP5pKam9asytjObzYZGo+nyjOx2G0FBwSgKqFSQmjoQt9uNzdZGa2sLJ04cR3Mh5IyICKe+vp7mZivh4RGYTCbCwiKYO3c+mzdvwGq1olKpMBpNDBiQSGxsHJmZe7u1kOiNVqtl9OixnDx5nEmTpvQ6TqVSMWbMOGJiYvnNb14OBMNpaYNITGxf4Cw3N4fa2hoWL36QuLi4Hs/j8/mwWCzU19dhsdTj8dixWtvQaLS4XG7OltZQ7YxE5WrD3txIaGgYWq0Wr9dLWHg4aWkDSUsbyPmC82QM+ey1b3Z6CDZoiTJ3fT+5XK7AgnK9Vw63vxd6+7BApVJhMBhxOByYTN0XvIP21iYJCQMoLy8jJub6BsQHD+7HUXyMr95xH22mWBrtbiK9VhxlZ8g5UM+0oak9tuYQQgghhLgZSTgshBBCCPE5mHUaVLT3HgawNFrYu3c3jRYLGo2GoUOHM2LESMwmcyDIrbA6GBBmIjkpudv5fD4fp0+fZP/+zEAo11lSUjKxsXGcOnUi0F6hs8bGRqqrqxg8eAgGQ3ug6vf7ycvLxel0MHz4CCIjo/D5fERHx/RYxVtTU0NISAgHDhygsbGJtLSBGI3GLsFu53BYo9GQljaQYcNGMHjwEFpaWti7dxeFhQUA1NXVYjKZCAkJvYwn266ior1qGMBmayM3t70NRELCAFJT05g9ew67du3gxInjgWOcTgdGo4n8/Fy0Wh0ajQadTk9wcDBarZZZs+bg9XppaGjA6WwPLLVaLYmJyaxZs5KJEyd3ayHRlxEjRrJy5UeMGjWmz6pfl8vF3r27iY2Nx2azER4eEVgAsENTUxPvv/82c+feRVrawEAQ3NBQj8vV3ls5MrK9yjwxMRGPx05+fibl5aU4nU6CQ0JJCI2hTh1GkNdNdHQUJqOZuvo6jEYjkRFRREZG4vP7KCwsJH3wYFRAo8PDHWmRRJi7hv4d/YZNJnOv99bxvu6tchggMTGRysoKBg8e0uuY8eMnsmPHViZMuH7h8Jkzp8nM3MudM2dxxx0TAtvd7iT++c/zWK1Wdu3awX33LbhucxRCCCGEuJokHBZCCCGE+BwGRgURHaynvtVFa10lR44cxm63o9a0tzqIjYklrNNCan5Fwen1M2ZA16BUURTy8nLZt293jwvSRUfHMGPGTIqLizl+/Gi3/YqiUF5ehsfjZvjwz1o3KIpCUVEBLpeTMWPGYTKZMBpN+HzeLpWebW1tNDTUU1VVSVtbG06nHafTgdkcxMCB6Rw6dKBLOGww6ElNTWP48BEMGTIUk8lEa2sLu3bt4MyZU4HF7ux2O42NFoYN67knb19sNhtabXvVcH19HYWFBYSEhDBs2HBiY+NZsmQZ+fl5GI0mJkyYSHl5OXV1tbjdboKCgnE6nYATj8dDaGgobrebMWNGc//9C1m3bm2gf7Feb8ButxEWFsaSJQ/22kKiNyqViqlTp5OVdYA5c+b1OKatrY3Vq/9FbW0NZrOZ//iPl2hpaWbHjm04HA7sdjsOhx2bzYbb7ebMmVMMHpzB3XffR0pKKuPHT0Sr1VJWVkpxcSF79uyipcUK+FAUDRkZw4iOjqWqqgKH1UqtKpKYhGQSYiJx2O1Ae4VvZFR7JXRMdAw+r5eSkmLC45IwatSMTuge3nf0G+5tMbqO8wK99hwGSEpKITv7bJ/hcHBwMAaD4cLifT1Xpn+RiouL2LJlI2PGjGP69Bld9un1eu6/fyEfffQ+p0+fJCMjg0GDBl/zOQohhBBCXG0SDgshhBBCfA5mvYZRcWY+PJBLfcFp1Or2nsChoeGYzWbcF33Vvr7NTbhJx4j4kMC20tIS9uzZRU1Ndbfzh4SEMnPmLJKTk/nkk3VUV1d1G+PxeCgsLCAiIoKUlNQu+8rLy/D5/IwZMw6NRoNeryctLY3c3BzsdjsNDfU0NNTjcDgunMtNUFAQNlsbXq+XqVPvQKVSYbc70Gp1hIaGEh0dw1NPPcPIke0Vni6Xi3379nD06OEugbPf76e4uLDH1hX9UVFRTkpKKiUlxVitTQwbNpzw8AgSEgawdOmD5OfncfToYQAMBiODBw8hJiYGr9dLa2sLXq8XrVaLTqfD6XRitVoJCQmhqanxwjmtuN1unE4nY8ZMZdmyh7v0dL4cqalpnDhxjOZmK2Fh4V32NTU1snLlR1gsFhQFJk8eT0lJEVarlYiISCoqTuH3+zGbg4iKikKn0wee18GDmYwcOYqWlhaam9vn29rait/vJzIyiunTJ2M2R3D27Gmys88QFxfPzBHR1J2swhQ9jhZ7Ez6Xi6CgIDRqDeGd5hYfn0BuSRnny2t4eOpQBkaZu91XxwcVF99TZ5fqOQztC/M1NNRf8jlOmDCJrKwspk6ddcmxV1NtbS3r168lLW0g99xzX4/v1+TkFCZOnMzRo4fZvHkTX/vaM722yRBCCCGEuFlIOCyEEEII8TlYLBYK92+ktcqLEhKH0tLekkGr1RIcHHKherVdo92Nw+PjgRFxhJt01NbWsnfvLoqLi7qd12g0MW3aHYwfP4GqqkreffdtHA57t3E2WxvFxcWkpaURHBzSZV9dXR0ajZahQ4cB7Qu3TZgwkTVrVlFXV4vN1r1thV5voK2tDbfbxcCBAwkODiYmJo7w8HAGDhwU6MEbExOLz+fj1KkT7N+f2ePcSktLiI8fcEX9WW22NgCqqysJDg4lNTUNlUrF6NFjufvueykpKWbnzu3djrPb7YwcOYqsrANERETS1tYKtFf3xsTEotPpeO21/yU7+xy1te2vVUxMDDNm3HnFwXCHGTNmsX9/Jvfdt4DGxkYaGurJz89l06YNOBwOQkJCeOCBRQwYkEhMTAzh4RGo1WqcTidbtmwkLy8Xv9+P1dpEU1MTDocDjUbNqVMnSU5OISgoCLM5iHHjxjNixCgiIiLIyTnJunWrMZmCWLBgEX6/jw8+eI//883n+fvOU7SaY7HaPWg0esIj2q+nKAqtLh8NdjemsBgSHNXEOCtQq2K73VNzsxXou3LYYOi753DH89dqtXg8nj4rs+Pi4jh9+ggOR3trkGuhpaWZ1av/RXh4BIsXL+tzwcQ775xNcXEhFouF7du3smjRkmsyRyGEEEKIL4qEw0IIIYQQVygvL5dNmz7FYmlgbGgkZxxq2kLjUasVdH4nZlMQHo8Hq8ODxe7BoFVz99AYhkeo+PTT9WRnn+12Tq1Wy8SJk5kyZRpGo5HDhw+xd++uQJuGzurqarFYLAwdOqxb4Na++JeR2NhY3G4XDQ0NxMXF849//J2mpsYe7ycsLIzq6mqcTidJSUksXLiQ+fMXoNPp2bt3N6EX2mMoikJVVQXr1q3usQUGtFec+v1+oqKiLvexAlBWVkpkZDQxMe19kdVqNXfddTfjxk2gtraGTz75uMdn0txsxWg0oSgK6elDqK2tobnZisFgID09Ha/Xy7lzZ6ipqblQ6apCp9Mzduz4y56joii0tbVSX19HfX0DDQ31HDp0kNraatLSBuF2uzh16iQpKakMGJDIQw99ieDg4G7nsNlsJCQMoLCwgOzssxgMRlQqNT6fD6u1CY1Gg0ajZvr0mTz++HJ0Oh0nThxj9ep/YTRqmT59JhMmTOLAgUwqKspZsGARJ44c5LsP3MUHW/agaKDOo8OhC6PQYgdFwaTXMDohlHGJYQyLHcq2rZvJzc1h2LDhXebX8V7pbTE66F/lMEB8/ACqq6u6VbdfbOLEiZw8eYJp0+7oc9zV4HQ6WbXqX2g0ah566EuBFhm90el0LFiwiPfee5ucnHNkZAwNfPgihBBCCHEzknBYCCGEEOIy+f1+9u7dzeHDWZjNZszmIMx6hYHWEtSx6VS4jdiUYGy6EFxOJy6vn0nJYQyN1FN//iRvrT/ebTG5jqrYGTNmEhISisvlYv36teTl5fZ4/ZKSYjQaDcOGDe/2FXiz2YzT6cJms1FaWkJzczMpKalYrdZeg+GOVgZms5np02cQEhLCV77yFdxuFdXV1fj9fjQaDc3NzZSVlfbZJsLtdlNZWcHw4ZffZ7ij9YVebyAuLg6AoKBglixZRlJSMs3NVlavXtljlarX68XlclNXV0dSUjJNTY3odDrS0gYyfvwkXC4Hubm5qFSqwC+Px01jo4W8vBzi4uJ6bZ/gdDppaKgPLA7X3NwMtLf9iImJISEhgdGjxzBr1my2bdtCTEwsmzdvwGAwkJqaxtKlDwUqqN1uN2VlpRQVFWC1WomKiiIxMZl58+4mJCSE7du34na7CQ+PICNjGJGRkWg0Gurr6/if//k9JpMRj8fDmDFjWbJkAc3NTjZt+pT09MHU1FTT2NjA1KnTqaooYUZGIr59u4lRm7l/+izUWh16jZr4UAPxIYbA63jPPffx6afr0Ov1DBqUHrjvjp7D4eE9PxfoX89hgOTkZEpLSy4ZDg8ZMoStW3cyefLUz13N3Rev18vHH6+mra2Nxx9f3i24701CwgCmTbuDgwf3s3XrZpKSkgkKCvrC5imEEEII8UWScFgIIYQQ4jK0tbXx6afrqKgoJyNjKAUF59FqNZhMJhJjNISF+hnktVHeZGNoShSlxbU8OWE2lQXn2LU2C5fL1e2cQ4ZkcOedc4iOjgbaW1V8/PFqLJaGbmNdLheFheeJi0voVpXr9Xoxm82cPHmChob6QGVtfHw8CQkDOHXqRLfzGQwGoqKiL4RdmQwfPhK1Wk1qaiqhoaE0NLTS2tqCx+MmJyebxkYLen3vbSLaF8ArZODAQZcd7A0dOhyNRs3atatJTU0DCPQXDgkJDVR5drScuJjV2kRbWyuRkZE4HA4URUGlUhEVFY3RaGDp0mXU11fyX//1K7xeLzqdDpVKRWxsLDk52eTn5zFy5CgyMoZitztoaKinqakRv9+PXm8gJiaGmJgYBg1KJzQ0rNeAvLHRwvvvv0NERATDh4/gvvsewGq1UlxcREVFGWq1OrDInNVqJSfnHBs3foLX6yUlJZV///efUFxcSGlpaeCcbW2tlJQU09zcTFRUNF/96tPMmTMHt9vNxx+vZtasuVRVVeLxeBkxYhCxsXEcOnSQtLRBqIARSTFMT+/eNqKDWq1mwYJFrFu3BoPBQGJi0oXeze1tOfpTOexyXapyOIFDhw72OQbaPygZNmw4ubk5gb7WV5uiKGzevJGqqkoeeeTLgX/3+uuOO2ZSUHCe+vo6tm3bzJIlD15RX20hhBBCiOtNwmEhhBBCiH6qrKxg/fqP8fv9zJkzj3379uD3+0lMTMJqrWfs2LEcOXKEESNG0dx0ltGJkRQf28OKf/65xxYISUnJzJo1h6Sk5MC2/Pw8Nm36tMcQubnZSnl5OenpgwMLYfl8PpqaGmlstBASEkp1dVVgcTmAyMgoBg0aTHl5aaD/sU6nIzo6mujoGEJDw9DrDdhsNtLSBgX6rY4cORpoDyU//XQ9FRXlgYBQr++9Z2x1dRVhYWGXVUmZkpLK1KnTOXw4i+zss2i1WoxGY6C/sFarxefz9RqYdygqKiQpKZmamho8Hjc+nw+1Ws2AAYl885vfQa/XkZt7mqCgYAwGA2p1e+sGrVZHXl4uPp+Pc+fOEhwczMSJk5g9+y7uvHN2v0NuRVHYvXsndXV1lJeXMWzYMHQ6PR9/vJqoqGgGDhzE+PETqK6uIicnm8zMfTidDmJj45gxYxbDhw8PtO6YPHkqx44dYcuWjZSUFFNXV4fZbGbEiJGEh0dw6NABSkqKiIoK5YEHFqHV6vnoo/cZO3YcY8eOZ+fObUyfPoPMzL1A+wcQl6LValm4cAnr1q1hzpy70Gg0KIqCXq/v8/XseD9cqnK443x+v7/Pvr7Q/v5bs2YVI0aM/EJC1717d5OdfZbFi5eRnJxy2cdrNJoL7SX+SX5+HtnZ576wIFsIIYQQ4osk4bAQQgghxCUoisKJE8fYtWsH8fEJ3HnnbNatW4vH4yE1NQ2Xy0lcXBwajQ6DwUBQUBAOh4MtWzZQUJBPYmJSYCE3gKioaGbPnkt6+uBA8OX3+8nM3EtW1oEer19VVYnNZmP48BGoVCoaGy00NNTT2NiIVqtlyJAMSktLugTDISGhZGQMxel0UltbS1xcPNHR0YSFhQeu29xsZciQDIKCggOLt+l0OlJT09i1axfbtu3i9OmTaDSf/djYW1/WtrY2Wlpa+t2DNTo6hjlz5hIUFMzHH6+mubmZiooKBg4cxN1338u4cRNQqVSBKs+ystJez+VyOXG5XMTHJ3D27JkLbSNg7tz5LF/+FJWVFVRUlLNmzRrKy0txu91ERUUTHh7OxImTcDgcaLWf3WNtbS1r165k/PiJTJkyDbPZ3Oe9eL1eVqz4gEOHDtLa2kJcXBxBQcFMn34HoaFh1NXVkp19js2bN9La2kJ4eDjjx09g2LARxMTEdDuf2+3G4XDg9XpxOBykpw8mLi4+8Dyqqio5fz6Pu+6ai9vtYcuWzQQHBzNnzl1YLBZsNjuRkVFUVJQD/QuHob2SfOHCJaxfvzbwOnZ+v/Skvz2HAWJj46irqyU+PqHPcTqdjoSEAZSXl12yDcXlOnnyOIcOHWTOnLu69Vi+HHFxcdxxx0z27dvDjh1bSUlJISQk9CrOVAghhBDiiyfhsBBCCCFEHzweD1u2bCI7+ywTJ05i0qQpfPTR+zgcdhISBjBoUDq7d+/gO9/5Fu+++wFRUdF8+uk6GhrqSUpKRqvVBqqAQ0JCmTnzTkaOHN2lctJut/Ppp+soKSnudn2fz0dhYQFBQUFER8dQVFRIY6MFr9cLtPeCHTJkKIWF5wMtAABMJhOjR49h+PARlJWVMXHi5G7Vms3NVvR6PcuWPcLf/vZnoD2I1mg0vP32PwAvXq8Hm82GTvfZj40dYeDF8ywpKWbo0GGXrPTs/Bxyc3MCQXtbWxvBwcE89dTTXaqpDxzI5Ny5M32es7a2luTkFLKyDmCxNBAcHExKSipqtZrTp08RHR2NzdaGwWDAZDJhNBqJiIhkzpx5fO97P6SoqIDMzH3U1tYEzunxeDh8OIuTJ48zceJkJk2aEqjYhvZF/0pLSzh/Po89e3Zht7cHsk8//U1GjRrN22+/yenTp8jPz8NiacBkMjN8+HCGDx/JgAGJPT4nv9/PmTOnyMzch8vlZM6cu/jud3/Ijh1bKSwswO/3U1RUiNFoZMiQDCwWC6+++j+Ul5fz+utvoFar2b9/L3feOZuiogIURSEuLj5QkdwfZrOZBQsW8vrrf8Tn8xER0XtLCejcc7h7H+iLJSYmUV5edslwGGD8+Ans2LHtqobDBQXn2bZtCxMnTmLy5Cmf+3xTp06noOA81dVVbN68kYcfflTaSwghhBDipiLhsBBCCCFEL5qaGvn44zVYrU0sXLiEQYPS+eij92lubiYiIoJ7713ARx+9x+jRY6mtrSUr6yCJiclUVVUSFhaOWq3h/2fvv6Pkyu/7zvtdOVdXV1fnnDOARiM1gEHOwCBPYBySEi3JluU1LVvBj6yz1u76eK310a6VaIrkkENy8mCQc87djdjonHOsnPPzR6FrUFONCbTIGUr3dQ4P2VW3bt17qxoAP/Wtz08ikRKJRFi/fhNLlzYikyVWMkxPT8WnZj/O4/HQ3t6GUqnEZrMmhW95efnk5xcwONiPxRJbaE4sFpOZmcW3v/3bNDQ0Mjw8RFdX5wLBsJ3Z2Tn+8i//iv7+XiKRCGazmeHhQYqLSzEaU1GrFU+Pw41U+tFxLzQ5PDg4QF5eftL5PUuhULByZRONjcuRSCRcvXqZlpa7z5yvmz/6oz8lJycvfltb22Nu3ryesJ9oNIrX68XjcePxePB4PIyNjRII+DGb50hPz6CgoJAVK1by3e/+Xvx433vvLaxWKz6fj9TUVEQiEatWrUYkElFaWk5JSRm9vT3cuHGNubnZ+PMFAgFu377J/futlJaWodfrmZmZQS6Xk5mZxeTkJBkZmchkMrZt24HP5+PNN39Gd3cXT560sWnTVjZu3ExhYdEnVlQMDg5w5colZmdnqK6uZd269fEF8g4efImrV6/wk5/8kMzMLIxGIyJRbGL59u1bLFmylCtXLlFWVoZOpyc11cjlyxeBzz41/Cy9PoWqqho+/PA9VqxY9Ynbzr/mn2VyODc3jydPHn+mY9BqdcjlCiwWM0Zj2qc/4FNMTk5w/PiHlJdXsHHjln+UEFcsFrNz5x5++tMfMTg4QFvbIxYtWvK/vF+BQCAQCASCXxchHBYIBAKBQCBYQF9fL6dOHUetVvP1r3+L1NRU3nvvbWZmptFotLz00qvcvHkDn8+H1+vlv//3/47P541XSmRn5yCXy6irqyM3N5+VK5MDtra2R5w/fzY+BTzP6XQyMNDP6OgIer0uKXSTSCSUl1eQlmZidHSE6elpUlNTMZnSyczM4utff43s7ByCwSCXLp1Pel6Hw8H4+Bh/8Af/Fr1ez40b12lre4TD4UAul2MwGBK293p9CZ2zHw+A5+ZmkclkSY979niXLGlg1ao1aDQaPB4PH3zwLsPDQ/Ft8vMLWLRoSUIwPDg4wLFjR3C5nLjdHjweN6FQCLFYhFKpQq3WkJ2d83TaN0pubn68LqKiopINGzbHg2G/38+DB/fx+/3xBeZ0Oj319YvizycSiaioqKS8vIKurk5u3brO1NQUNpvtaTgfoKenm6ysbDZv3kpZWTlHj37A3NwsbreHoqIiTp8+CUBJSSmvvfZbtLU9YuPGzZ/Y2Ts7O8vVq5fincnf+Ma3yM7OSdhmZmaGqakJ/u2//UNu3ryB0+kgGo3y6NEjTKZ0jEYjDx/e58SJo/zpn/4nAoFAfBK9rOzzh8MA4XCIoqJi2toesWHDpufWiXw0Ofzp4bBCocDv98cXC/w0S5cu4969FrZu3fH5Dv5jrFYL77//LhkZmezevfdTO48/D5PJxAsvrOfy5YtcunSBwsKieKgvEAgEAoFA8GUnhMMCgUAgEAgEz4hEIty8eZ3bt29SXl7Bzp17UCgUnDhxlJGRYRQKBYcPv8z09DQnThxFq9USDoeYmZkhKysnvuhbQ0Mj69ZtoL+/F6vVmvAcoVCIS5fO8/Dhg/htbrebublZZmdnmJ6eJhqNYjAkd72qVGqqqqrRaDSIRCJkMhnLl69EJpMhFos5ePBwPFi8e/d20kSy0+lkbGyEDRs2UVhYxM9+9hMuXDgbv99kSk96znA4lHDbsyHhfJ9xdXXNgtezqqqaF15YH+9cnp6e5sMP34sfl1gsZvPmrfT19VJQUMD9+63Mzc0yPj7O7ds3EInEaDQa9HodWVlZCb3ALpcLs9mMSBSbljabzUilMkpKSigqKqampja+7eDgANPTU3g8HtRqNSKRiPLyCrRaXdLrPz09FV/gz+/3EwwGSUlJSTjv06dP8PjxYyQSMTKZjJqaOrRaLcuXr6CioireUZySksKdOzfZvHlb0rVxu93cvHmNR48ekpKSwr59B6moqEy6/t3dXbS3t7F37wHUajVlZRWcPHmMy5cv4vV6qa2NBdyzszNIpVLeeedNqqpqCIVCGAyGBTuNPwubzfq0N3kNJ08eY+/eAwtOPn/UOfzptRIAaWlpWCwW0tI+fRo4MzMTp9OJ1+tNqPT4PDweD++//w5KpYIDBw5/4nT7L6uxcTm9vT2MjY1y+vRJXnnlq0K9hEAgEAgEgt8IQjgsEAgEAoFA8NR89+/w8BDr1m2MT/tevnyBzs4OJBIJu3a9SF9fL3//938NQFFRMbOz00QiEdLTMzAYUlmyZCmHDr1MOByiu/vjU8EOjh49wsTEOF6vl7m5WebmZvF4PITDYaxWCyqVesFJ07Q0E+vWraeubhEKhYKzZ08ndLdu27aDkpIyIDYp2dx8J+HxLpeLkZFhSkpKUas1/PjH/5DUc5yenpHwcygUJhKJJNw2H5JGo1EGBvopKSlNmsTMzy9gw4ZNCROwHR3tnDp1HKfTgdvtJhKJUFNTy4MH95icnKSgoIj0dBPZ2Tn09/c/d+LV5/MxOjpMY+NyrFYrk5MTOJ0ufD4fWVlZmEzpbNqUWBvQ2dmO1WrB6/Wi0WiBWF8sxELaoaFBBgcH8Ho9ZGVlU1JSSlPTGsRiMeFwmPb2Nm7evM7Y2ChDQ7Ge4VAohFarY/nyFWzevIVVq9YkhNcQq1G4f78Vq9USD8iDwSD37rVw9+5tRCIRGzZsoqGhMemx0WiUmzdj3cP79h2MB7NqtZqKikp6e7tRqxUoFApCoTAzMzPU1tbh9/t57723kUjEHDr08i8VUkYikXiAX1tbR0ZGJqdPn2TXrj1Jr7VcLnt6Xp8+ORy7JvmMj49+pnAYYPHiJTx69JBVq5o+xxnw9JiCHDnyHj6fn6997RufurDgLytWL7Gb11//ISMjw9y/30pj4/JfyXMJBAKBQCAQ/GMSwmGBQCAQCAQCYn2kR49+QDAY4qWXXqWoqBiAu3fv0NraQjQapbS0lPPnz9Ld3YnT6WTx4iWIRCJmZqYpKyvjW9/6LYaHh3n48AFqtRqPx0MoFEYul+P3+5menuKdd95kdHSEublZXC5X/Pn9fj92ux2DwZD09X2NRsuWLds4cOAQqalGpqYmeeutnyeEtmvWvBDvOo1Go1y8eD6hrsLtdjM4OIBWq2V2dhqVSkU0GmV2dia+jVqdHEq73a6kMHB+UnR0dIT09PSEic60NBMbNmykqKgEu91GT08309NTXL9+lZ6ebsRiMWq1mqKiYg4ffoX8/AJOnDjK4cOvoNenEAgEeOutn+N0OpJeo0gkwvj4GG63i29967fp7u5EIpEwOjpKJBImGAxQW1tHff3ihFA6FApx714LwWCIUCiETCYnGo0SCoV49923UKlix7NQ/UM0GmVubg6LxUIkEmFiYoLBwX7UajWZmdksXrwEqVTKrVs3efKkjdWr11JbW58wYbtmzQvcuHGdPXv20tnZwbVrl3G5XDQ0LKWpae2CgWUgEODs2VMUFBSydu26hPtGRoYZHh6itLSM3/3d7/L22+/T3v6E3NzYInfRaBSLxUIoFOTJkzaWLVsRD6Y/K6fTQTgcRiKRoNPpSUkx4PP5uHjxHFu2bP/YJLkifp3nH/NJcnPzuHbtymfu5i0pKaOlpZnly1d86r6fFYlEOHnyGDMz07z66tc+9zX4vOYXODx//izXrl2huLjkH6UrWSAQCAQCgeBXSQiHBQKBQCAQ/LMWjUZ5/PghFy6cIyMjk337DqDXpwDw5EkbV69ewmw2o1DI6enpeTq1OkJ2dg4ajRaVSkVOTh5/8Ae/T05OAffv34tPRMpkMkKhIDKZnB/+8H9y584t7HZb0vO73W58Ph9paWnx8EulUmEypZOfX8Arr3w1HlbbbFbef//dhB7iRYuWsHr12vjP/f19DAz0x392u108evQQsViM1+uhoaERiFVMzNdgQGxq+ONTpk6nI2ExOohNDtvtdvx+PwUFhfFjKSmJLdb28OEDHj16iMFgQKvV0dnZjkgkitc8LFq0hC1btiGVSpmamkStVqPXpxCJRDhx4ihTU5NJr5PVamF8fJzs7BxeffVrT6esrXg8HiyWOVJSDJhM6RgMqbzwwvqEx46MDDEyMoLVaiEQCGA2z1FSUkZDw1KysrIX7J+12ax0dnbQ0dGO2TyHSqVGKpWQm5tHeXkFKpUKiUSScP0cDgdnzpzizp1brF79AjU1tYjFYozGNNxuF3/913+F1+ulvLyCl1/e+Nzg0G63cebMKVavXkt+fkHSdbh9+yYVFVVEo2EqKys5dOglBgcH4uGnw2F/+r6TEQgE+OlPf8yOHbuprKxa8PkWMl+FkpKSEr8+dXX1+P0+rl+/yrp1G+LbPvthRjAY/NQAV6vV4na7PnGbZ4lEIqqqqunq6qS2tu4zPSYajXL58gV6e3s4cOBwUofzr8qSJUvp6elmeHiI06dP8pWvfB2J5B+v31ggEAgEAoHgH5sQDgsEAoFAIPhnKxgMcuHCOdraHtHQsJSNG7fEv9o/MNDP22//gsHBAfR6PWlpsXB2aGgAiURCdXUtGzZsxGazEolEqK6uxm73MTc3R0FBAV6vl+7uTq5cucTo6Ah2uz2pMzUajWK1WpBIpKSlpaFUKjGZ0klPT0ej0ZKVlc3+/QfjYbXH4+G9995OCNZKSkrZuvWjSc5gMMjFi+fi909MTPDw4T20Wh0SiYTi4pJ45+qzU8PAgt20Tqcrfk0ikQjRaITJyQl6erpJT0+np6eLurrFrFy5ipycXEym9Pj07bP9whKJJN4vvGTJ0vjx3r17m02bthCNRrl06Tx9fb0Jz+/z+RgeHkSlUlNTU8uiRUsoLS3nZz97HYj18cpkcqRSKfn5BaxateZpD3SYiYlxBgcHOHPmJENDgwQCgae9xTL27NlLTk5uwnO53W66uzvp7OxgfHwMuVxOWVkFGzZsYnh4iNbWZvR6PUuXNrJp01ZCoRD379+jufkOPp83vh+bzcapU8e5e/cWdXWLmJycoK+vl9nZGb73vf9AYWHRgu9HiE1j37p1gx07diUtaubz+Th79jTbt+/k7NnTvPzyqwDcu9fK9773RwwM9HHz5nUsFgsQm2QViUT4/X6OHv2AxsZlbNiw+TNN385/iGEwpCbc3ti4nBs3rtHScpfly1cCsQUHJRIJ4XBselupVH7q/rVaHU6nA51O/6nbAtTW1nPkyHvU1NR+ppqM1tZm7t1rZevW7ZSVlX+m5/jHIBKJ2LlzNz/+8T8wPj5GS0szq1YlL0YpEAgEAoFA8GUhhMMCgUAgEAj+WbLZrBw9egSzeY6dO/dQX78oft+TJ2381V/9JbOzM6Snp8fDPIvFgt1u55VXvsqBA4eRSqV8//t/Q3V1DTKZDI/HQnd3F1arhYcPH+B2u3nw4D5yuZxwOLF7OBQKxXtoCwoKMJnSE4KyZ6dr4aPu1PngDyArKztpkbD5ReicTie9vd0MDw/HJ5J1Oj0ZGZlALOidm5uLPy4lJQWFIhbqRaNRPB4PTqeNsbERnE4XYrEIkUiERqNhamqSxYuXsHnzNlavXrtgP3JHRztnz57CERRhFhnxylMpLquk2WtgtH2K2iw9yoAdjUaDTqenpeUu9+/fiz/+2QqJwsJiVCoVhYVFbN26nTff/BmRSASPx8Po6AhGoxGDIZWcnBzkchnHjh0hEAiQm5tHWVk5EomE1NRU5uZmUCqVhMPReFWD3++nt7eHzs52hoeHACguLmHPnn3xx545c4r29jYA1q3bwMqVTYhEIuRyOatWNdHQsJR791pobW2OTxIHg0FaW1s4ceIYBkMqhw+/gsFgSJj4/rjHjx8yNDTIgQOHk6pFIpEIp0+fYP36jfT09LBkyVIkEgkTExNIJBKysrLIysoiJyeXP/uzPwFImky+d6+ViYkJ9u7dnxQ8f9z85HBqamrSfWvWvMClS+dpa3tEff1iIFY1Eg578fsD6HRJD0mSl5fP2NjYcxcy/DiZTEZ2dg6joyMUFBR+4rZdXZ1cvnyRlSub4lPyv056fQqbNm3h9OmT3LhxldLSUkymz3BRBAKBQCAQCL4AQjgsEAgEAoHgn52BgT5OnDiOUqnga197jczMWGDqcNg5c+Y07777JoFAAIPBQFlZRXxSMRQKceDAYV566VVEIhFDQ4PYbDZUKjXvvPMON2/eoaurA6k0NkXZ29uD3+9HrVYnTJYGgyGi0QirV69NqnKQSCRs2bKNxYsb4rfN1y2Mj4/FbzMYDBw69HJCiGi1Wrh69TIDA/1MTU1isVhISzMikUgQiUSUlJTEn8tqtRIKBQmHQwQCQfR6PT09sUXWxGIRKpWatDQDMpmM9PT0hGNcvnwl3/nOdxesRYhEIly5colbrfcZEZmwirVIlDqKC3IJSRVM2n30m900D9vwzgzx7c2N9PR0c+XKpYTzmK+QmK9VMJnS2bfvIA8f3mdqapJoNEpfXy9+vx+5XMHo6DBr165DpVKzdeuO+JT26OgIY2OjBINB5HI5IpGIrKxMPB4Px49/SF9fL8FgkPz8ArZs2UZFRVW8AzgQCHDkyHsMDPQjFovZvn1nPAx9lkKhYPXqtTQ0NHL37m1OnjzGwMAA0WiEvLx8cnJyaW9vw2RK5969FoqL/yBh8blIJMLlyxdQKJS8+OL+BSdjL1++QFVVDSkpBkZGrnH48CtPqxMus2bNpvh2KpWaysoq+vv7MBgMSfuZnJzgJz/5ETt37qG8fOEF/yD24QmwYIgsEonYtGkrp06dQKFQUlFRiVwuw+fzfuZF6fLy8mhtbf7M4TBAQ8NSLl48/4nh8OjoCKdOHae6ujah+uLXra5uET093fT393Hq1HEqKn7/CzsWgUAgEAgEgk8ihMMCgUAgEAj+2YhGo9y+fZObN69TUlLKrl0volKp8Hg83L17m7t3b/PgwT0CgQBarZbKymokEgm1tfWIxSI6OtrZtWsPkUiEoaEBfvaznz5dZE2ERqPE6XQCYDbPMTn5UW+uRCIhEoliMqUTDoeRyWSUlJQmfb1fp9Ozf//BhH7U2OJy5+jt7YnfplKpOXz4lYSJXbfbzf/3//13Hjy4TzAYxGKxYDQakUhi/9ybf+7JyQk8Hg+DgwO43S4kEgkKhYLc3Hz0en08tBSJQKWSIxaL42GlUqkgOzuXf/fv/mjBAHM+cO0ZHqNXlINdpCY/TU9tWXHSuc7a7IxHFLz1YAL6b6CPRpMqJOa7bjUaLYcOvYTP5+XChXPMzs4wNjbK4OAASqWS0tIyZDIZ3/72bycdV3v7Y2w2G16vF7FYwtzcHEqlmiNH3iM9PYOmprVUV1cnhaAej4f333+HyckJZDIZe/fup7T0+fUE0WiUsbFR+vp6SE010tSU9TRo/6hvdm5ulunpKf7bf/svvPrq1ygqKsbn83H69AlqauqoqqpecN8PHtxDqVRRXV3DpUsXWLVqNSKRiN7ebgoKCtBqtUSjsW37+3uRy+W8+OI+MjIyuX37JtH5O5/y+XwcOfIey5atYP36jQvWTNhsNmDhyWGIBcQ7duzixImjKBSK+CKFnzQZ/SyDITX+HJ+VVqtDJpNjsZgX/GBibm6OI0feJycnl507d3+m+olfFZFIxPbtO/nRj/7h6YKM16mr+/VPMQsEAoFAIBB8GiEcFggEAoFA8M+C1+vl5MljDA4OsGbNCzQ1rSEUCnHnzm2am2/jcrlob2/D5/OhVCqprq6lsrKKF17YgEQi4cc//gHFxSU0N9+lp6cbl8vJo0cPyMvLj4dQTqcDq/Wj2gexWIxOp6O6uiY+9Ws0GsnMzEoKrgoKCnnxxf1JFQ13797hwYP78Z9lMhmHDr0UD8eCwSD37rVw6tRxHj16SDAYZG5uFo1Gg8vlfBpQSkhLM+FyuVGr1aSkpDAzMx2frjWZ0jEajUnXLBgMArEwOj+/gOnpqYR+42fN9wtb7A4GRDk4RBoWF2WSm5PDQhGdeWqCmpxsWrqHEIXT0E8OErZPxysk5kkkEpYvX/H0HE/gcDhISUkhGo0t2rdiRRORSJjduw8lHVckEuHChfNYLBbMZjNyuQyFQs6OHTvZtm33gh3LEOvbfffdt7BYLCiVKg4deonc3LwFt42d+xSXL19kZGSYwsIi9u49SEZGBi6Xi+bm2zx8+IBQKFYrkpGRSUfHE95882ekp6cTDIY4dOglMjOzFtz34OAA4+Pj7N79IjabFZfLSX5+wdO+41Z+53d+C7v9o0Xx5j9EKC+voL5+Mbm5eZw8eRyPx52079bWZiYmxtm7d3+81xpiQff85LDBkPy+mCeRSNi160WOHv0Ar9cDfPSe+TQikQilUhn/ffusGhuXc/9+K1u2bE+43eVy8f77b6PVatm//1DCZPYXRavVsXXrdk6c+JBr165hMuU+93UWCAQCgUAg+KJ88f9qEggEAoFAIPgVm56e4ujRD/D5/Bw69DJFRcW0tT3ixo3ruFxOIpEI3d1duFwuZDI5mzZtZdeuPeTl5TM+Psb//J9/x9DQIMFgMD5laTbPEYlESE/PAMDpdNLV1UEoFMJoND4NXNPo6elGqVQxPT3FqlWrF1yAa8WKVaxbtyFhyhRi3cfXrl2O/ywSiXjxxf3k5OQSCoW4desmly6dZ2Zmms7OdrxeH263C4MhFZlMFl+oraysPCGUmpqaIhKJxH+eP4ePE4lElJaWkZ2dy9DQIDk5OaSlJQeq8/3CwWAQG1qcMgMrygsxpRoW3K/T5UQikdI/0E/UaWE2KEOuz6c+OxZ4+3w+rFYLDoedxsYVRKMglytIT88gIyOTsbFR/H4fGo2WjIwMwuEQixcvie/fZrPS1dXJnTu3uHXrBn6/H6VSQXp6Onl5uXzta6/BgpF1LOSeX/RPr9dz+PCrmEymhc/D6eDatat0dDzBaEzj8OGXKS4ujYfUWq2WTZu2snz5Su7cucXjx48Ih8Pk5OTS3d1FT08XZWUVXLlyiRdeWJ+0QJ7ZbKa1tZn9+2PB940b11mzJtaV/ODBPRYtWvJ0ccFYOGy325iennpaIVIGxPqTv/Wt73D8+FFGR0eSzmFiYpzXX/8Ru3fviU9Gu91uAoEAIpGIlJSUpMc8SyaTsWfPPv70T/89en3KZ54cBsjNzWN8fPQTJ7I/LjMzkxs37Hi93viHCIFAgPfff4dwOMJXvvLy5wqbf9Wqqqrp7e1mdHSAU6eO841vfPtLEVwLBAKBQCAQzBP+ZSIQCAQCgeCftLa2x5w/f4a0NBMvvfQqc3Nz/PjHP8BsNgPEu2ttNis6nY7f/d3fp6ysnK6uTk6ePEZ/fx89Pd3U1NQlfP1+ZmaalBQDCoWC2dkZHA4barWW0tJyyssr49s5HA5GRobIzc1HpVInHJtcLmfnzj1UVlYlHffQ0CBnzpwEIBDw43Z7qK2tp6urk7NnT9Hd3UUwGESj0TztNdbg8/nJzy94GhjGPLsI3bzZ2en4/5bJZEndtHK5nBUrVpKVlcZ77x3BarUSjUYxGtMSJpvn+4VbW5tj1xIIpORTnFmMKTU5BJ83OjqKy+VkcnICqVRGmk6LI5RG73APAZcNpVJJamoq3/3uv2TVqibcbjc/+tEPEIlEBAJ+xsZGEYlEFBQUPu1GTiMajXL/fiudnR2Mj48hk8lwu93odHrU6jByuRy5XMbSpUsRiUR8rGkBgJGRYY4ceQ+/34/JlM5LL72yYJgfCARobr5DS8tdZDJ5vCP64+H+s6/B1q07WLFiFTdv3uDs2VPMzs6walUTcrmc4eEhhoeHKCkpZe3adWRlZePxeDh//gx79uxFJpMxOTmBXC4jLS0Nj8fD0NAgL730SsLz9PX1ArHF3p59nbRaHa+88lVu3LjGnTu3ko7P5/Py/vvvsnJlE2vXrotPDet0us8UZCqVSpYtW8GZM6ewWs2fuv283Nx8uro6Plc4DLBkSQOPHj1k1aomIpEIx44dwWaz8uqrX0+YgP4yEIlEbN26nbff/imzs7PcvHmd9es3ftGHJRAIBAKBQBAnhMMCgUAgEAj+SQqFQly6dJ6HDx9QX7+YqqpqTp06kbCoG8Dw8BB2u538/AJeeGE9XV0d3Lp1I76PoaFB0tJMCd2rXq8Xh8PBmjUvoNPpCQYDFBTkMT09i1arA2LB6fDwEH6/j6qqlYyOjuD3+5BKtUCsXmL//sMJU6k+n4+5uVl6err44IP3cLtdRKOxBc9WrFhFVVUV7e1PcLvd5OXlx4+lp6cbi8VCampqQjD88UXo5p/D4XDEfzaZ0uOhplgsZtGixaxe/QI6nZb7928TCAQYHx+PLxw2HzrO9wsPDw/F91VS3YBXWoRW8dExPCsKdHa0093TRSQSQalUEgoFCVqniGgyUGaXUS6PTcEuX76SVauaALh8+WK8tmB4eJhwOIzBkPo0rFYzODjA3/3d/wBik7J79uyjrKyc/+v/+s8olUrcbnf8uqxbty7puBy+ICebO7jT0oIiLGdJXiYHDx5OmkCNRCI8efKY69ev4ff7aGxczsqVTZ95UlWjib32+/YdYGxsnJs3r1FaWha/f2Cgn4GBfkpLy3A4HOzatQetVkc0GuXWrRts374LgNu3b7B69dqkGo35SomysuSwVSwWs27dBvLy8jh58kT8ej7r7t3bjI+PxR9vMCzcN7wQnU5PeXk5165dZcmSxqR6lIWkp6dz/frMZ36OeSUlZbS0NLNs2XIuXDjH0NAghw69HF9Y8stGrVbz4osv8qMf/YTm5juUlZV/Yk2JQCAQCAQCwa+TEA4LBAKBQCD4J8fhsHP06BFmZqZZubIJs3mOd999K2m7sbFRrFYLEokEpVKZEHRCbJI0HA5TXFwSvy0zMwu/309j43KysrKZmppELpfj9XqJRiOoVGoCAT99fX1kZGSSnp7xTL+qH41GS2lpGStWrGJ6eoonTx5jtVqIRCLI5QpUKhW3bl0nMzMThaIQiAWeCoWCS5cuJJ1Df38Pc3OzpKYaEoLh+WOdD6vnzc4mhnHzlRLl5RWsW7eRtLSPFvqam5tjYKCP4uKS+NS0VqtjenqKDz98H7vdDsS6Zzdv3oqhoJKHt0dQyhInaIOhEJOTE4yOjvD40UPEEjEKhYJIJIJOp0OtVuOSqJBE1RD1UVlZxYYNm4BYYNrR8QSIVXdMT0+hUqmYmpokEgnjdDqorq5h9eq1VFZWo1bHprPNZjP9/X0A8RBVoVCyevVqHA5//Nhc/hD/z8kWHg1OA0ZSUrRkLF2cFPgODg5w5colZmdnqK6uZd269UmL2H0Sl8vJ6dMnaWxcTklJKQByuYxwOMT4+Hh8u2g0yrlzp0lNTcNkMrF69QvYbBaysrLRarWYzWY8Hm9SuOj1ehkbGwUWDofnlZSU8dpr3+b48aNJH5RA7Hfi3r0W5HIFixc3fObzk8vlKBRK6usXc+LEUfbtO/ipoblYLEYikRAMBpPeu59EJBJRVVXNu+++xejoCDt37kn4Hf0yqqqqora2nidP2jh9+gSvvfZbn+ucBQKBQCAQCH5VhHBYIBAIBALBPylDQ4McP36UcDhEdnYOzc13iD7TIRAI+LFYrPh8XkZHRxCLxRQWFiVVL7hcTqamJikqKiYnJ5fq6hqqqqpJTTXyX//r/8nc3FxC+OV2xxb8CodD9PT0UFJSilqtZmJiDLN5DovFjM1mIzV1FWKxmMHBAUymdGpr6zEajUgkErxeL7/4xU9RKmNdqsFgkGAwwNDQYMI5zJuZmaavr4+UFAMymTzhPplMRkFBYcJt0Wg0IRxWqVRUVFSycePm+CTys9ra2jAYjAlToKOjI1y7djm+8JhGo2XfvgPk5eUzbP1oGtXr9WKxWJiZnWFqaoKpqSks5jkkEgnpGZmIxWJCoRBWqxWr1Qr6MDO+aUoKdGzfvutphUSA8+fPEI1Gsdvt3LvXgtVqIS0tjXA4zEsvfQWbzcrXv/5aUqXDo0f3cTod+P1+5PLYtamqqnn6v/3x6/HOhZs8GjSjw0t2Zia6jDxaxuw0laShkUuZm5vjypWLDAz0k5ubx9e//lpSN/CnmZyc4OrVy2zduiMhfN+5czdXrlzitdd+i1u3rtPb28Pk5AQKhRKj0UhnZwednR1YrVb+t//tDwG4cePqgrUE/f198Q7s1NTnLyIHoNen8OqrX+P69as0N99Jut9utzE7O0txcTGRSOS5dRnPmr/GKpWKJUsa4gHxpwWg2dk5TE5OJL1XP52IM2dO8S/+xe9RX7/ocz72i7F581aGh4exWCxcu3aZzZu3fdGHJBAIBAKBQCCEwwKBQCAQCL68QuEI/WYPwxYP7kAYqUSEQSWjMl1Lhk6RsG00GuXu3dtcvnyRYDCAQqGMT1IGg0HM5jnM5jnkcgV6fQqTkxOIxWKys3OSpjCj0SiTk5PU1tbx+7//b8nKynraUxvlxImj3Llzi7q6xEDKZrNhtdro6enGaExjaGgQkSgWtJlM6eTm5rNu3Ua+9a3fWvhcQyGOHHkPs9lMJBJhYmICu91GZWXVgsGw3++npeUuKSmGeDD3rMLCoqRgzuVy4fV6gViIt3//YV555StJ9QQQW6hsdnaWrKys+DUZGRnm4sVz8W1ycnLZt+8AOp2eSCSCbXYK8+w04wMWPDYzHo8HjUZDbk4efr8fu92GRCLB5XKiUqnigXYUCIfDuOxzOBxRvv/9v6GgoJDh4SHa259gt9uwWCzY7TbKyytISTGwZEkDW7du58KFswuGl7du3SAajSIWi+O9uStXrorfH4lEOHv2NE86hkGUhUwsIS0tDbFMgi8Ywe50c+v+bR49eoher2ffvoNUVFQueK0+SUdHO93dnezffyhpkjYlxYBen4Lf7+PAgcPcuXOLkyePo9Vq49tMT08RjUZ5440fk5GRSVpa2oJ1D/39sb7hT5oafpZEImHDhk3k5eVz6tQJfD5v/D6fLxae9/X18c47b7Jnz96kCfSPm38PBoMBsrNzWLZsBadOHWfPnn0JXd0fl5eXz+joSDwctngC3Hk0QWv/LHKphPpsHQ15BhTSj17jwcEBLlw4y6JFixf8UOPLSqlUsn37Tt57723u3WulrKyCwsKiL/qwBAKBQCAQ/DMnhMMCgUAgEAi+dMKRKPfGbLQM2xi3+whFIkhEIiJEiURAp5RSlaFldbGRPIMKn8/HiRNHuX79KmKxmKysbMLhMBaLmbm5WWw2GwZDKkVFxUSj0N7eRiQSwWRKp7j4o05erVZHVVU1kUgYkUjEV7/6DbKzs4HYImRnz57myJH3EYlEeDxuzOY5fD4vkUiEgYE+JBIpVVXVaDTaeFjW29tDbW09hw+/zJUrlxY830gkwsmTxxgdHWF2doaRkWFEIhH19YsXXBAsFArR3HwblUq9YDCs0+mSJqEhVikhk8kpKCggMzOLHTt2Lhh2+v1+Tp8+SUNDA8PDYwQCQbq7u/B6vfEwa9GiJaxdu46xsVH6+q4wMNCPzW7DGs7ErTBSnpNLcXEJSqWS+w/uYzabUas16HQ6IpEI0WgUn88Xq5eQa5CE/dTmmYhEwvT393H16mWGhgYRi8UYDAaCwSBFRcUsWrSE/v4+Dh58ieHhoQUnTh0OO11dXQDMn55EImH16rVA7MOCo0eP0N/fhzoiR6WIos4qIiLTMOPwkRq2884bJxCLRaxbt5GlSxs/08Jsz4pGo1y7doVwOMy+fQefO327atVqjh//EKVSxdjYKH/+53/B9PQUN25cY2Cgn9nZWWpr6wiHw1y8eI6amjrkcjmrVq1Gr9fHz2dwcACI1YN8HmVl5bz22rc5duxDJicnAOJBsUqlZGRkmNdf/xF79uylqKj4ufuZD/oDgdhEeVFRcfx3ZufO3c8N1bOysmlpuQuA1RPg5/fGmHQHkRElHI7SO+tm2Orl0OIcpGIR09PTHDt2hMLCIrZt28HVq5d/owLWkpJSlixp4OHDB5w5c5Jvfeu3USgUn/5AgUAgEAgEgl8RIRwWCAQCgUDwpRKKRDnTOc3NQQsysYgsvRyl9KPJw2g0it0XomXUxpDFw7pcOWff/ge6u7vIzc1DJILu7k6sVmu807ampg6DwYDP56Ot7RGhUIiUlBTKyytQqzVUVlZSVVVDfn4BHo+HH/7w+9TW1qNUqujs7GBwcIBz505jsZgZHBwkNzcXmUxOSoqBaDTK4GA/OTk5pKamJX2lv6SklEOHXiI11UgkEkk632g0yqVLF7hz5zbDw4O43W6kUhn19YsWDH7D4TDt7U8IhyMLhkqxRehKk8I4iUSCRqOhsLAIiURCXl7+cxccu3TpAhUVlbhcVlwuF11dnfh8PrRaLcFggJKSMmw2K9///t8QCoUQi8VEIhGKi4pYWb2KS5MR8lNUyKVizBYz/f29+P0+srKyn05gg1gsQqVSYXc4iGhSyRHZGOvrwOFwIBaLcTgcmEzpKJVK7HY7LpcLrVbH3bu3SU1NZWpqkv7+PjZt2pJ0/Pfv38PpdBAOhxGJYqFsUVEJqampeDwe3n77TcbHx4hEImSoJWxev4gndglj07MEpgYQ+cepb1hEU9PaeIfx5+H3+zlz5iQlJaXU1y/+xG1VKhVZWdn87Gev8zu/86+QSqXk5ubxyitf5ciR91GpVAQCAaanp0hLMyESiXjw4D5tbY9ZsqSB3bu3MTIyRCAQQKfTk5mZ9bmPNyXFwFe/+g2uXr3EnTu345UhCkVs0tnjcfPuu2+xevVamprWLBh0y+WxKfVA4KM+54qKSvx+H5cunWfTpq0LBsRSqZRIJEIkEqF11MaQ1UtdvoGALwhRcAdCPBq3syQ3hWxlmPfffweDIZV9+w4il8uRSmVYLGaMxrSkfX9ZrV+/icHBAex2O1euXGL79p1f9CEJBAKBQCD4Z0wIhwUCgUAg+AJ81m+mz2/3Ob/J/qX2aed0pW+W6wMW0rVy9Mrkf6qIRCIMahkpSil3Owc4d74DxWAfaQoJ/f29RCJhIBa6FRQUkZaWFu+v7ex8QjAYICUlhUOHXmbRosUUFBTi8biZnZ2lufkOZ8+eYmxslMzMDJ48eYTP5+PBg3tkZWUjlUpwOBzU1dWjUCiwWMxMTk5SVlbOkyePUKnUCZOqmzdvxWw2IxIR/w9EE0Kys2dP84tfvIHdbnv6ODE1NTVoNMmhZDgcpqeni3A4FA/jPi4rKwud7qMKAJFIxKJFS8jOzubMmVPx2+vq6hZ8DTo62tHptKhUSnp6Jmhre4TX6336Hw8+XwmTk+NkZGRiMpmAKNXVddTV1aPRaPAFw4wGx+iZdZGfoqCl5S4+ny8eTgeDwXi4aLFaEWnTEAXcKH2jrN+2E4PBQGdnB83NdwiFggSDQVwuJ3p9CjKZlGAwgF6v5/TpE3R0tGO32yguLqGkpJTc3DzEYjE3b15HJALpMx8qLFu2DKfTzltvfcjExDiRSISUlBRefvkr+P0+xh5fxDM1waqyMtav/3ZCN/DnYbVaOHfuDGvXrkuqK1lIKBRiamoCvV6PUqmIvyYul4toNMy/+Tffo7e3h7/5m/83/uEHxLqt791roa+vE6fTQygUpLy8HLH4l/vDQiqNvV9VKjX37rUgFouRyZ79/Yty69Z1xsdH2b17b0L1BcRqJUSiWK3Es++rRYsW09x8l9u3b7BmzQsLPndGRgazszP0zXnRySVIxWJsntiHJBqFnEmHn+E5B7funkQiEXP48MsoFLEPThobl3H/fitbt27/pc771+Hjf+YplQp27drDW2/9nMePH1BeXk5padkXd4C/hF/V303/lP6uEwgEAoHgN4UQDgsEAoFA8AVIS/vk/s7/1e1/Eyx0TlN2Hw8mXWSlqknXPf+r1laLhWvXrzM2Pg76LESmUrwzj5BIRKhUaoqKisjKyoqHkLFQtZOUFD0VFeUcOHAAv99PX18HfX0d6PV6MjIyMBjU6PUa/uzP/iMNDQ1cvXqVK1euYDDEgrC+PgsZGSYMBh1DQ0MEg0EaGxvw+XxEIhHS0gyo1Qr0ej0vv/wyeXl5XLx4kZQUFSaTjszMNNTqWEhqs9n48Y9/zNGjRwHiQVxtbS3p6elJ5xwOh+no6CEtLZXhYcfHgjue7kNGVVVFvGu4srKSLVu2kJ6ezrvvvotaHbumsYqF5ahUqsTrarUyMtLHgQMH+KM/+iPu37/P1NQUkUgEtVrNxo0b2Lp1K1arFYVCQUNDA8XFxUkTob+1QcmPbg5ysbkNm9uHP+BHp9OhVqtwuyO4XC4cbi8yQyZKUZR/s38li3K20tHRwcqVK5mYGGbDhnU4HA7u3btHSooeozEVkUiEXq8jPz+XcDhMamoKLpeNtrb7tLXdR6lUkpuby/37zYhEscAyEokgEoloalrOBx+8jdPpRKGQkpWVxd69e7l9+zYdHR1kZ2fzr37vuxQXP7864dMMDg5y584Nvv71V0lJSfnU7aPRKEePHmXbtk34fD4GB7toamoC4O7da+zZs4OMjBSePHHyv//vf040GuXy5ctMTk7G9xEIBLh3r5lIJMKyZQ1otbKkbuPPo7Q0n6amlUxOTsbfL8+anZ3kvfd+zuHDhykqKorfnpmZilqtQKGQYDIl/m7v2rWFCxcu0N8fe30/btGiaubm5jDq05jzhQmHwwz096HWqKmtqUEmk9D+5B4p0SC/8zu/lfD7YTLpePy4BY1GmvR+/rJ59s88k6mOmZn13Llzhxs3LrFoUdWX/vgX8k/x7yaBQCAQCP65EcJhgUAgEAi+AGazkwXWGEsiEsX+z/dn3f43wSed0/XeWWbtXkpNajwef+KdUZiemaK9/QlDQ4OEgiEUSiXSsB+/JpOAVEthego5ObmIRCLm5qzxKoSxsVECgRAajZI1azai15tIT09Hp9PHg81wOMzrr/+Q9PQcTKZcvv/9HzIw0B9/eq/Xy9ycmZKSUu7ff4jRaCQvrxCfL4jZbHt6bhLS0rJ48cV9KJVa5uacuN1BpqetSCRqRCIFHR19DA0NcunSBdraHhONflQ1UVJSikajTzr3SCRCT0836enpDA0NEgyGFry2BQXFBIMRTKY01q/fGO/jHRub5f79x4TDsceVl1fidodwu53xx9psVn7wg++TmmrglVe+Qk9PN2q1CpVKTXZ2DkZjGqFQlHBYwurVG+OTo2azK/k1jkYxzrbhGnqMP6qClBx8oQCjc07CkQghkRZNuolsvZJ/tWcNEx13yV1+iNTUTP7zf/5zIpEwmZlZuFxewuEoa9euR6FQIJfHprVlMhWjo/2o1dqEa+Xx+Hnw4BGDg0NALCxXqVSYTOkcO3aSQCCATCbGaMzAaMzkb//2+6hUatav30pdXf3T940z6Xw+TTQa5eHD+4yPj7N9+26CQfFn2s/t27dQKnWkpmYRjUZ59923yMsrxePxMDNjRaHQMzAwRn//MIsWLQfg4MGv0Nvbw40b15ibmyUY9OHxeJFKpTx48Jiurj6WL19JY+OyX6rLdmBgjGhUzPr1W1Cr1Tx4cC9pG4/Hz9/93f9kzZp1NDWtRiQS4XIF8Hj8WCyOBc998eIVnD9/Bp8vQm1tXcJ9KpWB9vZblCzZwINhC13mSfLyCrA7nDzsHcPhcKBw9PPSywcRiZRJ+y8treLixeusWtX0uc/31+F5f+YtXryCBw/amJ6e4+23P2DPnr1f3EF+Tr+qv5vm9ysQCAQCgeDXRwiHBQKBQCD4AkSjfK7/Q/15t/9N8PFzCoYjPBhzoJFLECGCZ+6LAlevXmJsbAyvxwOAWqNBIpEQCXoQa3JR51bgtg7S09NDenoGtbV11Ncvpru7C7lcgVwu5+WXv5L0Vf/5Y2hpacFsNrNr14u88cbr2Gy2hO1mZqYJh8PMzMxSUlKKVquNP9br9SCVSmlqWsuGDZsRi8Xx+yQSKcFgiGAwxMjICKdOnUAikdDe/iShgzgvL5+srJyk13k+GM7MzMTpdOL1+ha8npoUI9rSpShLFiHJyGAsrEbvCZKiktHT000o9FGgXFtbTyQSZXp6ir6+Xvr6emltvYtIJKa3N0BKioGiomIikRCBQAi1WkNKioFdu/bS2Lgs4bot5O7du9y+fB57821snjDq/FowFaBNyUWtVOCdG2NrRQVp0gBLijLJVCzj9OlT5OfnYzKlMzExTmdnJy6Xi+zsHLRaHSKRiG3bduJ0Oli9ei0//vEPKCkpY2RkmOnpqfhzj4wMP73uEoLBIB6PB7fbQzR6FY1GS3l5CeEwmM1mVq1aw7JlK+Ldzr/M79j8QnE6nZ5du16Mdyp/mp6ebhwOO1u37ni6vYgVK5q4c+c2TqeDtWvXEY3CtWvXWLNm/TP7FFFeXklpaTnd3Z28/fYbABgMRkQiMT6fj+vXr9La2sKKFatoaFi6YHf181itVqJRSEszsWbNC+TlFXD27Cn8/sQPLKLRKNevX2V0dITdu/cik8mJRmOTzAufv4jNm7dz8uRxFAoFpaXl8XvkcgV+v59F2Xo6Rme5MRskrJQTURkZ7GojLzrHS/u2kZdXsOC+i4vLaG5uZtmyFUgkkuQNviQ+/meeVCpj164X+fnPf0p7+xPKyyupqKj84g7wl/BP8e8mgUAgEAj+uRHCYYFAIBAIBF8KnkAYlz+ERp74zxObzcb0zDTBYAjn08XKpDIZfr8fhUKBTqcnolSQlV7OV17eSW1trPsW4Nq1K4yMDCGRSNi7d/9zO2AdDju3bl3HZErn3LnT8QW55kWjUfr7+xGLRVRX18RrG+b5/QHWr1/P5s1bk4ISqVRCZ2cHp04dZ2xsFLPZjNk8lxDWpqdnxKd8nxWJROjt7SEjIwOVSk1XV+eCxy9WG8jb+m08+mwmgiImJxw8GLNzN8XK4cU5tLc/ie/P5/PS29vD+fNncbmcKJXKpwuZZaNUKvH7/UxOTmCz2airq0GvT0Umi4WLH++Z/Ti73cbZs6c5cuR9RkdHcLmcpGo1pIWmyBFLKNIqEAFWhY1Dm5oIBAK0tNxl3boNzMxM86Mf/YDc3Dxyc/Pw+/vo75+kpKQEgMWLl2CzWamsrHpaKWFk48bNQKyfd3BwgO7uTj788H0ARCIxgYAXn8+LyZSO1RpbXM/rdZGamkZj44qnYf80OTm5Cy6y9mk8Hg+nT5+gvn7x5wr1pqenaGt7xP79hxIqOQoLi7hw4RwZGRmkphqZnJxAJpMuWDMiFouprq6hoqICl8tLSooh4X6v18PVq5dobW1m5cpVLFmyFKn00//pP999Pb9YYVVVNZmZmRw9eoSZmemk7YeGBvnJT37EmjVrAQgEgknbPHvMu3bt4dixI8jlCvLzC+L3GY1GXA4b2ulH/On+7YyYAwwPDRBxdVOaZaS6uua5+xWJRFRWVtHV1Zk0lfxll5OTy8qVTdy5c4tz586Qm5sX//NLIBAIBAKB4NdBCIcFAoFAIBB8KYSjUaLAs+tpRaJRHrc9orOzHa/HQygUQqlUoVSp0Ol0pKYayUjPIKQ1sao8i+WNhfGw7f79Vu7cuQXAtm07EiYVP+78+bOMjAzj9XqTArRIJMKTJ214vR7WrFmXFAwbjUY0Gg1LlixO2u/g4ACnT5/E4bCTlmZCIpHS19eLWv3RYnMGg4GysvKk3t5oNEpfXw8mkwmjMY3Ozo6ESWOIhW3ZObkYVh4kmJJNUaoKmUT89LijDFo9/Px2L1MtzdgsZux2G+npGUxMjFFVVU1ZWTkGg4G//Mv/is/nY2hoEJEICgtL2Lt3P8PDfdjtrnjgvVBo5fF46O7upLOzg46OJ3R1daJWa9Bo1EQiEVatWktvbzc6nQ4RoNXq2LFjJ1NTkyxdGltMzOVyMT09RTgcZnJyApMpndnZWZqa1mC32/H5vPzu7/4+Z86cZN26DQwODiQEi1qtlvr6RTidDtLTMwgEAlgsZgIB/9PKAxcpKSlkZWVRU1OFWCzDbrdx+/ZNbt++iVKpori4mKKiEoqLSz41BAeYmZnh0qXzbNq0lYyMjE/dfp7L5eTy5Yvs23cwaco1Go0iEkEoFMYbDHHp+g327tz53H2ZzWasVis5OTn87u/+a3p7u7l9+yYOhyO+jdvt4tKlC7S0NLNqVROLFi35xOlaq9UKQGpqavy21FQjX//6a1y6dJ6HDx8seE7Hjx9lZmaGwsKiTzx/iUTC7t17OXr0A+RyOZmZWQDk5uZz69YNsrOyWVGRS+TOfZofXGT3htWEQmHGxkbJy8t/7n5ra+v58MP3qampTfpd+rJbvXot/f19zM7OcP78GfbtO/gbdw4CgUAgEAh+cwnhsEAgEAgEgi8FpVSCVCwiEP4oAJ2cmMDhcBAMBIkSmxDU6XVs3rSFFIMBAJ/Px4DZy3BfNx8MNwOxCoj29icoFArWrl1HYWERkUhkwenQx48f8uGHH5CdnZ0UDPv9Pvr6+giFgmRlZaPX6xPuLysrZ8eO3fz93/91wnTn9PQ0V69eYmhoEJstFrZFIhEGBvrxeNzxcFij0VBZWZ10XPPBsNGYRlqaCYvFgsVijt8vEonIyMikoKAAsS4DjzGPLLUCmURMFHC73VgtZmwWK49mHYinHZjEIfLzC/jud3+Purr6+HX6gz/4PbxeL5mZ2RQXl7Bs2Qpyc/MIh0P09SVOKs+HpoFAgL6+Xjo72xkcHADAZEoHRDQ2LmdwcACRSExqamp84TytVodcLufQoZcxGAycOXOSxsblNDWt4f3332F6eor8/AL6+3uZnp4iNdVIWpqJtDQTVVVVvPfe2/F6iaGhQerrk8P4GzeuAbGqB7/fj0gkRqVSsH79BsrLK/H5vEilJHU6+3xeOjs76OzsACArK3YtSkpKyc7OSXp9ent7ePz4IS++uP9zTXkGg0FOnTrB1q07Flx8rKenm6ySOu5Purny9i0gG1+7heUFUeqzdUmBYW9vDxCbOFar1Sxe3EBtbT2PHz/kzp3buFwfdfM6nQ7Onz9Lc/MdmprWUFtbnxQSB4NBnM5YsPzxSWSpVMq2bTvJyyvg3LnTBAKBhPtFIhHDw4M4HHacTic63fN7Y+VyOXv27OPYsSNs3bodozGNzMxMfvrTH/EXf/FfGB8f59ixDykvr2Djxi0EAgE+/PB9Dh9+5bnTz3K5nKysbMbGRhM+OPhNIJVK2bVrD2+88To9Pd10dnZQU1P7RR+WQCAQCASCfyaEcFggEAgEAsGXglouocyk4d6YDaNajt/vZ2R0GJ/PSzQaRSwWIxKJyMnJS5gglCnVZEoC7FueT2WGlpGRYd566xeYTOkUF5eQm5tHc/MdnE5nfD96vR6DIRWXy8nf/d1fI5crSEszJRyPzWZjfHyUwsIinjxpIy8vPx7OiUQi1q5dx6pVq7HZrITDIdLT03E47Fy7do2OjidEn47bisUSgsEAvb09OBz2+P4VCgU1NbVJYVeswqIXgyEVkymdSCTC4OBHC+OlphopLCyKh5IVS1dyyypCq4gFfU6Hg5u3bpCamorBkIpcqaKodil5EicGg4GamloGBvq5ceMa586dQi5X0ti4HIlEwubNW1myZCk3b14nLc2YcFyRSISpqUmuX79GX18PwWCQ3Nw8Nm/eSn5+AUeOvIder8fv9zEzM43T6eCFF9bjdDqRyWSo1Wr27t1PZmYmEAsio9EoRmMazc13yMzMQqlUkpmZRVfXFVavjtUUpKWZ2L17H7du3aCj4wn37rUwNzeLyZT4egWDQR48uM/s7Awejxen04lYLOLb3/5t/vW//l6snzoSxuez09r6iIGBgQVrEgCmpiaZmppMmCouLi6lqKiYtrZHOJ0O9u8/9Ln6baPRKGfPnmbFilWkpaUl3R8Oh7nU8ghH1hJmZSoG+x7RtKqJAbOHAbMHqyed9WWJ59zXFwuHy8sr4rdJpVKWLl1Gff1iHj68z927d/B43PH77XY7Z86c4u7d2zQ1raWmpjYeftvtsfenQqFImG5/Vk1NLZmZWRw7doTZ2Zn47fPXwmq18OMf/wOHDr303BoXAJVKxe7dL3LixDF2736RtrbH5OXl4XI5OXLkbTIyMtm9ey9isRilUklDQyN3795mzZoXnrvPpUsbuXTpwm9cOAyQmZnF6tVruXHjGhcunKOgoACtVliYTSAQCAQCwa+eEA4LBAKBQCD40licm8LDcQe+UJjBwQEikQhudyzYkkgkiESipIWx5lwBcvVKStPUzMzMcOTIe0CUJUsa2Lv3QNLUZyQSwW63cfPmdX7xi58xNTVFXl4+XV2xqVGpVIbL5SIajVBWVo7D4SQSiZCeHqsOUCpV7Nmzl5KSUiD21f5QKERbWxt3795L6BKGWPXD+PgYPt9HC8lJpVJqauqQyxUJ20ajUQYG+tDrU+LPN/9YrVZHUVFRwkRndnYOtZWVNDePEgxHkUtFWK1WfD4f9XWLCEcjDJh7USCKLxT27rtvEYnEJpNlMgWVlVVoNFr27TsQD90tFgtZWVlEo1EcDjszM7PY7TbEYjFpaSaamtZQVVWNwZBKKBTi7bd/Ea8jmD/elBQDRmMaU1OT6HQ6tm7dTklJWfzY09MzmJmZ5tGjB5hM6YyOjlBWVs7w8BDLli1ncnIctVrFpk1bkEgkzM7O8J3v/Avu3LlJR8cT3G53Qv3DjRvX6e7uxOWKfQigUimpqqrmm9/8Tjy4lEgkFBYWotEYWbduI06ng8HBAQYHBxgaGkx6b8FHU8VPnrQxMNBPYWER69dvZHp6iqys7M/cVXzr1g1yc3MpKipe8P6HD+9j1xdh8YZIibgpyDAiDngoTE1l1hXgWr+Z6kwdGbrYe8bpdDA5OYFGo1ywMkUmk7F8+UoWL27g/v17NDffwefzxu+3Wq2cOnWcu3dvsWbNOiorq+JT7gZD6ifWGqSlpfH1r7/GxYvnefz4IRB7n4vF4vjv15tv/ox16zayfPmK5+5Lq9WxfftO3nnnLXQ6HTk5+fzsZz8hLc3Avn2HEypcKioq6erqYG5uLumDgWf3J5XKsFotpKYaF9zmy2zlyib6+nqZmprkzJlTHDr0slAvIRAIBAKB4FdOCIcFAoFAIBB8aZSmqSlOU/NgcAqXxUw4FMLv94EIlEol0WgUv9+Hz+dDqVTi8IUIRKIsLzTgdjl477238fv95OcXsGfPvgWDu3A4zM2bN2htbcHr9VBXVx9fDC4UCtHd3YVOp0Wn02Oz2ejp6YqHtkajiW3btuPxeBgfH0Oj0XL9+jUePnyATqcmHA4lPd/c3AwzMzPxSgqpVEZpaXnSZGbsOfrRanVkZMSma30+H3Nzs1RUVCUtSiYSidiyZRumNA3ZKUomHT4KDCrUGjVpaUb6+/sIKXTgdzE7/AhrxM+uXXuw2aw0N99leHiI8vIKcnPz2L//YMKU4tzcHLdv3+Tu3bs4nS7kcgXFxSV861u/TXp6ejywikajnDp1nPHxMQACAT/T07Gp4TVr1gHgdLrYsmUrixc3JBx/QUEhra3NtLc/iU9Bj42NIRaLycrKxmg0YrfbyczMindBy2QyUlIMbN++i5Mnj9HYuJyysnLa29v4T//pT7Db7SiVSlQqFTk5uVRUVGE0Jk/pztPp9CxatIRFi5YQDocZHx9jcHCAgYH+hKnY+XqR3Nw85HJ5vKtYpVJTVFRMSUlsqvh5FROdnR34fN7nTr36/X7udw3gNS7CKBUxOW2nprqGru4uDAYDJo2MPrOH3ll3PBzu6+sFIC8vD61Wm7QQ4jy5XM6qVU00NCzl3r0WWlruJoTgZrOZY8eOkJ6egeFpVcv8f38SmUzGjh27yMvL5/z5MwSDQcRiCZFIhHA4TCQS4cqVi4yNjbBz554FazRizxWrHnE6nUxP9+D3+/mDP/hXRCKyhHMSiURs3LiZc+fOfGJo2ti4jHv3WtiyZfunnsOXjUQiYefOPbzxxo8ZGOinre0RixYt+aIPSyAQCAQCwT9xQjgsEAgEAoHgS0MqEbOrMo1bLS04UBNyTcarINRqDaFQiGg0yvTMDNq0LGy+EGuLjVQb5bzz9s9wuZyYTOns339owW5Sm83Khx9+wPT0FAMD/SgUivhX3z0eDwMD/RQUFKDXpwDg9XoZHR2hoqKSDRs288IL6/F43FgsFq5fv8qdO7fo7u4kEAjQ0dGBSCRBqVShUChRqZQ4HA7GxsbiFRMikYiiomIUCnnCcUWjUQYHB1CrNfEFupRKFSKRiMWLGxYMuRctWkJ2dg4Am8rT+eDRBAMWLyqxggBSZnwwOdhNEbOUFeSSnZ1DT083IyPDDA0Nkp2dy7JlK9myZRtSqRS73UZnZycdHU+4fv0KGRmZGI1GCgtL0On0FBQUJi28dvXqZbq6PuolHh8fx+v1otenYDKZ8Hq9GAwGtm1LXlQtKyubv/qr/0ZubmxaOScnl+vXr7JhwyYAVCo1r7zyNU6ePEZlZTXFxSUADA8PsWXLdpYvX8mJE0f5wQ/+nr6+HszmORQKBQUFBfGJ7GXLVnzCuy2RRCKhoKCQgoJC1q//aKq4tbWZmzevU1JSmhRwer0eOjvb6exsRyQSkZWVTUlJKcXFJfGp4omJcbq6Oti37+Bzn/vu3dtU1S1mcDSCe24Cg8FAT28P4+OjhMNhKioqEIlE+ELh+GPmw+GqqqrPdH4KhYLVq9fS0NBIS8td7t9vTegNnp2d4e7d2zidTgoKCp8ujvfpU6t1dfVkZWVz9OgHSCRiQqHYBzDPHudPf/oj9u49EH+/Pquvr5fi4lJ6e7vp6upi167dGI1G5uacSdvq9SkUF5fw+PHDpA8b5mVmZnHjxjW8Xu9zA+kvs/T0dNasWcfVq5e4fPkihYVFSf3PAoFAIBAIBP+YhHBYIBAIBALBl0rv42aKfENERJkMBMWQko064icqlSBXaIiqNPRM26lPzWRLhYm1RQY+eO8tzGYzOp2el156ZcFQaGCgjxMnjuPzeZmbi9Uk1NTUIZFImJubY2ZmmoqKioSqh9nZaWQyGS+//BWWLYt9Pd5qtdDScpfp6SlycnKZnZ1Fq9VQVVWFxeLA5/Ph8bgZGxthYKCfYDBIIOAnGo2Qn1+AUqnEZrOh0WgRi8VEo1GGh4dQqVTxRfGWLl1GenoGJ08eWzAYVipVvPDC+vjPtVk65JJcTt3vo214GpvLS4Vejdw/TK4qRDAoZ3CwH70+BYvFjEQi4dVXv0pFRRVtbY/o7OxgbGwUmUxGbm4e69ZtpKioiI6OR3g8fqJREiocIFaD0Nx8J/5zIBBgenoKp9MR7wtWqzWUl1eQk5ObdA737rXgcDjIyYmFkBaLGZPJRDAYQKlUsmzZCsrLK5BKpfzkJz/k3/27PyYSieD3+4lEIly+fIH79+/R09ONw2EDomRkZJGdnYvZPIdKpWLJkqWf9+0Xp9PpEYliNRr/4398n7m5WQYG+hkY6GdubjZp+2g0yuTkBJOTE9y8eR2VSk1mZhajoyN8+9u//dz6CafTwdzcLOuWruLdthZGR8apKSmkrLSMSCSCx+1meGSUaW+UWa0Lb74WkUjEyMgwAJWVlZ/rvFQqFevWbaCxcTnNzXd4+PA+wWAQiFVouFxOWlruEg6HWbPmBQoLiz41JDaZTHzjG9+ivf0J/f29CeEwxLqMf/GLN1i/fiONjcvj+wsGg9y714LRaMRsNvPtb/8258+fIRKJLPQ0ADQ0NPL+++9QWlr23E7exYsbePz4EStXrvo8l+ZLY/nyFfT19TA+Psbp0yd55ZWvCvUSAoFAIBAIfmWEcFggEAgEAsGXxszMDK2tzaiIUOzto7/jMRJ9Pqr8CkLhKFKlEjlhcgLj7C2uZVGZiQ8/fJ/x8TGUSiWHD7+CTqdP2Gc0GuX27ZvcvHmdaDRKKBRiaGiQtDQTBoOBoaFBotEoVVXVCQFeNBrFbndw8OBLLF++kpmZGa5du8zAQH/CNl6vh/T0dCQSCRqNGrVajdvtZnR0hLQ0E8FgEJfLRXl5JRkZGZjNZqamJnG73UQiYczmOeRyJXl5+aSmGtm4cTNZWdn84hc/fe51Wr9+Q7yWwuVy8uRJG8PDQ6woKOTlQyt5970h3NYO8rK03L17m0gkwooVqwgE/MzNzfLqq1+nv7+PCxfOAVBYWMTu3XspKytnenqKqakpzObEAPTZyoSBgT7Onz+bcP/ExDgejxu9Xk96egZGo5Hs7BwmJyeSwvrZ2Vnu3r2NRqPF5XIil8ux2+0sWrSY/v4+li9fyapVq4FY/URKSiotLXcpLS3DZrPxD//w95jNZlwuJ8uWLefSpQuoVBqMRmN80b/MzMx4XcjnFatEuIREIuHFF/cjFovjU8UbNmzC4bDH6yeGh4cSJnDnuVxOWlvvUlJSxg9/+H2ys3MoLi6hpKSUrKzseNh39epldDodF068T3AmSH7FInKyDMgkYtJNJuwyBS6RgkXlWZSbgpw9e4rJyUlmZ2cpLS3FZDItOGX7aTQaDRs3bmb58pXcvXuLhw8fxHuxFQol4+NjvPPOmxQUFLJmzQufusibXC6noWEpYrEIsTg5yAyHw1y6dIGxsVF27NiNUqnk7t3bKBQKHj58wNat22loaKS7u5MPPviA9eu3Acn7EYvFrF+/icuXL/Hii/sWPJbS0jJaW5tZtmz551o08MtCLBaza9ceXn/9h4yMDPPgwT2WLl32RR+WQCAQCASCf6KEcFggEAgEAsGXQjQa5cKFs/GpQfPsNBHzCKVaMZIpCzaXh/y8AjRyCaXaIib6Opge7KavrxepVMrBgy8l9fL6fD5OnToe/wo+wMjIMOFwOL4IncmUHl/87VlqtYbKyioaG5dz+vRJnjx5HK+HmOf3+wmHwwn9wX6/n87O9vjCdCKRCL1eT3l5rBpArdYQjUYpKytnZGQYvT6FFStWUVdXj0QiZWpqkg8/fJ/29jYAJBIpSqUSpVKFUqmksLCI2tp6Bgb649vU1S1i5cqmeOCYrtfw8O4NFAoFfr+fUCiE0+mgr6+X2tp67t9vJTc3j02btlBZWZ0Q/FosZoxGIyMjgx+7HrHJ4enpKY4d+zDhWgSDQaamJnE6nTQ1rUGlUnPo0MucOHGMrKzEKoFIJMLZs6cIh8OkpKRgt9vxej0UF5cglyvQaLSUlpahUMQmuMfGRmlqWs3g4ABvvPE6+fkF5Ofn43a7kcvlWCwWUlJS0Gq1qFRqhoYGSE01snhxw4LVIp/G5/Nx+vQJKiqqqK2tW3AbvT6FxYsbWLy4gXA4zNjYKAMD/QwODjA3N0s0GqWvr5e8vAJUKhXRaJSJiXEmJsa5efM6arWGrKxsZmamGB4e4lvf+m1KS8vRD44wrk6jd86FVCRCJNMx4XWgkbjZWmZgaVEGjfW1vPPOW3R3dzI9PcmpU6fIzy8lMzP7l5ou1Wq1bN68jcbG5fT19eDz+VCplPH7R0aGGRkZpqiomLVr1y04BT5PJpORkZHJmjXr6Opqx2w2J23T09PNzMw069Zt5NGjh7hcTlatWk1DQyMAK1asxO22ceXKJdav37TgOWVkZJCSkkJfXy9lZcmL8YlEIiorq+ju7qKmpvZzX5Mvg9RUI+vXb+TChXNcvXqZoqLiT+zPFggEAoFAIPhlCeGwQCAQCASCL4W2tkeMjY0CsaB4enoKlUpFXl4+MzPTSIJeDCoparWGnJxcLlw4S0ZGZny6My8vP2F/MzMzHD36PlarNX6by+ViamqS9PR0hoYGKS4uWXARsWXLlmO1WhkfH+PEiaNJX5Of5/F4AFCrY5OxoVCIzs72hAW/DAZDvD8YYhOWwWCA0dERUlONfOc734336QLY7Taam+9QXV0b36fPF1uEz2KxoFAo+JM/+UNMpnSKiorJyMjEbrcxPDyEwWBAr0/B4XDQ19eDWq3B43EDIlpbW1iz5gV27NhFdXUNBkPqgudksVjIzy/E5XIl3K7RaHA47Lz//rtJk7KTkxN4PG60Wh3Z2bkcPHgYnU7PzMx0UsD64ME9JibGgVh1Q19fHyaTKf46NDYux2azxTtv7969jcVixuFw4PN5KSgoxGIxEwwG8fv9bN++k7/5m/8XqVRGSkoKKSkGHA47JlPiBwWfhcVi5ty5M6xfv3HBftyFSCQSCguLKCwsYuPGzTgcdt577+34Aoofv1Yej4e+vl4ePGjF7fZQV1dHS8tdRkdH+MY3vsX6zFy6Zlx0TjsJhqMYXFGaKnKx9j+Eom2EQiEmJ8fJycnlG994jawsI9eu3ebq1SsUFhZRU1Mb78z+vIqLS8nPL2DJkkY6Op4k1DsMDQ0yNDRIaWkZa9eui3djP0suj3Vpa7UavvGNb3Pu3Bk6Op4kbWez2fiLv/hzjEYjW7fuYN26DfH7cnPzmZ6O4vGEuHv3dnyC/OOamtbw/vvvkJ9fEP8g4Vm1tfV8+OH7VFfX/MZWMjQ0NMZ7wk+fPslXvvL159aTCAQCgUAgEPyyhHBYIBAIBALBF87tdnPlyuX4z3a7nUgkQkqKgbQ0E7OzsYoDtVqDXp/CzMwM/f19SCQSvva1b1JeXpGwv87ODs6cORnvUoVY4Nzf30soFCQcDlNVVZ00WSqTydi6dTtOp5O///u/JSsri3DY+Nzj9no9SCQS5HIFkUiErq5O3G53/H61WkNVVQ1DQ4lTuG63i02btvL1r7+WFFxdunQhPnUMIJVKCYWCWCxzFBYW8/Wvv0ZRUTEikYhQKITNZsNmszI3N0tfXw8dHe389KevMzs7g1qtRqlUsmPHLlwuJ9/+9m9TVFT8ia+F3W7DYDAknMf8cbz33ju4XIkVBrGwcgKHw8mqVU3s3v0iubl5TE5OEA6HE0JWh8PO9etX4z+LRCIcDjuLFy+J37Z9+05GR0dpbW1mYmKckyePs2HDJvbu3Yzf7+PWrevo9SkYjWn8yZ/8//jBD74PQFpaGna7DZlMRlVVDXK5nDNnTrFx4+YFw8OPGxjo5969Fvbs2fvcLtvPYnh4mOLiUjZu3EwoFGJsbJTBwX7u3Wuls7MdiURKTk4ugUAAm82KXB6rVYAob731c9RqDcXFJTSWlFJUVIw5V8Tg4AAejwer1YLVasXv96PRaMnOziE9Xc+GDZsIhyMMDw9x/fo1/H4f5eWVVFRUfqZzB+IfomRmZrNr1x5WrWri1q2bdHa2J0yJ9/f30d/fR0VFJatXv5CwSKFMFguHA4EAcrmc3btfJD8/n4sXzye8pycmxpmamkQikRAOhwgEAvHjzMjI4PHjFrZu3cPly5d4+PD+gt3RMpmMpqY13Lhxlc2btyXdL5fLycrKZmxs9FMrMb6sRCIRO3fu5vXXf8j4+BitrS2sWLHyiz4sgUAgEAgE/8QI4bBAIBAIBIIv3NWrl/H5vPGfZ2amycjIJBwOIxaLEYtFSKVSFAoFXq+HtraHpKSkoNenJARH4XCYq1cv09ranPQck5MTjIwMU1FRSUVFVVIoazCkUldXz61bN+ju7iIQ8C9YN/Esj8cTr5To6urCbrfF71MoFNTUxELK+QlMpVJJSkoqdXWL+epXv5F0DAMDffT29gCxgG1mZhq73UZKioGqqhr+5b/8g4QKC6lUislkQi6XMTc3R3PzXW7fvkk4HEKtVpObm8eOHbuJRMKsWbOOv/3b/8HSpY3IZDLUag2pqakYDKkYDAYMhlSUSiWRSASRSITX60GlioV9kUiEmzevY7Ek1wRMTU3icrnQarW8+urXqKqqBmIBoEQiiV/DaDTKuXNnEiZpZ2amyc7OxuPxoNfrqatbhNGYRkdHOz/72U+oqalh3boNfO1r3+Qf/uH72Gw2jEYTZvMcf/Inf4ZareHhw3tArOphenoKgKqqanbs2M3IyDBHjrzHunUbnluHEI1GaW1tZnZ2lv37DyGTyT7xNf8ksXqJPl58cT8Q6471+XzMzc2xYsUqvvrVr8c/2Dh16gSlpWWEQiHM5llqamIT1h6Pm/b2Ntrb2xCJRGRn5zA8PMSBA4e4ceNaPEQtLy9PeP+IxWKKi0soLi4hEAjQ09PNyZPHUCiU1NTUUlhY9IlTpzZbLBw2GAwAGI1p7Nmzl1WrVnPr1nW6ujoTtu/p6aa3t4eqqmpWr36BtLS0+OTw/IcyIpGIxYsbyMrK4fjxI1gsFnw+H/fvt5KTk0tVVTW9vT389Kc/Yu/eg2RmZj79fRcTDofZsGETZ8+eprOzg+rqmqRjLiwsorOzg4mJ8QVf34aGpVy+fPE3NhwGSEkxsHHjZs6cOcX161coLi5Jqs8RCAQCgUAg+F8hhMMCgUAgEAi+UCMjwzx58jj+cygUiofBJpMJAJFIjFqtweFwMDQ0iFQqZfXqtTgcDhwOO3p9Ci6Xi+PHP2R0dCTpORwOB62tzRQWFlJZWZ10v8FgQCqVcuPGNSAWWqakGD516tLrjYXDw8NDzMzMxG+XSqVUV9eiUMS6W8ViMcuXr0SpVOL1esnOzsLtdiV8/T8UCnHhwnlsNiszM9MApKdnxusytmzZlhAMezweenq66OzsYGRkmLGxUbxeDyZTOtFolLm5OerrF5GRkcHGjZvJzy+goWEpDx8+YOfO3Xg8Hmw2Kzabjb6+XqxWKz6fl3v3WolEIk9rKvREoyImJiYIhULx8G9eOBxmfHwcp9PJN77xGsuXfzTVODk5SUZGZnw6u6urM2Exv1AoRCAQJCcnD7vdhtFoRK/X84Mf/D2hUJCNGzcB0NS0lg8+eJeHD+8hlytYurSRQ4de5vTpk+TnF2C325HJ5EQi4afXXhZfvKugoJD09AwuXDjH8PAQq1Y1JRx/7JqfIzXVyM6du/+X6gdsNis3b15n//5DhEIh2toe0dvbQ3l5Bfv2HYxfu5ycPGQyOXl5+WRmZnH06BFqa+sX3Od8V/HMzDRvvPE6Ho8Xl8tFWpqRvLznB55yuZy6unrq6upxOh20t7fT3HyHjIxMamvrE6Z9Pzp+GwCpqYl1IyaTib17D7By5Wpu3ryW0N8djUbp7Oygq6uTmpq6+Gvw8SqNzMxMvvGNb3Py5HF+8IO/Q6fTU1tbH39vWK1Wfv7zn7Bp0xaWLGkgNzeXyckJ8vIK2LZtBydOHEWhUFBSUpp03OvWbeD48Q85fPiVpMXndDo9EokUq9VCaurzvwHwZVdfv5ienm4GBvo5ffoEX/vaN38jF9oTCAQCgUDw5SSEwwKBQCAQCL4w4XCY8+fPJtxmt9spKCjCYjHHv94vEomQSCR0drYjk8kpKytn//7DvPnmG3R0tJOfX8DRo0eSKg8gFjw9eHCPtDQTNTWJIZzX60Uul2O1WuPBoNfrxeFwUFFR+YnHHo1G453DLpcTmSz2zyqxWExV1UeLvNXU1JGdnUNqaipm8xybNm2lufkudrs9Hg67XC7eeuvn3Lx5jZQUA0VFJQlBbFZWNosWLSEQCNDf30dHxxMGBwfi90mlsaoCiUTCw4f3yc3NQ6FQ4HI5KS4uiU9O5ubmMTIyTHv7E+rrF6HVahO6ms1mM2lpJsrKyp8G9mF6evoYHx8jEokiEsWC+tgCeUpsNht2u43s7Gy++93fSwhXp6Ym4l3KHo+HixfPJ1y/2dlZsrOzEYvFdHd3YjAYuH37JnV1i3jhhXWoVGq+971/jd8fwGIxMzk5yW/91u+wb98BRCIRmzdv44//+N8RjUZJS0uLh5tGY2rCa6dSqdizZy/t7U/44IN3efXVw4AEl8vF6dMnWLq0kdLS5EXNPg+/38+ZM6dYt24Dzc13mJycoL5+MS+//JWkad354Pjw4Vdwu10UFhayf/8h7HZbfFG74eGhhEqU9PQMhoYGMJkyaGm5Q2ZmFsePf8jDh/dpaKjDaMwmIyNzwXBbp9OzalUTK1euYnp6ira2h5jNZoqLS6iurkWrjS00+NHk8MJd1JmZmRw8+BKTkxPcuHEt/v6D2O9Ce3sbY2Oj+Hw+Kiurkh4vk8lwOu1otVrq6hYlffASCoU4d+4MY2OjrF27kq6uAfLyChCLxeza9SLHjh1BoVCQm5uX8Di1Wk19/WJaWu4u2E+8bNly7t9vXbB64jeFSCRix45d/OhH/8DU1CR3795m9eq1X/RhCQQCgUAg+CdCCIcFAoFAIBB8YVpamjGb5xJu0+l0yOVyUlI+mqoNh8NMTU2iUChISzOxb99BrFYLZWUVnDlzCp1Ol7RoXDQaZWxsFKvVglweC5TnKwMCgQCTk5OkpOhRqVQJj5udnUYqlWI0pn3isQcCflwuJ263G5VKGb+9rKyClBQDhYVFbNiwiczMLP7qr/6SmZlptm7dgUgkIiUlBbvdRigU4smTx7jdLoaGBp87QVpRUcmpUyfo6+shEAiQm5vHpk1bMBhSOXfuNOFwGIlEgs/nJTs7h8zMLOx2O8FggDVrXkjY18qVTRw58h65ublJ52i1WjAajYRCQbRaLU6nDa/XQ2ZmNjU1sQXyIpEIPp8Pj8fD2NgodruNrVu3c/ToB4hEInQ6HSqVmr6+XqqqaggGg1y5cunpwngxHo8HhUKB3+9jcHCQublZKisPsnXrDjIzMwEYGRnBarXEr8/WrTvYv/9gfB+pqak4nQ4sFjO1tXV0d3cBscncrKzshPMSiUTU1dWTl5fLiRMnUKtTGB8fZ8uW7fHp9F9WJBLhnXfeRCKR0Nx8h6VLl7F27brnTiHfv3+PxYsbnk6qX2ft2vVArD6goaGRhoZGQqEQo6MjDA4OMDjYj9lsJhqNvT4KhQKZTI5IJGJ8fBSrdQaPx49araW4uISSklIKC4uS3tcikYisrGyysrIJh8MMDg5w+fJFwuEQlZXVzM3Ffg/nayWeJzs7h5deepXx8TGuX7/KyMhwwnNMT09x6tRxNBoNq1atRqvVEY1GOX/+LNevX+M//sc/Jzs7h6NHP4gH+s/q7GzH4TATDBIPe6VSKbt37+Xo0Q/YsGFz0uRzdXUNR49+gMViTnpPZ2ZmcePGNbxeb9I1+U2i1erYsmUbx04c48itx7R6U5Eo1JSbNCzNN2DSyD99JwKBQCAQCAQLEMJhgUAgEAgEXwibzcrt2zcSbtNotESjselfuTw2WTi/qJdEIkatVlNXV09hYeHTYHmWBw/usWjREnS6jxYRC4VC9PX1kpKSQigUQq9PiXcYj4+PYbfbKCurSAqLotEoMzMzmEymT/3a9szMNGazOSGILCoqpqamlvXrN1JcXIJIJOLJkzYsFks8GHa5XPT39/HgQWyacePGzZw/fxa9Xp+wf6fTwezsLDKZjGvXrpCWZmLlyiaqq2swGFJpb3/Chx++H1/oS6PRUlpaRn9/H5FIBLvdxrJlW5ImV8ViMdu27eD06ZMcPPhSwqJ8FouFrKwsbDYrdrudnp6up6+FLOHxarUam82KQqFgzZoX+MM//GMkEgmRSASn08Hjx48IBIJYrRZef/2H3Lp1HYhNjyoUStxuF8FgELvdjkaj4fDhr7B27bp4MDwxMc7f//3fkJZmoqenm1df/Rpr165LOI8nTx7j9/vR6/WMjo7GA/KlS5c9t1s3NdXI4sWLef31N6isrIlPzf4y5j98+OlPf0x6egYHDhz+1C5Yr9fL0NAAL730KhMT48jlsgXDaalUGu8Phi3YbFauXbvKm2/+jJQUA8FggEgkgkTy0Xm63S6ePHnMkyePEYvF5OTkUlJSSnFxKRkZGQlhtUQioaysnLKycrxeL93dndy5cwuJRILb7SEajX5qxUZubh6vvvo1hoeHuHnz+tPf0djvTDAY4v79ezx+/IglS5YiEom4cuUia9eui3eEf/Ob3+HMmZP09HQn7dtqtXL//kOWLGlg0aIliEQiFAoFe/bs49ixI+zYsSthwlkkErFx42YuXDjHwYMvJR374sUNPH78iJUrV33iOX3ZVVZV4703RN+0n7GOQSpKSxg0e+icdvG1xlxM2s+2+KBAIBAIBALBs4RwWCAQCAQCwa9dNBrlwoVzCV+dj002ZtHf7yI7O5vJyUkikQhdXR34/X7S09OpqalFLJYgEok4deo4OTm5KBQKZmen4+Gw2+1mcHCAwsIiHA47Pp+PRYsqmZqaZHR0FIPBQE1N3YLhr91uf/pcmZ94/B6Ph66uWHA6v5+KigpeffWb1NbWx8PJjo52RkdHqK9fzNDQYLxbubS0DICmpjUJi9B5PB5mZ2eYm5vF5/Oh0Wh57bXvsGTJ0njAF4lEuHTpPK2tLfHjycnJZe/e/fzsZz8FYHR0hMrKKsTiWGD78bBUp9PT0NDItWtX2LRpS/x2i8VMTU0NnZ3tdHV1IhJFAZDJEqcSI5EI09PTaLU6Xn31a/FrIBaLSUkxIJFIKCoqZvv2Xbz++j9QXV1LNBrF5/PR3d35tFNZhMFgeFqBIeOdd96kqWkNLpeTu3dvMzDQh9Fo5I//+M+4efNaQv0FxBYxBCgsLGZubgan00lRUfGClQYQe8/dvHkdhULMf/gPf8rk5CQffvg+a9euS9r3J4lEIvT0dNPW9giXy8Xy5SvYtm3nZ3rsnTu34tOwN29eZ9euFz/T4wyGVFavXsv7779NQ8NaqqpqmJ6eRCQS4fe7k7aPRCKMjY0yNjbKtWtX0Gp1CVPFSuVHk+4qlYqysnIqK6vw+31YrRbeeedNcnJyqa2t+9QJ+sLCIgoKChkcHODdd9+iv7+PcDj2gUUoFOLUqRP09/c+DdAPxR+nVCrZt+8g9++3cuXKpaTJf6VSxQcfvMvY2Bhbt25HLpejVqvZvftFTp48zp49e+O1MxCbvC4oKOTJk8fU1y9O2FdpaRmtrc0sW7b8N7qrd8TqI5BSgM7cg8hvI2SfpSy/gD6zh5YRGztrPvnPLYFAIBAIBIKFCOGwQCAQCASCX7uurq6ExckAFi9eTE9PbLGrrKxsJiYm6Onpxm63o1Qqn/aUKpmbm+WNN36C0+kkEomQnp7B1NQURUUlmM1zzM3NUVFRSTQaYXR0BI1GQ09PNz6fj+LiErKysp87FTkzM41KpUqYQv64QMBPZ2c7Pp8XmUyGTCajqWkNf/EXf47D4ScanT/HTjo7O8jOzuHSpQvk5eWxcePm+NfsOzs7CIVCnDx5nPHxMWZnZ3G7XU8X4kvHZErn8OGXaWhojD+32+3m+PEPE77Kv3hxA5s3b2VsbBSXy4nNZiMYDLJ9+y66ujqw220LLsZVXl7B8PAgAwN9lJSUPd2/CxBx7twZQqFgvEf54wvRzc3NYjKZUCqVLFu2Imnfk5MTZGdnc+vWDWw229OJ7GmGh4fwer1UVFSRl5ePXC7nW9/6bYxGI++88ybhcIirVy8zMzPD1NQEO3fuZmJijPv3Wzl//izZ2dkYDKloNBoePrwPxBZMs1othEJBpNJYKJ38mgU4e/YUhYWFbN68jrk5J7m5eRw4cJiLF88zODjA6tVrPzE4DAQCPHnymJ6ebsrKymloaKSzs4OtW3c89zHPstttOBx2CgoK6erqpKCgKN5L/Vn09/eh0WgxGAzs2bOXd999iwMHDqFSiWltfUR/fz+joyMJH7jMc7mctLU9oq3tEWKxmNzcPIqLSykuLiEjIwOrNdY3nJGRybp1G4hGo4yPj9HS0ozDYaesrJyqqprn1jKIRCJKSko5cOAwVmts6hx4uthhD2KxBIPBwOuv/5DGxuUsW7YCpVKJSCSisXE5OTm5HDt2JP44gJQUPQ6Hg/b2NqamJtm37yAmkwmdTs+2bTs4efI4e/ceSDimxsblvPfe2xQXlyZMhYtEIiorq+ju7orXo/wmGrd7CSOmqqSQ1nsteH1eRGIReqWUrhmXEA4LBAKBQCD4pQjhsEAgEAgEgl8rv9/P6dOnE27TaLRkZ+fx8OFDNBotcrniadfqHGKxmMWLl6DRaOLTkLEuUy0ul4uMjExGR0doa3uEwZBKVVU1IpGIBw/uMTMzQ2pq6tNwuT6+ANxCQqEQFouZvLz854bHoVCIjo4OfD4foVCYjIxMXnxxP9/4xmtPA1Q/0WiUq1cvc/nyJRoaGsjKymLVqiaamtbE9+Pz+RgeHuK//Je/oLW1GbFYjNGYRkFBAQZDKmKxmMzMLBYvbog/Znp6iiNH3sPhcACxieUtW7bFt+noaCcYDDI2NkptbR0rVqykq6sDs9m8YDgMsH79Jj744F0yMjLRamO9zR9++H58cbJ5z4bD0WgUtVqD2TzHq69+LaGWYv7+iYkJCguLaGm5i81mY2hoELfbhcGQyqJFi1EqY4He0qWNmEwmotFovGM3Go2i1Wr5P/6P/5u1a19gYKAPlUpNIBCrkLBYzJw/f4aenh5kMin9/f1MTIwjk8kIhyP09HRRXV0b75e2222cOXOK1avXUlBQkHCsCoWCXbv20NnZwQcfvMuWLduSrpXL5eLBg3sJi8zZbFYuXDjHgQOHP7V+Yd6NG9dZs2YdoVCIhw/vc/jwK5/pcfP6+3vJzMwiHA4jFotZvnwFLS132b9/N0uXLqOhYRnBYPDpdYwtbGexWJL2E4nEPjQZHR3h2rXLaLU6JBIJZvMcOTm5QCxMzcvLJy8vP17Rcu7c6aeLLdZQUlK6YJAul8sxGo1UVFRQXV3L3/7t/0Cj0SCTyTGZ0vH7/dy6dYP791tZvnwlS5cuQ6FQkJ2dE6+Z6OuLTdHrdHqmp2fIzs7BbJ7jjTd+zNatO6irq8doTGPDhk2cOHGUffsOxt+fYrGY9es3cvXqZXbvTpzKrq2t58MP36e6uuYzv2ZfNlKxiFAoxOTcFAqFgnRTOiIgHImikC5cpSIQCAQCgUDwaYRwWCAQCAQCwa/VzZvX4wHnvE2bttDR8QSAurp67ty5xeRk7Gvz5eWV5OTk8PjxQ8xmc7wiQavV4XI5SU9Px+12IZfLKSwswuv10t7eRl9fL2lpJgwGA5WVVfEO4+cxm+fik8gLiUQidHd34Xa74oHm4sUNvPLKV5FKpbhcLu7cuU1z8x38fj/f+94fkpJiAODhw/sEg0H6+nrp7GxncHCAhw8fIJNJKS+vJC0tLSls27p1e/xc29ufcPbsqYR+4f37D5KbmwdAMBiku7uT/v4+ioqKKS0tIzMzC7lcjtlspqysfMFzkslkbN68jXPnzrB9+y7a2h6j0+kIBIJJ283Lzs6mq6sLo9HEihXJHa52uw2Px83Dh/cZHOzHYrGg0+mpra1Dq9XFw2SVSk1T01qi0SiXLp1nfHwMp9NBdXUdNTW11NXVATA0NMjq1Wu5ceMq6ekZlJaWc/PmdUwmE3l5+UilUux2GxqNhnXrNnDkyPs8fvwIlUqF2WxmeHiQDRs243K5mJycQKMpSDrm6uoacnNzOXfuDJWVVdTVLcJisdDa2ozX66GhoTG+yJzX6+XcuTPs3v1iwnX5JFNTk08nwk3cuXObJUuWJoXqn8TlcjE+PoZKpUKr1REIBCguLuXRowc4nc6E16mkpJSSklIgtoDdwEAsKB4ZGY6/fxL37WRkZIjR0VHsdjtSqZSiolgFRXp6OlKplKqqaqqqqnG73XR1xYL01NRUamvrEybx50Nap9PJw4cP2LRpCy6Xk3A4QiDgjz+nz+fj+vWrtLa2sGLFKpYubUSlUrF//yHu3WumpeUWUqmUcDgc7z8OBoOcOnWc0dERtmzZRmZmFitXNnHy5DH27j0Q//3JzMxCrVYnTMTPH1tmZhZjY6Pk5ye/B34TSN1zTA33ExWLaViyFIPBgCcQxhsMszjn+R98CQQCgUAgEHwSIRwWCAQCgUDwazM9Pc29ey2oVB9NohYVFZOXl8eJE0cBkEjEPHhwD4Di4hLUajVdXZ2YzWYgFtJGo1F0Oh0DA/1YrVYqK6sZHR2hu7uL2dkZpqYmUSqVTxfkKnnuAmXPmpmZJiXFgEKRHCJHo1H6+3vjgbBMJsPhcHLo0EtMT0/R1vYInU6JWKwgL6+AF1/ch1QqJRKJMDQ0yIMH9xkeHiIYDJKTk8uGDZuw221IpbKE/td5ixYtIScnl0gkwpUrF5P6hffvP5jQt9rb28PIyDB6vR6tVktNTR0ikQijMQ2LxfyJ520ymSgtLeOv//qvsFotT8Nhf8I286FfVVU1k5MTTEyM853v/IsFw9GBgQFaW5vx+/2oVCoqK6tISzMhl8sTKg9eeGEdMpmM48c/pLMzVn+Rk5PL977373nvvbfjC47Nzc2RlpZGU9Nabt26ycaNm3n06CEAaWkmhocHkUql5OUVsHv3XpRKBSdOHCMnJw+ZTMZLL72Kx+PGZrMxMNBPX18HMzMWotHYeRkMqRgMBgyGVLZs2cbVq5d59923aGxcwerVaxMWmQuHw5w+fYINGzah0yUuIPg80WiUW7dusG3bDtxuN2NjI597YbSBgT6i0ShZWdksWdJAd3cX9fWLWL16LVeuXKGpacOCj0tNNdLYaKSxcfnTqeJhBgcH4r8387xeHxCbpB4ZGWZkZJhr1y6j0+kTuoo1Gg2NjctpbFzO3Nwc7e1tXLt2hYKCQmpqapHJ5IRCIdrb21i9ei0rVqxkZmaG9es30t7+hNu3YzUjHz2vh6tXL9Ha2szKlatYsmQpy5evpK6ukp/85GcolUp8Pl9CdURb2yMmJyfYt+8gBQWFBAIBTp8+ya5de+K/52vWvMAHH7xLXl5BwtT70qWNXL588TcuHA6Hw1y/fpXm5js05lTjSC1nNghzc26kYjENeSk05gvhsEAgEAgEgl+OEA4LBAKBQCD4tYhGo5w/f4bofCkvIJVK2bJlGx0dHUSjUeRyOTdv3sDn85GXl49MJufx44eYTKaEfcUWRJvCarWwdu06JibGmZycwO12E4mEiUQiNDYu/8whkNfrxeFwUFFRueD9drsNkyk9Xjlgs9lITU3lwYN7VFXVsGnTZiIRH6fOX2Ptxu0Mjk0w3NdJV1cXHo8bp9PB1q3bqa9fRGqqkYGBfhwOBxqNJikcVipVvPDC+k/sF/741Ont2zex221UVlajUCgoL68AwGhMw2ye+9TzD4XCtLa2kJERm5r+eG+tTCanoKCQoqJi7ty5jdFoZNWqpo/tI8S9e638+Mf/k7GxUVasWEV2dg5isRiZTE4g4I9PmGZkZFJRUcV7773N0NAg/f19HDjwEoGAn5mZabKysgFwOOzo9SmIRCIyMzMJhULcuXMLi8WMSqVCqVTicDgQiUQUFRWRlpZGJBJBLldw8eI5/v2//xMUCgWpqank5uYhEoHJpGNuzkk0Gqs4sdlsWCxm7ty5TVvbQ+RyBVlZ2dy8eQ2v10NlZRUpKQYMBgMtLXfj07Kf1eBgf7y24/z5M6xevfZz1xrML1hYXl5BZWU1x49/SH39IrKysuntbWd2dhaTKf0T9xGbKi6jpKSMzZtjiw/OB8XzCyV+/L3odDp4/Pghjx8/RCwWk5eXT3FxbDLZZDKxfv1GIpEIIyPD3Lx5g9nZGZqb7yCRSNi//zCXL1/gwIHDiMVi6usXUVNTy5Mnj7l16yZO50ffHnC7XVy6dIGWlmZWr17Nxo1r+eY3v0Mg8H2GhgaTuo5jveM/Ztu2ndTU1OL3+7l48RxbtmxHJBIhl8tZubKJGzeuJSy4qNPpkUikWK2W51atfNnY7TaOHz/K1NQkGzZsZvnyFUy7/PTNugmEo+ToFZSZNEglQq2EQCAQCASCX44QDgsEAoFAIPi1ePToARMT4zybi61atZrUVCNPnjzC6XQSCPiRyxWkp6c/rXHoRCQSxTtqIRYM9/b2oNVq0etTuHevhWg0Gg8KJRIxS5Y0fK7pwNnZaaRSKUZjWsLtWq2OjIwM+vv7EIlE2Gw25uZmycrKIjMzk29+8ztIJBLa+wZ49+ZjzBj58KcXiQR95MgDbK6uY/miWlpbW1i2bAVqtZpQKMTFi+dQKGJTkSkfG/h74YV1uFzOT+wXfpbVauXatcuUl1fGazjmJ3pNJlN86vR5gWRfXy+XLp3HZDIxOztLVlY24XA44XXKzMxk794D/OIXbzAxMc63vvWd+ERmNBqlq6uTa9cu43Q6MZstVFZWxSsvIBZMBoOB+M9NTat55503GR8fY2Cgn+9851+wZs1ajh07QkdHO1VV1QAMDg5QXFwSf9yaNWv50z/9D0QiEUymdOx2O5FIBL1eT01NLV6vlzNnTlJTU8eyZcs5c+YkL764/7mT4yKRiPHx0fgic3v37o9Pjns8Hk6dOk5XVydlZeWcP38Gm82Gy+Wivb0NrVaLwWAkNTU1Hh5/fOG+SCRCS0sz+/cfYnZ2lkAgGO/1/awCgQDDw0MAlJVVIJfL0Wi0WCxm0tLS2LhxI++9F+ve/TyMxjSMxjQWL2mkbczChM1Nalk5PpcNiXMaGeGkc5mfKr569RI6nT5eYVFQUEhhYRHvvPMWHo8bozGNN954nUWLFidMl0skEhYvbqC2tp5Hjx5w587tp4sgxjidDs6dO8OTJw9YtGgZ3/zmt3n99R8RDAaIRCJJ1+XEiaOMjo6wefNWfD4v169fZd26DUDsWwednR1MTU0mhPnLli3n/v1WNm/e9rmu1xehp6ebM2dOolAo+OpXvxF/72TplGTpkr9xIBAIBAKBQPDLEMJhgUAgEAgEv3Iul4tr164k3JaaamTFilVMTIwzNjZGd3cnS5YsRSKR4PP5cThmgNg04/ykbDAYxGq1kpuby+zsDFZrbMEtjUaDSqXGZrNRWlpGaenCHbsLiUajzMzMYDKZ4r2lCoWClSubSElJ4ciR95mamsJut5KSYuC73/0dzGYL09NTeDxuzly8yi/ujyJKzUEZNZNpNKBOyScgljOu0bLBYEIulxEKxaZxW1ruYrVaUSqVmM2uhGPJzMxCKpXx85//9Ln9wh/35ptvkJOTFw8ma2vr4vcZjWn4fD7cbjdarTbpsVNT/3/2/jtIjgO/80Q/mVneu/beAY3uhre0IOiH3mDI0RhpRiE3q3t6G7t77/bFi7vbvXh7erd7WqvVSqORVjPSaOgdaEAShCEBEt422ntvynuTlfn+yO4kmmiQnJVZzUZ+IhhDZFWlLwTnm9/6/OY5dOgNVFWlWCzS1tauDwRbxWy28Pzz32F6eoqxsVH8fj/79mnD9WZnZzh+/CizszO0t3ewaVM3p059oishQAuow+HP28v19fUcP36UhYUFZmam+Kf/9H+hq6t75bUGPv30JAcO3AfA5OQEDzzwsP5Zm83OzMw0siwTClUwNzcLaHoJvz/AW2+9zoED91FVVQ1o993Rox9y330PrgnH0+k0Fy+uHTL3xQDZ4XBw8ODzDA0N8sEH7xEKVfBbv/WPEAQBVVVJpZLEYjESiThzc7MkEnG9cW23O/D7/SwtLRIIBFAUhVOn1rZYvy7j42PIsozf79cb9Js3b+Hatavcc88BfD4fXq+XqalJGhubfqF1X19IcWRggd5yJYpbwO9uR/QKuEwqATGJKzHJ3Oz0uq7iVCrJlSuXuHLlEpIkkU6nCYeX2bhxE5WVVYRCQTweLy+//AKVlVV0d2/Wm+kmk4mdO3ezZcs2Ll26yJkzn5HLZfV1x+NxDh9+B5/Pj6oqPPfcr/DOO4fWtI1XuXLlEvPzczzxxFP09/dx9uwZ9uzZC8D+/Qd4++03OXjw+TVO4pMnPyafz6+rdPmHgCzLHD/+ERcvXmDDho089NAjN7WnDQwMDAwMDAz+tjDCYQMDAwMDA4O/c44fP0o+n1+z7IEHHsJkMnHu3Bn6+nrxen243W5GRkZIJhP6+xwO58ogsCzxeBxBEJiZmUGSJCwWC+l0CqfTSVVV1Yoz13PTcLcvI5FIUCgUqKioQhRFtm/fwd69t3P9ei///t//AbIsU1lZSV1dHfv330tPz1b+w3/4AxKJOP/m3/w+/QkRR+d+trdX43K4EAUtZCyVFUbCGa7MJpEkE7Isk0jEOX36U0ALoG88J6qq4nA4eO+9t/Vl6/mFb2R4eIiZmWn8fi2Mdbs9axrTwaAWJkYi4ZvC4UQizquvvqwHmopSxu/3s7i4sBImOxFFkZ6ebVRUVPDOO28xNzfL9773ffL5HB9+eJj+/j4qK6t4/vlvEwyG+I//8Q9QFAW3W9tfu91BOp3Rt5nL5ZidnSWZTBAOh/nf/rf/g4aGzwNNr9dPNptFEAQURaFYLK4JxQYG+hFFkUIhj8Ph0B8OmM1mRkaGeeyxJ9ccZ1dXN8lkkrNnz7B37z4ikQiffXachYXImiFzX0YgEMTr9SJJEleuXGLr1u0IgoDH48XjudnzqqoquVyOpaUlPv30JHv23MbPf/5XzM/PUS6XsVgseL0+vXHs9/txudy33I9VpUR7+wb9PbW1dZw8+bHept2373beeusNGhoav7ay4spsgtevzZNMZ3BQxGY20VHpQlZUIpkiw0Ufd/W08sMn/czNTumD7W50Bq8yOzujD0Ocmpqkt/cqP/jBbxIMBtm+fQfxeIze3iuEw2Gam1vp6urC5XJjNpvZs2cv27Zt5+LF85w9e4ZCIaevNxaLMTw8hMVi5bbb7mB4eJCJifGbtr+0tMhf/uVf8OCD32BuboZr166wefNWnE4n3d2bOX/+3BrP89at27ly5fIv7H7++yAajXDo0JuEw8s88MBDbNu24xfWkBgYGBgYGBgY/CIY4bCBgYGBgYHB3ymTkxP09fWuWbZ582aam1tIJJK8+urLK47hetLpNPF4dM177XY709NTLC0tIQiC3twErYGoqiodHRuYnJygpqaWfD7/pRqFL7K0tIjdbmf37j3s2rWHmZkZXnrpr+nru05DQwMWixVFUaisrGJ2dpqTJ09w/vxZNm7chM8X4Lb9j5MoQXWll2y2gKJo4aDT4cBuErk6l6DHbKZUkvn44+N6GGsymSiXtUZmqVQim80wPj6m79et/MKrpFJJPv74+JqActOmrjUNWJ/PhyiKRKMRmpqa9eX5fJ5XXnlJ/0n/jR7oYDDI4GA/NpuVbdu2UlNTw+joCMPDQ7jdbsrlMn/2Zz/CbnfwjW88Snf3ZkRR5NChNwiHwwiCgNOpBbQVFRW6MzkWi5HLZclmMxSLRf7P//Nf3+R9jcdjehg8Nzd7k4Lh1KmPV/YxxNzcLIVCAVmWsdsdPPvsc+ueqz179vLCCz/jwoWztLa28dBD9yKKdm445FuSzWY5cuR9nn76mzidTs6fP8tbb73O/fc/hNPpXPczgiDgcDiYn5/liSeepq2tnbm5Gf7ZP/vnWK1WisWi3jien59nYKCPdDqNqqqIoojX610ZkufH7XYzOjoMoHukV7fR0tK24jPegd1up7m5lYGBfjZt6vrK44rnSrw3sISqQtCiEEHBvtKiNYkCVW4r9rzMZxMxWoJOuts6aGvrQFVVotEoY2MjjI+PMT09xfLyMmNjo9TU1FJbW8fIyDCKojA2NsrCwjySJOmu4u7uLaRSCY4dO4osl9i4cRMdHZoqY9++29m2bQcXL56jr+8K2aw2FNHj8TAxMU46naKiooKWltY135NVCoUChw69wfbtOxkfH8dqtbFhw0a6u3t4/fVXiMc36o32trZ2zp8/y65du3+hB0l/1/T1XeeDD97D5XLx3e/+mt6ANzAwMDAwMDD4u8QIhw0MDAwMDAz+zpBlmQ8/PLxmmdVq46GHHiKdLvGjH/0RiUScQqGAx+NDkiSy2c9/Xl4sFunvv06pVFwTeq6GmU6n5h1OJpOUy2V6erbQ19dLLBYjEPjqgVOyLCPLMg8++A1EUeLChXO0trZRKpWoqKgkHo8zOTmph9Jms5m9e28jEglTXV3Db/zGb/OfP5vFIml+1nK5zLvvvkMgEGDb1u1YJBM5WcFkNTE+PsrQ0OBN+5DJpBkeHtbVCl/mF15FURQ++OAwVVXVawbOdXdvXvM+SZLw+/1r3lMul3njjVfXLCsWi1gsmmu3VCrh9wcQRZFgMIjT6eTkyY/p6+ulsbGJ69evsW/f7ezevVdXWYyODtPf30cqpbW4RVGksbFJ1z4sLS0xPT1FVVUVFouV//1////icDhuOq6pqQnq6hqZDic42z9OTV09E9EsfrsZk1Lk2jVtcNqmTV1cuHCeRCJBQ0MjTz/97E3B8Kqb+urVy9TU1CJJIj09mtogHE7d8tzeeJ7effcQ9977gN5G3r17L4uLixw69AZ79uyjtbVt3c9mMhlmZ2fYt+92rly5xKZNXbrL2GKxUFVVRVVV1brbTCTixOMx4vEYZ89+xpUrlzCbLZw+/SkejwefL4DP56OysoqLF8+xd+8OAHbs2Mkrr7xIR8eGWz5QWKVvIUU0U6Q16GB2dhlgjdcbwGMzEc4WuTyboKvKpX8HgsEgwWCQ3bv3Mjk5yZ/+6X9hx45dVFRoDuhUKonX60NRPv9OTE5O6N5kr9dLS0srra1t5HJZ3nrrdRwOJ93dPTQ0NHLHHXfx4IMHeO+9I1y4cB6Px8v8/JzuxF5eXsZisZBMJrFarTc9BLp06QIVFZWcP38Wi8VCc3MLBw7cx9Gj2nC81ePYsGEjg4MD+vfuvyelUomPPvqQq1cv09XVwwMPPKTfLwYGBgYGBgYGf9cY4bCBgYGBgYHB3xlnz54mGl3bBL777v04nU5efPEvuXDhHOHwMt3dm7Hb7RSLRYrF4kpDMUI4vExDQyMmk4NMJrtmPaFQBe3tHYyNjTI1NcnGjZ34/X6cTifLy4tfGQ673Z6VlrFCY2MTe/fuw2Kx8id/8kf09fUSDocplYrU1NTy7W9/j82bt+D3B7hw4Txzc7P83u/9E+x2O/U+G1fmNBeqgIDVamFpaZG+vut4GjawobICoSDc5FwGSKVSXLlymZaWNiwWCy6XmyeffPqWfuEbz2t7eweffXZKX1ZZWUVFRcVN7w0GQ0QiEUAL1Q8ffldv866Sy+X0xm6pVKK+vgGv18vo6CiZTJ5PP/2UdDrFgQP3c//9D+B2e/TPFgoFPvjgfQDS6RRer1cPGmVZZnZ2homJcZxOF42NTfzjf/zP1g0vU9kc8wUzaUcVp44OshTJUZvLIY1P4rJIuAsRFrIKTpcbOvU3OQABAABJREFUs9lCOLyMzWZnw4aNtLW16+spFov09l69Ycjc03pj9803X6W+vhJB+HLXrKqqfPjh+2zbtkP35K5SVVXFs88+x8cfH2N8fJT9+++96Xg+++wkt912B4VCgcHBAb75zW996fZWkSRJHxQHEItF6ezsYvPmrTz88COk0yliMS04XliY5/Lli/z5n0OppGK12lEUhddff4U77rgLn8+P3W5ft0E/sJTGKomIgkA+p6lN1gsjA3Yz45EMybyM125e81o8HuPQoTfo7NzE889/G5PJxJEjHzA9PUU6nbplMzuRSHD58iUuX76kt4ptNit9fb18+ulJ6uvrueuufdx99z3s2LGbM2c+42c/+8madRSL2sOi+fk5HA4nPp9vzevLy0uYzWYOHXqTgwefW2k113P9ei89PdoDlJ6eLbzxxqts2tT131XbsLy8zFtvvU4ymeAb33iUnp4thkbCwMDAwMDA4O8VIxw2MDAwMDAw+DshFovqft1Vampq2bJlG4cPH+bEiWOMjAwTDIb0QVrZbIZMJs3S0tKKb9aB3e64yVfc0NCotzaj0QiCIFBTUwtoIenk5ASyLK8bQhaLRbxeH9XV1UxNTfDII4+zbdsOLlw4z0sv/ZzZ2RksFiuVlZV0dGzgt37rH+kKgXA4zJEjh+nq6tF/8r2tzsv1hRRLqTxOUWDXzj0cO3GUcLZEemaKjbvquXpikFgsqmsUVFVlYmKc5eUlKiurqa6upq6unieffPqWfuFV5uZmWV5eZsuWrSSTnw/o6urqWff9gUCQ69c1rcenn57k+vVrN70nl8vpgW4wGMLpdJLNZujv7+Xy5SuYTGZ+67d+yNNPP3vTZ0+ePEEqlUSWZXK5HHV19Wzc2MmVK5cYHx9jdnaGfD7Hk08+ww9+8BvrBl+ziRz/9fh1ZuUK7LKVQjpM0AYtAQdlVSWZlzkxvES0dg+oGa4PXyEQCJLNZmhoaMTj8ZJOp7l8+SJzc7P09Gy5acicxWLhkUce591332X//gd19cV6nDt3Fr8/QHv7+oMNzWYz9933IKOjw7z66kscOHC/HiJHoxFyuTx1dfWcOHGMvXtvu2nY3ddBVVXdN9zRofmG3W4PbrdH/77U19dRLufp6Oghm80Ri0V5+eUXGBwcIJvNks/n9P3VVBU+fD4/8XQOk6Rdh3whTz6f48THxwD41re+g3nle2OWBLIllWJZWbNv2WyWV155EavVwtNPH8RsNpNOp0gk4uzdexsLC/M8/viTmM0WxsZGGBsbXXOvrvLFVvGqIuXVV1+lWFTYsKGTfftuJxxewuPxcv16L+Wy1ki2WCzU1NQyMzPN7Oy0fh+sUiqVyOVy/PEf/2f+0T/6PXbv3sMrr7xIa2sbDocDs9mM2VfNB5eH8fpDqIBFEql0Wan32f7OA1pVVbl27QofffQhXq+P733vB/rAQQMDAwMDAwODv0+McNjAwMDAwMDgb53V5qUsy/oyQRB48MGHOXfuLK+99jIXLpzH5/NRXV2D1WolGo1y5colZmdnEQQBu92u/2x8NagRRYlQKEhlZRWCILCwME+xWNTduqA1iicmxgmHl6murgG0oCgajeL3+7nrrv3s2LGTeDzG8ePHyGZzTEz8CVNTk8iyTE/PZjweLy6Xm+9853t6MByJRDhy5H06O7uJxaL69jZWurh/YwWnp5OMJHNIghVPQyep6BKNUpLT773MyMig/v5SqcTg4ACJRByTyURNTQ3btu34Ur/wKvl8no8/Ps5TTz3L8eNH15zbrq71XbPBYIhUKsnFi+c5deqTW6w3p1+LcrnMZ5+dZGlpCYvFQrms0NW1kccee+Kmz83OznDx4gUA3Zu7YUMn09NTDA0Nsri4QDQa4bd/+3f51V/9wbrbnoxlefnyHEOLcba11eO02zgzOUB1SyuiKCAi4DKrFMNTKJkUyUAtppbbMGWOUOP1UiwW+OCD98hms2zfvpM77rjrlsGey+Xi0Ucf5aWXXuPJJ5/VtRg3MjIyTDQa4aGHvrHuOm6kra2Dqqoajhx5n/r6Bnbu3M2pU59wxx13EY/HiMWi7N9/4CvXsx5LS4skk0nMZvMaX/SNtLS0cfjwm3R09OBwOHA4HDz99EHGx8d49NHH9fcVi0Xi8fhK43iB6EKSqZRCVJK5fv0aiXgcyWQim8lw7doVtm3bgSgIFGUVsyhiM33u5S2VSrz++ivk84U1348TJ45z1133cOzYEQBUFdrbO2hv11zFkUiEsbFRxsZGmJ2d0UPeG0kmE6RSCRwOK9lskcXFJY4fP0oul2Pfvtv5wQ9+k3PnznDt2hUURUEQBBoaGonH4wwMDOB0OmlsbNIHIppMJhRF4V/9q3/B//w//3Puvvsejhw9Stuu/VyeTdBfCDF5dpLaWhlUUFGxmSVaAw62N3jZWOHCZv7bdxJrbfvD9PdfZ+vW7dx77/2Yzeav/qCBgYGBgYGBwd8BRjhsYGBgYGBg8LfO4OAAExPja5bt3LmLublZ/uRP/ohkMobVasVms+FyuejtvUokEmF2dhaTyaQHJSaT9r+CABaLlVAohCRJqKpCsVhkcnKSmpoaisWSPoTOYrHg9/tZXNQGzS0tLdHY2Mj3v//rtLa2MzIyxDvvHOLkyY9ZXFzg7rv3UyqV9IFgoLUSDx58Th9gFYtF+fDDwzz22BO89dYbBIOfN/wEQWB/W5A9G6r4rH+BRF7Gn5qgqibA6LWznBmYJh6P0draRjqdZmCgj0JBG7ZVXV3DnXfe/bWCSFVV+eijD7nzzruRJInBwX79taam5ls2joPBIPF4nDfffP2WQ9Ty+TzBYJDa2jp+8pM/J5fL0traSiIRo1AorbiH1zZty+Uy77//nu5/TqdTWCwWWlpa+au/+gvC4TCxWJSDB791y2A4nCny+tV5ltMFfEIBl13TPRQKBRyOz/c1vLxMNBpBEkXq3CbmMy5KoW7siUEGBwd45pnnqK7+esO7QqEQt912B+++e4gnnnh6Tat3aWmJy5cv6m7ar4PL5eLJJ5/h0qUL/Pmf/ylVVVUEAkHefvst7rxz/9dax3qstoZbWlpvGRyKokhdXd3K8D5NRdLU1MylSxdIJOJ4vT5Au58rKyv1drNQHeOvzoyTnB4ik0lTWVVFKFTBtWtXGBjoxySZMJnNhEsSHR6RvivagxWPx8PJkx+ztLTIt771Hb0JPzU1ic1mXXFKa4F7qVTU91MQBEKhEKFQiD179lIoFJiammR8fPSWrWJQKRS0Xwyk02l+9rOf8PHHx2hra+ehhx5hamqSvr5eVFXF5/Oxbdt2hoYGuXr1MoFAgIaGJlwuFxaLhYqKCv7Fv/hf+e5v/2M+TTg4cmIAh9NJyGknZ1WpdQrYbXZUVSVTLDO0nKF/KU2d18YTPdU0B272Y/+3sri4wFtvvU42m+Xxx5/6WgMEDQwMDAwMDAz+LjHCYQMDAwMDA4O/VfL5PEePHlmzzO32YLc7+Tf/5vfJZjOEQkFyuQLxeBxVVSkUCqRSSaxWy5pG4WooVlmpDTJbDewURdV/it7U1ML09BT5fB673b4S9ML4+CgdHRv45//8/0OpJNPff50PPjiMomiO4WAwxEMPPUJjYyPvv/+eHhKKosiTTz6jayPi8Rjvv/8ejz76OE6ni3A4TEtL65rjEwSBxoADx8YKVBWuCQ2oqsrs0BVisSiZTJre3l7sdhuKov1E3+Fw8nu/90/1n/5/Fdev9+Lz+aivb2BgoF8PmOHWSgnQQuXBwX5aWtpuGQ5nMmlyuTxXrlwiFKqgoqKCXC7L0NAAVVXVPPzwI5w9e4a9e/fpnzlz5jPC4WX9z6lUio0bO/nZz36y0npNcc899/Lbv/2PbrlvF6fjzMTzVFhKpL2ax1hFCzPz+Rxulwu5XObS5UuAFuzmsxnSCwuInhpa2qr47jfuZm5u5ivDYVVVmU8WGIwXCMsulFAbbxx+n6e/8TCCIJBOpzl69EOeeOJpJOkXa4sKgsD27Tu5cuUy0WiUU6c+wWaz/o00AavhcHv7hi9937Zt23jvvSN6OAxwxx13c+rUSR555LGb3q+qKrnZQWaHh4jnZRqbWvC43DicTjweL6IoYjKZqG5qx10s82RXgICYJ5GI8+KLb3Pt2lV27NjJp5+exGaz4/F4OXfuNE8/fZBMJqN/Z4vF4k3bXsVqtdLRsYGOjg2oqko4HGZ8fGylVTx90/t9Ph8LC3M4nS7GxsY4f/4cZrOZ1tY27HYHkUgYi8VCd3cP09NTzMxME41GCQZDNDQ04nQ6CTR18v977RSVrV04lXlaAm0UcklMksj8/DytLa0IgoDLasJlNVEqK0wn8vz84izPbq1hQ8WtNSRfB1VVuXDhHMeOHSUUquDgwef1cN3AwMDAwMDA4L8nRjhsYGBgYGBg8LfKqVMfk06n1izz+Xz823/7f1EsFgkEgkQiERYW5nE4nKRSKWS5RCAQZH5+bs3nVkMkh8PJlSuX9OXJZJKlpUXa2jowm8243W7m52eR5TKqqtDT00MwGMThcHDo0JsUi9pguf37D9DZuYlwOMzk5ATBYIAPP3x/zTYfeugRPfxNJOIcPvwujzzyGG63h3Q6TT6fIxS6efDbjbS0tHL06JGVVqOfhYUFkskEoVAIn09rYP7O7/xPbN++g/fff/crz2k0GmFgoI9nnvkmwBpvsNlsZsOGjet+Lp1O89ZbryNJErlc9qbXE4k44+PjCILIxo0bufPO/fzZn/0JqqoyPT1FMpnkW9/6Hrfffhdvv/0m8/Nz1NTUEg6H1wzDA60pOjo6QiQSIZ/Ps3//AZ555uCtA+mizOXZBD67iXh4iYoKrdWazWQIBkIkEwlcLhcD/f2USiVA1cNHu1nC7HQhVlXR1dXDK6+8SE/PlnU1EQDTsRwnRsOMhDOUBXGlaW4mn3Iz9uZJvndgJx9/8Db33/8QDsd/W0t0eHiITZu62LlzN7//+/8HO3bsolgs3nKfvox4PMby8hKiKOpu7VsRDAbJZNJrtlVRUYEkSSwuLugPOUDTNrz77tucPXuatsoW5K7bGJ2ZQ7CYEQVRa2tLJkaW4qjuBE9sb2ZrUwhBEDh3boFCocDv/u7vsX37TkBzVZ84cYy2tg4WFubp7+/j/PmzTE1NIggC2WwWv9+P1+vD7/fjdntuamQLgkBFhfZAYs+evRSLBZLJZS5evMbo6CipVFJXyyiKousz4HP/drlcxul0YLPZqa9vwOPxMDQ0SDi8zMLCPDZ/Ffnm2ymabIxc+BiH3cb0xChOpwu7XQu4v+goN0siLX47U/E8b1yd59s766n32X/ha7l6nl588R0uXrzCzp27ufvuA1+pkDEwMDAwMDAw+PvC+K8SAwMDAwMDg781FhbmdQctaG25ZDLBmTOnKZWKqKpKNBphfn4WRVEolYpYLGb8/gDlcllXFIDmC922bQeBQIBMJrNmnVNTk3g8HgKBALOzMywvL1EoFNi5cxf19Y0kEgkymTTXr/fym7/5O3R1dRMIBPV1HD9+DEmSOH36M73JC3DXXfvZvHkLAKlUkvfee4dvfONRfdBVJBIGtEDuy3C5XHqAOzU1qTdRU6kUFRWV3HvvA9x22x2IovilDUvQ9A1HjnzAww8/giiKZDIZxsfH9Nc7OjauG0AWi0Vee+1lEokEdrtjTTicy+WYmBgnGo2wbdsONm/ewhNPPE06nUJVVdLpNPPzc1itVu699z4EQeD++x/izTdf46mnnuXd9w+zVHYQFZwUMZPP51iwtVBaHMGmwr333k9DQ4MeIq7HwGKacLZIi9/BciaDs1kLkWPxGBWVFYyMDJPOZCiVSiQSMWw2B1VV1SQScW04m1klZ/UxnyqyY8cuLlw4x2233XHTdkbCGV65PEc0W6TSbaXK7yCXK6IoKnGHhasT0/y/f/IeP7xvx39z07dcLnPx4nmeffY5RkaGefjhx6ioqOC1117mwIH71gS0X4eRkWEA6usbvlZYvXHjJgYH+9m8eau+7I477uSDDw7rioz+/j7ef/9dJicnuOuu/Tz99EEOnThNbDqNYqlluVQGbzUiYJVzBOOD7G/bgSAIDA4OcPz4UfbuvW3NNS2Xy6RSSQ4efF4PfW02G+fPn2X79p1s2tRNIhFncXGRoaEBUqmUrm/xeDz4fP6V8NiP1+vFZDJhtVrZtGkTFRX1KIrK8vIy4+NjFItFstnMGn2K1+vD6/VRKBSYn5+jv7+PaDSKJElYrVYSiTiyLCO4OyAjY8pMIKASi0YpK2VcLjctLa14PV4WFheor/u8fQ0rvwjw2RiLZPlgYJnv721A/AUH1c3OzvD2229gNos8/fTBr2yCGxgYGBgYGBj8fWOEwwYGBgYGBgZ/KyiKwgcfHNYDXm3wWj/pdJpkMkk+n8PvD5BOp5BlmWKxQFVVNVardeX9n4ekNpuNysoq/H7N+XujFzadTlEuK3g8HsbHR/F4PFRXVzM/P48oSqTTabq7e7jrrv28//671NXVrwmGC4UCV69eJhaLUVHxeQN427bt7Nt3u76Nd945xEMPfUP3tgKEw8tIkqS7iG9FMplgbGyUpaVFLBaLHmq5XC5KpRKNjU1rjunL+OSTE2zdul0PqAcH+9cE2l1d3Td9RlEU3n77TRYW5gFwOBzEYlFKpRLT01MsLMxjtVr51re+w86du3W1xWoIPz09STqdYtu2bdTU1AJgt9u5/Y67+Jc/+jmTBRs5sRZUKJfyZAqQsldi62yiMuQmJSbZf899X6pnmE3kEFQoFDQdyGrkpt0reaampggEAiwvLyEIIg6Hg1KpRDabRRRFnBYJk83JYqrAjvYOLl++SC6Xw27/vN2ZzJd489oCybxMW9CBIN4w3FAQCDjM1LtM9Ccljk9l2d6pYJK+3nW5katXL9Pdrak9rly5xMGDz2MymaiqqubIkfepqqphz569X9tjvBoOt7d3fK33b9iwkTfffH1NOOxyuamoqGRwsJ+RkZGV85PlBz/4TbZs0d5nK8bZqM7S0dTE8GyUWWEJiyrjFtJYYmauXrlEZWUV77zzFp2dXdx99z1rtvvxx8e5++571hzX6vdZVZU1nuMbKZfLJJMJYrEYiUSciYkJkskE5XIZQYDa2kpE0YbX68Pn87Nt23aqq6vp7+/DYrHQ33+d4eEhotEo2WxW/7tDFEX8fj+JRJyFhTlkuYzk8iN5ayEZppDT3Mar+5tKJlhYWKCjvYNIJEJtbd1N4a8gCFR7rExEM0zHczT5v16zXFVVzp49wyefHKemppYf/OC7lEoiNzz/MjAwMDAwMDD4B4ERDhsYGBgYGBj8rXD58kU9jEynU/T1XScajZDJZFBVlcrKKgRBIBaLks/nqays0oMkYEUdAB6PB6/Xt+Yn6Ks/KU8mkywuztPQ0IzH4yGdTlEqybS2tuHzBXj22edoa2tHFMUVx+dZrl/vXeMIvnz54kqYt1lf1t7ewf33P6S7Z99++y0efPDhm5ygkUiYQCD4lcHuT3/6X5mdnSGXy+LxeDGZzDQ0NODz+ZHlEpcuXaC5uVnXYtxKP6A1Jgts3NipL7t+vVf/d6fTRXNzy5rPqKrK0aMf6gEjgM1mZXl5iQsXziEIAk1Nzdx//0M89tgTnDlzmrq6OkBzD2cyGWZnZ7FYrPT09KycS1BUlQvLCpeTFiRk/DaFXDZNOpEgn80gFQs0N3RTFG0suyoZK3loVdVbNi2zxTImSSAWjeIPBFBXzu/Zs6dRVQVVhdmZKYqlkq7FsFgsFAoFrFYbsWiE0vQUH6VGWa6wIAgCP/vZT7jrrntwOp3aoMOIzGIqT2vAsW4wG46EKcsl9m/v5sLAGOdHZtm3seFLr+0XKRQKDA0N8s1vfouzZ0+zfftOXRngcDh4/PGnuHbtCq+99jIPPPCQHvLfimw2y/T0FAAdHV+vZWqxWPB4PEQikTWt9pqaWv7v//v3qa9vxG538Ju/+UOqqqr01+PxOALQUeMnOTeKzaVQLJZRVSt+f4APPjiM2Wymrq6eb3zj0TXncGZmGovFfFMr2mzW7uNisXTL/ZUkCb8/sK5zt1yWyecTXLx4jfPnzzI3N8fCwjzxeJSZmWkaGpqw2WzYbLYVN3aOVCpJKpVCURQEQcDn0xQW0WiYuLMOJCul6Lz2AEIQ1hzH0tICFy6eZ8vmrUQiYSrWUcY4LSbmkgV651NfKxzOZDK8++4hxsfH2Lv3Nu666268Xi/hcOorP2tgYGBgYGBg8PeNEQ4bGBgYGBgY/I1Jp1N88skJABYXF+jvv87c3ByCICBJEpWVVYiiSDgcJp8v4HQ6cbvda9ahKAqhUIXe/Fz9OX0iEWd2doZIJEwmk0EQBFRVG1r36KOPs337Llpb27h48QIWi0UPbgVBoLt7M599dmolULRSLBb5y7/8C6xWmx5M19bW8fjjT+nKhrfffpP7739oTdt4lUgk8qXqgXK5zAsv/DUffvg+ZrOZeLyIx+Nh48ZOrl/vZe/e22hoaGRkZJi33nqD5577FTweL8lk8qb1ZjIZzpz5TPcMAytKjs+9zJs2dd0UVF+4cG6N2iMcDjM2NkYsFqOxsYn29g20tbXzyCOP6WF9T8/mleuYZnp6inQ6xYYNnWuCxE/HIrx2dgivVSQZXiSRM5NMJjCZpBVvbBVmUcAiFGltqOXYSASv3czepvVb1pIoIMtlluZmsVqtnD79KUtLS6RTKRCgVCwirwwnlGWZfC5HIV9ARQVV29dSLMpYZAF1roggCAwM9DE/r7WiVaBXaCQvOUhaVMwWCxazGbfHid3uolgoEo1G2Ni5CVEQqKyu4c2TF+ip861RF3wV586dYffuPWSzWWZmptm797Y1rwuCwJYt26ivb+Dw4XfZsmUbnZ2bbrm+0dER/WHKja31r2Lz5q1cu3aFe+65l3K5zMmTH3P27Gncbi+SJPHDH/5PNykq4vEYAD6fn3JZxufzs7i4oDu1r127Qn19A7/7u//PNY5cRVE4deoTnnjiaX2ZqqrIsoyqKhSLReLxGOFwmHK5TLksI8vaP+VyWbue+RyxWJRIJEIsFiUWixGPx0gmk5hMAvl8kXJZQVEUVFX7X1kuk0qliEYjFItFisUipVJxZb2apqZYLJLL5ZDlEogmHB0PIpRyCAgoqgI3tO4ByrLM5MQ4Pp8fu91BKFTBeo8z/HYzV+eS7G8L4rLe+v9CTU1N8vbbb6EoCgcPPk9raxu/oInCwMDAwMDAwODvFSMcNjAwMDAwMPgbc+zYR+RyOQYHBxgeHiQcDmOxWDCbzYRCFXowXC6XsNlsOJ1OJEnSf2LtcDgwm816e1hRFDKZDNeuXUUQtHAwndZarbW1tXz3u9/nW9/6DjabTd+H2tpapqenaGpq1pd1d/fwyScnGBoaoLt7My+88FdMT0/pA9z8fj9PP30Qs9lMNpvl7bff5L77HrxlABwOh9es/0YymQw///nPOHToDX1ZIBBgw4ZOBEH7uX1zcwuPPfYkr7/+CmNjo7z66sts3ryFRCK2ZpuqqvLhh4c5cOD+NY3ivr7ra7Z5Y/sZYGhokGPHPgI0v/HExBjJZBKPx0t1dQ2VlVVUV9fw1FPP6sqHbDajD42bm5tjdnYGi8VKc3MzLpdLO7aizLuXx8mn4zgELbCdnp7E5XLT2NjEzMz052F7TR3VfjdziTynxqJsrfVgM686l5PMzMwwOzvNheEol8IKufkR/P4AuVyWcrmM3WHHbncQjUaQczn92MqKgiCoCIKAXJbJF4rI2SyTs4MsZRZwuz1YLBZGRobo6upBEUSKghlJKZLLy+RW1BmJZIzFxSWmJifZsXM36XQKj9uD22bB17yBd945xFNPPbum1X4r0ukUS0uL3HHHXXz44WHuuOOuW6ojAoEgzz77HKdOfcLExDgHDty37jZGRoaAr98aBu37EggEmZ6eYmxslMOH3yUcXsLpdLN9+w6i0QgzM1MIgqiHtMVigYGBfmS5zODgAAMD/fj9ASYnJygUCnz88XE8Hg9zc7P81V/9BIfDoX92YmIcUFlaWkJRynroC7C8vMTQ0CDDw4PMzs7oYW0ulyWXy5LNav9eKBTWPRZBALPZRKkk36RgkGWZZDKBxWJBkiTsdjt2u51yuUwmk9H1Elar9rosWsDioFzIIogCkiqhKIoWEt9ANpdjcXGBbdt2kEom8Xg8N+2XyyIRzhRJFeR1w2FFUfjss1N8+ulJGhoaeeyxJ36hhwwGBgYGBgYGBv+9MMJhAwMDAwMDg78R4+NjnDt3lrNnT7O8vEQul0UQtIFywaAWeEYiEXw+L8vLywB66AgQClXQ2trGuXNnKBQKpNMpisXiSiNV1AJDux2LxUJHxwb27r2NLVu2rgmGAaqrazh37syaZW63h8bGJq5du8rc3Bxnz57GZDIRCARxOJwcPPg8TqeTXC7H22+/yT333LfGQ3wjmUyGXC6rtypvZGFhng8/fIdz5y6Qy+UQRXGlMSiQTCbx+Xw0N7foio0nnnial176OXNzs5w6dRKTaT9tbZ/7ZS9ePE99fcOa5q6qqvT1fa6UCIUq1vhc5+ZmefvtN8nnc0xOTrC8vIzT6aK7ezM+n48zZ06jqioHDz5307lbDTQvXDhHKpWko2ODrmYAuDodYWh6DptaYGZ2hlgsiizLhEIV+iBBq9WC2WyhvkHTMoRcFkYW47x96gK29AKzs9MkEgmKxSKZTJqs2YfDtQF3TT2US3g81fq6VoNGURQRVo59VRUiCiIWiwWLJ4BQyhIwFalsasFms1EqFRkdHWF8fIxgRRWqR0WSJCRUyspqqD3N+NgYgiDQ19fL4uICTY1N2Crqqa2v5I477uLddw/xxBNPf6kzGeDUqZPcdtsdzM3NkslkcblcxGJRymXlC21ZGVnWQlS/3082m+Xf/tt/zZYtW1dUI/KKTiHPBx8cplQqUVVVzfz83Jq27ect3LL+GatVIp3Ooaqa+/hnP/vpynA3M9XV1ZTLMpFImD/8w/9Aff3nyoxcLsfo6AiSJHHhwjnGx8fJ5XIsLMyzsDBPLBalra2NeDzOJ5+c0J3KpVKJqakJurp69CGHqqpSKBTI5bKEw2Gi0SjJZIJ0OqM1eP+WsFqtFAoFLBYLqqqSy+XIZNLk83n9PZIkIYoikmTCYnMjWa0o5SKKyYyilFFVBdbx/rrdHurr65mYmFg3HJZEgbIKBVm56bVUKsk77xxienqKO+64i337bv/aTnEDAwMDAwMDg//eGOGwgYGBgYGBwdciXyozEs6QKsjIiopFEvGaVf7w3/4bzp39jFKpRKFQoFgs4XK58PsDekMxFAqRz+dQFAWTScJms1EuKzQ1NVNRUcnU1CRzc7MrPyFXUVV1Jdyqoa2tnWAwxGuvvcyWLdsA9PDwRkwmkx4u3tje7OnZwh//8R8SClWwtLREKBTCZrPx7LPfxO8PkM/nOXToDe6++541YewXiUTCAHrgvUpv7zU++OA9VLXE9PQ0FouVzs5O3G4PxWKRyckJgsEgmzdvYfv2nVy4cJ69e/fxzDPf5Oc//0ump6d5++1D7Ny5B4fDweLiItPTUzz55DNrtjM7O0M8Htf/3NXVox9nPB7jpZd+zujoCHNzs5hMZjo6NlBRUam/x+12s3nztjWqglwuh9WqBcWxWJSrV69gsVhpamrRPwNw6LOrFHJZ5iaGyWWzlJUyDQ2NJBJxisUCgiBgMpkJBUMszM+RTGoO2KhsJjOR5u4qlerqWiwWKxaLhWAwSCQaY6p/GUtFI04lSy6f04cZyrKM2WyhWCxiNpu1nVWhrJSRTBImsxnB6qKqtIhNVJmamkCSTFRVVdHe3sH8/BzBUAgxnyQpuUAo4LA7sNpsuFwupJV7JZlMIMsl4vEY5ooYi1ei5Ks0Tca//Jf/K11d3Xow+8WQN5VKMjk5weUrlxgc6KOlpY3h4cFb3j9fRFVVXn/9Vex2O/X1DQiCQDQaYW5uFpvNxsLC/FcOsNNatpouZXh4SL8/tGvYrIecgUCQ/v6+NW7r1UDVarWtOL3LSJJEKpVCVRVaWlrJZnM0N7fS33+daDSKz+djaGgAt9vD9PTUShM4Sy6X04ck5vN5Mpk0ZrMZj+dvHgwriqaUKJfLKIpCLBYjmUzo29T81NrfGYqi6vcQgFACR6mEUi6jlOWV1rCqPXD4wnYG+q9TXV2DzWYjl89ht9nX7oeqnW+TuPaajI2N8M47byNJEs8//20aG5v+xsdsYGBgYGBgYPD3iREOGxgYGBgYGHwpkUyRq3MJLs0kWUoXUFVQUUkkEowM9RFPOFB9TRTnh8jn89jtdnw+P8ViAZPJTCAQRBAEMpkMAE6nE4vFQihURSwWY2JinHQ6jSzLSJKE0+nE5/Ozf/8Bbr/9TurrG/npT/+curp63UdcLt/c3gNN4xCNRtcM5SoU8szOzpBOpykUClRV1fDkk09TU1NLoVDg0KE3uOuu/VRX13z5eYiEkSQJn8+3sg9ljh//iAsXziMIMD4+itPpZOPGTXoAZ7FYKJWK9PRsoVgs0Nm5iVdeeZHu7h5cLhff/Oa3+OlP/4KLF8/z2msv8/TTBzl27AiPP/7UTcHgja1hQRDo6uoCtEbzv//3f0Bv71UURaGurp66uvo1rVdBENi//wCKsjZUj8WiBALaULDTpz8jHF6ioaFRbwy7XC5GR0e43D/EciJNKas1nysqKnG53MRiMWLRKGaLmfn5OT18dDgceLxerJIDp+QnmbjG8vIiIFAqlVAURVNRJDNELV4S+QTFbIrcikZCkiSKhbwW9KkgSiKlUglV0VqfsmQjn04wfu0oTkUb+pfP5+nrCyPLJbLZLMvLywhVUTK1u0nnIgiqQqGQR5IkHHY7mWwWRVHI5XKUkDDHo0yMHCdllrFarZjNZpaXl9YMMwQtVMxgozesYmk9wOmSglLnw2MTCagpbHy9QNRkMrFhw0aWlpbo7++jra2NaDQCgN8f+MpgeJXl5WV6e/sQBIHm5haGhwdpbm5Z4/QWBIH6+gZmZqZpbW0DIL+i2VhtkSuKQjgcJpfLUV1dQyhUwcjIEBaLhWw2wyefHMft9pDNZtYdJHfjtoA1Ie0qqwHv5/+UV7zC5RtCYE0fUirJeuCsqqruF87nC5jNZq1VvjJc7sZ/Z8UYrCgKCmVUuYQqmVfupRseHKnqmoBYRWvfb9++g/n5eVq/cN0LsoJZFHVFSrlc5pNPTnD27GlaW9v4xjce0/UsBgYGBgYGBga/TBjhsIGBgYGBgcEtGQ1nePPaAvPJPG6rRIPPRjqZYGx8jMnJCRKxBHhrwVuH6qzANHwSj9tFoZDH4/HqwZM2gCqvN4Kz2SwjI0OIooTVasXj8WAymbDZbEiSxM6du/nN3/whFouFl176OR6PZ00j74sh5yq1tfXMzc3o4fDY2ChHjx7Rg67KyiqeffabtLa2UywWOXToDW6//U5qamq/8lyEw8v4/QEkSSKTyXDo0BtMTU0CEIvFMJvN9PRsuSnU8/sDbNrUxZUrlxAEgTvvvJtPP/2EBx/8Bh6Pl+ef/zZXr15mbm6Wf/2v/xW/+qu/flPIJMsyAwMD+p/r6uqxWKxcvnyRP/zD/6A1ZYMhamtrMZlMpFLJlSalFrjt3r2HQqHE5csX+PTTkyvDvWTGxkZQFJXZ2RleffUlkskUoVCB3t6rqKpKKhXn2LETJNruRREtqEXNGS3LMkODAxSKBa3FnVEBAbvdjs1mI5/Pa8FxAUxyloW509jtdqqrazCbTRw58j6iKBGZnUVtM5HxNVHM5lHLWnt1tSmKtlosZgtySQZBRLC5sLgCCFMX8JjKoFqIx2M4HM4bQm03kUiYGk8URU6Sd4Yox+ZQVU1NIMsyhYK274oggiNAYX6Y4uwIBYt5RTviYH5+nmg0SldXN3a7HQWBKSHETMlBzl+BV7KSTkZw+0NMCCbmhAD1apgqNb7uULP1qKysxOPxMDIyzNLSIhaLdd1hiF+kXC4zPj5GLBbG4/HidLrI5/Ns27aDZDJx08BHj8fD/PwcuVwOu91OPp/XNRWzszPMzc2uNLbNzM3NIMslotEo5XIZm81OLhchm81SX9+w5t5aG/iWKRaLZLOaWkYUxTVh8HpoCghNBSGKImazGYvFhKJoAXGhkF/RzJgwm81IkoTVatM1I6saktV/tGWrjeMCYngSc0MP5Yw2fG/1M2i3lh4uo2oPJaampnDYNb/yjUP4otkSGyqcBB1mEok4hw69ycLCPPfccx+7d+/52mG+gYGBgYGBgcE/NIxw2MDAwMDAwGBdJqJZXr48RyJfoi3kIJ/PMzjQRzi8TDi8TCIRR5Vl1ESOogqm2k3YHC6Uic8Iev1rgpVYLEoqlcRstiCsOGMDgQoqKirx+/0MDg6gqiqVlVU0NjZyxx13YbVa6e/vY3JygoMHn+PNN1/XB9atp5UAbSjdZ599yubNW1lYmOett17Xh3UlEgkefvhRtm7dTqlU4tChN9i79zbq6uq/1vmIRCIEg0FmZqZ5441XicfjqKqComjhVHV1NalUciWU+jw827ixk48/Ps7y8jKffXYKWZa5fPkyiUQSt9utO5U132+aQqGo6wxWh33Nz89z7doVfZ11dfUcPvwOY2OjlMsKPp+PRCJOIhFf55zUMTExQSwWZWRkmI8++kBXSUxNTRAMhjh3bp6pqUlMJmlFC5AhHo8xOjrM0tIypqoE5mA9FqsVm91GNpPRG8CCIIAgUJZl8vkCmUx6xa0Mis2H0yLS2bkJs9lMMplkZGSYYDDEhQvntcGEi9dQEZDd1ZhUmWIyrLU90X7GLwiCppEwWzA5A5gsVpi+hC8zQ1kAyWTC4QjoYa8oiphMJqxWK7lUDPPUOcr1u1F8tfitIkIhRaFYwmS1I5gdCFYn8tIYxf7jCKU8pVKRdDqFw+EkFAoxMzNFPB6jprYWmvcSdwTJpeap8rvJZSJ4rQJOoYhKkRwWJoRKBFSq1MTX/q7ZbDbq6xuYmpokl8t9ZQM1lUoyNDRIqVSis3MD4XAMQRDp6Nigu6lX72tVVcnn8+RyWUwmE2fPnsbv9zM5Oam5n7MZZmdnCIeX8Xr9SJK0ogVJUi6XWVpawuPxkM1mKRaLXxqCakMmVVRVQRAkLBbLSugr6dfFZJKQJC3oNZlMCIK48h4tpC2VSuRyGWKxOIIAdrsdh8MBgKJoDmlZllfuDRGTScJstiCKErJc0kNvWGkxJ2dRlC5Es41yQXMkmyQJWG0dC/q/Fwp5Ojo6KJfLLC4uUldXB0CprFBWVbY3eBkeHuLw4XewWq18+9vfo7a27mtfZwMDAwMDAwODf4gY4bCBgYGBgYHBTeRLZQ71LhDPl2jx2/VAaGFhnkgkTKFQQJZlVFWlVCpqgVByEVNVB24rmMKDlMtlfTBVNpvFbrezYcNG2traaWiopVgss/rLc4fDQVNTsx4ChUIV5PN5jh49wsaNnbS2tq9pIabTaRKJ+JrBXKsDu0ZGhggEArz11htks5mVn8svYzabKZVKHDnyAZ9+epKWllauXLnMxYvnbxj29UW/rOaYVZQyp059gtls5i/+4s/0FqTFYsHr9REOL2E2myiVZG78Nb3T6SIUCjEw0I92CrUXi8UC7777Fps2dQMQj8eR5RJms4n+/uskkwmam1v09UxNTer7uNoKzufzOBxOXbWxHsFgSF+P3a6d22z2c89wLpdHFCUmJycwmy3Y7TYymTTxeJx8Pkc+r7U2pfA45roNSKU0pVKJfD7H6o/yTZIJBCgUC0QjYQqFPG63G6fLQ8kWoIUCZtXM4uICsViMUKiSkZEhSqUiZrMPykUC0X6cQpGI6MPkqyGbySCqmgpAstqRHS7MliJCOoIwPUhQ0hzFTqcTVVU/9xIDoijhdrsQBIGlpSX8kkTm4iFcrTsoVLRg81Xh99ejhJfILM8gj1xBne9HKOVX2qgKNpudQqHAxMQENpuNRCJBWnJCSMCUGMdpFkB1kc1mqajQhgIKgIMiWazMEMRPGgvrP8RYj2g0isfjxe12Mzg4QGNjIx6Pd817VFVlenqKmZlp3G73ipZinmCwAo/HSzweJ51OEovFOHXqE8rlMrlcjnJZ1huzqVSK5eVl0umUfk9pPnAVSRIpleSVBxMqHo+HRCKB2625i8tlBa/XS319PSaTGYvFjNlswWKxYDKZEEVtgOTly1pLft++2/RgeFX9sB6yLBMOL7O4uEg2m8FkknC5XBSLxRWdRGnlVwcm3G4PhUJeP++rQ+my2ay+vlWliqqqJGeHsVRtQvRWIxRzmCQTggCqypr9kSRtiJ3X6wNV5fpcL7W1tQiCQDhTpMJpZrb3NL2XL7Bhw0YefvjRmwY7GhgYGBgYGBj8MmKEwwYGBgYGBgY3MbScYTaRp8Fn0wMUWS6tBE1l8ivDoFY9sCpgt5iQynkSlhBzk0coZhJIkgmLxYrf78ftdlNZWUU6nWJ0dJRcroDH46WtrZ10OkUymdTDX5PJxJ//+Y+YnZ1lx46djIz8X3z22aeUSkUApqenuHbtyrr73td3nePHj1IsFvVl6XSaUCjEhQvnGBkZoqamlvn5Oebn577W+SgUCszPz2O1WvUA2+Px0NzcwvXrvbf8XGtrm96YLBQK+nKLxYrb7SESiRAIBIhEwnR391AulxkeHmJ2dgaz2UJdXR2lUolIJEwymSCZTK4M+/MTi8W+tMXpdnvo6NiAIAjIiKRsIbK1Oxgy1+ASvJgpE3emYSlKMpmksrKKxcUFCoUCpVKRRCKBIAhYrTYcuWWEQhqsLgqpMMpK0ChJEoIooKqqriTw+wMoShnV6sJGEZ+SYnxiDFEU8fl8jI4Orwya07zMoVAIq9VGKjVBeGIKR91GErIN1eoCyYxJKVCansSankeJzRD0+ymUZFwuF4pSRhQlSqUSPp+PfL5APp8jkUgQDIYwm83MzEwTDAQxRQZQE2MIriBlJLzFPKbFSZRSnqLdij3gI5VKoSgK2WwWh8OB1aoNe1NVhbjkw1qQkSMz5O12IpEwfn/gpgGIdgokBQcx3FSpcYCVxqwJUZQwmSRMJhOSZLphucjk5AShUIi9e2+nurqay5cvoSgqbW2aIzgej3Hx4gWi0SgNDQ0IgsSlSxcIBgMMDQ2QzWoOYUEQkGWZTCZNIBDE4/FgNmshrtlsAgSWlhZwuZwoioLVasVisepubJfLzaVLF+jq6sHr9XLu3BlUVWXPnr2k02nGx8eor//cS/1FFEXRw/rVY1wPVVWJx+MsLy+yuLi4MsyyiCwXNc0DwsoDCzsej3fNOV5YyJJIJMhk0rfUVSiKQiaToVTMUx69gHvHo4ieEOSSiKKw1lsugM3uQFG0hy8et4dgMEg4Esbi9JHM5hGm++lPTvHAAw+xbdsOQyNhYGBgYGBg8D8MRjhsYGBgYGBgsAZVVbk8m0AQwCyJ+nK320NrSxvnzp+mUCwgl2RUVQuGLRYL2UyGciqNFKin7KnFXMzhdruRJNNKM1FhYWEeQQC320VNTT3BYIj5+Tni8bi+HUEQiEajjI2N0tTUjCAIK7qAz8OYWwVC5XKZSGSZYrGIzaY1aq1WK6qq0tjYxKVLF6moqMDn83/t81EsFrl69TLpdEoPxKqra2hpaWV4eIhyucx6OVFlZRUej9a49Pl8jI+Pr3m9traOvr7rpNMpKioqEASBysoqisUSk5PjTEyMYTabCIfDzM3NoigKLpebzs4uFhfnvzScstlsdHZuQpEszAtewnjJCVZKQScpQQDBhqIKxL0dLGTilJpU4unZlYCuQCqVQpbLeL0eHA4HSiFDea4ftXkXZcGMUi4imSSUlZ/vW8wWymIZp9OFoijYXD6i6Rzt5gRj470EgyFKpRKjoyMAuve2srKK9vYO+vuvE4/HcVpN5Geuk5ubXVEDCPjr60mGwwTq6nBWViKKIrKstchFUcLhcJLNZojH4wSDIQKBAPPzc4TDy8RiMQKBIDt37mZ+fo5kMoGNDLKskMllieXSyHKJuroGRFGkoaERdcU9u7y8tBLq5ymUZHKNXRTzaex2OyaTiWKhSCaTwWpN0NbWQXV1DVaLBUEUmE0U2Vi1nV/drfl5C4U82WyOXC5LLpcjn8+Ry63+Oc/S0gKJRHwl0EzR3x8FtCGHn376CaIosrS0hCBARUUlU1PT5PNZ6uoa8HpdeL0B3clrMpkxm82Mjg6vGY74xftjZGSYTCa7cg02cP36NWw2G3a7HVEUyeWy+P3+FffyHC6XG6fTxcLCPOPjY/T0bF73HlxtCa/6iL8YDicSCaanp1hYmFvRj2gPGSwWCzabDavVg8VivqmFvzo8MJNJk0wmKBQKKyHyWiTJhCSJJBJxCoUCiqIgRScojZ3FuvFOJLOFUjJ80/morKyksqIKz0pLurKyiot9Q5hcMubFfmrcRZ747vepqqq65ffOwMDAwMDAwOCXESMcNjAwMDAwMFhDNFtiIpol6FgbKglAfX09ly6bUMplFFVBVVQEUWsqiqKI2WRCMklY6jfiElK43W69netwODGbzTQ0NNDa2kw+X0JVWfNzcNCCmomJMex2x5pBcTcGUeqNqdENy4aHB1eGWGnhsM1mw+fzs7y8RCaToaqqiny+cNNnb0U6nWJgoJ9oNAJoIXhrazvV1dXE43HC4eV1P2cymWhqatb/7PP5yWbXNoxFUcTtdjE/P8fGjZvI5bTzUF9fT6lUZGxslJMnP0aWS9hsdrxeH5JkYnl5cd3j/3zbZjZt6qZscTImVBMXnFgo4yJHqZyiXCzjcluQyzLh6DTpgoylupOi2kYxnSc9foVSqYTVasHlciHLmnbAPnuVvGBBrOlEksyIxQwWuwWz2YzNZiefz1GSyxREK4pgo94UZuyTN9ixbQegMj8/h93uQBRFUqkUu3fvYcuWbZTLCqlUioWFBZqbW+nr611pupoplxU9WG5r6+D22+8kFouytLSEy+Uin88hihI9PT0MDmoD+1pa2ti373Z+/OM/oVQqUi6XCYVC/LN/9r9QKBQYHu7l9OnzFAoFzp49TSqVpFgsYrFYqKyswuv1acPnFIVCoYDNZiOdL3FBrSayvIhYMqGqKharlXw+z+TEODMz07S2tlNXW4eqqkQKEJvKkTzz6poG+43X3mazY7Fo6ozR0RGy2Sxut4dEIkkul0UQBHw+H7FYlKmpKRobm9i6dRuzszMANDU1I4oCDoeVbLbAF2+J6uoaYrEoVVXVN23f6/WysDCPy+Wiq6tHH/AoihKCIKwMoMut6EsK2Gx20uk0brdbv0aRSJhQqGLde1AUtaGC+XyebDZLMpnQtSLFYkFXUQQCwZsC3i/mzcViUddGrD4UkiST7pfWPiPgcDiwWKy6FiWbzQDawyEQEOf7kGxWaNqJGKiDXBJTuYDL7ea+ex+gsqqKgf4+FFUlXSizlM4TTWXwLQzwjR1tPPTgQyvrMjAwMDAwMDD4HwsjHDYwMDAwMDBYQ65UplRWsNrNN72mqiqdG7s4Nv+RvsxitmA2mRFXWsaCImPzhvBlfKTTKS1Is1hobW2jvr4Bs9m0JhDKZDJrtqENpMqxefOWNe9bGw6vbQ6rqsrY2CiRSASLxbIy/E4LSa9fv0axWKSiopJAIMDo6AjFYgGL5cuDnqWlRUZHR3R9hs1mo6dnCx6PB0VRGBsbveVnGxub1jQ2LRYL5bK85j2yLJNKpXE6XUiSpGsnstmsPhSuXC5TKslUVHgQBIFMJn3Ln/ODFjp2dm7C5PQyItWTEhwEhSJmSUAQ7chuD8lkApfTxczsDJlUCpMo4BVypLEgdtyJlEnjiE7hcrlwu90sL4dxudxkMmly1z7AqxZxtu7A4m6j0u9FLmRBECgpEI4n6eneDIuDbA26ePx3X+VHP/rPLC0ts3PnbkBTdOzcuYt/8k/+XwiCQF/fdVRVIZGI4/F4uH79Gg6H5hIuFou4XG5qa0VcLhf33fcAFouFn/70vwLQ1ta+0kJd4LHHnuT48aPMzc3y8ssvsH//AXw+HydPfsz58+eQZZkDB+7liSeeYOvWPZw7d5bh4aGVNmqGYrHIxYsXMJkkQqEQbrdPcyurKiazlajTimS2ohSzFAsFQhUVzM/Nkl9psC4uLlAsFmhqasZqc1DndnFHa+NKIC5QKBTIZjNkMlmSySSxWGRlqKHK7OysHmI7HA4cDgfRaFRvWu/ff4B0OsUnn3xMZ2fn1xqCFggEGRwcuCkc1sLo0ZXwWWsGJ5MJ/f4BbQhcLpfTh7KtDqxzu934/X4CgQATE+P4/QHd71sqlchk0qTTaSKRMMVikYGBPkAgn88iitLKvXvr+3cVRdEeGKxely8iSRKlUhGn04nT6dTD61gsqg9FXH3AIEkm/H4/LpcbkxAnPXsW2d+MGGrC5PBQHQqiOnwspQqksTG4mMQmQn5uiPbyLPUBgccfe9zQSBgYGBgYGBj8D4sRDhsYGBgYGBh8JVevXiGbzTIxOU4sFtWXC4KgtYglCRERUZSw2u2Yi1oTMZvN4nQ62bx565oBazdyY3O4XC6TTmdoa2u9aRiXIHweFCvK2prk7OwMCwvz+j4JgkBn5yYKhQILC/Ns3ryVUChEuVxmfHyMpaVl6uvr190fRVGYmBhf4yM2mUw0N7fomoi5uVm96ftFXC43jY1NmEzmFbesNugqGAzhdLoIBoNIksS1a1e4774HMJlMTE1N6j+tn5mZprq6hm9841E++eQE/f3XURQFQRDo7u7B7XavDPcSV37CL+h/fuyxJ+np2cwLl+dJzCbYE7BjuiFgXw4vc/nyJV1pIEoifr+mJJCXFxCsXtxbH0Tsex+pmGZ5eRlZllEUK3a7E4/HSxURKkqjPPH4o1ycijI4MaUdtyqTnbtIdU2BppoKJEnizJnPEEUJWdaUEi0trbS2trFr1x49bJuYGGdiYpzq6hqmpibJZrN4PB6SSc0Nm81mqa2tI5fLUVdXjyRJdHdv5vr1a8iyTHV1DdPTU5w8+TG33XYHL774AtPTE2QyaW677U6am1vo6+vl+PGjnDt3hh//+L9QXV2P1WrF5/MxNTVJPp8jlUrqfuhUKoXH48Xr9eJyuXE5bTS6JNKeOgpLRQKBAKIosqmrh97eq6g3PECIxeOYg24qLUVGR2eJRCJkMul17xWAQiFPOp1CEAT8/gDlcpmJiXEWFuYJBAK0tXUgyzLz83N0dXUTDi/jcDjx+Xy3XCdoAarVatX9yatMTU0SDi9RVVWNILByfbWHLTeGw6sKmK6uHgqFAuHwMs3NLQiCQH19I+fPn+HKlcs4nU5dH+FyubBabZpmJpshnU5js9kwmW5+0PRFtIcBBTKZDIVCHllef5ifKIo4nU4KhSLV1TUrD1mSCIKA3W4nlUoRCGjfMZPJRChUgd1uJxSqwO/3Mzg4gBLrx6pGqNy0h+qGjfhdmnpGDDqwFOYozg3R7nXw5HPf5cyZz0gk4r+QisbAwMDAwMDA4JcJIxw2MDAwMDAwWIPdLGGWRAqygtWkhUVlRaEkl8jlshSLRd0pKoA2nExRMZnM2O12yiYLYjaPw+HE7w9gsVi+tOl4YzicSMRxudw0Nd0cJN/oHL5Rq7C0tMjk5MTKe7TAdMOGTrxeH2fOfEZ1dQ17996G2WxGFEXS6RTpdIpNm7pWAlxpxVMqIcsyp09/is1mo62tXQsAN3UzNTVJT08Pe/bcRi6X45VXXtB/Er8a0LpcdvL5Et/+9q9SX9+wzpGqbNjQyV137efatSvU1zdw2213IMsyf/RH/4n+/usEArv59rd/lV27diNJEpFIhGg0ovuKKyoqsFpt657Hu+++h61btzETzzG0lKbabV0TDMvlMjMz04TDywiCQCIR10LhlXANQMrGwF9H1l5JZmoEt9tFU1MzZrOFSCRMXV09nZ2bOHDgPu7b08nm0Cgvjx3Xjk5RiCdn6L+S4Z/+P37KH/7hv2diYpza2joaGhqJRiNYrRY9aF+9jnNzs7rnd2lJG0xmNluQZVlvFFdWVpLP5zh8+F3y+RzxeIwrVy5x5sxpmpqamJ6eplgscObMaWRZRhAE+vv7mJycZN++23n44Uf54IPD2Gw2nE4byWScXbv28uijT/DSSz/XQ9HJyXEEQSASiaCqKnV19SwvLzE8PEfb9ipcFUEyZhWxlCMajbC0tIgkShTLZVLJBGNjo9iDdZiXY9S64qRsX/2f2tGo9rDF7XZTLBYYGhqkWCzS3t5BVVU1sViU+fk5NmzYgMVipaKigomJceLxGE1NTV+67qqqKpaWFvXzvbCwwMzM9MrQQE3ZMTc3q7fRbwyHl5eX2Lixk3K5jNVqJRIJc/nyRaxWGyaThNvtJZlM0NnZic1mJxKJrLiTEySTCf36fRXlcplMJkMmk0aWtXa9JH1RNSHgdrsJhSqprKzE6XQxNTWJxWImmUzS0NDI7OwMiUQCt9sNaHqalpY2amtrCQZDiKKou7utVitbOppxWDL88OHt2O12CoUCL7xwjPPnz/HYY09y7733Yzab2blzFxcvnufeex/4ymMxMDAwMDAwMPhlxAiHDQwMDAwMDNYQcJhp8jsYXErjWQm3BEGgVCpitdoQxTSiIKAKgi4IVVFxOBwIooRksbGlMYTF3cjUlOY+bW1t05t8JpOJQMBNJlOkVCoxPj62MgBLa28ePPgcO3fuRpJM+vslScJms7G8vIwoirS0tPLUU88wOzvDoUNvEgpV6I3hBx98GJvNzkcffUB7ewdPPfUs+/bdrh/f3r238fLLL7Br1541TuOFhXneeONVzGYztbV1SJLEAw88REfHRv7Tf/p39PRspampmbfeeh2LxcqNc74EQQs3N2/uukUwDKFQJTMz00SjEYaGBnnqqWcZGOjn44+PkU5rA+B+/dd/Sw+35uZmSaWS2Gx2ZLmE0+mkr6+PzZu33DTka8uWbezdexsAvfNJsqUytZ612gxJknSnbCIRp5AvYLFqDU+bzY6q5snn05CKIdVswL04SEtjLcFgBTMz03R0bKSrqxun08Xtt98FgN/vR0Dzwo6MDLFxYyeDg/28/vorZLNZIpEIZrMZq9XKXXfdg8lk4q/+6ieYTNqyhYV5jh07gihKRCJhJicnyOfzxGJR3RmbTqeIRMIEAkGmpiapqqqipqaO22+/k8HBAVwuN7/7u7/HBx8cZnR0hO9979e46679vPbaKywvLyHLJfbtu52tW7czPz9LqZTlypVeJicnyGazVFdXk0qlaG/vwG63o6oKVqud48c/YmRkiFCokmQywcUT75EfmCS09T7sokqxVNK0KagICJQVlZLZhSQrOKL9DE0s0N29Gbvd/qXft1WftSzLXL16BZfLxaZN3dhsNmZnZ8jlsnR2dunBrSRJtLW1E4mE6eu7Tnf3JgRh/f+kdzpdTE5OoigK8XicsbERampqSSaTZDJpQqEKffAeaK35RELzAyeTCcbGxnR1g9utDSfcuHGTvr+nT5/i/PnzWK0WPdjVvg/iyvrWd2NrLuO8pirJ5fTloiiuOKytCIK44h2vob6+UW8/K4rC/PwckUgYm81GdXUNAwP9ZDJpLBaL7vvevHmLPpRydZuLiwuYTCa6unqwWKx0dGzEbrezuLjAW2+9TiqVorOzi4ce+ob+uerqGk6e/Jh8Po/Ntv6DGQMDAwMDAwODX2aMcNjAwMDAwMBgDYIgsL3eS/9iilJZwSyJCIJAsVhaGVZlI6soIGg6A4vZgs1ux+fz09a9k4pQgB/e1shP//yPCQZDPPPMN2lv77hh/RAKuQmHU4yPj9Pf34eqqly+fImGhia+//3f0D2mN1JRUUk+nwfA4XBQKBQ5cuSDNV7i2267g61bt/P222+ysDBPMBiiu7tnzXqamppxuz309l7Vw+He3mt88MF7esDlcrl56qlnqK2tY2ZmGoBQSGtsDgz0r3vebDYbd999zy3Pq8ViIZ/P8c47h9izZx8vvPAzZmdnaGtr55lnnuOnP/1zJibG2Lx5KwB9fb2667WyshKzWQty+/v76O7u0Y+7ubmFBx54CEEQyBbLXJ5L4rOZbnKkCkBHewfDw4NEo1FkWdZa0yaT5sPNZBAEATWfQvJWY6lrp7W1mlJJoaGhiba2drLZLD09WxgbGyWf11y9fX3XmZubJRAIMD09yejoCD/+8Z9gs9kol8uMjY1w5513cf36NWKxKDU1NRw//hGtrW1ks1kqK6soFotks5mVBwcBKioqddfs9u076ejYwCOPPE42m2H37r2A5rj98Y//hFQquTJMrhJJEunv72PTpi5+5Ve+yxtvvMrU1CSvvPIijzzyOOHwMj/4wfeor2/lo4+OsLy8xNTUJKlUCkVRiMViLC7OU1lZhdvtZmZmhqmpc9TV1bOwsIA8dpaoKGJv2Y7NX4fT5iEfXkYSJESLHTmbIDd+Do+QoGCz09t7le7uzWu0DjciyzKRSEQPv1taWmloaERRFEZGhnE6nbS1dazruw0GQ3g8bsbGxnA43CuaiC9cc0HA7/czMzOtX6Pm5hbOnTuDqqqUyyUsFjNXrlymUMgzMTGG0+kmm81RW1tPQ0MDFRWVwOehbD6f11vCmUyWWCxKZWXVmmFtqy3/Lw5OlGWZTCZNoVBAEARMJjN+fwCz2YTJZEaStIcXVVUV+P1BfL7Amu93MplgdHSUXE5TjYTDywwPD1IsFnA6XXg8brq7t1BRcfOgvFQqST6fp7u7R78eW7Zs5cKFcxw/fpSKikoOHnyejz768KbPbt26natXr7Bnz951r6OBgYGBgYGBwS8zRjhsYGBgYGBgcBMbKpzUem3MJPI0++0rzeESAGazBZNUpCyUNU+nqA0Lc7i9ZMrwYJ2XxdlJstkMTqeL1ta2W24nHF4GPnf43nHHXesGw8CakCidTvPKKy/qQ9wAenq2cMcdd3Hs2BHq6xs4duwjNm/eitvtuWk9XV3dXLlymbvvPsDJkye4cOG8/npdXT1PPvk0LpfW4I1EwoiiiMfj4a23XrvlsRw4cACXy4W6flkSk0lidnaGVCrJ/PwcFRWVPPfcr+g/+d+xYxeffnqSTZu6EQSBjz8+wcSEppPw+4O0trbR23uVZDLB4OAAnZ2bqKys4sknn9HPWTJfIlssE3Ss73i1WK2YTGbSqSRlRUFVFcwWiz6cryzLqICgqti8IcxmMxcvniMYDHLhwjm9RdrX14vJZCKZTLKwME9FRSVms4m5uTlcLhflssyGDVorc+fO3aiqysMPP8rRo0e48867cDpdHD36Ia+++jK/9mu/zokTx5ifn0eWS1RWVmE2m1dL6QSDQWpqauno2MC77x7Sw2Gz2czdd9/DO++8xc9//pd8//u/SSSiOZXfeecQ3/3ur3Hw4PO8885bDAz088orL1JbW8uPf/xj/P5KXC4X/f3XmZycYH5+joGBPrZt20EsFiOVSrF581ZisRiqquB0uggEAuRyOfLjZ8kujSA2b0Hw12MRIJtYQo5MQHiCbCpKyWbTr2tv7zW6u3twOp03XY/R0WHm5+ew2Wzs2LETt9tDoVBgZGSYurq6r/TcWixWenp6GBkZZ3BwgNbWtjWDEAHcbg8nThylsrIKl8vN4OAA8/PzCIJAY2MTwWAIn2+ZQiFPZ2cXi4sLNDY2Mj09rbd6VVVFkiQWFuZJpVJ6G9rpdJJKp4iVRNz1myg7K1AFibJ/EeaGMJuL+P1+ZLlMJpNGVRXcbg9er3jTsdhsNiorq6iqqsTv95LNFvTvUqlUYnJygsXFBdxuN+3tGxgeHiSRiBMIBPF4vDgcDjo7u9Y9zwBLS0ts2LBRd5m7XC4uXDjHyMgwu3bt5u67D2AymbBabeRyuTWN77a2dl566efs2rV7zd9DBgYGBgYGBgb/I2CEwwYGBgYGBgY3YTNLPNFTzQsXZ5mM5QFNKwHoeghBEbT2qdmMxe4iLdhxL4+xs6aLEx+dAFjTcF2PcDhMoVBgenqKmpraLw2SVwNQWZY5e/b0mve2tLTy4IMPc+LEMTweL83NLSSTCTo6Nqy7ru7uzXzyyQn+6I/+k35cANu2bee++x5cE1BHImH8fj+XL18iEomsu76Kikp2795NNJpZ9/V8Ps+pU58wPj6G2+3lt3/7h3R3b15zboLBEI2NzVy4cB5ZLnHt2pU163c6nWza1MX1671EoxFmZ2f4nd/53TWNzWJZRVFUpHWapgCDA/3kcjnksjbsS1FVFEUhnUqutDwFELSg7r4HHmbq1Bts27Ydp9OJyWTi4MHnaW/vwGq1cebMZ8hyiU2buhgaGqSvrxe73Y7NZiOZTFBbW8e3vvUdampq+eijD5ieniSTSevh3L59d/DCC3/N6dOfEolEyOWyKIqqeavLZcplZcUR7NJDz9XhaavnraurmzfeeBVVheXlJQ4cuI/x8XFGR4f5gz/41+zatZt4PM7U1ORKA1xFkkR27NiDxWKhubkFr9dLPB4jl8sxOjqit+OXlhax2x2Iosji4iKbN28hGAxy8eIF5ufnSF8/jt/vR43FKK04dq1WG2az5nEeHx+jsVFzAusBsctFCjupssTc/Dyz4QJ2b5DNGztwu7UhfFNTk7S1tX+ljmIVQRCoq6vD6/UyNDRITU0NFouFdDpDIqGpJDKZNH5/J06nE7vdQTQawWKx6PtXU1NDb+9VSqUS4fAyXV09hMNh4vE45XKZ5eUlSqXSSvM38/m+iRKurntIueooeQI4LSKSJCG5Q0hV7ZSKSeKLV1EzmtPabF4bXIuiSCAQpKqqCq/Xt6KG+fx1VVVZXl5iYmIcVVVpbW3DarWxvLxIV1c358+f09vRGzZ0Yjav/1BElmW8Xi/BYAjQWsSxWBRZLvP00wfX/D1RWal5mpuamtfsZ0fHBgYHB9i0qetrXRcDAwMDAwMDg18WjHDYwMDAwMDAYF2aAw4ObqvljWvzjMtmcoINQShpwakADoeTdL5IyeqjaHZRoyZpKCxy9IN39AFxq4qEW7G8vMT4+BiSZKKxsWndn4OvIkkSiqLQ39+Honw+6KqqqprHH3+KTz89idPpYteuPXzyyQkCgSBOp2vddclyiYmJccrlMps2del+4S1btq2zj8s4HE4+++zkLfftgQceWjcEVxSFK1cucezYR1y4cJ5f//XfIp/P0dOz5SYFgNfrJZfL0td3nVOnPtGPURRFQiEt1PJ4vGzc2Mnw8BB+v3+l/XyPvg6zJCAKWuj7ReKJOEPDg8zNzazZv0KhgCRq6hBJMuHz+wnWNyAX0zQ1NeF0elBV2Lixkx07dlEsFjl8+B2am1vYsmUbb775Gr29V3XlhyAIBAJBOjo26tqO/fvv5U//9L/Q3v55CPfRRx/w2GNPEo9HOXz4HdLpNDabTVNbqAqgBcWCINDW1g5o13pxcQG/P0A0GuHatatks1nS6TR/8Rc/5vTpTzGZTIyPj1MsFpifn6Wzs4umpmZEUWR6epJSqcS5c2e4/fY7V4LFAFu2bOP69Wvk8zkcDicLC/MkEgm2bt2mO5AXFjTdxP79Bxgc7Gd0dIREIkGpVMRisWKz2Umn0/rDk3JZZmZmmkAgiM/n49LEEq6NLaQEJ6lMFtXVAp1NSHKegldidmmcVHSZzs5NNzmlb4WiKKRSKZaXI6RSaQCuX+/FarXS3NxKLpclFKpgx45dyLKM3x9geXkJYI2PV9tnCwMD/dTW1rGwML/SEk5SVVWt3VtmTd2RTKZobGzC5XYTczWxYK7BHF9Ezi4T8NSQy2VJRJfI53KU/fUolVtwTp9Bkj93CzscDqqqqgmFKm5qOq+SzWYZGRkhmUxQVVXNXXfdTSKRIBqNsmGD9h0olUrU1dWzaVPXuuqNVaqqqvVzOjMzw/T0JI8//hQHDz6nP6z4/L1VLC6uDYdB+7vszTdfo7Nz05duy8DAwMDAwMDglw0jHDYwMDAwMDC4Je0hJ9/f00h88DzzcoGyPQACiJIb0WrDls+QW5rAVZqmrb0GCZWTJz/GarWxdes2gsHgLdetqirDw4NEImE2buxEkiRCoVuHw4IgMjw8SDKZ0H867vV6efbZ57hw4RwWi4U9e/aiqirXr19j+/ZdLC0tsmHDxjXruXrtKq9/eBwh0EB4vB+Lxcpzz32L2tq6dbcbiURIpZK3DIS6uzffNIROVVXGx0c5duwokUiYTCbDD37wG+zZs5exsVEWFubXDMNbPZZr166wuLjA0NAgPp8PAL8/sCYsDIUquPvue+jtvcbp05/idDrZuXM3AC6LCatZIlsqYzN/3n7OZrOcOvUJS0uLmtdVO6Eo5TIIArJcRhAFnC47NbV1pIsF5sNj7GyoIJstYDKZuOeee4nHY7z//nvcccdd1Nc3sLy8zJkzn+nBMGit4yeeeIbLly/y2GNPAGAymaira2BmZgpVVVFVlQsXzvN7v/dPePXVF7FYrITD4/j9AQDKZQVFUbBYrJRKJWZmZrh27QqDgwO8884hAoEA2WyW8fExOjs3IUkSuVyOsbFReno209m5id7eq0QiEaanp2hoaKShoRGLxcLU1Djz8wtcu3aVnh6tvV1RUYHfH0CWS7hcbhKJOIuLC4yNjRIIBGhoaCKTSTM42M+WLdvYuHETVquNmZlpJicnUBRNr2K321EUBUUpoygqspwlHhfJe+oxV2xmOZrHXIrgtltwOByEI1EEm5tp1YfT2syujZWYhM8ffNyIoih6EJ7JpCgUioiiQCDgw2Kx0tjYqOtBotEIFy+ex2Kxsn37DlwuN319vdTV1evXym63rVm3JIkMDQ1QKhWx2ezasEFBoKdnMw6HE7PZTKGQ5/z5c1itVmy+KiJiJRa1hNlqYmY5w/j42ErDuwRKGdILlAKNFL0NuOKjhEIhKiurcbvdt/w+aZ7qMcbGxgmFKnn++V+hra2DEyeOkslksNlsTE5OEImE6ezswmq1fGlY2929mXBYaz4PDw8Si8XYt+92fu3Xfn1dhU1VVTW9vdduWm6xWKioqGRubpa6uvpbbs/AwMDAwMDA4JcNIxw2MDAwMDAw+FJCTgvV8iLu8RPIzgoUkw01l8Npt+HOxZnqPUeuoR6pvRpVVVlcXESWSzzzzMEvXW84HGZwcACfz6+HwrdqDquqSn9/L+FwWP+zzWbn4MFv6fqFfftuB2BycoJkMskjjzzO+fNn9XWUy2Xe+vAj3rq2QFKoRa6oJWeqh6ZOKqtq1t1uPp9nZmaaUqmoD+a6EavVyv79B9YsW1pa4tixI0xOTtDY2ER9fQMVFRWUy2VkWaa1tY2xsdGbwmG73cHRo0cALawrlUqYzeabtvvAAw+xdet2/P4An3xygo8++hCHQ1NOuG0muqrcfDYZJeD4vJFZKBaIRCIICLhcbtLp1JphYaIoIIgiqqIQyRTIpMJssKcpl7XBXXv27CORSPDZZ6d4+OFH8Hp9LCzM8/LLL65Zj93uoLu7B7/fT29vhmQyicfjWTmXOTZv3rriLnbhdrtxOp2MjY1SKBQQRZFsNsvc3CzFYoFisUgsFmV6eoqPPvpAv4ZLS5p3dmxslA0bNiBJEs3NzUSjERKJONFohEBAczSPjAwzPT2Fy+XC7w9QXV2Nx+Mkm80zOTmOIMCmTd24XG5dz9Hc3EImkyWbzTI9PUU2m2HLlm0rQ/O0QLq9vYPm5hYkSWJ5eYl8Po/JZMLpdJJMJlFVEZPJTDabISPaEWq3UEgkEHJxJLcbd2WQbDYLqoKSjeN22ij765lS47SpC6iKQi6nBcHpdHrl/Ag4HA6cTjf19VrQrS2zrvHzAiQSCaxWG3a7nVQqhcvl1rUV+XwOURSprq6lrq6eeDxGJpMll8uyY8cuXC4XFRWVRKMR+vv7sNnsuq7BarXh8XgJh5fJBTeQLMqo8VlKxSKCAIWV86CHtYqKVShjb9rCtvYKbKYv9/VGo1FmZqaorq7kN37jd7jvvgf59NOTfPLJcZLJFIIgMD8/x/LyElu2bMVmszM8PHTL9TU3t7B9+w7+83/+DwwNDaGqKt3dPTz//K/c0m1ut9vJ53PrvrZjx05OnDhmhMMGBgYGBgYG/0NhTFQwMDAwMDAw+EoymTSiUsKSmsMWGyOQm8cWG8eSjxEKhUgmk+RyOVKp1Io7VmFqanJNcPhFjhx5n2KxqLuDbTb7LTUQZ8+eYXx8TP+zIAg8++w3GRkZRpZlbr/9Tv213t5rK23PRtQVp24mk+GFl17gjWuLxAQXNopsqPLR0tzM6ZkMZ6bi6253aWmR8fFRHA7Huq/feefduFzaPqdSKQ4ffpef/OTPSKWSPPPMN7nnnnvJ53Ns374Ts9mMLJeoqallfn5uzXpUVeXw4XeIRiMsLy/h9XpJJOKYzWb8/s+Hku3dextbt24HtDB8x46dALz77iH9/Gyp9WARRXKlsv65oaFBTCbTykA6E6Io6sMERUHQlBgqyGWZeE7GnpnHpBbp6+tjZmaaWCzG5csXefrpg3i9Pqanp3jxxb8ml8vqegKXy0VPz2asVivxeIzdu/foYXcsFsXlclNf38Dp05/yp3/6x2SzGf7oj/4jn312itnZaYrFIpIkkcloobIkaft54/GvqkWGhgZpbm7Rm7JWq01vfq/6aauqqqmpqUFVVYaGBvXhaqFQiB07diKKEpFImGvXrlAoFAgEtNZyOBwmFAqyYUPnivu4zMTEOKIoUC6XWVxcYGlJUzM0NDRSXV2DIAgoioLZbNYH8YmihNfrw1LbiWKyUUosUVbK5LJZ5ubmiMfjZLNZAoEgVrME2ThTaZWrQ9pwuXA4vNK41rQJnZ1dNDY2EwwGsVqtt2zLzs3NMjc3S3v7Bu644y4qK6vIZrM8/PCjtLW1sX37LlpaWvF4PMzOzpDJZMjns3i9PpqamllcXERRFP26rp631fvUbrcxOjpC//Qi2VScUlFzdlssVspKmUIhjyhKWCxWvF4v1QEPJqeXsunWDuVSqUQsFkVVVR5//En+3b/7d+zdexuvv/4K09OTxONxQCUcDhONRti6dTtOp0u/H9b7e2ZVN/PSSz/n+nXNh71t23YaG5tobm695b6ANuxwdQDnjXg8XgRBJB6PfennDQwMDAwMDAx+mTCawwYGBgYGBgZfSSqVWvPnQMBPLKYFJF6vl2KxyMLCPOWVQWfBYIiJiXGuX++lp2fzTesLh8OcPv0ZdXX1+nCrysrKdQOvvr7rnDhxFEHQnmkLgsCmTd3Mz8+Ry2XZv/+A/rlCocDw8CC33XYHgiAQDIbo77/OJ5+cYCopkxQbcAt5NrS2UllVTTi8zKWhCT4emGVvkx+TuHb7n3zyMblcDrv95nC4oqKS7dt36g7b69cvkc/L3Hvv/WzbtoNyucxrr73ME088rft8ZbmMKIpYrTYymYyux/j44+MMDPRTKpVIpVJIkhauWSxW3WXc2blpjV9YEATuu+9BstksAwP9vPnma3zrW9+hubKapoCDkeU0LUEHkUiYublZbDYbkiSRTCQAkERRG+4mSdr5U0E2OVEyCfIzA4TVID09XTgcbubn5/B4PJw+/Skul5Pjx48hyzKgaSS8Xi+dnV2YTCZKpRLj42Ps33+AH/3ov1AqFbly5RLlcnlF9RDmwoVz7Nmzj+XlZbLZLKWSjChK+jC4bDar30s3OmFVVSWVSlFdXaOH8qvU1zewtLRILpdjfn6O2to6WlrayGSyJJMJBgb6dKe0x+Phttvu4PTpTzGbLVy7dkVvg46Pj3H77XewsLCgh8uqqlIoFMjlsqgqjI4O43K5cDgcVFZWkUolSaW0lq/VaqWhoYmFhXlUkxVzzQaEYg7BZEJRlZX15FBRcbs9FAp5FKWM2WJBcQYJbdhBHb9Y+Oh2e/D7A+TzORYXF/jOd36VRx55HKfTiSAILC8v8/LLP6evr4/FxQWKxQIulwuXy40sy8RiMSoqKhBFkaqqKhYW5vXQO5fL4XDYWVpaYmlpkUwmQyaTwVEqIaANeyuVihTyBfKFPKVSiY0bO4lGo9o1RQtu13tM5PcHsFgsLCzMU1/fyL333k9nZycjI4OcOXORXC5HOLwMaG3obDZDV1fPmr8nHA4H2WxW/y6B9nfSQw99g1dffYlPPjlBQ0Mj9fUNCILA5s1bv3RIJmjf7eXlpXVVM7t27ebixfPce+8Dv9A1MjAwMDAwMDD4h4oRDhsYGBgYGBh8JalUcs2fA4EgiUQCRVEQBIGGhkZSqRTptBYiV1ZWAXD06Ic0NTXhdnv0z6qqynvvvYuiKGtcvatD125kcnKC9957G0APhFpaWsnlciSTSQ4cuG9NUDQ42I8sy3R39wCaa/cnP/lzQqEKSniQTGa2bdqA1Wrl44+PY7FYsIpmZhbDFOQyJsvn/2mUSiU5c+YUNptt3TDpvvseoK9PC55zuQwHDtzNpk3b9MblkSMfsG/f7Xrr2GQy6YFqc3MLExPjdHf3cPnyRc6c+Wxlf3NaYCuKuN1uSqUSiqLQ0NDII488flN4LggCjzzyOLlcjsnJCV5++UW+853v8Vh3FT+7UGI8kmX44gXsdjuFQoF8Po+KiiAIiCYTJkGgLJcRAMkToCxayfQeRcrMELHBsWPH+OEPf49HH9XcwR9/fIIf/eiPyeWyuFweHA47oVAFgUCA/v4+crms3rgURZFoNMKVK5eYnZ1l48ZOAMLhZSoqKojHY8RiUcrlshaOmjUNRrlcxmw2YTZbtNCxUMBm0/y48/Nz+Hy+da+HJEk0NjbpKomKikrMZjMbN3Zy9eplstksw8OD7NixDYBAIEBbWzvRaIRCocDk5AT5fJ5isUC5XKZU0lreyWSSQCBIuaxdu+XlJbLZLKIosnv3XsxmM06nC5/Pz9jYKNFoFFkuUygUkDHjDVZRiC9TkkRUWUVWZFRVxWw26wqHVcoIFFXzuknqaos6EAgSCAQJBkMrDedmUqki09PTvPTSz7nnnvt47LEnEASBRCJOb+81enuvkkwmCYeXmZgYp6amBqtVO6fT01MEAgFdsxAKVdDXd51QqAJFKTM8PMj4uElv54qiiNlsJr08i8lZjZJJI4oSoYoKkskkhUJeV1yoqkIJEybKWNDOn9VqZdOmLioqKrly5RJLS4vs3LmLO+/cjyzLvPXWG1RVaQMH02ltyF6hUEBVVRobm246Lx6PpstYDYftdge7d+/h5ZdfZGlpkU2buvQHDFo4vOXmk/sFKiurWFxcWDccrq6u4eTJj8nn8/p9aWBgYGBgYGDwy4wRDhsYGBgYGBh8KaVSSfOj3oDL5cbpdOmhsdVqwWq1srAwTygUusEzm+fw4Xc5ePB5PdgcGOhnbGyM+vp64POw84vD6JaWlnjjjVf1BqkoiivtP5F0OnVTMAyaUqKpqRmHw8lHH33AxYvnicVihEIVNFYFMPlbEK12CsUcJpOZVCpFCivFVAyluBssn7dRjx8/SiKRXFcpUVVVzbFjH7G4uMDGjZ3s338PHR1NhMMpVFU7RpvNRnNzi/4Zs9lMJqOFXS0trZw4cQy73caRI5pPV1VVstk0giBisWgDyxoamkin0zz99ME1Q+luxGQy8dRTz/LCCz9jcXGBl19+ge9851c5uLWW33/5KDmLj1x0HopZHA47qWQSk8mE3e6gkM8jmK2oNi+KoiCPnkaZ7SUhaAO47r//Ps6fP8vU1CQWi5XTpz8ll8uuuIHnkCSJ2to6EokEpVJxzfXI5/M0NTUzPDyEy+XWncKiKOFyuTGZTMzMzFAqlRBFST8+WZaxWDT9hd/vZ2pqkrq6OgRBIJPJ0N6+gaGhwXXPRWVlFfPz82Qyaaanp2htbcNisdDZuYlr164SjUaYnJyksrJGvw6lUglVVUgmkywuLhAIBBkcHKSzcxOCINDbe5V4PMb27TtXdAICc3Mzur5iVV9is9nxeLxMT0+RSMQRRZFQUGseu9xuVJtZC4xLJeKJOMVCkUQiQblc1oNZFQGTJFIVrCYYDBEMaiFwIBDE7/ff5MkVBC1snZiY57XXXqG2to7773+Qvr7rXLt2hampSf29oijS3t7O6Ogw0WiUQiFPsVikVCqtPNDQEt1CoYAgwLFjH5HP51BVlYqKSsplecXFnCGbzSLPDWFr2YGvrpkKnxtVVUkmE7rqAaCsqBQwU0uUjqYGNm/euqIWOcWRIx9QWVnF9773faqraxgbG+HcubPU1NRw+fJlMpnsyvdGe2iw6oT+Im63h3B4lJqampX7sZYjRz6ktbUNl8vF8vKS/l5Np+Fddz03UlVVxejoyC1f37JlG1evXmHPnr1fuS4DAwMDAwMDg3/oGOGwgYGBgYGBwZey+rPuVQRBG4zldrv1cDibzREMBjGZTFRUrNVDjI+Pce3aFbZs2UY+n+fo0SNs3LiRK1d6KZcV/X03NiiTyQSvvvoShUJBX9bc3MLi4gLpdFoP7m4kFosyMzPNffc9yMsvv7ASaFoolUps376Dew7cz0tXFrg8kyDgsFJd38TIzAK2chlXZIyf/MWfsXnzFnbu3E04vKw3YW/cr1wux+zsDMVikaamZr797e+tBNaf70ciEefq1cs8++xza/ZPkiS9OexyuZifn2VoaEAP0jKZ9EoQrmCxWLRAu7ERj8erv+dWWK1WDh58nr/+658Si8V4+eUX2bFjJ975i5hTEvGyDZOrkoKgYPGWAQGT1UrRruIwiSRmRsiPX6S8OEK5XEYQtGMdHBxElsskk6mVBm1A14A0N7fQ3t6BLMtcvnyRcHgZk8mM0+nEYrGQz+eor2/gypXL7NmzD0DXUxSLRfz+wIpnVkEQRD34lOUSLpebcrmM0+li48ZORkaGiEaj3H77nXpreLVh/cV7s6Wlhd7ea7oaweFw4HK5aWtrZ2RkiImJCUwmq640cLu1YW2l0jhWq5VoNEwul2XfvtsA8Pl8xONxZmamaW/vwO/3c+mSyPDwIAMD/UxOTmAySaTTKYrFAna7HZfLjcVipphL45IUZMlOLhnFYrESDIZIZ9IoK6Gw2WymqbEJq83OUkHimzsauL0l8KXX+0bS6TSvvPIislzC6XTxox/90ZrvzY2USiXsdgehUIiZmRnC4WV27drD8PAQ+Xye69evrfh9tXBfuy8zqOoihUIBs9lCRUUlVquVcCRC0CpTDjSikKeYTQMCkiRRLpdRAcURoKk6xD86cCcbarVG8k9/+l8plzX9yvbtOymXy3z00QeoqoLX6+PMmc9wOLQguLq6ZkU7Urzl8Wsub5lCIY/T6WJ8fIx77rmP5uYW/uIvfrzmvataka/C5XLf9GuJG2lv7+Cll37Orl27v1JRYWBgYGBgYGDwDx0jHDYwMDAwMDD4UpaXlxBvcPGuahZudL7m8zlKpRJWq1V3t97I0aNHaGpq5vz5sxSLRXbt2sWlS1fXvCcYDK2sK88rr7y0JpxpamqmWCwyMjJMW1v7umFpb+81/v/s/XeUHFd+3w1/qqtznukwOeeADBCBBEGCYA7LsMsN2l1ptbblx/ajR3LSOZJtOcuv7dePXsuW7dVKWokbucwZIEgQJDIGaTAzmJynZ7pnOudQVe8fPVPEECC5kiXZa9XnHBxMV1fVvXWrugf43u/9/gqFAmfPniaTSQNlQXbPnju48867Mej1fKG/GodJz9ByAovLS00yjik6Qzw6R/UdfbS0tHLs2NucPXsaq9VKPp/HarVSLBZZXJxneXmZvr5+nn76S/T09N4iUMuyzLvvHuX++x+8xeVZLnJVFocTiThjY6OYzRYcDsf6OK8iinpV2KupqeXpp7+EKIqcPv0RDz748GfeJ5vNxpe+9BV+8IPnmJub5ezZ0+h0AmuD16ioaUbwNqNUNpHX6dAb9OTSCcT4Mom5YTKBCXLZslNTEARMJrNatC6VSqkFuNbWVrHZbPT09NLe3qleV11dvepCTafTxOMxrFYbDkfZMVwqFdX3c7kcHo+H5eUAJpOJRCKByWRS25MkCZPJTLFYQK/XI0klZFmhublZvf8bExMul/uWcXC53Hg8HsLhMLOzM/T29gFlV3EqlSIcDjE+PsbWrduxWCzU1tYxNjaKyWSkp6eP8+fPoiiobVVVVREIBBgfHyOTSaPXG/D7q5CkctHFjWvOZDK0tXVQWenBYDAgyxKLi4skJi9j77sXf1U1Br2BXC6LxWIhm82qheWqqqqJ5SR8Juitdnzmfb6ZSCTMd7/7+wwP36CtrZ0bN4Y/c/9cLofNZqNUKlFZWUkqleT8+bNEImH0ej2VlR6gPDEgSSXC4TCKouD3V9HX14+igE4nUF/fyMLCHMmFy1R4fEQEOxm5gM5sQ0BB7/BgdVRRYRH5v+7fgVdf4Cc/+SHz83P09PRy7733Ybc7CIVCnDhxnL6+fq5fH2RhYV6daNm6dTvhcJhEIv6541AoFIhGo/j9VTz++JPU1tbx/vvvbtrHZrPT1tb+M42rsF6k8WZX983odDo6OsoO9u7unp/pnBoaGhoaGhoa/7uiicMaGhoaGhoan0l5WfbHIuhGtufNOcLxeBy/v4qmpmaqq2uIRMKqSxbK4s2Pf/xDEok499xzmGw2u6kNp9OJ2WymVCrxyisvbnIr+/1VdHf3cuLEcdra2hEEoexMVBRVnFUUhePHjxEKBTEay8vQ7XYHTz75NCsryywvL9HW1oHdpOeJ/moOd3jJFSUMSj0/eG6acZudd989yqOPPkF9fSNW6xUmJycJh9cIhdxMT08BZcHqt37rtz91ifvZs6fp7u6louJW5+eG0JnP53nxxZ9iNpuJxaI4HOUl+aurq+j1ejKZNE6nk2eeeVYV2q9cuUwwuEJVVfVn3iu3u4IjRx7gt37rH7OyskI8HsNkMhJenMIRX8W2MkJydoa6hibykTUsJhPJSBB5PU9XURR0OlEVa6enp7HbHaqYCSCKemKxGLFYDLfbDaC6iQ0Gg7pNpxOYnZ1FUWRGR8tZ0DU1NSwtLdLYWC7YJssyBoNBzfMtlUoYDMZ1R60NRVGYmpqkpaUNm81GPB5jdHSE6upq4vH4bcVhgKamFqLRcqZxNBqloqICKMcKlEp51tbCjI6OsGXLNgwGAzqdgCTJVFf7sNsdpNMpBgYusLi4QENDI3a7g1wui9lsobOzSz2X0WhgeHiITCZNZaWXmppacrksXq+PL3/5q/zH//jvWFhbwCoUaejdTXR+jHg8hizJGPQGZFkmk8kwF1hGtlRwuMOH22L4zHtcKpWYmprk2rUrvP32G2Szabq6etUM4c8il8ui1+uJx+NcujSgTkwkEgnMZjOCIJDJZJBlGZvNTl1dHTpdOcu5nBHeqE4Keb1+Vm8M05GapNJWxWRJgUofRpMZj9uJJRXAW0yxNnGFN8+fxel08sUvfpnW1jYURWFg4AJLS4vs3n0Hx469o04GiaLIE088wZUrQywuLnzm9ciyzOzsDDqdSGtrG7/4i99Wv0eGhoY27dvfv+W2Qu+n4fF4CYfD+P3+276/Zcs2Xn31Jbq6um9bSFNDQ0NDQ0ND4+cFTRzW0NDQ0NDQ+ExWV1c3iR9Wa1kcNplM627YIolEnFQqxRNPPMXY2A127tzNpUsX1WMUReGjj07S0dHJrl27uX59YFMbPp8fRVF4663XN+WkOp1Otm3bzsLCPPv23cmHH55Q35NlWV3C/pOf/JCrVy+zZcs2AOrrG3jiiaew2+2Iosj4+BhtbR3qsXaTHrtJD5h47LEneO65CBcvnufFF59fd8fasVjM5HI5pqencLlc9Pdv5W/+zb/9qcLw3NwcsViMAwcO3vZ9vb6cOfvqqy+xuhrCbnewsFAWv2KxKMViQb2eBx54ZJMj8eDBuzl69G2eeuqLBBJ55iJZUvkCmXQKOZvCISXIxtdYW1vjxRefZ2lpgVgsjqLIWK02ampqVVFflmUMoo7urm7Gxkax2+3EYlF1eXw5x9ZINpuhVCpRKpXw+aqwWMrZyzabjXw+z/DwdWpqamlublGL8N2MKIr4/VUYjUYGB68yNjZKY2OT6iCORCKq27zsVJUolYpYrfb1ftuJRiN0dXWrfXe53JhMZiYmxikWC7ctUAZlsbq6uoZAYInZ2Wnc7p3rblCBvr4+zpw5RyKR4MqVS/j9VSwsLKAoCmtrIbq6upmfn6VQKKxHFhTp6+vj+vVy9rDT6aKhoZG1tRDNza3odCKhUBCdTqC5uYXBwWvEYlEuXrzIk09+iRdf/AmZyVPEXW70nkZSS0EUykK6rBOJSwamViJ88WAThztuLcq4QTC4wtDQIMPDw2SzGaanJ4nFouzcuQOz2aYWgbsdZQd4krm5OVZXQ5RKJdxuN5IkkcmkkaQS8XiMfD5Pa2sbnZ3deDweZmenOXPmNJ2dXbS2tm06p9vtxmazU+3z8MUvPsNz3/8TMsUUgk5HhRInEJnjxswUNqHIvn0H2Lt3f7mQXSrJu+8epbm5hdbWNl599SV1IsnhcPLUU08TCMwyNnbj0y+IjdiTUVwuF7/yK/8X6XRGLRBXjsnYPAG1deu2zzzfJ9koSvdp4rDRWI7YCASWbrtaQkNDQ0NDQ0Pj5wVNHNbQ0NDQ0ND4VDYcrTeLwxtCnSAIOBwOAoEAxWKRfD7H/fc/yNzcLIqiUF/foDr/gsEgyWQCRVGIx2OEQqFN7Xi9Pk6ceI/R0Y8FIbPZzM6de1hcXOCRRx7n6tXLm46RJIlcLsdrr73M++8fx2IpRzTs2LGTw4fvV12CPp+fU6c+/NRrbGxs4p57DjM5Oc5zz/0x27btYHl5mfn5Wex2O/fccx96vYheb+D8+bMUiwVaWto2jUk2m+WDDz7gyJFHP7UdUdRx8eJ59ThBENDr9RSLxU1FsyoqKnj66S9uOtZms1Ny1vGf3r5CUmcjnEixuDCvvm9SinhIEBk5SyCwtJ4XqyDLMoIgUCoVAdbd1mWRVZJkampqGR4eRhAEtV8Gg4FcLk+pVEKnE8jlcsRiUXbt2k1jY7nAXDweA8oZwrFYlLa2DgRBQLlJocxmc0SjEaqqqnG7K3A6nTidDiKRIgMD54nFosiyvC4EW8nlskiSjN1uR5bLQrHBYLjFhW02m+nt7ePkyRMsLweoqam97Xg3NDSyuhoik8mwuLiAzWYjnU5RKpXjKlKpJLlcDkVR2Lp1G9FoFFmW6OzsplAoX7/X68Vmc1BTU0tHRxcrK8t4PJUkkwmCwSAPP/wojY1N/KN/9GuUSqX1/GIHg4PXyOfz/NZv/XMKhTxvvvka+qkPEaq7MBhNFCpq0Yl6FAFIh2m0JOk2tGDUN2y6hkwmw8jIEEND1wmFgur2paVFVlZW6OjopLKykkzm0zOGV1dDBINBMpk0kUiYYrGIIAiEw2GSySSCIGA2W2lpaaGzs5vl5SXS6RShUBC/vwqfz78pw1iv19PR0Ulf3xa2b9/J3NwMmUwGRZaptJcnCa5eusDa2ioul5uvfe2b1NaW79Hk5ASXLl3knnvuY2joGpcufTxJtDGhMzo6zPnzZ297PRusroaYmpqktraW3/qtf0FNTQ0vvPAT9f1r165s2r+xsem2bv7Poqqq6pbvnE+yc+cuTp48oYnDGhoaGhoaGj/XaOKwhoaGhoaGxqeSTqfIZjO3dQ4D6hL88s/l5eZbt27j6tXLfOUrv8APf/gc6XSaublZqqqqsFqtvPXWmyjK5gJTweAKs7Mz6mu9Xs+uXXtYWQnw6KNPIIriLUvCA4El3n77TaLRCJFImMbGJh5++NFbik59VgGzDfbvv5PXX3+Fs2fPEIlEaG/vwO+vwm53YLVaMZlMfPvbv4Ioily5comBgYts2bJNXVJ+/Pgx7r//Pkwm06c6OK9cucz09OQmB7PbXUE4vEYkEgGgoqKS6upqrFaruo+sKHw4FWYwX8Hs/Bw7utrw+O0kF8oZwQqQEwxM5WwEqUW2eSkmplEUBZvNti7uxjAaTet50Xr0ej0Gg55kMoHRaFiPvJDWc1blTRnTiqJgNBoJh8PU1NTR37+F5eUAs7MzyLJMNptlePg66XQai8WiPiv5fI5UKkVTkxmLxUI8Hsdms9HV1c3IyBCKIqMoCplMBqvVhiiKFApFzGazGm1gt98+f1cURbq6uolGI+RyWZqbW9V2C4UCqVRKLfC3uhoikYizdet2Kioq8fkqyeWK1Nc3Mjc3QywWZfv2nQSDQRwOO9/85i/z8ssvEAgssWXLNsbHR0mn00iSxMpKgIsXz7N37wGeffarNDe3ANDe3sn4+CgLC/P4/X6qq6vJZrO8+upLeL0+urq6mZqaRIgHEUNh9IoRQdSDVES0gP/Og1weOM/W/n4URWFmZorr1weZmppcL1L4MaFQkLm5WRoaGqmqqrplbMoTMHGCwRUikfC6AK+QzWZJJBJkMhncbjd6vZ729k66u7u5cWOEqqpqBEFAlmVCoSDV1TX4fD6qq6sJBJY4dOhetm3bTnd376YYkcHBq1y7dgWz2UwwGGRlZZlYLEZLSyu1tXU4HHaKxSIffPAeer2Bhx9+lLfeemPTCoGNCZ2xsVFOnHhPLUj3SSRJYmZmmmBwhc7Obv7ZP/uXajSGxWIlnU5TKOQ3nRt+9kJ0N1MumBj9zH2cTheCoCMWi+J2V/yZ29DQ0NDQ0NDQ+N8BTRzW0NDQ0NDQ+FQ2HL4bwpsoiurSbSi7OLPZco6p31/N8nKAHTt2cvHieVVQ+m//7b8A0NjYDMD8/CzxeASPp7xce21tjXQ6vcmRvH37TlZXQzz22BdUUfhmcTgUCvLjH/8AnU5HOLyGXq/n7/ydX1XzYD+Jz+dndXX1tmJaPp/n9OmPmJmZWs/c1eF0uohGI6pIe+edB1Xx+8CBuygUCgwOXuX553+EXq+npqaW+vp61taSt21/ZGSYc+fOIEmbC+m53W6uXbuCJEnY7Xa6urqpqqomlUqqmc7n56IcG1vFYdLTV+8jEQ5RV1+PqBORZAkB0OVThMZHEd01yB13IcSj2KTMuitURyaTIRBYxOv1YbVaiMdj+Hx+jEYjVquVVCql5jhDWUg3m00UCgW1IF8+n+fGjWG2bt1GTU0tbncFExNjJJNJFEUhnU6RSCTweDxqHINerycajapF31Kp9Po9DyPLCna7nWw2i06nI5PJIsuyWoCsrq6e7HqRvNvhcrnXnb9w+vQpKioqEAQBg8GA3W7H7XZTU1O7LkQr1NTUcujQvbS3NyIIZtzuCv7bf/vPLC0FuHr1Ml/96jew2WzcuDFMe3sngUDZQfuVr3ydH//4+wwOXmNycoL6+gaam5tVYRigp6eXqalxpqYmuffeI9jtDubnZ8lms6ytrbK0tERFRSWTkxMUkjEcFgvpRBpBEEgVzSQSCbLZLD/5yQ8Jh8PqhMsnicViTE5OUFVVRUND4y3PcSgUJBQKrjvHy9symXKxvGKxSLFYxOl0cPjwEcxmC+l0CrvdQTabYWFhnoaGRnp7+xFFUXXndnZ2UywW2bVrtxrbskF9fQMOh5OPPjqJoigsLCxwxx17KRaLalTE0tIiV69eYe/e/VgsFn74w+dIJD7OF77//gfZunU7c3OzvP32G596vzOZDGNjN8jn8+zcuZt/8A9+Y1NRzPr6+nVH9fKm427Oif6zcHOe+WdlCu/atZvLlwc4fPj+P3MbGhoaGhoaGhr/O3B7+4yGhoaGhoaGBuW8YfhYKLnZNQyoy/KNRhM2m42VlWWcThcdHZ1cvjyAx+Mln8/T1NSsForLZDLMzJSXosfjcSYnx1UnIpSFtng8xmOPfQG9/uN5bJ1OVF2VG5mzUF46//jjT36mAFRbW0cgsLhpmyzLXL16mT/4g//Om2++hs9Xxc6du5BlmUBgiVgshsViwefzs3Pn7k3HGo1Gdu++g8OH72dxcYH5+VnOnDmzafn9BgsL87z99hvodDpkWb7lPNFoFKPRSE9P37qztod4vCyQxrJFTkysYdHr8NiMeLxeEok4xUJBHbNCocDk5DgCCnJsGcHuwdy2G4PBgKIoWCxWjEYjhUKRQGCJaDRCc3MrRqORXC6HxWJFpxPUWAhBgFJJwmAw4Pf70evL54nFohQKBUZGhimVSlgsFrZs2UZTU/NNERkFgsEVVey0WCwEgytUV9fgXe/72toa+XxOFaJ1Oh0GgwFR1FNRUUE4HEYQBKLRMIXCxw7zYrFILBZlcXGB0dEbzM/PMjc3i8VioaOjHVEUOXDgLr74xS/zta99g29962/yd//ur/Iv/sW/Ydu2HRgMBnp6eujt7cXn85HLZamurqWrq5tYLMq1a5dpbW1jamqSxsay8Do3N0sqlUSWZXK5LP39W8jlcgwOXiUYLMc8KIpCILBEZaWH9vZOkskEqVSKxsZm9u27k+rqGqqqqhgbGyWRiKvX6nK5yWYz5HJ5PvzwBFeuXOKtt974VGE4nU4zNnYDt9tNa2u76vJdW1tjZGSYS5cuMj8/RyqVIh6Ps7wcIBQKks1mqaiooKurB6/Xy5Yt26itraOiooLV1VVGR2+QTKZoaGiksbEJo9FIZ2cXv/Irf5ff+Z3/iMlkQpYlhoauUywWN/VpQ3w+depDnE4X/f1b1oVnM8VigaWlJS5cOM8TTzxFOp3eJAzb7Q6++tWvs3XrdoLBIK+88uItLukNgsGV9agIgb17D/Crv/rrm4RhgLq6Bubn57h+fXDT9v7+/k3fI38W3G43sdhnu4dramqJRCKqIK+hoaGhoaGh8fOG5hzW0NDQ0NDQ+FQ2snA3xOENd+8G4XAYvV6Pw1EWagKBJQB27tzND3/4HM8//yMOHrx7fbl3WejbiAwYGrqOLMuYTCY17qG5uYVCocDjjz95i6BTKBQYHr6uCqeyrNDR0YmiKOzateczr6OmppaxsVF27NilCswnTrxPOLxGa2sb6XQKQRCoqKgkEAiQSqVIJhOIosiRIw/cNo6iVCpx4sRxvv3tv4XD4WBtbYnXXnuZ6upaduzYhc1mIxwO8/LLZdHrk5m8UBbXFEVRxfOurh4qKyuJx+PU1zcwspIkli3S6ik7mAXK+anzC/NYrFbCkTXm5uYolUplJ7FUQsgmMVS1kZu/jHm93xaLZb34WNlNvLoaJJVKrV9HWfDbyD+GslBsMpmpqakhEFgml8uRzWZVAWx09AZ9ff0IgkB9fQMVFZVcvHieVCql5koXCgXq65M4HA5EUcRut7O0tMTq6irpdHo9yqKEXi+q0QeyLNPb20s4HMFkMrOyEuD9949jtVqpqKikoqKCurp6mpqa8furGBq6xmOPPUl1dQ2KovD222/Q1tZOe/vH0R0ul5uWllZmZqb54IMTdHT8EgBnzpzi4MFDnDt3lt7ePqLRKG+99Tq7du1hZmYat7uCa9eu8J3v/D7bt+/kP/yH3+X48WOcPPk+w8NDvPzyC3zrW3+Do0ffoqKiAqOxm87ObiYmxkgk4mSzGeLxKF//+i8yMHCBgYGL5HI5RFFEpxPJ5/MUiyVSqRAmkxGr1YZCnJWMjMnqQEDBSh4jkuraNpvNdHZ2b3IJg0wuVyCTSaufM51Oh9Vqo7a2lubmVioqKrh8+RJudwUWi5VCIc/Cwjz5fJba2jrcbjdVVdXce+999PT0bRJen3zyGX7/9/8zkUiYM2dOc+jQPSiKwujoDd5//zihUBC73c4DDzzE6dMfYTKV40s2ChDeffc9nDt3moGBjwtU1tXV84UvPIXd7iAej/Hii8/fdmJFkiSmpiZYXV2lurqGzs4ufuEXvnnb/GCPx8Po6A0ymfSm7Vu2bL/NN8LPht9fTTAY/Ny84q1bt3P9+jX27Nn7525LQ0NDQ0NDQ+N/FZo4rKGhoaGhofGpfFIcvjkLN50u57qazWZstrKYtLy8rBajy2azzM/P8ju/8/8lGFzmnXfeAiCTSVMqlVhcXMJud9Da2gaA3+9HEHQ89tgXMBgMm/qxsrLM66+/ogrDOp2Oe++9D0EQmJ+fo6Oj8zOvw2azkc1mCIVCfPDBe8zOztDY2MSjjz6+qUicw+GgurqGpaUFZFlGkiRqa+tue84PP/yAnTt343A4EQTo6enB661jdnaWo0ffwmQyMTU1qQqqt1uaHg6v0dfXrwpjvb19iKLI3NwskqxweTGOxSCiu+lYu90OK5BKplhaWiKbySCKIoIgIIoipWwC0duI3t+KbnUCKAvZgqBbF/cVBgYuYrPZqKz0EIlEMJstFAoFNW/YZrOpMQRer5dgMKg6d6ura4jHy/EGG+Nus9no799CJpMmkUisj12JoaFB7rrrIFAWwi0WC6urQTKZDEajkXw+rzqYi8UCVqsFSZLVgnCtrR384i/+Mnq9nlAoiNFooKenn87OLoxGIy6XC1DU5/Kpp77I8ePHWF0NsW/fAXXM77nnPubmZpmYGGNmZoZ8HgqFIoKgw2w2841vfIsf/vA5pqYm8furmJycYGpqgkBgiYMHD/HlL38NnU7Hl7/8NUqlEq+++hKvv/4KweAK3/7238JudzAwcAGXy8W+fQd47713GRy8itvtRpZldu3aQ09PLydOvEciESefzyPLkpr1nCsUCes92Bp3MCjXYNe5EVAwKiXcUozIxFkUWcbn8zE6OkI8HkdRFHK5LLlclnQ6jaKUJwFqa+toaWmlqqp6k1s/nU5jNBqJx2NMT09RX99IW1s7+XyBbdu288wzz9Lb23fLM+r1+mhoaGTPnr385Cc/wmq1MjMzxezsDF1d3fT09LK0tKg6qZeWlpibm8Xr9VFZ6eHVV1/aJPxu27aD++67H71eTzab5YUXfkIqdWscSyqVYmxslGKxSFdXN35/FU899UWqq2tu+3kUBIFAYBGHw6lG0NTW1uHz+W67/8+C31/F2NgNurt7PnO/9vYOnn/+R+zatedTc801NDQ0NDQ0NP53RROHNTQ0NDQ0NG6LJElEImHg9s7hDTHI5/Or72ezGWKxKKIokstlMZstmEzG9cJeY0xPT5FMJgkGg0iSRDweQ6fT4XA4sVptPPHEk6qgtcH164O8++47av6s0Wiiu7uHrq5uXn75Bbq7e28Rkz9JKpVidPQGY2OjVFWVRab29g7m5+e4cWNk075VVVUsLy9hMplwu92cOvUhhw7du2mf6elJZFm6RZQWBIHm5hbq6ur5znd+n8HBq+h0IrW1desC5mbnsNfrw2AwcOPGCC6Xi/r6BtLpNLFYjGxRIpYtYjduLsQH0NDQwOtvvEI8FkUnigg6ARSQShKgIBUL6G0VSCuSmv9aVVVFsVgiHo+Rz+cpFPLEYlEEQcRmsyKKIpIkYTQaVXEtHo/jdlfg9foIhcoCcTJZdgOHQkHMZrOafWu12nC53JjNFpaXA+h05fPNz88Ti8URhLKwPTY2SqGQR5Zl8vl8WdAuFXG7K9i//wD/9//967zxxmvE4zH0egP33nufmnOdz+cZHx/jjTdexWy2UFVVzezsLK2t7UA5w/aBBx7iypVLvPnm6zz44MMYDAZ8Ph/btm3n6tXLHD16FFE0c+jQvZw48R4PPPAQdruDBx54mLfeep2XXvoppZKELMts3boNvV6vOr6NRiPf/Oa3GBq6ztmzpxgfH2NpaQmLpSxOZzIZHn74URYXFxgeHuL69escO/YOU1OTzM7OYDKZ1OgEg6EsiutNFnQt+yjW9ZLViQiJVSwWAb3BQB49oykDRWcn7sLwurCdJ51Ok82WHfhWq4XKSg/19Y3U1tauF0nbXFBwdnYaUAiHw/T1beH++x9ky5ZtdHR08sILP2F6eupTP0MfZznr2b//AP/m3/xzOju7+Bt/42/T2dnFiy8+T3d3L6OjI8zMTNPY2MQDDzzM97//JwwOXqWxsQmfz48oitx33/1s374TKMeEvPzyC4TD4U3tKQosLi4yOjqO1Wqjt7cPs9nCgw8+ok4k3Y5kslxsDwTcbjcA27Zt/9T9fxa8Xi+nT69+7n46nY6Ojk7Gx8c+V0jW0NDQ0NDQ0PjfDU0c1tDQ0NDQ0LgtkUhEFbI+mTksy7KaR1xf36DGSUDZPTw+PkpdXQNVVUUuX77E4cNHeOihR/iDP/jvzM3NbsouDYdXcTgcfOELT2MymdTtkiTxwQfvcenSwHofyoXiurq6MRqNzM3Nkkgk6O/f8qnXUCwWGRi4wPnzZ0mlUuzff0AtcidJEsePH7vlGJ/PjyRJ9PVtwWg0cf78WRobm2hpaQXKQvOFC+d55plnb9umLMu8+eZrpNNpOju714vBLZUdojflkm4IalCOdNjIkbXZbGV3tayUC+QJtzoR9Xo9mUyWbC6HXhQprV+PvC5iGqQS+UKRdHgNKBdpi0aj5PM5VSzeiLoQRZFCoZw9vFF8rhw/Afl8jlKp7HA1mUzEYjFWV0MoioIoioyO3iCfz+H1+hGE8njrdDosFguZTAZFkUkkEoRCQURRj8PhoFgsUlnpweMpZxBbLBZCoSBNTc10d/fS0VHOjt65czevvvoyxWJRFYdNJhNbtmxly5atxOMxhoeHeOut1xFFkb6+LXi9XgRBYOfO3VRWzvDyyy/w0EOP4HS6uPPOu7lxY4TR0VFqahoIh8NUV9dgtzsAaG5uJpPJMD09RWNjI7t37yYSiZLL5Zifn6OlpRVFUbh69TJ33LGXbDbD0tIib7zxKs3NLSiKQiaTVtt//vkfMT09yXe+89+orq5Wn62VleVNRR1pvgO5to9SfAVZKmFwuUgm4hiNpnJxuWwWg7eBqKeX0rU3kTJx9Ho9drsDv99He3sbdrsLvf5WcVdRFCYmxllbW8NisbBr1x5+5Vf+Dv39W9V92tvbuXDh3Kfm8ur1ekqlEj/60Q/x+/3s338nd955N1evXsbj8bK0tERbWzuvvvoyFRUV3HnnQQYGLjA1NUllZSWSJGOz2fnCF56ivr5B/Yy88carLC4ubGqrVCoxOTlOMhmnurqGpqZmdDodd999D1u2bL1d91SuXx/E4XASjUZwu92YTCa6uv7nhFpR/Djy5LOK0gH092/ltdde1sRhDQ0NDQ0NjZ87NHFYQ0NDQ0ND47ZsREoA6xm0JlVAikTClEpFTCYT1dU1LC8H1H0vXx4gEFji8cefJBQKcu3aFe666+716AmBdDqNKG4Ingp6vYGamtpNwnA6nea1115mYWFe3dbfvwWX62NX5I0bI1RWVt429kFRFIaHh/joo5NkMml27NjFU091MDs7rbpiL10aIBxeu+VYk8mk5rVu376Dq1ev8Oabr/NLv/RtbDYb7777Dvfd98CnOi0/+OB9xsfH1NdWq5X29g7y+Tznzp3hxo0RDh48tCnX1e2uUF3ZG9dn0usQdQLFTxSxAyiWygKvyWQqR0ogoACCooACBpMZWS5htdoQBAGPx0OpVKJUKqrZz2UdWaFUKqEoZSEYyvcgn88jCKznE69uKhiYyaRZXi6qUQ7h8Bo+nw+dTiQYXKFUKq5n6+pxOp1qcTKbzcbqaohsNoNOp6NUClIo5IlEIhgMRhKJBNFolNdff4XJyQkUpXwfv/Od3+fOOw8iiiJ6vR69Xo8o6jEYDFRX19Db24fJZOLEieOkUina29vp6emjpqaWw4eP8Oabr3Pw4CHq6xvYt+8A3/3u72O1Ojl37gzPPvtVAMbHxzh69G08Hi/33fcAuVyWaDRKJpPGZDIxOTlOQ0Mj7733Li6Xm2ef/SpOp4ujR99ifn6OUqnI8nKAdDpFPB4jEong91cxNzdLILBEoZDHYDDg8XhYW1tV+2+pqCLTtIVsKgGlAsVSiWg0UhaEjQZy2RyiXqSwtoBQUYepphN3Zon6+gaqqqqw2+3YbGYymTw3x1krikI0GiUYXEavN/Cf/tPv8frrryBJkirQbtDQ0EwkEr6tOJxKpfjgg/cZG7uB1+vjF3/x24iijtOnP+Khhx7hhRee58KFcxw+fIR9+/Zz7doVBgYucPHiBRRFplQqUVlZyTe/+Us4HE61b++9d4yJifFNbSWTCcbGRpFlmS1b+rFaHSgK7Nixk71799/2s7aBLMsMDl7FZrOpgnN3d+8tqxD+PNjtDtLplDqJ8GmYTCa8Xh9LS4vU1dX/T7eroaGhoaGhofFXhSYOa2hoaGhoaNyWzeKw7raREn5/FaIoqpnDsizz4YcnuO++B+ju7qG2tpYLF84xMjK07joNrhfEyqEoCiaTia1bt3P58gC9vWVBb3k5wCuvvEQymQDK7r37738Qr9fH97//J0DZVTw9PcnDDz92i6Nvfn6ODz54n5WVZbq6urn77nuoqKhElmUGBs4DkEolOXPmo9tetyRJtLV1kMlk2LFj93oRtRBvvvkazc0tNDe3fGqO6eXLAwwMXLjteyaTCb+/ikOH7qWpqZkf//gHuN1uPB4v3d09RCIRdV+dTodRB60eK1eXElRaPxa5FGB4eBi73Y5UKlEoFChJRQTKYq4iimXBN7m6XjCuHrvdoRbZ2yg2ZzQqbIjDFotVvb+1tfWEQivk83l0OgFJktajBXTIskwmkyaZTGA0mhBFARAolYps27YVv99PNBolkYjj9fpxOh0cPHgP7757lGw2QyZTjq9IpZI4nTr1GdgoYlZRUaGKstFomGKxwMLCPEePvoXL5aZUKiF/QixfXl5mbGwMj8eDLMuMjt7ge9/7I6Ac2+Fyufjgg/fxer2qg/r48aM0NbUgy/J6NERZ0Nu5czd6vZ6TJ98nl8uxuhrC7a5kbW2NwcFr9Pb243a7mZqapK6uDrvdztraKteuXSMQWGB8fJyHHnoYg8FIfX0DY2M3iEajrKwsU1dXj8FgxOFwIMsK6XQKV+M2nJ5qirEQG176UrFIqlRCFEWMJhN6vQGj0YjRasLZfye7jUEM65MrtzOzluMVsmzfvoN77jlMR0eH6oYXRRGn03XLMWazhUQi/vEzpihcu3aFDz/8AEHQcfDgIRRFUZ97i8VCIBAgEgkjiiJudwVWq4Wf/nSMy5cvYbFYEAQdLpeLQ4fuVYVhgPPnz3LlyuVN7S8uLjI/P4vD4aCrq5uKCieZTJ6Ojk7uu++Bz3Xtzs7OkEgk1LxfWZb/pyMlNqiqqiIYXPlccRhg167dnDz5gSYOa2hoaGhoaPxcoYnDGhoaGhoaGrdlszj8caREPp8nHo8BZXEYUF2wi4sLrK2tqcXiXC43HR2dvPLKi1gsVjKZDJWVlaysBNDr9bS0tGI0GlEUhbfeep2dO/dw4sRxSqXS+nkdPPnk09TW1hEMrqj9WVtbxWQy0dfXr26LRMKcPHmCiYlxampq+drXvrHJJanT6RCEsth54sT7qoP2k9TXlzN0S6Ui4+OjPPHEU/zpn/4Rw8PXWViY5x/8g9+47XFjY2O89967nzmmdrudL3/5a6ysLNPc3MLKygpDQ9d57LHHSadTyLKMTqfDbreTSiXZVufiWiBBviRj0peFr+XAEqHQCk6ni2QyiazIIAjrRecEDE4f+kIKJRHAYrORz+fJ5XJEIpH1uIiy0GaxmDGbLcRiMUqlEtlsdt0hrKjjZbVakGUFk8lMZWUlgqDDaDSSSiWRJImdO3er7kyn04nffzevv/4KRqOR7u5uJEnC4XBy8OAhRkaGWFtbRRB0lEolIpEwbrdbFactFguNjU3IsoLb7aatrYNiscg3vvEtzpz5iIcffozKykoMBuN6TnEJSSqxuhri6tWrHDhwJ6VSiWKxiCRJJJNJJifHmZ+fY9u27SSTScbHx3jmmWf40z/9Pul0irNnTyNJEtu2baemppZcLkuxWKShoZHz58+Rz+e5dOk8ZrOFAwcOIkkS169fI5VKEQoFGRu7oRZJLIvvKd588w18Pt967naOVCqJoihIUolYLLpe+E8ikYiTiWcwh1cpFArlXGOh7ABXFAURAbvdjtVqw2KxIhj1lEQj4WQWM+X4jrIDXyKXK6LXG1AUhe3bd/Lggw9TKBT46KOTtLV1MDc3C4DL5bqlYFqpVKSqqoqxsTH6+rYQDAZ59913CASW2Lp1O3fffQ9jYzd47713VYG5stLLH/7hd9ixYyc1NbV0dnbyr//1PyeZTBKPx2hsbKKhoQG/v0qNpoFy9MOHH36gvi4Wi4yPjxGPx6irq6exsQmdrvx81tbW89hjX/iZCrxdv35N/dlms6l51H8RbDjA29o6PnffjbzneDyGy+X+C2lfQ0NDQ0NDQ+MvG00c1tDQ0NDQ0LgtG5nCUHakbojDG5mz5eJj5exUm81ONptVHZg3C0JudwVXr16ht7efdDqNLEtUVVUhCDocjrIbT5ZlLl68wKVLAzQ3twDlLOMnnnhKFZ51uo8Ls4VCIe64Yy8Oh5NsNsvZs6e4fPkSdrudxx77Aj09vbd1G/p8fq5evcyNG8O3vWaTyUR3dxfLy0v09W1hePg6Bw7cxaFDh/nd3/2P9PT0srS0eMvS/JWVZV599QW1cNntsFpt7N27D4vFwsjIMKIoUldXR11dHU1NLRw9+hbHjr3N4cP343JVEI/Haa9roKnCykwkQ0ulhWwmw9z8HPl8Hq/XtykTFQUwGNEZrcgz1xFkifqmJgRBIBaLrovPZbdwOdvYsZ4JK5HLZcv5xuvF82w2G8PD18nndapjsr29U70XiqIwNjZKPB7D5/MDkEgkWFlZIRIJ09HRqTpUc7kcu3btJplMkEqlKBaLrKwU13OL9UhSCafTyf33P8jDDz/G3Nwsg4NX8Pl8TE6W827b2zv58Y9/wO7dd6jF9DbGWlEULl48j14vYjKZMZvLf0wmE/39W9m9+w4ymQzHjx+jsrKSM2fO0NLSytLSIn5/Nb/5m/+UiorKW+7X8PAQ3/vedwkGV9i6dTv33/8gTqeTwcFrFAoFamvrqKys4Nq1a5RKJaxW63qxPjug0NDQiMViIZ1Ok8uVM52z2ayaX5vP5yFfQFfII0klUBQMBgOyJKEAsiyh05VF8EQijixmUQwWxmfGEAvp9c+EDp/PQzqdxWKx0tDQyNTUJL//+7/HxMQ47e2dLC39HsHgMuPjY/j9Vfzwh89tiugoO5tXyGROMTMzzezsNBUVFezbd4Dq6mqmpiaJRCKsra1y6dJFxsZGcTic3HPPvZw69SGtrW289dYb1NTUMjIyzMzMNH//7/9jotEo4fAaxWJ5EmZ6eoqjR99SxzcejzE+PoaiQG9vH253hfqe1+vliSe++LmFJqEcQXNzRIXT6cLj8Xyu2/hnxefzf+pqgNuxa9duLl0a4PDhI38h7f9FoigKwVSedF7CZhKpspv+wsZJQ0NDQ0ND4+cXTRzW0NDQ0NDQuIVsNqvGOgBqoTRAdfBuuIYB7HYbExPjGI3l5fTLywFqampZXFzg0qWLWK1WNZNVFPXcc8/djIyMYbXaKBQKjI2NkkjEEQSBykoPhw7dw+HD96v5wICaU5zLZUkk4rS0tHLx4nnOnj2Noijcddfd7Nq15zMFperqGn7wgz9V83I/yYEDd5HJZHC5XGzfvoMf/3iExcUFgsEV7r33PlZXQ7zxxqv84i9+W83hjcdjvPjiT1GU4m3PCWAwGHj66S9y7twZCoUCExMfZxK3tbWzd+9+amvrOHXqQ1555cV1oVZHY2MTT/RX86PLS0yHM8QWxlWH8AaKLCPJMgaLA4O7ivzCdXJjZ+lsLxe4SyaTBINBdDodJpMBQdDR1NSM1+slHA6XIyyMpnWHcRZJkujv30qpVGJ+fpZ8Po/NZiccXlPFYUEQ6OjoZHJygspKj3qfwuFVgsEV9u07oPZvenqS2tpaAIrFAmazGa/Xw+rqKqX1+IS1tY9/NpvN2Gx26uvr8Xi89PdvQW8wEtO7WSwq3LGrj55qB7qbxsBstnD33YfQ6cpu3Xy+/CeXyxOLRUkmk8RiUbq7e3jxxZ8QDIbQ6/XodDp+8pMf4vdXYTSasFjMmExmDAYDIyMjGAwmGhub+eijk6ysBNizZ1857mHdLW02m2loaGR5OUAqlaS2tg6z2YIsS6ysrODz+daL+RlRFIhGo+j1epzOcp6unImjN5oxO11IxSKyIiNLEggCoq48Fn5/FTqdjoxiQKfI9Di2UOv30tzcSiIRR5JytLf34HZXrudKl5iZmcLr9dLbuwVJKnHpUgm3O0RtbT0ulxtJKu+Xz5fHZ2VlheXlAOPjo/T2bsHj8TE2Nsrw8BCKopDP57l27Srj4+P09vbidLpIpVK89dab+P1+rFbr+mdbJJPJ8M/+2W8Sj8eJRiPqZMjly5dQFBlBEIhGo0QiEWw2G/X19USjUeLxODqdDpvNzgMP3MfExBiiaFgXsUVEsSxmGwyG9Z/LAvfly5cplUqqw7iyshKT6aaCf/+TGI3GTQU0P4+amlpOn/6IfD6/KUf9fzUryRzvjq0ytZZWVyK0e20c6fJR7fiLGy8NDQ0NDQ2Nnz80cVhDQ0NDQ0PjFtbWVje9FkU9FouFeDxOLpdDr9fj9XrV9+PxOKlUms7OTnQ6HYFAgMbGNV566QUkSaK6upaxsRtIksSddx7EZDLR2tpGPJ5gcPBq2UVJWXTU6/UcOnR4kzBc7kP5dTAYXF/ufxGr1ca2bds5cODgpgJvn0YwuMLi4gKdnV23vOf1+ti5czevvvoSHo+XhoZGXC4XR4++TWdnF1/72jd47rk/JhKJ8Pbbb/DUU18kn8/zwgvPk06nsFpvLwQJgsCjjz5BbW0dOp2O0dEbmyItenvL0Rh1dfXo9Xq++MUvc+HCOd59920SiTh79tzBV3bW8ruvnyWUlSkURQwWJ+lcAUU0oJgc6G0u9IKCGBpHmTyDy2HHYDBitztIJBIYDAZKpSJQFvlra+vWi5mVBf9CoUA8HqVYLLGwMEdFRQVbtmxjeXmJXC5PMLiCJJWora1TxXdRFGlpaSUWi+LxeNefmzX0egNzc7O0tLSiKAqJRJypqQkymQyxWAxFUaioqCSdzqy7h0UMBgPhcJg/+ZM/VMdDry+3I8kKbw6tcCXjZHFxkaHUFEd6a3mo289qqsAHk2sMF/zMn5viawe34PXe+hx88MH77N27j1deeZFnnnmGe+99gD/4g++wtrbK+PgYdXUNdHR04vP5SaWSvPjiTykU8oBMOp0il8sxOjqK1Wr/RJEzRY3IiMfjyLJMZ2cV4fAaicQqU1MTxGLR9bxmhVwuh04nUFFRidPppBBfQlSKeGvqCS3MIksyoqhHlmUMRgMOh5NIJEylx4tisLKv0c5XD9zL4uI8MzPT3HHHXvbs2cbaWlItSFcsFhkaGuQb3/iWeq/W1lbJ5bIcPnyE3bvvUHsfi0V57rk/ARSeffarCILAL/zCNz++OqV8fadPf8T8/Bxf/OJX2L17D6lUiu9977u4XC7q68vxEQaDgUwmjU6no7Ozm/ffP87amoTNZmd6egqTyUShkGdpaYlMJk1FRSVut5tcLkcmk0GWZQRBR01NDefOnSORSPMZRny1f1euXCKbzQJlJ3VNTS0TE+NEImsYDMabihiKnxCXbyc631r0sJyRnWJ6egqbzb6+r/6mc+jVyJoNtm7dzuDgVfbs2fvZF/BXRCRT4MeXAyzFs1TZTfjtIpmCxLVAgnCmyDd212/KNdfQ0NDQ0ND464UmDmtoaGhoaGjcws15wwAVFZUIAoRC5UJ0Xq9PdeqVSiVmZ2fo6OhQl+fPzc2wtLRALlcWbZxOJ4VCgebmZszmsoi6UcxqQxgu59T2YLVa+fDDExw58uCmPoiiSDKZZHDwGoJQXj7+9a//0qcWh/skqVSSgYELap7xJzly5AHVxdrR0YUgCDQ1tfDCCz/h61//RUwmE48//iTf//6fMDk5wcWL55meniIcXrttYbAN7r33PlWMFkU9Q0OD6nsmk4n29nKWqU6nw2y2kMlk2Lp1O2tra3R1lUW2RCKOeXqWTouP0WQBXUUtq9EoeYyI+gKl+Wu45ATmYpKKmipaWtq4cuUSU1MTAJTjbHW43W4OHLhLLZi1uLiAxWLBYrHgcrnIZsvO4XPnzlJfX09VVRWzs7PIcjnK4+LF8+zZs1cVHY3GcoG1jaiE1dVV3G43y8uBdQewjWKxSDQaJRBYJJNJ43K51zNZXaTTZZFQFHVYrFbGI0U+eGeAYh52lx8L5mM5rizG8dmM1PW0cPXGOOdmzHT67Lx9I8RcNINRb+X83BomZ4Cv725Q85mhXLDu6NG31kXLTv7+3//7JBJ5fuM3fpPf/M1/TKlUwufzs7KyzI9//AOGh4dobGzC7/fjdldw4MBdxONxVldDJBJx7rrr7luW4lutNq5evUyxWKRYLKDX6wmHw8RiMQqFPKIorv/RIQg6stmMKvxKq3OsGXooSjKyLK/HhJSzpxVFpqqqmoxgZktnGzt8BU6efJ9t23bwpS99Rc3nvZnz58+ye/cdmxz00WgUgIqKcnSDJElcvHieM2dOEY/H6e7u5Stf+QWOHi1PSGxEgsTjMY4fP0ZPTx933XU3iiIjSRJHj765HiFTh6IoPPXUM8iyzOXLl6ivryeRSPDss1/hP//n/8S1a5fZt+9OUqkkExPjVFRUsHfvvlsK44miyDPPPEtLSwter4PV1QTFYknNli67oiUkqZwrXSqVWFycJxIJq+MmyzKHD9/P/PwcdXX12Gx2SqWielxpo4BjKaO6rG8+d3nfW4seLi0tMj4+htvtvu1nXBCETaKzTicwOHiN4eEhTCYTer1IRYWDTKa4Ljp/LEB//Lf4CeFar06c3LzPzcK1Xq//mWIhri7GWYxnaa+0qs+M06zHZhSZDme4uhTncMfP9j2qoaGhoaGh8X8emjisoaGhoaGhcQs35w0DeDweQqEg4fAasDlSYmFhHkmSOHToMNevX0OSJE6fPkVfXz8Gg0EtYPfMM8/y7rvvUCyWmJiYZ2lpmT179lJVVU02m6Grq0d1ZV6+fIn29k41fziRiPPuu8e4cOEchUKevXv3c/jwkZ9ZGAbUInQGg4FCobDJAdrT00djYxPFYpF4PI7X60WWZVZWlmlsbGJ6eore3j6qqqq5557DHD9+jD/8w+9QXV2NzfbpjuVdu3aza9ce9XWpVGRmZloV7jo7uzeJeC0trczOztDb20cul6Wurp7KSg//5b/8/1hZnEOWp7Gk01hifpYnp8nGIsj5FKVMiqjRiMFgYNeuPSQSMSoqKsjlcuRyOUwmI06nh/r6epxOp9reJ4vyNTU1I0klwuEw+XyepqYmJienKBSy6PUic3NziKJIV1ePKpQZjSYqKyuZnp7GZrNhNJYdorOzMzgcDgwGA9lslmAwiMNRbrtYLBehSyaT2Gw2jhx5gJS9gcmojoyxQLqU4TsfjtGYkciXJAqSgtUosri4QFWli8XlZeYiXhZiWVoqLSDLRFdyzIQzTK6myg50UUCOBvivv/efqK2tx2638zf/5q+s3/c8bncFv/AL3+SP//gP+Hf/7l/R1dXDysoyLS2txOMx1tZCVFRU4vX66O/v56OPPiQQWGJ+fo6mpuZN41ZZWUmhUCCRiHPjxogq2ul0unURz4DZbMbn8yHLCn6/H0EAg0FPcuocisWBrbad9FoAORVF1Oux2ez4ahqRjHZK4SDXX/8ujo5qGhubGBkZWs/NVqisdFIsKhiNZgqFAsPD13nwwUeYmZlWs5c/zgmvYH5+jnffPUo0GmH37juw2Wx88MH7iKJIf/8WhobKOdvDw+U2jhx5ALe7gunpSW7cGGZ0dES91qqqar70pa+ogqrRaKCnp49XX32Jzs5ucrkcbncFp09/pDrP29s7bxv98vDDj6mfd/hYcP2smJihoeuqax3K31OPPfYEk5MTpNMptm/f+anHfhayLKvi8cZndmUlyNatW2/aXrqNwPzxn3IRQgmn00WpVM7YzuWy6yL0RuHEkvp6Q/T+s7Lhdr6d6LwhMJ9MuMiUdIyGJEpSCY/HQ11tHaJOwGYUGV5OauKwhoaGhobGX2M0cVhDQ0NDQ0PjFj7pHPZ6fdy4MYwkSVitVrWQXDqdYnk5QFNTC62tbQwOXmV09AbpdIpUKoXNVs4a/qf/9F9w/foghUKB8+fPYDQasFrLouoXvvA0c3MzpFKpTW2+886bfO1r3+Tq1csMDFxAFPU4HE7c7grq6xs2Fb37PObn59QidA6Hk2QyoYpKRqORe+89DJTdzIqi4PF4OX36I+64Yx9Go5GhoUF6e/sA2LlzN8ePH2NlZZl4PMa2bTvQ68Vb2mxv7+Dee49scvYtLweQJEkVvDbOuUFzcwsffPA+fX396jZJkmhsbCSTSbOwsMDU5ATZ7DUkSUaSSphMZkw2K7lcnjvuuAOdTkc2m8NoNK2L8zkkScZut68Xsfv4n3+fFIfLmdFtFIvDJJNxVldX2bJlKzdujKiF62ZmpgmH12hubqGrqwdRFIlEIqTTKVpb2wiHw2rBuKmpKTyeShKJBNXVNaysLK+7jMsF14xGE5lMhn377+JU2kPNQoDlqWEKmRhxm53BxQh3TwxRaa1lIZbDUeFjcHIOj1kgGwsioEOWYWZ6CgSBZC7Pi4PLJLNF1tZCFINTNFZ4ue++I4iiqOZER6MRrl+/zrVrV9ddwausrq7ywAMPYbFY8Hg8yLJMNBphenqKYrGAy+UmHF5ldnYGm82O2+1mdXWVQGCRUChEOp0mn8+TSMSpq2vAarWqBQPL4l/5vtfV1ZNOp4nFYmSzWQqZDJ7lSyCWyBvc6PzNmM1mrG43ismBU05x/7YaqvY8jsPh2DTZAAput4WlpVUymRyvv/4Kd999D5IkEYmE1zOFy4XfCoU8v/u7/4GlpSUqKyvp799CNBphcPAa8/OznDlzCpPJxKlTHzI8PITP5+PgwXsQxXKO88LCPKdPn+KOO/ZSKBQQRT1f//ovsXv3Hl5++QWMRiMGg5HW1jaMRiMnT54gl8uxsrJMVVU1drsNk8l8S1wMwD333HfLZ+HzyGazjI+Pbtq2Zct2BEGgrq6e998//ucWh8s53EZ1Asnf0Mbp8QCeohWXRU9LpRW9qPvMc+zffyevvfYyjz76OIIAXq9jU/zH7dgQlIvFIvl8nmw2QzabI5tNk8lk1id7suRy+fW/c2SzWdLpFPF4mHQ6VX6mCgW1cGOxWGSt8RCyaMBQTK8/k23U1dYBIOoEivLn5HdoaGhoaGho/B+NJg5raGhoaGhobEJRlFsyhz0eD8FgOVLC769Wt09NTWGxWKmtrcXn8zM5Wc5YhbLQGg6v8Zu/+c+oqanl2LF3SCQS5HJZGhrKTs6HHnqErVu3Mzs7w/PP/2hTH8bHx/it3/oNWlpa2LNnL319Wzh58n21uNnPKg5LksTx48fU1w6Hg9XVkCoO33nnQez2sti9tlZ2RmcyGVKpFAcPHqJUKnL06NskkwkcDifDw0NIkoTJZCKbzTI1NXlLhnF1dQ2PPfYFNXpjg8XFRVVwcjqdNDY2bXrfbreTyaQJh8OsrCzz3nvvEotFEUU9Ho+H06c/orW1nVgsytTUBKKox263k81msdnsrK2F0evL/7yLx+MANDQ0sba2iiSVSCaT1Nd/3Kdi8VZxWBRFenp6GRoapFDIIwhlUXUja7pcNM7C7Owsc3NzNDQ04vX6mJub5dd//R/xgx/8KfF4edxLpRKTk5Ns3bpNFWaLxSIGg5GysOkilUqyZet2Pjg9T211FWI+QSgURFcqolNg8PyHWGo7oWYLRUXPrs4mjEtXCI6u0Nh8gOloFtnqIRxaxZbOIJVKFEJzZIsycUsNO++4k7NjQ/zyU48yOHiNubkJbtwYR1HKfSwX6jNitdoYH79BS0s7TqcTnU6Hx+PF4/FSLBaJRMJEo2Hm5maJRMKYzWZyuTz5fE4t2FgqFTEaTdhsNnQ6HVarjdbWNsbHx1hYmCcaLecz19XVsbKyTDQapbOzi97eHlZWZskGgqT1Lsz+GkwpBx2eLL/ytS/hXI/uOHr0bcbHx9TnbcNda7c7WFlZoaOjk507d3/imVvgvffKkxl+fzXPPvtVtmzZhiAIyLLMhx9+QC6Xpa2tndnZGZaXA9TV1VNTU8fo6AjJZIKzZ08zNjbK8nKA4eHrOBxO9HqRmZkpotFyUcO3336LhoYGJicnWFpa4urVSySTSQC2bNmG0+kkGo0wMjJMS0urmne9e/ce9uy5gz8rIyNDmyJiRFFUJ1WsVqsaafM/Q74k8974KlcW44yEDcxdW0IUBOrdFu7v8tHh+3jVgCzL5PN5isUC+XyBYrFAqVTio49OUlFRgc1mIBiMUigUKBTyFApFCoX8LREWGyiKokZlbHyWyu7isptZpxMxGPSYTCY8Hg9OpwuXy4XD4cRms2GzlTPFTSYTr1xf4dxshDav7ZY2kvkS/TXO2/ZBQ0NDQ0ND468HmjisoaGhoaGhsYlYLHqLo1Sv15NMJhAEQY1yCAZXSCYTqtA0MHBBFYMkSWJ2dobf/d3/SnNzC9evD3Ls2NuYzWaSyQSyLPP0019i69btQNkxu2PHTq5cuUw0GmV2doZMJo3f7+fIkfvZunUHV69eRpZl/H7/ehu3F1U+yeXLA5vEbqvVSjabAT4uQrdBOLyG2WxhYOACTz31RaAc/XD8+DGGh4epqanhnXfeRK/X09XVzfXrg6yuhnC73bS0NALgcrl4+ukvfaJwWTmqI5GIU1npAcpRFhvjvbKywsrKMpFImImJcbWfzc3NtLTcRzQa5d133+GRRx5jeHiIqakJLBYLRqNJLRomigqhUJCamlqKxSKZTBqv14fFYkGW5fV4jEm8Xh/19eXM4U8uYy+LtuX73dfXty4OprBaywK0IAiqs9HlKmfGRqMRgsFl8vkCly5dxOfzsbwcWHc1ZhBFkWAwqArwhUIeQRTRmR2YDHoUZRWpmKe/2sHJqTBFg53arh0UcmlCy5Pk6vrRh6bRRxa586572LdzB9GIhzfeeAXH8mWObL2HSKbIcGSSydUkSaAgmFAsbvJFODEawIaFa995lWZpCY+1LI7n83kmJydUp2sikcBkshAILJHNZqiq+ngSRFEU7HYHJpOZSCSsPudut5vKSg8Oh4N0Oo2iyOj1BhwOB8ViEVmW8Xp95PN5wuE18vkcyWQSq9WK2WyhpqaG1tY2dDodyWSSfCJKMRsgk1jk4IMPc3j3FpzrLn1BELj//gd57bWXsdvt1K47P6Gc+33x4gWeeebZTfczFArxwx8+x+TkBL29/Xz7239LFWWh7JDVr0dYTEyMk0ql+M3f/G3Onz/L3r37WFtb45VXXsDlctPX10+pVOKrX/06BoOByclJnnzyGfL5HLlcno8+OgnAxYvnGB0dYWVlWW0jEFhkaUkBBEDh3LkzWCwWtm/fiaLA2bOnMZlMmM0WLBYTmYyXdLq0HothviVbV1EUBgevbbrWjo7OTdfmdDrXs63d3A5FUSgWi+tCbeGWP7l8jhPzOYYjElZBQo4uUTBKFCWFs4sil4fH2ONK4zVI6nUaDEZMJuP63ybq6uoYHLzK/fc/SGVlBXq9dT1SokSxWBaIc7kc6XSKdDq9Sew2Go3YbDasVvu62Pux4Gu1Wm+ZePostte5uL6cIBDPUe00oRMEZEVhOZHHbtKzo971+SfR0NDQ0NDQ+D8WTRzW0NDQ0NDQ2MQn84YtFisLC/NAOVvVaDRSLBaZnZ2lqqoap9PJysoy58+fxeGwk0oliUYjHDx4iI6OTo4fP8rAwEXS6TQmkwmHw4nH47llGXlvbz8vvfQCgcASTqeLbdu2Y7c7OHXqFB0d3YyMDON2uzEaywXtZPnzncOpVJIzZ05t2lYWmcquyY0idBusra2yvBzgS1/6MiZTuR2z2UxHRxfnz58FFNXp53CUnb9zc7NMT0/h93swm+0888yXsdtvzSEeHr5OqVTO8w2H1/D7q1Rhuaqqmt7efrxeL3v37lfzYkVRz+zsNJcuDXDffQ/w0ks/xW63UypJGAxGVfitrq4hFAquC5wmZFnG5/NhMpkB8Pn89Pb2sba2xuzsNLIs0dDQeJtYCcNNP5vYunUr589fxGIxI8sKOl15/JLJBDabTRXswuE1GhoayeVybN++i4GBiywtLSBJ8rrDNsvk5AQul4scBpSW/YgVNRQVGW9xlUuXr3DkzoOIoo6jF1bwmmQe2dvPyXDb+niFqa9v4OwHx1ieneChhx7hyJEHefHF5+lqmWFvRycLx6cJLxRw9h8mX5LJxmOIRhPZ6CJOp4WIYEEWqqlQVkkmE8zOztHW1o7FYkGv1zM4eI1weI2tW7cRiZTjJNxuN/PzcwQCS8TjCZLJJHq9AaPRgNlswWAwoCgKiqJQW1uHyWQiHo+pBeAqKyuxWq243e51h6+d9vZOVlYCNDU1E4/HSaWSxONx4vEYyWQcj8eruj+Lxc3FE0VR5JFHHueVV17kgQceorKyXADy/Plz7Ny5W40rKRQKnD79EZcuXSQej9Hfv5WDBw9tEk83KLt5hzh8+AgHDx4Cyo7ywcFrvP/+u+ozUlFRSW9vP/X1jVy6dJH6+gY1esHhgG3bdvD++8cZHLyGXq+npqGVqGDD5KzE2bMPs1LARRoRhf7+stO2oaGJzs4u9Ho9uVyOfD5PMpmkWMwQDEbUzOwN0VSSyoXl1tbWOHfuLDqdoH6enU4nL7300/XPuI7FxXlGR0fViZDbYTAY1PgVk8m0SdxNYGGxoNDiN+A0G7EbFCorKnG53aAoTIezWGocPLWrbl3gTasi780/Ly8HuHDhHFVVHtLpAlarVRV57XYHVVXVqvC74fr/i6bFY+WxviqOja4yHc6o2yutRh7s9tNcaf1LaVdDQ0NDQ0Pj5wNNHNbQ0NDQ0NDYxCcjJbxeL5OTE8DHkRKzszNAuYBZJBJmenqKnTsrsFhsRCJhdu7chd3u4Hvf+0MikTDZbGZdQKulvb2DhYVZ9PqykJVKpTh9+iMGB6/S2tqGy+WmoqJCFR5TqSSvvvoyi4sL1NTUqv36WWIlPvjgBPl8/pbtNpuN2tq6W2IdBgev0tjYuKkdKBeK+/73v0dXV7fqgAWor29YF/aijI6O8k/+yb/E6/WiKAqpVFJ1BK+uhnj33XcIh9eoqKhky5ZtfOMbv3Tb/NWamlpOnjqFv62fkycvYLO7uPPAQ4wvLrC4tMjIyAherweDwUgsFgMUVYBMp8vZpHq9nny+gMFgxOstO703XN9Op5O5uVmy2ewtY7jhHN7AarXS29vH0NB1XC4nq6urmM1mSqUS2WwGq9VGOp1CpxMpFotcvjyAzWZj27YdLC8H0OvLRbgkSSKZTJDL51C6DqOraMBQSqOIBqxdd/LOxescuvtuHur2I01lSBjStFcYGPH5+dt/++/x6qsv8u67x6iurgHge9/7Qw4fvp8HH3yE//pf/zM1NdW43ZW45AjRbIF0UQbBjK5QxGmvpCgUsZElgZXJtTSppSW6u3tUMc7hcOLz+VldDTExMYHT6eDGjREikYhaFM3pdKDTCerkQFnks9He3kFDw8YkwSSlUolEIo6iKLS3t9PU1Mzdd9/D+PgYkiRRWVlBoZDH4/EQjUYIBAIkEnH0+rJAabFY1fvyydgPAJPJxCOPPMabb77OE088iSiWCIVW2L//TgAmJsZ5771jZDIZ7rrrbkKhEKOjI7jdFZvOoygKQ0PXuXx5gP7+LfT09KrbM5ks3/ved9Xx9vureOqpZ/jhD79PMLhCKBRkx47Neb43boxw/fogdfUN1Ox+gFzeBPEMRZ3IlOxBUBTMUhpvfoUGq8SDDzxELBbjuee+R0tLK36/X41jsFoNpFK5W/J5y7nGdubm5tTc84170dbWgSzLKIqsFv0bHR2lrq5uk+sYWI8SMa+PtwWTyYTJZMZsLruXTSYzQ9NxZHJYRIF0Jk2xUGBmdhqH3UmxWCArC5xY1iHNXKDKbtrk7t0oVGmz2di5cxdjYzd49tmnPjdz+C+TnfVuWj02xldTpPMSNpNIp8+O2/LpBf80NDQ0NDQ0/nqgicMaGhoaGhoam/hkMbpSqUQul8VoNFJRUUEiEScUCtLe3kEul2VsbHQ92qBIKLRCX98WKis9DA5eJR6P4fP5yeVydHR04vdXIcsS0egag4NXsVptnD9/Fp1O5N5772PHjl2cPHmCgYELm/pw6tQHVFR48Pn8m1yEn8X8/BwjI0O3fa+y0kNLS8umbcHgCvPzc2qcxAaFQjkuQZYVQqHQJnEYysvZN0TR1157maamFiRJwuFwUl1dTWdnF/X15SxWi8WK0Whi3779txWGQ8k8wysJTifdRM7OUZKttFY0MH0pwNLsDPGkjbjOgc9eRC4V8Xq92Gx2crnselxGOfqhurqGXC5HNBqhoqJSjbgQBEF1fN64MUIsVs7A3RDPPhmFAeWM5u7uHq5fLxKJlN2cZrOZRCKB2Wwhk8kiinpEUU+xWOSdd94inU5RX9/A6moIQRDQ6/Vl0TSVxqC3Y0pFKCnlTFZJ6WRhLcnExBidnd0UiwXVAbvRp29841vs338X3/3uf+fGjRGampp59dWXSKfTpFJJTl1YouHuZwh7+8nk8ijFPOiNyIJIXO8igYKFAmRjOIo6+rq6KUcclJFlGYvFwtLSIslk8iZHrJNSqYjP518XiY1IUgmPx4PVaicej7G0tITd7qC6ukYtOLi0tIiiKDQ2NnPkyIPodAImk5n5+TlsNju//dv/mv/3//33asa1211BLBbDbHOSMlZgqKxlGj+GUImq1RStHht6nXDTPXFy+PD9vPXW67jddg4dupdEIs57772rRmUcOfIAbncF3//+n6y34VaPz2azHD9+DJ/Px549e4lEIur21157mampCVZWlnE4HDQ3t7J//36WlpZIpZKcOPEe8XiMmZkZlpeXyWTSfPTRhxw79jY2u4OYu51U0YVSylAML1JCQbYo6AxGEgY7WXMTe3c0YrXacLsraG1t48qVyyQSCe699wgOh53q6opPFVLz+Tzj46O0tLSq2w4ePKSK4zfz05/+eFPUhiRJZDJpEokE0WiEaDRKOLxGLBZdz0PPUSwWKRYLTIoNxPVOohTQ60VWV0P4fH76ehsxGAxICizEsty9r+mWLN+bqa2t4+zZU7edpPqrxm0xcEdjxefvqKGhoaGhofHXCk0c1tDQ0NDQ0NjEJ8XhcHgNQdDh85WzfqempnA4nDidTq5fH1SLJk1OTvCFLzzFlSuX1e3JZJLW1nba2ztU97FOJ1JVVcUf/dEfsG3bDnbvvoP9++9UC5YdPHiImZkpwuEwUHYyhkIhdDr9JvfjZ8VKfLII3Sd54IGHiUYj6utSqcRrr71Ca2ub6rQttyHzxhuvEgyu4PP5CAaD1NXVqQXr0uk0sizT378VScoTjUY4cuQh+vu3bGrv7bffXL92HYqiqC5NtX1Z4YPJNc7ORIikc6wm0tRV2NEJ0Oa1IcsyV88tkBTdCH33E0mGMCwM0Fbtpaurm1AoRCCwSKFQIB6Pk8vlsFgsdHZ2AgJLS0tMTU2qTlS/v4pcLs/Zs6cIhUL4fD4MBsNtBWsoi5fd3T3E4zGWl5fXC9UJxGJRDAa96sCVJIlYLEYmkyGTyeB0OtUCXAaDEUWRoJhF56xESq8h6A3lCIZQgH/7b/8lBw7cxfz8PNXVNTQ3bxbv29s7+O3f/te88carPP/8j1lYmCv3zV9HseVOxqMyLruFRC6NoLegyArIOeRiDp3eQFI0oTd5cDsLCIUAigLpdJqpqQkWFuZJpVJqETNRFKmtrVu/X+VCYy0trbhcLoaHh5BlEASorq5mZWWFyckJ+vu34vP5sVgsNDe3sLy8jMFg4PLlgfUM3gCCUB7Ls2dPce+9R1heXiYQWCSZTKBUNiLX9CFbPQgmM0uyg0xEYPXCAo3rBdBuFiH9fj9VVdUMDJzFYLBy5sxpRFFk374D1NXVEwwGWViYZ2hokEwmw+joCAsLcwQCAYaGBunp6aVYLHD58gD5fB5JkhgYuEA2m0GnE8nlcrjdFfT29pPN5jAaTfj9VczPz1FbW8dddx0kmUzyyisvsrg4T1NTM97OnYQq+zEqRVwOJ4kVA6ViCbvdjtlsQS/q8bf2sKSz4G1oxmsrT0Y0N7cwOzvDO++8yb33Hqa6+tMFzLGxG5viUARBoLW1ndXV1VtiHUZGhvnRj55T41V0Ot2m7N6amvJKho2oh5tjHV4bWub0dIRWj5Xx8THW1taoqalVJ1DyxRIGUYfZ8PnZv1u2bOPy5ct0dPR/7r4aGhoaGhoaGn/VaOKwhoaGhoaGhkqxWFTzUqHsmk2n0wiCgN9fRSAQIJvN0NPTx8jIsFp0KxwOc/jw/Xg8XpaXA+rSe4PBwDe+8Uu8805ZHE0k4szOzuB2OzGbLezff6eac7qBwWDg4Ycf4wc/+FMURSEej5PP53G5nExPT9DUVBYNP8s5/MkidDfj8XjZv/8AL7/8grrt5Mn3aWxsIhqN4PF4gbIo/fbbb3Dx4nnS6bLbcHk5gNFooKamFre7grq6erZu3c4jjzzK4OBFjh49znvvHaO+vl4VsovFIuPjo0BZnKqurt7kPi7JCm8Or3BmNopRLlBaXWBPbzvBlSAlqeySnl+YJxNdRSoUMJgt5MweTD334a8sAjI9Pb18+9t/k3/4D/8f4vE4mUwal8tFXV0DweAKPT29GAx6zp8/x/j4GHV19VitlvXc41WCwRUaGjZHbHwSn8/Pli1bicVipNNpQCCfz1NZWYnZbEFRFKLRCC6Xi2g0giQZKIoFLFUtJNNpFIMBOZNEmLtCyebC5K6ltraOe3d04+uz8PwP/pjl5QCTk+MsLS0wPz/L/Pwcx469Q1tbO3V1dQQCS9y4MUI8HivfIyDt70exesktT5Mz6FCqtyHo9ZBPIwg6BAHkYh4dIBmtLEoOsjOzzE9PsLa2hizLGAxGXC63mt0sSRKlUomurm58Pj+iKDI9PUUymVJd0E6nC0mSaGlpRRTLEx5Wq5W5uXIWt6KUJxeqqqoZHLyKoigUCgVOnDjOb/zGP8HjqaSlpYWZmSmsjX1kPL0IohEptkxBBzk5haLLkzZInFlUGBgeZbczi9/4sXP+xInj5PNZPvjgQ+6++xDbt+/CaDQSj8cwGIwIgg6dTofL5WbXrj1cvz5IZaWHf/Wv/h1mc1kwFQSBQGCJWCxKQ0O5qKLZbOHOOw8Si0XYu3ef+gxkMmlOnHiPrq5uFhcXePvtNxkfH6O3t5+h4SHS1ipMZiv51Vmw+DGZzOTzcfL5Alarje6eHpwOJ5NrGW4Ekxxs9ajnbm5uwe+v4r33jhGLhWhu7iKTydyS4fvGG68RCgXV46qrq1Xn/obwW1NTo/7sdrvp7Oz6zGf7dnT5HZyaWmNw+AbJeJja2jp1fABCqQJtXhs1TvPnnqujo5O3336FtrZeBOFnLySnoaGhoaGhofFXgSYOa2hoaGhoaKisra2i3LSWe21tjaqqKjwez7oTcY6qqmrm5+fI5XLIskwkEsbv92Mymbh69Qp2u4NEIkFNTQ2Njc2YzWbm5mYZHb1BOLyGw+Hgl3/5l5mfDzAxMc5dd919SyZobW0de/fu59y5M4RCQSwWK3a7g/HxMaxWOz6fD0mSb3sNtytCdzMbRejsdgfJZEIVmkRRpFAocPXqZUKhIGNjNxgfH8dut+NyuaitrUNRFIxGo5rF2tjYxIMPPowgCNx7770MDY2xuLjAa6+9wi/8wjcRRZHJyQl1SblOp1PFbSgL0CcmVjkzG0VfSJKKR+ju6cGg17O4uIiwvs+ZM+Vl6YIAyVgElxtMvjYWjApN3iJfefZLvPfeMXbu3M2pUx+RTCaor29EFEWy2SwejweTyUxNTS0NDY0EAkuEQkEURaGqqlwYLxRaIZVK3baY3gZNTS0EAgFGRobJZDIYjQZyuRwVFZXEYlEsVjuCqwZ9Ry1CRR16m4uiwYxekhB0AvpiAaFUgFyKYjLE/q21fGt/G2Z9OzPjIzzyyOO8+eZrFAoFisUiklTi2rWrvPXW6ywtLRGNhhFFkdbWNvbt28/ESoxJs4/Cyiw6KU8mB6YqCWQJRAOKJAEKgqgHQQfFHPOpNDOTy4jRMHa7HavVpsZYiKJIS0sriUQCi8WC1+tDr9evF08rj1sikcBoNOJ2V2C329m7dz/Hjx/lxo0RFhcXSCQS6viPjAzz4YcfEIlEMJlMVFU5sVgsHD9+lEQizsDABXRWF3LTHgyFEvlwoDwhIOoBBafTRUdLM6JOx0I8T9Zu4uE7m1GKeb7znf+Gw+HkgQeOYDDY8Pv97Nmzd9P9CgZXcLsrEAQ4e/Y027btoKure9PzNzIyzPT0JF1dPUB5EuCpp57B7a7gpz/9MaVSSXXUulxuotEIY2OjjI7eIB6P0dnZhU6nQxJECsYKHEIRvc2ujhOKQiaT4Y479uJwlJ3kSHlOjczhSi1sEn6l9fv10Ucf8dxzP2TfvgP4fFXYbDYqKioxm604nU4qKyvV74ynn/4S7e0dt31eW1pkhoYG/1zisKUQQwpNk9I5KQl62tra0AkCJVkhmMxj0uu4s6US3Se+u26HTqejq6uLiYlxOju7P3d/DQ0NDQ0NDY2/SjRxWENDQ0NDQ0Plk5ESyWSC2tpa+vq2cO7cWURRXI9USKIoCpFIGKfThSiKLC8HcDgcuFwubDYbfn8VxWKB55//EadOfYjBYKCzswufz8+OHTvweGr4yU9+xMLC/C2F4QAOHLiLsbFRIpEw9fUNCIKAIAhMT0/hcrk+1Tn8aUXoAHp6emlqaiabLccHvPzyS4yMXGfHjl0MDw9hs9mor2/A4XAyNjZKR0fnpuP9fj8zM9MUi0Wqq2t48sln1CgGnU7H448/wR//8R+xsrLMyZMnOHz4yKbc4w2BdoNgMs+ZmQjZ6Co2UaK7q1sVvRx2B+FImMmpSSLhNWRFQZIkDHo9xUIeKRYgXFlP1lXL+fNnGRi4iMVipaqqCq/XR0VF2blcKOQxGk1qmxaLhba2dkBhdHSUYrGI0+kCFIaGBunu7rmleNnNbNu2g2BwhcXFRQoFhWw2SzKVAlctUvMuMiYX+lwBOZeimEtjyCaQ8jkUgwlJAZPNDhYfOoOBcwsJtk4EuKe7jm3bdnD58gCVlZW0tLQRj8cYHr7O/PwMgUBAFVgrKz1EIhEWFhZIervBZkBXyiMpCqKtAkWSKKWi6IxWBL0BBAFZllByMXQ6HTpFwdjQi7kYAUUmlUphMhlxOFzY7XZ0Oh1ra2skkwnOnDlFVVU1Op0Og8FAQ0MD1dXVXLp0kUKhwB137Gdubpann36WN954lYWFOYrFAo2NTfzqr/4Dfu3X/h7xeIz9+w9QVVWNJEmIosiRIw+wbdsOfuEXniUrO9FZXDjlECmrhVQqRbFUJJVKodPpMK4L1/UuM3OxHG+dvcbMhWOMj4/xd/7O3+O+++4mHE5x9Og7jI2NbhJ/I5EIweAKiqLwt//238PhcKrv5fN53nzzNcbGbqjPR09PLw8++IgandDR0cnExLgag7K0tMjS0iILC3N4vX4kSSIQWCKTyRAIhtDXx0lEVpHzaTLpNKVSkWKxiKLIhEIh1lZXMRiNZGUDKasBq9WLz+fHZrNhtdrQ6/UIAni9DsbHZ3n33WO4XC66u8vC9XvvHduUR223O2htbfvUZ9Xr9RIOr33q+7dDURSuXr3M/Pwcf+/h/fx/nj+OsbKOUEHP2loGBPDajNzf5aOnyvH5J1xnx44d/NEf/akmDmtoaGhoaGj8b4cmDmtoaGhoaGio3CwOJ5NlAdhgMGAymQiH17BYLCQScRRFIRxew2QyqsvsFUXB4XDyhS88xSuvvEQgsMTCwgILCws0NDSqGa6iqMPj8SAIZjweL5cvD9xWHNbr9bS3d6Aoipp3LAg6SqUiU1MTbN267ZZjFhbmbylCVyqVSKdT5HJ5mptbeOGFn2A2WzCZjFy/fo1f//V/SG1tHX/4h/+DlpZWdDodx469vclBvYHX62N2doZUKskXv/j/qEvzN3A6XTzyyGO89NJPGRi4oIrJG7S1tW9ySV9ZiDAxt0Cn30F1VfWmc7kr3ASWlxgfH0WSZWRJRtAJGAxGTCYTelGHVQ/npoKcu/YauWQ5DiSTyeB2V5DLZamoqCCZTK67fI2b2pZlBbfbjSzLpFJJTCYzgiAwMjK8XjzQf+sDAlitVlpb24hEwuRyOVK5PJaKDsxtuyjp9BTDy5BNIZWKCIBkcaCv6UJnsqGTSsjxZcTECnqbHUnn5bvvDzIbK7KrpZt33nmTaDTKwMBFRFEkHo8hSeWCiFVVVRgMBlW4LZVKCE2HIJsEvRHBXY/O7ESwOBBKRUrxEIJYFhuRSuj1IqKtAn0+juCqxury4nfbqa6uxuFwIooiOl15yX9dXT1DQ4MIgsDOnbs5cOBOenr6sFqtFItF/v2//7eMjY1SWVlJKpWgpaWFZ5/9KhcvniOVSrG8HOCnP/0RLpcTr3cHiUQcn89Pe3snMzNTzM7O0NnZRb6Qx9DQjbfCiWiWkSWJXDZHtpglEY+RSiXVcS/kcywuzLE2GqQhneK3fuuf09zchE6nQxAEjhx5gNdee1md4MhkMrz99uuUSiXuv//BTcJwOBzmlVdeIBwOI0ny+nXuorOzm+npKVKpJLFYjGBwhTNnTqkFFa9fv0Y4HObq1SvqsySKIgaDkXw6ia5URFgfR6fLTSqVQNDp6O3pp/emnO2FaJZmj5X29k+PMqms9PDMM89y5swpZmamOXjwEMPDmz/bW7ZsVe/Z7RAEAYPBQKFQuG2xxU9SLBZ5992jVFZW8vjjT/LKKy+yxRTjwUcfZzktUZIU3BYDnX4bNuOf7b9RJpMJr9dHILBEbW3dn+lYDQ0NDQ0NDY2/TDRxWENDQ0ND438BP8NK5E37/az7/8+ytraqthUKBbHbbbS3t3P27GkkSVp33JYdw7KsYDZbEMWyOFNdXc03vvGLBAJLDA9fJ5FIUF1dTUdHB9J6di6Ax+NZF+IEdu/ezbvvHiWRiOFyuW/pz/JygD179mIwlP/JotMJCAJEoxFmZ2c2jYskSbzzzpskEnFSqRSpVApJKqkREkeOPMD99z+oCrrnzp2ltraGuro6SqUSsVgUk8nEyy+/QKlUvO2YG40GvF7feubwx/29+T51dHSwa9duLl8e4Pvf/xPsdjsmU9mZ2dvbq8ZDLK+u8cqpK9T7a6iurrylLYfDwfJygEgkjFSSEAQwGIyYLWbsdjsejxdFKLGaFxBEByahLA7X1dURi0W5cWMYs9mMXq9nZGSIXC67vnS/hMViIRQKkstl0ev1OJ1OGhqaEEWRsbEbXLlyid7ePjo72zdd3wY6nUBTUzNjU7OYeg9TrOnDkM8gFrMUMkkQyg5MBQHFXYfO6kLKZ9DpjVDZQC6QRpfLkouskAqv8MNQkFeEIqmpRbLBWVpb28jlcgSDK+h0tTQ3tyLLEsFgEEEQsNvt5IslSiYLKAolVzU6mxspk0AQQHR40VmdKJkYrDvO9TY3olLAoZcwOL3srroTm67E7aipqcFisVAsFqmq8rNr125VDDUaDfT19aHTCRw9+iZ33nmQs2dP8+CDDyPL5QiF1dVVotEITzzxJHNzs5w48R6hUJBHH32c2dkpFhbmuXFjGFFvQDYYcVrNlGQTDQ2N+P1VXLlyCdYL/kUiYRLJJIHAEoLBjq++lXtqGmhubtr03On1Io8++jivvPIiXV093LgxjMfjJR6Pk81mGBy8SiKRYGRkiFOnPiKVSpLLZVlZWcbn8/OjH31fzQrX6URsNhtOp4t8Psfs7AyyLLN16zYWFhapqqqis7MTg8FAKpUiGFwhO3SdSl0aqnrw6IsAjIwMYTKZqah0w3pfZVkhL8n01zhv+xn75DXdffchFhbm+c53/ivRaBSn82ORe+vWrZ/73VhbW8fy8tItBQ4/STQa4dixd9i7dz/NzS2MjY0yNTXBk08+Q0e1m9sHV/xsbPRx165dnDx5krq6n39x+C/rd9Nf1e86DQ0NDQ0NjY/RxGENDQ0NDY3/BXg8P/ty5D/P/n8eFEUhk0lgtZqQJIl4PEJPTw8Wi4FAYB69XodeLxIKhSgU8vj9fiwWCwC1tbU88MBhPvjgKHNzc7S0NKkFopaXl6mpqVHbaW1tUq/p7rv3MzBwlunpUe6///5N/YlEIkSjIX7pl77O+fPnCQQCmM1GCoXyP19GR4dYWZkjlUoRCAS4fv06w8PD2O12vN4Kmpsb1CXoPp+Pb37zq2oExNLSErlcgi1benG7LYTDYUQRBgcvATJWq4nbIQgCv/Irf4Pz588jSRmqqqo2vb9xn774xS8Qj69x48YQ4bDItm3bcDqd7Ny5hcHBQVKpMG9+eAZPQxud1W704q3ux0w6zdraKrlcDoSyk9pkMuHz+fB6vCCALMnkMxkMrloMmQCiKLJt2xauX79OMpkkElmlvr6Wurq69W0JEokYsViElZUV8vm86pBOpZK43W6cTgehUIj33z/O4OBV2tvb1cxZKDuxI5Ewik7EuvUI+ppuitEAWVHAYrGgoCDqRARAMJgQTFaUQgakIigSgsWJaLZTSK8RDq+i0+lQCFOqrEffeTfp0Aqrq0EymQwmk4na2hpWV1fI5XJlkVevQ683omQyFEpFCpKMYDYglAoosoSQS6GYrIgmK4KoQ5FlBJ0Oi16g2qzDKHopImLXm7AI4qZ729HRwfbt2+ns7CSZTPJf/st/YXV1mWh0hc7OjyNGdu/eztLS3HoROgPvvPMhgcAcfr+XSGSNTCZFNLrGM888wdDQECdOvEswGGDXri0MDJwhk8kwNHQFi9mAThCw2Wxk8gkAisVyfInRaMTpdHB96BrJZJKG+gYqGlpIhxY4cOAgqVSYVCrF+HiS1dVVwuEwoVCIixcv8p3v/D5dXV3Mzs6STCYZGxvB5XKRTJYdwWazGYvFQlNTA93dXezZs4dHHnkEt9utTmYIgsDCwgLf+c53CIVC/Nqv/Rq/93u/RywWQZIKrK6ukM1mcTqd1NXVEIms0eozMW82UETEbRJUp7XNasZqNaEoCrPhNI0+Owf7anBZPo6I+CQ3f+d5vX0MDDRx/PgEuVyapqYm2traaG9v/NTjN9i6tZvJyUm83q2fus/o6CgDAwN8/etfweVykcvlOHfuQ3bu3MaBA7s/t42fldbWBq5csaDXS5sml36e+av43aShoaGhoaHxl4smDmtoaGhoaPwvIBxOcpvUglsQhPJ/vn/W/f+85IoSS2sxZtay6IBEKEgul8dksnLixEkSiRSKAouLS2SzWXw+P3q9gVKpXKgrk8nwve89R0dHJ4888iQrKyucOnWSTCbP/PwiVqtDFWpNJvumMWht7eKjj87S379rU57oRx+dQZIE/P4G9u0z8z/+x39ldTVMNBpBlmUSiRR/+Iff46tf/Trd3du4fHmQ5uaP80eLRZlisZw9vG/f3USjGaCctfrSS6/z5JNPc/nyJYaHJ4hGI1y+fJXu7p5NffgkG1mx584NcPLkGQ4fPgLc/j5t27aH73//h8iyxNjYJM888yWSyTwXLlxicTHIlp13MnE9RCFfpHCbtqLRxPoYlzDoDQiCDpfLjdFoIp5IrI9BnKxsJJeXyQVDeL1erl8fJhqNEQqFWF5eprq6hkgkRi5XRK83EI3GAMhksiiKDJSdtZIkkclk1525DgRBIBKJcOHCANXV1VRXV2O3O8hkUrS0tDEU0+Gs6kOKh8jJJWR0ZDIZRJ2uHHWg05ULw8ky6PSgFNCJehRAhwKCgNFoUl3hSjYMzhqElr0o4eu0ttYyPT213l8dsgzFYp5sNksqlSKXy2J0zmKo7YRSHp3Nhd5UAgSUUgEpsYpQymOyWDHqFIREirzTjlJRjUHKUypmyKBQWelhy5Zt9PX1YbeXha5YLAvo6enZyoUL53jppdf41rf+hjq5UFlZQyaT59Klq6TTOTo7+zh58n1MJiuiqMdstuL31/Cnf/pD7r77XnQ6kVyuwJkzA3i9NVy9epnR0XEUGSyFBNF0ASWXJ5vNsbYWQpJk4rE4UL4XDoeLwMoKl2eCCAtX+fLrv4/D4UCv12OxmDAazRiNJlZXV+nu7ubAgUPMzs7g9VahKApf/vJXGRsbY2pqQn2+Oju7eeSRx/jud/8HTU3tuN3liY5UqkgyWeD8+XOcOnWSmppa7PYKTp48zYkTH6zHj6To7OzFai1PDqXTaUolCVM+QbUxSMjSSFwGRBMmnY7QahSdxUUoWcBl1nN/WyXFdI61dO6W5/52n6VIJMzExDSNja2sroYYGLjMvn0HWVtL3nL8JzEY7IyPT9Pfv+uW92RZ5qOPTlIoFDhy5FGKRR1ra0mOHXubaDTJ00//bG18HjdfU0dHH8eOnVC/O35e+cv63bRxXg0NDQ0NDY2/OjRxWENDQ0ND438BisKf6T/Uf9b9f7ZzKgRTeUaWk1xeihNYjTIrNCIASb0JnU9mJZEjODtDb08fFy6cJ5fL4fV6sdls6PUGnE4XCwvziKKeJ5/8Ig8//Oh6Bqig9jedzpBMJqmoKEcneL2+Tde0Y8cuBgYuMjIyzNat2ykWi4RCQd555y2sVhuvvPLSejGwJoaGhnC53IiiiMvlRq83EIvFGB4eVovQZTCSxowOBRdptvR009jYrPbn+PF3ufPOg5jNFmpqallcXOLkyffJZrPo9YZPHefdu+9gx46yi7Cnp5eRkREOHTq8KfP05vsUCARoa2tnfHyMhYV57HYHH354kkwmy6OPPsGlhTgKwKe0V1FRyd479vPmW69RkkqYLeVM4Ewmg8FQzk/N5wuIJjOi2UpVVTXbt+9Er9dTLBYYGLhILBajtbUdr9dHMpnA4/Hg9foYG7tBIpHY1J7FYtuUy+pyubFYLASDQSKRMMlkAr1eTz5fYC6SptB2CLIplGIeBIFSqYSsKIiiiHE9B1eRSxQji+i9TQgWJ7JOh5KKoMsnqfB4y9ET6wOWy+XIJyYQPQ3klDSh0OR6DIZEoVCgWCySz+coFAoIG8JyYhFquyG1hmCxobOWXdgWQcJgllBKMsnEMgVZoqQTWSvmMAo2+q1pdmzfzpYtW6mpqVUjIz557/ftu5Pr168TDoe5cuUyu3btASAWi7GyEiSfz9HZ2cP+/Xdy6dJFTp36EJfLzaOPPk6hUGBycpJYLI7LVcHKyjLPP/9jGhoaOHfuLLFYtJybHM4SM1RSSobJp+OUiiUURcZgMGK12nA6nVjMFkz2CpR0ll957FvYyLK4uIDJZOKuu/axuBhkfn6e++9/UBW4p6Ym+Z3f+ZfU1zfy4YcnSSbLIqcgCBw8eIi9e/cjCALFYglR/Pi5T6VSvPXW68zMTNPQ0Ijd7mBo6BTj4+O4XC46OrqZmprAaDSqx0iShKKAqBPpdsg8uLuVH7x3EZ29EqPZwkQwjtVXoq/awcFWDy0e6+d+n938Wbp27Zr6s8/nx++vYmpqCrPZSl9f/6Ys7U+i04koCpRKkiruQ1nQPnr0Lbq6eujr61fbXFxc4MqVKxw58gB2u/Mv9HtXUaCmpo7Tp0+tT77dfoXCzxN/Gb+bNDQ0NDQ0NP5q0cRhDQ0NDQ2Nv4ZIssLJqTVOTUdI5Eu4THoMcg4reYqlErmSjOTp4XIpT1u7m/MX3iObzVJZWble2EpBlmWi0Qh1dfXU1dXT2dmlCqU1NbUAFAp5SqXiJ8Rhr9qPUqlENptFFEX+9E+/x969+zAYDMiyjCRJfOlLX6Gjo7ycX5ZlhoevMzU1CbDueoXXXnsZQRAwmy3EsDElVJMXDICCR5fj2wcOqe0NDw+t5+uWl6PX1tbx05/+mNHRG1gs1k8dr87OLu699z71dX//Vi5dGmBmZoq2tlvTSBVFYWRkCJ/PTzweJx6P8d3vfodf/uVvIwhl4dSgF1Aoi6O3E7dkRUGSShgMhvWYBoFCoYDJZKZUKhKNRikWi2CQEfIZqqtr1eJkRqMJl8u1XrwtidfrQ5JkRFHEYrHQ09NLILC0SSC+WTjbwGaz4fdXsbq6iizLyLJENptBqmhDZ7RiykfJUu6/oqyLhLKCLEnrz5mMEgkg5dIIJht6AcjGMRgNVFVVqxMBmUwGqVTO/5UyCVL2eiKjF8is50AXCkUURUavN+BwODAayxEF6eUpHC27EV1VeHQZzAYTJqMRoyARTsp4qqrR6XQYDAYSiQSy1Y2SS5IIDZPuqKKy0vOZwmJZfD3IsWPvcPr0Kaqra7h48TyCIHDXXQc5f/4sH330AZFImOvXr6lFHF977RV8Pj+zs9PrOd2sf16iLCzUEwoFURQFp9NJvd9FxiyxZmmkuDiOSSditdnYt+8AnevPfqYgcWlshqfv6uGhAx1qn8PhVV566cfEYkm2bt1BPB7HZrMjCML6JIqejz46yQMPPLT+GTHz2GNP0Nrarl5jqVREry/f+4mJcZ577nusra2ybdt2urt78Hi8jI2NkMlk8HjKE0MAuVwWm628CkBav982m40vfekrnD17mo7CNPpUEre1HofJwUP1sK+//jPH+3ZIksTQ0PVN23bt2sM99xzm3LkzvPnm6xw58sAtxSFvxu+vIhQKqt9LgcASH374AYcP37+p8GKpVOLo0bepra1j+/adf6Z+/lnYsmUb169fY/fuO/7S2tDQ0NDQ0NDQ+FnRxGENDQ0NDY2/ZsiKwrtjIT6YDOMy6+nwWBEEgfhyFhGFVDqJkI1TyARwVTUynrOhc7XidIUxmy1ks1ksFguVlR6amppV99tGMSsAs9mMx+NhcrIs5KZSKRRFoVAoMDs7w40b11haCiKKenw+Pzt37iaT+ZC9e/fT2NjEG2+8Rnt7B+3tHwuvOp2OHTt2MTs7s+5ULAurY2Oj6PV6+vq3siB4KSDiJEOhJCFUtzKZUKjyQCwWZWRkiGeeeVY95/j4KCMjw+RyWdzuituOV21tHY8++sQmUcvvr8Ln8zM8/P9n77/D47jyM1/8U51zo7sBNHIGiAwwZ4pBpEiJopikyZrksb3e8Xpsr+27e9fr+9u7612vr8dee9fjMGNrPKMZJUqURIk554wMImeggU7onLt/fzTYIgRSmhl7xn9MfZ6Hj7qrq06dqjqlh3zPe95v12PF4cnJCTweDwBWax7z826s1lxGR0czsRUWjQKVTEogmkCnXPpXMrt9jqysLJQKJTq9nlgsRjQaxe12IZfLEQTQaDREVVp0ETupVJKBgX6SybQInEwmiUTC2O12SkvLSCQ+ck7GYnGMxixUKjUul5N4PL7IAf0oSqVyQSCew253Yy6qRLBWEAu6iSWiCznAMuKxGAJCOgs5mUzfr1SKFJAIeiDoAakUxcL1yOVywuEQ0WiUaDSSLiwXjxOLB5BnlxAz5BObm8wI/yqVaqGQoRSFQkE0GsGao6dQ5safVYlSm4VOCCOQFpnl8nQkR35+AfFEgsrmtczNzVElzKD05nH16iVu3rxGS0srdXUNFBYWIwgCgUC6mOH8vBun04nD4eDevTuMj49x9OgRSkpKEATJwlgeBuDUqZM4HA6sVisGgxGJRMLmzVvYsWMnFy+ew+VysmXLdpLJ9LhNJNLPJi8vj5KSMtp7bxIQrJBVhFqlwpqlxZKThzccxxmMEggEWJYl4aU1lZlxODw8xJ07N/na176GTKbF4XDS3d3JlSuXKC4uYWhogNlZG0qlgunpaZqbWzhw4BBmsyXzbFOpFKFQiOHhIU6fPkl/fx/19Q385m/+Njk5abf5q6/+E6lU2mlbUlKayRkPhR4Vh9Nj7uDBF5HLZTx40ENebg5BvxeLPERjVRXjPfdY21DzU4vDg4MDBIOBRduam1uRSCRs2LCJ6ekpjh49wsaNmzOTPh+nqKiYiYkJ8vLyuX//LpOTE+zff2iJoHzr1g3cbhcvv/y1J74P/xJUV9fwxhs/ZsWKVT/X84iIiIiIiIiI/CSI4rCIiIiIiMgvGW1THi4NuTBr5GQ9UhAqEAyQSqXw+/14vR5kMjlBlw0UGiQlrcS8dpJBGwUFhZSVVaDT6Ra1+6g4nEgkUKs1TE1N4Ha7cLlcCAKUlJSi1epYs2Y56RSIh8v5UwwNDXL//l1yc60MDPSxfv2mJUKS0WiktLSM4eEhkskUMzPTBAJp4WhqeoZoUSUKEkTCYdxuNxJDHsPjk6wp0nP69El27dqdEWNGRoY5efI4crkch8NOQUHhknuVlZXFgQOHl+QQC4JAQ0MTly9fIBQKZbJXH9LT0w2ki+rNzs7wn//zf+XUqQ8ZGRnOnL/QqKLCrKHfHlgiDidTKexzcxQWFiGVSjEYDHi96ViHVCq5ILYnERQgk4Wpy9WQr/0opzMej+PxzNPT08PsrI22tvtEoxFUKjWCICw4cVMolUqs1jz8ft8ninZyuRy1Wo3H4yGmsyKVyNHIJQhyFaFQkGgkSop0XqiAQEpIP9PUwhN++N9kKoVCqUSpVDE9PYXb7SYeixKPxYjH4wsxGymS0TCygjqUE52YTCakUikajQaNJu3ulkik5Obmkp2dy9zcLJVqL6No8aJBShK1JE5OXhFqtRpDTj4Ts04CXg/PLjPj6uvjTl8foVCIcDhEW9t9VCoFkUiMRCKBRqNGq9VhMBjQaLQEg0EUCgVFRcWYTBYOH/4MFRUV6HR6jh49QkdHG7OzNlasWMlTT23ljTdep6GhkeXLV2G3z2K15uF2u3G5HBQVFdPb25MRicPhKPfu3WFiYhy1doKwewJTw3pUhmKCyJHHEizL0eJydfNrh/eikkuJx+NcunSeVCrFwYMvkpdnxuHwYbFY2LJlK5FIhB/84BWOH/8Au32OvLx8jEYjq1atyQjDfr+PgYF+Bgf76et7gMfjwWQy8Y1v/Dpr165HIpEQDod566038Hq9hEIhFAoFsVgMmUyGXK7IOKIh/e7X1CyjtLSMS5cuoFAokclkFBQULhQ9TLvvu7s7aWpqeeI4exwdHW2LvhcVFS9afVBQUMiBA4c5d+4MIyPDbNy4eYkLvqCgkLt3b2O3z2GxZPP88/uXjHen08n161dZu3b9IjfxzwOJREJVVTUDA/0sW1b7cz2XiIiIiIiIiMinIYrDIiIiIiIiv0TEkylujc0jEVgkDCdTKUKhIOFwGI/HQzQSQSJIQC5HEg+TSibRVqxghdJBtsWyqM1UKkUwGKSvr5fJyXE8Hk9GXIpGoxgMRqRSKWVlFaxdu57q6hoMBj0Ox0eFjARBYMWKlZw9e5qcnFzi8TgNDQ1L+i+RSMnPL8DpdBIKhZiYGM/8Nj42jD63Ba/CjFqhpqqxHHcgTOfNS3Qc+weWL1+ZEWbn5uZ47713SCaTKBQKIpHwklgJlUrNoUOfySyj/zj19Q1cunSevr5eli//aAl6PB7nwYMeJicniEQi7Nr1LI2NjcTjUU6dOkFvbw/T01MUFBSyvMhI75yfWCKJXPqRg9A+N0tOTg6RSBiZXE44HKawsIipqUlkMhnJ5IILWG1EEXbjcDwgotOTn5+PUqlCJpOh1xuwWq3I5XLMZjMKhRJBSAtTDocdp9NBKpX+bjQayM8vwGabyWQALxo38Tgul4uKikpcWflEw0EUqQRyuRytVkcykSQaiy4cm0QikZBcCCPNtCYICEAsGmV6epJ4PA6pdDxI6pHfEQQk8RASbRZRtTETZaDX60mlUmi1OqzWPAYHB7DbZ1EqlcyPPUAW6UJjLCRiLMYr1+LwefH5JtEPDqIJTDMz0kHIqKG4uBCLxcLMzDR6vR6VSo1Go6G2tp6dO3cRjUaZmJigo6ONSCTCiy9+lrVr1/POO28xNDSI1ztPZWU6lkGpVDI+PoZCoSA7O4fW1pULLmI7jY1N2GzZHD/+QSYqJRQKYbfP4fF48Pt9BIMBLJZs5HIFUpKovBOs0TWwptlMy/JyFFIJg1330K2sQ6tRY7fbOXfuNKtWraayspqP6/lut4t33jmCy+UkJyeHWCxKY2MzTU3N/OhH/8Tdu7fQ6w2o1Rqqq2uoqaklGPwxOp2OL37xyxnnbTwe5+jRI9jtcwD4fN60Sz2azvVWq9WLxOHVq1czPj5OLBajo6ONxsZm7t+/S3l5BcPDQ8RiUZqbW3nzzdeora3/xKKPj+LxzDM6OrJoW3Nz65L9lEole/Y8x4MHvRw58gZPP71rkUPa7/dx7dpVfvM3v0VZWfmS41OpFKdOHcdoNLJ+/cafqG//XJqaWnj//aOiOCwiIiIiIiLyr44oDouIiIiIiPwSMeoMMjEfIlenWLQ9FAqlC9TN2ggE/KSSKSQSCbFYFIslh6amOoZtDmRxFcGgE7/fh9/vJxwOIwgCGo0GmUzOmjXrMBiMCIKAzTbD2bOnMi4+v99HTk7OE/vW0NDEpUsXOHnyOI2NTQvZxot52FZVVTWXL19Ao/lIuE0lk8T6r5DVsB2ZKZ+CwiL2FZsw+7M5e8bN3Nwsf/u3f01hYSFDQ0ML0QwCUqmUSCSacaU+PM+BA4ewfEwIfxSdTkdZWTldXZ2LxOG+vl66ujrR6XRUVlbR2NgEQEvLcsbHx+jt7eb994/y5S9/nWW5OoqzVIzPh6gwp+M9kqkUdrud+oZGxsZGUSjkGcHWZDIxPTWFSqUmkpQiQaBMHSflT/tzR0dHEQSB/PwCkskEubm5uN1uHA47eXn56PUGjEYj4XCYQMAPpF2fanU6tsFkMjMxMU4oFEQuly1ECAg4HA6MxiwUKjUKcz6JcIRQOEgqpUahUCCRSpEIAoJMTjwRz7jIH5WZU6kUiVSKYDCAIAgZ56YgkSCXydKF9KLRdERBKkZSYULQGPF6PahUSoaHBwEJMpmUW7euI5PJiUQimEwmcnOtFBeXYs1VYjDGUBhl6Ay59D9wcvj5vWSbspBIBM6cOcWv//rX8XjCBIMhzp49TU9PFwDBYIBTp05QUVGJz+dj374DmM0WhoYGeOut1xEEAbfbTX9/30K0SZzR0WEMBiOhUBCNRptx1d+/fxefz0dFRSUlJaXY7XYAXC4nY2OjRCIRJDIFOTUrcflDpHJV+IN+ykxKVEol61sbMRpU+P0+JibGOHjwRe7evc3ExDjPPbdviWsf0jETx469RzicFm3j8TiVlVVUV9eQTCZZuXI1d+7coqqqGovFQm9vD11d7ej1eg4ffjEjDKdSKY4fP8b4+Fim7YdZxjqdnkDAj1qtzoyfDRs2oVAosdlstLe3kUikx10qlaKoqJjh4SGi0ShSqZQVK1Zx9+5t1q3b8MT36lE6OzsWTVaoVKpPFFNra+soKCjg9OmTVFfX0NTUwsBAP+3t99m+fUemWN/H6ehoY2JinM985vPIZL+Yfx4plUosluzMRJGIiIiIiIiIyL8WojgsIiIiIiLyS8SQM+1SVcsXL7sOBgK4XC4cDjvxeByZVEqKFOVlldTXNRCNRpj3+emdd5MfnUWn01NQUIBK9VGcQklJCUZjVua7xZJNOBzOfH9YGO1JKBQKysrKuXz5IocPf+ax+0gX3LXRaASZbKn7MOSeJW/mLv/uS3+IyWBAkYrx/vuD/O7v/gGpVIq2tnv8wz/8PTbbDCqVCqs1b2HZe2qRm3HPnr1PzC99lMbGZt577x2cTifZ2Xp8Pi/f//4/kpOTS1ZWFnK5nJqaZUDaHb1r1x5OnjyOx+Ph5MkP2bfvAPub8vnRvUlG3SFKTeqMa1giCBQWFFJcXEo4nM55TqVSyORyoshQmrJR2vvweYaprqomHA4RDAbJybHicNix2WbIycldEL8j+HxeTCbTwv2LZq5BIpGQlZVFQUEhBQWF1NXVMzk5ydDQAIlEjLm5OcLhMFKpFJcvSCSeRCEVSMkVhMMhUqkkiXgcQSJBSKcOP9Z9/JCHvwiCkC6gh0AqmSQeiwGQTKU/SxFIylSEgm6mpqYoL6/EYjEjkQh4vT6KiorZu3cf69dvQqFQPPZclwxyzEZ9JiZgzZq1nD59mjVrNqNWq9m7dx81Ncs4ceJDpqenmJmZYnh4iO3bd1JRUYlKpSIvLw9Iu1hdLgc3btzgj//4/8VsNtHaugKXy8XYmA+j0YAgCBgMerKzc2hru8u2bU8D0NLSSiQS4ezZ0wQicdSly9GUtTCnz8an9JGypCCVJGbSE8k2IVWlxd+LFy+wcuVq3nvvHUpKSnnhhYNL4hBSqRQ3b97g4sV01EQgECC24OIOhYKUl1ewbt0GpFIpzz77PK+//iPa2u4zODhATk7ugrP/o7F//vxZent7Fp3j4dixWvOw2aZRq9UL7uhmNm7czLVrV5BKpdy9e5uGhiYcDgcGgyHj3o0tPNvq6hqOHHmDQCDwREf+Q5LJJJ2dHYu21dV9uuvYYDBy4MBhbt68wZ/8yX+jqamFgwdfZHh4iKmpiUWRFJCetLp48TxNTS2UlpZ9Ytv/0qxYsZJLly6K4rCIiIiIiIjIvyqiOCwiIiIiIvJLhC+cQCZ5TLasAFqthlgsnUWLIFBWVkFVVTUKhQKz2Yxp1otFW0ZZSrX0eBZnDgN4veml6F6vF0iLMJ8kDgPI5WmRLx6PPfZ3qVRKKpVieHgInU6HVqvF7XYvvpRUAp0kSZZazvvvf8C2bTtQKBQkk0kmJsaprKwiN9eKzTbD5OQEc3NzRCJhXC4nZnM6t7W+fmmkxeOoqqpGpVLR3d2JVivjnXfexmDQo1AoF36vyRTsg7TzccWKlbjdbvr6HtDefp/W1hW82FLIOx0zDNoDuG1OVjbVAWnBPC8vn6mpSeQyOTKVhrzqZtxuN/kpF3/wW1/m9MnjDA8PUlxcQkVFJb29PcTjMUwmExKJhGAwSDQaJZlMUlZWASwWhx+97w8pKirCZDJx794t9Ho9Wq0Ws9lCVKoiQrrQ3EOZ1+fzpYvRCQKJZHpbOn/4yULxQ2FYJpUhk8uRydKF6uRyOdFoFKVSSVCmJaJUoU6pycnJpbS0jOXLV+ByOdm27Wlsthmeemr7Jz6fkpJSxsbGyMvLB6Cysgq3e5ahoQEqKtKFBHU6HRaLhWAwgMFgQCaT0dvbzeTkBHv2PJeJITAas3j55a8zP+/l5s1raLUa5HI5Y2Oj+Hw+AoEgABqNFqvVSk9PN83Ny4lGI0xNTVJWVoFMo0dds41kVhESjQr/7CjxUBBIodFngSKXCXker92fYp0lgdvt5NatG2zfvvOxrvtoNMpbb73FuXMXcTgcBAJ+qqpq+NKXvsLRo0dIJpM0NTVnHPdTU5PMzc0yPj7G//V//SFKpYK/+Is/48aNazx40EM8HmdgoH9RkbRoNEooFKKkpAyNRkM4HMZgMGIwGNmwYeNChnUUl8uJUqli9eq1fPDBexQVlWRE+4fjTRAE1q/fyPXrV3j66Wc+8dmNjAzh83kXbWtuXv6JxzwkGAwyPT2ZKVg3MTFOQUEhFy6co6VlcRvnzp1BIpGydesnj6WfBw8n0zye+UUTayIiIiIiIiIiv0jE8rgiIiIiIiIiZFuykUik6YgAiQSLJZvi4hJKSkrJyclBrVYjCItjAj5OIpFY9N3hsC9axh2NxhYJpR8nmUwyNjZKY2MT7e1tjxUVJRIpNtsMgUCAZDJFVVX1omXgarUGqzWPDz98n3v37pCXV4DVmkcqleLMmZMMDw8BoNfrqa6uYdWqNRiNaUGwre0+NtsMIGSK3H0aMpmM2to6zp49zZUrV6ipqc0Iw8Bjc5NNJjNbtmwD0sLU3Nwc5RYNX1hVRJkiQJbJzKgrxMR8iDlfBInGiCucYiqQwJeQYhQi1MtdNOqjxKNRfu/3/gNf/OJXkMsVlJaW8f/9f/+L3/u9/4hKpaapqYVDh17CaDRmRLJIJEwstlgcfpzzNhwOUVZWRlaW6aPnmEznCcsVSmQyefrep9LPLl2ALpXJkX44WfDxqQiJICCVSJA8jJUghUQiRSKREIlEiMViSKVSYrEYiXgMuVxBYWERRqORyspKmppaGBzsZ+PGzZ/6fAoLi5ienly07emnn+bOnduMj4/x/vtH6enp4oUXDvIHf/B/8/zz+zNj1Ofz8sYbP+bMmZMZ52tqIRZDoVBQXFxKa+sK6uoaUCpVdHa28/rrP2J8fIxAIEBhYRGvvfZD7t+/RygUZsWqdZQ//SWUedVIgy6Cc+NEgwHi8TjJZAq5VMAgS1JflEPvjIf//sZZjOZcDh16aYkwnEwm6e7u5A//8D/wox/9CJfLSXZ2Dt/4xr/hP/2n/4fs7GySySRSqRSdTk88Huf06RO8++7b1Nc38Lu/+we0td0lHo9jNpvZs2cvJSWlXL16mQcPehgaGswIsw8ndwyGdMzLwwzoZctq8Xg8QFr8nZycpKqqGq1Wy+ysjZKSR8XhyKJnEgqlJ2M+iY6O9kXf8/LysVqtn/rMp6YmOXbsXbZs2caWLVs5ePBF+vsfcOvWjUwUxkOGhgZ48KCX7dufXohQ+cWzcuUq7t27+69ybhEREREREREREJ3DIiIiIiIiv1ToVVLiycc7Of1+P0qFMpMH63DYiUaj1NXWpZ23ggQF8Se2/XHn8MfFYbVaxdzcLIWFj19CPT4+hs/nZc+evVy8eJ7JyYkl0Q7RaDSThZpKJVEolJSXVzAw0A9ARUUlEomEkZFhbLZp/uAP/hMAt2/foq3t/pJzSiQSFAoljY3NZGfnsH79Rq5du8zVq5eoqVlGS8tyiotLlizlf/SavV4vdvscq1at4tixk5nfNBptxqn7cVavXsP4+CjDw0O8//47fOlLXyVbIyPbO8hnnztEnyNIj82HPxInpdMR9TrIl4eQeyapthqpX92ATqelvb0NiyWbTZu2ZETx119/lf37D7Njx05WrlzNjRvXaGhowmw289JLn8dmm2ZoaHBBcBQIh0NLslj9fj92+xwNDXUEAiGs1nwGBvpwzs2SzAsRFCSkQsGP7qNUmnYTPyxAl0plRGFBIkECJB7JIU6lQCqVodZoMtnPiUScSDhMPB7DlUiCMQ9pIkIoFmJ21obL5eTatcvs2rWHnJwc7PY5kskEer3hic/nYSG4RCKRcc8Gg0EEQcLf//3f8Nu//e8XFS5ramqmtLSU48c/YGxsFIB79+4yOjrCzp27uXr1MhaLhY0bNxMKhTh27F1MJhPl5WWUlpaxYcMmUqkkJ0+e4MGDXmZnZygoKOKZZ/YwEUgwL9FTlBUiJMthZHiIeCJOIp5ArVYjlUrJzs4hGY9hG+xAnltBccuqzORHIpFgfHyMgYE+BgcHGBoaRK830NzcTCIh8Oyzz1NdXQPA/Pw8AFlZWczPu3nvvaO4XE527nyG1tYVCIJALBbj0qULpFIpbLZpzp07Q15ePnl5+ZnCeePjY/j9AWQyWUboraqqxmAwMjMzjcvlpLS0jMnJcYLBIGvWrGN6ejKTN5xIpJ95NLp4JcDGjZu4evUyzz+//7HPzefzMTQ0uGhbc3PLY/d9SCqV4t69O0xPT3HgwOGMyK9QKNi1aw8DA/2cPXua1avXUl5eQSQS4fTpk5SXV1BXV/+Jbf88KSgo5OrVy0QikU+cPBMRERERERER+XkhisMiIiIiIiK/RFRadFySugjFEktyh6uqqnG7XaT8KULBIIGAH4lEQmdnB+U1dcgEMKaCT2gZkh8TnR0OO3r9R6KjRqNlZmb6ieJwV1cnFouF1avX0tXVwf37d5eIw11dHcTjaYH6obM4N9eK0+nMZOcmEglGRoapra1jdtbG/Pw8Fy6cfew5w+EwyWSS6uplVFZWsm/ffoLBIN3dnbS33+e1117FYrHQ3NxKY2PzIndhOBzmxIkPqK2tZ37ezdWrVxe5VOvr6xctz38UQUiLea+88j2cTidnzpyisLCQhoZGsvUqsvUqNpabSaVS+P1+Pvgvb1B/4BC9zgkURdk89dRWtFods7OzXLlyCaMxi+rqGr74xXScwD/90z+gUqkoKyunpKSUQCDAzZvXGBkZ5Fd/9TeYmppkfHyMUChEYWEx3/jGr5OdnYPb7WJqapITJz7k2WefZ2Cgh5yc3AUXqYB33o3MO4dgKc08g0Qinn4WjwjDaZt5CgEBuUyGQqEkFouRTCVJJpNIBAGJRMDv9yGXyVCq1KjVajQaLbFYjMraZjyhMNOdcuZtIaanpzP37c03X2fnzmeYnZ0FWIg9sWA2W7BYLJnPZrMZqVRKXl4+NtsMFks2t2/fIBoNsGXLU1RWVjE8PLRIHIZ0Zu1LL32Oe/fucOnSBWKxGE6nk//yX/4zOp2O3/3dPyAWi/LWW29w48Z16urqaWlZgcczT09PN3Nzc7jdLmpqalm9eg137tziQd8DOqN2ItpcDEowWNO50E6ng2QyQSKZQCaTkUqlGBsdwaTXY8jP5864G01wlsGBfgIBP0VFJUgkUgKBAFZrHoIA2dnZ7Nr1/KLrmJ9PR634/QH+6Z/+EZ1Oxxe+8OVFztu6unoePOhhcHCAEyc+XHQP1Go1JSXpZ3z9+jXi8Ri9vd0UFhbx8stf4/79u7hcDtxuFwAPHvSSnZ1NYWERFy+eR6fTYzKZ8XrTzuKPO9XNZgsajYapqUkKC4uWvB9tbW2LJpvkcjl1dU+OeolGo5w+fZLs7Bz27n3hsZMF1dU1vPDCfj744D02btyMy+UiFAqxc+czT5xc+EXR3NxKZ2c7q1at+Vfth4iIiIiIiMgvJ6I4LCIiIiIi8ktEmUVDcZaayfkQJabFy6gLCwrpUKadw4FAALfbjU6nJxwJc7e7H3UigJ4ni8Op1GLnsN0+h1KpRC5XEItF0Wq1GZHv44TDYQYG+li/fhMSiYTly1dy7twZvF4PBoMRgMnJiYybEz6KMhAEgdraeiQSIS2ujY1SWFiITCbj1Vd/sKRfjxIMBlEolLz88le4cuUSqVQKjUbD6tVrWbVqDRMT47S33+fSpQtcvnyRZcvqaGlpRa3WcPr0CbZs2UpBQSE+n5d3330To9GScajW1zd+wr1Kn2fv3n28/vqP6Ohoo7e3h29963cX7ScIAvfu3SGZTBKPx5HLFTQ1NWfuya5duzl+/ANOnvyQAwcOY7FY+OIXv8ybb77G1auXuXz5Ihs3bmbv3n1cvHie7u4ufvzjVwmHw5SXVxCPx5mbm+X06ZO0ti6ntraeq1cv841v/DozM1PcvXsDszkbvd6ATqcnmUwQN6qwKVTEUynC4TCJRAJBIgFBQIJAkoXngoBcIUet1pCbayUQ8BMMBpHL5fi8XlIpyM7OJZlMEAwGSSQSC5ENSjzhKDppiuX1ywiXlxAOhwiH04UDI5EwPT1dWK15xGIx1Go1NpsNnU6LXK7ICH0PJwvi8QTHjr1HTk7aYf3sszvx+2Pk5ubx7rtvU1JSlilY9+h9X7lyNeXlFXz44TGuXr2M0+kgOzuHs2dP8+yzz2OxZBMMBpiYGOOFFw7ywx9+n1df/T55efmUlZWzdu06pFIp3d1dVNa10DWWQBYK4AmHcTjsGAwGfF4vwViMSCRCOBzGaDTi9XrR6w24Zye5OpWkrNHEpk2bUas1nDjxIb293Zl+VlZW8eUvfwG/P8ajKSx2u53BwQEkEgnPP7+fnTufeWx0SHFxKcPDg+j1+kwu86PE43FSqSTLltWSn1/AqlVruH79Ch6Pl4mJCazWfGZmppmbm2X9+k0IgrDg+C9GEIRHMsTj6UmBRyZL1q3byPHjxzh06KVF4mzaAXxvUT9qa+uf6Kp1Op2cPn2CDRs2ZQTtJ1FTU4vL5WZ2dpY333yNl1/+KllZpk885hdBdXUNb7zxY1asWPXECSURERERERERkZ8XojgsIiIiIiLyS4RMIrCmNIvx+RCeUAyjWp75TavTYTAYcbtdGI3GBUEuhERtIJFM4h24jdMoeWxhLFgcKxGLxXC73QiCgF6vw+VyodFosNkeLw739z8gHo9nMnobGpq4fPkibW332bJlK8lkktOnTy5x+D0Uh7du3Y7BYOCVV76HIAiYTGZCoRCdne3k5lozRcU+TiwWZcWKleTl5S8Ic55MYShBECgpKc04b7u6Omlvv8fVq5fwer185jOfz7g1Gxoa+M53/hfxeIrcXCsWSzZWa95jzymRSDJ5sCUlpWzYsIkjR95EoZDj8cwvcoC63S7u3LmFUqnA5/NSWlq6qHCV2WyhubmFsbExTpz4gBdeOIhSqWTdug2kUnDjxjVsthmee24fRqORoqJiLJZspqenkEgkFBeXUFBQyBe+8DJDQ4P8/u//Nnq9gaGhQRwOOxqNEolEQKFQkEqlsFrz8cbncSQLSCp1SKMxUtIUUqmUZDKZLjSXFIgnEulic1IpBoMeq9XK5GQUqVRKKBQi12pl3u0mEglTUlJCWWkFbe33CAWDpBCIJQXk3nGCgQAbN27k1Vd/gF5vIBQKUVFRiVaro6ZmGZ/5zOeZmppkaGiA0dFR7PY5AoEAqVQSuVzO6Ogo8/MuQqEwWVlZXLx4ntu3ryEI8ox79R/+4e84dOhFrNa8JREVZrOFZctquXXrBpWVVVgsFuz2OX74w1eQStN/jQ4Egly+fIHBwX5MJjO7d+/lzp2bhEIhkskkRUXF3G1vB3MrOo0KaUpGOs4jjEarJRgMIJDOr7bNzOD1ealdVktlTi6ucIqa+jJSqQivvvpPzM3NZvq2YcMmNm3ajEqlwu//KLZhbm6OY8fexeGw89nPfoHnnnv+seMwFApx4sSH6HR63G43arUGo9G4aB+fz0sqlcJozOLAgcNUVFQC4PV6uH79CufOnWZwcAAQKCkpIRqNYrPN0NjYBCzOso5Go6hUHxWz1Gq1FBUVMzDQT03Nssz28fGxJUUmnxQp0df3gI6ONp577nn0esNj93kUg8GIxzNPMBhk+fKVTE9PMTw8SEVF1ace+/NEIpFQVVXNwEA/y5bV/qv2RUREREREROSXD1EcFhERERER+SWjtdDInC/C+UEn8WQKsyad+SoRBKxWK/Pz7rQQmFeAwx/FqJZTmHLi8E3RPxsgEglTVFS8pN1HxWGXy5mJfdDp9LhcLtRqDW63m2AwCCzOuO3q6qSsrDwj8CiVSpqammlvb2PDhk20t9/Hbp9b4qpLpVJYLBZWrVqdFtkEKC0tIxZLL4OPxWJMT09hsViWiEcSiYSGhka0Wh0A+fmFTE1NLRJfH6LValmzZi1SqRS5XIHBYODmzevcuXOL2tp68vPzUCqVzM3NkZtrpaGh8YlL1aVSWaboGsCaNet4663XMZnMvP/+u3zhCy9ncmbPnz9LIpFAqVTh9Xr54he/wsBAH6tXr82019jYzNjYGCaThQsXzrF9+9O4XC62bHmKZDLJ+++/yw9/+AomU9ohOTIySHV1DX6/j8HBATQaDZcvX+TkyeMoFApkMhmDg/1MTk7y1FObSSaT2Gyz3LlzC5lMmo6AKLMimIuJ+ueRSiQo5AoQQEAgkUxg0RuQy+W4nE60Wh0C6RxrhUKBVqdHr9dTUV5F/8ADJiYmcDgcPPPMHkZHR+kfn8Ftm0Ax20bE62RiYhKVSoVOp6epqQWlUrkg1ndgs83Q0NCEUqlgzZq15ObmYjKZ6e/v4/z5M/RzKLIAAQAASURBVIBAaWkpbW338Pl8SKUSkskYIMXvTxcn83jm+bM/+59UVFSiUCgwmcxYLNlYLBY8Hg83b17nhRcO0tjYzIcfvo/dPkcikeDu3Ts4HHZ8Pi9tbffZsWMXwWAAv98HQDAYIBKJotfrGRkcJWmME4oE0amUSCQSpFIJeXl56HQ69HoDJSWljI2NsGXzU2g0WsLxBEIkim1minfPHiO0kPGsUCh49tnnqalZxqNDLJVK0dHRxtmzpwmFQjQ3t7Jq1erHjsFYLMY777yF250uCldTs4wHD3qRy+VoNJrMfl6vF4VCwf79BzPCMKRF1i1btnLv3h1CoRAymZSbN2+QSCQIh8MUFZUsjHVpZjIkFlssDgOsXLmaI0feoLKyKvM+tLe3LdonOzuHgoLFUTTJZJKLF8+TSiU5ePDFzLGfRtrZPEk4HOLrX/9VzGYLly6dZ2RkmC1btiGXyz+9kZ8TTU0tvP/+UVEcFhEREREREfmFI4rDIiIiIiIiv2RIBIGdy3JRyCRcGXYx6AhiUMkwqGTo9CaUGgOBeJKIyoQ85adaEcASduBaUKLGxkYJh8NUVlYtEkATiUTm89zcXOazXq9HpVJlBJyZmWlKSj7KPnW5nExOTiwpTtXauoI7d25z794drl+/CrBEcE0mk+zYsQtBEDh16gTf/Oa3ePvtN7l9O+3chLRoNjDQT2vrikXi8tNP7+L+/XtYLGmnbmFhIXfv3qa+fmm2aTwe5+zZ0xiNWXzlK19fKODno7Ozg46ONt599wgulwuPx/upBa7kcnkmNxmgu7uTz372C9y6dZPZWRsXL55jx45djIwML7gy0/dQIhFoaGhkaGiAcDicEdoEQeDpp3dx9OgRsrNz6Oxsx+12UVdXh15v4OWXv8LRo28zNja6kM/sQKVS4/V6iUYjOBx2/vqv/xK1Wk1Ly3IEQSAeT8cU3Lx5k6mpaZRKFclkArPZDIDCO07CkI/SZMWogEgkQjKZJBwOYTAYKSkpJRwOEQqF8Pl8aXEQGSl9AYLBhDMSINtoxGAw4PF4kMlkXLx4HoPJQn55NS+uquTiqyNcfNCBRCJBLlcyOzuDRqPBYsnGbDYvem4rV67Gbp+jp6ebq1dfQalUUlFRSW5uLjk5udTXN1BYWIRarcbrddDZ2YvH4yWRiJOba8Xr9eJ0OrFYLMzO2pidteH1euju7sJstnDv3h1GRoYwGrPw+Xy0t9+jr6+HZDKVFry1WvLy8hgeHsrkTnu9XpLJJG63m+LcbNo8ThJSBUIigMczj1wuR6fTY7XmUVdbTywWRVPbwPDwMKVlZQRREPK4OPvhVaTJ9HgxmUwcOPAi2dnZi8ZUJBLh5Mnj9Pb20NLSSjKZznY2GpdGJiSTST744D0mJycyUQ9SqZTq6hr6+/uoqVmWcfx6vR7Wrl1HU9NS5+7Klat57bVX2bRpCytXrqG+vgGbbYaZmSkuX75AXV0DVVXVKBQKwuHwkqJ0D9+FhoZGOjraWL58JcFgkIGBPpTKj/6J0tzcsui99/v9nDz5IfX1jT91ITm328XMzBStrSsyzv4dO3YxPDzI22+/ydatOxblMv8iUSqVmM0WpqenlojhIiIiIiIiIiI/T0RxWERERERE5JcQqURgW1U29Xl6emZ83Jvy4AxECcvUyA1mJPYZsuYHqTDKkbq8rN6yjY5HHH2zszai0QjLltVlRN9HncMOhz3zWafTo9VqM99tthlgeeZ7d3cXKpWKqqrqRX00my1UVFTy5puvk52djSAIS8Th6uoaysrKuXHjGtXVNRQWFmVcto8SCoUYGxuhvDztflyzZh3Nza2cPXualpZWALKyTMzPzy+5V4FAgOPHj9HaumJRH3U6PevXb2TVqjX8t//2/yOZjDM2Ns79+3e5ceM6ra3LHxstIZNJSSTSYl8ikeDBg15eeulz5OTk8NZbb3D37h0KC4u5evVy5hij0Yheb0QQBCoqKhkeHlokYqtUKjZt2kJ7+32Gh4eYm5tl167dmev6whdeZmCgn+7uTubn3UilUnS6tHtbrVaj1eowGAz09HSjVCrp6upEoZCj1+vIzy/A7U4X73q4/D07O4cOl5sJo5WaskJc9mnGxsaQyxUUF5dgNpmZsc2Qm2tFEGDO6SJhKkWl1EIqRUym4d64nadaVzE9Mcb0zDQIAmOOAMXRYZ5ufIrqX/k1lEoFMzMz9Pf3IZfLycrKYmAg/Tk/vwCrNY8rVy4B4HQ6UKvV/N7v/Qd0Oh2pVAq324XdbicajXLy5HGqqqrIyTHR0NBETk4OGo0Wv9+HzWbj/fePYjRmIQgCkUiE7u5O8vMLqK6uIRaL4XK5sNlsjI6O0N/fTzAYQqfTIZcruHXrJoODAxQXl2AwGFEqFUgkUlQqFXa7HZ1Oi2tyGtWyzaiScTQaTSY+pLysHIPRyMBAP/X1DcTjcfr7+pgKJMmLzSBNpcdKRUUle/e+sMR9Oz09zfe//0OCwSD79h2gqKiI9vY2BEFYEhORSqU4e/YU/f19AAvicPr9VSgUVFZWMTDQR21t/UIkjJ5t255eMoYBLJZs5ufnKSgoZH5+HpVKRTKZZNeuPezatYe+vl6OHj3CyMgwOp2OaDTy2HYaGpp4883XqK9vpKena2GSKf1PFKlUuii7e3JygitXLrFjx64nxts8iVQqxalTJ8jLy1vyXlZUVGG15nPmzEkKCgpZtWrNv0qRupUrV3Hp0kVRHBYRERERERH5hSKKwyIiIiIiIr+kCIJAnl5Fnl7FhnIz7lAMh8vNm+NX6J+7i1IuwWBpIBgVSCaTNDU1c+PGtUxchNvtprOznfr6BhQK5aLCb4+KwzKZDKv1o2JX09NTmc/JZJKurk5qa+seu6S7oKCQ/v4HKJXpImyPOn+lUimbNm1menoKu93O3r37uHTpAh7PPLm51kX5rOnzTmM2Z7N27TqeemobLpeLRCKBxZKduR9yuZxoNJpxTs7OznL+/JlPFKNGR0fQajW0tLQQiyWQyeQMDQ3S3n6f/PwCWlpaqa2tz7Qpk8mJxdKCX2dnOw0NTUgkEioqqli9ei23b9/kH//xu+h0ukwRrlWrVtPXlxb0KiqqOHfuzBKHc1FRMePjY6jVaq5cuYTPly5sNj09RWdnB3Nzs+j1evr7+xAEKC/XkEqlCIVC1NbWMzY2yuTkBPPzbpLJJGZzESqVCqVSjVarpaysArVajUwmo7y8Are3g1DSgyNSgNPtwWAwYLFkI5PJMJvT4rBOp0MmkxFKSnFIFCTDAeIpBUIqhUKbxYzDTXNzCylgwhNGGrQT7e/iL789yzPPPIvD4eDXfu03mJgY58iRNxkaGsRsTuf+jowMMzIyDAj09vbwO7/z+zQ1NS8a32azBbPZQlVVNUePHuHw4ZfQamX09g4xNzdHX18fgYAfQRBYt24jExNj7Ny5h6NH36KsrJzW1pXE43FisQgzMzNMTo4jl8upqqrKCN/RaJT5eTczM9MLESbZxGKxdKE+QSAajVBeXoEuHCEZD+GTyijKSkc3FOQXUlBQyODgIKUlpQhAMpHAFUkScM8Rnu8lVZDN+vUb2bRpy6Lxn0qluHv3NrdvX0OrNXL48GcwmcxMTk4AYDAYMvEkD7l58zr3739U7O3jReLUajXFxaUMDPSzbt16BEHIRER8nP7+BxgM6RzoWCyKIAjMzEyzbdsO1Go1ra0raG1dwczMNH19D3jnnbdobV1BfX3DoiJwEomE1avXcvPmdQYG+hedo6amFo1Gk7nWmZlpDhw4/MTidJ9Ed3cXY2OjHDr0Evfv313yu1arZd++A7S13ePo0SPs3PlMZgLlF8XDSBuPZ/6x8TYiIiIiIiIiIj8PRHFYREREREREBJVcSr5cSp4+j/NqKQFrDmNjYwBoNBoGB/sxGAzU1TXQ19ebiZAIBAJ0dLRTV9ewyDlst9sXtV9eXsH8fLrI1MzMTEZgHh8fw+fz0tjYzMdJJpP09T1ArVYzMzODwWBc5OYrKipBIpFw4cJ5XnjhIO3t97l583rmfB7PPJHIYrei3T6biaFwOh0AGXEYwGrNx2aboaSklL6+B3R1dbBv34FFOawfp6enK/O5uLgUlUrF3r37iEajtLXd4+TJ45w/f5aGhkaam5cjk8lIJOLE4/GMa/ghW7ZsZWhokJs3r6PRaGhsbEatVrN9+86MqKfVaolGI8Tj8SXi37p1G3j99R9RWlrGX/3VX2A2m/H5fCQSCZLJJMuW1TEw0I/D4WBqapJkMoFWq+fSpQuoVCr0ej3RaISsLDMSiUBOTg6lpZW43S6+8Y1fp7y8AkEQeO+9oww86MKcU8C4P0jcUIjZoEYmTY8BqUyGWq3GmpvHnH0WjVqNJCoQjoRJJeMUFZfhDUaIhP24fX60BVUUycYZvXcUg1mL1+vl29/+U5LJBMPDQxw8+CJ6vYGurg6kUhk3b15jfHwMEDAaDbjdLv7P//kL/u2//dYigfghD7NvY7EYarWekpJSiotLF401l8vFuXOn+fa3/wSZTMb69RtRKBSo1Wq6u0dxOOy0tKzAas3l2LH3MRj07N37AvF4nDNnTtHd3YXHM8/U1AQpQYo5Nx+ZVII0mWB0dASpVIr3zodomncyJUjI1shAgOGRYULhECqVCpd7nvv9I8QTCep1YeQRKQaDgTVr1i0ScUOhEMePH2NoaIDt25+itXVtpkDew2JujwqwAJ2dHVy6dGHRtnRhxMU53gaDAZPJhN/vR6VSPXZSJBaLcf/+PRobmxgdHcZozGJ+3k0ikVgiJmdlmSgpKWXXrj0oFAquX79GMBigurqGmppaVCoV5eUVnDt3BpttepHw29zcQjQa5dSpE+TmWtm794WfydEbCAQ4f/4sdXUNVFZW0dnZTiwWWzIhJQgCy5evpLi4lA8+eJ/ly1cuKpb3i2DlylXcu3eXbdt2/ELPKyIiIiIiIvLLiygOi4iIiIiIiGQQBIH8/HwCAT+joyNEImGUShUymYzu7i5yc600NbXQ29udEV4jkQhdXR1UVlYBaeHqYVGuh1RX13D79k0AwuEQLpcLUNDV1YnFYiE/v2BJX+7fv4vdPkd+fgEjI8NEIhEEIS1kaTQaCgoKuHDhPJs2bWFmZoozZ05ljpXJZFRWVi8SbtVqNaWl5Vy5colnntmTyd59NPKioKCA6ekpJibGCYWC7N9/6BOLXYXD4UwuMMCqVauYmZmhp6eb3bufpaqqGo9nno6Odjo62rl37y6RSIRIJILBYKCxsXmJG/phlq7X62V8fIyvfe0b5ORYiUajpFIpBEGgpKSU8fFRKiqqMsdGIhH6+x8wO2vjzJlTNDU1MzIyRHX1MhKJBDKZFIVCgUqlBsgU+FMq1eTk5CCVStHrDWg0Wlpbl5OdnU1lZSl9fYMYDEbKyysyfXU6HRgMRgwaJdH2s+hrNxDWNBCTqsjRyHG73RgNRgqLipizzyInDkE3gj6bpFSG0xdEK4kjU2vpnZxj14p6qipkvHJPRzAYQKlU4fN5mZmZIhJJ5ys3NDQyMNBPRUUFMpkMtfoOU1MTyGRykskkMzMz/Nf/+kfs2rWHDRs2sWxZ7aJ7W1BQxNTUJPn55iXPUSKRYDabkUikCILAN7/5Laqqqjl79jSXL19EJpNRX9+IRqNhamoKlUpFfn4B2dm5DA8PkptrZXh4iIhMQ9JUgpBbRVypJiWVIo/4iE33EHOMoQ7YEAavIG/cRlSZzYMpJz63gyyjkcGL1wmGIyiTEbJDk6h0KQ6++Fl0Oh1Hjx5h167dmM0WJicnOHbsXaLRGAcPvsi6dStwOHwszLdkJmEeFYeHh4c4efLDJdedTCYy79RDLBYLn/vcl/jLv/w2qVRqSRFISOdkh0JBVq5cxf379wkE/DidTlQq9RIx+aEAG41GqaqqpqSklFgsRn9/H8ePH0MuV1Bf34BarWJiYjwT3ZKVZUKr1fH222+yceNmiosf72D+Sbhw4RypVIrt29MRGfn5hUxPT1FaWvbY/bOzszl06CWuXLnEyMgw27btyDj/f94UFBRy9eplIpHIz+SQFhERERERERH5aRHFYREREREREZFFPBRjrdY8fD4/SqUKl8tFdnYOExPjlJWV09zcQk9PN4FAAEgXbLt69TKtrcsxmRaLb1KplGXLajPiMMDU1BRmcz4DA32sX79piRvQ7/dnMndzcnIZHx9jdnYGvd4ApJ3BDoedxsZm5HIFb731+iLnMqSLd+XlpZ3AcrmcuroG5HI57e33qa6uweFwZLKMH2I2W/jud/+GgwdfZOPGzZ96rx66qB820dDQhNmczd27t9mxYydyuRyjMYvNm59iw4ZNDA4OcPToEU6fPondbudzn/s8eXn5mQJjs7OzDA4OUFlZTV9fLy6XK52Dq1ATVWbRN2WnIi+b6uoabt68QVlZBaOjI3R3dzE42E8sFsNunyMvLx+v14vBYGRycgKz2YLbPc+lSxew2WaIRiMoFAqUShXxeAyVSk1zcws22zTr129iy5atFBUVkZNj4MMPz2C3z/HGGz9mzZq16HQG5uZmcTjS4vL6NWvQ69WMuLqZFMz4S+pwe6LkWbKIC3J0hixmbL0ogmFSQgqNORdFMkI8HESrNVIu8VHo7+epXc9wRK9n+fLl3L17F5VKjUwmp7Ozgx//+AfU1jbQ29uNWq3mm9/8LZLJJN/5zv/m3LkzhMMh1Go14XCEc+fOMDc3i8lkYvnyVbS0tKJSqSgtLWVgoI9Vq5Y6i1OpFGfOnGR0dJh/9+9+h1OnTnD+/FlisSj79h1g1arVSKVSkskk//APf08wGMRun6Oj4z46nZ6WluXoq1dxbtCN0x8iFfETDfpJpJJI1UYkZRtQ59XSpPGjIsozT9fjkei40D2GMstIIBAg7JpB7Z1C7rMh12vQ5Czj7NlTmf790R/93wsF8byUlpaxf/9hSkuXCqYPc7MfisM22wzvvffOkvcDIJlMLXIO63R6Dh/+zEKciBKFQkl3dxcNDY2PHJPk9u2b1NQsIzfXyoMHvUxOTmKx5FBSUrLkXX4oqsZi0cy2h4XoGhoa8fm8tLW1cfbsaZxOJ0ZjFqWlRWRlmbhw4Sx79+77Z8U7jIwM093dyZ49z2UmgoqKihgbG32iOAzpCaatW7czOjqyUKxuO3l5+U/c/1+S5uZWOjvbWbVqzS/kfCIiIiIiIiK/3IjisIiIiIiIiMgi8vPTAojVmsfs7GxGuAwGg8RisUyWbVNTCw8e9GacislkghMnPlwU0wBpwdVqzUMmkxGPp7N2Jycnsds9xONxGhoWZ+cCXLp0gXA4DKRFmpycXGy2WXQ6A9nZ2SiVKqanp6murubIkTeIRqNL2gAoKyvH6/VQWVmFWq3ObD958jgymYySko+iBTyeeU6c+JDCwiJaWpY/rrkl9PR0Zz5rNBrKyyswmy1cu3YlU2DsIQ9F8t27n6W7u4tYLMaDBw+4d+8uxcUlNDe3cv/+XVKpFNnZ2Xg8+Riy8/k/H1zHXLMKd9F6/vryMJWFfmoMAjdvXmdwcIBAwL+oT6FQiIKCAmZnbSiVSvr7+3C7naRSYLVaUSgURCIR1GoNhYWFlJaWEw6HSCQSrFy5hs9//ksAGcF7cnKc558/QCKR4NatG1y58mN6eroQBAk5OTmYTGkRsjpXT2Uqis4Y4GrfOAlNPTaHC0coiSK7hNC8G5JxZH47WxtXEJ0ZYPD661Rv38q8y8H4+BjFxSXIZArKyyu4efM6Op0eozGLo0ePUFp6n7179zE5OUE8Hkcul/Nrv/Yb6PV6OjraFvKHUyQSCUZHh5FIqrh48RzXr1+hqamZ1tYVS3KoH3Lz5nXa2u6zadMWHjzoYW7Ohlqt5rd+63fR6fSMjaWL0M3Pu+nt7aasrJxf/dV/kykc1jbl4f7dcax5oySGunD6nERjMUilSAa9SOUqKKrCqU6xu0zFuZPHWL16DXnOLqr0BkLyELICKSGTicrKNZSWljE/78bpdOJ2uwiHw8zPz9PWdo/CwiLy8wt4663XkEgECgvzUKl0mEwWLBYLo6PDxONxTCYT8/Nu3nrrye9HIpHIOIOVSiWHDr2E0ZiFzTZDLBbj0KGXaGu7h06nywipg4MDuN1untmzj55pF9PSXGzKBMJ8koZVxUvOIZenxeEn9UGvN6DX66itrcflctLV1UF/fy/bt+/ky1/+lX+WMByLxTh9+gQlJaWLomvy8vIzETSfRllZObm5Vs6ePUVOTu6SiI+fB9XVNbzxxo9ZsWLVz/1cIiIiIiIiIiKiOCwiIiIiIiKyiLy8dMSDWq1GrVZltttsMxQXFzM8PEx9fQNSqZT6+gaGhgaZnbVlcoRv3bpBIpGgqqoaiURCTk4uUqmUvLz8TLGsqakpgsEYZWXlGTfwQ6amJunq6li0LT+/gJmZafx+LyUlZQwPD1FeXsEHHxwjHo898VqkUinf+Ma/4c6dW4u2e70ehoeHWLFiJQCTkxNcvXqZZ57Zw507t5ifdy9xQH8cj2eeiYnxzPfGxkakUikmk5miomK6uzuXFI17yOzsLL/1W79DMplkYKCf9vb7fP/732N4eIjcXCtWax6bd+zmqkPGdBA8Y6NoUhF8cxPcdjo4H46gCGqojk5jNCy+f8FgEICJiQkmJ8fJybECAlqthqwsEw6HA71eTyQSQaPR8a1v/XtMJhN/+Zd/zvh4uihdUVFa5AuFQkilMmSy9J9Nm7Zw9uxpuru7aGlZvkS4y8nOwWKQcbC1GK1O4OKND3i6YQUud4jLndeRpeKkQh6aNpew7csv8meOYdrb27Dk5vHW2WvMYqA+rxSJy0l5eSU3b17D5XLy7LPPMzY2xpUrl9HptAwODlBXV49cLufQoZeIRMLk5ORmisbZ7Xas1jyKi0txu13cvXuHe/fu4vG46e/fgsmUB6TV7+7uLi5cOIfFYuHGjWtoNBpefvmr3Llzi7feeh2jMYuSkjLWrVuPy+VifHwMnU6fiUKJxJNcGHQgl8lY27iMaz4HwUCQmGeeRDKJRCpFQoKEewa/fhn2lJzi4mKuXbtKIhHD5UqLv4lEgtbW5ZSXV2C15tHS0kpWlomRkWGOHHmDysoqDhw4zMTEGNPT0+Tl5RGPp48PBmdIpdLxJjdv3iAej5FIJJmeniSZTC68yxo0Gs2iqIJUKl2QTiqV8sILB7FarZn3QSaTUVBQSH5+AUePHkGj0ZKTk8Pt2zdR5lXy3kiU4bk4k1IrAZOWsCDnnF2Jp32a3XW5aBXpf2Z85Bx+8nva3t4GsDCeBDZv3sxzz+3j0qXzJBIJamvrqaqqXpKx/Wlcu3YFv9/P4cOfWeRolkqlpFKpJQX5noRGo2Hv3hfo6urgnXfeYufOZzAYjD9VX34aJBIJlZVVDA4O/MIzj0VERERERER++RDFYREREREREZFFaLVajEYjHo8HjUaTyblNpVI4nU4KCgqYmBintLQMQRCoqqpGpVJlIiaCwQBer5doNEJtbT3Z2ekM0kfF4eHhYWKxJPv2HVx07mQyyenTJ5f0Sa1WYzKZUKk02GwzWK1WRkaGKSwsIisr64nX8tRT21m7dh2pVJK7d+9ktofDYWy2Gfx+Px0dbYyOjrB//yGUSuVCNu3Up4rDj7qGAZqbP3ImNjQ0curUCfx+3xIBdXh4mIqKdH6vRCKhri4tfE1NTeHz+ZidnWVmZppIbj1RdT6G0ARxXwD77DShgI+8vDzUSAlklTFlu4dxQRsOBoMMDPTT3d1JVlYWWq2OoqISEokEzc2tTE9PEY/HqaqqRqPRMjMzjVwuo6SkBI1GS319PTKZnNdee5Xt259mxYqVDA4OUl5ekel7V1cHHR1t5OZa2b59B2fPnsFgMFBQUIhEIqG4uIRgMEBvbzdbt+7gv//RH+HxzHPq1Ak+mOjDZDKRSqW4fv0au3c/x7/7d7/D//Mn/5NrHh2SlBJ/OIuRkSiKVD7KxDTr128E0lEJq1atpqOjnba2+4BAbe0fIggCOp2OQ4c+w6uv/hOFhYXk5eUxNTWZcWdv2LCJYDDI2NgogUCAv/qrv6KsrIqVK9eg0Wh4/fVXCQTSgnpBQSF6vZ6enm5qa+vp7u5i9+7n0Ol0QHriA6CqqiojNg7Y/dh8EYqMKhRSCRUVlYyNjaZd8oKAXCZHo9VRVFRIQiln0Aur1Vra2+/T2NhEMBhAoVCyceNmyssrkMtlOBx2RkeHuXv3DgMD/ZSWlvLss89TVlaRcQffu3eXp57aikYjY3BwDIfDwczMDFKphFgsRW9vV+adfBSpVJoRi+12O0qlknXrNmYmBCAtDufnF2TE2GeffZ733z9Ka+sKuqbcJCo2IPeGKbHomX7gIxpwIZFKMeo03Bh1448keGl5AWq5dFHm8OOYnbUxO2vD6/UwPj7O8uUrsFgsVFZWUVlZTSgUoq+vl6NHj6DXG2hoaKSwsOhTC9PNzs5y+/ZNNm3agtlsWfK71ZrH3NzsTxwVIQgCTU0tFBYWceLEhzQ1tVBXV/8THfuz0NzcyvvvHxXFYREREREREZGfO6I4LCIiIiIiIrKE/PwCPB4POp0emUxOIhFHIhGYnbWxcuVqnE4HPp8PvT4tfBYVFaPRaAmHQxnnqsfjobOznT17nsu0+ZDp6WmysiyZ4lMPaWu798Sl/3V19UxPT+P3+0kkEszPuzPL+h9Ha+ty1qxZC8CWLdsYGRleKIT3kbv2zTdfY//+Qzz//P6M2FRQUMDt2zdpbGx6YtupVGpRsTuTyUxhYSFOZzriYdmyugWHbTdr167L7BePx5mYGGPTpi2L2ku7reOUl1dQWlpGTn4xN0J6vM4ZpJEgoVCYVCpFMJgW+xQkCMnUOAUdExPjDA8P4vF4UKnUaDQaCguLyMnJJScnF7t9jkAgQGFhEdXVNRmHt9PpXMgothMIjNLauoKGhiYuXjzHmTOnsNlmUKtlrF2b7qvX6+Ef//F7KBQK6usb8fn81Nc34HQ66OnpxmrNIxqNMDIyTEFBEVu2bM3cm8985vOcO3eG6ekpHA4Ht27dwOGwY7Zko6zdgtabYKa/A4/bga6iGmlOBY1NDXS/+x1+4zd+izfe+BEAmzc/hd0+x/379/inf/oHPvOZL6BSqbBYLBw4cIg33vgxACUlpeTnFzA1NcW9e3fIy8tn5cpV2O2l3L17g9lZG6+++k9cv34NiUSgoaGR/Px8WluXU1lZncmmLSur4PTpE+zffwiAwcFBAKqqajLPbsoTIplMoVjI7i0sLAIgmUohEQT0BgMrlq/E5/cRTkQZd4TovvoGxTk5yOUKNm3awvPP70cul+Nw2LHb5xgdHeHixfO4XE6WL19JU1MLoVCYjo42vF4PyWSSVApeeeV7vPTSIRoampDLFdhsM0xPTzE4OEB+fgHBYJBQKEgoFMr8N5FI4Pf78fv9CwUf87l69RLXrl0mKysLs9mSyQ+fmprEbLag1WrZtWs3/+1//HdcRespUGspyVIhCAIymYxIJIzVmodKkqDEpKbL5qVyQsOmCstjM4cfpb29jenpKfx+P3V19ZjNJjZs2EBvbw91dQ2o1WpaW1fQ2roCl8tJT083V69epqiomIaGxkWF9x6STCY5efJDzGYLq1evfex5CwuLmJgY/6lzhM1mC4cOvcS1a1c4fvwDtm9/+udSOE6pVGI2W5iZmX5swU4RERERERERkX8pRHFYREREREREZAl5eQU8eNCLIAgUFhYwPj4OCEQiEVwuJ2VlFfT3P6CuriGzLLugoIDa2jquX7+WaScYDHL27Bny8vIpKEgLHKlUCpvNRmVlTcZVCBAIBLhy5dIT+7R3737+7M/+BK/Xg9frWWhraZEtgIqKSp5++pmM4CuXy9mzZy8/+tEPSKVS+HxeXC4X1dXLCAYDi1yIRmMWHo/nE++PzTaD0+nMfK+vb1zUhkqlorq6hq6uDtasWZv5raOjjbq6hkXFwbxeT8aRCmAwGHlm70HGb01RThyvc46e3rRL+eHS/Gg0itfvw+MJ4+q7g9GYRX5+AVlZJqLRKA0N6f5UVFRy6NBL/Nmf/QkHDhxCrdbw2muvUllZRXZ2Ni6Xk97eHvx+H4cOvYRUKmX79p1YrfmcOPEBc3PTrFy5nkgkwltvvYHTmY5rqK2tY3p6CgCLJRuTyczsrI3vfvdv+fKXv0pl5WLRH9Ju6lgshiAIBINBvv3tP2XV1j0EZXoIjqDTKHE54nhcdpavXsesL0B2YTnT01N88Ytf5sc//iG3b9/k8OGX+M53/pq7d+8QDkfYv/8QVquV4uIS9uzZy7Fj72aeeVlZGalUEoMhi/7+fmQyKdnZ2fh8vsx+y5evpKiomPz8AgoLizPCMEBOTg6lpWXcvXubwsIi/H4fSqVyUVZ1LJHiUROrVCJhzZp1dHa24/F4aGxsprGxCY9nnkvXr+PzR1GqNITDYcbHR/md3/l9NBoNwIKgG2BsbIyqqhqee+55jEYjdrudublZPB43yWQSuVyOVqtFr2/hzTffRKMxYLXmYbfbuXXrJpCivLwi43h+SCqVIhwOEwoFCQZD6HR6CgsLUSqVRCIR3G43U1NTDA0NolSqsNlsAGi1OpRKJWPeOEFfhIpEkGhUikKpRCFPZ1gXFRYxNzdHaUkpWrmUu5Me1pSYHskcXhor4fP5ePvtN1GpVBmHbFNTC2vXruVv/ua7VFcvWxQlYTZb2LRpC6lUiomJcW7cuE4g4Ke6uoaamlpUqnQMzr17d5idtfH5z38JqVS65LyQdol3drY/9rdPQyqVsnnzU0xMjPPOO2+xefNTmUmBf0lWrlzF5cuX2Lt337942yIiIiIiIiIiDxHFYREREREREZElPCxKB+kcULlcnhE4Z2ZmsFiyF2IixikpKQPSbj2VSkVzcws9PV2Ew2FkMhmJRJzXXnuV557btxBnMEUkElkSt3Dx4vlMEbqPU1OzjMHBfpYvX8E//uN3KSgoQCqVkUymluybm2vl+ef3L8kSLSwsYvXqtVy4cI7BwQHy8vLIzc3lwYNeampqqa2tA9LLx+VyOdFoNON6/DiPuoaBxxbVa2hoorf3dWy2GfLzC4jH4/T397Fx42ampiYXXfejeaxbtmxFrVIilQgo5CoqKiooKipi3jPPBx+8z8jIMJFIBKnRilalxJJrpba2nqystKgtkQhs3vwUjY1N6PUGzp07zVNPbWNkZIQNGzaiVCqZmZkmJycHv9/HrVs32LFj5yIRrqGhkUgkzAcfvMMrr/wDMpkMpzOdA2yzzZCVZcqIw5COfVCp1Hzuc19iZGSEYDBMSUnpIldncXEJQ0ODGTE+lUox63DTP2pDHvFQVFiMTqfH4bDT39tNVl4xFqOJoqIivF4vn/3sF3jrrde5ceM6a9asobe3h/l5N0eOvM6WLdtobGyivr4Bj2eey5cvZs4rCBKmpiZZtqyW8+dPc/PmdaLRGPX1Dfzar32T8fFRZmdttLXdp63tPhUVlaxatSYTm7J8+UreffdtpqbS11teXrHoXmnkUpIfm6Ooq62jrraOaCyGXC7H6/XS19+PWmtAFnRi1KmpKakE4M///H/y4oufZeXK1Vy5conbt29SWVnFnj17M6Kx0Zi1yGUfjUax2+dwOObIytJy+vQ55ufnsdvnsNtnMRiMDA4OkEwmkUolaDRatFodWq12IVJCzYYNdTgcDkpKStixYxeBgB+n08nNm9eYnbXR0NCIz+fD5/MSCPjp6LiPX1qAgMCtG1czsSuTkxPEolEKCgoZnxgnlUph1sqZ80Ww+SIoFOkJoI87hx0OB6+88l2ys3MwLORmC4JAY2MTMpksU6Dxcc5fQRAoKSmlpKSUWCzGwEA/x48fQyaTU1pawuXLF1m+fMUnCrZKpZJoNJqJzflZKC4uYf/+Q5w9e5rR0RHWr9/4L1pAzmjMIpVK4fV6fq4ZxyIiIiIiIiK/3Ijlb0VERERERESWYLXmZQQTp9NJXV1D5rvHM08wGMRiySYcjuD3+wBIJBLY7Q7UajVNTS3o9Xo0Gg2CIBCLxXj33bcJh0PMzc2i0WgWCcGPK0L3ELlcjtlsQS6X43I5EQQBvz8d3/Bx57Beb+DQoRefuMy7oKAQh8OOyWRelCl8+vTJTJuQdk7PzEw/to1EIkFvb2/me1FR8WOXtpeVlaPT6enu7gTSruGmphYUCkU6jxaYmBint7dnUf8aGhoxaeQUZ6lxBWP4/X66e7q5efM6kYV7ZjKbMZizaSm2YDQayc7Opr6+gU2btvDlL3+d9es3otcbaGu7h0KhpLKyilWrVmeW4/v9fpLJJAaDkYmJMYzGpcLT/Lyb3/md38HhsHP69EkkEgG1Wo3FYmFm5iNheHJyArfbxcqVq1i/fgMlJaU888weLl48z4UL5zLPWaPRUlSUduYGAn66ujqQxfxsWrOS4up6JibHiUYjrFixCpvbh2NiGCEaoLm5lUQigUwm48CBw7hcLiYnJykuLiEvLx+/38/Vq5c5ffoEiUSCdes20NzcSigUYnJygp6eLh486OaDD97DbM6muLiY4uISNm7cwvj4CA0Njbz44mepqqpGEASGh4d4440f88or36Ozs51EIsHOnbs5efJDksnkokgJgIpsLSq5hGA0seQeKuRyZm0zdHV3EotFcYfi1FgN/Nf/9J+or28kOzsHh8PO8eMf8K1v/VuuXr3Etm07OHjwxYww/DgUCgWFhUW0tq5g3759/NEf/b8sW1ZLb283CoUSjUabcTOnUunCgk6nnZGRYXp6upibm0Wr1TE9PUUwGCSVSqHT6SktLUOr1bNu3Qa++MUv8+u//m/56le/wfr1G0kkkphzrcgk6faGh4cYGxvF5XKSnZODTqcjKyuL+Xk3MomERCpFLJFEoUi/i49mDvf29nDhwlnMZktGGH74zhiNWUA6RmZkZJhQKPTE+wDp/z/U1zdw4MBhtm7dxokTJ3jwoJdEIsnc3NwnHms2mzNRMz8rKpWK5557nqwsE0eOvMH8vPuf1d7HWbly1aK8dBERERERERGRf2lE57CIiIiIiIjIEhQKBdnZOQtOxDmefnoX77zzVub3mZlpKiurKC//KF4ilUpht89ljm9sbF4kAKdSKUZGhhkcHGD16lXMz7sJBoOoVKrHFqF7SG1tPWNjY7hcTiQSKVqtFr/fj8FgzOTnQtoJeOjQS+j1hiVtpFIpbt26icvl5Pd//z/yrW/920XiWygU5NSp4xw4cHghSqMwU3Tv44yODmeyfwHq65e6hgEkEgn19Q10dLSzadNTDAz08+KLn8XtdhOLxUgmk5w9e3rRMTt27EyL6dEoctconZ1ThP0e9HLIyjLh8XjIy88npjSjIkqtSUNCu5rPfvbz5OZaOXfuTKb41ujoCBMTE+zdu4+LF8/T2NjMlSuXcbmcVFZW0dvbQ35+AfPzLkZGhmlpWb7ofjmdDqamptDpdOzbt58PPzyGQqFg48YtuN1uEokEQ0OD6PV6GhubicVimcJ02dnZvPDCQUZHR3j33bepqVm24MaOLAjTKXJycgjO21m5WkffSBTBYKW0pAh3PIXBmMV85xm6gjO43S62bt3OsWPv0tzcyvPPv8CxY+/R2dlOUVExGzZs4tq1K4yOjvK97/0d5eXlzM+7icfj6HR6VCoVo6MjxGIxIpEIy5cvp7S0ii1btnL9+lV6enoQhLRbetOmp+jouE9XVyd2+xzHj3/AxYsXMkX8xsdHqaioXPTMSkxqyswa+ub8VFg0SBZU2WQyyfDIMLOz6WiGQDSBUqHgNw7voKk8l7q6eq5evczIyDBXr17CYsnGarU+MQbhkxgaGmBkZBiDwcjk5CT19Q2ZAnPxeJxgMEAgkP6jVGpZuXI1Xq+XmZlpBCHt4g2HQ0gkEm7evEFOTi5///d/g8/nJR6PMz4+itvtorjRAAoTdUU5OJ0OnE4nZrOZvLwCBEEgNyeXkdERFFoDCqkEjUJKMpM5HCORSHDx4jkEQcLmzVv5/ve/t+g6Hh2DgiCwbt0Gbty4xrZtO36i+5B2d6f43d/9A4xGI11d7TgcDsrLK6ira1gSs1FUVMLk5DgWy9KCdT8t6UJ5hZw5c4ra2vpMtMs/l4KCQq5evUwkEvm5ZBuLiIiIiIiIiIjOYREREREREZHH8rBQ08N83JycnMxvdvsc8XgcuVyO1ZrP5OQEyWQSh8Oe2UcikbB37wusXLkqsy0ej+PxeHC5XCQSSWy26U8sQmc0GrHZZvB43EQiYQRBQKfTk0wmCQaDmVgJiUTCvn0HyM3NXdJGPB7nxIkPkUgEdu9+FoPBQEFB4RJn5uDgAN3d6bgIqzUvI+p9nJ6e7sxnqVTKsmV1T7yHDQ1NhMMhjh//gKamFiQSCTKZlEQiTmdn+6LrbmhoIpFI8L3v/R2/8Rvf4NLRVyiMzZBlMpPQ5RKQaJAY8/BL9JTkGPnW3nX8xte/yu7dz2ZiKjyeebKysnC5nNy6dYPdu59dcG5HUSjklJeXMzMzTTweo7q6mrGxEXJzrQwNDS5yaDocDkKhMKdPn2b9+o3s2LGLiooq7HY7PT1deDzzPHjQi9WaR35+AdnZ2RlXdm6uNdNOWVk5L774WVwuJ9///vcYGRnm5Ze/hl6vJxAIEIlECA/dYbk+jFkBSARWVZfwh5/dwcqSdHTFH//xf2FwcIDdu5/j5s3r5BaVU7PxOWLmMt4/fRZIj9Vr164wMNBHT083a9eu55vf/BaBgJ++vgdoNFpycnJwu50UFhYilUopKCjk0KGX2LLlKZRKJf39fZw6dRyz2cLXv/5rPPXUdvR6A45gnDfPXqVv0kYgEKSzc7HDXSIIPFObS45OyYgrSCSeJBqN0tXdxeysjRQQSsmISNV8aedaWks/eo+i0QjZ2TloNBrq6xtRqdScOXOKN974cSZX+9OYnJzk3XePZiZKLBYLNpuN+fl5AGQyGVqtDoPBSFFRMYcOvYTJZMblcjI1NUlHRztXrlzk1q2bXLlyiZGRIdxuN+PjYyQSCbKyTEilMg4deolffekFyktLKSwpJ8+aTywWQ63WUF9XjyAI6RiWVAqbJ0SJSY1Vr8zkivt8Xt555y0KC4vZtm1HxlH/EI1GS2Vl1aJtJSWleL0ePJ75T70PoVCIs2dPU1OzjJqaZViteWzfvpNDh17CbDZz/vxZjh49Qm9vTybGpbCwiMnJyU9p+ScnK8vEwYMv4vV6+OCD9z/V9fyT0tTU8sSVFSIiIiIiIiIi/1xE57CIiIiIiIjIY8nPz88UbJqZmaa6uiYjjKUjJOYywmB/vwO327UkMzg3N5dVq1ZjNGZx/vxZ/H4farUaj8dDV1cHjY3NDA8PPrEPKpUat9uVWZIukUiQy+WoVCr8fh/JZHop/65duykvr1hyvN/v4/jxD1i5cnXG8elwOCguLsFozFoiwJ07d5rS0lL0egPxeHxJHmkkEmFgoD/zvbKyCrVa/cT+5+TkkJOTy/XrV3jhhQMASKUygsEQly6lc3Hj8TizszPMzc3xxhs/wmLJpqKiEplMRoow1uQELkGH1JBLjlRNfYGer77wFAZVWnQrKyvn2LF3Wb58JclkWpg8deoEe/fuywhz0WgMuVxBOBymoqKKoaEhKioqqK9vwOFwoNXqGBjoo7m5FYCbN68xONjPjh1b2bz5KU6dOoHFYqG5uZXp6Una2u6xZs26TBxFIpGgrq6BycnxTOFBSEeSXLt2GbVazTe+8W947bUfMj/vRiIRCIfDxGIxjr1/lN27n2X/4fVcuXaVz61dn85tPfQiI8ODlJaW8ad/+t9Zt249Leue4k/ev4WgzyVUtAbH+AD/+5Uf8s2vfJEdO3Zy9OjbpFJJXn31B7hcTkpLyzCZLHg88wwPD1JWVo7H4yEUshMMBtFoNJSVlVNaWsbg4AB3795meHiYBw96qa2to37HYQbvjzERHiBcnIdJOs///t9/ztNP72Ljxs2Ul1ciCAJFWWo+t6KQ97ptDMy4mJicIhWPkkJFSiLFotOwrcjAwRVlSCUCTqeT998/isvl5PDhl/jKV77Oe++9k4kbGRsb5ZVXvsf27Ts/0YHqcjk5evQN4vG0K9rv9xOPxykqKqajow1BEFCpVESjUWQyGY2NzbS13cNozMJisVBSUsr69RtZv34jJpOJgYEB3nnnTfbseQ6v10cwGKC/v4/5+XlCoRB3zr5HIGzhWlggYh9Ho9EglyuIxeMZV6vKmI3T42HlqhIkC4Kxx+NhaGiQP/7jP8VisRCPxzMTMQ9pbGx6rGt6w4bNXLlymeeee/6J7xnApUsXiMdjPP30rkXbpVIplZXVVFZWEwqF6Ovr5d1330avN9DQ0EgwGPzEdn9aJBIJGzZsYnp6infffZsNGzZRWlr66Qd+AjU1y3jjjR+zfPnKf9FMYxEREREREREREMVhERERERERkSeQn/+RyDczM0NxcQkKhSIj1M7MzJCXl48gCJSVVdDe3k5FRcUi8SI7O+2SXLVqDQDXr1/NxB74/T6++93vsHz5qscKrHq9nsnJiYzACWREsoeFy4LBAOvXb8yImo9is81w4cI5du7cvWjZuMPhQKVSceDAYX74w1dIJD7Kig2Hw5w48SGHD38Gs9mM2+3K9Begv/9BRsADqK9v/NT7qFAoEASBUCiEVqtFLpfT1dWB3+9jaGiIqalJcnOtNDQ00NDQtOhYtUrN6sZGGhtbyM3N5caNa/T19WaE4YftS6VSAoF01MXx48fYunX7ooJ/aeewgkDAj1qtxmw209nZwTe/+VtMTU1z+fIFenq6aW5uZX7ezfvvv8umTVvYv38/LleAvr6+Bae4DKVSRWVlNUNDg8RiMSoqKpFKpeTm5nLr1g1qa+vx+bxcu3aVWCzGpk1bMJnMDA4OUFJSxrZtT3PixAeMjY0yMTFGKpVgYmKMgwcPY5uZYWRkiMrKapRKFQUFRSxfvorS0jKuX7/KuWEvc8p89LYZNq9Zy8VkktC8jBs3rmE2W9ix42m+/e0/xeGws2rVasrKysnNtfLnf/6n5BaUkF1YSjKVHrtnz57i+ef3Z8ZVdXUNlZVV9PR009nZTtfwBOfmZtHp9FjVKXwyM1JTJblqOH/+LNPT02Rn57Bq1Wrq6xspylKzTjvP9Ng1spNqoshRq5RsW1WPd6SDr+zeiUQioaurkzNnTqLX6/nCF76M1Zp2WpeXV1BVVcOVK5fw+byEw2E+/PB9Bgb62LVrDxqNhkDAj9vtZn5+npmZaY4dexe/34PX6ycYDDA7a0MikWC3z2E0ZhEMBkgkEixbVsvhw5+lvr4BrVabKQg4MNBPfX0DZWXlALjdTioqKtm06SkgvWrgb//2r9m1aw/Ll69gbm6W6LSdgVEHAYkGo0TApFRx5cpFcvOLSakMyBRKsoJTNOatJ5VK0dXVyeysjcbGpsx7ODDQTyi0WJRtbm557PuTk5ODTCZjdtaG1Zr32H0mJsZpb7/Prl27lxS6XPQ+qdW0tq6gtXUFLpeTnp5u2tvvkZWVxerVax6bHf6zUlBQyIEDhzl//ixjYyO88MKzP3NbEomEysoqBgcHqKlZ9i/WRxEREREREREREMVhERERERERkSeQnZ0WZeLxODbbNMuW1WG15jExMQ6kc3o9Hg9ZWVkoFAqMRgOTkxOUlKRdcjqd/mO5viFWrFjFzMwUc3M2IpEIdrsdiURGfX09BsNHRdESiQQTE+OLtgEZ4VmlUiGTyQCBTZu2LOl7T083fX29vPDCwSXCs9PpyOS7bty4mUuXLiz6fWRkmI6ONvLzC5mamlokDj/qdlSp1EvyZz/Ow5zVnJxcenu7qa2t49Sp4xw9egSZTIZKpSY/v4CVK1ctEtVLS8tobm6lurpm4TrTFBQUcvnyhSXnqaiopL39PqOjw+zduz8TCfKQZDK5SEC2WLLp6upEp9Pz7LPPcfnyBe7cuc2OHbt4883XUKvVHDr0IjKZjLGx0QUH6QPKysqpq6sH0oXoxsfHSKVSrFq1FgCv18OdO7dwOh2sX79xUT9UKhWQFrMPHDjMP/7jd+noaCc7O5tly+qIx+M0N7dw/PgxKiuricViSKVSzp49RVVVFWVl5di9GkryCjAKEcZGRzBqVcTiJuLxWf7X//oz9Ho969dvRBDAbrcTCoX57vf+jooNzzGRMtGBgCkRJzsryIcfHqOxsXmR41wikdDY2ERdXT0fXLtLdM5FyGUjFAyQn5OHsaiMF3e1cvfsuwwO9iMIAidPHufChfOkUsl0FrZCgQEfJSWlPP/889y4cZW1mzcQj8c5c+YUXV0dNDQ0sXPnM+kYhgU2bNjE/fv3OHDgMMePH6Ozs51wOMyDBz0cPfo2RUXFGad2PB5ncHCAeDyG0ahHpzMSDodJpcBozGLFipWZdt1uNwUFBdTXL87cTSQSpFIppNKPxtfExASFhcWZ7319D/D5vBw8+CJWq5X6+gb8x95jrTGIU6lHWVCLOxhFJdUy7nBQaIySpwwTGLvPn397BJfLidVqJSsrC5/PRzKZRCKR0NHRtmh8lpSULnrPPs7GjZs4depEJhP8UeLxOKdOHaewsGhRZvGnYTZb2LRpC0ajEYfDwY0b1/H7fVRX17BsWV1mvP5zUCqV7N79LH19vfzoRz9izZrNn3idn0RTUwvHjr0risMiIiIiIiIi/+KI4rCIiIiIiIjIY5FKpViteUxNTWaKqOXl5TE5OZHJN7XZpsnKygJALpfjcrkIBPxotTqys7MzbSWTSbq6OlmzZi0ajYa/+7v/w8TEJMlkknA4RHd3F1VVNeTk5JBKpZidtWEymZcsoRYEISMO5eXloVQqCQT8GbdgKpXi8uWLxONxXnjh4GOXYDudDnJy0tnEa9asY2Cgn5mZ6UX7nD9/lsOHX6K7u5umpmYgLXw+FMYBamtrFwm3j6Ojo42VK1dx8eIFvvOdvwIEJicnADJ9qKysRCKRoNPpaWpqpqmp+YkOxvz8Atxu95LtFRVV/I//8V+pqVnGsmW1jz02Go1mXN9zc7M0NjZx//49Ghqa2LBhE+fOnebb3/4TBEHCZz7zBbRaLQBtbfd58KCHnBwrhYXFuN0uAIqKitFqtYyPj3P//m3cbjfd3Z2sX7+RLVu2Ljm/Wp2eKAiFghQUFJKVlUUikcBgyKKjo51jx95lz569+HxeXn31+zidTsLhEN/85rfo7Gzn5Ze/xnePX+XDXjtKi4GS6nqC4zP4B+9yceAqer0BnU5Ha+tyWltX8OGHx3jlle9iqWhiVlOCRiol5HXhTGqIqkpJhR7w3nvv8LnPfWlJVrVUKmVdawttgWE6OrsIBEMYpCp0SinFuRZWfOPXeeut1zEYjPT19XL79k28Xu9CMb4cnnnmWQ4cOITD4SASiaJUqvjBD/4Rr9fLrl17KCoqZnx8jPl5N/Pz7gU3sJtbt25y8+Z11Go1SqVyYfJEgkqlIhDwU15ewc6dz3Dt2hVkMhmCABqNkmAwwtTUFAqFIvPcHnL48EuUlqajR7Zt25Fx3z50wD905odCIRwOO2vWrAPS79Lt2zcpLS3LuJt7e3vo6elCLQj83qFt6Cx5THvCJJIpAh4nY1232LxxG/fvG3jjjR+xadMWUqn0RMLk5AR///ffQSaTc+vWDbRaLVqtDq1WS1PT413DD9Hp9OTmWhkZGaKiYnEu8Y0b15ifn+fllw/+TAXgiotLsNlm2L37WWKxGAMD/Rw/fgyZTE5DQwNlZRX/7CiH2to6mpqW8dprb1FZWU1zc+tP3VeVSoXZbGFmZnrRqg4RERERERERkX8uojgsIiIiIiIi8kTy8/Mzxc7m590oFEosluxM4TmXK50zrFKp8Pl8lJdXMDDQT11dfSZSAmB8fAyfz0tjYzNSqZS8vDwGBtJZw9FoFLlcTn//AyKRMPF4HJVK/cQsX0EQUKvV1NU14HI5aWu7z6ZNW4hEIpw8+SHl5RVPFJtSqRROp4Pa2rT7VSKR8Oyzz/P9739vUVxENBrl8uVLyGQfxTf09PRkRHH49EiJublZjh49QiQSZWhoAJfLRX19AyqVKiPImc1m1qxZR0tLK+XllZ8qQsnlchKJ5JLts7Mz2GwzfPWrv/LEYwMBf+YeuFwuGhoa2bZtB2fPnqa+voHz589y8+Z1Dh36DMuXrwDSxc7ef/9dSkrKMJtNzM8vFqZNJjMajYb+/n76+vrYsWPnY7OfgczzDIVCmM0WkskUoVCImppleDzzvPHGj7l27Qrr1m0ABJ5+ehXHjr1LSUkpDoedvr4HfPmZjcQkd7jYM4Y3ECZXHiXqHcFcVb0Qo+Dn6NEjhMNhbLZpmppacCiteJICeTopEYkelz9IUFChVWrx+Xy8/fYbfPGLX14SR5CrV7KzJpvuHlBkFyOTStHYe4l5tQj6Ip599nl+8INXEAQJBQWFgIDf78NoNNLf/4C///u/YXp6ipKSUv7oj/4jEomE8vJKTp8+kRlHMpmMrCwTWVlZVFZWU129jKGhQQ4ePIzBYCQUCnH69IlMzrXT6eDP/uxP0Ol0SyYQHhY/e9TxumbNOlauXA3ACy8c5PjxY9TXN1JbW0c8HlvoQzrn9+F7XlRUBKTfWZtthhdf/CyQnhw5ffoEAOvXb6SoKO0wzlIvvCMFBiyyGMeOvYvZbGHnzt289NLnEASBublZAgE/dXWNXL9+JROPASlkMjk5ObkMDw9hteaRl2dFq10sAAOsXr2Wo0ePLBJrHQ4HN29eZ+3a9YsKZv40GI1ZeDzp7HG5XE59fUPaIe330dPTw507t8nOzqGhoSkjkv9s5zFy4MBhbt26xfvvH+Xpp59ZUhTz01i5chWXL19i7959P3M/REREREREREQ+jigOi4iIiIiIiDyRvLyPHGoPHaN5efkZcfihy7e0tAy/30dxcQm5ublMTU1mnLEAXV2dWCwW8vML8Pt9TE1NkZubi9PpIhqNZNyO3d2dSKUytm9/+ol9UiqV1NWlRdaSklLa29uora3j7NnTbNq0hcLCoice6/V6iMVii1zNFouFzZuf4vz5s4v2nZgYR6FQEIlEUCgU9PR8FCmRlZX12PPE43EePHjA+fNnOXfuDFKplKqqalavXsvt2zfo7+/LFPEqL6/gt3/79ygtLXtifx+HIKQjAR4W77Lb7dy9e4empuaMAPw4/P70b+lYDQtKpZKKikqmp6fo6urA6XRQX99IX18vUqmUvr4H3LhxicrKShQKJUqlmkgkmmnP7XYxNzfHM8/s5t//+//AX/7lt2lvv4/ZbGHLlq1LhG6VSoUgCITDIaampohEwgiCwPDwENnZ2TQ0NLFnz15cLgeXL1/EZMrKHLt69VrefPM1ysrK+caOVjTuId597weojVpeePY5IpEwu3c/x/nzZ7hz5zZ/+If/gaqqav74j/8nt0ad/P3FXpzzQZrq6ohM2Ig75zDptXg88ygUCo4ceZPPfe6Li2IeAMwxJ/XxUVQGC1/7zPNoJHFu3rzG7ds3Uas1PHjQzezsLNnZOWRlZVFfny7Kd+vWAF6vN9N+XV0De/Y8i9Waj8lkwmjMwmQyodPplzhII5EI0WgUqVSKTqdj//5DdHd3cfbsKfr7+zLO8/z8AsrKPho7D4tBPhSH6+sbeeqpbZnf1Wo1+/cf4sKFs9jtczQ2pvOtH06ATEyMo9cbMBrT9/327Zvk5lopKysnmUzy4YfHCIfDFBQUsn79xiXjK5FIMD4+ikQikJubi8lkoq/vAY2NTahUKhQKBS0tLXR1ddDc3EoymSQYDFJSUkpZWRlzc3NMTU2QSCQ4c0ZOIiFgMpkpKCjEarWSm2ulurqG7u5OmppaSKVSnDp1nKysrIUJhZ8NQRBQKlWEQqFFE1I6nZ41a9ayevUa5ubm6O7u4OJFB2VlFdTX139itvGTkEgkrF27Dptthvfee4e1a9c/cTLlcRiNWaRSKbxez5LIHRERERERERGRnxVRHBYRERERERF5Ivn5H2XGulxp16jBYECr1Wbya2dnbRQUFBIMpgtMZWfn0N/fh0SSFr3C4TADA32sX78JQRC4evUyarWaQCCIxWLJRB1Eo1EcDgclJaU8eNDDsmV1GQH0ITKZjKamlozztqKiktu3b/KDH7zC17/+q58qmDwUtR8VhwFWrlzN4ODAotgISGewPnjQs0gQh7Tw9qioNzc3x+XLZ3jvvQ+w2Wzo9XrUatWi5eMymZxYLEZDQxMzM1Ps27f/pxaGAfR6A06nk9zcXAKBAGfPnmLv3hd45503mZqaeqJr+qPnNUttbV1GkDeZzJw7d5aWluVEIhFMJjN/8Rd/xooVKygtLWV21oFOpyMWSztNfT4fk5Pj6HR66usb2LfvICqVisrKKoqLS7h06QKzszaef37/ImdkIODH4XDw3ntH8fl8yGQytmzZiiB8FDnR1naPr371V8jNzeP73/8eoVCIcDiMwWBg06YtvPHGjwiHwwQCAb7+hc8xPDzE3NwsSqWcnp4uDh16ie7uTvLz84nH43znO/+bp3fvZVtLNZe6h7nU0c+yyhLKcBAN6pmamiAnJ5fZWRvvvfcOBw++mBG1U6kUHR1tRD12iixGeu5dY37ejdPp5ObN6/T2dpNMpoAUqVSKXbv2YLXm8dRT23A47Pzt3/41JpOJiopKcnJymZmZITc3j7KycvR6wxOf7/r1Gzh37gz79x8C0uJlY2MTbreTe/fuZPabmZlmft5Nc3MjcrmKSOQjcbi0tIw9e55bIjxLJBK2b99JR0cbH3zwPolEIhONMjU1SVFREYIgYLfbGR4e4rnn9iEIAjdv3mB8fAyFQsFzzz2/5L30+bycOPEhLS3L2bFjF+fPnyUajTI6OkJTUzMKhYJwOEx/fz9+vy/TF51Ox759BzKxHqlUCr/fSywWoK9vhJmZabq7O7l168ZCPrKUwcEB9u07gM/nY2Cgn6985eufGu/ySUTjSaSmfO70jbKmcRlK2dIoG6vVitW6k0QiwejoMOfPnyORiLNsWR1VVdWLimb+JOTl5XPw4ItcvHiOkZFhtmzZ+hNfw4oVK7l37y5bt27/qc4pIiIiIiIiIvIkRHFYRERERERE5IlkZZlQqdSEwyHcbidZWSYEQSAvL5+hoXQsRCwWY2pqimQyHXcgCAIVFZV0dLRTV9dAf/8D4vE4DQ0NTE1N0tnZjl6vx+FwAmkxq6ioiAsXzmO15iGRSHC73XR2tlNf34BCocy0u3fvC5w5cyojMM3O2kgmU2RlmX4iJ53D4UShUCwR5yQSCbt3P8srr3wvI4JC2m159OjbS4re1dc3EIlE6O3t5tKlC3R2diCTCWRlWWhoaGRmZpqCgrTQlpOTS3V1DcFgcKFoWBK5XMmGDZt/pmeSdmZPYDabOX78GNu370Sn06HRaPF6PZmiXx8nEPDj8XjQ6/ULrlQ9k5MTnDz5Ic899zxTU5N0dLQzP+9i69anUSiUPHjQ8ci9czA1NY5MJqeyshpBECgtLUOlUpFMJhEEgbVr15OXl8977x3lBz/4R7Zte5r5+XnGx0dRqzUYjQbkciUNDY1UVlYyPz9PVlYW8/PzC+ewMzQ0SFNTM0VF6SzYh9ESc3NzXLt2lRUrVvHVr/4KJpMZt9vFm2++xr1794jHk8TjcbRaHZs2bcFstjA0NMhAbxcmmZJdpTnMOpwIEzfYsqKJrpiTwcGBBQE6xNWr04yMDFNeXonHk84Bvn79KvF4HIlEQjweQ6VSMzQ0gEqlYv36TaRSKdRqDfF4lGef3YvVmsfdu7c5efI4O3c+w+c//zKTk+PcvZvOZL558zq3b99k2bI6Vq1a/djsWIPBiMFgZGJinOLiEgD6+/u4ceP6wsTCNGNjoyQSCcLhEPfv3ycnx5qJlSguLmX//kNLBNxHaW5uJZFIcPr0CYLBANFoFJtthoaGdFTK7ds3MRgM1NbWYbPNcOXKRQB27NiJyWRe1NbY2Cg3blxj585nMsXWtm7dzgcfvI/f78flciKXp8XhjxeiKygoXJT3LAgCBoOR7OwiLJYCHqa4pCeO7Njtc+j1es6cOcnQ0BAWi5kjR97AYDBQVFRMYWERublWsrNzPvH6H+KPxHmrfZquWTme/ln6wxoOtRR8FJXxMaRSKZWV1VRWVhMOh+nr6+Xdd99Gp9PT0NBIUVHxT5wlrFAo2LlzN4ODAxw58gbbt+/8iaIxCguLuHbtCpFIBKVS+ROdS0RERERERETkkxDFYREREREREZEnIggC+fn5jIwMEw6HiUYjKJUqcnJyGRsbzeT0Tk6OZ0RcAKvVSnNzK7du3WB4eIiysnK0Wh1vv/0WkHYfPySZTDI4OEh5eQUymYxEIgGkna4PBWatVsvWrdupqVnG+fNnSKVSjIwMUVvbwNe+9g3eeectpqenFrJfn0w6UiH7sQKOyWRm69btnD59MrNNp9PR19dLMJh2OUPa5XrlyiWuXLnE7KwNnU5PSUkJZrORYDBCPJ7A5/Ny+PBnaW1dTl5ePsePf4BGo0Gj0TI3N5dZav+zkJeXzoG22Wy0tq4gNzeXcDiMQqHEbDYzMzO9KPIikUggkUgIBALYbNOUl1cCaZfmO+8coaCgkAMHDnPjxnVef/1H7Nixk82bt3Dq1HGmp6cxGs10dnYQiUQoKSlFpVJnnltLy3IgLRxbLNkL90xPXV0d77//Lm1t99m//xAHDhxGKpUyOTnB+PjYghu2mStXLmE2Z+Pz+TLP/caNa1RWVlFdXc34+ChlZeW89947OJ1OXnjhID6fNzMRYDKZ+fznX8bhcHDq1If09HTx1a/+Ci0tyzl27F1qamrp6+ulrq6BQoPAfP8wExMj/OWVM1gs2UxMjOF0OpDJZEgkEmZmZkgmU6xatYq8vHycTgcmk5lvfevf43I5eeedIxiNWRiNWUilUnbt2k1TUws9Pd18+9t/il6vJxQKUVxcwm/+5m8jlUrJzc2ltXUFw8ND3Llzi/HxMXp7u+nt7aaoqJhVq9ZQVVW9SNBft24DH374PkVFxUxNTXLs2LuZnOL8/AKyskwMDPTj93uBtEDrcDgoLCziC194+ScSDbOzc6iqquHy5UvY7XaSyeT/n733jq4ju690v5sjcrjIOWcQIAnmnMlmZgepW2oFS7JlecYznhnbeg7j8czYnvFoLMkKLalzYM455wQCIIicc74X8eb0/rhENW8DINm27LXec31rcTVRdarOqVNVWOxd++wfsbHxTE5OUF9fy/LlK/F4PJw+fQKPx0NGRiZ5eQXC8V6vlwcP7jMyMszOnXv8IjkkEgkbN27m3Xff4caNayiVShwOO+3trX4fcQoKnl+IbhqlUklMTCwxMbEUFBTxJ3/yRyxevITXX/8qExMTDA0N0tnZQXNzM2bzFBKJBL1eT1RUDImJiURFRRMRETljXm61majpnyQuPBCrqZ+GoSlutI7wSl70HCP5HLVaTWFhMYWFxYyOmqitreHOnVvExcWTk5M7Q0Sfi7S0dKKiorh48TyJiUkUF5e8UGDOz/fFc0znSYuIiIiIiIiI/HMQxWERERERERGR5xIdHUN7exsSiYTJySlUKvVT0ctAX18vAOPjYwQEfC76hIdHkJOTyyeffEBTUxOvvfYVHj+uZHBwAInEXxweHh7C5XKzc+dubDYb9fW12O12wJe/WlNTzc6duyktXQD4xM6GhjoiI6PIyMgkNTWN4OBgKioevbQ4PBdFRfNoamqks7MD8DmKp6bMjIzUEBMTy/DwkOC6jYyMFOIlprWcmJg4ZDIZW7duJz/fJ6T19/dRU+Nz4EZGGjCZRoiKerH4NBfR0TEcP36Ubdt2kJaWDvjyf0NDQ0lLy6C+vtZPHHY4HCiVKvr7+5HJ5CiVSpxOJ5WVj8jMzGL79l309vZQV1dDVlYOHo+X+vpadDo9VVVVxMUlEhERgVar8xuHr8BaCl6vl9raagYGBjhw4FNCQ0NJT8/k7/7uR1y+fJHHjyuRyaSsWrX26QcFJ0uXrmB83BdTMj4+Rn5+AVVVlQD09fXS1dWJTqejsrICgyGKtWvXM39+GdXVVbS3t3Hhwnk2bdoM+AT8VatWc/78GcxmC01NjQwMDDAxMcGdO7dwOh3cu3eHmJhYMjMzmTdvHuXllXR0tBMfn4BKpSE+Ph6VSiWIcrGx8fT2dhMSEkp+fiFNTY1cuHBW+Bii1wewY8cu4XkLDAxEqVTQ39+Hx+Nm1ao1uFwuwb0qlUpJS0snLS2dwcEByssf0tBQR09PNz093QQHBzNvXin5+YWoVCq0Wi3R0TE8evSQO3du+RVLBJ+jPT+/4OlHgl5cLpeQQ11b+4QFC8peWNzQ5XKhUqnYvn0X7777DiaTkfDwcG7cuIZCoaCgoIirVy9hNBrR6wNYv36TMD82m40LF84SFxfP5s1bZxUz5XI5X/nK1/jhD/8zmZnZDA4OotPphf1KpVIoDPllaGlpFgr5RUVFExUVTUZGpuDut9vtDA8PMTw8RFdXBw8e3GNiYgKPx41GoyU8PIKUlDRiYmLoMXnRyKVMjo4gw4NaLmFg0vGCEcwkJCSUpUuX4/V66enp5v79e0xNTZKenkFmZjYazfM/BPmep908evSQ48ePsHbtBvR6/ZztMzIyOXDgU4qLS154n0VEREREREREXoQoDouIiIiIiIg8l+ncYYlEwtTUpJDXGxUVLYjDTqeTiYlx4Zjw8AghUuHq1SsYDFF89NF7wn6VSoVCoWR4eAij0Uh+fgEymQydTkdBgc+JOZ2RGxgYRH9/P0+ePCYqKoba2hoSEpLQ6XSCK7a4uIQbN66xcuXqOUUVr9dL/8gogXGZDE7aidQrZ4haEomETZu28O67v8JmszE+PkZvbzfj4+O0tbUSERHB0qUr/MRtjUZLXl4eq1YtxeWScfjwQaHYl9fr5fLli0LbiIgIAgICGBjo/6feDiECYP78BcI2k8lEaGgYkZGRXL9+Ba/XK1ybw2FHqVRQW/uEmJhYPB4PjY31GAxR7Nq1l7q6GgYGBsjIyCQ7O5tf/OJnnDp1gomJcfLz8zGbbU+zdT/HarUQH5/IzZvXn7o2O9mxYyfp6Zl+c7px42aioqK4cuUSjY2NOJ1OlEol4eHhgnPaZDKybdsOqqsf4/F4cDqd/OpXP8dud6DTaVm6dBlLlizHbJ4iKSkZmUzGr3/9S27fvkFiYhIDA/1UVJSj1epwuVwcOPAp8+aVUFg4j1dffYPHjysJD4+gvb2NnJw83nhjL0bjFI2Njfz0p/9AXd0TlEoFcXHxgph7+vQJQZA1God58uSxcE2xsXFs374LvV6P1+vl/v273Lp1g+zsXPr7+8jLyyc1NZXjx4+QlJRCcfE8v0xagyGKLVu2sWLFSiorK6iqqmRsbIwrVy5x+/ZN8vMLKSkpJTMzmz/90/9EamrarM+BRCIhPj6e2Ngobt++Q3h4BHp9ADduXKOlpZnNm7cKMQ+zMX19arWa+PgE3G43Z8+eoqmpkeLiErq7uwTBfvPmrUJ+9NDQEFeuXGTZshXPLf4IoNVq2bp1Ox9//D7j4xN+xdeys3NnFAB8EXa7nUuXLlBYWIxKpcJkMs64RpVKRVxcPHFx8RQXlwA+l/vY2CjDw8P09HRTX1/LnTs3aXQE0kMoGucEQUHBTPQPkRUW7/f+fBl89ySB+PgEnE4nLS3NnDt3GrlczpIlCwgKikQqnT3uQiKRUFq6gISEJE6dOs78+QtITU2fta1UKiU1NY2WlmYyMjK/9DhFRERERERERJ5FFIdFREREREREnovB4C8OT6PRaAgJCWF0dBSn04nD4XjqUlUSHh6Bx+OhtbWVhQvL+PDD94SCWdPn8ng8DA0NERgY6JcPqlSqyM8vpKGhHpfLRUZGJl6vl48//pCgoEAKC4sZG/O5Tj0eXxRBfn4ht27d4PHjSpYsmZnl6/Z4OV/TRYUrmt4hGVW320mL0LM5O5IQrb9AJZFICAsL49ChgxiNw0/dwnI0Gs3TPNhAIW+3oKDoaUEqOeHhAZw9e4nCwmJBWKqrqxUEdIDCwiLsdjt3797+JwlQg4OD9Pb2EBoa6nesyWQkI8MnzIaHhzMwNIImMBgAs/XzqIvo6BiamhqZnJzkq1/9Gg8fPiAoKJjNm7dy4MCnZGZmA14aGxspKioiJyeHtrZOmpoaycrKYXJyEpNphLGxMfLyCsnJyWXlytUcOrSfjIysGeOVSCQUF5cQERHJX/3Vn9PX18vixUsBn+NXrw9gamoSp9NBenomly9foK2tBbvdSXHxPMLCIvjss495+PCBXxZ0bm4eLS3N2Gx2hoYGWLx4GYsXL6G9vQ2Xy8XQ0CA6nY4VK1axePFSjh8/wqJFi6msfERAgJqyshVkZGTyF3/xV/zwh/8Zq9VGZeUjIiMjiYqKweFw8OTJY3Q6HR6PR3g+i4p8BddkMhlTU1OcOXOSzs4OysoWU1q6gIMHP8NkMhEfn0hyciqNjQ0cOXKQrKxs8vIK/J5zvT6AZctWUFa2mLq6GsrLH2A0Gikvf8D9+3cZGhrE6/UyPDxEREQkcxEQEMCePa9x//5dIXqir6+X99//DStWrJozpmB6PqVSKX19vaxcuYbe3m6ePKlmx47dnDp1AoDS0gUkJSUDUFtbQ0NDHdu27RAKGr6IhQsX8cknH9Df30t8fLyw/WUjJZ7l5s1r2O021q3bgNvt5vbtm2zbtuOFx0mlUkJDwwgNDSMz8/Pn9F7lYz6824pTl43JNIq7s47a3hv81XkXQUFBxMcnkpaWTnR0DGFhYV/KpatQKMjOziE7OwezeZK+vg4uXbpGWFgEubn5REZGznpfIiMj2b17HzduXKW9vY0VK1bPWvAuP7/waXSKKA6LiIiIiIiI/PMQxWERERERERGR56LX6wkMDGR4eJipqSk/UTMqKgaj0SjkxQ4NDRIXF09ERCRdXZ1MTk6wdu16fvKT/0tCQqLgPhwdHWVgYADwRS348owdgpNQJpNRVraY6OgYGhvr6e7uwuFwEBLiy1qdFmqm+1Wr1eTm5lFVVUlZ2eIZxajKu8c4WzeIWyIlIUyPVyqnqmccu8vN1+YngNdDa2sLlZWPKC9/wNDQEE6nA5lMjk6nx263PxW03WRn57B8+UqCgoL9+nA6nbS1tbJ37+uAz+F7/fpVYb9CoWDFilX09vZy5swphoaGMBgML30fpqamuHr1Eq+8spPy8od++0ZHTYSEhDJidmDSxPJ/rjSgD/UJih6HFWunCU14HN3dHQwPD5GSkkpLSzMbNmwiJSWNx48refLkMenpGbz11tf56U9/TEtLM9u2baa8vEK4lrS0dAyGaOLjE9m1aw8SiQSbzfbC/GSLxcKSJUu5c+cW9+/f5eTJYxgM0QwPD9Le3saPfvS/6enpprGxHq1WS0hICP39fchkUuLjE8jJySU1NZ2goGCCg4NRKBRcvXqZmzevExYWisFgICgoCIlESkBAAAUFhVy+fBGz2cymTVvYtm0HJ04cZcGCMiorKxkdnWLjxi2EhISyefMrDA0NcO/eXRwO3z0cHOynv7+foKAgweG6du16IWO5o6Od06dP4vV62bPnVZKTU7h69bKQ03v9+hXWrt1AVlY2GRmZ1NY+4eDBzygoKCI7O8dPFFQoFBQWFlNQUER7eyv379/j7NnTjI+P4fV6aW5uoqRkPhEREbOKiVu2bKGioprExCQKC4vo6uoUPthcunSB5uYmNm3aMqNgo9vtcw6bTEacTicxMTFUVJSzbt1GfvKTH6HXB5CUlMzy5Stxu91cvXoJhULJzp17vpRIqtPpsFqtaDRauro6iY6OITLS8KWjVfr6eqmsrGDVqjXCu6fVaunt7Xmhg3k2uru76O9o5m+/8Qp9kw5cLjfVdy6yd+d3MZlMDA4O0NrawvXrV57OpwO9PoDY2FhSU9NJSkomIiISufzF/zul1wewePFiMjLyGRgYpLb2CdevD5OUlEJOTg56fYBfe4VCwZo162lra+Xw4QOsWrV2xu8KtVotZIxHRUXj8nhxe7wo5VKk/wTXs4iIiIiIiMi/XURxWEREREREROSFREfH0NbWhtvtxmKxCK7BkJAQP8FqYKCfxMQkQkJCuHv3NiEhoVRXPyY5OYXW1mays3OxWq3U1lbjcNiJjPxcXJmamiI01FfESa1Ws2fPqwQFBdHW1oJcLicuLh6JRMLAQD+Dg/1kZeUI4jDAvHnzqaqqpLGxgZycXGG7y+PlQdcoHqcDvdSFXqtFAihkEur7Rjl4vpXO6nt0dLRhtVoID48gOzsHl8vFuXNnkEqlyOUKoqKiWLx4GSMjI37ZqdM8fPiQoqJ5wnzcu3fHz2m9YEEZgYFBaLU61GoVT548xmBY/1Lz73Q6OXv2FGvXbkCr1SKVSoSM2en9DSM2ztQNMmL2MDJuxmCQgQQGJpw02bR4vNE4JruIjzRgNBr5nd9Zh0aj5ciRg0xMTPD662+Sm5tHQ0M9NpuNzs4Ozp8/z9jYOFlZOYyMDCOTyXC73RQUFAnX2d/fR3R0jDDW6TiO0dFRxsZGMZlMnD9/BovFglarZXTUxK9+9YunhdWCMBpNjI+PU1BQSEFBAQ6HE5VKhdFoRKvV8o1v/A4PHtwX8pXBJ7x3dnbQ09PFf/2v/5Pw8HAqKh7R3NxAVFQ0a9asQ6fTc/r0CczmKXbs2M22bTs4efIoK1as4Ny5i7hcLrZseYXU1DRiY2OJjY3jk08+wuGwMzQ0hNVqRSqVUlNTzf/4H/+bpKQkPB4Pt2/f5N69OyQkJLJlyyvo9XpGRkaYmpoSHLYdHW20tjaTmuorNJefX0h2di5VVRUcOPApJSXzSU1N83t3JBIJycmp1NbWkJKSSl9f71PXupTKykeEhYURHR2DwRAlvDOLFy+ltLSUK1duAJCensmqVWu5ceMqFRWPAF+xunff/RWrV68jLy9f6NPpdCKTyejt7UWhUGAymZicnCAzM5PQ0DDa21vZuHEzVquFc+fOUFQ0j/T0jJd6Xp/FbDYLKwXUajWdnR2sXbv+S7nm3W43586dwWCIYt68UmF7WdkSzp49xe7d+77U+QYHB7h37w7bt+9CqVSSrvZ9lKrDA0B4eDjh4eHk5uYJx1gsFgYHB+jsbKe2toYrVy5hNpvRajWEh0eSmppKenomUVHRz/1YYjAYMBgMeDweOjrauHr1Ci6Xk8zMbNLTM/xcwikpqRgMUVy6dJ6YmFhKSxf4XWd2/jyOXruHOt7F0JQdj9eLSi4lPzqQ3OgAYgLV/6R4DBEREREREZF/W4jisIiIiIiIiMgLiYqKEUSGqalJQRyWSCQEBHyev2u323G73TgcDpqbGwkPj6C/vw+VSkVYWDhdXZ0MDw8xODg4o3jc1NQkoaGhSKVStm/fhVqt4tixw+zatReLxcLZs6eeZgxLGBsbe5pB/Ln7MDw8nMTEJCoqyv3EYZvTzYTVBS4bWo2W5uYmTE+Fx1ajhc6+ckJco0RFRfmJviEhwaSmpmE0jjA2Nkp0dCxyuZzh4SHu3LnF8uUrhbYOh4OWlhY2bdoBwNjYKA8f3hf2BwYGsmBBGeAr1BUfn0ht7RPWrFn3QvHG6/Vy4cI5SksXCHnPwcEhDA4OEBMTi9frZcAup/ZJP26Pl/RwHZIxGUqJG5VKRe+UkQi5i+bxcSQxRYxPtJAVJaOm5jEhISFs2LCZM2d8c3vy5DFaWlqQSqWkpKTS3d1NSko6SqUvx7WpqRGbzUp+fiG9vT2Mjo5y+/YNtFotDQ31jI6OYrVahLGr1WomJiZQqVQsWFBGQEAgen0AGzZs4sKFs7S2tgJecnPz+eEP/5KRkWE+/PA94fje3m6Cg0PweHyxGAEBgXg8Hk6ePMbY2Cjf+94PqK6uZP36TSxYsJCwsDA+/PA9fvWrX/Ctb32HvXtf4+jRQ3z66Ufs3fsq27bt4OrVcyxbtpKbN69z8uQx1qxZx/Xr19i8eSutra385je/ZGJiAq1WS0pKKsHBIfzsZz/mlVd20N7eSn9/P0uXLmfhwkVIpVK8Xi83blxl7drPhf7ly1dx+PABDIZoIQNbLpdTWrqAgoIiHj16SFVVBQsWlJGQkCgcd/XqZerr69BqtaSlpZOYmER/fx+PH1dis9no6Ginu7sLg8HA6tXrWLJkGV6vl9HR0afPbMhTl/MGUlPTOXfuDJOTE9jtds6ePUVLSxPr129Cp9PhcrmRy+X09nYTHe1zDUdERFJVVYlCoeA73/k9WlqauHTpAr/7uz8gLGzu/OLnUVtbQ0BAADablaCgYGQy2YwCey/i4cP7mExG3nzzbT/Xsk6nIy4unubmppeOVzCZjFy7doVXXtk5I/M4MtLA0NDgrK5mrVZLcnIKyckprFy5BvCJ1kajka6uTpqbG6msrGR8fBSpVEZISAgpKWmkp6eTlJREWJj/ByXfO5ZGSkoaNpuNxsZ6Tpw4ik6nJzc3T/gYptPpeOWVnTx+XMnRo4dYt24DAQGBtI6YOVk3RoVJSZRilFC9BplUgsXh5mLTMHc6TJTGB7M+MxKlXCxaJyIiIiIiIjI3ojgsIiIiIiIi8kKio6OfEYeneHaFs1rtc6d5vV68Xi9jY2M0NTVgtVr9Cq+FhYVz+fJFXC6nEAPR3t6GxWJ5el6fy3bDhs3I5XJOnz7Jhg2bCAnxuYn1ej3Hjh1GIvEJHRaLhdu3b7Jp0xbBuVpSMp8jRw76uVk1ChnBGgXV41MoHRP09ffS1dmJLjgUfUQsqfExhEh9wpdcLiczM5uCgkL6+/swmy00NNRjsVjQaDTCtdy/f5e0tHRB4K6qqqS0tPTpPPhEvmddzStXrpnhCGxsbKCzs0Nwm87F3bu3iY6O9ivmFRlpoLe3h5iYWIxjY7S6AtG43CQEa5BIJISGhWIyGYmKimZoaBCLxQzWcZQaLVPBqfQMPeK7i5diMpk4d+40VVUVZGVlsXr1Omw2GykpqbjdLnp6urBYbISGhmG32zCbzXR1dfL++79CrfbNR3t7G4sXLyUkJFQQU0NCQggKCkYqlXLgwKeo1Wr27n2Nrq5Oqqsr6enpRiqVodFosFjMSCS+Dw3R0TEkJibR2dkBwMjICKOjoxQXl1BR8Yjly1dy6dJ52tvb2LVrLykpqVy4cFaIFkhJSSU725eNfO3aFYKDQ9i1ax8nTx7j448/YO/e19i9ezfvvfcRq1atEe6TxWLh4MHPmJycIDc3jzt3biGRSMjJyUWr1WE0jvDOOz9HpVKxYcNm8vMLBZGyoaGemJhYv9gGuVzO6tXruHjxHDt27Pb7AKBUKlm0aAlWq5UHD+7x6NFDysoW09PTTXn5A797r1AoSEhIRKPRMDAwgMvlwmIxY7XaaGtr5dixw5SVleJyuZBKpX5jSE5O4e23v8XlyxeprX0CQHNzE729vaxfvxGXy4lcLqe7u5vo6GgGBwdQKJS43S6SkpJxu90EBYWwadMW7ty5yYYNm790ATmv18uTJ1XIZHKUSiVTU5O8+uobDA8P09bWQkrK7MX2nsVkMnLnzi1KSxfMGsNSUjKfw4cPkJqaNiNO5otMTIxz4cI5tm59xe99niY2No6enu6XjryQyWRERkYSGRlJael8YfvU1BS9vT20tDRx+fJFRkaGkcslKBTqpznGGaSnpxMaGoZEIkGtVlNYWExhYTGjoybq6mq5c+cWsbFx5ObmERISSlHRPOLiEjhz5hQRaYXcH1UyYXOSkxDJxOgooZGf3/tIvZJxm4sbrUYcLg+v5Ecjl4oOYhEREREREZHZEcVhERERERERkRcSFRWNVPq5c/hZHA47Wq0Ws9mM1+vFbJ7i3r27WK1WYfn7dHaqVCpldNTEokWLCAkJYXg4QBCHJyenhGJl5eUP2LlzDyqVSugnISGRN954i8bGBkZHTQDY7TY+++xjtm7dTnp6BikpqQQFBfHoUTlbt76CzWajoaEOY109PX1jyLweApQSAsJjcMjVaB1jBCvtGAxRFBT4lv5PLwm/fPkiAKmpaUxMTPhds9fr5ezZU7z11jfwer20t7eyadMajMYpOjraaW5uEtrGxyf4FcEC39Ly/v4+amtrnisO+4RpszAvnx8fRV9fHwBV7YOYUZMS8PkS8uDgEJoaG5BIpYyOjmK321CpVEhtE7h04Th0Bh4+vI/BYECn01FQUMjw8BA1NU84deo4ExMT2GxWhoeHCAwMxmw2ExoaikwmY8eOPSiVCvbseZWIiEhOnjzGnj2vzjr+mzevI5FIWLp0OV6vl6amRiorK5DJ5Lz66hskJCTy7//993nypJpLl86zYcNmFi1aIojDXq+Xhw/vs3nzVu7evc2tWzeoqqpk06YtpKSkArBs2UpOnDjKnj2vIpPJiI9PYGCgn5KS+U+Llt0gPz+fhoYGPv74A7797bfZsmUbp06dZN26DRw7doSKikcUFhai0+nxemHZshUMDAzw5Ek1er2esbExQkND+frXv0lMTCyXL19AqVRRUFDI48eVs15/REQEiYlJPHr0kNLSBTP2azQaVqxYxdTUJAcPfsbt2zeJi0sQcrn9zxXJ0NAQ+fkFaLVaoqKin7pVm6itfUxdXcOsBQHVajVbtmwjPT2DCxfOYbGYsVjMTz+y+KIeJBIJQ0ODTE5OEhgYKAjAKpWKTZu2IJFI6O7u4ujRQ2zYsIng4JC5HtcZ9PR0YzQakclk6HR6TCYTBQVFREfHcPz4EbRa3XOF2GnXvF6vn7XQJPgE9NzcPKqrqyguLpnzXGazmTNnTrFx4+YZGb/TxMbGUVNT/dLXNxd6vZ7MzCzhvZdIIDhYQ11dC01NTdTWPuHChTOYzWbUajUxMb4c48zMLGJiYgVHeG9vDw8e3GdycoK0tHQyM7PZumMPf3HwNiM2D/MzEpHJtfT39vjFzEgkEoI1CuRSCQ+6x0gM1VISH/zPvi4RERERERGR/38iisMiIiIiIiIiL0SpVAoOXrPZjMfjEZyTFosFvT4As9kM+JZL3759k8hIAwEBPhGmo6ONkRFfQbuIiEghliIgIIChoUHAtyR+urjdtm07Zi16FR4ezooVqzhx4iiTk5N4PF6cTifHjh1m1ao1lJYuoLi4hNOnT+BwOGhqqqenpwejyYjME0hozlJk2kA0XjemlioCJSaWbniTJUv8xdehoSFhXAqFgh07dgli8TRGo5GbN6+j1wcIWcMej4crVy4JbSQSCatXz4yOUCiUpKVl0NTUwNq16/1E8Gn6+/uoq6th+/ZdM/bFxMTy4ME9AOr6x1AoFH5Lx2VP5+7+/bsYjUY0Gg12ux2ZTIZHamFMHkhzcxNNTY00NzeSnJyK2TzF+Pj40yJsOXR2dqJQ+JzUo6OjpKdnMjQ0xHe/+7tMTk5SXv6AxYuXCTnRX2RqapLW1hbCwyOQSqV89NH7dHd3Eh4ewfbtO8nJ8eW5rlu3gevXr3LhwjmcThfr128kNjaO4eFhwBdLsHz5CjQaDUeOHGTPnlfJzy8U+tFoNOTnF/Lw4QPKyhaRk5NLX18vtbU1bNy4mYSERGpqqlGpVJjNZt577z3WrdvCpk1b+PWvf4nVasFms1JVVcny5StISEgkICCAN9/8Ov/1v/4ZnZ0d5ObmkZWVw+3bN9m1aw/bt+/CaDTy/vu/RqvV0tXVQXJy6oz7XFxcwvHjR4iPT5yz+KDRaMRkMpGQkER3dxcSiYS4uPgZubWxsbGMj4/zB3/wH9DpdBiNRioqHnD79nXM5ina2lr5xS/+kXnzSigoKPITmTMyMomNjeP8+bNUt3QwKtHTMzLBxMQkMcFaQk0DKDwOwSG/dOlyv9iX+PgENm7czLlzZ1i0aIlfFMbzqK5+DIBUKhM+FEVGGpDL5WzevI3jx4+wadOWGcUdp6mpeUJXVyd7977m57z/Irm5+Rw8+Bk5OXmzvkt2u53Tp0+wZs3654rbKpUKh8PhV3Tzt4VcLicmJpbo6FhWrFgF+MTvyckJmpubaGlp5uOPP2BsbBSJREJkpIHk5BQyMjKFZ+P8+TP0OVTY5JGkRclpaKgnMSkJQ6SBwaFBYp7J/gbQq+SYLE4qesYoig1CJrqHRURERERERGZBFIdFREREREREXgqDIQpAcAcHBARit9twuVwolUqUStXTfWZaW1uEAmJ9fb309fUxNjZGYGAgGRkZWK1WrFar4OALCAgQYhimhZO50Gp15OUVCNEV02M6d+4MDx/ex+Px8uDBPaqqKomM9BV/CgwMxFJbQwFdRBsyKczJIeyVAo4ePcz9+3dISEggPj5B6KOursavz40bt1BfXztDNHrw4B5BQUF873vfB6CqqoKRkWFhf2Fh0ayioEwmJzU1lbq6GpqaGsnPL/DbPzk5wfXrV9mxY/esS+Xj4mI5fXoIAOOEGa1mZh6sXKGgtaUFlVqFx+PB6/Uik8mQys045HIkEjcBAQEEBQVRUFCEUqmgs/MmUqmMmJhYnjypxu12097eTkJCIpWVj0hMTGJ0dBSFQkFwcAgHDnzC/PllmM1m5HI5crlcGO/t27dwOp14PG4+/PA9IiIiefPNt/nss4/xeLzCOKOjY0hKSiYsLJzW1mY++WSYwsIiqqoqAfB43Jw+fZKenm40Gi1lZYtnXGt2dg7Hjh1mdNQkfMQYHx/D6XSiUCgoKCgiMzObe/duc/PmFT788D3i4xOZmpqkt7eX3Nw8amqeYLVa0Wq1eL1eqqsfs2zZStrb2xgbG6Ozs4PExCROnDjG669/FblcQXp6BmvWrKe6uoqHDx+QlZVNTk6eIGRKJBLWrdvIyZPH2L173wyBc2hoiGPHDuN2u1Gr1aSnZ2CxWOjq6kAuVxAXFy84eWNiYgkKCsLr9c1dWFgY69dvIihIh8k0jkQiZWpqkhs3rnH37m1yc/MoKVkgZAXLlGrk6UsYd8TR3TfIpEbDlFtHo0uK3K0jWW0jWWLhm9/8jvDx5lmCgoLZuXMP58+fxWgcea5LF8BqtdLYWO/rW+b7WJGamk5TUwP5+YVoNBo2bdrC2bOn2b5914yYB7PZzNWrl8nJyfOLVJkNqVTK/PkLefDgHsuWrfDb53K5OHXqOEuXLiciIuK55wHfR6rRUROhof+0jOUvg0QiITAwiJKS+ZSUfB5L4XA46OrqoKmpgcuXLzIw0I/T6SQwMJjB0FxGPMO4TQ70ej3tbW0Eh4QwPj5OdFT0DFE7XKek02Sla9RKcthMV7qIiIiIiIiIiCgOi4iIiIiIiLwUUVFRwt+npnzi8HQkBPiWUstkMrq6OpFKJZhMJlQqJR0d7VgsFqRSKSEhIcTFxSOXS6ipqSMzM1tw+sXHx6PTvVi8kMlkSKVSMjOzGRoaZHR0lMHBAYaHh5iamkIulxMY6CuSl5qahlQqxWg0kpiYxO9/7/f8BKKsrGyGh4c5evQQr7/+JhEREXg8Hurr65657uinjuXVTwXLz4XN/v4+XC4XTqcTi8XCrVs3hX1qtZolS5bPeg0KhRy1WkNCgq8w3bPisMPh4MyZU2zYsGmGe3SasLAIJid9URcOuxV5wMws2PS0dDZu3IzRZMTj8TA1NYnX68Uu0xGmlZOeHsDg4CAhIWGMj48xNTVFc3MTHo+boaFhRkZ88zky4nNzj46akEql7N//idDH3bu3aGpqJDY2TtgmlUqx2WxUVJRjtVoJCwsjLS2DyEgJd+7corGxHplMRnt7K3K5goGBftrb25icnGTx4qXcvn2DhoY6TCYjZrOZnp4ebt26wbp1G1m8eCnl5Q9IT894KkTLUSgUyOVyVq5czbVrV9ixYzepqWl0d3fR1NRIbq7PoaxSqVi5cjWLF8/nG9/4NleuXCInJ4+UlFQcDgdbt26juvoxXV1dpKSksmnTFn7nd36XBw/ucfToIdrb27BarWRkZHLo0AFCQoLZsuUVtFqfYF1auoCGhnqOHj1ETEwsRUXz0Ov16HQ6Fiwo4/r1K6xdu0GYp4mJcQ4d2o/dbve7b1qtloyMLMF5rdVqSUpKZs+eV/F4PNy7d9vvPBaLhfj4eJYtW0lAQCDl5Q8YHBygqqqSqqpKUlJSKZo3n8oJFQ+6xoiOCCM5Mpjbd24yMdaL0+nErQ2hQxnK+tVbZo21mEapVLJ16yvcu3eHixfPsXr1ujlzfuvra4XCczKZHKlUSnZ2No2NDYLzOygomFWr1nD69Al27NgtuIsBrly5hEQiYdWqNXOO51mSk1OoqqoQChcCeDwezpw5ybx5pTMKYM5FXFwCPT3d/yri8Fwolb6VBWlpGcI2r9fLwMAAf3OpEcXYOKNjo/T192G323C73djtdjQaDWmp/jnOWqUM56SHMavzX/syRERERERERP4/gigOi4iIiIiIiLwU085hgMnJSaKjEaIkwCdqyWQyRkaGiYiIoLOzHa/XF/tgNk8RHh5BcnIKUqkUtVpFaGgo3d1dREREEh0dg1KpFHJ0n4dMJsVutzE0NMTY2BhKpZKmpkbAi06nR61WCwKlVqtl48YttLQ0MTw8PMM5uHr1Ws6cOYVcLuPQof185StvYjKZBOEVICcnF4CkpGRcLgc1NT5XsdvtZmxslJiYWK5du0JQkBabzSoct3jx0lkdmOBbYu52u8nNzefs2VOMj48RFBSM1+vl/Hnf0v1pB+xsTBe+AwiWuRlxe/F4vUi/4BrMycmlpaUFu90mCG/jaClJCWX79pVcvXqZ7dt3YTAYePToIePjY0Jht5GRISYmRhkaGiE+PpHo6GiWL1/FggULCQ0Nx+12ERgYiFQqJT+/gJCQMJxOJ6OjJt599x2sVitLly6nuHgeSqUSl8uNy+VCo9Fgs/mK27ndbmw2K6Ojo4yOjmIwGAgODqW+3ueoHhkZZnx8DKlUSkNDHWbzFE1NjcI9eRapVEp/fx+VlY8ID4+ksbEeheISpaULBFezxWKmtvYxGo2GoKAQ7t27Q35+IXv2vMqRIwfp7u7EaDSSnJxCYmIyfX29JCUlM29eKV6vh7a2Niorp4iMNBAYGMSuXfv87mleXj65uXl0dXUKucQlJfNJSUmlo6ON1tZmUlPTsVqtHDy4f0Z+97Po9QFkZ+cwMTGBVqulo6OdefNKsVgsjI2NCvEIo6OjgK/gY3p6Bjk5uXR3d/Ho0UNaWpppa2ulvG2QDk0KqdHhBIZGIpUqiIyMoq21FafTiRYHkUFajj9oQmM1smPNMj+h9ovP3qJFS2hqauTYscNs3LhlxnPu9Xp5/LhK+FkmkxEaGopcriAwMBCj0Sg4mg2GKObNK+HcuTNs2bINiURCS0sL9fW1bNq0bc53aLZxLVmyjNu3b7Fx4+an79JZMjOzX+g8fpbY2Dhu3LhGQUHRSx/zr4FEIiHSEEV0zBSGqBgClBImJycYNY3S2tZCb28d1dVVM8ThadzPuPVFRERERERERJ5FFIdFREREREREXorp7NhpFyrg5xyWSCRYrTakUhlSqYyuri5CQ0OZmpokODiE8PBwQfD0LY2XoFZrWLZs+VNxF4aHh3C5XLMKU263m5aWZu7cucWjR+WYzVM4nU6Ki0tYsGAhHR3tuN1uVCoVBkMUFosFlUpNRkYmDx/eJywsfMY5AwODSElJQyKBiopyDh064JehK5VKycrKAXzL+ltbW8jPL+TJk8cMDPQT9XQZ9+3bN1EopCiVvqXxYWHhz112L5PJcblcZGZmcfnyBWpra1i8eCk3b14nMTHppTJdZTIpFouFWI0bp0bOmNVJqHamg9jtceN6GtnhRIYMD1kRGmG+IyMjAV/xO4DMzCxu3rxOcHAwarWC4eERhoYGyc8vYM+eVzl+/Ag7d+5BIpEQHR3Dhg2bOXbsMFlZOdTX13Hp0gVAwu///r9j8+ZtM8YzMjJMbGws69ZtBBA+INhsNvbufQ2DIQqv18u77/6Kv/3bv0atVrN06QqCg4P4yle+xr17t0lOTiUkJBS32yc4+/44cTgcXLp0gZycXMzmSRwOJ1qtFoVCSXd3JxUV5UgkXqxWB2FhYWRmZtHQUMf//t9/g93uE6lTU9MZHh7mb/7mv5Gbm49CocDj8WAyjeJyuWhvb6O6upqkpES+851vkJdXgFKpQC5XIJfL/BzNNtsI9+7dxuVykZSUwuXLF5k/v4yKinJMJiNSqfQLf2RP/ysRfl6/fhN5eXl0d3ezf/8nREYauHnzOtu27cDr9WIy+YozTovFEomEhIREEhISGR018ehROQerB7Hb7fR0tDDY00lUdDS9vd1YrBbi4hIIDw9DJpcygZSr1c1M9rWyefO2OXOSwZdjHBwcwsmTx1i9ep3wHAEMDPQzPDzk96waDFE4nQ7h/Vm5crWwPyUljcnJSa5fv8qSJUs5deoUiYlJguv7ZTEYovB4PAwNDVFT85iYmJgZxSBfhF6vx2Ixv7jhvyJerxej0UhfXw8DPcOMWt2Ea6QEBATgcrswmYwEBgaxqGzJjGNdHi8SJGiUszu8RUREREREREREcVhERERERETkpZDLFej1eiYmJrBarU+jFD4XUWw2G1arFZ1Oy8jIMB6Pm+HhIcLCwlGpVCQl+dx7Ho+H5uZmVqxYy+rVa/nww/eFLF+3283g4IBfTMHIyAhPnjympqaagYEBnjx5zOioCZ1OR0hIKHFx8chkMgoKiujq6kKlUiKRSDAajVy4cI7S0vkYjSOkzuGoKykp5dCh/WzbtoP9+z/l5s3rZGZmIZVKSUpKRq/XAz7RyGyeYtu2HbS2NjM2NkZOTi5er5f29lbcbhe5uQXIZHJWrVoz53J78BW5czgcKJVK0tMzqa19QmBgEC6X66UdiyEhoTQ1NRAXHkxgeBA324xoFTLUCv9+PW43LqcTNxLMqIjwTpAcHoDRaCQ0NBSJRML4+Bi9vT1IJBIyM7N4//3fkJCQQECAFolEysjIMHl5BWg0GhYvXsqVK5fIzc3DYIhGrVaTnZ3Dn/7pfyYxMQmpVMKKFavYuHHLrOPWaDRCVjQgFN/q6upkcHBAEPjGx8cwGKIICAikvb2NrKxsent7Wbt2A7du3fTLaH2W2Ng46upq2LVrH83NTYSGhuF0OpiamiIzMwutVkVgYCjbt+9CrdbwyScfcPz4UeFjQnZ2Dn/wB3/IkSOHUSoVvPLKDlQqDVNTkxw5coCqqkqhcKJMJkOr1TJ//gJBqHY6nbjdrqdOaSehoaFYLBba29sYHh7mJz/50dPIAi8ej0f4M50l/CwJCYncu3ebe/duAzzNQq6iuvoxFy+ef5oF/RCXy0NQUAgqlUpwSU//cUsVEGhANzWJedyM0+mkq7uTvt4e5DI5qSmpFBQU0tfXS0P3AGNePcPDHXz00XssWbKMBQvKZi0OCRAZGckrr+zk7NlT5OcXkpGRCXxeiG6a4OCQp9EHDqKiorlx45owf9MUFhZz8+Z13n//N7jddl59dec/qSjckiVL+cUvfsqKFWsoLCz+0scD6HR6pqYmhUz0f22cTicDA/309vYyMOCLrgkNDSM2No5NpdlcbBknMURFa3MTDY31uN1uiovnER0dPeNcJrODUJ2CpFDNLD2JiIiIiIiIiIjisIiIiIiIiMhLIpVK0el84jDA1NSkn8g3NDQouG6dTudTocwngMbFxaNWq3E4HLS0NPH2219j5coNeL1QXFzM4cMHiY6OAXw5vhERkTQ2NvDkyWM6OtqfZgubCAgIFNy6ABqNllWr1pCTk4dOp2NsbJTDhw8IwqdcLuOnP/0HwsLC2bRp66zXJZPJWLx4KXV1NRQXz+PGjas0NzeSkZFFTo6/c1GlUuPxeIiLi6e7uxuJRMLIyAjj4+MoFHLa29vZuHEzKSmpz51LuVyG1erLY83Ly+fu3dtIpTLefvtbL30/DIYoGhsbyM7OoSwzgkm7i6recQJVcsK0CuRPi4B5vDDuBCsaQrxTJHkHCdDraW1tITXVVzSwoaEBgPj4BIaGBnE6ffmkCoWCkJAQhoeHCQjwCWUJCYl0dnZw9+4dCguLOHnyOPX1tWRlZeNwOImJiWXlytVzCopfFIfBl+s8LQ5PFxccHBxg8eJlhISEUllZTnV1FQDz5pXg9XqYmBgnMDBoxvnj4uKpq6tBpVIxPj7GtWuXiYz83AFbWFhIWdkKTKZRDh78jImJCX7/9/8977zzc3p7LURHx/DLX/6cr33tG1y+fJHz58/y6qtvEBkZye7dr9La2kpeXgFtba0MDg5QV1fDvHklLFo007X5LNMxB5999hGjoybi4xOJiooWCs55vc+KxW6ys/NYunQ5Ho/bT3B2Op2YTEZOnTrO6KgRrVZLUFAoaWnpuFxOXC43brdPpLbb7ZidVmz2IBRyGeqgYHp6u3G5XISFRxATE0N2dg5SqZS4uHjcqkD6ezrwmn1O/Rs3rtHS0szmzVvnzODVarXs2LGbq1cvMTw8RGnpAurra/3a5OcXUlVVgdPpQCKRkJKSSnt7m1C0cpr09Aw+/PA99u7dRUhIKLPo5S+ktbUFtVrrl5H+ZZl+v7Ozc/7J5/gyTE1N0dfXS29vD0bjCHK5nKioaGJiYikpKfUrZBhmdnCzzcSDx7VMDPUAvlUN2Vkzx+r2eBmzudiQFIFOKf5vn4iIiIiIiMjsiP9KEBEREREREXkppFLfMub+ft/PRqOv0Bn4xA2LxUxQUDAqlQqv14Pdbker1eJyuYiNjcNsnqK9vZ3du/eyZ88eRkZ80RSLFy/jo48+wGaz4XK5OHfuNLdu3cBoNDIw0I/b7SIiwkBOTh4SiYS+vl4Mhqin+bQhzJ+/UBhjcHAIb7zxFseOHaa7u4uoqGiamhoZGhqko6OdtLT0Wd2I8fEJ1NQ8obOzg8zMbBoa6uju7pohXsXGxtLV1YHD4WDNmrU8elROZ2e7sH94eIikpOQXzqVcrhAE2KCgIEZGhigrWzynoDobUVHRVFVVsHjxUtQKGXsKY4gJVPGoZ5zOMZuvbp7Ey4hDBm4X8UwQ7R1FgRu9Xk93dyfz5vmiLxobfZESWVnZ3L59i5CQEKGfgIBAgoODaW1tZs2adUgkEsrKFvO9732T1tZmAgIC2bRpK1lZ2fz1X/8lHo/7uXOg0WiEKIRppvOsBwcHuXXrBrW1T1i6dAV1dTUsX74Cl8tJS0szlZWP+OCDd1m/fiMVFY/8ogmeZdmylXz88fvU1tYwOTmJVqslMDCIVatWs379Kq5cucnly5cICQnlrbe+gcViJjs7h/HxUVwuN2vXrue9935NWdkiuro6+fTTj9i373UeP67k3/27/8CZM6dIS0tHo9HS2dnOO+/8HK1WR2Fh0ZzXff/+Paqrq8jJyaOhoQ6FQkFbWytyuZyYmFghs1smk5Gensv27bue+zw4HL5CdhcvnsHhcJGUlExycsqM59vp9mC60c7I+CTmoW7WrduAXh+Ay+n0Ex0BJHIli4oLyHAG8uDBPbxeL319vbz//m9YsWIVxcUls74/MpmMtWs3UFVVwTvv/Ayr1Sq4giUSCUVFxVRVVeByufB4POTk5HHp0nm/98vj8XD+/FnKyhbh8Xjo7+8jKipmzuufjbq6WkZGhvn2t7/LyZPHSEhI/Ce5j+Pi4nj06OG/iDjs9XoZGRmhr6+Hnp4eLBYzOp2e2NhY8vIKCA8Pf+6YJ4d6sLQ+YtSmRabUopPLyEjPEAp7TuP2eGk3WUgM0VASH/xbvw4RERERERGR//8gisMiIiIiIiIiL4VMJvVbZm0yGfECXo8Hk8mEw+EAvCiVSpxOJyqVColEgkKhYGRkBKNxhC1btvHKKzv8zmu324mPj+fy5YvodHpBDNbpdMTHx6NW+5ZDR0fHUFBQyPj4OPfu3QF87sbpSIppNBoNe/e+xtmzp3E6ndTV1WC326moKMftdrNu3YZZIx/mzSvlwIFPyMrKISUllcnJSSoqHlFWtkhoExMTy4kTR1m1ai2JiUlcu3YFm83GdPcxMbHcvXuH7OxcNJq5l3FPF6Sz2+2cP3+WHTt209jYgHMWwW4uYmJiOH36uJDjrJJLWZUeQVlSKE3DU0zYXHi9cGeoGvdUFwrcwrFSqRSlUolcLsdk8onwUqmU9PRMPvzwPcLDPy/c53I5SU1NZ3x8nN7eHhQKBefPn8VqtWK1WvjBD/4QvV7Pw4f3iYqKIiwsgpaW5hnC+uf3x79wHyBk21ZXV9Hb28PKlWvQ6/XU1dVQUFDEw4cPyMzMore3hwsXzqLX63G5XNjt9hmiGEBXVydtbW1MTEwglUoZGxvjm9/8DlFRURw+fJiHDysoLCxm1aq1KBQKHj+uRK1Ws337LgYHB3n8uJJNm7bQ0FAnCMD/9//+PQsXlpGZmY1UKuPYscPExsai0Whoamrg7/7uf/DDH/65kFH9LDU1T7hx46rwc2pqOo2NDeTk5GK32+nr68XpdGAwRJObm8fWrdtf+KFg4cLF/OQn/4e4uDji41Po6+ulsvIRCxcuIi4uXminkEkJcY1S0W9iUXam4FT+4nPm9nhxuL0UxQUzP2EVaWnpnDlzktHRUZxOJ5cuXaC5uYlNm7bM6tgGKCqax40b12hoqCMtLR2VSk1KSqqf69jhcKDT6ZBKpX7RDY8ePWRoaJA33/wa6emJ/PrX77N+/SYhS/lFtLY209rawpYt25BKpSQnp1BfXzdr8cIXERwcwtjY2Jc+bjZ8ERF91NeP0tDQgsvlJiwsnNjYOFasWCXE1rwIr9dLefkDrl27QrxShQU7fYoQZNpwAsIMwu9Bl9vDiMXJpM1FQqiG3QUxs2aRi4iIiIiIiIhM8/L2FBEREREREZF/00ilUmRqHa7QZCbjy+iPXsR46lpGYsqwG3JAF4pCqcJisaDXByCXy9FoNJjNZvr6ulm1ag27du1FKpXi9Xrp6urk1KkT/OxnP6ajo4PJycmnIpmLtLQ0kpKSCQ4OoaSklK997Zu8+ebXKSwsFsTiaabdy88il8vZuvUVli1bgUajwW63C3mtR44cxG63zzimu7uTkJBQBgcHiIqKZsOGzdy4cZWamidCm8DAIEH4tNttKJUqQZj2xWf4HNK+omxzI5crcDjsnDt3Wsh1tdvttLQ0v/T9iI2NZ2RkBJ1O57ddo5BRGBPEspQwlqeGEeYZ8xOGlUol3d3dpKT4MpgbG32REgkJiTgcdkwmkyCee71erFYrq1evxeVy8dlnH/PBB+8yNTXJli2v8Prrb1JVVYHVaqWi4hGpqWns3LmbqqoKhoeHZx23Wq2eESsREhKK2TxFU1MjqanpLFjwuRtcoVAwf/4CJBIJcXHxpKam8fhxFW1trdy4cc3vPB6Ph5s3r3P8+BGCg4PxeDxIpVLmzStFJpPx/vu/oaWlhVde2cn69ZtQKBR4vV5aWpoAWLZsBTk5ucTFxXP//l0SEhIJCwtjzZp13L9/l3v37mI0GklPz2DVqjUAhIaGkp9fiMNh5y//8s+oq/OPVGhra+XcudN+2xQKBbGxcXR0tKPRaEhNTSM1NR2ZzPdu1NfX4nK55r75+DKwFQoFo6OjREYaWLp0ORs3bqGpqZFjxw4zODiIy+Xi4sVzREjN5KUlMWhxz5pt7PF66RyzEhOkJtvgE2tjY+P42te+KbjLATo7O3j33V/x5En1rOcZGhrCZrORlpZOS0szExPjFBQUIZPJBLHb6XQAkJubR22tb67Gx8e4desG8+aVEB0dg1qtZtOmLZw7d8av6OVcdHd3UV39mE2btgj9FBeXUF1d9cJ5nA2JRIJKpcJms33pY6empmhsbODKlUscOrSf06dP0NfXR0JCAlu3bmfPnldZtWoNGRmZLy0MO51OTp8+ydWrl0lJScXtclIQ5CJbOsiizDjMDg+tRgstIxa6xmzolDI25UTyZmk8MUHqL30NIiIiIiIiIv+2EMVhERERERERkRfidHu41TFOjTQJa/wCnLpInMhwecEuUyNNnk/A4tewJSzEgpLw8IinIrAHuVyGXh/A7t37sNvt3Lt3lx//+Md8/PEHXLt2merqKmw2G+HhEahUapRKJUFBwWzZ8grf+97vs2bNesFZCj4H87O43e4vDhfwCTzLl6+kqGgeUqmvQB1Ae3sbn3zyIZOTE37t6+pqMRiiMBqNKJUqdu7cTUFBEefOnaatrRXwFdpKTEzC6/Vy7dpVtFqtkJWckpKCXO5blFVfXyuIrrMhl8upqKggNTWduLh4odhUTU31S9+T4OBg7HbHC5fNf1EI1+l0tLe3kpyc8nSsdQBkZ+dw584tAgMDhbYTExOkpaWj1+upqqrgwYP7LF26nOXLV1FQUEROTi6Tk5OcPHkMj8fDkiXLkcvlbNq0lcuXL8wq7Gk0WpxOpxCrATA4OEBXVxehoaGkp2fMuKaionmCQzg4OISYmGhiY+P45JMPqa31ifc2m40jRw5y9+5t4biNGzcTGxvH5OQUP/3pP6DRaPjud79LVla20GZ4eJixsTHkcjlpab6+d+zYTW5uPo8fV+FyuXnw4D5/8Rd/jcNh54c//M80NNRTWrqAkpJSYU4LCoqQy2X81V/9ORUVjwAYGOjnxImjs37ACAkJQSKRMDpqEq7rj/7oj3n99a8ikUg5fPgAt2/fxGw2zzh2mvDwSLq7uwkODhbGsXq1r9DjnTu3+LM/+xNCQ8PYtmYFr+RHo5bLaDVaGLU6cXk8ON0ejGYHrSMWwnVKduRHoVd9vrBQqVSydu0G9u17nYAA33Nht9s5e/YUx44dnjG2J0+qAF82d1ZWDmNjY0xOTiCRSATHssPhu+9JSSl0dLTh8Xi4cOEcarWGpUtXCOfyxYCs5cyZk88VeAcHB7h37w5btrwivH/ge8cKC4uFe/FliYmJpa+v57ltvF4vQ0NDVFVVcPr0SQ4e/IwbN65ht9soKChi9+597Nixm7KyRSQmJr70qoBnmZgY59NPP6K5uZFly1bS19dHZKQBj8fNwvQY/mB9Ed9enMjX5sfzldJY3l6YwO8tTWZ1egTBmi/fn4iIiIiIiMi/PURxWEREREREROS52Jxujlb3c6llDLdESoDXjNxqwms2YTUOYDf14xrpBKcNqz4WRd56XJpg1Go1gYHBBAUFo9PpOHDgE37+859w9uxp7t+//1Q8lZCVlUN2dg56fQC5ubkEB4dQXFxCbm7erGLKFyMh5hKHwSfehIdHsnDhIkZGhoTtw8NDfPTRBwwODgIwMjLCwEA/EomExMREXC4nMpmM9es3kpycwokTR+nq6qSrq4Pc3Hyqq6uEoluJiUkYDNF+AjbAhQvn5hT2GhvrAC95efnCtry8fDo62pmamnzu/ZjGZrPNGo/xxev/ojisVmtwOBxotVqGh4cZGRlGJpORlpbBw4cP/Jbxd3d34/VCefkDQkPDyMvLJzIykqGhAWJifKJ4Scl8Ll48R15eAVqtFvCJlKtWreXs2VMz7o9Go346fp972FdE8CCxsbGkp2f63SfwifxqtZri4s8drBaLlYULF1FYWMQHH7zHsWOH+OCDdwURXyKRsGrVGrZu3f7UTXwNvV7PV77yll+eMvjiCMB3H5VKJQZDFENDg2zcuJlFi5ZQW/uE3t4ehoYG+ZM/+XMKCor48Y9/xIEDn7JgQRnp6RmAT0jNzc1Hp9Px93//t5w+fZJDh/Y/jVuZncTEJPr6egEJe/a8SlBQMHK5nPz8Avbte53Y2DguXjzHuXNnZnVim81ThISEYDIZ/bYbjUYcDjvf/vZ36e/v5/z5s8RrPXx1fhwLE0Nwuj30jNnoHbfhBVakhfNmaTxJodpZx5mUlMzbb3+L3NzPn9fm5iZ+85t3aGpqBMDlcglOYPC9p3v3vobVauXixXPIZD7hdto5LJVKiYmJ5fr1q7S3t7Fu3YYZESEGg4GSkvmcPXt6VqeyyWTk2rUrbN26XRCfnyUrK5uOjrYZTvWXIS4uge7ubr9tDofjaTHG2xw9eogjRw5SV1eDTqdn5crV7N37Gps3b6WgoOiF2cEvQ09PNx988B4Wi5kdO3ZTU/MYrVZDVFQUdrudVavWIJFIiA3SkBsdSGFMEJmRetSK5/9eEBERERERERF5FlEcFhEREREREZkTj9fLuYYhHnaPER2kQosDldIn2DodTux2Gx6PBwmA3YLcMoJLFch4eB6FC1dgt9txOp20trZy7twZamqeMDDQR3R0NDk5uRgMBtLTM9i79zU2bNhIenomERER3L9/d84xfRlx2Gw2Y7NZWb9+EwkJSX77Jicn+Oyzj2hra6WurkbYrtcHkJSURE9PN1KplG3bdhAWFs6Pf/wjUlPTiImJ5dSpE0J7qVTK9773/RkZsVarhYsXz80Qtbq6Ounr6yMjI8tve2ZmNjKZzE9gex6joyb0et1zl747nU5cLv/5sdlsxMcnAp8Xopt2EXd2tqPVavF4PHR1dVFfX09gYCC7du1l377XUKvV1NXVYTKZhKzj+/fvkJWVg9E47HetBoOBvLwCrl695Ne/RuMTIC0WK1arlcOHD6BUKtixYw8ymUwQ7L9IScl8v48F5eUP+M53fg+JRMKHH77PrVs3cDgcqNW+zOno6Bg++OBdQkJCCAoKIj09Y9a5am72RUpMi7wJCYl0dXUikUhYtmwFwcHBhIaG0dHRxo0b1/ja177BwoVlNDU1ceDAp4SHRxAZ6fswIJVKycjIJDAwkP/1v/4nFRWPZnUNTyOVSklNTSc4OIjIyEi/fRKJhKSkZHbs2E1p6QIqKso5evQQ7e1teL1eHA4HZvMUsbGxtLW14vF48Hq93Llzi4aGenbt2ktycgpbt75CUdE8rl69TGvlHTamBfG7S5P51qJEvr0oie8vS2ZrrgFDwMzs5mdRq9Vs2bKNHTt2o9X6okysVgvHjh3m9OmTPHnyeEaWdGFhEUuWLCMxMZmGhjqcTqefWJ6Wls6RIwfJysqeM6M6OTmFpCRfvvezTE5OcOHCObZs2TZnvvd08cTpjPIvQ0REBD09XTQ01HPlykUOHdrP2bOnGBgYID4+gW3bdrB79z5WrlxNenrGjHiXfy5VVRXs3/8JYWFhvPbaV7l9+yZ2u4PVq9dRXf2YhQsXvXQes4iIiIiIiIjI8xDFYREREREREZE56TBZeNQ9RpRehU7pc/5NF5yzO+x4vF6fICiR+Iqyed04R7qQh8TQNOHLRR0fH2dkZBiTyURKSiqpqWnEx8ezdOkKvvvd32P37n2kp2cQG+srohUdHUNjYwNjY6Ozjkkq9ReHPZ65xWGjcQTw5Y9GR0eTmppGRMTnIpzdbufw4QN+GcEREZFs2bKd27dv4vF4UCqVbNnyChbLFI8ePaS/v4/OznahfW5uPsXF81i6dOmM/puaGoXYBvAJunfv3mbDhs0zRG21Wk16egY1NbPnuc68NiMGQ9Rzl747HHbcbv8l+ePjY6SlpeH1emlo8I0tMzObx4+rUCgUTEyM8/hxJc3NjRQVFfHd7/4e6ekZZGfnPr2mBqH41eDgAG1tbWzdup3o6Fiqq6v8+srMzEKj0VJVVeF3nQBTU5McPXoIi8XK7t37SEpKBmBoaHDW6/dFNxQKPw8M9HPq1HHGx8eIj0/AarXQ1tbK+vUbGBjo57PPPiYoKIi33/4Wu3btpaOjXXB7TzMxMS44xlNTfeKkL06gF/C5iufNK+X117+Kw+Ggpqaaa9cus3fvayQlJTE5OSnMhdVqxev14na7mZgYR6FQ0N7eSk1N9XPdw3v2vEpp6QIePXo4Z5vw8HA2bNjE+vWb6O/v48CBT7l79xYejwe9Xk9BQSGPHj3k+PEj6HQ6Nm7c7CekGwwGtm/fRUZGJufOnaau4h4xOhnJYVoC1V8ueiAjI5O33/6WIKYD1NY+4Wc/+4nfO5uYmCSIlxkZmWRl5dDY2MDAwIDQpqqqErvdxpIly5/bZ35+IQqFQpgji8XC6dMn2bBhk1+RzNlISEhkYmKc8fGx57bzeDwMDg5SWfmIU6dOcPjwAZqamrDZLBQWzmP37n1s376LhQvLiIuL94uw+G3idru5cOEsFy6co7CwiL17X+P69SsMDw+xa9ceyssfEBAQwIIFZf8i/YuIiIiIiIj820MUh0VERERERETm5EnfBHaXhwC1HOnTJdJSqYypKZ8o5n3qVgSfqGGxWJBKJbgtYzgC49AEhaLVaomIiESv16PX69m373V+8IMfsHjxEiHHFCA6OhpAKDx24sTxWUXCL+McNhpHkMlkhIWFUVxcSmdnBzt27BKESPDFGjx+XElXVyfgE3s1Gg05OXmCGNXU1MA3v/kdrFYr77//G+x2n9inVCpZsWIlACtWrPATnqe5dOk8U1OT2Gw2zp8/y+bNW9HpdLhczhltc3PzMBpHGBwcmLHvi4yOmoiPT6Sn53nisMOvH6/Xi9PpIDQ0jKGhQUwm09Os3XRu3rzG+Pg4NTVPkMvlhIdH8q1vfUtYrh8VFU1ISAhjY6M4nU68Xi+XL18kNDSUjIxMFixYSGtrCyMjI35jWLx4Kd3d3cL8ajRavF4vFy6cY2Cgn9279xIaGkZoaCgKhQKHw4HJZJr1eubPX4hUKsXlctHQUM/Jk8eIiYlhamqKvXtfZeHCRfzN3/x3Dh3az8KFi3jtta8QGBjEsmUrsNttlJf7C7DTBQBjY+ME5+e06Ge323n48AFlZYtJT89g377XUas1PHz4gCtXLrFnz6sYDFFUVJSzfPlKFi9eSnNzI48fVzI5OYlGo0Gj0TAyMkJ1dRVm89SM61m5cg05ObkUF5fQ09M9p2t6Gp1Ox+LFS9m9ex+Tk5PU1dUyPDyMXh/AJ598SGnpAgoLi+eMM4iLi2fXrr3ExsZx4sRR7t+/55f9/LLodDp27NjN5s3bUKlUWK1WBgcHqK2toa2tBbfbTUFBkd8xYWFhZGZmce/eHZqbm+js7ODJk8ds3LiV3t7u2Tt6hiVLljE0NERtbQ2nTh1n9ep1gnv9xccu59atm37bHA4HHR3t3Llzi6NHD3H06CEaGuoICAhk9eq17N37Gps2bSEsLIKwsLB/dkTEyzA1NcX+/Z/w5Ek1GzduZu3aDdy4cY2mpka2bdvB1NQU7e1trF697p+UXywiIiIiIiIiMhuiOCwiIiIiIiIyK2NWJzX9k4RqfSLEtDhisZhxOX1uVI/Hg9fjwePx4PF6wQsejxeNxE2QIY64gqVERUWTnJxCaekCdDodCQmJswot0dGxwt81Gg0qlYonTx7PaPfF+Aa3e+5l+yMjw4SGhiGVSsnPLwCgsbGB3bv3CeLVdJZrd3cXTU2NZGT4HJF5efl0dnYwMjJMV1cnxcUlxMcnMDY2ytDQIA6HnbKyJYJzUS6Xs3nzthnjs9lsnDlzijNnTrJixSoCAgKfFuubKXwnJaWg0+lfqjDd2NgoqampDAz0z9nmi4XfLBYzUVG+rOBpR3NKSio1NdWcOXMSh8NBWlo62dm5KJUKSko+z/mVSCRkZ/sK0I2Pj9He3sbg4ABr165HIpEgkUhYv34jly9f8CsgJpFI2LBhE3fv3mZsbBSVSkVXVyctLU1s27aDmBjffZdKpUI8w1zieGBgEAkJiVRXP8ZkMjI+Po7D4SAnJ4+srFwcDjuBgYEolSosFosQ6aDX68nIyBIiPaaZjpRIS8vw6yc6OoazZ08xb16pIMLFxcXzxhtvYjAYuHXrBpcunWf37n1ERUVz7Nhh0tLSWbRoCf39/RiNI7hcLhQKJQqFAqfTyZMn1UJRRIDS0vnMn79AmKN16zZy9eqllxJr5XI5EREGcnPzkcvl/PrX75CenunnUp8LiURCcnIKe/e+RnBwMEeOHKSy8tFzP7LMdZ68vHzefvtbwOfPcn9/P3V1NUL+9DRKpW8uli1bQWtrM7/4xT8SGxvH1q2vCLnFL+pv9eq1fPTRe6Slpc+I4Xge4eHhOBx2bt68zqVL5zl48DPOnj3F0NAQiYlJQkTEihWrSEtLF8YeFxdPb+/zi9L9thgY6OfDD99jdHSU1177CgUFRTx69JDy8gesWbOOxMQkrl69JKy+EBERERERERH5bSGKwyIiIiIiIiKzMjxlZ9LuImh62flTQVet1qDV6cDrxctTWehpvIRSpSI8PIKE+HhCQ0IpWrya73znd4mJiUWhUDA+Pi4UDfsiERERfm644OAgGhsbmJgY92snk31RHH6ec9hIeHg4AFqtlpycPCorfREHGzZsYvHipUL0BPjE1LNnT2O1WpFIJCxfvor333+XkpJSTCYTbW2tZGVl43Q6aWtrpaSk1K8/g8HA4sUz4yWuXLmEQqEgOjpmzrGCTyDNycmlvr7+hWKd0+kkPj6RoaG53aYOhwOn83Oh1mQykZmZidfrpbGxHrPZTGtrC/v3f4pKpaakZD4GQxQmk5GMjCwCA33ObofLw+PecTpl0XTJomgfd3H6zGlSUtL8rkmvD6CkZD43blz1G4dSqWTTpi2cP3+W+/fvMjg4SEFBkV80ASAU9ZtLHG5paaa1tUXItpXLFRgMUaSkpPDzn/+UyEgDf/3Xf8trr71BTU01n332MZOTEwDk5RWQmZnNp59+CoDVaqW7uwuAtDR/sS04OJjGxoYZ4wsPD+erX/0aGRmZXL16hbNnT7F79z7i4uL50Y/+Fy0tLSxYsJDAwCDGxsYYGxsDfI5tjUZLQ0MdPT3dZGZmsWrVWr+PJDqdjgULyrh+3T9bdy5MJiOtrS1ERETw13/9P9m79zVu3LjKgQOfCrnEz0MikZCZmcXeva8hlys4ePAzamtrnpuRPBs6nZ6wsHBSUlIFV79eH8CBA59y/fpV4UOBQuFzoLtcTnQ6PQ6HXbj+wMDAGY7zL+LxeDh//gxf+9o3aW5uYnR0dnf5dNvBwQEqKso5efI4hw7tRyKRUlFRTnFxCXv2vMr27btYsGAhsbFxc0ZEREVF09/fN+u+3ya1tTV88smH6PV63nrr68TGxtHc3MSVK5coLV3AvHml3L9/l6mpKdasWfev4mIWERERERER+beDKA6LiIiIiIiIzIrD7cXj9SJ9qkNIgPDwCAyGKHJz8zBERQttvfiEzYAAPSUlpcyfv5DY6CjUukDy8wv9xJfKykez9ieVSol65pyDg4OsXr2OK1cu+QldXyZzeGRkhLCwcOHnefNKmZycoLm5CYlEQnh4BCkpqYLbNyIigu7uLj755APGxkYJCgpiamoSiUTK1auX8Hg8BAeHkJ2djdPpmrXQ1cKFi/yuo7+/H7lcTltbq1/u6VziXV5eAVarhdbWljmva/rYuLh4hoaG5mxns1lxOj/Pu52cnCA5OY3Ozk4eP66ipqaagIAAYmJiSEtLFyIkjEYjS5cu853D6ebg4z4+reilesSJJTiFGmcE9wedLF+xakafaWnpeL1e2tr8xx8YGER0dAy/+tXPSU1NJT4+fsaxBkMUMFMcni60duTIwacxIeHodDqys7O5f/8eVVUVJCTEs337rqcZvEW88cabTE5O8sEH79Hd3SUUDWttbcVoHBGKuIWHRxAaGubXX2NjA1FR0bOKcHp9AK+//lXmz1/AlSuXOH78KKmp6UxMTNDQUIdMJic1NY3w8HDUajVG4wiTk5PY7TaioqKf5vJKZhX/p5/F1tbm2W6nwPj4GJcunSc0NJQ1a9YglUqJiIjg7be/RVhYuJBL/OTJYz8X92xMu+r37HkVm83KwYOf0dzc9FK51wCtrS1YLBaio2MoLCwmICAQgyEKr9fL/ft3+fDD9xgcHBSereHhYe7fv8vOnXtYunQ5R48eIikpedZVAtNMx5BkZGSRlZXN5s1bOX/+LBaLBfBFgLS3t3H79k2OHDnI0aOHaGxsICgoiLVr17Nnz6vs2LGLkpL5jI+PvbS4KpfLfasivqRg/rJ4PB6uXr3M6dMnyMrK4fXXv0pAQCD9/X2cOnWcjIxMVq1aw+ioiQcP7rFgQdlLR2mIiIiIiIiIiLwsojgsIiIiIiIiMisKmS8q4FmJKDMjk8yMTLIyszAYotBqtchkMmRSKVqNlpiYWHp7e+jsaMdis6OSS9HpdGRl5QjnaG9v81te/yzPiqpDQ4MEBgYSExPnF7PwspnDZrMZq9XiJw5HRkaSkJBIRUU5AHV1NURERJKTk4dKpRLaGo1GPvroAy5ePMe+fa9z6tQJIZ8WfBmmeXn53L1726/Y2vT4Nm3ailwuZ2xslMnJCeLjE7Db7Zw7d+aFoltEhE+Ar619MmebiYlxAgMDCQgIwG63P6fdpCB82+12FAolQ0MD/PjHf09/fx9Llizj61//Fl1dnULxMIfDgUwmIzc3D4An/RNU940THagiPkBOjE6KbXyYCV0sw87ZHZfLl6/i4cMHTE19nrPb29tDefkDiormoVarsVptM44zGHz3f3BwQJgnu93OsWOHuXXrhtBuxYrVxMXF09BQj91uIyEhiZ079/o9J9HRMbz11tuEhYU9zXF9jEajYc2aNRw8+BktLdOREul+Y2hrayEkJJTAwMA5Ix7UajV79rzKmjXrOH78CD/60f8iKyub0NBQGhrq0Gi0REYaUKvVREREIpFAX18vExPjfP/7/47W1mb27//Eb36enbvy8oez7vONr5Vz584QH59AaGgoISEhwr7k5FRGR00UFhaze/c+AA4fPsCdO7cwm82znm8auVxOScl8du7cg9E4wqFD++ns7HjuMQCPH1cKf9doNGzcuJmNGzcL7+nw8BAfffQera3NeL1e7t69TUhICAsXLiIhIZENGzZRUfGIxsbZ3fJer5erVy8THR1NVlY2Xq8Xj8dDXFwCf/M3/43PPvuY8+fPMDIyTHJyCtu372L37n0sX76S1NR0NBqNcK758xfy8OGDLyX2RkREMjw89weYfypWq5VDh/bz6NFDVq9ey6ZNW4TfGYcPHyQy0sDmzduQSCRcuXIJrVZLWdni3/o4REREREREREREcVhERERERERkVoLUCrQKKVP2mc5Ds9n8tGhZBDqdDqVSiUwux2534PF46B8coK2jnZpHvuJThYVFfsc/fPhwxjkBv4gCj8fD0NAgpaXzaWioF+IBXlYcno6LeFYcBoTiXx0d7ULERVBQEDt37iE09HNX3sTEOEeOHAJ8jtu+vl7A57Rct24jqanpFBfP4+LF80J27TQRERHk5RXS29tLamqa4FTs7OyYISbPRl5ePq2tLXMKeiaT6aUchJOT48J8DQwMMDY2ytmzpzGbzRQXl/DKKzvp7e3BZDIREODLTh4ZGSYjI0Nw0zYMTiGXSNAoZExOTmK2mPE6rCBTUNs1PGu/CoWC1avXcfHiObxeLyaTkSNHDhEdHcN3v/t95HKFIM4+S1hYGHK5HLvdzuTkBFarlU8++VCYX4lEwpIly4mLi2V4eIiAgAAKC4sxGkcIDQ2jpaXZT/jT6XTs3fsa8+aVcPnyRQYHB9FoNExOTnH//l0Av+gIl8vFgwf3WbRoCTExccI9n41pMTU4OIjOznYeP64kIyOL8PAImpp8rtXg4OCn49ATExNLYGAgBw9+xtq16xkbG+Ojj96b4fyWy+V+czeN1+vl9u2bNDU1sn37LkG4fvaZlUgklJUt5v79u8jlcvLzC9m373Wio2O4cOEs58+ffWF8g1KppKxsMVu3bqezs4MjRw7OOQ/j42N0dLT7bSssLKasbDFf/erXhQKNbreburpabt26QU9PN+vXbxJWEwQHh7Br115sNhunT5+Y0cedO7ew2ay4XC5OnjzG4cMHuH//LsHBwezatQ+tVsvWrduZP38hMTGxM34/PItKpSIjI/O5H16+SFxcHD09Ly6Y92UYHh7mww/fZWBggL17X6O0dAESiQSr1crhwwdQqZTs3LkHhUJBa6svSmXVqrViEToRERERERGRfxFEcVhERERERERkViL1StIi9IxYZronY2LjCA4OIS4unri4eHT6ANwuF4ODA7jdbhzIUeLCNdTO0aOHOHXqODabTVjiXlVVhcPhmHneGP9M3v7+PqRSKatWrRXiJb6MOCyTyfycleATAwMDAzl9+oSfkLhw4SK+8pWvCQJ1f38fkZEGfvGLnzI8PMTU1CQ2m43i4nmEh4cTGRlJfn4hmZlZnDhxjK6uLuFcFosFo3GY5ctXzhjvtWtXGB01PXdp+7TTuqFh9gJjo6MmQbxVqZRzukzHx8eRSCT09vZQXV2JXK6grGwxKSmpBAcHk5SUTG3tE2QymTCe0dFRFi783KHo9eLLFMEnXI6M+AThqalJntRUz+nCjIiIICkpmZs3r3Po0H60Wi07duxGLpczb14pXV2dM4rpyWQyQVCsq6uhurpKEPnVajXr1m2kra2FysoK9u59naysHBQKBV6vl4cP75OWlj5DqJfJZKxevY6tW7czOmriwIEDSKVSuro6Uas1fm71aWezUqkkISGBrq7OWa8NEATv+PhEiorm0dPTzaNHD0lLSyciIpKWlmZCQ8PQanXI5XJyc/NJTU0nMDCQ48ePEhsbi1Qq45NPPvCJ2l4vnaMWHnWPMeRWEx2XyKNHvo8oVquV48ePEBAQwMaNm7FYzHi9XuRyBXq93m9ccXHxTEyMC1nd0wXodu7cw7x5pTx69JCjRw+9MJdYo9GwfPlK1q/fRH19LSdOHBWKN05TU/PE7xwqlYrMzCzAlx/95ptfp6xsMRKJL0ajv78Pk8nI0NCg33FKpZJvf/t7NDTUc+bMKRobG7l16wZ///d/y9Wrl9DrAwgJCWHduo3s2fMq69dvIi8vn8LCIpKTU7l27fKc1/FFCgqKqK2tmfX3z2y86CPBl6WpqZGPP34fhULJW299ncTEJMD3YeLYscNYLFb27HkVrVaLy+Xi8uWLJCUlk5GR+Vsbg4iIiIiIiIjIs4jisIiIiIiIiMisSCQSimKDALC5/AVYqURCelo6EomEoKBgIiIi0T91no6OjWJDQYh3Cg0+AWZ83CdWlZc/oKWlhZGREerqamb0GRAQiE73udg1XQwqPDwcgyGa2tqaWTKHZxcnR0aGCQkJnSHOSqVSiopKePDgnuC+1On0JCUlo9frefXVN0hKSmZiYgKdTkd3dxft7W1IJBL6+npZtMhXcC42Npa+vl42b95GTEwsn376KSMjI7jdbs6ePcXq1WvZuXP3DLffdNG75wlzOp2O1NQ0ampmdziaTEbBMRoeHklvb8+s7bq6OmlsbKC9vY2goGDWrFknZBCnp2cilUp5+PABQUHBgE/U1mjUZGVlC+fIiNTjdHuxuzwMDQ+RnJxKZm4huJxU3jjLL37xU27fvjmjcCBATk4eJ04cZXR0lD179glL/Kev79q1K0xNTfodExkZSXd3F1evXhY+JoSHR1BWtpjr169gtVp444032bx5qyCsgU9MTkhImjO7Nicnl69+9WtoNBru3fO5hq1WiyCKT0yM09fX+4y4GTVnYbypqSkOHdqP1erLvI2NjWPhwkUMDAzw4MF9UlJSMRiiaG9vIzIyknnzStHpdACoVGpUKhVSqVSIrjhw+BD/+/gdfn23k/2VfXxY3s0DaxjV7X3U1Dzh+PEjlJUtpqCgCOBpbrGvcN5sHxkWLVrKnTu3Z2yPiIhgw4ZNrF+/6aVzifV6PWvWrGfFilWUlz/gzJlTjI2N4vF4Zsx1Tk6ukC0Mvo8Jy5ev5I033hSyfoODQ7h8+SL793/C+PgYY2Oj1NbWcPv2DcbGxmhubmL//v1YLBays3P40z/9C5YvX0lKShpqtXrG+PLzC1CrNZSXP5jzGp5FJpNRUjJfEN5fhFqtxm63v3QG81x4vV5u3brBsWOHSUlJ5StfeUuIcvF6vZw9e4r+/j527dojrAp48OAek5OTrFmzXixCJyIiIiIiIvIvhigOi4iIiIiIiMxJRoSOrEg93WM2XG5/EVan0xEXF/9UIA4iICAAmVzOpEdJqF7DsvQov0J04eERSKVSBgf7KS8v55e//DmNjQ1+4q5EIvFzD0+LwwALFiykrq4Gm83qN465ncNGwsPDZ90XHx/PxMSEIP5lZ+cI2bxKpZKYmFjWrdtAd3enIJyNjIygVquFHNbo6Fj6+vqQy+Xs3Ln7aWTAp5w8eYyCgiIMhihCQ8NYvnzljP57erqFSIu5yM3NZ3BwYIZbE2BiYoLAQJ9wbzAYZjgbLRYL586d4ebN68jlchITk0lPzyQgIICGhgYAsrKy6evrpb+/j5CQ4KfXOExKShqRkQbhXIWxgeRGBdI2PEHz4DiaqGQCoxLJCpOTGxtKaGgYDx/e5xe/+EcOHz4gRDt4PB5OnTqOwRBFcHAIGo1WOKdGo8XlcrNu3UbOnj0tzLHD4aCxsZ6urk6h2FhKSipRUVFcu3aF5OQU3nrrG4K7e+HCRcI5PR4P1dWVhIWFz+n0NBgM/NEf/RF2u4329jbsdjvd3T7H9/Xr11i+fJUgwkmlUuRy+QyHqd1u5/DhA4yNjfltj4iIZOnSZRiNvoJr8fEJREfHoFKpWLCgzE80BWhoqCcnJ49t23bQ5dJxpbaL0YEekkPVxAep6R230ewJ590P3mPz5m1+Dufpvr/oin/2Ol0u15zZ3jqdjsWLl36pXOKgoGA2bdrCggVl3Lx5nY8/fn9GRMW0eP1FzGYzUVHRpKenY7PZ6Ovr5eLF8/zH//gHHDy4H6/Xy8KFi/jmN3+HhQsXsXbtWq5cuci8efNfShRdtGgJRqORxsaGF7YFX850b2/PC3OYpwkJCWF01PRSbWfDbrezf/9+7t69zfLlK9m2bYff83DjxjUaGurZsuUVYmPjAF9kx717dygpmU9YWNhcpxYRERERERER+WcjisMiIiIiIiIic6KQSdmRH01auI72UStTdpefgy4uLh6tVodEIiEwOBRFSAx43Iw8OMW89AS++93vs3z5KgIDA5FKpRgMUcKxvb3dfPDBu/zyl//IvXt3BTHw2dzhsbExQcCZjpe4deuG3xjmEodHRkZm5A1P097eRkREBAMD/Xi9XqH4GoDNZqO/v481a9ah0+kFcUqn02EwRPGzn/2YsbFRtFqtIFSr1Wq+8pWv0N3dTUXFI+LjE4TzzZtXSkJC4owxNDbWzyr8TpOamoZGo/UrsjaN1+sVxOyoqCgGBvqE7U+eVPPrX/+SpqYG4uMTyMsrwG63EhoagtVqw2q1oNFoSUxMoqmpEbvdjkrlc2ROTk5QWuovyGkUMl4tjiHG3EJ6sIwVmbF8dX4Ca1OCCNTrMRii+N73fp916zYwNTXFkSMH+fnPf8o//MP/oaGhnt2797Fx42auXLn0+Tk1amw2KyEhIZSUzOfChXOYTEY++uh9RkZ8gqbFYsFgMDAxMUFDQz3r129k27Ydfu7RpKRkP9G0uvoxWVnZPHpUPue8yuVygoODiYmJwW6385Of/Ij6+joCAgJmfEyIjfXPm3W73Rw/fmROR3FwcAgrVqxibGyU+/fvsm/fa2zatJXKykckJibPEDovXDiLTKkiddEmDKHBtDXVUPGoHInXg9PUx4jVw8ZXv8mDB3f9jvvcOTy7OAywZMlS7ty5Nef+6bn4srnE4eHhbNu2A7fbQ1tbCx0d7TidTgyGKL/3G3xxGPX1tfzyl/+IxWJBpVITExNDeHgkqalppKdnMjpqorm5EblcQXJyCpWVj+jo6OCP//jPuHnz2oyYkNmQSCSsXbueurqaOV30X2y/ePFS7t59/vxMExsb/1LnnY3p57q9vZ1du/YIMRvTVFVVcP/+XVauXC241gGuXr2MWq1h8eKl/6R+RUREREREREReFlEcFhEREREREXkuwRoFrxXHUhQbxJjNRavRwvCUgym7C6vTjSE+hUk0mCUaIvRK4qxtSIzt/MM//D3Dw0OUlS3id37nd9m+fRelpQsQAmyBgYF+JiYmuHHjKj//+U84d+4MCoW/w3Ja+ATfsvioqCgh9xZmF4ctFgsWi3lWcdjr9VJXV0N0tE8cdLvdfk7Ziopy5s0r5cqVS0RHx5CZmY1UKiU5OQWZTIZOp+N//I+/wmg0otXqhLzfgYEBCgqKCAsL49ixw4IbViKRsGnTlhnOUY/HOyP3+FlkMhk5OTnU1dX6tXE6nX6O7NjYeAYHBxkZGeGzzz7m7NlTJCen8I1v/A4BAYHIZDIcDgcqlZqREV/xs8zMTCQSCVVVFWi1PkfvxMQEAQGBpKfPzDY1DQ/g6K7lv+xazp6iGApiAsnLyQWgvr4OpVJJUdE8vva1b/DWW2/jcrm4ceMqo6MmKisf4XQ6UavVNDTUAwguYqvVSkpKKk6ng//+3/+KkZFhtFotSqWSoKAgBgYG8Hg8fPWrX6eoaN4McXW6ANs0LpeLxsYGJBIJ4+Njs85rU1MTwcEhLFq0lNzcPKRSGX/+539CVlbWjLYJCUlC7rDX6+XcuTMzCrB9Eb0+gFWr1qLRaLl58waZmVmUlS2mubmRqCh/8dTj8XD8xHEmpixkZ6SxbOkKFEolDY0NRIaFEhIaRrghFqlUSmtrs3Dc6OjnsRJzERISikqlnJHrPBtfzCUuL3/AsWOH6ehonzVOYWpqipGRYbKycggJCaW5uQmJxPcO1NQ84fz5sxw8+BmXLp3n2rUrBAUF87u/+wOys3MpKCjiP/7H/0xhYbFwvubmJn7zm3e4f/8uRqOR+fPnC0Ui29tbuXv39gtjHWQyGZs3b+PWrRuYTLM7pp8lJiYWq9X2Um19Rem+vDjc1tbKRx+9j8fj4dvf/japqelf2N/CxYvnKSkpffq78fPjmpoaWbVqzYzfGyIiIiIiIiIiv21EcVhERERERETkhQRpFLwxL5ZvlSWyIi0cuUzClMPNuM2FXKUmPz6MDE8f+d5uCuLCCAsLY2Cgn1/96hf09vYglUrJzMzi7be/xc6de4iOjkYikWI0jmC32wGfsFddXcX582eoqXnCyMgIXq+Xvr4+v7HMn1/G0NCQsNzf650prk4XMZtNHO7r62VsbAydTk9gYBAej0cQHW02G729PcJ/fecI45VXdhIdHQv4RLeRkRHeeednyGRS+vv7GBoa4uHDh+zZs4/du/fR19fLmTMnBUErKCiYVavW+I1DKpXS29vDgwf35pz33Nx8zOYpOjrahG2jo6N+jtHISANVVZW8996vMJun2LfvdbZufQW9Xs/U1CQWiwW9PgCPx8PwsE8czsrKYWhoiK6uTuFcw8NDJCQkCsvap/F6vZw6dYKiomK/5e0pKamo1WomJyeEaAYAk8mEzWblBz/4Q9588+uYzWaOHDlIbW0Nhw8foKenS3D/Wq1W7t27S1NTIxMT44yOmggJCSUqKgbj2BhqfTCvv/EWkZGRc85RenqG332uqqogNzdvTvdwQ0MDERER6HR6ZDIZK1asRq1W8957v6alpdmvbWRkpDBnN29ep7Z29gzoL1JSMp933nmP8fExfvGLfyQ2No6lS5fT398viPHTuB1WhjsbGJm0IpGAQi4nLS0NmTYArUJGZICS5ctXUV7+UPgQ8TLOYfDFLdy9OzN7+HlERESwceNm1q3bSG9vz9Nc4mq/XOKamie43W4mJycxm6dQKhWMjY3yj//4f6mvr2X+/IXs3fsaxcUlTE5OsnnzVsGV7XQ6UKvVbNmyjZ0796DV+rKYTSYjP/vZT0hKSqKyshLwCb7r1m1ErVZz+vRJISN8LlQqFVu2bOPChXMvFRmxdOkybt+++cJ2en0AZvPsRR9nw+v1cv/+PQ4fPkBMTCxvvvn1Ga70gYF+Tpw4RlpaOqtWrRV+B7lcLq5cuUhCQqJf9reIiIiIiIiIyL8UojgsIiIiIiIi8lJIJBISQjRsyTHwB8tT+P6yZL6/NJkfLE/hh7uWkBGmRIYHqVRKRkYWwcEhNDbW8+mnH/stw1+5chWZmZnMn7+AxMSkGQXJ5HI5TqeTxsZ6Hj16yK1b1/2EHoVCQVJSMu3tbXi93lmdw0bjCFKpVCja9izPCnzR0dF4vV4GBwcBePToIQUFRdy4cc1vPLt27eGrX31LEEeTkpJobKzn/v27XLt2hStXLrJjxw7kcjlxcfFs3bqdxsYGrl69JAjEBQVFJCenCOeVyaR4vR5u374p9P9FDIYowsMj/ArTjY6ahOtqbW3m008/pL+/j8WLl/L1r3+LpKRkoa3NZmNsbJTQ0FDGxsbwen1CV1xcPM3NPkE2MDAQr9eL3W6jsLBYiKuYprm5iZGRYVatWjvjPmVk+Ny29fV1AHR2dnD27Cny8wtZsWIVhYXFvPXW27z11tukpaUjlUr5f/6fP+bSpQsMDw9x4sQRbty4itfrJSUlFbN5ikGzk0FNPPLSfUxlrOM3j/q53WbC7Ji9aJpEIvHLHnY4HPT392EyGYUPD9MYjUZGRkbQarUEBwcTGBhEZ2cbf/d3/4eJiQmOHDnoF1sikUhQqVTcu3eHe/fuzNr/F0lMTGLTpi0EBQXxV3/1P7Hbbbz//q8JCAhk+fJVmM1mv2dWAoRY+mmuf0JdrwlDYjqjdhieclAYG0RMoBq5XM7q1eu4ePEcHo+H8XFf8b+5MoenCQgIJCQkVMjJ/jLodDqWLFnG7t378Ho9fPrpRxw6tJ/z58/y4Yfv0tBQL8SrbNmynR/84D/wl3/538nNzefChbNUVj7i3LkzREfHUFxcIqwIcDg+F3jT0zN4++1vER+fQGtrCxkZGfT19XLixAkhP1gikVBcXEJ+fgFHjx6atfDhs+j1AaxZs54zZ14sJoeEhKLVal8qMuLZVQLPw+l0curUCa5fv8LChYvYtWvvjEJ64+NjHD58kLCwcLZu3e73zpWXP2RsbEwsQiciIiIiIiLyr4YoDouIiIiIiIh8adQKGaFaJeF6FYFqBQqFgo0bt/gV88rKykalUtPU1MCBA58J+bqJiUmEh4ejUCiIjY0jPj6RV17Z6ZfLGxCgB3yFnMrLH/Lzn/+EM2dOMTg4IEQ7aLVaRkaG5xSHQ0JCkclkfttdLpdQkA2gqGge4eERVFY+EgplDQ4OMDk5IbRZsKCMoKBggoNDeOONt4iPT0ClUhMQEMTY2DgHDnxKUFCInyM0IyOTtWvXU17+kIcPHwA+kWvjxs2CUCSRSPF4fOL22bOnZr0OiURCbm4+LS3NWK2+fOPRURNKpZJjxw5z+PBBQkJCyc7OYfHipX5xE9PzNzU1hU6nZ2RkGKVSQWZmJlKplIaGerxenztz2o2cnp7hd7zb7ebUqeOsXLl6huMVfIX8wJefPDDQz7Fjh4mPT2D9+o1+wlZUVDQbNmziD//wP7Ft206ePKnmxo1rHDlyiK6uTmw2GzExMWhiMrg/rkWTXoZCrcXlsGGccnCspp9PK3qZsM0u9uXk5BIUFCT8XF7+kOzsXKqrq/zaTefXJiQkkpOTS0NDHUFBwRgM0WzbtpP4+ATu3r3N4cMHsNlswNPoh+NHZ+33i0RGGtixY7fw3Gm1Wv7iL/4agIMHP8Xr9QgO8mmR0+l0MthYjmGsgQi5DSQQpFGyNcfAlhyDMI8REREkJiZx8+Y1XC4XUqlUKEr4PBYuXMSDB/deGMvwLF6vF5PJyJMn1Vy6dIGmpkaCg4NRqdTU1j7B6XSSmJhEfHwCwcEhlJbOB3zPa05OLnv3vkZNzRNu3rxOamoaEokEpVIBgMPhL9hLJBIkEgnf/e73CQgIBCAgIIBf/OIfuXjxnLBCIDExifXrfQUMn82Bno2IiAgWLCjj7NlTc8a2TFNWtuSlYivi4+Nf2O/ExDiffPIhLS1NvPLKTpYvXznjY4vNZuPQoQMoFHJ27tyDQqHwO/7u3VvMm1dKRETEc/sSEREREREREfltIYrDIiIiIiIiIr8VYmPjKCmZL/wsk8nIzs7BYjHT39/LgQOfYjIZkUgkLFjweb6mxWLG6/Xy2mtf4e23v01RUTHBwZ87fl0uF5OTk9TUVPP++79h//5PGBkZJiYmlqGhQaamZi4fHx4enrGMG3xZntNF5ADy8wsoLp5HXV0Nt2/fJCMjk/LyB8L+gIBAFiwoE37WaDTs3fsa2dm5xMTEUFv7hMDAIB4/ruDkyZN+Am9xcQllZYu5du0ytbU1wvlWr14nzM90+6GhwTmX/+fm5uJ2u2lsrMfj8fDgwT1OnDhGb28v27btYO/e1wgJCRHcpNM4HA4sFgtqtRqPx4PJZESpVJKVlcPoqInW1hZBUPXNZxyJiUl+53j48CFut9vPmfss8fEJ6PUBjI+P8847PyMoKJjt23fNEOWnUalUFBfPw2azotPp0el09Pf3UVdXw6XrNxgJTCUjrxi1fQyVx4rHOkl0kJrEEA2Ng1Ncbpq9UJpUKvUbo81mxWyeoq2t1U8cnBaH09MzUKnUWCxmFAoFDoeDBQsWIpVK2bLlFfr6evnww3d5/PgxT55UCzEOzyMoKIg9e/ahUqn8tqvVav74j/8MlUrNuXOnGR8fY/36jajVGtrb22hsrCcuLoHUMA0RI9UUedr5/tIklqeFo5T7/1O9uLiE5uYmzGYzQUFBM4TH2dBoNMTFxc+IzHgWl8v1NOLkPsePH+Hw4QNUVj5CLpezZMlS9ux5lW3bdrBt23bS0zOJiYmlr6+XhoZ6JBKJXxFJ8BWSHBoa5K233kahUHDw4Gf09nYLfU3fE7vdzunTJ1i9eh2LFy/h7be/JXw8MhpHqKys4P33fy04e4ODQ9ixYzcVFeUzhP8vkpiYRGpqup97fzZ0Ot1TJ/3zC9/FxsYJ1zAb3d1dfPDBe9hsVt54461ZIyHcbjfHjh3GbDaze/er6PV6v/3Xrl1BqVSxZMmy545FREREREREROS3iSgOi4iIiIiIiPzWWLZshd9Sd7lcTnZ2LoODA0xM+Fy24+NjFBYW+hWeq6x8BPgcf+vXb+L3fu8PSEpKEVy2z0ZP9PX10tTUSEXFI5RKFXfu3Jwh/hiNxlnzhuvqavzGlpGRRX5+IS6XiwcP7tPW1uqXrbpy5eoZBaHkcjlbt75CcHAI8fEJgBez2UxFRQVHjhz0izJYtmwFeXkFnDt3WihklpubR3p6BhKJxC8v+d69O7MWD9PrA0hKSub27Zt88MG7VFZWUFRUzDe/+TtkZ+cgkUgID4+Y4Wo0m6cwm6cIDQ1ldHQUt9tNeHgEMTGxNDU1MTY2SlBQ8FOxzk12do6fqGu32zlx4gTbtu2YU+yVSqWkpqZRX1/L4ODgrOLoNNM5rIcO7Sc+PgGHw47BEM2iRUtISkomMms+Roubib525HIZ4+PjuN1uHA47SpmUMJ2C2oFJTBbHrOfPyytAp/tcbCsvf0hycgpNTY2A7xnq7+8FIDk5hcrKR2Rn5xEfn0BjYwMymYylS5fT1dXF9n1fZdTq5r/99V8wOTmB1WqZtc9p1GoNe/a8hl4fMOt+jUbDH/7hfyIgIJA7d27T1dVJenoGU1OTaLU6dDpf7q4EqHlcQWXFw1nPI5FIyM8vpL29TXDZvgwlJfOpqCgXRFmLxUJLSzPXrl3h0KH9nDhxlM7ODiIjI9m0aSt79rzKmjXryc7O8evHYrHQ1NSAVqslLS2dlJRUwsLCOXjwMyGX2Ov1cvHiOQIDA1m+fCXz5y9k+/ZdjIwYqaurZWJiHIfDgcvl4vTpEyxatETIlA4MDGLfvtfZvGUr3tBE6hwh3B/T8PefnOD8lau4XC5UKhXbtu1gfHycK1cuPtcZnJubh06nF9z7L5qf2dz704SEhAqFAJ/F6/VSWfmI/fs/ITw8nDfffBuDwTBru3PnztDb28POnbv98rsBOjraaWioZ8WKVXO+QyIiIiIiIiIi/xKI4rCIiIiIiIjIbw2FQsGGDZtnbEtOTsVkMjIxMcH+/Z/icDjIzc0T2vT0dPvl7sbHx5OUlMS8eaVkZ+ei0fhHGkgkEhwOO0NDgzx+XMU77/xcEFatVp9r9IvisNVqpbW1RfjZ5x5VodPpkMlkjI2ZBCERIC4ufs6CUM3NTaSkpPD97/8BKpWKwaFBnF4pre3tfPLJh0IshUQiYcOGTSQkJHLs2GEGBweQSCSsW7cRrVaL2/25sOXxeDh9+qSfOD097omJCS5ePI/FYmHp0uVCka5poqKi6O/3L9xnNpuxWCwEBQVjNI4gk8nIyclDIpHQ3NyIxWJBq9ViMhkJDQ0nIyPT7/gbN64RFhZGZmbWrHMAPidkV1cHdrsdgyHKT/B/FofDwalTx7l+/QperxepVEp4eAQdHW1ERhr4L//lh6zcvJvExETCQ0OwWi1MTU1ht9uw23xie7BGwYTNydCkfdY+5HI58+cvFH6emppEKpXy5MljAME5GxcXR2NjI3l5BRQUFOJ2u2lu9t33qOhYaifl/ORGOxWeWGzJS6lr68RkMgnxBrP1u3v33hli3xfRaDR873u/T1BQEKdOHaexsYE/+IP/SEREBG1trX4fOK5duyJk7n4Rm81GbGycXxHA5+H1epmc9H1ceeedn3Po0H6uXLnE5OQEOTl57Pp/2fvP8Lby7M73/W4kAiAAgjnnTIqiSOWcc86qXN3V7nYY2+Pj6/F4bB/bM3c8Mx7PuRPs47bd7a6urFLOOedAUiJFMUvMmSCYABBp3xcQIaFIqlShu8v2//M8eqq0sbETABZrYe3f2raTbdt2Mm/eAlJSUsd9GfKix48fBRRQdTode/a8wbZtO5FlLwcOfM7HH39AQ0M9K1eu8UcmBAUFsXDhYrKzc7BYLBw48DmffvoR06YVk5CQGHi8QJs6DtPMLfQow7BIRhqkGD4taeGnH3xAV1cXkiSxcOFi4uISOHz4gD9yZSKzZ8/FarVQXV016TpqtZr8/AIePiybdJ2x/OmxuBHwdUGfOXOKc+fOUFRUzM6deyaMXwG4fPkylZUVrFu38dmXSs95PB4uXDhHQkJiwM9FQRAEQRCEXwZRHBYEQRAE4VuVlJRMUVFxwDKNRoPJFIIsy1it/XzwwQfk5OQFrDPWPQy+jtSYmFgkSSIsLIzMzCy+//0fUlRUjFqtDridPjw8jBs3rvKTn/w9H3/8Abdv30SW5XHF4ZqaqoDCVl5ePuArvvoGkzVhsfQBvkLQ8uUrJxwI1dXVyaNH5Sxfvopp04r50e/8ITXEcteVyAMphcreUT788AO6u7sBX3zE5s3bCAsLZ//+z7Fa+zEYDMyZMy+gcxh8WcnXr18FfEW9yspH/PSn/8DAgJXs7BwyMjKJiYkdd0wxMXF0draP25ZCocDr9fpzinNz8xgeHuLp0waCgjRIkkRfXx9RUVEBw/KGh4e4fv0qe/bsmXQo1lgn5ODgIHPnziMoKCiguD7Gau3nk08+9A+tc7lceL1egoMNpKSkUlAwFbM5FJDQanWkp2cwc8YsVq5czc6dr2E2m/3b+rLxXIWF09Bqdf6/l5beJzw8gra2Vn9xOCkpiebmRvLy8klNTaO1tQWtVsfAgJXy9kE6lFFUPq5ActlRRKaiy1mMzWajrKxk3IAzSZLYuHEL8fEJX3JkPDt3J2Fh4aSmZqDVann4sIxNm7ZhNpupra3xF4hlWebEiaMTDkqzWvsJDQ3FaDTS0DA+KsLtdtPa2sKdO7f9EREPH5YyZUoBQUFBbN26gw0bNlFUNJ2oqKhXiqYYO6by8ocBy7KystHr9ajVaqZOncb69Rupr6/F6Ryltraavr6+gGsVHBxMSkoqXq+vI7yy8lHAOgBP+2xcq+slOSaM9Ihg8hIjMUoO+iUDVX2jfPTR+9y+fROv10tOTi7z5y/kyJGD/kzzL5IkiRUrVlNd/filBfX8/CnU1dWOG2L4orE4DfB9Rvbu/YTKygrWrl3P8uWrJu2wLy9/yJUrV1i0aKk/p/tFJSX3sVj6xBA6QRAEQRB+JURxWBAEQRCEb92iRUsDBoSBr3tQp9Oi1wfT09PDpUvnA7JKq6oqAzoAXyyCdnd3ERISwsqVa/iN3/htMjIy/Z2zsgzJyak0Nj6hra2VY8eOUFJyj5qaKoaHh/3bePy40v/ven0wKSm+YmhJyT3i4uJQq1X+7tuCgkKio2PGndfw8BCXLl1g7doNKJVKZFmmWRWDIXUabtcoLlQ0SlG0Dbv59NMPefKkAfAVx7dv34VGo2b//r3YbDYyMjJJSUkdt4979+7w6FEFe/d+wokTR0lOTuaHP/wNli1bSVnZfcLCwsY9Jz4+ga6uzoBltbU1GAzB9Pdb8Hg8hISYiYqKpq6uFqvVitkcitM5ilKpJCMjM6Bj9OTJ42Rn5xAfHz9uX2Nu3Lj2rDC2gXnzfBmpVVWVAes0Nj7lgw/ep7vb1xVut9vxej0EBxuYO3c+S5Ys48mTBvr6+ogL8d1K7/Z6USqVJMQnEPxCF2a/zYVJpybGpGUyQUFBTJ8+w/93q9WKyWTkzp3bNDU1AtDe3s6iRUuRJAmlUkloaCixsbE8flxJ56Cd9s4OghVeZKcdLS4U5hgKCovo7+/n4cOygPfUypWrxw3xm0xDQx1nz55m8+at/O7v/h5hYeEMDQ1y794dtm7dgclkoqam2l8gdrvdHDy4n/5+S8B2rFYrAEuWLOf+/Xt0dXVRV1fLpUsX2L9/L8eOHaalpZmYmBh/RMSyZSvJzy9gxoxZL+2OfZn29jZ6ewMLsFOnTgv4+6VLFwgPj+QP//BPmDZtOvfu3eHw4QM0NTUiyzJqtZrGxqfExcXz3ns/YsGChdy+fZPTp08yMOA7r+Z+Ow6XB5NWTYjJRHBwMEVTCwkO0tCPAY/Hw9Wrl/nkkw+xWPqIjo5hw4bNXLlycdJcZYVCwbp1G7l168a4YvSL68ycOZu7d29Peg0SEnxD6To62vngg/cZGBjgtdfepKCgcNLnPH36hLNnTzFjxgxmz54z7vHh4SFu3rxGUVHxhHEUgiAIgiAIv2iiOCwIgiAIwrcuKCiIVavWjlvucIySkJBIcHAwXV2ddHd3+WMUXC4XFRXl/nXj4p4XJr1er7/AqNVqSU5OZfr0meTl5RMVFYXBYECr1dHb24vdbkOhUHLr1g3+/u//luPHj1JTUxWQyZubm4tSqcRut9Pc3ER9fT2xsXEMDAzgdrtZuHDxuGN3uVycPHmclSvXoNP5ulNtLg/N/XaSIs0kRYURqVfiRsmIpGV0dJSDB/f5B2cFBwezY8duHA7fclmGmTNnB+Tkejwempqe8p//85/T39/vHwRmMBjJz59Cd3d3wG3tL16rvr7AImJdXS1GYwi9vb4hbqmpaUiSRG1tDVarlZAQMz09vURGRpKZ+TxSoqenh4qKh2zcuHmSVxfKyx9w8+Z1Fi9eRl5evr8bsqmpkeHhYWRZ5t69O+zb9xkOhx1ZlhkYGECSJNLTM/ne994jJSWV0dFRVq1aw/nzZ8gI0xFrDKLF6hiXIT3q9mKxuZgaa8KsU096XADFxTMCCt3l5eX09HQzMuIbXBgVFeXPuAXIy5vC4OAgTU2NVD68z4jNhlYfjCYoCKesRCO7iImOJjY2Do1GQ0XFQ7q7u5g3bwHTphWP2/8Xeb1erl27QkNDPdu27SQkxIzRaGLnzt2EhoaiVCq5c+cW27btIChIQ3X1Y3+Ort1u48CBz7HZbP5ttbW10tXVyYMHZYyM2Pirv/orhoeHmDJlKtu372Lr1h3MnTuf5OSUcREReXn51NXVThqR8TJf7Bo2m80kJSX7//7kST1VVY9ZtmwFer2eqKgo1qxZx4oVq2lpaebzzz+lvPwBSqXS/34LDQ1j/fqNFBfP4MqVS1y4cNbfuTtgtWIdGMAQbMAQHExaahoJiYn+ztr29jZ+/vN/oqTkHsHBwWzZsp2Ghnr/nQNfpNFoWLduI+fOnQ4o8L8oNTWNnp5ufyzMF0VGRlFaep9PP/0Ik8nE22+/G/Bz6ou6uro4evQQKSmprFu3bsKu4MuXL6FSqVmwYPzPHEEQBEEQhF8GURwWBEEQBOEXIjU1bVxnIUBdXQ0rVqxAq9XhdrtpbHzqj3t48KDEX9iJjQ2MTxi7nRtAqfT9ChMaGsa8eQt5770fsWnTZvr6ehgaGvTnfno8Hh4/fsTf/M3/orz8AT093ciyTF6eL9ezpOQesuxldNRBWFg4QUFBGI1G/4CwMWMRCrNmzQnIltUoFWiUCtTaYOIT4snNK0Cv16PAV9zzer2cPn2Sa9euIMsyoaFh7Nixi97eHq5du4xSqWT1al8Rvb+/nwcPSmlrayM8PIK0tDTS0tL9+4qPT0ClUtHRMX5onUajCYjM8Hg8DAxYUalUWK2+IVpZWdn+YrjH40GtVmO19hMWFk5GRqb/uQcPfs6CBYsmHXj25Ek9Z8+epqiomFmzZvtfh7i4eGRZ5tGjck6cOMalSxeQZRmn00lPTzcGg4GlS5ezZ88bGI0mdDotdrsdo9FEcfEMSu5cZ1NBDGF6DfV9NrqGRrHYnLT022mxOsiPMbI0c/yQwS/S6XQUFhb5/97b28Pw8CDt7a3YbDaWLVsWsH5sbBydnR10dXXS+/g2ZnmEIXQMokeDh0S5DwnQ6/VkZ+cQGRnF4OAANtvISweYgW+A25EjBzGbQ1m1ai0qlcr/WEiImU2btqLX6wkNDePu3Tts27YLSVJQVeUrEHs8Hp4+fcr/+B//zZ/T29LSjEqlYvXqNXz/+z9g9+7deDweIiMjvzSSQKFQUFw8g9LS+196HV80OjpKdfXjgGVTp07z78/pdHL27GlSUlL9cS1jDAYDCxYsIj09A6/X9yXB3bu3/QVv8BXsN23aSk5OHk0Vt2hqqKO+rYu83Dxfzq/bw6hXZt3sqbz++lv+oZcul4sLF86xd+8n2GwjrFrlyzk+efL4uAiQsWNZsWI1J08em7BALkkS8+cv5ObNG+Me83q9XL58gfLyB2Rl5bBnzxuTDiAEGBoa5ODBfZjNoWzatHXC+I6WlmYeP37E4sVLAjLEBUEQBEEQfplEcVgQBEEQhF+YJUuWjSugyLLMjRs32Lp1O1qtFq1WS01NNV6vF6vVytOnvigGo9EU8NyxgXNAQLanx+MhPDycVavW8ad/+p/weDwBnaGyLD/rBhyitraGyspH1NfX0dvbTW1tDW1tvqKzQqEgKysbp9MZULgCuHnzOgkJCeNiINRKBYszwtHq9FR1DNA66GTh1CwW5aUErHfr1g2OHz+K2+0mJiaWTZu20t7ezvXr14iOjsZms/H48SOCgrQUFhaRlJTMw4cP/FEI4CtchYdH0NHRNmnn51jHaWtrC0FBWmy2EbxeL3p9MHFx8TQ01DMwMIDBYMBms6HT6UhKSvZ3Qjc2PqWjo52lS1dMuP3Ozg6OHj1MWlr6uHzU3Nw8HA4HH3zwMx4/fgT4IhCs1n5SUtJ47bU3Wbhwsb9IptPp/TEimZlZuN0uGOjknZmJrMqOJDhIBUjEm3XsmBbL7uJ4DEGqccc0kZkzZ/nfI16vl4qKCjo7O5gzZ+64IpwkSQwPD9Pc3Ex/dzvZchtZ3nYy5A5y5FbM+DqOQ0JCGBoaYuXKNfzoR79FRUU5e/d+wvDw0ITH0NHRztGjh5g3byEFBVMnXCc0NIx16zaiUqlISUnl7t3bzJgxi+7uLs6fP0tNTTVDQ4M4HHYUCgVLliwjNTWNlJQ0QkPDnp3rTFpaAgc6vkxGRiYtLc0vHeL2RVVVlQHFVoVCwZQpBf6/X79+FbvdzqpVayYsUFdVPaa3t5elS5czZUoBISEhnDlzkrNnTwXEPJjNoURoZGYnGbC7ZEoa2qnrGaZtYJQpMSaKE0KIj0/gnXfeo7h4uv95zc1N/OxnP+HRowqKi2eQnz+FQ4f2T9gBHBERwdy58zl16rj/8/Ki6OgYPB5PQIaxzWZj377PKC0tYfHipRQWTgso9H/R6Ogo+/d/jiTB9u07Jxzy5/V6OX/+LHFx8UyZMvH7QxAEQRAE4ZdBFIcFQRAEQfiF0Wq1rF69Ztzy3t5enj59wvbtu4iPT2BgwOofyFVa6htMJ0lSQPfwi53DCkVgcXhMTEwMYWHhLFq0lB07dpGamsbw8HBAISwkJIRbt27w53/+p9y/f4+hoefFvddeewsgIN6iquoxDoedoqLnxagXzUw0896CdPL1w2wvjOWtmUlsXrd2XDRFVVUl+/Z9ht1uJy0tnUWLlnDz5nX+7M/+GLPZzLRpxeTnT/F3PQOcPn0iYEBWbGwcHo+HmprqccdhMBj8+bQNDXVotVr/uUVERBAcHExdXQ1Waz9mcyg9Pd1ERkb5M3NlWebzzz9lw4YtExazBgasHDiwj/DwCDZu3DKuE1KvD6ai4iFtbb4O3fb2NrxeDzNnzubdd98bV1jXarX+yAnwZejevXsbveRiZXYU/3ZxGr+/NJ0fzUtmVlIoOvXEw74mYjAY/QXZwcGBZ1m5CkJCQsetW1X1mLa2FoaHhxgddaDwuolgkCh5gGCeX/uQkBAkScHmzVuZPn0me/a8gdVq5YMP3g8YHCfLMg8elHL37m02b942aY6s70uLHlpbm1EoFNy8eQNJkqivr2PTpi1ERETg8XiIjY0jJMRMXV0tFy6cA/B3zoLvc7Jq1RouXTo/YbfsF0mSxKxZc7hz59YrXUsYHymRnp7h/+Kms7ODkpJ7zJu38NlgwUBPnjRQX1/LqlVr/O+r6OgYtm7dwbRp07l71zc47/btmxw7dpiFCxfzZ+9u4E92zGdekhFNXz3FwUPsKIz2vwc0Gg0rVqxm167X/B3uo6OjnDp1nMOHDxAREcnKlas5ceLYhEP9EhOTyMzM5sKFsxNGUMyfv4AbN3yDIbu7u/noo/fp7u5m167XWLZs5YTbHOPxeDhy5CBDQ4Ns37570u7isrISent7WLFCDKETBEEQBOFXSxSHBUEQBEH4hUpPz/THOLzo7t3bqFQqdu9+ncjIKPr6eqmrq+XJkwZ/kTM29nme58DAgD839sXOYa/3eXG4r6+XxMQk2tpaiYmJY+fOPRQXTycuLs7f6RcZGYXL5aKzs4PW1mbKyx/w8OEDgoKCyM7OITc3n7Ky+3i9Xtrb26iufjxpJy34im3ZUUammL3MSDBhCFIhSRJz585n/fpNAcfa0tLMJ598QE1NNbW1NXg8bkZGRpg3bwHvvvveuCLRwMAAly9ffHaeXoKDg0lKSqaysmLccURFRdHW1oosy8+yl+3YbL7rFRERiVqt4enTJwwPD2E0Gv3/HCsOl5c/wOPxBAx0G2O329m/fy8ajZpt23aiVj/P/ZVlmfv373LixFGCg4Nxu91UVDwkNDScLVu2s2vXaxgMhnHb1On0eDwefxe0Wq1m2bKVnD9/BlmWUUgSaqXiaxfOZs2ag0KhoK+vj4EBKykpqTQ3NwZ0izY1NXLy5DG0Wh2jo6OEhoZisUw8sCwmJpaCgqn+Amd8fAJvv/09zGYzn332MWVlJTidTk6fPonD4WDTpq3+jmzwRSA0Nzdx69YNDh3az4EDn/PoUTk6nZ4NGzbz7/7dH5GRkcmOHbsYHh5m0aIljI46qKys8Ody3717m66uznFF2ODgYGbNmsOVKxdf6dokJ6fQ32+ZtOv5RV1dnQFd+wBTp/oGsI3FpkRGRjFz5qxxz21tbeHBg1LWrt2AQqFArfZdu7HXfCyX2GQK4fr1q3g8Hrq7u5BlL9lRRr6/bBr/6d1N5EfpOXZoH48eVQS8fikpqXzvez8gP/95F3NdXS0/+9lP6O7uZuvWHZSU3KOiIrC4Db78ZaMxhLt374x7LCTEjNkcyqVLF/j445+j0QTx9tvvkpSUTGxsnH9w5RfJsszZs6dpaWlm8+ZtREZGTrje8PAw169fpbBwWsDgTUEQBEEQhF8FURwWBEEQBOEXbvnylQGD18BXWDp16gSJiUn+wmhPTzcNDXX+7uEv5g6PFWW+GCsxpq+v15/je+nSBTweD62traSmpjNjxizmzJlHfHw8bW2tOJ1Of+HRZhvBarXy4x//LS6Xk97eHh48KOXq1cv+wtaXiYmJ8Q/NG5OfP4WdO/f4owzcbjf37t3lT/7kDxkaGmTXrtfYsWMXV65cwuPxMG1a0bjtPnxYxpMnDQwODmAymcjPL6C5uYmBAWvAetHRMbS3t9Hb20tYWPizayVhMBjQ6XT09fVht9tRKlUMDQ1iNJqIi4vHaDThdrs5dGg/u3a9Nq4YO/aYzWZn+/ZdAXnMY0P6Ll48j9frRaMJYnBwAL1ez/e//wPmzJk3aXF3rHBqtwdmzyYlJVNScu9Lr/eXMZtDycnJo6OjHUlSoNVqMZtDefzYl53b3d3N4cMH/O+fsLAwFAqlf4Dfi/R63zDB8PCIgKgCg8HA7t2vU1g4jaNHD/MXf/EnZGVlM2fOPEZGhqmpqebixXPs37+XEyeO0t7eTmJiEhs2bGbHjt0sXbqcrKxsDAYD0dExLFy4mLa2VlavXofd7utWt9nsVFZW4HK5cDgcNDTU+4v+L0pLS0ehUNDQUPdK12fu3PncujU+W/eLxgYqjjEaTaSm+rKw7927S09PN6tXrx33Genq6uLWrRusX7/J/8XMWGF9rDg8lskcGhrK7//+H7Jr12t4PG4+/vhjbt26ic1m80dY7Ny5B6dzlH37PvPfZQC+DvT16zeydesO9Hrfe9Nu92333LkzrFy5BqvVysWL58bFSMyePYfBQSuPH1cGLJdlGY/Hw/vv/5T09AzeeONtQkLMAKhUKrxe74SRFLdu3aCi4iGrV68jOTll0mt69eplJEkhhtAJgiAIgvCdIIrDgiAIgiD8wul0OlauXD1ueU9PN7dv32Tu3PnMm7cASZLo7Ozk6NGDOJ1OYmJiA4qLX1Yc7u3txWw2k5SUjMFg4MqVi/7io1KpZN26DezZ8yZGo4mwsDD/tmNj49DpdNhsI9TUVFNdXcVf/uV/pKBgKkFBQa90jomJiRPebp6UlMxrr72Fw2GnrKyE7u4u4uMTAJmRkRGWL19FZmYWx44dJjMzm5CQkHHbOH36JB0dHYSFhZOVlY1arR5X0PJ1NHbS0FBHfHwCvb29SJJERISve7G9vQ2r1YrZbKanp+dZpEQ2ANeuXSYyMor09IyAbcqyzIkTx+js7GD79p2EhT0fxjc4OMCnn35EZaWvm/Pp0yfPcptzyMnJC+gunshYcdjhcAQsLyqaTltbK11dnS99/qtISUmlt7eH0NAwzGYzAwNWHjx4wMCAlf379wZEdoSHR2C19qNQKAIyndVqNdu37yQ0NIykpGSampoC9qFUKklKSkGhUDA8PMyPf/w3fPjh+1y7dpXRUQeFhcVs376LLVu2M2fOXBISEie9NrGxccydO5+6uppnxU49ubl52Gw2KisrGBkZQZZlSkruTZgxvGjRUu7fv8fw8PCXXpuYmFgcDoe/S38iLpeLqqrAQXQFBVNRKBRYrf3cvHmN6dNnEBsbF7BOf7+FS5fOs379poDPz9h5O51O2tpaOXr0EHPnzmfatGIkSUKtVlNYWMRbb71FVFQUp0+f4Ny501gsfSiVSoqLZ7B16w4sFgv79++lsfGpv0icmZnF9773A7Kysv37e/z4Ee+//1MSEhKJjY3nyJGDAREzkiSxfPkq6upqaG72va4Oh4ODB/dRWnqfpUuXk56eOe71ioiIDMgkBnj0qILr16+ycOHigDzmL2pra+XRo3IWLVocECEjCIIgCILwqyKKw4IgCIIg/FJkZWWTk5M7bvmtWzfo6elh7doNZGRkAtDY2Minn35IUFAQ4eER/nXHisMvdil+sXN4rBg6f/5Czpw57c9hVSqVZGXlcO3aFXQ6LXl5Uygunk5aWnpAUVSWZUZHnQwPD/P555/xwQc/o6Ki3H9r/2Ti4+Pp6OgYt9xi6ePSpfMoFEoSE5MpKiomLi4er9fL9etXKS29z/r1m4iOjuHYsSPMnbtg3DaGh4c4d+40oaFhBAUFkZWVQ2VlRUBeanx8Aj09XbS2tqBS+bqDFQqF//q1tbUwMNCPyRTC6KgDnU5HZmYmDoeDs2fPsGfPG+P2e+7cOWprq9mwYTNxcc8jPlpamvngg/fp7OzA4XBQVVWJ2WzmBz/4EZs3b52weP1FY8XhLw7/kySJlSvXcOnShUkH772qu3dvERsbR3h4OAqFgsbGp0iSxE9+8vfjIhXGCoChoWZ/4U+h8GUMjxU/k5KSaGlpxul00tTUyPXrV/nLv/yPfPLJh8ybt4A9e94gKSkZq9VKXl4+U6dOIzw8/CtFYyQkJDJz5mwePixj167XiI9PIDExCZvNRlPTUzweD0qlioMH940buKZSqVi2bCXnzp2eMEv3i+bOXcDNm5N3D9fUVAcU7yVJoqBgqj8+QafTjet+HRoa5MyZU6xfv3Fc8XOsc7iy8hGlpSVs2bKd6OiYcfuVJIn09Ay2bdtJYWExd+74combmhpRq9XMmTOXjRu30NLSzKFD+/155MHBwWzevI116zb6u/WHhgbZt+8zWlubmTFjJkeOHAzoDlcoFKxdu4Hbt29SV1fLxx//nLa2VrZv38mbb75DRcXDcZ993xdBLf6/NzU1cvr0CaZOncacOfMmvZ5jQ+hiYmKZOnXapOsJgiAIgiD8MonisCAIgiAIvzTLl69CpwssGPlyS0+QlZVNUlIKaWm+Qu2ZM6e5fftmQFdiZ2cHsix/IXP4+e3dvb29/mKo2+1Gp9PR1PQU8A3RkmWZ69ev+o9Bq9Xx/e//Gr/927/HypWrCQ8Pp7m5iYSEBIxGI52d7XR1dXLq1HH+7u/+hqtXL48ryI3RarU4nc87Ud1uNzdvXuf9939Kf7+F1157g//6X/+aKVN8g9IkSYHX6+HixfNcu3aZzZu3ERwczK1b18nPH5/RXFn5iP7+fgCmTCnAYrEEDOmLiYmlu7sLrVZHVdVjvF4vRqMRrVbL6Ojosz9O7HYboaFhREREEhYWzvHjR5g6dWpAER6gpOQeN2/eZPnylf5uTN/AwPvs3fsJNtsIvb091NRUMXVqEb/7u7/PjBmz/PnS1dVVE956//x6Tdw5DKDX65kzZx6XL1+Y9PlfZmRkhLKyUvLzpxAe7ut49ng8XLp0adLCdUREJG63B6vV1027evVa0tIyGBoapLq6irt3b3Px4nlOnTpOY+NTqqurWL9+E3/+5/9fli9fydy583nvvR8RFRXF559/yt27d16pSPtFSUnJTJtWzN27t3nttTcoLCwiNDQUu91Od3cXCoXE0NAg+/d/HtD9DBAZGUlycsorRXNERESgVCon7EKG8ZESKSmphISYefy4ksbGpwFD5sBX6D958jirV6/1D4p7kdcrU1NTjcfjYcOGTf4C7stERUWxdu16li9fSXNzE/v2fcajRxWo1WoWLlzMqlVrqa5+zNGjh+ju7kaSJKZMKeDdd98LiHYoKyvl9OmTFBfP4PLlCwHxGxqNhtzcfP7Lf/lPjI6O8uab75CWloFKpaKwsMgfczMmLi7Bf5dAT08PR44cJCkpmZUrV7/0i4CHD8vo6upkxYpVrxRVIwiCIAiC8MsgfisRBEEQBOGXJjg4mOXLV45b3tnZQVlZKVOnFhIbG0tKSiojI8McP340IFvX4XBgsVgmjJUYHR1laGjQX+Ssra1Gr9ejUqmxWCzk5xdw+vQJvF6vv4ATExPLlCm+IWNFRdOZNWsOCxYsYuHCxcTGxtHT0+PvPLbbbdy+fZO///v/l6NHD9HS0jyu8Gc0mhgcHKCx8Snvv/8Tbt68zowZs/j+939IenomGo2GzZu3MX36DJRKJR6Pr3h6//49zp49xZYt2/B6ZTo7OzGZAotrTucoN25cw2azkZSUjMlk4tGj54PpVCoVVquV9PQMqqoqkWWZ8HBfF/XQ0BA2mw29Xk9vbw/h4RFkZWUzMGDl7t07bNmyI2BftbU1XLx4nnnz5lFc7BtQ53a7OX36JOfPn8XlctHQUE9XVxdbt+7gt37rd/yDtVJT09BqdQwPD/lv1Z+IWq1GpVIFZA6/KCUlFY0miJqa6km38TKnTp0gNDQMkymEwsIiZFmmrq6W+vp6XC43Dod93HNCQ8OwWCwoFEp0Oh2NjY3s2/cZN25cx+VyUlQ0nRUrVpKdnUNHRzubNm2lsHBawDb0ej07d+5h5szZXL58gePHj3ytDujU1DSmTCng+vWr7N79OjNmzCYoKAiPx0NV1WNGRx309HSzb9++gO558EVztLa2TFr0fdG8efO5fXt893Bvby+trS0By6ZOnYbNZuPixfPk5ub5v8gBX1TEiRNHWbJkOaGhYeO219HRzq1b14mPjycpKekrDxo0GIwsXLiYrVt34PG42bfvM27fvolSqWTZspUsXryU0tL7nDhxjP5+CyZTCLt2vcaKFav8XeH9/f0cOXKQsLBwqquruX37Fl6vl9u3b3H69AmWLFlGSIgZg8Ho329OTi6NjU8C4ijGvnAZGhrkwIG9GI0mNm/eFvBz6YtsNhvXrl2loKAwoAtfEARBEAThV00UhwVBEARB+KXKzc0jOzt73PIbN66SlJSMJEn+W+k7O9upqnockD/b3t42YXG4r893q3hEhK84PNYdmpiYRE9PDyEhZq5evRyQ6bt8+Up/kaq1tYUnTxrYvft1tm3byR/+4R8TGxuH1dofcJxer5fq6io+/fQjfv7zf6Ki4qG/gGw2m/nkk4/4/PNPCQ428M4777Fo0ZKAzFKFQsHy5atYvnxlQHG5rq6WkyePs27dRkZGJs6MtdttnD9/BkmSyM8voLr6sX/f4MsBDgsLpa2tFVmWiYyMQJZlrNZ+rNZ+jEbjs8FxGjIzs/nss09YuXK1P+IBfJmox48fITs7l5UrfYX8oaFBPv30IyoqHmKz2aioeIhGo+F3f/f32b59V0AHqFKpJDs7B2BcXu2LJElCq9VN2Dk8ZuHCxTx8WMbg4MCk60ykra2Vzs52DAYDiYlJLFy4mKdPn/jfI7Is+yNKPB4PVquVlpZmamqq6e7uIi4ujpCQEJYvX8nOnXtYs2YdBQWFhIaGMTJi4/z5s2zZsp2oqKgJ969QKFiyZBmbNm2loaGejz76+UuzfSeTnp5JdnYuly9fZNGiJWRn56LT6RgaGqSiohy73U59fT3nz58NeC89j+Y4H/D+mIjJFILRaBxXCP5i17BeH0xGRiaXL19Elr0sXbrC/5jb7eb48SPMnTuf6OjogOeNZSTfu3eHFStWYzAYv1FcyFgu8e7drxMVFcWpU8c5d+40Ho+HNWvWMWfOPK5fv8bZs6cYHh6iuHgG77zz/Wc5377juX//Lt3dnfT39/Ef/+P/zeXLF5g7dz5vvfUuixcv5eTJY/6ud0mSmDNnHrdv3ww4juBgAx999HNkGXbs2PWl2eTnz59HlmUWLVrytc9dEARBEAThF0EUhwVBEARB+KWSJIkNGzYQFBR4S7nH4+HmzeukpqYBvqJuUJAWlUrF06dP6OnpBqCzsx2FYuLisCRJhIWFMzg44O9aVSqVrFy5kr/+6/+CXh/sLwbn5U3xF4ys1n5u3LjGmjXr/bd7x8cnsG7dRlJT01ixYtW42AWA7u4uTp06wd/93f/hb//2bzl16gRVVY9Zu3YDe/a8QWRk5KTXYdasOUyfPhOVSuVf1tHRzpkzvg7GseFjY+c4ds7V1VVUVT0mP38Ko6Oj1Nf7bo93uVxotTrKyspwuZxotVp0Oj1DQ0PIsszg4CAul4vw8AhCQkJwuZw0NzeybNnzIp/F0sfBg/uJjY1j3boNSJJEa2sLH3zwPh0d7XR3d/HoUTn5+QX86Z/+R4qLp0/YAZqXlw/4urdfltWs0+km7RyGsdduNWfPnn5pRMWLvF4vN25c83d/ZmZm0dHR7i+4u91uuro6ePLkCY8elVNfX8fIyAhmcyg5Obls27aTtWs3oNXqAgp+LpeLU6dOYDaHkpKS9kqRCDk5ubzxxjt4vR4+/PB9njypf6VzeFFWVjbp6RlcvHiOvLx8li5dTlCQloGBASoqyrHZbDx8WMadO7cDnhccHMysWXO4cuXil+5j9mxf8XPs/eZ2u6msfBSwzpQpBbS0NPPoUTlLlizDYDAAvut96tRxpk0rIiEhMeA5DoeD48eP4PV62bhxC0aj7zX5soL1q5AkibQ0Xy7x1KlF/lzikZFhNmzYRGFhERcunOPSpQtotTpee+1NFi1a6v9iqaWlhY8//oC2tlaCgrQUFk5DkiQSEhLJycnj/Pkz/uuRlJTM4OCA/y4Gr9f7bIhdM9u375owQuNFHR3tlJWVsXDhIoKDg7/xuQuCIAiCIHybRHFYEARBEIRfOqPRGFCUHNPe3ubPMJUkiaSkZEJCQjAYDNTV1dLX10d7e/sXMod9xeHe3l5CQkImHIZWWFhEbW0tsuwrMGo0GhYvXgL44ijOnDnFmjXrxnX/FRdPZ3h4GKPRxPe//2vs3v06mZlZAQXR4eFh7ty5zb59+2hra0OtVgV0J79MbGwse/a8gV7/vGBktVq5fPkS06fPBMBiseBw2AOKkefOnUGjCSI+PoFHj8oBaG5uJCUllfv37+J0ujAYDCiVSvr6elGpVEiSrwgeFhZOZmY2H3/8ATt37vFfy5GREfbv34ter2fLlu0olUru37/PZ599zODgAHV1NbS0NLNt2y7+4A/+aNKuWfANVTOZTIyOjtLQMHlB1FccHh/v8KLQ0DCys3PHdW5O5uHDsmfd4t3IskxXVyd7936Cy+Wiu7sbq9WKx+PFbDZjNoeRnZ1DfHw8RqORhIRE3nnn+7S1tZKamsaTJw3PXoM+Dh7cR15ePsuWLcdut71ylnBkZCRvvvku8fEJHDiwj5s3r3/lHOLc3Dy0Wh1PnjSwcuUa3nvvhwQFBdHf309ZWRkjIzauXr00rlM7LS0dhUIRkK87keDgYGJj43j61He+9fV144r2ubn5nDt3mqSkZAoKCgFfF+65c2dIT88MiJgA6Orq5PDhA0yfPpOZM2cjSZL/s/1NBw1+UXR0tD+XuKnJFwXS29vLxo1byMjI5OTJY9y6dYOiomLefPNdlEoV5eUPcLlcxMXFo9fr+PzzT/0Z3jk5uZjNYdy5c8u/j/nzF3H9+jVkWeb8+TMMDQ2RnZ3z0s/B2DU6f/4s0dHRTJtW/K2etyAIgiAIwrdBFIcFQRAEQfiVmDKlwN8l/KL6+jp/IVSSJJRKFfn5U5Blmdraamprq/1FXgjsHI6IiESW5YCux9DQUM6ePU1OTi5tbW243W7mzJmH0Wjydz0uWLCIkBDzuGOJjY0jLi6e0tL7SJJEcnIKW7fu4Ic//A2KiqbT1tZKefkDvF4vRUVFZGZmYrFY+OSTD3n//Z/y8GHZS7skZVkmLi6eN9982z80DcDhsFNSco/09Aw0GjXNzc0B0Q8Oh52zZ0+Rl5dPY+NThoeHqK+vJzk5hcbGp7jdbvR6PZIkYbH04XQ60el0qFRqfzHY7XZTWFgE+Ip1Bw/uw+Vys2PHLtRqNWfOnOL48eMMDQ3x8OEDPB4Pf/AH/4HXX38zYAjZRCRJIicnD4CqqomHv8GrFYfB917p7+/3DwGbjNXaz82bN6ipqebx40pqa6s5efI4Wq2WgoJCUlPTiIiIwGAIxul00tfX6y/UhoeHs3XrDjQaDbGxcYSGhlFVVUldXS0XLpxj3boNpKSkAr731FeJidBqtWzbtpN58xZw/fpVDh3a/9I4jYmMfUlSX1/L+vWb+NGPfvNZhnQv5eUPGBkZ4eTJY+PiIRYtWsr9+/cYHp44qmTMjBmzuHfvLrIs8/BhWcBjSUnJ1NRUMTg4yMqVa5AkCVmWuXLlElFRUf5OcfC9p8vKSrh9+yabN28LyNcde9+4XN9ucXjMi7nELpeTffs+o62tjXXrNhIbG8vhwwc4e/YULpeTqVOnUVhYRHBwMAMDA1gsFvbu/YTy8ocAzJw5i5GRYf/PkoiICNRqFadOHefBgzI2bdri755+mfLyB3R0tLNu3ToxhE4QBEEQhO8k8RuKIAiCIPwKSNKr//mq6/9z+AOgUEisWbOWoKCggMc8HvezCAAZSQKbbZiCgkIiIyORZS9VVZU0Nj71r+8bMAd9fT1ERETQ3d2FxdLrfzwqKory8geEh4eRnJxEb283M2fOQpLg8uULZGVlk5CQMOmxTp8+g+bmRnp7e54du68btb6+lqSkJHbt2sOKFav83cIGQzAjI0P09nZz9uwpfvzjv+HKlYsMDlon3UdoaChvvPE2iYlJL5yXh6dPG4iLi8NmG8Zutwc8p6GhDln2olQqqax8xOCgFZVKyfDwMMHBwahUKmy2EUZHHTgcdtxuDxEREej1ei5cOMtbb72LQiEhy15OnDhCX18vO3bsQqVS8tlnH/PwYRnt7e2Ulz8gNTWVv/qr/x8zZ8585dc4P38KkgRPntQzOuqYcB29XofDYf/SbSkUEitWrOT69Sv+bYHM4KCVx48fce7cafbv/4z/83/+J+npaXi9HhITEzGZQkhKSiIsLAyNRh0QeyDLXmTZS19fLwaDgZ07dxMcrPcf+5Mn9VRWPqK2tprt23diMpn8x5OcnEJLS9NXes8rFBILFixkx46dtLa28NFH7z+LQnm15w8M9BMTE0NcXBxXr15i/fqN/OAHv0ZISAgWSx/l5Q8YHBzg0KH9WCx9/uep1SqWL1/J+fOn/Z+pif5otUGkp6dz//4dmpsbAx5LSEjk3r3bzJ07n4iIcCQJ7t69TVBQ0LNoEd96TucoJ08ew+VysXnzVvR6XcB2NBoNkuSLlfiynw/f5OeLRqOmqKiYPXteJyoqgjNnTlBXV4tCIVFR8RCHw86mTZt56613CAsL87+fXC4nhw/v5+TJo4DMsmUraGio81+P8PBw9u/fy7x585k6tZDg4GBGRoYnPQ6Hw861a1eYMqXg2RC+X93P3F/En1/Uf5sEQRAEQfjlUn35KoIgCIIgfNvCw42/0PX/OQgPNxIebmTLlg0cP3484DG3W4nFYvHfsj0yYqWwsIDKykr6+vq4e/cm2dnZmEwmtFoVRqMGt3uUjIxkWlsb0Oufx0M8evSAtLQU9Pog9Poo4uLiGB7uY2BggMhIM4sXz33pcc6fP5O7d6/T0PCYmJj5nDx5krq6OrKzs1m7di1msxlZlmlqauLOnTuMjtoYHh5+4Ri8PHpURmXlA7Kzs5k9ezYpKSlIkoTRqCMiYuy1NfKbv/lrHD58mEePnnc+u92jhISYGB4eYHTURmhoqP+xsrK75ORkUF5+n1mzZnHv3j1cLgfR0RF0dHQwMjKIWq1CkmS8Xhfx8TGo1RKZmWlMn+7rxj558iSdna1873tvERQUxN69n2C1WmlsbKCvr4/du3fxox/9KGCo3qu9vgZSUhLp7u6mu7uF4uLxt9RHR4fT3d3+wjWYnNcbzOzZ0/noo5+Snp7O6OgoZrOZxMREpk5dwcjICAkJMaxevZq/+Iu/oL6+hsLCwoD3QmJiHB0drYCvW9njcTE42M8Pf/ifiI2N9a+n0yn43//7MsuXLycxMZHoaHPAsQQH53PixIlXOu4viogoJiMjmb1793Lw4Kds2bKFvLy8lz7H7Xbj8TjR64PYunUjDx8+pKLiPt///juo1Qp+/vOf093dzaNHD5k+fTqnTx/hBz/4gT/fNiLCyNBQLw0Nj5kzZ86k+1m5cgl//Md/jFYb5O9yDQoKorOzmcTEODZsWIVSqaSkpAS1WmbVqtWMRax0dnZy/vwZli1bSlJS0oTbV6k86PVBqNXSl167b+tnXmRkMXl5mfzDP/wDpaWlFBYWsmPHDvr7+6moKGH16uV0dHRw7949AIKDtZSW3qWjo4Xf+Z3f4e23X2Pv3r2Ak3v3bjJz5nTy87OIiDAyZUo2Nls/KSmxE+77xImraLUqtm3b9K2e03fJv8RzEgRBEIR/bURxWBAEQRB+Bfr6hniV2FFft5rxldf/5+CL55ScnEVERIx/gNyYvr5+VKogtFotjY0tgERqagZ2+yj9/f2UlJSSn19AaGgYtbWN2GyjSFIQd+6UYLONAuD1yjQ0PCU3Nw+bbZSkpGTWr9/GT37yY2Jj49m6dTu9vUNfeszp6bns3buPy5evYzaHsHr1RjIzs3C7obd3CEmClJQUjMZwCgqm89Of/iNerwKHIzAyobT0IaWlD4mIiKS4eDpW6/C4/S9evAqFIiggY9fp9GA0hlBa+oCCgkIMBl/Rz2YbxeFwUVX1mMzMfCyWAYaHR1CrtYyOuhgc7MRud6BWa1CpNAwN2Wlqesxf/dX/Q2/vELdv3+Lq1eusWbOepqZ2zp8/i9Vqpba2GoVCyZ/92Z8xZUoxAwMO4KvFIAAkJqbT2NjCzZt3SUrKHPe40ynT09M/4WvgcDhob2+jra2V7u4uJEkiMjKK0NAoTKZwfyYzgNstc+zYKdat28i1a3e4ffsuvi5Zlf+9MCYpKYlHj3xRF5KkICUlnc5OC2q1LyKgra2Va9eusGDBUmJikigpeUBaWu644+vp6aenZ5CJBvJ9OQ1btuzm1KkTvP/+h8yePZeFCxdPGjvQ19fHyIjvdbTbvWRnT+XmzRscP36GN998k74+K0eOHKGzs52bN29js43yD//wM/bsed1f1E9NzeHw4YMYjRFER0dPuB+v18vAwDA2WzcxMTEAqFRBPH3azBtvvE1/v42qqsc0NTWyevVa+vqGkWWZ8vIHPHnSwKpVa9Hrgyf9TNlso89ej1G6uwcmPN9v+2dee3sbhw8fRJIk/v2//78xGo2UlpbQ2dlBTk4eHR29NDa2MnVqMY8ePWJ4eIigID3NzW385m/+Nr/zO/8X+flF/Pmf/wmLFi1m587XOHbsMGZzNMHBYTx4UEpUVOK4/XZ2dnL16g2WLFnG6KiMwfDqP/f/OfhF/bdpbLuCIAiCIPzyiOKwIAiCIPwKyDJf6X+ov+r6/xw8PyeJ1avX8bOf/SQgnzciIor6+jry8qYgSRI22wh6vZ6cnDzu3buDy+WmsrKSwsJCenp6kWUYHBzyZ6v6MopriI2NQ5ZBkiSWLVvF8PAwCoWSoCAtIH3pdW1ubqK8/CGNjU/Jycnl3Xd/gEajmfB5sgyRkdFkZGSyadNWqqsfU1paQnd3V8B6PT09nDlzmvr6OiIioigqKsZsHusIlli4cAkmUwjnzp3B4/EgSRAfn0hnZyfl5Q8pLi5+dvwwPDxCd3cPZQ/KsBOEMjKNflU4Vk0Eo6NW7J5hTJKCyMgonjxpYMmSZZhMZiorK7ly5RJz5syjo6OdsrJSOjraaWpqJDExiT/6oz9h6tQcenu/fvEnNzePq1cv09zczODgIEajKeDxoCAdTqcTl8vN8PAQra2ttLe3MjAwgFarJTY2joyMLObOXeDPSvZ6vRw6tJ+UlDTCwnw5zQ8fPiA9PROVSs1HH32A3W5/lnUb+PpKkm94WV1dPQ7HKJmZmWg0Qdy9e4f4+ETKykpobW1h8+btuN1uLl26QEiImZ6eXiIiIgKOPSwsgp6eXiIjI7/WtVGrNWzcuIXo6FiuXr1EZ2cnGzZsRq/Xj1u3v9+CLPPsPeI7p7lz53P9+hVu377N7t1vYLePcvHieZqbmygtvY/XK3NmEif1AAEAAElEQVTixDE2bdr6rIAtsXLlGo4dO8z27bsm7ARvaGjAYDDS1NREZGQULpeL0dFeZs+eQ1xcAg0NDdTW1rBhw2ZAYnTUyfnzZwkLC2Pz5u34sohffs5jj4+OOgOGLH7Rt/Ezr6LiIWfPniYmJpbNm7f5M4IXLlyCy+WisrKCJ0+eEB+fgNvtxmwORa8Ppqurk+BgA2q1hj/7s/9AaGgY06YVo1CoUCiUZGXlUFFRTkFBId19FnqGnbi9XrQqJSFa3/9e+a5LBEVFM/zn8S/757ggCIIgCP9cieKwIAiCIAi/cmZzKIsWLeHChXP+ZXq9HlmG7u4uoqNjGBwcQKPRoFKpiI2No6+vF7vdTnn5Q6ZNKyYkJITa2hr/81tbm3G5nP5Bc0VFxRgMBo4cOcgbb7zN3bu3aWx86h8y9kUjIyNcuXKJR4/KiY9PYPv23YyMDKFSffmvTyaTCbvdxtSp0ygoKKS1tYXS0vvU1dXi9T4fpudyubh37w73798lPT2D4uIZJCf7IicKC4swGk3s378Xtdo3SK6wsIhLl85TVlbK9OkzUavVjDjdDBviOdkiY4pNxpEaRq0UgiVUDaHgjByiX+VhMEiDZaCGHTt209TUyKlTx8nIyKS5uYmmpkbq62uxWCwsWbKM3/qt3yUo6OVD515FSIiZhIREWltbqK6uYubM2YBviGB3dxcNDXXU1FTz2WcfEx0dTVxcArNnz8VkCpm0I1ehULBy5WpOnz7J9u27cDqd1NRUs23bTg4d2k9DQz2Av3A80fPj4hLwer1ERkbhdrtpaWli375PSU5OY+PGLf59u90uMjOn8uhROUuWLAvYTnJyMs3NjV+7OAy+Lyxmz55DdHQ0x44d4cMPf8aWLTvGdfb29/cDYDabA5YvWLCIsrLbPHpUzmuvvYnTOcqdO2oaGuq4f983XM5kCmHp0uUABAcHM2vWHK5cuciKFavHHU95+QMkSSImJpb29naUSgWZmdksXLiEtrZWHjwoZdOmrSgUCnp6erhw4Szz5i0gKSn5lc5XqVSiUCjwer24XC8vDn8THo+Hy5cvUFJyn8LCIpYvXznuc6tWq5k2rZjCwiKePKnnwYMyTCYTsixjs41gtVpRKpU4HKOUlpYQGRnFmjXrOXnyGOvXb+LDfQfo0cRwY8jM48v1SAoFSoVEklmHydlLU1s7b+55zf+lhiAIgiAIwneVKA4LgiAIgvCdUFw8g5qaalpbW/zLYmNjqa+vw2wORafT0d3dRVxcPCqVioSERNra2rDZRjh58jizZs2hvr4W8BVdW1qayc+fCoBWq2POnPmcOnWcJUuWYTSaWLhwCQcP7iM2No6goOe5tLIsU1HxkMuXLwGwZs06CgoK6ezs4MMP3+fJkwYyMsZHJLwoLi6BtrY2QkLMSJJEYmISiYlJDA4O8OBBGQ8fPsBut/n3B1BfX0d9fR3h4REUF08nP7+AtLR0Vq5cQ19fH+DLf509ey4XL55HBjJnr6DWo2c0KZVBSw+m0RHMSicapxWvtR21JgjZ5UEOT6bM5iR/yVtUtfZy9cRBjEYj7e3tdHa2+4vqv/7r/4a1a9d/C6/mc7m5eTx9+oQrVy5jt9vp6elGkiSioqKJjY0jPT2DVavW+vOlX4XJFMK0acVcu3YFl8vJvHkLuHDhHA8elOJ2u1Cr1ZhMpkmfv3btempqarDbbdjtdiorH7FyZQSzZwfm8WZl5TA4OEBXVyderzcgBiE+PpHKykcB8RZfV0pKKm+//S6HDx/kk08+YNWqteTnT/E/PjBgBXihu9xHkiRWrlzJ3r0HaWioY9eu13G5fOdfXf2Yu3dvI8syISEhFBfPACAtLZ3GxifU19cFvI+Hhgb9hfWIiAju3LlFYmISK1asYnBwkBs3rrF58zZUKhUVFeXU1fk6iMe6cV+FJEloNBocDgdOp+vLn/A12Gw2jh49RGtrC6tWrWHatPFZ1188pvT0TNLTM+nq6qSk5D7h4eFoNEGcO3eakZERFi5cTGdnB//7f/8/bNiwhZ8ev8TToHRu3qpFrwlG4bITGmrG5fFS1TVIQ0MLiZHT0Jgnju8QBEEQBEH4Lpk42EwQBEEQBOGXTJIk1qxZF9DhFxYWjkKhpKGhnuBgA52dHciyjCRJOBx28vOnoNPp6O3t4ebNa4yMjADQ0FCPSqUhJCQEgAULFnLr1nXy8wuIifENj9JoNMydO5+rVy/599fd3c0nn3zI6dMnycjI5L33fsjUqdOQJInY2Dji4uIpKbn3pecSFxdHR0fbuOUmUwiLFi3hN37j37B27QZCQ8MCOokB+vp6OXfuDD/+8d9w8eI5RkaG2bPndSIjfcXT0NAwphYW0eIN4U5/EMMeJXrXANJIL6PDVrRBQYyMjODxePB63EguB0bseAe6CIpK4b8fv0vjiITFYqGmpopHjyowm0P5y7/8799KYViWZfr7LVRUlHPmzCkeP66ksfEpbW0tREZGs3XrDrZt28mCBYvIzMxCpVKNy2Z+FVlZ2XR1ddDW1kZzcxMPH5ZhsVj812iyzuP8/HxWrVrDzJmz6Ovr5elTX7G/t9fXif6izMws6uvrSE5OpbHxacBjWq2W0dFRf3H/mwoJMfP662+RlZXDiRNHuXjxHB6PB3jeOfziMMIxkiSxfPlKuro66ezsYOvWHeTk5FJYWMToqINbt26wd+8nNDTU+Z+zaNFSSkru+SNYAB49qvCfi9vtxuVyEx4eQWRkJBcvnmPDhs0oFApOnTrB4OAAW7Zs/0qF4TFqta8j3eVyfuXnfpmuri4+/PBn9Pb2snv3619aGP6i6OgY1q3bwNq1GxgaGkSpVD57b3QTHh6OwWDgH46e50LjCEPDNgzuIRJCg3E5htGplZi0aqShbgyyHSkkls/K2ugeGv3yHQuCIAiCIPwKic5hQRAEQRC+M8LCwpk/fxFXrlwEeHaLu29YXX+/BUlSYLVaUSgUDA0NkZSkIScnj0ePyunt7WV4eITUVF8hb86cuQBERkbh8XgwGIxkZ+cE7C85OYW6uhrq6+toaWmmpOQeoaGh7NnzxoS3yhcVTefEiaP09o7PoH1RaGiYv6A3EZVKRUHBVJYvX0F2di5VVZXU1FQHFIodDgf379+jqamRGTNmMW/eAh48KKWpqZHgzFkEhysYtnSj9o4iGY2o1Rp/ru/wsG9InsvlQqlU0tvbS3pqCvbOp1gHhxlRRdPaeAtnZzNFRdP5vd/7g5d22r6Mx+Ohq6uT1tZWOjvbcTqdmM1m4uMTmTt3HiZTCFqtloaGevr6elAong930+l8+bpfLMq+ClmWkWXfALm2tlZUKhUWi6/DerJIiYSEJLZu3YrFMsLg4CA2m42cnDwUCt/wwLKyUubNm+9fX6PREBSkJSkpkdLSUtLS0gO2FxUV7Y89+Tao1WrWrdtAbGwsFy+ep6uri40bt2C1+t5LYxEpX+TrIF7D6dMnSUlJZc2a9Zw6dRyNRkNJyT1u3LgOSPze7/1/iImJRaVSsWzZSs6dO82WLdsBX6TEmKamRhISEoiLi+Po0cNs27YDm83GhQtnmT177qRRLK9Co/FlHTud325xuKrqMadPnyAsLJzXXtuOyRTytbdVXV2F0+nk937vD1AqlVy/fo3S0nvIOjPuhLkM9/XgsrSRkpyKxdLH6LNzGRkZoaOjneTkFOKiTDyx2Dj5uIt3Zo8fWCcIgiAIgvBdIYrDgiAIgiB8p8ycOYva2mo6OtoBXzdfa2sLT548ISQkhM7OdsLCwhkeHkaWZbxeL2lp6dTUVGOzjXD9+jX0er3/FvzMzCy6u7tZt27DhPuLi0vgv//3/0JGRiYLFy5m5szZk+aE5uTkcvnyRcrK7rNy5ZpJz0GSJFQqlf8W/8moVGpiYmLIyMhkyZJBf+SEzTbiX8dut9PV1cmRIwcJDQ3FrQul1R5GuNmLs68Fm82Gy+X0F8O6u7uw2UZQKJS4XE70egOy7MXr9dLS2oQmSIvFpkBlSOH17bN59/Wvlotqs9no6GijtbWV3t4eJEkiOjqG+PgECgunBUR0jMnNzaehoZ7Hjx8xf/5Cf1evVqv1d4F/VY8elaPX63C5XDQ3N5GYmIjD4UCpVI7L5gWIiIhk69btOBwODh3aT05OPjt37uH27ZsAKBRK7t69xezZcwKuR15ePs3NLbhcThwOR0BObmJiEs3NTd9acRh8753i4hlERUVz5Mgh3n//p/T2dqPXB0/YOfzi81avXsvJk8fJyspm/vyF3LhxDY1Gw+3bt7h27TIKhcS///d/QkiImcjISBISk7l48y4mcyjdAyNogKHBATo7O/i1X/t1WlpaCA+PoLm5merqx6xfvxGDwfiNzu/b7hz2er1cv36V27dvkpubz5o16176mfsyNTXVXL58kdmz5zJjxiwApk0rpr6+jr/67DS9gzZM2HB6vVQ+riQsLIyI8Eg8Xi9Pnj5Bp9MRFxePQpKINQXxxGKjpd9OVOTX+/JFEARBEAThF03ESgiCIAiC8J2iUChYs2a9v0Cn0WgID4/A7XYxMGDFYrHgdLpwu93Y7XZsNhtDQ0MUFBTidDrp7e1BpVLh8XiIjY2jo6Od1avXjosZGBiwcvDgPo4fP0JRUTGZmVnMmTPvpYVSpVLJtGlFVFY+wuFwvPQ8YmJi6ezseOk6arWvgAw8y0FezK//+m+xbt1Gf/yFLD/PurX091Pn0DPi9OAa7EGn06FSqxh1jGK329BqtYyMjPg7cT0eDw6HHZVKTXt7G7IsM2DtR++1kzJlFrHTV770fGVZxmLpo6LiIadPn2Tfvs+4cOEcAwMD5OTk+SMi5s9fSEpK6oSFYYCMjEzUajVWq9Vf9AdfQVOr1X3lzmG73c7Nm9epr69Hr9djMpmoq/PlTZvN5nHnZDSa2LlzN319vRw4cIBFi5aSl5fvH+o3Znh4iKqqxwHPTU5Oobm5kczMbGprqwMe8+Vet36lY39VCQmJvPPO99Bqg3j48AE9Pd0YjS8vMCoUCtauXU919WOio6PJzy8gIiKShQsXo9EEcenSBf76r/8rfYMj3Gnq5649nI8rB/hfl+qoUKRQRzSPOwaIjolleHiYTZu2UFFRTktLE1u37vjGhWHwfZ6BbyVz2OFwcPDgPu7cucWSJcvZsGHTNyoMt7W1cuLEUXJyclm0aIl/uSRJJKSkk71gHbOLClGrVAwPD+N2O2lvb6O2rpramhoGBwdITU1D8exnjV6txOHyUNEx9E1PVRAEQRAE4RdGFIcFQRAEQfjOiYyMZN68Bf6/x8b6CqVjxeD+fl98wPDwEHa7rzgcHByMUqlEoZBQKpVUVT3G4bCzdu2GgBxjj8fDnTu3+ad/+kc6OzvZvHkbP/rRb6HX62lubvrSYyssnIbH46Gi4uFL14uLi6etbXzu8IuUShVutydgmUqlYsqUAt56611ee+1N4uMT/cXhYXQMSsGEaiWCNBpGRmzIXhlJIeFwOBgaGsI5Oorb5cLtciF7ZbxeD4ODg3i9XhwOB+HhESxftoz0+Ggetg8y6HhepHO73bS1tXLnzu1nw9E+obS0BLVaw/z5C9i5cw8bN26muHgG0dHRAQPaXkaj0ZCRkQVAVVVlwGM6nfYrF4fPnDlJd3cPbrcb8F3rrq5OXC7XuEgJrVbL9u27qKmpprS0hD179hAZGQlAcHAwhYXTXrj2ai5fvhCQI6xQKIiIiCQ0NNQ/uO/F83K73eNyo78tBoORZctWEhUVTUtLM2fPnvaf82SUSiXr1m2ksvIR2dk5JCUlExISwuLFSwkONnD68jX+zd/sZf+DNjqHRklPiKW3tQFJ9tDi0NAbMRWSZ5CTm8/161dZu3YDsswrv9ZfZqw4/E07h/v6+vjoo/dpb29j+/ZdzJo1e9Kc6VdhsfRx8OB+YmPjWLt2w7ht9Y04GbC7SI6NYN3aDSyYvxCdLhiHw+77zNy9SVhYOKEvDA2UJAm9WkmL9at3xguCIAiCIPyyiFgJQRAEQRC+k2bNmkNNTTXd3V0YjSaCgw2MjAzT29sDqiBUpgi6nCpsdlBIatraWhkaGqSgYCqjo076+/tQqdTodDr/NltbWzh79jR9fb1Mnz6D+fMX+btdFy9exqFD+4mJifUXsCZiMBjJysqhrKyE6dNnTlo0i4mJpays5KXnqFarcbsn7qCUJAmDwcDSpcuYPXsuDx6Ucbj0KR6nAjUePEoVISEh9PX1giwjyzLDw77isNfrxW634/V68MpedDo9SqWS5OQUphUWodFo8Hpl6nqGuPygBpOjm76+XhQKhT8iori4mLi4cHp7h/g2Zq7l5+dTVVVJVVUVS5eu8F83nU7/lYrDT58+4fLli8TFxfuXORwO9Ppg+vp6A3J5lUol69dv4u7d20RFRbNx42aCgoIYGnpemJwxYxZlZaV4PB4UCgU9PT00NzeRnJzywrFP4fHjSgwGI/39FkJDw/yPRUfH0NXVSWxs3Ne4Kl9ucHCA9PQM1Go1jx8/oqenmy1btr20i1ilUrF+/SaOHTvM9Okz/YMaFyxZycV2L3XdQ6AoYcmixbS3tWEK1jHU24HL4UCh0uKImMrJB4389rYNGI0mTp48/qU5269qLFbim2QONzTUcfz4UQwGI2+99W7A6/F1jIyMcODA5+j1OrZs2R7wZdIYt1fGK4NSkpAkibj4eCwWCxZLHwpJAUikpaaNe55SITHq/sV8eSAIgiAIgvBtEJ3DgiAIgiB8JymVStau3eAvIsbExuLWhkDyDKwpC7EmzqU1JI/28EL6ExdQ5Q7DqY8kKzuP0NBwpkyZSk9PNydOHGV4eJjTp0/yyScfolarefvt77Fs2cqAGISgoCBmz57LtWuXv/TYpk+fgdVq5enThknX0Wg0uFyugC7U8eeoemknaH+/hbCwcAwGIwsWLCJ7xiKS4mMxGIw4HHaUShUGgxGdPhiV0hel4fZ48Hi9jDpH8Xi9IENoaChTCwrJz5tCf7+Fuvo6qqsf09PTTbt1hLy8KWzduoOtW3cwb94CkpNTXlog/zqSk1PR6fTYbCM0Nj71L9fpdNjttlfahsPh4H/+z78eV6Ts77egUCiIi4ujra0F8BXX589fxL17d5g6tXDSzlKTKYT8/AL/39VqNRcunA1YJyoqmp6ebnJz86isfBTwWFJSMk1NX95x/nVZrVYApk4t5LXX3mRkZJif//xnX9rlrlKp2LBhM+XlD5g/fwHBwQaGNKGYknJRO/qpqiznyJFDPCx/gE6nY3h4GJtthNBgLcYgFXJsLl6V74uVefPmc+vW9W/lfJ7HSnz14rAsy9y6dYODB/eTlJTMm2++840Lwy6Xi0OH9jM66mT79l0BXya9KEil8BV6XW6am5u5fv0a9Q116PV6wsLDCQsLQzVBpIXbK6NTv3qmtyAIgiAIwi+bKA4LgiAIgvCdFR0dzezZc5EBV1QOwykLkZKLccsSTks78kAnrr5WnI4RRoLjUBeup8oVxtKV6/i1X/sNlEolV69e5g//8Pepqali1ao1vPHG25MOEEtNTcPt9tDS0vzS44qLiyc2No6SkvsvXc9sNjMwYJ308RczhyfS19fnL365PF76bG5iI8IpnFpIdFQMKpUKSZKIiYlFpVYjIfHFNl99cDBxsfF4PB66u7tQqlQkJyWTl5dPSkI8QaGxREVFfWuxAZNRKpXk5OQABOT6arW6L81vBl8cyN/93f9BkiQ0msBs474+X8xIQkISCoWSvr4+0tMzaW1tZsOGTSQlJb902y8WjjUaDU+ePMFi6fM/LkkSSUkpeL0e2tpaAwr+8fEJtLf/YnKHAazWfgDM5lBiY+N4663vERERweeff8r9+3fHffkw1kHe3NxEZWUFwcEGfvrTf6Sru4uH7cMMWvvQatQolUqaGp/S0tzE0NAgTucoHreHrMxsCtKTsTrcVHUN+fet0+kC8qK/rrFM4K9aHHY6nRw9eohr164wb94CtmzZPmnG9auSZZmTJ4/R09PN9u07/UMsJxKmUyHbrNx5WMmjynK6u7vwen154ImJSaxYsRrlFz5Dsixjc3nIjNB/o+MUBEEQBEH4RRKxEoIgCIIgfKfNmTOP05XttA5rCNb24+lpxWkbxulyYVcocDuduIatyF4v+qg4hoPjIGMeQXoNSqWS+vo6IiIiSU1Np7Cw6EtzSRcvXsrhwwfYvn3XS4dbFRVN5+TJY/T19RERET7hOrGxvtzhyYpOY4PzZFnG6XRit9uw2+3Y7TZsNjt3794mLS2DmppqBkds1Hbr8LpcyKNDdHV1MTrqQKFQIEkSwcHBOOw2VCo1rmdRFdogLdnZORQVFU9YSFNIEk7PL++W97y8KZSVlVJXV4PLtQa12hf70d7+8s5hWZY5duwwDx6UkpubH/CYy+VicHAAgLCwcDQaDfX1tWg0atau3frSgXtjwsLCycnJ9RetlUol58+fYdeu11849jyuX79GQkIiLS3N/oKzSqVClmU8Hs8r7eur6u8fKw6bAV9O8q5dr3H+/FmOHTtCdXUFyckZWK0DWCx99PdbGB0dDdhGaGgolfVPCUpehGfQAvg6pr1emRHbCPV1deiD9eTm5eN0jiIpJFQKiVbr86L9nDnzOXv2FNu27fxG5/N1Moet1n4OHTrAwICVrVt3kJmZ9Y2OYcylSxeora1h69YdL40FefKkgcuXLzLQPUqv3YBnYACFJGEwGElLSyc7O2dcYRhgwOHGGKRiSuzLBwkKgiAIgiD8KonisCAIgiAI32l1fQ5GI7PRDNeh1ymxKVVI+BpkR0aGkWUZjcft6yZ12Zk7JYsL5Q3cu1xLgdnAv/k3/5ayshKqqx9jNBpZsmTZSwvEWq2WWbPmcO3aFZYtWzHpejk5uVy+fJGysvusXLnav/zFQq9KpeTu3dsAAYVf3z/tNDTU43Q6MZlMeDyecfuoqqpkeHgYSZLwIjGi8GWaOgcHkWVfUddoNBEdHU1cXDyWyEg6OzsJDg5mevFM2trbCNJoeNr4FI/Hg0ajwWg0YjSa0Ov1eGUZjfKXdyNZXFw8ISEhDAwMUF9fR25u3rNYiZd3Dl+7doUzZ06RkJA4rsO5v9+CLMsEBwejUCgYHh7ivfd+RHt721caUDZ79jx/cTg4OJgHD8rYuHGrP2bAZArBbrcxY8ZMSkruB3Qjx8bG0dHRTkJC4ivv71V4vV66u7sYHBygpaWFxsan/pzbwcFBbDYbR48eRaXSkJ2di1arnXA7KpWKjIwsbthcBOuDsQ34rrfZbEalUqFWq8nLm0J8XDwKhURHexsKXRiuFwbtGQwGIiIiaWx8SkpK6tc+p+eZw5N3zL+osfEpR48eRqfT8sYb7/iHCX5TJSX3uH//LitWrCIjI3PCdbq7u7l8+QKNjU+x2Wx01D/FE1WEyhxLlF5BZnomcfHxTPQuc7q99Aw7mZMSSqTh241oEQRBEARB+DaJ4rAgCIIgCN9ZsixT0mJFHaQlPS6atvZW9Ho9Q0ODgIzL6UJSKPA+K2IlJSXT0tSAzQXm2Bx2bp1NiD6IqKgoTp8+yb17d9BoNMyfv/Cl+01LS6e2toaWlmaio2P8BV2bLbDA63Y72bdvL52dHWi1Knp6+rHZbP5CryzLVFU9pqOjY8L9DA4O4Ha7CQ4OBvB30up0enQ6HQMDA8yYMROdTu8r/LVBtx1s3Spsz3J6C6ZMJSQkxL/N1rZWtEFaIiIiSEhMpLe3h67OTmJiYjGajAwPDdPd3YXdZqPXrSbCpeXJExdxcfGTFhe/LZIkkZubz+3bN6mqqvQXhx0OO7IsT1jMLSsr4cKFc7hcroBhc2MsFl8nrFarw2Lp4w//8E+Ijo6mouIhd+/eZs6cea90bFFRUaSnZ9DQUA/4XrurVy+xevU6/zqZmVn09vZis43gdDr9XbBJSck0Nzd97eKwy+XyF337+y309fVhsfTR1dXJzZvXkSQJo9E0rjAeGRlJeLiZ0tIHPHz4gKysbEJDJ+5SD1JJhJqMWK1W9Ho9Npvv/WMwGAgJCUGhkIiIjESj0VBTXYVH1hGiDczznTlzNseOHSY5OeUrFd5fpNGon53zyzuHZVnm/v17XL58kaSkZDZu3DJpHvBXVVdXy8WL55k5czbFxTPGPT48PMT169eoqHiILMtYLH3U1dWi0+koNI7SYzYREZdMZHT4uMKwLMsMjXroGholJ9rA6pyor32tBEEQBEEQfhlEcVgQBEEQhO+s9kEHDb0jRARr0JuTsFj6MBiM9Pb24JVlZFlG9nrxuD0EBQVhs9kIDwsnJzeNTrtMfZ+d6fogpk6dhtPp4ty501y8eI6hoUGysnJwOBzjOnrHCsCDg4N89tnHvlvGJ4kLcDpH6erqpKTkHhkZadhso/7IX5VK5RtWFRZGfHwCJpMpoPCr0+np6enG5XIxa9ZstFpdQIyF0+lEq9WyfPkq/7K+4G5OVXYi4yukqtUaTKbnt6x7vF6sViv5+VMAkIDIiEjCw8Jpb2+nq7uLpMQkUlNS8XhlNH0j5CZrsVj6qKyswOFwYDSaiI+PJy4unvBww7f+mo4Vh58+fYLdbker1SHLMg6HY1zxr7a2hnPnztDc3EhaWsa4bXk8HqzWfoaGhoiLi+fP//w/+6/HlClTOXHiGO3tbcTFxb/Ssc2ZM89fHA4NDePy5Uu+LNlnr39WVg6nT58gMzOLurpa/3WOjY3jzp1bL922LMsMDQ36i8C+P8+7gCcyFpeh0WgmzYQ2GAwUFhZRW1tNVVUlSUnJExapVXiJkEYYNUfi6m0iKCjIHz/hcrkZHR2luuoxU6YUEJeUyoPap6SFpQdsQ6fTkZSUQl1dLVlZ2S8938k87xyevDjsdrs5deoEFRXlzJw5m8WLl35rmdgdHe0cP36ErKxslixZFvCY0+nk3r073Lt3B6fTiSzLtLa20N3dRXp6BhERkURGRlG8dD7XWuy0DTiQAaNGiUKScHm8DDk9BKuVzEwysy4vGkOQ+N8tQRAEQRC+28RvK4IgCIIgfGc19tkZcXmINQUhSRIZGZlUPCpHo9Hg9XiQAWQZl8uJTqcjIiKS4OBgujo76LJ5+ayrgQpVj7/429HRTlNTI/fv3yMtLYPY2NiX7j8mJpaWlmYyMjJfKOrq0OufF3iNRhODg4O8+eabOByyf/lYoffOndvExsZOOBQtODiYzs5OjMbxmaT9/Rb/MLoxWVEGjpWM4HD7/h4RERHQldjV1Ul0VPS4bkaFQkFCQgJRrmhaWprp6OggODKWsGAtc3JSMGqfF16HhgZpa2ujvPwBJSU3sdmcREXF+IfwfdMhYJGRkURFRdPd3UVtbbX/HO12W0BxuLW1hePHj9DT043JFDLhfvv7LXR3dxMWFsZ/+2//I6BQLkkSK1as4vDhA2zZsv2VuqLj4xP8XcDg6269d++Ov/tYq9WiVCqJj0/g6tXL/uKwUqlEkiTcbjder9ff/dvf7yv+jv37y4YPTmRsUJ9W+/KOWbVaRW5uPi0tzTQ1NTI8PExmZta4LzUi5CF6FCEERcThsPag1Wp9sSzPBvwNjwxTU1ODJiqZguQYmitukxOzOmAb06fP4MCBz8nIyPxaBdvnmcMTX4uhoUEOHfqMJ0+aWb9+k/8afxus1n4OHNhHVFQ069Zt9H92vF4vlZUVXLt2leFh3xA+t9tNY+NTdDodRUXTUSgU5OTksmbNejQaDXmJXup6RnjYPkDbgAOPV8ak0TAnxUB+rJE4k1Z0DAuCIAiC8M+CKA4LgiAIgvCd5XB7kCTJX2QxmUzExsbR3d1FX18fPIuTUKnVmM2h9Pdb6O/3xQyMEESX7CBS7vJvb6yjsrOzg66uThISEsjMzBrX0ftiAfjKlUsUFU2fNDIgJSWVTz75AFmWiYmJ8XcOj4mLi6OtrXXC4rBvIJ17wu1aLBbCwgIH3SWadQSN9jPgVmDCVxwe4/V6sfT1vbSYplGrSU9LZ2h4hNIn7UyPUqORknjxV0Kj0UROjonc3FwiIox0dvbT2dnpLxiPjo4SEhJCbGw88fHxhIaGfeUiWG5uPt3dXTx+XMmKFb7io91u9z/e29vLwYP7cTgcdHd3jRtCB2Cz2Sgvf4jZbObdd3+AyRQybh2tVsuCBYu4cOEc69ZteKXjnDNnnr84HBERycmTx5k9e67/ubm5+Tx50oDL5aKi4iFOpxOLpY/q6iqqq6tQqb69X6/HisM63ZcXtiVJIikpGYPBQF1dLeXlD5g2rZiEhETCwsIJCwsnNDSU2hENN9vs4HXT1/oE96gD97P3oAsFjVY7KZou3tw8l5qSXurr6wIyedVqNdnZOVRWVlBQUPiVz2nsS5OJOofb2lo5cuQgRqOON954i+jol39581XY7XYOHPicoCANW7fu8B9HY+NTLl26QE9Pt3/d0VEHQ0NDJCenoFarkSSJhQuXMHv2HP/7QK1UkBdjJC/GiCzLeGVQKkQxWBAEQRCEf35EcVgQBEEQhO8sCZC+UG1NTkqmp7ubyMgolEoljx9XEhERgdkcSpBGg0qtRq1SY3UriDUGsaNgXkCnr0ql4vLlC9y/fw+v10tWVg45ObmTHsOKFas5cuQg27fvCoh9GBMXF09MTCx37txhzZrN4x6PiYmlpOTehNtWqdSTdlBaLH2kpQXe1u/1eAgbbkJDOB61IaDjuLunm8ioL883lWUZi0vBrNx0lsV4OXz4ANnZOUydOm3CTlCVSkV8fALx8Qn+5w8ODtDe3k5ZWQn9/f2oVCpiYmKJjY0jNjbO3x06mdzcXK5evURLS7M/e9bh8BWHh4YG2b//MxwOO62tLcTHjx9C19vbS1eXb/BeXl4+xcXTJ91XQkIizc1NVFY+oqCg4KXHBZCcnOIfMOf1ep/FEBwlNDQUi6WP3t4ebty4RlRUDNevXyMhwXdd7HY7/f2WCb8E+LrGrklQ0OTFYYVC8ULxN4zw8HBA4vr1KzidTmbNmkNmZpZ//UxZJircytWGPuzRKbS2teL2OpFlUOIlVB4hpLORjjoDixYt5cCBz4mJicVgeB4xMnXqNPbt+4zc3PyvXAwf6wD/YuZwefkDzp07Q2xsHO+99zYOhzzui5avy+12c+jQfmw2O2+++TZ6vZ6enh6uXLnIkycNAeuaTCFYrV4iInyD77RaLRs2bJow1mSMJEkoRV1YEARBEIR/pkRxWBAEQRCE7yy9RokXAoaVKZVKiqfPQK1SIeMrFjc2NSJ7vSQlJ6N7dgu+u89GZkIIaWnj82aXLl2B0+mivPwBx48fQaVSBXRHvkin0zFjxixu3Lg2LqMUfIWh4uIZXL58lr6+vnHdvmq1GrfbPeHANZVKids9eefw9OkzA5Y1NzcR5BoiXpYZMuVhGXESHqzBK8v09vSQ9yW34MuyTNuAA61KwZrcKLKjDORnpvHoUTn79n3GzJmzSE1Nf2mBWZIkQkLMhISYyc3NA3wRAZ2dHbS3t/PgQSlOpxOz2UxcXAJxcXGYzaEB2zSZQkhMTKK5uYmmpkYAbDY7DoeD/fs/Z3BwEJvNhtM5itlsDjj+xsanSJJEYmIibrebyMgoEhOTXnrec+bM4+DBfSQkxBMRYQx4zOv1Mjg4EJABbLFY/LmzHo+Hf/zH/5cFCxb7n6NWq9FoNLS3t/qLwwaDgZaW5pcex1flcPgygbVaHXp9MGFhYf5CcFhYGOHhYaSnJ9LfbxtXSM3KyubUqeMcOrSfuXPnM3/+QhQKBZIkMSsplIJYEzXdw9S2Gbl5+zZu+xBmyY4ROxJw6dIFTKYQli1byblzp9myZXvAZ7CgoJAHD0qZMWPWVzqn55nDvi9FPB4PFy+eo6yslKKiYpYvX4nBYMDhGPpmF+8ZWZY5deo4nZ0d7N79Omq1hjNnTlFe/gD5hYsWHR2D2WymtrbG/2VEREQkW7duHxfvIgiCIAiC8C+JKA4LgiAIgvCdlRERjClIxYDDjVn3vGtX/axbUcLXuWsyhVBTW83Dhw9IT8sgJCwcJMiLMU64XUmSWLVqDS6Xi6qqSo4ePcS2bTtJSUmd+DgyMqmtraGjo53Y2Lhxj+fk5HLv3g1KS+/7YxJeFBrqi7z4YuH4ZbESTufouJzcmppq7HY7MWo3i6fEU9rroanfjnp0gIiICBQvKeqOur20DjgwaVVsyo8hO8rXCapQKJg6dRrZ2bncvXubhw8fMH/+IqKjoybd1hep1WoSE5P8RVpZlhkYsNLW1kZJyT36+/vRaDRER8cSH+/rtM7NzaO5uYnq6io0Gg0jI8McPnyAnp5uZFmmqamRtLS0F66Hk/r6OqKioomIiCAsLPxZd3XGpAMDxygUChYvXsK+fZ+xZs1KGhvbsFh8ucBWa/+EBXqVSo3T6USpVGK1WhkaGsJo9L2fIiOj6e3tITjYwPDwEAaDEUmSUCgUeDyeLz2eySiVSszmUMLDfV3AAwMDKBQKfvCDXyc5eXxHsiQx6b6CgoLYvHkbd+7c4tq1K3R1dbJ+/SZ/rrNOrWRafAjT4kNYmmrio4/ex263Iz37bMmyzIkTR9m9+3WSk1MoKbkXUAjOy8vn888/paCg8CvlUGs0vs+xy+VkZGSEo0cP0d7exurVayksLOLbjum9evUy1dVVrFu3gebmJu7c+Swg0sJkMjFnznwaG59QU1PtX56Vlc3atRu+cca2IAiCIAjCd50oDguCIAiC8J0VYQgiN9rI3RYrIVrVpB2tBoOBwsIiGhrqqa2rQWOOJSctkcxIw4Trg69guH79RjweN7W1NRw6tJ+dO/dMmi28dOlyjhw5yI4du8fdSq9SqZg+fToXLlxh4cIl4wpKcXEJtLe3T1AcVuNyjS9MyhPcTy/LMjU1VajVakJDQ9k0PZ2cnhHOVndzq9FKenISw6NudGqlP/vU7fVic3qw2Nx4ZZmsyGBW50SRYB4/4CwoKIiFCxczODjA9evXUKmUbN68btLr9zKSJGE2h2I2h/ozkJ1OJ52dHbS1tVJSco+RERtPGptosDpRGiOpu1qBRvISQhDDva0YjUZ/nMLg4ADNzc2kpaWj1+uZM2ceNTVVAAGRCV6vl4EB6wtdwBb/cLiRkWH6+nr5n/+zkpiY+C+NLEhISKC2tgbwDQ58/PgRs2fPBcBoNNLc3Ehqajqdne0YDMZny00MDQ1iNoe+dNvBwQZ/AdjXDezrCA4JMfu7Vh0OB3fu3AIgJibmq1x+P0mSmDNnHlFR0Rw/fpSPPnqfzZu3ExUVWPiPjIzk9dff4qc//YeA4rbL5eLgwf288cZbXL16mcTEZKKjo/3bnjFjJiUl95g3b8ErH9NY57DV2s/Pf/5TZBl273590s/dN/HgQSl37twiOTmVq1evMDQ06H8sKCiI2bPnkpaWwfHjR+jt7QF857VgwSLmzJknBsoJgiAIgvCvgigOC4IgCILwnTY90czjriE6h0aJNU2evapSKsnKykYdHEJtSweDtfcYLAglMjJy0ucoFAo2bNjMoUP7efr0CQcOfM7u3a8TEzN+EJZOp2P69JncvHmdRYuWjHt8xowZnD17gUePysfFQcTFxXHnzi2mTAnMvJ2sc3hkZJjg4MDCdnd3N8PDw2g0GnJy8lAoFOREG7F1NRGWbWZIq6N72EnXsBOQQQaFQkKvVpIVGUxRYgi5UUY0qvG5wi8ymUJYt24DXV0dHDlyBKMxnBkzZk2Yt/xVaDQakpKSSUpKRpZlHrQNcHXARItlmAHrEMgyWp0ejUKLd3SY2TFBgJe2tjZGRobJzc3zxxmkpqZx7twZnM5RWlqaqaqq9HcBezyeSY8hIiKClpZGrFYrISHmlx5vREQkzc1NOBwO1Go1PT3dOBwOfze3yRSC2+3C4XDg9XpRKBSYzSH09vZiNoeiUqkCuoDDwsL9//7FjvCJWK39AOj1wd+4ezUtLZ23336Xw4cP8vHHP2fNmvX+SJAx0dExvPvue/z4x3+DTqf3F4htthEOHtzHli3bOXfuTED2dlpaBmVlpdhsNvR6/Ssdi0ajoaenh4aGOpKSUti1a09Adva35cmTevbv34vH4wmIdFEoFBQWTmPevIV0d3fx2Wcfv5DtHMSGDZtIT584YkYQBEEQBOFfIlEcFgRBEAThOy01XM+63GiOVXbSarUTa9L6O2NfJMsyFpsLWWtix7wIbJWX+PDDn7F8+UqmTp02aRegSqViy5btHDjwOc3NTXz++Wfs2fPGuO5K8HWp1tbW0NnZMa6AbDKZyMrKoayshOLiGeMydgcHB7+4OX8e8RdZLJZxOadVVZU4nU5/cXjsnOuqytm9bScKpYp+u4ve4VHsLi+SBAaNigiD5qVd15OJiYklP/91bt0q4cCBzykoKCQvL/9b6aa83dTPycddaENj0HSV4e1vIywsjNBgPd39NtyhKdwd7MdZcRa95CY8PILa2hpCQ0PRanWcOnWcpqZGQkPDKC29/5X2nZGRQUlJGXp98EsL3pIkER+fQENDPQA6nZ6qqscUFRUDvm7btrY24uMT0Gq15OXlExoaxr17d3j99bcwmUImHPD3qqxWK+CLJPk2mM2hvPHG25w+fZJjxw7T2dnB4sVLA44xLi6e9977EX/7t/+LsLBw/2N9fX2cPXua6dNncuXKRX90iiRJzJ49lzt3brF06fIvPQav18u1a1eoq6shMjKKrVu3/0IKw1VVj/kf/+O/4fV6yM7O9b9n09MzWLx4GeHh4dy9e4erVy/5u/TDw8PZsmXHs4F+giAIgiAI/3p8/d9YBUEQBEEQfkmmJ4awvTAOo1bNU4uN5n47gw43NqeH4VE3HYMO6nttuL0yK7Mj2TUrnXfefpf8/ALOnDnFsWOHcTgck25frVazdesO4uLicTjs7Nv3GRZL34TrLl26nCtXLk1Y1C0uno7FYuHp04aA5ZIkodFoGB0dHbd8oggJXz5xYHG4tLSE4OBgIiIi/d3QdXW1pKSkoVarUSokIoI15EQbKUrwZclmRAZj1qm/dkFXkiSysrLZuXMPdruNffs++8ZD11r67Zyr6SFIqSBCB0MD/Xi9XoaGhui3WHAM9sFABxanCnfiDLyyTFtbK21trfT29lBeXsaTJw04nc6vVThVKpWkpKTy5En9l64bFRWNRhOEQqEgPDycwcEBZsyYxfr1m/jhD3+TJUuW8e/+3R8TkpBBeO5c9Am5RMUmoNPpv1FhGJ53Dn9ZRMVXoVar2bBhE8uWraCk5B6ff/4pIyMjAeskJ6fwa7/2G3R2duD1ev3LW1qaqampRpIk6uvr/MsTE5MYGLAGRDZMxG63c+DA59y/f5fMzGwyM7O+NNrjqxoZGeHw4QP82Z/9BxwOO5mZ2UiSRHR0DLt3v8727bsICQnh+PEjXLly0f/Zy8jI5I033hGFYUEQBEEQ/lUSxWFBEARBEL7zJEliapyJ35ifwq5p8SSG6rC7PFjtLoadHkxaNRvyo/mN+SmsyIpEpZBQq9WsXr2WTZu28vTpEz744J/o6GifdB9BQUFs376LqKhoRkaG2bv3UwYGrOPW0+v1FBVN59atG+Mei49PIDo6htLSknGPxcTEvXT/L7JYAofXDQ0NYrH0IkkSOTm5gK9r+MGDUqZNK3qlbX4TSqWSGTNmsWHDZurqajh27DD9/Zavta3yjkGGR91EGjQolUr0+mAkSWJwcIDe3h48Hjcjw0NovTbkkBgkYxQREREsWrSEKVOmEh+fiMvli3Po6+vl8eNKGhuf0tfXGzBo7GUMBgNGo2nc62E0mkhOTqGoqJjly1eye/fr/OZv/jZz5sxj2rRicnJysVgs5OdPISYmlvSsHD6584RrFj2f3G/mw/utlLiiuVPVMMmeX11//1hx2PyNt/UiX1bwLHbteo3e3l4+/PBndHZ2BKyTmZnFe+/9kJaWpoAvL6qqKlEqVZSU3GN4eMi/fO7c+dy8Of7zMKa3t5ePPnqfjo4Odu7cQ1paOuAbSvdtcLlc3L59ix//+G/Yu/eTZ5+TPMzmUNat28jbb3+P5OQUBgasfPzxB1RVPfY/d/78hWzduuOVoj4EQRAEQRD+JRKxEoIgCIIg/LNhCFIxI8lMUUIIQ6NunG4vaqVEsEY1aZZuTk4uMTExHDt2hI8//oBFi5Yyc+asCbtpdTodO3fu4bPPPqavr5e9ez/htdfeHHfre1ZWNrW1NXR1dRId/XxYmCRJFBfP4NSp41gsfQEF3vj4eJqbm0hJSQ3Y1kSdw1Zrf0BRsLLykb9Teaw4/PRpAwkJid84j/ar0Ov1LFu2Eoulj2vXrmAwGJk7dz463fgBdxOxuzxUtA/6u5kjwiMoLJzG5csXcLvdqFRuFAqFL7/W68KlUOEJiSM3TotG4xtkNjg4iFarJSoqiilTpgJgs9kYGhqkubkJp3MUlUqN0WjEaDQSHGwIeK3VajVRUWays3OpqnrM/PmLyMjIIDQ0zL+PF8XHJ1BRUY7DYScyMooLF86wdet2lEolQ/o4bt6vJCkyFJV7kOiIOOqdeg5XdDEjLxu9Rvm1r/XYFxPfZufwi5KSknnnne9x+PBBPvnkQ1auXE1BQaH/8YKCQt5++/v87Gf/SGpquv8a3r17m9mz53Lu3Bm2bNnu78x1uVzj3vPg624/ceIoJlMIb7/9LmZzKBqNL87jVYv5k5FlmcePK7l27TJWq5XHjytxOl1Mnz6DpUuXB2RlNzY+5dixI9jtNsCXfbx+/aaAgYaCIAiCIAj/GonOYUEQBEEQ/tlRKiTMOjVRxiBC9ZovHbJmNofy+utvMX36TC5fvsCBA5+Pu51+THBwMLt3v0ZoaChWq3XCW+/BFy9x+fLFcQPQcnPz0On0lJUFdg9HR8eM69CcjNfr9Q8EA7h9+yYmUwjR0TGEhYUjyzIlJfcpLp7xStv7toWFhbNp01YyMjI5duwwJSX3XjoIbsyI04PD7UGnfv56JSYkEhMTh9frRUJCkiRGR0cZHR3F4xwlyBROX18fbW1ttLe38eRJPcPDQ8gydHZ20NXVyfDwEJIkYTKFEBkZhclkQpIkhoeH6ehox2rtR6vVkZeXz/r161myZBmFhUVs3ryN8vIy7HYHvb09dHS0P9tmF93d3fT09DA4OEhWVjZ2ux2n04nXK3P8+FEGhwYpaxtE6XUTYdJjsVhQKRWkR4fQPeykoXfi99erGusc/rYyhydiNJp47bU3ycubwqlTJzh79lTA6zh79lx27NhDQ0N9wJcY9+7dQa1WU1Jyz79s3rzA7mFZlrl58zqHDu0nNTWNN998x1/oVqt9Rfhv0jnc0tLMhx++z4kTRxkYGKChoY6hoUG2bdvB7/zO/8XcufNRq9XIssz9+3fZv3+vvzAcFhbGm2++KwrDgiAIgiAIiM5hQRAEQRD+lVAqlSxdupzk5GROnDjOz3/+T2zYsImkpORx6xoMRnbteo1PP/2Ivr4+9u37jN27Xw/okA0ODqawsIhbt26wcOEi/3KVSkVh4TTKykpYsGCxv7NXpVLh8XiQZfmlGcAejycgr9bpdNLW1kpkZJR/EF1TUyMxMbG/8lvhk5KSSUxMorLyEfv2fcb06TPJyMic9PwUEigkCe8LzdKSJLF82QpiomOorqnC5XIBMiChM5sxo8A0agJkXC43TqcTlUpNZGQUBoMBk8mMyWQiJCQEkykEo9GE0WhEpVI9y8yV8Xg89Pdb6enp5OzZs/T1WVGrgwgPD0On03Ps2CFmzJiFLMv+P16v1//vkiTR29uDy+XC43Hz4Yc/Q6kO4klnEB7XKJWPHmEODUUG1AoFkkLBwIgd+HrD1lwulz/DNyTE/LW28apUKhVr1qwjNjaW8+fP0tPTw+bNWzEYjACsWLGKoaEhTp06TkZGJuD78qK+vo7+fguJiclER0cTFhaOWq2mq6sTszmUU6eOU1tbw4IFi5g7d37Ae2KsQ9vpdH3l47VY+rhy5RJ1dbX+ZS0tzbhcbv7gD/6IefMW+Je7XC7OnDnF48eP/MvS0tLZsGHzr/yzIwiCIAiC8F0hisOCIAiCIPyrkpaWwbvvfp8TJ46xd+8nzJu3gLlz548bIBYSYn5WIP6Y7u4u9u/fy65drwXEOOTk5HLsWC1dXV1ERBj9y4uKirl79zaVlRUB3b1hYeFYLJaAwVdfLKQODFgDCoJVVZX+bs6cnBwASkrusXbthm9+Mb4FkiQxZUoB2dk53Lt3h/LyByxYsCggbmOMSasmTK+he8iBMej5r6FKpZLw8AhiYmLp7e1ldNRBaFg4Hl0wEfIwiVGJhIWFMzIyjMvlJDY2jl//9d/CYDB+pWF7kgQREUZ6e4cYGbHR0dFGW1sbV65corS0hIKCqcTFxRMXF++LtnhBUFAQd+/eBqC+vo7I8DDmRcVT3jbAaHcTWc+6UIdH3YQY9HiG+4Dor3FFYWBgwL/PLx7HL0phYRGRkVEcOXKIn//8Z2zevJWEhEQAtm7dzsCAldu3b5CWlgH4vrSwWCycPHmMN998B7Vazbx58zl69BCjo85nXbw7/QXlF40Vh79K57DNZuPmzWs8eFAWMCjP6XRiMpl4663vMXv2HP/ywcEBDh06QFdXp3/ZnDnzWLBg0TceFigIgiAIgvAvifjNSBAEQRCEf3WMRhO7dr3GvHkLuHnzOp9//qm/U/NFYWHh7Nr1Gjqdno6Odg4e3Pess/W5ZctWcPnyhYDb8Y1GE1lZ2ZSW3g+4HT8uLp729taXHptvGF2Y/+/Xrl0hNDSUuLh4QkLMtLa2EBYW/ksrGr4qX3FwAatXr6WsrJRTp06Mu6YqhcT0xBDsbi8eb2DWsj5YT0iImby8fKYWFJKRX0xBVjr//kfv8KMf/RY7d+7xF5BnzZqD0Wj6SoXhL9Lr9aSnZ7Jo0RL+6I/+lLCwMOLj4xkaGuTSpQvs37+XEyeO8eBBKV1dXRQXz0Cl8hW04+LiOXRoP3OSQzHp1AygpbN/mM5BBx1Do0xPjsTZ9/LX+WWs1rFhdKHf6By/qri4eN56613CwsL47LOPA96/77zzffLypvD06RP/+qOjo/T19XL+/BnAN3ju3r279Pb28MYb70xYGIbnsRKvkjnsdru5c+c2P/nJjyktLfEXhg0GI4WF0wgKCmLJkmXMmjXb/5zm5iY++OB9f2FYo9GwefM2Fi1aIgrDgiAIgiAIXyB+OxIEQRAE4V8lhULB/PkL2b37dSwWC++//088eVI/br3IyEh27txNUFAQLS3NHDq03z8cDnzxElOnTuP69esBzysunoHFYgkopsXHx9Pe3v7S47JYLISG+orDvtv36wkK0voH0d27d4eZM2e/bBO/UgaDkTVr1lFcPINz585w/frVgCLglBgTyaF6nvbbAwrEoeZQCqcWkpOdQ1JGDmiDWZwdS6TJVwR3u908edIA8K1nxapUKlatWsvDhw8oLCxi/fqN7NixmyVLlhEcbKC6+jHnzp1mcHCQ5uZGRkcddHS04expYk9RAkUpkfT1WzBq1azLjWLP7DSs/ZavfTz9z5774lDCXxaDwcCuXa9RVFTM+fNnOXXqBC6XC0mS+M3f/B0SExNpbHzqX9/r9XL37m0OHtzH/v17mTlzNgkJiQHd8V/0vHN48lgJWZapqnrMT3/691y5chGHwwH4voSYP38hmzZtobq6irS0dFasWI0kSciyTGnpfT7//FNsNl/ms9ls5vXX3yY7O+fbuDyCIAiCIAj/4ojisCAIgiAI/6olJSXz7rvvERcXx/79n3Pp0oVxw9ViYmLZvn0XarWaxsanHDt2OGCdnJxcenp66O7u9i+Lj08gKiqa0tL7/mVGo2nCDuUXu4v7+593DtfW1uB2+wpz2dk5dHS0YzKZMBgM39r5/6JER0ezdesOYmNjOXhwHxUVD/F6vRi1KrYXxpJo1vKkz0bHoAOHy4PL42Vo1M1Ti42+ESfzU8JYmhHh315zcxOjo6MYDEZiY+O+9eMNDw8nIyOTu3fv+JcFBweTmZnF4sVL2b59F7/zO79HeHgkDocDp9PJX/7lX1B77xKLIlzk2Kv4rQUpLM2MRKdWodPpJx16+GVe7Bz+VVAqlSxfvor16zdRXf2YTz75kIEBKyqVin/7b/+AsLBwmpubAF9GdnNzM//4j39HQcFUXnvtTVJSUmloGP9Fyxi1Wg34Oo8n0tzczEcf/Zxjxw77IzYkSWLq1Gn82q/9OlOnFnLs2BHM5lA2btyCQqHA7XZz6tQJzp8/6+8uTklJ5a23vkdUVNS3eXkEQRAEQRD+RRHFYUEQBEEQ/tXT6/Vs27aTpUuXU1p6n08++dBfoBuTkJDI1q07UKlU1NXVcvLkcX8RSpIk1qxZExAvIUkS06fP4MmTBiyWPv92goKC/F2Q4OtafbETeXh4yD8M7OrVy4SFhZGYmITRaOLevTvMmvU8V/W7TpIk0tMz2blzDy6Xi337PqOpqZFYk5a3ZiSyPj8aY5CanhEn7YOjDI26yYkysrs4ng35MaiUz39Vra/3DSDLyMj4hUUtFBQU0tPTTUfHxN3dYWHhzJo1h9jYOIqKpqNUKklJSSU42IDLPsKHP/8JBw/u48aNayiVCurr677WcVitVgBCQ381xeEx+flTeOONt3E47Hzwwfs0Nj5Fr9fz+7//79BqtTx50sCjRxX091vIyMimoqL82ft+JiUl9wK+9HjRZJnD/f0WDh06wD/90z8FvAYpKam88857rFmzDrVaw/79nyNJsH37TjQaDUNDg3z66Uc8elTuf86sWXPYsWN3wBBJQRAEQRAEYTxRHBYEQRAEQcBXyJw5czavv/4WdruNn//8n6iq+v+zd9/hcZVn/v/f01RGo967uy333jAYjG2MwbjSQgnfZNlAGrubssluyGY3yWZ/yW7KhhBIIAXWEOOCjQF3GzeMjXvvTXJR79Jo2vn9ITRYVrFkyxqVz+u6uLBnzjlz3zPjeebc85z7OVpvmx49ejJ79lzMZjPHjh1h7drV/gKYw+Fg8OCh/kXLAAYMGEhoqJ39+/f6b0tOTqlX+LJYrA0ur68rfh45coiwMAf9+w8gNzeXkJAQwsMj2jz3281isTBy5Ghmz57HuXNnWbFiGd6qMu7uE8dXJ/XgKxN78OyETJ6/oydPj0ljWEokFvPnBWDDMDh9unYmap8+bdtS4lomk4mpU6ezefOmJme1jhs3wf/6xMcnsHbtKvr1688XvvA0mZk9mD17Hr169SY0NJSVK99lyZJFrF79IYcOHaCgoKDJgum1Aj1z+FqJiUk89dT/IzExkcWL/8bOnZ8QFRXNo49+gTNnTlNYmM/gwUNJT0/n8uVLLFu2mODgYPr06cvRo0caPebnPYdr3/fV1dVs3LiOP/3pj5w6dcK/XVxcPAsWPMojjzxOQkICXq+XFSuWUV5exvz5j+JwhJOTk80bb/zF/2/KZrMxa9Yc7r57ivoLi4iIiLSA9cabiIiIiHQfyckpPP30l1i3bjUrVy7n4sULTJky1X8pfO/efXnwwdmsXLmcgwf3Y7NZuffeaQBkZQ3kvfeWk5+fT3x8PDabjWHDhrNv3x7uuOMugoODSUlJ5dy5s/Ts2QsAm82K11s7c7impsY/q/LcubM4nU4sFgv9+g1g48b13HnnXQF4RtpOSEgId989hZKSYrZu3YLdHsqECZNIi2p+cb2rV69QUVFOcHAwGRmZtzXG0NBQ7rjjTjZsWMfMmQ82uD8uLo5+/fpz4sRx4uLi2bdvD7m5V0lMTKKoqLZXcHJyCklJyeTn57NgwaOUl5dx6dIlDh7cT1FRIRaLhcTEJFJSUklOTiE4ONh/fJ/P52+lEIiew42x2+0sWPAoW7duZvPmjezc+TFOp5OZMx/k6NEjlJeX4XA4SE5OYfXqD+nduy/Dho1gyZJFDBiQhcViqXe8oKDaf0tOZzWffrqTHTu2+2fTm0y1P7Tceee9DB481F/gNQyDtWtXk519kQULHiUuLo79+/fWayMRGRnJnDkLSExMbMdnR0RERKRz08/pIiIiItcJCQnhwQdnM2PGTI4ePcybb/6FgoIC//0DBmRx//21hcM9e3azdetmoHbm6ZQpU9m0ab2/YDV8+AjcbjdHjhwCamdi5uZe9R/r2rYStf2Gaxfy2rx5IzExMWRkZFJdXY3Vau0QM0nbQm2v2Nn075/FBx+8x65dO+u11rjeqVO1LSV69uyF1Xr75zakp2cQERHBkSOHG71/3LgJQO2ihhERkaxcucIf3/nztQsQmkwmwsIcVFSUEx4ewYABWUyZMpUFCx5l1qw5ZGb2IC8vjzVrPmTx4r+xdu0qDh06yIUL5/H5fFit1g41S9xsNjNp0l3ExcXz0UcbKSgo4Mknv8izzz5HdXW1/z3do0dPXnrp1xQWFjJo0BAOHtzf4Fg2m42CggLWr1/Lpk0b6i02N3HiJL75zW8ybNjwejN/d+zYzqFDB5gx4wFSU9NYu3Y1a9eu9v87y8jI9M9wFhEREZGWU3FYREREpBF1C2A9+eQzGIbBm2/+mYMH9/vbAgwePITp02cA8MknH7NlyxYAHI5wBg4c7F/YLCIikr59+7Fv3x4Mw8BiseDz+fzHsVptuN21hdGioiKio2sXo9u3by+RkVFkZQ1k165POlWv4ZZKS0tnwYJHCQ8PZ8mSRZw4cbzRtgt1xeHb2VLiehMnTuLo0cMNek9D7QKFdTO/k5KS+fjjbRQVFZKVNZCjRz9vRZKRkcmFCxca7G+1WklNTWPs2HE89NBcFix4lPHjJ2K1WtmxYxtHjx7hwoXz7Ny5gwsXzuNyuRoco71VVFSwaNFbFBcX8Q//8G369evH22//HzExscyb9zAVFRXk5eVhs9mIj0/gF7/4T3r27MWJE8frxX/pUg5r167mxIljVFSUA7X/1gYPHsrf/d1XmDTpLv/s+TqHDx9i27Yt3HnnZDIzM1m06C0OHNjnv3/06LE88sjj2O3Nz0AXERERkYZUHBYRERFpRnx8PE8//f/IyhrE6tUf8v777/n70Q4fPpK7774XgI0bN7J79y6gdiGv3Nwr/tnGI0eOprCwkPPnzwEQGxvnv89q/bytRFFRITExMeTk5FBeXo7NZiMuLh6fz0dsbGy75t1eTCYTWVkDmT//EYqLi1m69J16PZmLigopLCzAYrHQq1fvdovLbDYzffoM1q1b419k8Frjx08Eame72mw21q1bi8MRjsfj9r8/MjIyyM6+eMPHMplMREREkpU1kKysQQwcOIg77riTtLR0rl69yqpV77N48d9Yt241R44cpri4qEW9i9vK1atXePPNv1BcXMxjjz3BXXfdzZNPPkNaWjrLli0mNDSUqVOnU1paQkFBAdHR0VRWVvLHP/6eoUOHsXfvHkpKinnvvXdZuPANCgryAfB6vWRm9uDpp7/EzJkPNjpT+sKF86xe/QFDhw4nPT2DN974C5cu5QC1/3YeeOAhpkyZqv7CIiIiIjdJPYdFREREbsBmszFjxkwyM3uwdu0q3njjT8yaNYekpGTGjh2Hx+Nm376dbNy4HqvVxrBhI7j33mmsWvUB8+c/QlpaOgkJiezdu5uePXuRmprGlSuXiI+P/2zmcO3CXMXFtTOHlyxZRHR0ND169OTgwQNdctbw9Ww2G+PHT6Cycigff7yVvXv3MGnSnZw6dQqobfUQEhLSrjFFRkYxePBQtm/fyl133V3vvrS0dNLS0snJySY5OYWPPtrA/ffPpF+/AZw8eZwhQ4YRERFJeXlZqx6zpKQEqO1tXPcYUNtzt7S0hMuXL7Nnz6eUlJRgtVrJyupDWFg0iYnJ/r7YbenIkcOsWfMh8fEJzJkzz1/ADQkJYe7cBezYsZ3t27eSmdmDsWPHs3PnDsxmE5mZPdi/fy9xcXGcO3eWjz7aiPmzRQbNZgt2u53Bg4fwyCOP+xf4u15+fj4rViwjM7MHiYmJLFr0lr9QHxERwdy5C0hMTGrznEVERES6ExWHRURERFooK2sgSUlJrFy5goUL32Dy5HsYNWoMEyfegd1uZd26jaxduxqr1cagQYMZMGAgn366i3HjxjNy5CjWrFlFcXERKSkpbN26haFDh2O1Wvz9dl0uF0FBQXz66U7i4uJJT8/g6tUrJCQkBDjz9hMWFsa0aTPIz89n06YN7Nu3h5CQUPr2bb+WEtfKyhrIhQvnuXDhPJmZPfy3m0wmxo+fwJIl2djtdmpqati6dTPTps3g/fdXMGTIMKC2rUhpaQmRkVEtery6NhbX95c2mUxERUUTFRXNwIGDAHC7Xbhc5Rw6dILduz/F4/EQFRVFSkoaqampRERENll4vRGfz8fmzZv49NOdDB48lOnTZzTo92wymZg4cRJJSUm8//57/sUTT5w4hmEYhIba+eMfX6Fnz144HOFkZvbAbg9jzJhxhIeHExbmaDK+iopyli5dhMPhICwsjHXr1vjvy8jIZNasOYSFhd1UbiIiIiLyOV1/JSIiItIK0dExPPHE04wYMYqNG9ezbNliqqurmTp1KiNGjMIwDFatep+TJ08wePAQrly5RGFhIVlZgwgODmHfvr04HOFUVlYAtTNmPR6Pv03AlStXKCkpwW63U1hY0C1mDTcmPj6eqVPvw+32cPz4UaqqqvyLj7W3KVOmsmPHdqqqqurd3rNnbxISahdAS0pKZt26NbjdboKDQ/wzhjMyMrl48catJeoUF9cVh6NuuG1QUBA9evRgwoSJzJkzn/nzH2HUqDH4fD527tzB0qXvsGLFMnbt2klOTnazi/5dq7q6miVLFrFnz6fce+807r//gWYXAuzVqw9PPfUMoaF2XK4agoOD2bXrE86dO4vNZiM7O5vc3KsMGzacZ599jpEjR2EymXC7G++l7HK5WLp0MU5nbXuOw4cP+e8bNWo0Dz/8mArDIiIiIm1ExWERERGRVrJYLEyZMpX58x/m8uXL/PWvf+LixYtMnTqdwYOH4vP5WLlyOefOneHee6exceM6LBYLw4YN5/Dhg7hcLoKDQ6iursZiseLxeKioKMfhCGfbti1ERESQmppKTU0NSUnJgU43YM6ePU1UVBT33jsdh8PB4sV/4+zZM+0eR1BQEHffPYX169fU6/VbO3u4tvdwVFQUxcVF7Nr1Sb2F6dLTM7h4seGidI2pax1Re7zo5jduhMlkIjo65rPFEu9nwYJHmTHjARITE8nOvsjKlctZsmQRGzeu4/jxY5SVlTY4Rn5+Pm+++Wdyc3N5+OHHGDVqTItmH0dHx3DvvdMpKyvlzJnTGIbxWd/sIEJCgklJSSM/P4/g4GC8WKgiiGK3mdyyary+z59Tn8/H4sWLuXjxAm63q15v7vvvf5B7752OxWJp9XMjIiIiIo1TWwkRERGRm9S7d1+eeeZLvP/+e/zlL39h+PCxTJ8+A6/Xw7FjR1m+fBkLFjzKgAFZ7N79KSNGjGTXrk84cuQQKSkpXLlyCavVSk2Nk6KiIqKjo1m3bhUxMbE4nTVMmjQ50CkG1KlTJwHo27cfw4aNYMCAgezcuYMDB/YxadJk4uPj2y2WpKRkkpJSOHBgH8OHj/Tf3q9ff2JjYyksLCQ+PoE1a1bxwx/+B7t317YTcTgcVFVVYhjGDYuslZUVuN1uTCZTi9tQ3EhwcDCZmT38LTEMw6CoqIjLly+xY8fHlJeXERQURHJyCjU1Neza9QnR0TE88sjjLS5Ql5aWsGXLRxw7dpS4uHgGDBjI0aOHMJvNRESE06tXHy5fvsy67Z9C2nCueMM4ZM4ETLy09Sxp0WGMSouif0IYO7asZ9u2bRiGmaCgYADCwyOYM2ceyckpbfKciIiIiMjnVBwWERERuQXh4RE89tgXOHJkL6tXr+PixQvcf/8DuN1uTp8+xbJli1mw4FFOn95Jnz596Nu3H3v37mHmzAc5c+Y0KSmpVFS4KS4uwuNxk59fQHx8InZ7KKmpaYFOL2BcLhcXLpwHoE+f2n7DwcHB3HXX3ZSVlbJ16xZsNisTJ96Jw+Fol5jGjBnL8uVLSU1N9xemzWYzY8dOYNWq94mLi+fYsSMcOLCPuLh4cnNzSUxMJDo6mpKSYqKjY5o9fl1LicjIyNs2O9ZkMhEbG0tsbCxDhgwFattIvP/+e2zZsonIyEhSUlLZu3cPqam1vYsdjvBGj+V0Ovnkk4/Zu3d3vZYVQ4cOZd68BaxYsYzs7IucO3+OkMxhXLYl8cbWI4wdPpRQkwcMH2E2E9nF1ZwpqMRUWUjejjWkRliJjIzCMGoX/nvoobnt9hqLiIiIdDcqDouIiIjcIrPZzD333ENERBzvv7+SN9/8K/fddz8ej4fz58+xbNliZs58kI0b1zN69FjeeedtqqurycvLJSMjE4/HS0VFMZcuXcJut2MymRg3bmKg0wqoc+fO4vF4iI6OJi4urt59ERGRPPDALK5cuczq1R+QlpbOqFFjsNlstzUmk8nEtGkz+OCD95g//xF/H96BAwexffsWysrKiIyMYt26NXzpS89y9OhhEhMTSU/P5OLFCzcsDtctRtdWs4ZboqamhtWrP+D8+bM88cTTjBs3AYDCwkIuX85h69YtVFZWEBwcQkpKCikpqcTGxnH48EG2b99GdfXnfZhDQ+3cccckhg0b4W+j8pOf/DuHCmqoJoFgTBgll7l82oIVAwODEIuJGEco2Zcvsf3oacKiB9I/vgaqyxkxYiRTpkxTGwkRERGR20jFYREREZE2kpnZgy9+8UusWvU+7767hJEjR+Nyubh8+RKrVn3I0KHDyM/PJz4+gf3792IYBhaLBY/HTUlJCQcPHiAiIoKwsDDS0zMCnU5A1bWU6NOnX5PtGJKTU5g//xFOnjzB0qXvMHTocLKyBraoR+7NcjgcjB49hs2bN3LvvdOB2h7UY8eOZ/36tSQmJnHmzCmuXr1Kfn4ePp+P9PQMNmxYx7BhI5o9dklJCQDR0a3vN3wziooKeffdpVRUlDNv3gJ69+7rvy8uLo64uDiGDh0O1M4uvnz5Eps3b2L79q1UVJQTGmonIiKCqKhoJky4g3HjJhASEuI/RlRUNN/453/nm398j6qiImoqSrHZbJ+1U7ERHR2Nz+vlytUr7NyxndCgICyx6ZzzuXl++h0MHzby+pBFREREpI1pQToRERGRNhQWFsb8+Y9w9933sn//XjweNxERkVRXV3HkyCGOHz9Cr9592XvmEked4fxh12UWn/Xw4SUzp1zhlHqsTJ16320tcHZ0Xq+Xs2dPA7X9hptjMpno338ACxY8SmVlBUuWLCInJ/u2xte7d19MJhNnzpzy3zZkyDDs9jBsNhs2WxCbNm0gNTWNixcvYLfbcTqr6y1m15i6mcNRUc3PMG4LZ8+e4f/+76+AwZNPPlOvMNyY0tISPv10JxcvXiA9PYMBAwYSH59AWlo6vXv3JT8/j/Xr17J3725yc6/i8/kAOFXsoveAYaTFRmCxWKiqqqS8vJzKygqKi4vIzslm27YtWCwWYmNiibIZxPTMIjK9/21/DkREREREM4dFRERE2pzJZGLs2HGkpaWxcuVyKisr8Pl8VFRUUFwDn5QXkmfJxFIMMZ5qDJ+P/Aon5VG98QXb2FvpIKnaTWTo7W2T0FFlZ1/E6XRit4eRkpLaon2sVitjxoxj0KAh7NixjX379jJp0p03bOVws+666x6WLn2HxMQkHI5wbDYbo0ePZcuWTaSkpHLq1AnuuGMSR48eoUePnv5F665vkXGtup7DUVFRtyVmqF2QbteunWzZsolevXrzwAMP1Zvte72yslK2bNnM0aOH692ekZHJ3XdPqbdIXFVVFVeuXOLkyRNs376VGi/scsZjDQlj9MjR7Nu/j8uXcygpKaaivJyqqioKCgoID48gLi6eiPAIBmRlkeuEg5fL6BkTdtueBxERERGppeKwiIiIyG2SkpLKF7/4ZdauXcXBgwe4Wu6kMDaTcpeH2CATppoirMFeTJhwFecSBPTuPZK9OaWUOT08NiK1WxaI62bk9u7dB7O5dRe62e127r13OoWFhWzdupnw8AgmTLij2QLozbBardx773TWrl3N3LkLMJlMjBgxkl27dgDg8XjYt28PCQmJuN1uMjJ6cPHi+WaLw3VtJaKibk9bCbfbzerVH3Ls2BHGj5/IpEl3Nfn81tTUsHPnDnbv3lVvsbno6GgmT55C374N233Y7XZ69+7rn4WcU1zF3k0nCPJWc+FiLm63i5qaGjCguroKl6uGqOho4uPjSU5KoVevXpgtZhyGj5zi6tvyHIiIiIhIfWorISIiInIbhYSEMGvWHKbdP4vi2EHkVboJ91VSXHAFp9NJSUkxJaXF1NQ4sZhN9O+VQY/oUE4XVLLyyFV8N2hF0NUYhuHvN3yjlhLNiY2N5aGH5tKrV2/ee+9d9u7djdfrbaswgdq+vL169WbXrp0ABAcHM2LEKACSk5M5duwoQUFBnDp1krS09GbbXVRXV+N01hZEb8fM4bKyUt56601Onz7JQw/N5a677m60MOzz+di3bw9//OMrfPLJx/7CcEhIKPfeO40vfenv6devf4vanlRWV1NZVUVhQT6lpSWEhISQlJRMmCOMULud8IhI0tIy6N+vP737fP5DgMVswuXtXu97ERERkUDRzGERERGR28xkMhGS3If4XiaCsk9zKec8dnsYeXlXiYiIxOVy4/F4yEjPxGw2YwaSw4M5mV9JTomTjOjQQKfQbvLycikrK8Nms5GZ2eOWj5eZ2YP09AyOHDnM4sV/Y9q0e4iJSQbapqfzsGEjeP/9FVy9eoWkpGRGjRrD7t27iIyMIicnmytXLuPz+Rg4cBA1NTUYhtFoYbWu33BYmIOgoKA2ia1OdvZFVqx4F5vNyhe+8DSJiYkNtjEMg7NnT/PRRxspLCz0326xWBg5cnSLZ1+7XC5OnTrJsWNHOHr+EnmkE4SHuvnvDocDkymJ9PRMYmNi6dmrF44wR/1jeH3EBltuKWcRERERaRkVh0VERERuM8Mw2Jddij0klP6jR3HcYefI0cN4vT5yc3PxeNzY7WH06NnTv09YkIWr5TUculLWrYrDdbOGe/bshc3WNi01zGYzQ4YMZcCAAZw8eYjNm7czceKdJCYm3fKxTSYTU6fex4oVy5g7dwF2u51hw4aze/enxMcncurUSSwWCxUVFcTHJ5CXl9docbaupUR0dNu1lDAMg/3797JhwzrS0tJ56KG52O32Btvl5l5l06YNXLx4od7tWVkDufPOyTdsc+H1erlw4RxHjhzh9OmTuN1uAIKAUFMNVaYQbHw+azsszEFIcAiRkVGEXVcYNgyDqhoPE9IibjJrEREREWkNFYdFREREbrMyp4fskmqi7VYsFguDBg3GER7Brl07KC4uwuVykZHRg6jIKP8+JpOJ8GArx3PLmZmV0KLL+LuCuuJwnz4331KiKUFBQdx9991kZvZl27ZtAEyadCcOR/gtHTc0NJSJEyexceN67r//AcaMGce+fXuJj4/n6NHDlJencezYETIyMsnOvtBEcbhuMbq2KQ57PB7Wr1/LwYP7GT16DJMnT8FiqT8bt7y8jK1bt3DkyCGMa9qXpKamcc899za7GKBhGFy+fIljx45w/PhxqqoqG2xjBhIo4wx2DMBmtREXF0d8fDzh4RGNzt0udXqICLUxKFnFYREREZH2oOKwiIiIyG3m8vrw+gxs1/R4zczIwG4PZfXqDygsLKRf34Z9XG0WE26vgcdnYLN0/eJwSUkx+fl5mM1mevXqfdseJzw8ghkzZpKbm8vatatJTExizJhxt9TOISMjkwsXznPs2FGysgYyePBQDhzYR2RkFHl5uezZ8ylf+tLff1asHdtg/+LiuuJw1E3HUKeiopwVK97l6tUr3H//gwwZMrTe/TU1Neza9Qm7d+/yz/Kte+zJk6c021O4sLCQo0cPc+zYEf9s5+YkWJy4oxwY9lQGpsVjaWaBQZfHR365i2lDkklwtG1rDRERERFpnIrDIiIiIreZ1WzCbDY1WFwuPi6e+fMeISQkpNHFwbw+sFlqF+jqDk6fPgVAWlp6o+0P2lpiYiJz5y7gzJnTLFu2mEGDhjB48JCbnqU9ceIkli1bTHJyMmPHjuPgwf0kJiZx+vQpgoKCKS8vx+Px4PP5GrzebTVz+MqVy7z77lIAHn/8yXqzf30+H4cOHWDbtq1UVlb4bw8JCWXChImMGDEKq7Xh6UFFRTnHjh3l6NEj5OZevWEMZrOZzMweDBw4mL59+3G5wsM7+y9xvria1IgQQmz1ZzAbhkGZ00NehYuByeHMHp6Ks7yabrYWo4iIiEhAqDgsIiIicpuFB1uJDrVRUOnCEVz/61dzRdByl4ehyRGYu0lLibricJ8+fdvtMU0mE3369KVnz17s37+XxYv/xrhxE25qMTyLxcK0afexbt0a5s9/hAEDBnLs2BGCg4OorKxg69bNJCYmkZeXS1JScr1926Ln8KFDB1m3bjUJCYnMmTPP3y7DMAzOnTvDRx9toqAgv168I0aMYsKEOwgNrd/X2ul0curUCY4ePcLFixfqtZ1oSkpKKllZAxkwYCBhYWH+23vEBPH4iDQ+PJbLxeJqPD4DR5AFswncXoNKtxdHkJXxPaK5f2ACjmArzvKbfhpEREREpBVUHBYRERG5zawWMyPTo1h+6Ao+w2hRsdfl8WEChqdG3v4AO4Cqqiqysy8C0Ldv2/cbvhGLxcKoUWMYOHAwn3zyMQcO7OOOO+4iNja2VceJiopm0KAhfPzxNsaNm8CxY0dITk4lJyebjz/exvPPf50LFy7UKw67XC4qKsr9+7eWz+dj06YN7N79KUOHDmfq1On+GcC5ubls3ryR8+fP1dunf/8B3HXX3URHx/hv83g8nDt3lqNHD3PmzGk8Hs8NHzsmJoaBAweTlTWw3rGulx4dypfHZ3KusJKDl8u4VOrE5fURbbcwIMHBwORwEh3BmLvJLHkRERGRjkLFYREREZF2MCgpnK1nC7lSVkNqZEiz2xqGwaUyJ6mRIfSJC2t2267izJnTGIZBQkIikdcszNfeQkNDueeeeykuLmLbtq3Y7aFMmDCpVW0uBg4cxKpVH1BT46RPn76cPn0Kn89LWVkpRUWFXL6cU2/7ulnDISEhDWbw3khVVRWLF/+NixcvMnXqdEaMGIXJZKKiopytW7dw+PDBerN+U1JSufvuKaSlpQO177Xs7IscO3aUEyeO43RW3/Axw8IcZGVlMXDgYBITk1rchsNqNtE33kHfeEerchQRERGR20fFYREREZF2EBVq4/4BCbx78AqXSp2kRAQ3WlTz+QwulFQTGWLjwUFJBFmbXsCrKzl9+iQQmFnDjYmOjmHWrNnk5GTzwQfv0aNHzyZ78jZmypSpvPvuEsaOHc/p06dISkohLy+XVas+ICtrIF6vF4ultvduaWkJ0PpZw3l5eaxb9z5FRWU88sjjZGRk4nK5+PTTneza9Um9xeYiIyO56657GDAgC5PJRF5eHkePHub48aOUlZXd8LGCg4Pp27c/WVkDyczs0WiPbBERERHpfFQcFhEREWknQ1MiMIBVx3I5XVCFI9hCZIgNi9mEx+ejqMpNjcdHckQIDw1OokfM7V+UrSNwu93+tgd9+nSM4nCdtLR0Fix4lGPHjrJkySJGjBhFv379bzhbNjg4mMmT72H37l2kp2cAF8nJyebUqZOMHDmaq1evkJqaBkBxce1idK3pN3zixHE+/HAlGRkpPP30MzgcERw8uJ9t27b6W1RA7Wzk8ePvYOTIUVRVVbJz5yccPXq4Xu/hplgsFnr27MXAgYPp3bsPNputxfGJiIiISOeg4rCIiIhIOzGZTAxPjSQtKpSjV8vZk11CcbUbr2FgNZtIiQhhZHoUWYkOIkK6TyHu/PlzuN1uIiMjSUhICHQ4DZhMJgYOHETfvv3Ys+dTli59hzvuuJPk5JRm90tOTiEhIQmrtZDs7IskJCSQm5vL8eNHiY6O9heHS0qKAFrUTsMwDLZt28KOHdvJyhrIU089xv79R1m6dAn5+Xn+7cxmMyNGjGTEiFFcvHiBxYv/5u/pfCPp6RlkZQ2kX78BrWqnISIiIiKdj4rDIiIiIu0sLiyIu3rHMi4zmpJqN26vjyCLmZiwIKzdcEGu06dPAbUtJVravzYQbDYb48dPpKKigo8/3srevXu48867iIhoetHAsWPHsWzZEsLDwzEMg8uXL3PkyCESE5OYMOEO4POewzeaOex0Ovngg/c4e/YMkydPoVevXixatIiDB49wTVthevXqQ3p6BpcuZfPnP7+G1+u9YW5xcfGfLSyXFdCezyIiIiLSvlQcFhEREQmQYKuZxPDgQIcRUD6fz18c7t27b4CjaRmHw8H06feTn5/Phg3riI2NY9y4CQQHN3wtTSYT9903gz//+TUMwyA2No7c3CucOnUSj8eD1WqlpKS2rURzPYcLCwtZvnwJlZWVzJjxAJcvX+Kvf32d0NAgoHZGsc1mIy4unkuXsjl79vQN8wgPjyArayADBw7ukDO2RUREROT2U3FYRERERALm0qUcqqurCAkJ/aw3b+cRHx/P3LkLOHv2DMuXL2XAgCyGDBnWYLE2hyOcGTMe4LXXXiUpKYnLl3M4d+4sp06fIqNnb4pKyzABUVFRjT7O2bOnWblyBXa7nX79BrBhw1pcLhcA5eXl5OcXERbmICwsjKtXrzQbc0hICP37Z5GVNZD09IwOPVNbRERERG4/FYdFREREJGBOnToJQO/efRoUVTuLXr1606NHTw4e3M/ixX9j7Njx9OzZq942ffv2o3//AZw6dQJHQjpXXDZ+vvYoGb3cHDf1JMRicDDfzUCLi2j757OBd+78hK1bPyIoKIjqaicHD+7H6awmPz+fkpJiUlKSSEhIwGRq+rmzWq307t2HgQMH07NnL6xWnQKIiIiISC19MxQRERGRgDAMg9Ona4vDffv2C3A0t8ZsNjN8+Eiysgaxc+cODhzYxx133EV8fLx/m0cee5Iv/dv/UJM2gsqySrLzCklMSQfAYwtj+eGrfHSmkDt7xTA2LZx1a1fxyScfYzKZCQkJobCwgPz8fCoqyklKSmbAgCyiosKpqqqp13MYattZZGRkfraQXn9CQkLa8+kQERERkU5CxWERERERCYja2a8lWK1WevToGehw2kRwcDB33XU3paUlbNu2laAgGxMn3klwqJ31Z0oIy5pE6ZljhLrLcVe6KMu7TAhuYsKs9I61U1Dp4r2Dl3jv/X0UHtiA1WLB7XZRUlKCYRjExMQyfPhI7HY7jXWESExMYuDAQWRlDcThCG//J0BEREREOhUVh0VEREQkIOpmDffo0ZOgoKAAR9O2IiOjeOCBWVy+fIlVq96nwpHGUVcUgzJTqLp8mkpfEBXl5VzMPk9MTCwhwSGYTSZMzjIOfvop5U43EdUWQqpygdpF8DIzezbalzgyMoqsrEFkZQ0iLi6unTMVERERkc5MxWERERERCYjTp08B0KdP3wBHcvukpKTy0JwF/Oz9fVy9fIHI1Hj69x/Anj27MZlMlJaWEhQUjNvjZv2GtZw7dw6z2YQtNh13TA8ivCVkZmQSH59Qb/G40FA7WVlZTJo0jpCQSEALy4mIiIhI66k4LCIiIiLtrrikhCtXr2A2mejdu+sWhwHOFlbhtIYxamA/ivJzKS4uJjIygoqKcoqLi6iuquLSpRw8HjdBQcG1/YE91QQn9qR/WhgRFjcANpuNPn36MWjQIDIze2K1WoiLC6egoLxBz2ERERERkZZQcVhERERE2o3b62PjqQLW7z9NjqknA2NthITaAx3WbXWlrAavzyA0yEpqaioJCQns3VdJcHAwNTU1uF0ugkNCcDjCCQoKIizMQURkJJWWcGqopFePWLKyBtG3b78u135DRERERAJLxWERERERaTfbzhWx8VQ+BSWleExWcqxJ7M0pYUxGdKBDu23cXh/w+dRem83GyJGjqampobCgAJfbRUREBA5HOFFR0dhsNsId4YTZY7l/zHimZKUELngRERER6dJUHBYRERGRdnMyr4Jgq4WYEDNUuQl3ODhdUNmli8NWi7nBbTarlXFjx3PXnZPZ/vE2nE4n0dHRxMfFExcfT2hIKKcLKwkPCw1AxCIiIiLSXag4LCIiIiLtJsRqxu310a9vP3w+H2eLnIRYLYEO67ZKdARhNptweX0EXVMoDg4OBmDo0GGYMBHmcPiXlat0eQixmIl3BAcgYhERERHpLlQcFhEREZF2M75HDNklTk4XVGEA8Y4gRqVHBTqs26pPvIOk8GAKKlykRIY0uD/cEd7gtoJKN71i7WREa+awiIiIiNw+Kg6LiIiISLvpn+DgydFpnCmoxGQyMSDB0WjBtCsJtpoZnR7Fe4dzqXJ5sQc1P1O6zOnBAEanR2E2mZrdVkRERETkVqg4LCIiIiLtqkeMnR4x9kCH0a7GZkRzqdTJ7uwSEh3BhAdbMF1X+DUMg+JqN8XVHu7sFcuQlIgARSsiIiIi3YWKwyIiIiIit1mQ1czswUkEWczsu1RKXkUNkSE2QmxmMKDK7aWsxoMjyMI9feKY2i9Os4ZFRERE5LZTcVhEREREpB2E2CzMHpLEyPRIDl8p5/CVMipdXgBCbRbG94hmcHIESeHBDWYVi4iIiIjcDioOi4iIiIi0E7PJRGa0ncxoO/f2jcPp8QFgt1kIspoDHJ2IiIiIdDcqDouIiIiIBECIzUKIrfnF6UREREREbidNTxARERERERERERHphlQcFhEREREREREREemGVBwWERERERERERER6YZUHBYRERERERERERHphlQcFhEREREREREREemGVBwWERERERERERER6YZUHBYRERERERERERHphlQcFhEREREREREREemGVBwWERERERERERER6YZUHBYRERERERERERHphlQcFhEREREREREREemGVBwWERERERERERER6YasgQ5ARESkOzKZWrddS7fvDJRT56CcOr6ulg8op87iduXUlZ4jERGRzsJkGIYR6CBEREREREREREREpH1p5rCIiEgAFBaW05KfZ00miI0Nb/H2nYFy6hyUU8fX1fIB5dRZ3K6c6o4rIiIi7UfFYRERkQAwDFp1Qt3a7TsD5dQ5KKeOr6vlA8qps+iKOYmIiHQ3WpBOREREREREREREpBtScVhERERERERERESkG1JxWERERERERERERKQbUnFYREREREREREREpBtScVhERERERERERESkG1JxWERERERERERERKQbUnFYREREREREREREpBtScVhERERERERERESkG1JxWERERERERERERKQbUnFYREREREREREREpBtScVhERERERERERESkG1JxWERERERERERERKQbUnFYREREREREREREpBuyBjoAERGR7shkat12Ld2+M1BOnYNy6vi6Wj6gnDqL25VTV3qOREREOguTYRhGoIMQERERERERERERkfalthIiIiIiIiIiIiIi3ZCKwyIiIiIiIiIiIiLdkIrDIiIiIiIiIiIiIt2QisMiIiIiIiIiIiIi3ZCKwyIiIiIiIiIiIiLdkIrDIiIiIiIiIiIiIt2QisMiIiIiIiIiIiIi3ZCKwyIiIiIiIiIiIiLdkIrDIiIiIiIiIiIiIt2QisMiIiIiIiIiIiIi3ZCKwyIiIiIiIiIiIiLdkIrDIiIiIiIiIiIiIt2QisMiIiIiIiIiIiIi3ZCKwyIiIiIiIiIiIiLdkIrDIk347W9/S//+/enfv3+gQ+nUcnJy/M/jsmXLGty/bNky//05OTkBiFBEpGP73ve+R//+/ZkyZUqgQ2kXHWn8nTJlCv379+d73/veTR/jRuPg7XSj905b5CciIp3LU089Rf/+/XnqqacCHUrAaHwUqc8a6ACka9i5cydPP/10k/fb7XYSEhIYPnw48+bNY9y4ce0YnbSV1pyoz507l//6r/+6jdGIiHRcOTk53Hvvvbd8nBMnTrRBNNLZ/fa3v+Wll15q8fYbNmwgLS3tNkYkItI53Og89Xo/+9nPmDdv3m2MSNqSxkeRtqGZw9IuqqqqOH/+PMuXL+fpp5/mX/7lX/B6vYEOSzqB7jZjTkREpCMI5IxnERFpHZ0ztR+Nj9IVaeawtLnHH3+cL3zhC/6/G4ZBaWkp+/fv5y9/+QuFhYUsXbqUpKQkvvnNbwYwUrlZgwcP5mc/+1mz20RGRgKQlpammW8i0u0kJiaycuXKJu//8pe/TF5eHgkJCbz++uvtGJl0dv/5n//JkCFDmt0mMTERgP/6r//SVTwiIp+5/jy1MUlJSe0UTeC8+eabgQ7httD4KHLzVByWNhcbG0u/fv0a3D527FimTJnC/PnzcTqd/PWvf+X555/HZrMFIEq5FXa7vdHXWEREatlstmY/J+vGvhttJ3K9tLQ0vWdERG5CU+ep0jVofBS5eWorIe2qT58+TJ48GYCKigrOnDkT4IhERERERERERES6J80clnaXmprq/7PL5WpyO5/Px8qVK3n//fc5evQopaWlOBwO+vbty4wZM3j44YcJCgpq9rFcLheLFy9m9erVnDp1ioqKCiIjIxk4cCAPPvggs2bNwmy+td9IPB4P7777LmvXruXYsWOUlJQQFhZGnz59mDZtGo8//jjBwcFN5rhz5062bNnCvn37OHfuHBUVFYSGhpKamsrEiRN56qmnSElJafLxn3rqKXbt2sXYsWN58803yc3N5U9/+hMbN24kNzeX0NBQBg8ezNNPP+0vzLenaxdlas0CD9cvLnDp0qVGF8RrrGXFrbwm1z+f58+f54033mDbtm3k5ubidDq1kIGIBFRZWRl//vOfWbt2LZcuXcJqtdK/f38effRRHnrooSb3q/sM/frXv843vvENduzYwdtvv82BAwcoKCggMTGRjRs31tuntLSUhQsXsnnzZs6fP09lZSVRUVEMGTKEuXPnMn369GZjXbduHe+++y6HDx+mqKgIm81GTEwMiYmJ/iuKhg4d2uwxampqePPNN/nggw84f/48AL1792bOnDk89thjWK3Nf53NycnhjTfeYPv27Vy+fBmfz0diYiLjx4/niSeeaNViq43xer387W9/Y/ny5Zw5cwaTyURGRgYPPvhgwFeC/973vse7775Lampqg9e2Odc/J9///vf5/ve/X++2uvfR9c6ePctbb73Fjh07uHr1Km63m/j4eMaOHcuTTz7JoEGDGn3MaxeNeuONNxgzZgzLli1jxYoVnDlzhqKiIubMmaPLgEWkXVx7LnLixAnKy8t54403WLduHTk5OZSXl9c7t6mqquKjjz5i+/btHD58mJycHJxOJ+Hh4fTp04d77rmHxx57jLCwsBs+dkVFBe+88w4fffQRZ86cobS0lKioKJKTkxk7diwzZ870f5bezDnT9ec7Tdm9ezeLFi1iz5495OfnExwcTFpaGpMnT+aLX/wiMTExje53/ef5uHHj+PDDD1m0aBEnTpygqqqK5ORk7r33Xv7+7/+eqKioGz4nbU3jo0h9Kg5Lu7t06ZL/z8nJyY1uU1JSwvPPP8/evXvr3V5cXMyuXbvYtWsXCxcu5I9//GO9YvP1j/Pss882mJ1cUFDAli1b2LJlC4sWLeLll1++6QHp4sWLPP/885w+fbpB/Lt372b37t28/fbbvPrqq/To0aPB/r/73e8aXV21vLyc48ePc/z4cd5++21+8YtfMG3atBvGs3v3br72ta9RUlLiv62mpoZt27axbds2vvvd7/LlL3+51Xl2Jrf6mlxr/fr1fOc736Gqquo2Riwi0nJnzpzh2WefrTeWAv7Pt/379/PDH/7whsf51a9+xSuvvNLsNps3b+bb3/42ZWVl9W7Pz89n48aNbNy4kbvvvptf/vKXDU52vV4v//RP/8Tq1avr3e52u6mqqiInJ4c9e/awZcuWZhdzKSgo4Mtf/jLHjx+vd/uhQ4c4dOgQ27Zt4+WXX27yh97ly5fz4osvNvgx+sKFC1y4cIElS5bwwgsv8JWvfKXZ56IpFRUVPPvssw2+rxw9epSjR4/ywQcf8JOf/OSmjt0Z/e53v+Pll1/G4/HUuz0nJ4ecnBzeffddvvrVr95wzYmamhq+/OUv8/HHH9/OcEVEWuT8+fN86UtfajD2XusrX/kKu3btanB7cXExn376KZ9++ilvvfUWf/jDH+jdu3eTx/n444/5p3/6J4qLi+vdnp+fT35+PgcPHuS11167rWu6+Hw+fvKTn7Bw4cJ6t7tcLo4dO8axY8dYuHAhv/nNb7jjjjtueKxvfetbvP/++/VuP3/+PK+//jrr169n4cKFxMfHt3keHYnGR+noVByWdnXmzBk2b94MwJAhQxodBLxeL8899xz79u0DansVP/HEE6SlpZGXl8fSpUtZv349Z86c4ZlnnmH58uUNTkorKyv54he/SHZ2NgBTp05l/vz5JCQkkJOTw8KFC9m1axd79uzhueeeY+HChVgsllblkpeXx+OPP05BQQFhYWE8+uijTJgwgbi4OMrLy9m+fTtvvPEG58+f5+/+7u949913CQ8Pr3cMj8dDfHw806ZNY/jw4aSnpxMcHMyVK1fYt28fb731FlVVVXzrW9/i3XffbfaLRF5eHl//+texWCx861vfYtSoUdhsNvbu3cvvfvc7ysrK+OUvf8ldd91F3759W5VrIHzhC1/gvvvu49e//jUbNmxo0aJNbfGa1Ll8+TLf+c53CAkJ4fnnn2f06NFYLBYOHTqE3W6/HSmLiDSrurqar371q/4fUCdOnIjdbufYsWO89NJLXL16lYULF3LPPfdw5513NnmcdevWceLECfr168czzzxD3759qamp4dixY/5ttm/fzvPPP4/X6yU1NZXHH3+cYcOG4XA4yM3N5cMPP+S9997jo48+4nvf+x6//e1v6z3G22+/7S8Mjxo1iocffpj09HTCwsIoKSnh1KlTbNmyhdLS0mZz/vrXv86ZM2d46qmnmDJlCpGRkZw7d46XX36ZM2fOsGnTJt555x0ee+yxBvvWxWYYBna7nS996UtMmDABq9XKvn37ePXVVykuLuaXv/wl4eHhN1ykqDHf/va3/YXhoUOH8swzz5CZmUlhYSHLli1j9erVLSrWdzQrV64kLy/P/4PyP/zDP/ivAqoTGxtb7++/+c1vePnllwEYMWIE8+fPp2/fvlitVs6dO8fChQvZt28fv/vd74iOjm52VvV///d/c+LECaZMmcK8efNISUmhoKCAysrKNs5UROTGvvnNb5KXl+cfiyIiIrhw4UK9qzs9Hg/9+vVjypQpDBkyhISEBAzD4NKlS6xfv55Vq1aRk5PD1772NVasWNHoVYyffPIJzz77LB6PB4vFwuzZs7n33ntJTk6mpqaGM2fOsGXLFjZt2uTf52bOmW7kv//7v/2F4bS0NJ599lkGDhxIdXU1GzduZOHChZSXl/OVr3yFJUuWMGDAgCaP9Zvf/IZ9+/YxdepU5syZ4/88f+utt/joo4+4cOECP/vZz/jlL395SzG3F42P0lWpOCxtrrCwkJMnT/r/bhgG5eXl7Nu3j7/+9a84nU4cDgf/8i//0uj+f/vb3/yF4brLI0wmk//+KVOm+Gc8Xbx4kZdffpnvfOc79Y7x0ksv+QvDzz//PP/wD//gv2/w4MHcd999fOc732HlypXs27ePRYsWtfqk8Ic//CEFBQUkJyfz5ptvkp6eXu/+cePGMWPGDJ544gmys7N5/fXX68UB8PDDD/P1r3+9waJ8gwYNYurUqTz11FM88sgj5Obm8sorr/CLX/yiyXjOnz9Pamoqb7/9tn8VVqg9WR08eDBPPvkkHo+HRYsW8YMf/KBVuV6vqqqq3mt8vdDQ0AbPR2vFxsYSGxtLREQE0LJFm9riNamTk5NDQkICixYtqvfFb9iwYbeUl4jIzSoqKvJ/jl/7I9/gwYMZO3Yss2bNoqamhrfeeqvZ4vCJEyeYMGECf/jDH+q1ZxozZgxQ+xn/3e9+F6/Xy6RJk3jppZcIDQ31bzdw4EDuuecexowZw4svvsjatWvZsWMHEyZM8G+zatUqoPYz84033mjQ+mHChAk8/fTT9a50aczhw4d5/fXXGTdunP+2QYMGMWnSJB544AH/Ceb1xWG3280Pf/hDf2H4rbfeIisry3//8OHDmT59Oo8++ij5+fn8/Oc/Z8aMGU1eItuYjRs3+k/QJ0+ezMsvv1wvz8mTJ/PSSy81KJzfqpycHKKjo5u8Py0t7ZZ/xOzXr1+9YyQmJjY7Bh88eNA/E/36711Q+x594IEH+Od//mfee+89fvWrXzF79mz/GH+9EydO8NWvfpUXXnjhlvIQEbnW9eep16s7/7jeqVOneO211+rNkh08eHC9bX72s581elXisGHDmDlzJgsWLODLX/4y586d47333uPhhx+ut53T6eTb3/42Ho+H0NBQXn311XpjH8DIkSN5+OGHuXLlSoOYW3PO1JwTJ07w5z//GagdCxYuXFjvs3rcuHHccccdfOUrX8HtdvPiiy+yePHiJo+3b98+/uEf/oHnn3++3u133XUXf/d3f8e2bdtYs2YNRUVFrRqDG6PxUeTmaUE6aXNvv/02s2bN8v/30EMP8cQTT/Df//3fFBYW8uijj/LOO+8wcuTIRvev+5UyOjqaF198sV5huM43v/lNevXqBcDixYvrXS7qcrlYsmQJULsAXmP9fkwmEz/60Y/87SSuv2TmRk6ePOk/IXzxxRebLIQOHDjQX3ReunRpg/vT0tIaFIavlZSU5P9VcuPGjRiG0WxcP/jBD+oVhuuMHj3aX9Tcs2dPs8doicOHD9d7ja//r6nC/+3UVq/Jtb71rW812+9ZRKS9ffOb32z06o/MzEymTp0K3Phz3mw285Of/KTJvv3Lli2joKCA4OBgfv7zn9crDF/rkUce8fcLvv7ztKCgAKidIdNcT+AbtXV68sknG5wc1+1X1+exrhfktdatW0dubi5QezJ2bWG4TmpqKt/97neB2lnZzbW3aMzbb78NQFBQED/+8Y8bzfOrX/1qm6+c/i//8i/NjsGHDh1q08driddeew2fz8egQYOaPGE1m828+OKLBAUFUVlZyZo1a5o8Xo8ePfj6179+u8IVkW7q+vPU6/976623Gt1v7ty5N2yfcKN2dRMnTmTKlCkAbNiwocH9y5cvJz8/H6idjdrY2FenqdaMbeHtt9/G5/MB8OMf/7jRIuVdd93F/Pnzgdri58GDB5s83qBBg3juueca3G4ymXjmmWeA2lnXdZPDboXGR5Gbp+KwtCufz8fq1atZsmRJo4vR5ebm+nsE33///TgcjkaPY7FY/CeFpaWlHDlyxH/f4cOH/f0R586d22S7CIfDwf333w/A6dOnycvLa3EedQN6aGgod999d7Pb1s3EysvLq/crb2MqKirIzs7m1KlTnDx5kpMnT/pPyisqKsjJyWly34iIiGZjqWtwXzejuqtp69fEZrP53x8iIh2ByWTiwQcfbPL+us/50tLSBn2CrzVy5MhmF9Ws+zwdM2ZMozOorjV69GgA9u/fX+/2urZRmzZtoqioqNljNGfWrFlN3nftwi3Xj487duwAap+zuhPYxsyYMcPfXqhun5bweDx8+umnANxxxx2N/jALtSd8c+bMafFxOyO3282WLVuA2uezsR/160RERPiL5c0VAmbOnNnqdl8iIrdLc2NRU4qKijh//rz/nO7kyZP+mbHX99GH2lZIUHsu8+ijj95SvLeibizs06cPw4cPb3K7Rx55pME+jZk1a1aT48K143hXPEfV+CididpKSJtrbHVOp9PJhQsXWLFiBX/961/505/+xOHDh/njH/9ISEiIf7tTp075/3yjy/evvf/UqVOMGDHipo5RN/Pn1KlTJCQk3CC7WocPHwZqZxoNHDiwRftA7UIC1//Se+nSJf70pz+xadOmZhc5gNoFDZqaEZuZmdnkgjwAkZGRAG3Sj+hGK9sGQlu+JlD7q2xjvcBERAIlOjq62csl6z7nofazvqlLEhtbxfxadZ+n27Ztu+G2depmCteZM2cOn376KRcuXGD69OlMmzaNO+64g9GjR5OUlNSiYwL+q4Qac32+16r7LpCamtpsgTsoKIisrCx27drV7KXG17t48SLV1dVA7RoKzambXd1W6lZ+7yjOnDnjfy7+53/+h//5n/9p0X7Xv2eu1dL3nYhIazR2ntoSLf1M2rNnD2+++SY7duxotm3S9YvNAf6+/4MHD27yip3bzeVycf78eeDGY1dWVhY2mw23293s+NncOH7t1UNtcY6q8VHk5qk4LO0iJCSE/v37893vfpcePXrw4osvsmvXLl599dV6l1dcuzDNjWYrxcXF+f987eB7s8e40aI41yosLGzxttdyOp31/r5582ZeeOEF/6DR2v2vdaMvEXWF47rLhLqatnpN6jRVVBERCZSWfs5D7eKuTWnu883tdjc767gp149jCxYsIDs7m9dee43y8nKWLVvmb9uQkZHB1KlT+cIXvnDD/vTN5dxcvnXfC64d55tSN8u5Nd8Drn2ObvRd40b3d3Y3O/42993n2sK/iEigteQz6be//S0vvfRSi47X2PlHXcG4sQXb28u14+CNxk+bzUZUVBT5+fnNjp/XTgS73rXjeFc8R9X4KJ2JisPS7hYsWMD//M//UFJSwpIlS5rsvdPcZRfADfvvttUxGlM3eKWlpfH73/++xftdexlvcXEx3/72t6mursZut/PlL3+ZSZMmkZGRgcPh8PeC3LFjh78f083G2x20xWtyLV2uIyJdVXOfb9eenN1///189atfvenH+cd//EceeeQRVq5cyY4dOzhw4ADV1dVcvHiRP/3pT7z55pv867/+K48//vhNP8aN3Oh7ANzc2HrtPrfru0ZncW1h/rvf/W6ziyFeq6WFfxGRQLvRecGOHTv8heH09HS+9KUvMWrUKFJSUrDb7f79f/Ob3/Dyyy83e6yWjFvt4XaNn92JxkfpTFQclnZnNpvJzMykpKSEvLw8SkpK/JeUXPtLWHOXU0D9X+KuvSTl+mP07NmzRcdoza9wdY9XWFhIr169ml1spymrV6/2zzx66aWXmlzk4GZmcHVHbfGaiIh0d8HBwYSGhlJdXU15efktL6aWmprKc889x3PPPYfb7ebgwYOsXr2aRYsWUVNTw7//+78zbNiwVrUDaom6MaFucZ/m1H3faM33gNZ8X7mVnsudwbXfwTweT5svwCci0tG98847QO2VOYsWLWryipHmzuuio6O5evVqq9bBaWvXjm03Gj89Ho9/xrBmszZO46N0JvrZQQLC4/E0+udrV2A/cOBAs8e4dlXUa/dri2PcSN2q59XV1ezdu7fF+13r9OnTQO2g0dzqt3W9H7urlv563haviYiIfP55unfv3ha3PWoJm83GqFGj+Nd//Vd/3z3DMJpdlftm1Y3ply5davayTrfb7e/z2JqTtoyMDP/Mnhutfh6I1dHbQkvH3759+2Kz2YDaPtUiIt1N3Xnd+PHjm20l1Nx5Xd2PpIcPH76psbctZhwHBQXRo0cPoP55cmOOHj2K2+0GWjd+dgUaH6UrUnFY2l11dTVnzpwBamcoXbu4TmJiIr179wZqZ9ZWVFQ0egyv18u7774L1P5See1Kp4MHD/b3U1y+fHmTfRcrKipYtWoVULsaa0sXowO49957/X9+7bXXWrzfteqK4i6Xq8keS9XV1Sxfvvymjt9V1LXXcLlczW7XFq+JiIjAlClTAKiqqmLhwoW35TEmTJjg/3NjC/O01fENw2Dp0qVNbrdmzRrKy8sbxHQjVquVMWPGALB9+/YmZ3r5fD7/95XO5tpFWZsbg0NDQ/3P3a5du25YUBAR6WrqzuuaK+oeO3aM/fv3N3l/3dhbXV3NokWLWh1DS8+ZbqTu8/z06dPNxrtkyZIG+3QXGh+lK1JxWNrd//7v//qb8E+aNKlBD6cnnngCqL0M8yc/+UmjvYxeeukl/y+0Dz/8sH8whNqBccGCBUDtauWNLQxgGAY//vGP/SekdY/ZUkOHDmXSpElA7aJy//u//9vs9jk5Obz//vv1bqv7VbaqqorVq1c32Mfr9fKDH/wgoJcWdQR1izIUFhY2+WMBtM1rIiIi8Pjjj/t/uP3Nb37D5s2bm91+z549fPrpp/VuW7FiRb0rg6537Qyapnq/34pp06b5f/R95ZVXOH78eINtrly5wv/3//1/QO0J3Lx581r1GHW9kl0uFz/84Q8b/TH61VdfbXYV944sKirKP+Pp4sWLzW773HPP+WdS/eM//mOz23u9XlauXMnVq1fbLlgRkQDKzMwEasfD7OzsBvcXFRXxne98p9ljPPTQQyQmJgLw61//ml27djW5bWOfny09Z7qRxx9/3N/X9sUXX/T/gHqtbdu2+YvDQ4cOZejQoTf9eJ2RxkfpitSUU9pcYWFhgxOhmpoaLly4wPLly9m6dStQ+4tbY4vRPfbYY6xcuZJ9+/bx7rvvcunSJZ544gnS09PJz89n6dKlrF27Fqi9rLOxxXK+9rWvsW7dOrKzs3n55Zc5deoU8+fPJyEhgZycHP7v//7PP+COGDGCRx99tNV5/ud//ifz588nPz+f3/3ud2zbto358+fTr18/goODKSkp4cSJE2zdupVPPvmEqVOn8uCDD/r3v//++/nlL3+Jy+Xi+9//PsePH2fChAk4HA5Onz7Nm2++yZEjRxg5cmS3bpMwcuRIoHb21b/927/x1FNPERUV5R9k676Mwa2/JiIiAg6Hg1/+8pc8++yzuFwunnvuOaZPn859991Heno6UNuL8MiRI6xbt44TJ07w4osv+mfSQu3CKz//+c+ZNm0aI0aMICMjg+DgYAoKCvj44495++23AbDb7Tz00ENtnoPNZuPHP/4xzz33HJWVlTz++ON8+ctfZsKECVitVvbt28cf/vAHf8uJ7373u8TExLTqMaZMmcI999zDpk2b2LRpE48//jjPPPMMmZmZFBYW8u677/Lhhx8yZMiQTtlawmq1MmTIEPbu3cvSpUsZOHAgWVlZ/p7+kZGR/n6Ko0aN4mtf+xovvfQSOTk5zJ49mwULFjBp0iTi4+NxuVxcunSJffv2sWbNGvLy8li5ciVJSUkBzFBEpG3MmTOHTZs2UVVVxZNPPsmzzz7LoEGDMAyDffv28ec//5mCggJGjBjBvn37Gj1GcHAwP//5z/nyl79MdXU1zzzzDLNnz2bq1KkkJSXhcrk4d+4cmzdvZsOGDQ1aVLTmnKk5/fv35//9v//H66+/zsmTJ5k7dy7PPvssWVlZOJ1ONm3axJtvvonX68Vms/Ef//Eft/DMdU4aH6UrUnFY2tzbb7/tP+lrSkxMDL/4xS/o379/g/ssFguvvPIKzz//PHv37mXXrl2N/nLau3dv/vjHPxIWFtbgPofDwV/+8heeffZZzp49y7p161i3bl2D7UaOHMnvf//7G65A25jExEQWLVrECy+8wKFDhzhw4ECzPY6vjzMpKYkf/ehH/OAHP8DpdPLqq6/y6quv1ttm5syZPPLIIzzzzDOtjq+rGD9+PMOHD2f//v28//77DWb7njhxwv/nW31NRESk1sSJE3nttdf4zne+Q35+PqtXr270Kpc6DoejwW0FBQXNfieIiIjgV7/61W07Abr77rv52c9+xg9/+EOqqqr47W9/y29/+9t621gsFl544QW+8IUv3NRj/Pd//zfPPvsse/fu5cCBA/zjP/5jvfsHDRrEf/zHfzB37tybziOQvvKVr/Dcc89RUlLCt771rXr3ff3rX+cb3/iG/+/f+MY3CA8P53/+53+oqqrijTfe4I033mj0uDabrd5luSIindmMGTOYN28ey5Yt4+rVq/z4xz+ud7/FYuH73/8+ZWVlTRaHofa855VXXuFb3/oWpaWlLFu2jGXLlrUohtacM93It7/9baqrq3nrrbfIzs7mhz/8YYNtwsPD+fWvf+1fp6C70fgoXY2Kw9IubDYbUVFR9OnTh8mTJzNv3rxmVzWNiopi4cKFrFy5kpUrV3Ls2DFKS0sJCwujX79+zJgxo0E7ieulpaWxYsUKFi9ezOrVqzl58iSVlZVERkaSlZXFrFmzmDVrlv+ymZuRmprK4sWL2bBhAx9++CEHDhygsLAQj8dDeHg4mZmZjBgxgilTpjB69OgG+8+fP5+ePXvy+uuvs3fvXsrLy4mKimLAgAHMmzePmTNnsnPnzpuOryswm828/vrrvPbaa2zatImLFy9SXV3daLsRuPXXREREak2YMIF169axbNkyNm3axPHjxykpKcFsNhMTE0Pv3r0ZM2YM06dPp1evXvX2XbVqFR9//DE7duzg/PnzFBQUUFFRQVhYGD179uTOO+/k8ccfb3bhnrYwd+5cxowZw1//+le2b9/OlStX8Pl8JCQkMH78eJ588slGf6huKYfDwZtvvsnf/vY3li9fzpkzZzCZTGRkZDBz5ky++MUv3nDF947s7rvv5i9/+QtvvPEGhw4dori42L8AUWOeeeYZ7r//fv72t7/x8ccfc+HCBcrLywkKCiIhIYH+/fszceJEpk+f3uqZ2iIiHdnPfvYzxo8fzzvvvMOxY8dwu93Ex8czevRonnzySYYOHdrgB8rG3Hnnnaxfv563336bTZs2ce7cOSorK4mJiSEpKYkJEybwwAMPNNivtedMzTGbzfzbv/0bDzzwAH/729/Ys2cPBQUFBAUFkZ6ezuTJk/niF7/YrT/HNT5KV2MybubTQkREREREREREREQ6NS1IJyIiIiIiIiIiItINqTgsIiIiIiIiIiIi0g2pOCwiIiIiIiIiIiLSDak4LCIiIiIiIiIiItINqTgsIiIiIiIiIiIi0g2pOCwiIiIiIiIiIiLSDak4LCIiIiIiIiIiItINWVuzcWFhOYbRsm1NJoiNDW/VPh1ZV8sHlFNnoZw6vq6WDyinmzlua7U0Dr0WnYNy6hy6Wk5dLR9QTp1FZx1TO5qu+N6o05VzA+XXmXXl3ED5dWZtnVtrxtRWFYcNg1YHeDP7dGRdLR9QTp2Fcur4ulo+oJw6UhwdJe62pJw6B+XU8XW1fEA5dRYdJaeOEsfN6uzxN6cr5wbKrzPryrmB8uvMApGb2kqIiIiIiIiIiIiIdEMqDouIiIiIiIiIiIh0QyoOi4iIiIiIiIiIiHRDreo5LCIiUsfn8+H1egIdRouZTOB0OnG7Xa3u4WS12jCZTLcnMBER6fa6y5hqsVgxmzU/SUREbp/ONqbWae3Y2pZjqorDIiLSKoZhUFZWRHV1RaBDabWiIjM+n6/V+5lMZmJjk7BabbchKhER6a6645gaGuogIiJGP7qKiEib6sxjap3Wjq1tNaaqOCwiIq1SN+A6HNEEBQV3qpM7i8WE19u6acOG4aOkpJDS0iJiYhI6Vb4iItKxdacx1TAMXK4aKiqKAYiMjL1doYmISDfUmcfUOi0dW9t6TFVxWEREWszn8/oHXIcjItDhtJrVasbjaf0sp/DwKEpLC/D5vFgsGjpFROTWdccxNSgoGICKimLCw6PVYkJERNpEZx9T67RmbG3LMVWjsYiItJjX6wU+H4i6i7qC8M1cPisiItKY7jqm1uXbGftBiohIx6Qx9dbGVBWHRUSk1TrjJTq3orvlKyIi7ae7jTHdLV8REWk/3W2Maat8VRwWERERERERERER6YZUHBYRERERERERERHphrSqjoiIBMRPf/ojVq16v8HtY8dO4Je//G2LjnHlymUefvihRu/7j//4L6ZMmQrAP//zP3Lq1ElKSooJDw9n9OixPP/8N4mLi7/5BERERDqI9hxTFyyYxdWrV+rd/8QTX+T557/RyqhFREQ6nrYYUwF+/vOfsnv3LgoKCrDbQxk8eCjPP/9NMjN7+Lc5ceI4v//9/3L8+FHMZgv33DOFr33tH7Hb7W2RSoupOCwiIgEzbtxE/uVffljvNpstqMX7JyQksmLF6nq3vffeu7z11huMHz/Rf9vIkaN56qkvkZgYz9Wrufzud7/hBz/4Z1555U+3loCIiEgH0V5jKsDf/d1zzJ07z7+iemho+57EioiI3E63OqYC9O+fxfTp95OYmERZWRl/+tOr/OM/fo3Fi9/DYrFQUJDPP/zDV7n33mn80z99l8rKSv73f3/Jf/7nj/jJT37elunckIrDIiISMEFBNmJj4256f4vF0mD/LVs2MWXKtHq/tj766BMAWK1m4uOTePLJL/L9738bj8eD1aqhUEREOr/2GlMB7HY7sbFx/uKwiIhIV3KrYyrA7Nnz/H9OTk7h2We/yjPPPM7Vq1dITU1j+/atWK1W/umf/hmzubbr73e+8z2efvpxcnKySUtLv6XHbw31HBYRkQ7rpz/9EV//+t+3ePvjx49x6tRJHnxwdpPblJWVsnbtagYPHqrCsIiIdBttOaYuXPhXpk+/h2ee+QJ//evruN3utgxVRESkQ2vtmFpdXc2HH75HcnIqCQmJALjdLmw2m78wDBAcHAzAwYP72zTeG9FZsYiIBMzHH29j2rQ76932xBNf5Jln/g6A2Ng4fL6Wz0p6//0V9OjRkyFDhjW47+WX/5dly97B6XQyaNAQfv7zX91a8CIiIh1Ie42pDz/8GP36DSAqKpLDhw/z6qsvceXKZb73vRdvPQkREZEOoK3G1GXLFvP73/8v1dXVZGb24Ne//h02mw2AkSPH8Nvf/oq33nqDhx9+nOrqan7/+5cAKCwsaOOMmqfisIiIBMyIEaP49re/X++2iIgI/5+fe+7rLT5WTY2T9etX88Uv/l2j93/hC08zZ85cLl26xJ/+9Ed+8pN/4+c//zUmk+nmghcREelA2mtMvbZVU8+efQgPD+cHP/hnnn/+G0RGRt1c8Leosw7ldXF31vib05VzA+XXmXXl3KD75tfW+bbVmDp9+v2MGTOOwsIC3n77TV588Xv8/vevExwcTK9evfnXf/13XnrpV7z66u8wm8088shjxMTE1ptN3BIm0609JyoOi4hIwISGhrZZL6VNmzbgdDqZMeOBRu+PiooiLi6GlJR0MjN7Mm/eAxw5cojBg4e2yeOLiIgEUnuOqdcaNGgIADk5OQErDsfGhgfkcdtKZ4+/OV05N1B+nVlXzg26X35Op5OiIjMWiwmr9dY66JpMJux2Oz16ZN7ScQCioiKIioqgZ88eDBs2jGnTJrN9+2amT58BwMyZM5k5cyaFhYWEhoZiMpl4++2FpKWltSgPn8+E2WwmOjqMkJCQm45TxWEREekS3n9/BZMm3UV0dPQNtzUMAwCXy3W7wxIREel0WjOmnjx5AuCWF+65FYWF5Xw2tHcqJlNtgaOzxt+crpwbKL/OrCvnBt03P7fbhc/nw+s1bnmxVMMwMIxbP871PB4fhmHgdNY0OHZkZO14u2rVewQFBTFy5NgWPb7Xa+Dz+SgursRmq9//v+65agkVh0VEJGBcLneDfkoWi5WoqCgAXnnlJfLz83jxxf9o9jg5OdkcOLCPX/ziNw3uO3r0MMeOHWHo0OFERUWSnZ3Da6+9QmpqmmYNi4hIl9EeY+rhwwc5cuQQI0eOJjIygkOHDvPb3/6SSZPuIikpqc1yaS3DoFMXQTp7/M3pyrmB8uvMunJu0P3ya+tcb3VMvXQph40b1zFmzHiioqIpKMhj4cK/EhwcwoQJd/i3W7p0EYMHDyM0NJRPP93Jyy//L88993XCw1s38/tWX28Vh0VEJGB27vyY2bNn1LstIyOTt95aCtQ24s/NvXrD43zwwXvExycwduz4BvcFB4ewefMmXn/9Dzid1cTGxjFu3AT+/d//k6CgoLZJREREJMDaY0y12YLYsGEdf/7zH3G73SQmJjFr1hyeeOKLbZOEiIhIB3CrY2pwcDAHDuzjnXfepry8jJiYWIYNG8Err7xOdHSMf7ujR4/w+ut/oLq6ioyMHnzve//CtGkzb09SzTAZRstrywUFLZ+WbjJBXFx4q/bpyLpaPqCcOgvl1PF1tXyg6ZzcbheFhVeIjU3GZut8hVWr1XxTlwc1l3fdc9VaLX2/dKf3V2emnDqHrpZTV8sHuldOGlPbf0ztaLri+71OV84NlF9n1pVzg+6bX2cfU+u0dmxtqzH11ro0i4iIiIiIiIiIiEinpOKwiIiIiIiIiIiISDek4rCIiIiIiIiIiIhIN6TisIiIiIiIiIiIiEg3pOKwiIiIiIiIiIiISDek4rCIiIiIiIiIiIhIN6TisEgXVOnykF1czfmiKgoqajAMI9AhiTTw05/+iEmTRvPmm3+pd/uWLR8xadLoVh3r9ddfZdKk0Q3+mzp1kn+bvXt3M378yAbbXLhwvg2yEZGuqqTazYXiKi4UV1FS7Q50OCKNau8x9ac//VGjY+qTTz7SFumIiIgETFuOqdfKyclm2rS7mDHj7nq379272z+OXju2tud5qrXdHklEbru88hr25pRy8HIpZU4PBhBsNdM3PowRqZH0T3BgMpkCHaaIX1BQMAsX/pXZs+cRERFx08d5/PGnmDNnfr3bXnjhq2RlDWyw7VtvLSUsLMz/96io6Jt+XBHpus4XVbEvp5SjV8upcnsBsAdZGJwUzoi0KDKiQwMcoUh97TmmvvDCt/n617+Jx+MDwOv18swzX+Cee+696ccVERHpKNpqTK3j8Xj40Y/+lWHDhnP48MFGt3nrraVERob7x9b2PE/VzGGRLuJMQSVv7M5mw6l8XF4fieHBpEQEE2ozc+ByGQv3XGLDqQJ8mkUsHcjo0WOJjY3l//7vz7d0HLvdTmxsnP+/oqIizp8/y4MPzm6wbXR0TL1tLRbLLT22iHQ9e7JLeOPTbHZcKMJihuSIYJIjgrGYYNu5Iv666yL7ckoDHaZIPe05pjocjnrbHD9+jPLyMh544KFbTUNERCTg2mpMrfOHP7xMZmYmU6ZMa3KbQJ6nqjgs0gXkldew7OAViird9I61k+AIJthqxmYxExlio1eMHUeQhQ0n89l1oTjQ4Yr4WSxm/v7vv8aSJe+Ql5fb5HaTJo3mww9Xtvi477+/nPT0DIYNG9Hgvi996Qlmz76PF154nr17d99U3CLSdZ3Iq2DlkasYhkHvGDsx9iCCLGaCLGZi7EH0ibXj9RmsPHKV0/mVgQ5XxC8QY+rn26xg9OixJCUltypmERGRjqgtx9Q9ez5l06YN/NM//XOz233pS0/wwAPTA3KequKwSBewN6eU3IoaMqJDMDfRNiLabiPYYmbH+WKcn10eK9IRTJ58D3379uP1119tcpuMjEzCwhwtOp7L5WLt2tUNZg3HxcXxve/9gJ/85Of89Ke/ID09kxdeeJ79+/feUvwi0nUYhsEn54up8fhIjghptBWTyWQiOSKYSpeXTy4Uqa+/dCjtNaZeq6CggJ07P+bBB+e0NlwREZEOqy3G1NLSEn760x/xr//6b01uFxcXx3e/+6/85Cc/57/+KzDnqeo5LNLJVbo8HLhcSnSItcnCcJ14RxDZJU5O5VcyJOXW++aItJXnn/8GL7zwPI899mSj97/11tIWH2vz5o1UVVUyY8YD9W7PyOhBr169/D2cBg8eSl5eLm+//SbDh4+8+eBFpMu4VOrkTGEl8WFBzW5nMpmIDwvidEElV8pqSIkMaacIRW6sPcbUa61atRKHw8Fdd93d2lBFREQ6tFsdU/+//++nTJs2o9nzzYyMHmRk9ADAajWTlTWk3c9TW1Ucbs06VnXbdpW1r7paPqCcOosb5VRU5aa8xkNSeDBcs41hGJgw1bvNZjVjGAYFVa6APkdd7XXqavlA0zndrhyHDx/J2LHj+cMffsf998+6pWO9//4KJk68k9jYuBtuO2jQYNauXdXiY5tMbfectHS/7vT+6syUU+dwo5wKKl3UuL2ERTYypl63U3iIhfzKGgoqa0iNCkxxuDu+Rp1RVx5TDcPggw/e4777ZmKz2Vp17LYcU0VERG6HWx1T9+79lO3bt/C3v/0fUDtu+nw+Jk8ex3e+8y9NXpnT2vPUW9Wq4nBsbHirH+Bm9unIulo+oJw6i6ZyKvGZCAqyEhYWjM1S2ynG7XZz4sQJevXqhd1ur7d9UHANYY4Q4uIC/xx1tdepq+UDDXNyOp0UFZmxWExYrbfWmchkMmEyfX6cr33tmzz99ONkZGQC3NTxL1++xN69u/nFL37V5P7X3n769Eni4uJu+Fg+nwmz2Ux0dBghIW1TBGrt+6U7vL+6AuXUOTSVk6PMRXCwjbCwz/+dV1VVceb0aQYNHtRgYZDgcjfhEfaAj6nd6TXqzLrimHrw4D5ycrKZPXtuix/jdoypIiIit8tzz32D//f/vkB6ekar933llT/j833e1nPr1s0sXPgGr7zyOnFxCU3ud+rUiRZNdmorrSoOFxaW09K2aiZT7Reg1uzTkXW1fEA5dRY3ysldVQNeH4WlVUSE2KioqOD8+XP06NETsFBVVePf1mcY1NR4MGpcFBSUt18S1+lqr1NXyweazsntduHz+fB6DX97hptlGAaG8flxevTozbRpM1i8eBFAveN/4Qvz+cpXvs7kyfc0e8wVK5YTGxvHmDETGsT3zjtvkZqaSkZGT9xuN2vXrmLTpg389Kc/v2EuXm/tL7zFxZXYbO5699U9V63V0vdLd3p/dWbKqXO4UU7e6hrcHg8l5dUEWcwUFhaSm3uVPn36UlPjATz+bV0eHx6PF6+zJmBjand8jTqjrjimQm3B+b333mXgwMFkZvZqcQ63Y0wVERG5XXr37sO0aTNYsuSdBvfdaEytrct87vjxY5jNJnr16uO/7Z133iIpKYWePXthGF4+/PADPvpoIz/96c/bNpFmtKo4bBi0+kvazezTkXW1fEA5dRZN5RRrD6J3XBiHrpRRXVpEcVER/ftnYbNa4brtS6s8RIRY6RPn6BDPT1d7nbpaPtAwp9ud37PPPs+mTesb3H7x4gUqKyua3dfn87Fq1fvcf/+DDWb3Qe2M+t/+9lfk5eUTHBxMz569+MUvfs2ECZNaHF9bvsatPVZ3eH91Bcqpc2gqpx4xYSSEBVNQXoOrJBefz8eAAQNre/pft31+hYvk8GAyo+0Bf36602vUmXWlMRWgoqKcjz7ayAsvfPum4uuKr7GIiHRNtzKm3ojb7eZ3v/s1+fn5hIQE06NH689Tb5XJaMUSywUFrZs5HBcX3qp9OrKulg8op86iJTkdulTCr1fvITzIRlav9EZXV3d7fZwrruaOHjHMHZp8m6NuXld7nbpaPtB0Tm63i8LCK8TGJmOzNb9gU0dktZpvanZWc3nXPVet1dL3S3d6f3VmyqlzaElO645c4i9bj9AzPpKM5MRGt6lyeblS7uShwcnc0TPmNkbcvO76GnU2GlPrC+SY2tF0xfd7na6cGyi/zqwr5wbdN7/OPqbWae3Y2lZj6q01txKRgCsrK+XotlXc3Tee0Og4rpbX4PZ+/mHiMwyKq9ycK66mf7yDqf3iAxitiIhIx3XlymVyD37E3VkZ1Ngc5Fe48Po+P/Pw+gzyK2q4XOZkVFoUYzOiAhesiIiIiEgbaFVbCRHpWM6fP8fOnTuYPn0GkVHR7LxQzI5zxWSXOPFh+C+BjQixckePGKb2iyc8RP/sRURErnfgwD7Onz/H/DnzMNuC2Xy6gL05pZwvrsYATNReAh9jtzGtfwKTe8f6F4IVEREREemsVCUS6YQMw2Dnzk8oKipk3ryHsdlsAEzoEcOI1EhO5ldSUOnCZxiEBVnoG+8gLqzzXlohIiJyu3g8HjZsWEd4eDgPPTTX35pp+oAEJvSI4UReBaXO2kWzokJt9E9w4AjWV2gRERER6Rr0zVakk6mpqWHt2lWkpqZx//0PNOgvHGKzMDQlIkDRSXfRinb1XUJ3y1ekuygtLWHNmlWMHj2m3qrRdcJDrIxW6wi5zbrbGNPd8hURkfbT3caYtspXxWGRTqSgoID169dw552TSU1NC3Q40g3VrVjuctUQFBQc4Gjaj9frAcBs1iXkIl3FuXNn2bXrE+67736ioqIDHY50Q911THW5agCwWHQqKiIibUNj6q2NqRqRRTqJ48ePcejQQR58cDYOhyPQ4Ug3ZTZbCA11UFFRDEBQUHCD2esdmc9nwutt3a+rhuGjvLyEoKAQzGbLbYpMRNqLYRh8/PF2SkpK6rVmEmlv3W1MNQwDl6uGiopiQkMd+sFVRETaTGcfU+u0dGxt6zFVxWGRDs7n87F27VpKSiqZO3eB/xcxkUCJiIgB8A+8nYnZbMbn87V6P5PJTERETKf8giEin3M6nSxZspro6ATGj5+of9MScN1xTA0NdfjzFhERaSudeUyt09qxta3GVBWHRTqwiooK1q79kDvuGMfIkZl0s/Y50kGZTCYiI2MJD4/2t1voDEwmiI4Oo7i4stX/lqxWm4pIIp1cfn4+GzeuZc6cBwkJidSYKh1CdxtTLRarZgyLiMht0VnH1DqtHVvbckxVcVikg7p8+RJbtnzE1KnTycrqRUFBeaBDEqnHbDZjNgcFOowWM5kgJCQEm82topBIN3Ps2FGOHj3MrFlzSEtL0pgqHY7GVBERkbbR2cbUOoEcW1UcFulgDMNg//69ZGdfZM6c+YSGhgQ6JBERkU7J6/WyefNGzGbLZ62ZNGNRRERERORaKg6LdCBut5v169cSHR3NrFlzdBl7Gyt3erha7sTjMwixWkiLCsGmQoGISJdUUVHB6tUfMGTIMPr3HxDocLqcgkoXhZUuDMPAEWwlJTIEs763iIiIiHQ6Kg6LdBAlJcWsWbOKsWPH07Nnr0CH06XkV9Tw6cUSDl4uo6Tajc8Am8VEckQII9MiGZUeRbBVRWIRka4iJyebbdu2MHXqfcTFxQU6nC7lQnEVn14o4VhuORUuD4YBITYLmdGhjEqPYmhKhIrEIiIiIp2IisMiHcDZs6fZvftTZsyYSWRkVKDD6VKyi6tZcuAyl0qdRIfayIwOxWyCGq+P/IoaVhy+yrmiKuYNTSbUZgl0uCIicgsMw2Dv3t1cvnyJuXMXEBwcHOiQupRDl8tYcfgKZU4PcWFBxDvsmIAqt5ezhVWcKaziUqmTGQMSsJhVIBYRERHpDFQcFgkgwzD4+ONtVFRUMG/ew1it+ifZlsqcbpYevMLV8hr6xNnrzWQKsVpIjbTgdHvZf6kUu83CnCFJauUhItJJuVwu1q1bQ1xcPA8+OFuf520su7iaFYev4vL46B1rr/f8hgVZCQuyUup0s/VMIVEhVu7oFRvAaEVERESkpXQdtUiAVFdXs2LFMsLDw7nvvvtVGL4Njlwt53JpNT2iQ5u8xDXEZiE+LIhDV8rIrahp5whFRKQtFBcX8e67Sxg8eAjjxo1XYfg22JtTQqnTTWpkSJPPb2SIjVCbmZ0XSnC6ve0coYiIiIjcDFWjRAIgNzeXTZvWM3nyPSQnpwQ6nC7J4zPYk11KiNV8w0tbI0Os5BVWcfRqOUnhIe0UoYiItIXTp0+xd+9u7r//ASIiIgMdTpdUUu3m8NVyYu22Gxbe48KCyC5xciq/kiEpEe0UoYiIiIjcLBWHRdrZ4cOHOHnyOA89NBe73R7ocLqsKpeH4ioXESE2/20GcOXKZRITk7CYP79wwmQyEWwxk1uumcMiIp2Fz+dj+/atOJ3Vas10mxVVuais8ZAW+fkPqF6vl9y8XJKTU7i2XGyzmDE+20dEREREOj59ixZpJ16vl02b1hMUFMycOfMxm9XV5XbyGbXF4LoTVp/Px6lTJykoLKC0tJQBA7LqncyaAMNo/zhFRKT1qqurWb36A/r06cuQIZMDHU6XZ3w2pvLZrGGX282xY0epqCjH4/GQkZ5x3Q6fbS8iIl2WYRjkltdwobgap8cHhkGw1UxaVGizLYhEpONRcVikHZSXl7F69YcMGzaCfv36BzqcbiEsyIIjyEqFy0OozcTxY0cpLSvFZDIRFxvH9V9VXF4fMXZbo8cSEZGOIzf3Kps2beCee+4lMTEp0OF0CxEhVkJtFqpcHoLwcvToEaqd1VgtVqKjoutt6/UZGEB4sE4zRES6Io/P4GReBfsvlXIqv4IKl7d2MSuTCcOAUJuZ3nFhjEiNZECiA5tFk6JEOjp9axO5zS5evMDHH29j+vQZxMRo5e72YrOYGZ4WwcpDl7ly+ixV1ZVYzBb6DxjQ4ES20uUhxGomKyk8QNGKiEhLHDp0kNOnT6o1UzuLCwuiT1wYu87lUXHpNG63i+CgYAYOGow9NLTetkVVbmLsNvrFOwIUrYiI3C5Ot5cPjuayJ7sUHwZx9iCSwoP9s4QNw6DS5eVYbjlHc8sZlhLBrEFJOPSDoUiHpn+hIreJYRjs3r2L3Nxc5s17mKCgoECH1O2kh3opzDlLpctLlMXGoEGDcDjqn6x6fD4ul9YwODmC9KjQJo4kIiKB5PF42LRpPaGhdmbPnqfWTO3MZDKRbK3i0sXzmH0GMfYwBg0c1OC7jdPtpcTp5t6+8YSH6DRDRKQrcXl8LD90hT05pSSHBzda8DWZTDiCrTiCrVS7vezNLsXlMXhkRAqhNksAohaRltC3NpHbwOVysXbtahITE3nggVnqtxQAV69eYc3yd0h2mrgUkkFkah+whWAYBiaTCZ9hUFLtpqDSTa84O7MGJ2LW6yQi0uHUtWYaMWIUffr0DXQ43dLx48fYs/49UnyRFIZlEp2ejs/8+Um+x2dQVOmirMbD8JRI7u6jK6VERLqaj04XsDenlNSIEOxBNy70htosZESHcuhKGZGhVuYMSW6HKEXkZqg4LNLGCgsLWbduNRMnTiIjIzPQ4XRL586dZcWKZbhcLgYmJvHEPXew50o154qquFrhqu03bBhEhNi4s1cMk/vEERWqfsMiIh3NhQvn+eSTj5k27T61ZgqQvXt3s2HDOgzD4O6+8aSPHMeu7FJySqrx+vCv/BobZmN6zwQm9YwhRLPDRES6lDKnmz05pUSG2FpUGK4TbDWT4Aji0OUy7ugZQ7wj+DZGKSI3S8VhkTZ08uQJDhzYxwMPzCI8PCLQ4XRLR44cZtWq9/H5fGRm9mDOnPkEBwczON0gu6SaK6VOvD4IsZnpFWsn2q52HyIiHY1hGOzatZOCgnzmzl2g1kwBYBgGW7du5pNPPgZgxIiR3HvvdMxmM8PTojhbVEVhpQufDxzBFvrEhxEWpFMLEZGu6FhuBcVVLnrFtL7ff2SIldOFVRy5Ws7dfVQcFumI9A1OpA34fD62bt2Mx+Nm3ryHsVg0YyYQdu3ayUcfbQAgK2sQM2c+6H8tzCYTmdF2MqO1gJGISEdWU1PD2rWrSElJZebMB9WaKQB8Ph9r1qzi0KEDANx552TGj5/ofy2sFnPtgnPxgYxSRETag88w2JtdQrDVjNnc+jHZZDLhCLKwL6eUiT1iCLJq3QCRjkbFYZFbVFlZyZo1H9K/fxaDBg0OdDjdkmEYbNq0gd27dwEwevQY7rlnqgoKIiKdTEFBAevXr2HSpLtIS0sPdDjdktvt5r333uXMmdOYTCbuu+9+hg4dHuiwREQkQJxuH0XVbsI/W4DOANwuF1XVVVRVVVFdVYXH46F//wFNHiM82EqZ00OFy0OMVVcDiXQ0Kg6L3IIrVy6zefMm7rlnKomJiYEOp1vyer2sWvUBR48eBmDy5CmMHTtOhWERkU7mxInjHDp0gAcffAiHIzzQ4XRLVVVVLFu2mMuXL2G1WnnooblaBFBEpBurqqriXM5V8vPz8bmd5NRUUVlVhcfjbrBtH58Pi7nxWcEWswmvYeDy+m53yCJyE1QcFrlJBw7s49y5s8yePY/Q0NBAh9Mt1dTUsGLFMs6fP4fZbGbGjAcYPHhIoMMSEZFW8Pl8bNnyET6fl7lzF6g1U4CUlpawZMkiCgsLCQkJZd68BZq9LSLSTTidTgoK8iksLKCgIJ+Cgnyczgry8gpxGRYum3tixkcwniaPUV1djSMsrNH7vD4DiwlsTRSPRSSwVBwWaSWPx8OGDesIDw9n9ux5mqEaIJWVlSxd+g5Xr17BZrMxe/Y8evXqHeiwRESkFSorK1m9+gOysgYxcOCgQIfTbeXl5bFkySIqKsoJD4/g4YcfIy4uLtBhibRYZ/06Xhd3Z42/OV05N+i8+dXU1FBYWEB+/rWF4AIqKsobbGu31y4eZzV5CcKDExvBeAgKCsIeasdu//y/ULsdq7Xp8lKV20tYkBVHsCXgz1lnfe1aSvl1Xm2dW2uOo+KwSCuUlpawZs0qRo8eQ69efQIdTrdVXFzEkiWLKC4uJjTUzoIFj5CcnBLosEREpBUuX77Eli0fMWXKNBISEgIdTreVnX2Rd99dgtPpJC4unocffpTw8IhAhyXSKrGxnbsVTWePvzldOTfouPm5XC4KCgrIy8sjLy+P/Px88vLyKC0tbXT7ukLwtcLCwujRowcJCQn09Uay7bKXwekxBAW1rmewYRg4S2uYNiCRtOSom0nntuior11bUX6dVyByU3FYpIXOnTvLrl2fcN999xMVFR3ocLqt3NyrLF68iKqqSiIjI3n44ceIiYkNdFgiItJChmFw4MA+Llw4z5w58wkJCQl0SN3WyZMneP/9FXg8HtLS0pk7d4FaZUmnVFhYjmEEOorWM5lqiwCdNf7mdOXcoOPk53a7KSws9M8CrpsVXFZWitHCwEJCQomLiycuLvaz/8cTFxdHRkaSP78+VS6Olp0jr6yGGHvrEi5zerBikOGwUVDQcIZye+sor93tovw6r7bOre54LaHisMgNGIbBzp07KC4uZt68h7HZbIEOqds6f/4cy5cvxeVykZCQyIIFj2jRIhGRTsTtdrN+/VqioqJ46KG5as0UQPv27WH9+rUYhkHfvv148MHZ+o4jnZZh0KmLBJ09/uZ05dyg/fLzeDwUFRXV6wtcWFhAcXFxi4vAwcHB/uJvbGysvwgcFuZoMB7X/bUuv+jQIIamRLD1TBEOm5Uga8t6B7u9PnLLahiVHklSeHCHei/ovdm5deX8ApGbisMizXA6naxdu4r09AxmzJipk9gAOnbsKB9+uBKv10tGRqZmm4mIdDIlJcWsWbOKsWPH07Nnr0CH020ZhsH27Vv5+ONtAAwbNoJp0+7DrEWCREQCzuv1Ulxc3GBxuOLiYnw+X4uOERQURGxsnL/4GxsbR3x8PA5H+C2dz07tl0BhpZujV8tJjwohxNb8ArIuj48LxdX0iQ9j5sBEnUuLdGAqDos0IT8/nw0b1nLXXXeTkpIa6HCaZBgGl0qdHL5STk5JNdUeL0EWM9GhNgYlhdM33tHiX3Y7qt27d7Fx43oABgzIYubMWc0ueCAiIh3L2bNn2L17FzNmzCQyMirQ4TTJ4zM4X1jF4atl5FW4qPF4CbFaSAwPYmBSBD1j7FjMnffk1ufzsW7dGg4c2AfAHXfcycSJk3TCLiLSznw+HyUlxRQU1G8HUVxchNfrbdExbDYbsbFx1xSCa2cDR0RE3pbPdXuQhfnDkrFaTBy+UobNbCbeEUTodUXiGo+P/IoanB4fAxIdzB2aTESIrkwR6chUXRFpxLFjRzl69DAPPjgbh8MR6HCadCKvgk/OF3O2sJIqlxd7kAWL2YTPZ3CusIq9l0pJCg9mTHo0YzKiOl2R2DAMNm/exK5dnwAwatRopkyZppNYEZEAMQyDgkoXpdUevIZBsNVMUnhwk7OHDMNgx47tlJWVMXfugg7btsBnGOzLKeXTiyVkl1Tj8RmEWs2YzSZ8Phen8yvYeaGEjOhQxmZEMyw1AnMnG4vcbjcrVy7n9OlTmEwmpk27j+HDRwY6LBGRLs0wDEpKiiksLKSgIJ/8/NpCcFFRIR6Pp0XHsFqtxMTE+mcA17WFiIyMaverPiJCbDw8LIX+CQ72ZpeSXVKNy+vDfE0bCqvFTGpECCPTIxmWEok9qPkZxiISeCoOi1zD6/WyefMmTCYTc+cu6LCXWBqGwc4Lxaw+nkeNx0d8WBApEcENiqYuj4+CShcrDl8lp7SaWYOSOs3g7PV6Wb36Q44cOQTAXXfdzbhxE1QYFhEJAI/P4HR+Bfsvl3Eyr4JqlxcfBlazmbiwIEakRTI4KZw4x+ernTudTtas+ZAePXoyYcIdHfbz2+P1seZEPtvPFmIxmUh0BDVa7K52e8kuruZCcTW55TVM7R+PtZPMIq6urmbZssVcupSD1WrlwQdn069f/0CHJSLSZRiGQVlZ6WdtIAr9s4ELCwtwu90tOobFYiE6Oob4+Ph6bSGioqI71HlpiM3C2IxoRqZFcb6wiovFVVS5vRiA3WYhLSqU3rF2rJaOE7OINE/FYZHPVFRUsHr1BwwZMoz+/QcEOpxm7c0p5YOjuQRbzKTE2JvcLshqJiUyhCqXl93ZJQDMG5qMrYMP1C6XixUrlnHu3FnMZjP33TeTIUOGBjosEZFuqdrtZeXhXPbllOIzDGLtNuLDgjCZwOM1KKxy8cGRXD45X8ysQYkMSo4gLy+PjRvXMXnyPSQnpwQ6hSb5DIP1JwvYcqaQuDAbkc1c9hpqs5ARHUpJtZuPThdgMcPUfvEdtuhdp6yslMWLF1FYWEBISAhz5y4gPT0j0GGJiHRKhmFQUVFOQUE+J09WcebMRf9sYJfL1aJjmM1moqOjr1kcrrYQHB0djcXSOSbyAFjNJvrEh9EnPizQodxWTrcXp6d2dnSozdLhz6VFboaKwyJATk4227ZtYerU+4iLiwt0OM3Kr6hhzfE8rGYTCeHBN96B2v5QqREh7M0pJTM6lPE9Ym5zlDevsrKSZcsWc+XKZWw2Gw89NIfevfsGOiwRkW6pxuNl+aEr7M4uJTUimLCg+l8dg6wmkiNCMAyDnFInSw9e4dy5s7iunmLWrDmEhXXsE8ZT+ZVsP1dErL35wvC1okJtGAZsPVNIz5iOfVKcn5/PkiWLKC8vIzw8ggULHiU+Pj7QYYmIdHiGYVBZWXFNT+DPZwM7nU5MJrDbg6mqqsEwGj+GyWQiOjr6mlnAtYXgmJgYrZ/SwXl9BueKqjh0uYzjeeW4vQYmICzIyvC0CAYlRZDgCOrwPxCLtJQ+kaRbMwyDvXt3c/nyJebOXUBwcMuKrYF05Go5xVVu+sQ1PWO4MfYgC8EWE3uySxmdHtUhL/MpKSlmyZJFFBUVERISyoIFj3ToxQBFRLq6j88Usi+njPTIkAYLzlzLZDKREhHM3pPnKbKZ+ff5swmzB7VjpK1nGAb7L5Xi9vqICg1p1b7RdhtF1W4OXC7tsMXhnJxsli1bjNPpJDY2locffoyIiMhAhyUi0uFUVlZSWFjwWUuI2kJwfn4+Tmd1i48RFRVVbxZwXFwcMTGxHbbXvjStuKq2LeOp/Eo8Xh9RoTbCbBYMoMLl4cNjeWw7W8SYjCim9ovXTGLpElQclm7L7Xazbt0aYmPjePDB2Z3iVz+n28ve7FIcwZabijfOEcSl0mrOFFbRP6FjLbSXm5vLkiWLqKysICIigocffpzY2NhAhyUi0m25vT4+OVtIiM1MqM1CWXkZOdnZ9B+QheW63ocul4vTp0/RIyGRUkI5nl/JuMyOXRzOq3BxIq+CWPvNnbjH2G0cvVrO5N419XotdwSnTp1k5crleDweUlPTmDt3AXZ7635UFhFpS3nlNRzLLSevoga31yA82FrbkiAurN2Ka9XV1f7Zv7WF4AIKCgqoqqps8TEiIiL8xd++fXtgtdqJjo4lKKhjj3nSMiXVbt7ee4lzhVWkRTX8YTwixEqiI4jiajebThXgdPuYNTip06xBECgl1W4uFFeBAZkxdqJC9aNJR6PisHRLxcVFrF27mvHjJ5KZ2SPQ4bTYheJq8itrSItsfIaTAfh8PrweD0XFRSQmJnHtMBViteD1GZzIK+9QxeELF86zfPlSampqiI9P4OGHH8XhCA90WCIi3dqp/EpyiquJtwdx5WptuwjDMDhz5jR9+/bzjy+lZaVkX7xIr959sIeG4iyuZl9OKaPSozr0ydLpgkoqajwkOhovmvoMAwyDyspKPB4P0dHR9e6PCrFyurCK0wWVHao4fODAPtauXY1hGPTu3YeHHpqrmWsiEjAl1W7WHMvjeF4F5U4PNosJs8mEy+fj4/NFpESEcFefWIYmR7TZZB2n0+kvABcWFpCfX1sIrqysaPExwsMjiI2N9ReC62YF111pajJBXFw4BQXlTbaVkM7FZxi8d/gq54qq6BkbirWJRQBNJhMx9iCCLGY+uVBMvCOISb00qakxhmGw62IJG07mU1JduzBjVKiNe/vFMzYjqlNM0OsuVByWbufMmVPs2bOb++9/oNNdXlnp8uAzDKwWMzU1NVRVVVJVVU1VVVXtn6urSExMoqqyktKyUkpLSujdpy/WaxY2CLKYKXV6AphFfcePH+ODD97D6/WSnp7B3LkLCAlp3eW9IiLS9q6W1+DxeLlw5Tx5ebn+2/Pz8wh3OEhKTuHK5UuUV1SQlTXQv4hOlN1GbnkNpdVuYsM67kyqKpfX/+fq6s/G0uqq2v9XVlLtrKZHj55cvnSJGlcNaanpZGRk+E9kTCYTZhNUuX2BSqEewzDYsWM727ZtAWDIkGHcd9/9HWqFexHpXgoranh7zyXOFFQS7wgiMc5erxhU4/GRV17D0v2XqXZ5W70uisvl8heB6xaFKygooLy8rMXHCAtzEBsbS3z85z2BY2PjCA0NbVUs0vldLK7mVH4FqREhTRaGr+UItlJe4+HTiyWMyYgm2Krx9noXiqtZdSwXE9ArtvbH+LzyGlYdyyXBEUzPWF3V1FGoOCzdhs/n4+OPt1FVVcm8eQ93ikUA6hZCKC3N4+TJc+y6UMKFq17yT5fi9XobbF9aWkJOTjZRUdHY7XYKCguoqKygf/8sHJ8tClS3unxHsHfvbtavX4dhGPTr158HH5zdKV4XEZHuoKSsnHMXzmOtKGhw35mzZ8jLyyMuLp5+/frXu0rFajbhNQzc3o5RNK1jGAalpSUUFl7m5Mnz7D5byoVCH/mnS/H5Gsaan5/HlSuXiYmJISgomJxL2ZSXl9GvX//PLx82ahetCTSfz8e6dWvYv38fABMm3MGkSXdpRo6IBIzXZ7B0dzZnCiubnIUZbDWTHh1KXnkNq4/nERcW3Ggfd7fb7S/8XtsWorS0tMXxhIbaiY+Pv2Y2cG0hWC13pM6hy2XUeHzYg5peY+F6sWFB5JQ6OZlXwZCUiNsYXed09Go5VS4vfeLC8Pl8mM1mkiJCOFVQydHcchWHOxBVYaRbqK6uZs2aD+nduw+TJt0V6HAaMD67bPXa/ld1f66pcfpXwi0wwnGaUwnCS2One5WVlVRUlBMZGeW/zel0cujQAXr26EliUjJen9HsokLtwTAMNmzYwPr16zEMGDFiJPfeO12zm0REOohz586yfetmanzRDb4sut1uiouLMAyDrKyBDcYjn2FgNhGwhU8Nw6CsrPSzS4k/LyQUFhbg8bj9Y+pVYqkxxRNCw8Kw4W8n4SY2Ns5/e2lZKfv376Nfv/5ERUWBCYICPFPI4/GwYsW7nDx5ApPJxL33TmPkyNEBjUlE5HxRFcevlpEaeeNZmAnhwZwprGTXhUIc3nL/Z3bd53dJSQlGC3s3hISE+FtB1C0OFxsbR1hYmH4wkyZ5vD6O5pYTGdK6ElmQxYzhg7OFlSoON6LS5cFiNlFVVcXRo0fo178/EeER2MwmKms6ztXMouKwdAO5uVfZtGkDd989haSk5ECHQ1VVVb1fvOtWw62urmp0+2u/w4TiwooXU5Cd6LAQ7KF27HY79jA7Pq+PysoKfD5fg8ugfD4fZ86eoaS0DFNUCmlRgWvb4PP5WLt2FWfOHAfgzjsnM378RH1ZExHpAAzD4JNPPmbbti2YCQdbND5MmKk9Ka+urqKiooLY2FjMZjMnTp5g0KDBmK/5DC+t9hBltxERfHu/ZhqGQUVFeb1LievGVpfL1eg+9cZUowaTCYJC7ISHfTaefjaulpaVUlpagtPpbNCv1+1xc+ToYZJSMjBHxJHgCFzrDKfTyZtvLuHUqZNYLBYefHA2/fsPCFg8IiJ1Dl4uw+U1sNstcF1d12cYn7XzqaS6qvb/RZU1vHvCzUnfBew0/hl+reDg4GuKv7WzgePj4wkLc+i8QlrN6fHh8RoENfLDdo2rhsqKSiKjohosyAtgs5iodDW8qlcgJTKUj88WcPjMSWw2K/ZQO16fgdtnkBqp1i0diYrD0qUdOnSQ06dP8tBDc9v9kiGn01mvCFx78lrY6oUQ4uPj6N07E6vVTmxsHOuzPRzNr6RXTP18zp8/T1iYg8SEJDweD84aZ4PjXSosIajCSfzIwDTMd7vdvPfeu5w9e5qwsBDuu28mQ4cOD0gsIiJSn9PpZNWq9zl16iQA0aYKQnHjxEaoUUNpaSmG4SMuLt5/4l1WVsqF8+fo2bMXUHvCX+n2cm96fJvNqK2bxfv5mPr5bDKns+FY1xiTyURUVBTx8fH+MTU8KpZ3jpdTXuMlOaL+j6Znz50lKiqa6KhoysvL8Xgbzm45fTmXxIoykkLS2iTP1iovL2PJkkVUVZURFBTM3LkLyMjIDEgsIiLXMgyDMwWVRIY0vhjm7k934fa46+8DuLFTRXC94rDNZvPP/q2dEVxbCA4Pb7sF7EQsZhMmU4PfMQAoyC/g/IVzREfHMDBrYIP7DcPA0oEX4A2kfjHBVF09R7ERwpAePSmt8VFY5SQzxs7gZC1A35GoOCxdksfjYePG9YSEhDJ79rzb2q6gpqamXjuIutnArVkIweEIb3QhhJCQkAYr4Y4yl3MsvxKn20vIZ+0hDKCgIB+AtLR0IiMjOX3mNIWFn/eJNAAnNqKcBXyw9P+omTqdIUOGtduXqqqqKpYtW8zly5ewWq089thjxMamaHVfEZEOID8/nxUrllJUVOS/zYqPJHP5/8/efwbHdaZ7nuDvpM+ES2TCe0c4etGJRvTek6JMqaRSVV1XPd0z2zu90bPds70ROzExEfNhYju2d+e2uVG3VF6i9957b+EI720mkN6fsx9ApAglSIIkQLjzi2BIgfeY52SePO95H/N/qJJicVqtROl0REVFakFKL/4JQLfTj1GvpiT53V74B6prXnYEd3d34/V6hn0Mo9H4khOhv7TYZDKjVqsj5tT5bjVHn3UQEn9c2PkDAWy2PgBy8/IQEKiqqsT5UnBXBEIo0dqa+fMff8fWrdvJzs55p2t+F3p6eti37684HHaSkxPYuHEHSUnJH+z8MjIyMq8jJEoERQmNeuh1hl6vJ+AY7BxWKhToNFqykvKZnxVPYmL/eiguzig7gWVGHa1KQaxOTbfTh1E/OKhhtVoAiI+Pj9hPkiT8IQmTYehAyFQmFApx8fQRcvzdLF2wgTZPv09maa6ZZXkm4vTyZzaekJ3DMpMOu93OwYP7mDNnHgUF00bsuH6/H6u1XwLi5Yxgu334TmCDIYqEhIQX/36MgL9NN9zCxCiKk2J41m4n16RHpVTgcNjx+X0oFUqM8fEoFQqKioppb2+joaEeUZJwokMn+UmW+ggGg5w6dYLm5mbWrdvwY2OdUcJm62Pfvu+xWCzodHo+/XQPRUVF9PQ4RvW8MjIyMjJvprKyglOnjg8pxRDrbiVgsaIwZ6NT+Xk5p0ahUJCfX0BSYhIAPS4/3qDItunJJES9fl7xeDwvBVYHgqs9uN2uYdsdGxv7k2yyfkfC28xps9Jiedxqo6HXTa7JgEIQwoHV6Kho9Lr++XnmzFk0NDbQ3t6GBDjQEyN5MEt2XK4QP/zwF5Yu/YTFi5eOuhOjtbWF/fv34vV6MJlM/M3f/A3BoFIOtsrIyIwblAoBtVIgKIowRJl+fHw8Gq22X87nxT+NRku91cPy+ZnMkrVbZT4wCkFgbkYch5+2v+id8CJg7Pdjf5H0ZTKZIvZz+UMYNMp3DopPViRJ4syZUzQ3N/HVni/Izs7BG+iX3tCNcf8jmaGRncMyk4rGxgbKyh6yZs064uPfTTohEAhgtVqG7IY7/EYI+iG74Q6VcfW2qJUKds5MwRsMUdPjIiNOh6WnfyFrMpnDOkgCkJaahiEqmvtVDagCXnKlLqLxhY9VVvaUjo52duzYTUJCwlCne2+6urrYt+97nE4HMTGxfPbZlyQmjs65ZGRkZGSGjyiKXL58kbt3bw853tHRgdvtYGFmIY1KD31EoySEHj9RWi1FxSVEGQz0eQJY3AF0KgUbi5NYlP1jZo3P5xs0lw44gZ3O4QcHo6NjwkHVl4OrWq32vT8Do17NrlmpfP+wjTqrh2yjjp4Xc2pCQmJ4O4VCQV5uHvroGB7XtmIIeciTOtDQv9CRJIlr167Q0tLMli3bR2S+H4ra2mqOHDlEIBAgNTWNPXs+x2g0ysFWGRmZcYUgCBQmRnOrxU6cOjJgl5GRGfG3XneAWJ2K9Lix640iM7WZnhLDpZoeLC4/idH97xi9vf0VVdFR0Wg1g987JEmi0+GnNCVGvm9/wo0b13j69DFbtvxYWSU7hcc3snNYZlIgSRJ37tzGYunmZz/7Ervd98YMmlAohMViGZS5ZLH00NvbO2wnsFarfcn5+6MjeLS74cbp1Xw5N53Dzzqo7HRQ3e1EhQpzQr9DXJIkPAGRHpcff0jJvNJC4qwV2Boj9Y4tlh7+8Id/Zt26jcyYMXNE7WxubuLgwX14vV4SEhL57LMviImRMwFkZGRkxhqXy8XRo4doamqMGBNFkfr6OjQaDdOnT8fj8TNNasdCDF3EIcSYiU1Jp8srIHk9RGuUzE2LJtsQIsrVwqVLj8Jz6rtU1/QHV390Ar9Ndc27kGHU89W8dA4+baeuy06r3Y8OJWbzj3Oq0xeix+1HUkbxyewi1I13cff4Io7V0FDPd9/9lm3bdpCZmTWidj59+pjTp08iiiJ5efls374LrXbsmuHJyMjIvI6ZabE87nTi9AWJ1rze7SBJEha3n4+z4zG/ofJERma0MOrVLMs1cbKiC7UygFGvxvJCbstkHpx4JkkSLTYvsToVy/PNsvTJSzx9+pjr16+yfPlKpk+fMdbmyAwT2TksM+Hx+XycOXOKtLQ0Nm/e+qKc9McFWygUore3NyJzqbfXiiiKwzqHRqOJKFtNTEwkOjpmzCaCOL2ar+ZlcONZDT0VPdhVcfSKWvosbiQJtCqBzHg98zKMFCdHE6Up4t69NC5fvhhx3YFAgBMnjtLc3MTatesjOrO/C8+fV3Hs2GGCwSAZGZns2rVn1Bf4MjIyMjJvpq2tlcOHDw6pje/z+aipqSYtLQ2TyRSe49SESJH62LKgGENKHs1dVvrsPbjtfUj2LpoeW2ga5vn1esOQEksfunHsy6TG6vj1wiwOX7mDVXISjEqk1RlCcroQAL1GSWlyDHMz4piWGI2SaVy8eI6HDx9EHMvpdPD9939m2bIVLFr08Xu/J0iSxK1bN7h69TIAM2bMYsOGTSiVcgaOjIzM+CUrXs+s9DiuVHaRHa94ZZNSSZJos/uI1amYl2X8sEbKyPyEZXlmPIEQV+qs2Dx+LDY7CvordKH/fnX4QnS5fBh1anbMSCHXPHbvL+ONurpaTp8+yZw5c1m0aPFYmyPzFsjOYZkJjcVi4ezZUyxbtpy0tHR6e6309LRSXd1IT0833d3d9PZaCYVCwzqeWq3GZDK/1MSm//9jY+PGZTRQpRDwdtRQIHWQOy2VWQtz8AdFVEoBg0ZJRpx+UOfUBQsWkZ6ewZEjB4fM5nr69DHt7W3s2LE7nDH1Ljx8eJ9z584gSRLTphWydeuOd3I4O31BOhw+AiERlULAZNDI2QQyMjIy74gkSTx58ohz584MOS/29fXR2tpMfn4BGo0Wl8uFw9GH1dpHIBAgJyeXB/duI0m3hnU+nU73kvM3IewEHu3qmndFp1YSaH9OkdTK3NklZBVkEQhJqJUCcXo1KTHal+xWsG7dRjIysjh9+kSEXrMoily5cpGWliY2b972zo5vURS5cOEsDx7cB2DRosUsX77ynT6/XrcfiytAQBRRKxUkR2uJ0clLARkZmdFBIQjsmZ9Jd5+big4n8QY18Xr1oLWJyx+ky+lHr1aybXoK2fGyk01mbFEqBNYXJ5EYreXEgxqcohqVOoouL0geNyFJIkqjZFZqLMvyzOSY5Ht2gM7ODo4cOUhubh5r124Yl+96Mq9GfiOUmXBIkoTN1sfdu3e4f/8u+fnTOHfuDFarhVAoiMGgxe1+vayESqXCZDKHM4AHZCHi4owoFENHtccjoihSVVUFwPzpReQmRb9xn7S0dH7xi19z8uQxamtrIsZ7err5wx/+mfXrN1FaOv2t7JEkievXr3LjxjUAZs+ey7p1G976M221eXja5uBxm40+T4CQ2N8UIFrbL/Y/Ky2W/ISocKMAGRkZGZnXEwwGOXv2NE+fPh70d0mScLvdNDTUY7fbMBqNVFSU4/F4AAm1WoVaraWoqASlUjWk7JJGoxnkBB6oshnL6pp3oa+vl7a2VhSCwJLZpURHv3lOLSkpJTk5mcOHD9Ld3RUxXldXy3ff/Zbt23eSnp7xVvYEg0GOHz9CVVUlgiCwevVa5s1b8FbHECWJOoubp212yjocOH1BRElCqRCI06mZnRbLjNRYMoy6CfVdycjITAxidWq+/CidS9UWHrfZqbe6gf7eKCKgUykoSIjik3wzhYlvfubKyHwIFILAvEwjrY/b8YgtJGTMJDvTiErRHywuTIwmNVYrz5sv0d+A/gfM5gS2bds5oXwqMv3IzmGZQQRCIt6AiCD0Z9CoFGP3wJMkCbvdhsXSQ3f34OZwNTXVSJJEdnYO9fW14X1++nxWKpXEx5si9Avj4+MnxQOrsbEBj8eNwRAVFnofDgaDgd27P+POndtcvXopQmbC7/dz7NhhmpubWL167bCyfkVR5OzZ0zx+/BCApUs/YcmSZW81aUqSxJ2mPs5UdmH3BTHqVGTG6VAqBEQJ7L4gd5r6eNhiY1F2PBuKk15ZoiYjIyMz1viCIr5gCIXQX80xVgEtm62PQ4cO0NBQj9vtxu12vfhv//9bLD1otVqio2OwvtDWg/45NSkpiczMHBQKJWq1etBcmpjY//8xMbGTYoFUWVkJQGZm1rAcwwOYTGa+/vpbLlw4F54DX8bhsPOXv/yR5ctXsWDBwmF9Vl6vl0OH9tPU1IhSqWTz5m2UlJQO/2KAYEjkbFU3Nxqs+IMi8QY12fF6FAKEJIled5CLNT3cbe5j9bQEluSa5KCrjIzMiBOlUbG5NJlleSYqu5z0uv0EQmDQKMkzG8iK18vPHplxRygUoqGuBiMePl80jYyMtLE2adzi8XjYt+8H1GoVu3bteSHzKTPRkJ3DMkiSRLvdx7N2O4/b7HgD/aWm0VoVH2UYKU2JIWEUS/klScLpdNDdPeD87Qk7gX9apun3+6mtrXnRsCYp/HeFQkF8fDwJCYnk52ehVkdhNicSHx8/qTX5KisrACgqKnprZ7cgCCxa9DHp6ekcPXp4SO3Jx48f0t7exvbtO8M6S0MRCAQ4evQQNTXVCILAunUbmDPno7e7GOBOUx9HyzrQKhUUmA2DFtBKAeL1/eVodm+Qq3UWREli6/SUQeVpUx23P0TVixfvKK2K4qRo4vTvryEtIyMzPERJosHi4Wm7jfIOJ4GQiEIQMEdp+CgzjpKkmFEt5RdFEZutLzyXlpeXcfnyRex225B68729vcTFxaHV/tiBW6FQYDBEsWjRx6xfv/rFnJpAXJxxUjiBX0VlZTnAWzthoV+WasOGTWRkZHLmzEkCgcCgcVEUuXTpPC0tTWzatPW1GvxOp4O9e7+nu7sLrVbLzp2fvlUAGPrvw9NV3Vyp7cFs0GA0Dp4HVIJAYrSGhCg1PS4/Jyq6EIAluaZJ/R2/LX2eAFVdTly+IKYoDUVJ0ejlbusyMu9ErE7Nwqz4sTZDRmZYtLQ04/V6MBiiSEtLH2tzxi3BYJBDh/bjdrv5+c+/eavgusz4QnYOT3GCIZHzz3u4Xm/F4QsSq1WhVyuQAJsnwNFnHVyts7C2MJGFWe+3KJQkCZfL9VIG8I/ZwF6v9437Oxx2mpoamTNnLjk5eYOa2JhMJlQqFYIACQkx9PQ4XisrMRkIBoNUV/dLShQXv/1CdoCMjEx+8YtfceLEUerr6yLGu7o6+cMffseGDZspLi6JGPd4PBw4sJfW1hZUKhVbt+6gsLDore3osHs5W9WFVqkgOUb72m1jdf3f9e3GXnJMBmanx731+SYjPU4fPzxqo7HXg4QEEiTH6Ng9K1VulCAj8wFw+4Psf9zO41YbvqCIUa9Gr1YiShKtfR7qLC6SY3RsnZ5M0TBkgF7HQHVNv77+j0FVq9VCIBBAkiRaW1toamocUgrC7Xbj8bjJzMwiNjYGgyEKvd6AwWDAbE5gx45dZGVlTZk51WKx0NXViUKhYNq0t5/DBpg+fQbJySkcOXKQnp7uiPGammp+//vfsm3bziEXmxaLhX37/orNZiMqKpo9ez4nOTnlre2o6HBwo8FKYpSGWN2rA4SCIJAYrQWnj/PVPWSbDGQY5eaxALU9Lg4+bafL4QMBBARyTAY+n5Mm9z+QkZGRmeTU1DwHID+/YFJUHI8GkiRx8uQx2tvb+OKLr16bTCYz/pGdw1MYSZI48ayDs8+7idOqIjI143RqJEmiy+nnaFkHkiTxcY5pWMd2uVzhheqAI7i7uxuv1zNs+4xGI2ZzfwMbq9WCw+Hg3/7b/5mYmJi3vtbJSENDPV6vl+joGDIyMt/rWFFRUezZ8wW3b9/k6tXLEY4En8/HkSMHaW5uZNWqtahU/Y8Ou93G3r3fY7H0oNPp2LVrD5mZWe9kw9N2OzZvkIJhOjFjtCqs7gAPWmzMTIud8uVokiRxrrqHOoubPJMelVKBKEo09Ho4UdHJ3y/ORq2UX2xkZEYLf1Dk6N1mbjf2khqjJVo7+BXLqFcTEiVabF72PWrj87lpTBuGvqIkSTgc9hcB1Z5Bc+tPq2sGCAaD1NRUY7H0AP0OQL1ej8FgQK830NfXS0JCIgUF0yKqa9LS0tmxYxcxMbHv+ElMTKqq+itxsrNz3rl53AAJCQl8880vOXfuTITGM4DNZuMvf/kjK1asYt68BeF3r7a2Vvbv34vH4yY+Pp7PPvsSo/Hts+wkSeJBiw1RlF7rGB5kc5SGWoubZ+122TlM/+/5REUnFpefPLMBhSAQCInU9rg4/7ybz+fKWWQyMjIykxVJkqiu7ncOT5tWOMbWjF8uX75IZWUFO3bsfuu+CjLjD9k5PIWp7XFzobITk0GN8RWLB0EQSI7R0unwce55NzlmAykxuvC4x+MJL1T7//UvXt1u17DtiI2NHZQFPNDRXKPREAgEOH/+LKmpaezatUQudXyJior+8tfi4uIR+VwEQeDjj5eQlpbOsWNHcDodEds8fPiAtrY2duzYRSAQZN++73E47ERHx7BnzxckJSUNceQ34/aHeNRqJ1areqtrSYhSU29109znmfLdjW3eIDXdTpKiNSiE/nJxtVpNWpyWNpuXlj6vnD0sIzOKPGjp4069lfQ4HYZXlJ0rFQJZRh2NvV6Ol3fxmyV6dC+27a+ucYaral52BPt8vmHZIAgCarWalpZmDAYDCQnFLzKC9QiC8EKaqZq0tHQSEhIj9p879yNWr143qeWYhkKSpJfm1HevxHkZtVrNpk1byMjI5Ny50xEyE6FQiAsXztHS0szGjVtoa2vh8OGDBAIBUlJS+fTTz4mKinqnc7fZvdT2uEgwDD+7VRD6G9Q9arWzLM8cEdyYajT1eWi3eUmP1REKBkGpRK1UkBilobrbhd0bGLbjXUZGRkZmYtHV1YndbketVr+1rNNU4cGDe9y5c4s1a9a9U9WwzPhjar/5TXEevSh7TYzRwBvKRU16JRXtfZy49YQcpS3sBB7KgfgqoqNjXnQxH3AC9zuEX9Y5fBmbrY/Tp08yf/5C8vLy3+bSJj2BQIDa2mpg5BayA2RlZfOLX/yK48eP0NjYEDHe2dnBf/pP/28CgSDR0dGYzWb27PmCuDjjO5+z2+WjzxMg9RVyEpIkDek0NqiVtDt8dDp8U945HAyJhEQJpVqguqYat9vNnNlzUCkEQqJE8CdaozIyMiNHMCRyv9mGVq3AoFG+dk4VBIFEg4K6DgtHr3UTF7CG59ThVtcIgkBcXNyguTQhIRGLpZszZ04NWU3icNhpbGwkLy8/IjNWpVKxbt1GZs6c9VbXPVkY6HmgVCpHPENo5sxZpKSkcuTIASwWS8T48+dVPH78EEmSMBiiyMnJZefOT9+rmUunw4c7ECI1NnJOlQBeMafG61U027x0OnxT3jkcEiVCEiCJlJWXodfrKSosQqkQ8IVEguIk11mRkZGRmcIMZA3n5uYNqzH7VKO6+jnnz59l/vyFzJu3YKzNkRkhpvab3xSm1+2notNBQrSOn65iA4EA1l5ruJO5x+3G5/fhRsPZphCzpAaUr1n5GgxRLxrGJQ7qav665is/pa6ulnv37rBhw6b3cjpOVurqavH7/cTFxZGaOvKdU6Ojo/nssy+5desG169fHSQzYbVaqaqqQBRFZsyYxb/4F//9e0t9BIISoigNaiznDwTo6emmvr4OtUrNrFmz0el0g/YTBAEBgUBQXqTFGzSkxOq4U1lPwNpNcVF/Rnm3w4fJoCY1Vvfmg8jIyLwTDVYPLTYPecmxiIHgoDGv10tfX294TnW73QSCAeySnlNNToqk1tceOy4ubtBcmpiYiMlkHuQ8FEWRK1cucefOrSGP0d7eht1up7i4JCwL9PLxd+789J10bScLA43o8vLyI+aZkSAxMZFvvvkVZ86corz8WfjvkiTR1tZKQ0M9CoWCVavWsHv3ZxHf0dsSCPU7f192AHu8Hnq6u6muqSY5KZnCwqKIBa/yRTAxEJKDiWmxOow6FQ8qasDroaBgGpIkYXH7yU+Iwig3epWRkZGZtAw4hwsKZEmJn9LW1srRo4coKipm1ao1Y22OzAgiO4enKDZvEE9AJF2nIuAbXOro9/upqamO2EdNCL+gIiCpUBJArzcMygQeWLy+j1afJEncunUDm83Grl175EjdKxhYyBYXl46a1IZCoWDJkmVhmQm320VnZwe1tTVIkoTJZCImJoZDh/azffvO93Liq5QCgkLAHwzi6Oulu6cbm60PAKfTiVKpoLevl9SU1FfuP9VRKgRSAl04rN3EJeYQUEdTZ3WjVggsz5dLhGVkRhObN4Aogk6txP0T57Ddbqe2rjZiH7UQwi1pkAABiImJxWw2k5CQGA6uvq66ZgCXy8XRo4doamqMGBNFkdraGvR6A0VFxRHjubl5bNmy/b01dicykiSF9YZHuhLnZTQaDVu2bCMrK4tz584QCARoaKinra0/OJCamobH4+HEiaOsX7/pvZzUqheBVr/f39+w8EWll0KhwONx09nVSWZWVsQ7liiBUhBQyfr0RGuVRPXVY3O5SM8owBFS0mFxE6dXsyLfPOX7HMjIyMhMVvr6eunu7kKhUMjVyz/BarWwf/9eUlJS2bx5myz5OcmQvQVTFFGS+kv1hxjTG/ob0w1ki6qUKgwGAwqtAVGtY9tHc5mWmUJUVNSIPhC8Xi+nT58gJyeXjz+W9YVfhc/no7a2BoDi4pJRP19OTi7ffvsr/uN//D/CQYPk5BTy8wsQBIH29ja+++63bN68jYKCaW99/FAohK2zGUt7E3V2O1rRR2xsHHm5ecTExvHo0QMATKbIZoieQAiVQpC7htMf4X5+5zyfTl+AJiOfVpsHc5SGOelxFCe9uemVjIzMuyNK0ivraQxRgx2varUGg8FAlNpAtF7PV0uXkZiQ+E7OwPb2Ng4fPoDdbo8Y83o91NbWkJ6eidFojBhfvHgpS5d+MuU7cHd2dtDb24tarSY/v2BUzyUIArNmzSEhIYn//X//X8OO4Zyc3HAjl8rKCjo7O9i+fTfJyclvfQ6fz4eltZ72lk6aXb1oBJH4eBNFhcUoFAIVlRWo1RpioiMrfmzeANFaFWaDHJi/efM6nvr7fLtkI059Ela3n1lpeuZlGsmKlxv2ycjIyExWBta7GRmZUzp4/lNcLhf79/+AwaBn1649713lJDP+kL/RKYpBrUSjUuAJhPhp2xmFIJCfX4BG07+A1Wi0CIDF5UcCCvNziNKM7K3T1dXFhQtnWbFi1ajIJEwmamtrCAaDmEwmkpLefuH4toiiyK1bN9BoNGRmZiIICjIzswZt4/V6OXBgLwsWLGL58pVvbGYkSRINDQ1cv36HyspKvF4Pxth8QqY0ZmX96CTp7OwAIDoqGq0mMnuux+kn06gnxzS1J+6B8p7CwiK2b1ojB1ZkZD4wBrUSgX7t4Z+i1xvCOr8GvSGcrdnS5yEtTk/mEPrAw+HJk0ecPXuaUCgUMdbba6WtrY2CgsKIzGOtVsvmzdvk7tsvGGhEN/DeM9r4fD6uXr1ESkoqbrcbo9FIYuLgZq69vb386U/fsXr1WmbPnvvGZ3owGKS6+jllZc/63xFCIeKNMwimZFOalYT6xQKu7kUGuyneNOQxrZ4AS3JMxL9FI7vJyNOnT7h27QqfLFvOkiUfjbU5MjIyMjIfkAHn8LskPU1WAoEABw7sxe8P8PXXv3gruVCZiYPsHJ6iJMVoyTYZaLL7SI2KzBBJHsLp2OvtXzSMtGO4vLyMyspytm3b+c6duacSH0JSYoBgMMixY4d5/rwKhULBr3/998THmzh27Agejzti+7t3b9PW1sq2bTuIjY0bNCZJEl1dXVRU9H/foZAPlUrHnDlzKSmZjlsVxT/fasItKhjIn7NYrQCYzOaIc3kCIfyixEeZceES2qlIb681XN6zZct22TEsIzMG5JqjSIjW0O30EacenImrVCgiJHFEScIbFJmVFvvW5woGg5w/f5bHjx8OOd7c3ITf76ekpDQiK9hsTmDXrk8xmSKfqVORDyUpMYDT6WT//h/o7OxAr9fz7//9f8Bms3H+/NkIJ38wGOTMmVM0Nzezfv3GCCe/JEk0NTVSWVlOS0s9VquNxMRkli1bQXFxMTV2iR8etREQBdT0d5f4cU6NrMTp8wTQKRXMTH37e3IyUV9fx+nTJ5g1aw6LFy8da3NkZGRkZD4gbreb5uYmADmI/gJRFDl69BAWSw9ffvlzuR/UJEZ2Dk9RFILARxlxNDzrxBsIoVO9PtPT4Q2iUSreaSH7KkKhEJcunUepVLFz56dTvrR1OHg8Hurr64DRX8h6vV4OHtxHc3MTSqWSLVu2h2UsfvnLX3Ps2JHw5Pkyra0t/O53v2Xr1m3k5RXQ19dLRUU55eVlWCw96PUGiouL+eSTj9Hp4uCFuIkkSSzLN3OuqhuFIBCjUYR1h3/qyPAEQjT3efkoI47ZaXFMVVwuF/v2fS+X98jIjDEGjZI56bFcrOslKkaD6g1Bmm6nH6NeTWnK2zXztNttHD58kPb2toixYDBITU018fHxEdUd0C9DtHHjlg+SHTtRaGtrxW63o9Vqyc3NG9Vz9fZa2bv3r/T19WEwRLFnz+ekvAgapKamceTIQXp7eyP2q6goo7Ozne3bd5OYmEhXV+eLoHoFDocdo9HI4sULSUvLxWxOCO83M0qkptvFneY+MmJ1iH4Pfr8PpUKJ8ScLO5s3gMUdYFVBArnmqVuJ09nZyZEjB8nJyWX9+o1ysFVGRkZmijHQWycpKVl2gtK/Pj9//gx1dbXs3r0n/N4iMzmRPQlTmJLkGOba/Vyv6iLTqEOnHtpB7PQF6XD6WJprGrHyfafTwalTJ5g5c/aQTXJkhqam5jmhUIiEhEQSEhLevMM74nDY2bfvB7q7u9Bqtezc+SnZ2Tnh8ZiYWL744iuuXr3M7ds3I/a32238p//0H4mJiSUqKgqtVktBQSGrVq0mOzsXlUpJQkIMPT0OXkhbIwgCKwsSCIkS1+qsNHZa8YoKYrSasN6T2x+i2+UjKMK8zDi2TU9Bq5qaQYWXy3t+/vNv5PIeGZkxZkFWPM3OABUtfeSY9KheEfC0uv14AiG2lCZj1A9f27WxsYEjRw4NWbXhcrmor68jJyeX6OjBGuMKhYLly1exYMFC2dn1EwYqcfLzp41qA9yOjnb27fsBt9uF0Wjks8++JD7+x+zd5OQUvvnmV5w+fYKqqsqI/VtbW/nf/rf/FyaTCZ1Oj8EQRXFxMaWlM0hLSyMxMXbQfAqgVirYNiMFgAetNqzdFgIoMcfHo1AokCQJhy9Ej9uPUuhvXLq2MGHKNlqz223s3/8DRmM827fvkhMWZGRkZKYgNTXPATlreIA7d27z8OEDNm7cTF7e6PZlkBl7ZOfwFEarUvDFgkycTi9P2x2oFAKJURr0agUSA444PwKwODueTSXJI7JoaG5u4vr1q6xbtxHzEHIBMq9mQBuxpGT0soYtFgt79/4Fu91OVFQ0e/Z8MWRTHIVCwYoVq8jMzOTYsaM4nQ6sVgs9Pd309fUBEB8fz/TpM/nmm18Oymh6FSqFwPqiRLLj9fzxTAOdKAkYzNRZ+p0haqVAjimKjzLimJkai2aKOoZFUeTYscP09HTzs599jdEYP9YmychMeYx6NV8vyuafPH7qLG4MaiUJURo0SgEJsHuDWNwBtCoF64oSWZwbWdo/FJIkcefOba5cuRhuFPsyXV1dWCw9FBUVRzg4DYYotm/fSVZW9khc4qRCFEUqK/sdsSUlo9fctb6+jsOHD+D3+0lOTuHTTz+PcOAD6HQ6tm/fxcOH97l48TwejweLpYfu7m4cDjtKpRKXy8nixcv46qtvwtr8r3st06uV7JqVyrTEaP7pcAU+1HjUcdRa3CBJ6DVKZqbGMic9jpLk6CnrGPZ6vezb9wNKpYJPP/1czq6XkZGRmYIEAgEaGuoBKCiQncPl5WVcvnyBJUuWMWvWnLE2R+YDIDuHpzixOjWfzUmjJNnBg5Y+mno9+IMiCKBTKSlOimFuRhylKTHvresqSRL379+lvb2dXbv2ROjnybwel8tFU1MjQFjeYaRpa2tl374f8Ho9mEwmPvvsy9eW1IRCIURRIjk5mQcP7tLb20tsbBx5efmYzQmo1WpEUeTPf/4jW7ZsIy8v/402CILAtAQDidZyVKLEko/mEGdKQKUQMEdpyDTqUU5hjWFJkrhw4Sy1tTVyeY+MzDgjzajn6/kZPGl1cL+ljw6Hj0BIRCEIRGmUzM+MY056HAUJUcPK4vX5fJw6dXzIbFJJkqivr0OpVFJcXBJxvNTUNHbu3E1MzNTWkH0Vzc1NuFxOdDo9OTmjIylRVvaMkyePIYoi2dk57Nz56Wvfffx+PxqNltjYWO7cuYXf78dojKewsBiTyYRSqaSnp5s//en3bN++i8TExDfaoFYqyIkKkeWqwqwwsGnxchQqNRqlgpRYLSkx2imdUR4MBjl0aD9Op5OvvvpmSMe9jIyMjMzkp7GxgUAgQFxcHElJSW/eYRLT1NTIyZPHmDFjFkuXfjLW5sh8IGTnsAw6tZJ5mUbmpMfRZvPiDvQ3RYnRqkiNHZlFg9/v5+zZ0yQmJrF1q9w0612orq5CFEVSUlIHlaOOFLW11Rw5cohAIEBqahq7d382ZINASZJoaWmmvLyMqqpKvF4PiYlJ/P3f/3dYrVbKy59F7OPxuNm//wc+/ngJS5d+glL5+ozflpZmfD4vCYYo1s7Ol8s7X+LOnds8eHCfDRs2yeU9MjLjkFidmqV5JhZkGWm1efEGQygVAiaDhoSo4WckWiwWDh3aj8XSEzHm9/uoqakmJSV1yOZyc+bMZfXqdbIO+WuorOxvRFdYWIRS+fq+C+/C3bu3uXjxPNBf7bNp09Yhv49gMEh9fR0VFWXU1FQTDAbJysrm3/yb/4n6+loaGxsj9rFYevjjH3/H2rUbmDVr1httqampRgBKMxJZnD+1F7wvI0kSp06doK2tlc8++3JU5bpkZGRkZMY31dU/SkpMZV9Fd3c3hw7tJyMjkw0bNk3pz2KqIa8aZMIoFQKZ8SOvW2q1Wjh79jQff7xkkG6tzNtRUTF6HdWfPn3M6dMnEUWRvLx8tm/fNaisUpIkurq6qKgoo7KyHLvdTmxsLLNnz6GkZPqg6GpxcQknThzD6/UMOockSdy8eZ3W1ha2bdtOQsKrGzEN6D3l5xfIjuGXGCjvWbx4KbNnzx1rc2RkZF6DRqV45+Zez59XcfLkMXw+X8SYzWajubmJ/PyCCK1xlUrFunUbmDlz9judd6oQCoV4/rwKGPlKHEmSuHTpAnfv3gZg/vwFrFq1dtDiSpIkmpubqKgoDwdZk5KSWbp0OSUlJcTG9jdaXbBgEffv3+XSpQuIojjoPIFAgJMnj9Ha2syXX376WptqaqoBWUPxp1y5cony8mds375ryCaOMjIyMjJTA1EUw3Nlfv60MbZm7HA6Hezf/z0xMbHs3PnpqATPZcYvsnNYZlSpqanm4cP7bN68VS5tfQ8cDgctLU0AFBePXAM/SZK4ffsmV65cAmDGjFls2LApPBH09fVSWVlBWdkzLJYe9HoDxcXFlJRMJz09Y8hIYkHBNL799lccOXKI9va2iPGmpkZ+97vf8otffEVsbGRJrCRJgyK3Mv0MlPdMnz6TZcuWj7U5MjIyo4Aoily7doVbt24MOd7a2orL5aSkpDTihT02tv9FXpaaeTP19fV4PG4MhqgR1WMOhUKcPHk8XEGzYsVqFi5chCAIL4KsnZSXl1FZWYHDYcdoNDJ37kcUF5cOKREhCALz5y8kLS2dI0cOYrfbI7Z5+vQxDoeVNWs2D5lF7nK5aGlpBuQ59WUePXrA7ds3WblyzahJdcnIyMjITAxaW1vweNzodPopGyz0+Xzs2/cDkgR79nwuS4BOQWTnsMyoIIoi169fxefzsmvXHrm09T0pLy9HkiTS0zPCGUXviyiKXLhwlgcP7gOwaNFili9fidvtpqqqgoqKclpbW1Cr1RQUFLJy5SpycvKGFUGMizPy1VffcPnyBe7duxsx7na7+MMf/sCcOQv4+OOlg7KDu7o6sdvtqNVqOdP8BT09PeHyno0bN8vlPTIykxC3282xY4fDzVBeJhQKUVtbQ3R0NIWFRRHj2dk5bNu2E4Ph3TKVpxrPnvU7b4uKikasOsXv93Po0H4aGupRKBRs3LiFGTNm0ttrpbKygvLysnCQtaSkhJKS6aSlpQ/reZ6Wls633/4NJ04cpba2JmK8q6uL3//+n1m3biPTp88YNFZXV4MkSSQnp4zY+8NEp6ammrNnTzNv3nwWLFg41ubIyMjIyIwxA4lJU7VqNRQKcfjwAex2Gz/72TdyUt8URfbYyYw4breb06dPMG1aETNmzBxrcyYFAwvZkcpuCQaDnDhxNKy5+MknK4iNjWP//h/Cjonc3Dy2bt1BQcG0d+rcrVQqWb16HRkZWZw6dRyv1ztoXJIkrl+/SnNzM1u2bA83gRmYnHNz81Cr1e9zmZMCp9PBvn1/JSYmlh07dsvlPTIyk5DOzg4OHdqPzWaLGPN4PNTW1pCVlTWkc+/jj5ewbNnyKbmYeReCweCIyzS5XC727/+Bjo521Go169ZtxOfz8sc/fkdbWysajYaCgkJWrVpDdnbOOz3H9Xo9u3d/xp07t7l69dIQMhN+jh8/QktLM6tXrw3Pn3IlzmDa29s4evQQ06YVRsh9yMjIyMi8GacvyOWaHlpsXuL1apbnm0mJ1Y21We+MJElhScOpOFdKksTp0ydpbm5iz54vhtXsVmZyIjuHZUaUjo52Ll26wKpVa0hOThlrcyYFNlsfzc3NCIJAUdH7S0p4vd5wdpPdbiczM4tbt24QCATIyMhkzZp1FBWVjFgGWmFhEUlJSRw5coiOjvaI8cbGBr777rds27aDrKzs8EK2oGDqTc4/5aflPTrdxH3xkpGRGZqnTx9z9uxpgsFgxJjFYqGzs53CwqKIIJ1Go2Hz5m1DZhLLvJr6+jp8Ph/R0TFkZGS+9/H6+nrZu/ev9PT04HK5yM7O5tSp4wDk5eWzbdtOCgqmjUiwUxAEFi36mPT0dI4ePYzDESkz8fjxQ9rb29i+fSfR0THhgK88p0Jvr5X9+/eSlJTMli3b5YCKjIyMzFsSFCUOP+3gUauNKI2Smh4XbXYfv1yYiVE/MZN6uru76evrQ6VSkZOTO9bmfHCuX7/Ks2dP2Lp1h1y1O8WRncMyI8bTp4+pra1hx47dEU1yZN6dyspKADIzs4iOfnUTt+HgcNj5p3/6L1RWVtDX10t+/jS0Wi1z586jpKSEuDjjCFgcidEYz1dffcOlS+fDMhYv43I5+f77PzNnzly6u7tQKBTk5eWPii0ThYHyHputTy7vkZGZhASDQS5cOMujRw8jxiRJoqmpEVEMUVIyPSK70Ww2s3PnHszmSI1ZmdczUDFTXFzy3lmjbW2t/NM//WcaGxtxu10UF5cSHR3DggWLKCwsHjWZj4yMTL799tccP36Ehoa6iPGurk7+8IffUVxcSjAYxGg0TvlMILfbzf79P6DTadm1a49cmSQjIyPzDlhcfqq7naTGatEIIskxWup73TRa3RjTJ6Z0UW1tfyO6nJzcd6qWncg8efKIGzeusXz5KkpLp4+1OTJjjOwclnlvBha4BkMUO3bslkv0RpjKynLg3SUlJEmiu7ub27dvsG/f9/T19RETE8vPfvY1S5Z8QlJS0kia+0pUKhVr124gIyOL06dPDGnn8eNH6evrZdWqtVNaO1OSJM6cORUu7/lQ35GMjMyHweGwc/jwQdraWiPGAoEANTXVJCQkkJgY+dsvKipm48YtcqOQd2Dgs1WrhfeaU5ubm7h8+SLHjh3G6/WSkpLK3//9v2TevHkfTNfXYDCwZ88X3L59kwcPbkWM91eefI9SqeDTTz+f0u9mgUCAgwf34fX6+PnPv5nS7xcyMjIy74NCAARobmklWqsgNS0DAWFCzzFTVX6prq6WM2dOMXfuRyxa9PFYmyMzDpCdwzLvhd1u49SpE8ybN5/8/Gljbc6kw2q10NnZQXS0nsLCt5OUsNn6qKgop7y8jIaGOqqrnxMbG8eyZTP527/9DfHxplGy+vUUF5eQnJzEhQunqKtrHDRmtVqw2WxUVVXS0tI8IiW/E5EbN67x9OljtmzZLpf3yMhMMpqaGjly5BButytizOl00NDQQG5uHlFRUYPGBEFg+fJVLFy4aEIvwsaS2toaAgE/iYnJpKamDXs/SZLo6uqioqKMiopy6upqaW5uJCEhkdmz5/KLX/xqTGR/BEFg8eIlzJpVzHff/QmHwzHIZqvVSjAY4Nmzp8yfv3DM5v2xRBRFjh8/QldXJ19++fMp+RnIyMjIjBRxWiVSTyNOKZqoKBN1Fje5ZgN55okZdLPbbXR0tCMIAnl5BWNtzgejs7ODI0cOkpeXz5o16+X3ShlAdg7LvAcNDfXcvn2T9es3yi/bo0RVVb+kRF5eHgaDAUl6/fYul4vnzyupqCinpaUZtVpNTEwsoigxe/Zc0tLS+fTTzyOcDh8ak8nM3/7t3/LDDwd4+LC/pDoQCGC39+sn6nQ6/vrXP7Fs2QoWLfp4Sk1YT58+5vr1qyxfvjKi67yMjMzERZIk7t27w+XLFyOaiUH/i3pfXy/FxSWoVINfz/R6A9u27ZiSWngjyUAlzowZMxAE4Y1zal9fbzjIarH0oNcbUKmU6HRaPvpoPsXFJWzevC3i+/rQZGdn8+23v+bo0cM0NjYA/QveYDCAWq3G7/fz+9//Mxs3bhmR3gUTBUmSuHjxHNXVz9m1a89bBQRkZGRkZAbj9Xo5ceIoXyyYTacinlabF6NezeIcE9HaielWqqnpl5RIT88Y8/Xxh8Jm62Pfvh8wmxPYunWHrL8vE2Zi/oplxhRJkrh9+xZWq4Xduz+TddtGkYqKHxeyr8Lv91Nd/ZyKirJw45mcnFy2bt2Bz+fj/PkzxMbGkpOTy86dn44bLSWVSsX69ZtIT8/izJmTdHV1IkkSUVHR6HQ6RFHkypWLtLY2s2nT1ilRBlpXV8vp0yeZPXsuixYtHmtzZGRkRgi/38/p0yfCz/SXEUWRurpatFotRUWRUgcpKans3Ln7g8kVTFZ8Ph91dbXA6+dUl8tFVVUFFRXltLa2oNFoKCgoZOXKVTQ1NXH37m1iYmL56KN5rF69btwsqqKiovjssy+5desG169fxWq1AhAfb0IQBHw+H4cPH2DevPmsXLkGpVI5xhaPPvfu3eH+/XusW7eBggK5um2yM1HzCAbsnqj2v47JfG0wta7Pbrdx8uRxVqxYRUpKKhNdnXbg2mpqniMI/ZISk+l7fNW96fF42L//B9RqFZ9++hla7fjwC7wtk/m3N9LX9jbHkZ3DMm+Fz+fjzJmTpKdnsGnTlkmb0WnzBKjodFDZ6cTpD6IQBBKiNExPjWVaQhQa1egvBru7u+np6UalUlJcXIzTGQiPhUIhGhrqKC8vp6bmOYFAgIyMTNasWRdugnPnzm0uX74AQGnpDDZt2jIuF4OlpdNJTk7hf/lf/gMAJtPgLPTa2hp+//vfsm3bTtLTM8bCxA/CQHlPbm4e69ZtmLS/LRmZqYbVauHQoQP09HRHjPl8XmpqakhLSxuyAmfWrDmsXbt+zDNT35cuh4+yDju1PW48wRAapYLUWC3TU2LJMRlQKkb/eVdTU00wGMRkMpGcnIzF4gyP+Xy+cJB1IPM2NzePrVt3UFAwDaVSyalTJygrewrA8uUrWbRo8bh7TisUCpYsWUZaWjr/4T/8O6C/Uudl7t+/R1tbG9u37xy1JrTjgcrKCi5ePM+iRYuZO3feWJsj8wEwm9+vafNYM9Htfx2T+dpg8l+f3+/k6tXzfPXV58THx4+1OSOGx+Ohp6cTg0HLxx9/hMk0+b7Hl+/NYDDI0aP7EIQQv/nN306KpsaT+bc3Ftc2sVcbMh+Unp4ezp07zSefrJi0TjpfUORidQ8PWvro8wTQKBVolAIS0NTn4WGrjZRYHSvzzcxKix3VheFA+Wtubh46nQ6Hw09LSwvl5c+oqqrC43GTkJDI4sVLKSkpDS/yBsoo7927C8CCBYtYuXL1uFvEvkxsbCyZmVl4PJ4hJyq73c5f/vJHli9fxYIFC8f1tbwLNlsf+/fvxWQys23bznGTiSYjI/N+1NRUc/z4EXw+X8RYX18vra0t5OdPi9CrVSqVrF27ntmz534oU0cFmyfAmaouKjqdOLxB9GoFKqUCUZSotbi409hHtknP2sIkckdZr3BgTi0pKUUQBEKhEHV1dVRUlFFTU00gECAzM4u1a9eHg6zQn/V98OA+6upqUSgUbNiwiZkzZ4+qre+LXm+gqKiY2toajEZjxHh7exvfffdbNm3aOikb8DQ3N3HixFFKSqazfPnKsTZH5gNhsTjeKBUzHhGEfifARLX/dUzma4OpcX1WawcXLlxh8+ZthEIqenocb95xAiAI0Npaj9PpISEhEVFUT5prg8h7U5Ikjhw5RE1NHV9++RWSpJnQ1zuZf3sjfW0DxxsOsnNYZlhUVlbw7NkTtm7dQXR09FibMyp4AyEOPm3nQYuNeL2aPJMBxU+ymfxBkU6nj32P23D6gizJNY2Ko1KSJKqqKgBISkrh3Llz3Lp1F5vNTmxsLLNmzaakZDpJSYM72QeDQU6ePBYuXV65cg0LFy4acftGmsbGBkRRZN68+SxZ8gnnzp0mEAgM2kYURS5dOk9LSxObNm1Fr9ePkbUji8fjYd++H1CplOze/dm4kf2QkZF5d0RR5Pr1q9y8eX3I8ZaWZrxeLyUl0yOCQTExsezcuXvC66P2uv18/7CNWouLxCgNyQmGiPnS7Q9R0+Om29nC7lmpFCePTpaEx+OhoaEeSZKIiYnj6NGj3L37EI/HQ2JiEosXL6OkpCQik9btdrN//w+0t7ehVqvZvn3nhGi+W1tbjUajYdu2HSQlJXPz5nWkn6wwvF4vBw/uY/78haxYsWpcVha9Cz09PRw8uJ+0tPRJXeEmE0m/A2SsrXh3Jrr9r2O8XJvDG6Sp101QkkiO1pIcox2RZ8R4ub6R5vHjR9hs3ezYsRulUjXprrGqqgqAgoLCSXdtAwzcmxcvXqCqqpIdO3aTlpYxaa53sv72YGyuTXYOy7wWURS5fPkikiSxa9eeSbN4+CmSJHG6souHLTYy4nTo1UNfp0alINOop9vp43RVN0a9mumpsSNuT01NNU+ePMZqtSKKIZKSzOTl5VNcPJ2MjMwhX2R8Ph+HDu2nsbEBhULBpk1bJ0xDs+rq5wAUFExj5sxZpKamcfjwASyWnohta2qq+f3vf8v27bsmvPMkGAxy+PABXC4XP//5LyZt4EVGZirh8Xg4evQw9fV1EWPBYJDa2hri4uKG1EDNyspm27adE74pij8ocuhpB7U9LnJNelTKoashDBoleSY9zTYvh591EKtTkxanG3Lbd6W/T8INamtr8Hq9KBQCaWnJzJkzl+Li6SQmJg65n83Wx969f8VqtaLT6fn0088mTNXUwJw6bVohM2fOJj09g+PHj+J2uyK2vXfvDm1trWzfvnPC61o7nU727/+e6Ohodu78dMLLscjIyIwMIVHier2FG/W99Hr8SFL//FOaHMPm0uQJ20xttJAkiWvXriBJIrt378JicU46B1wwGKS6ur8Z3WSsoHmZ+/fvcvfu7Rfyk0VjbY7MOEZ+Esq8EqfTyenTJygtnUFJSelYmzOqdDh8PGq1kRCleaVj+GUSo7U0WN3caLBSnBwzInqJbrc73ATn2rUrdHS0M2PGLD7//Evmz59Nb6/7lRNz/4LoBzo7O9BoNOzYsZvc3Lz3tulDIIpiuFNsQUH/5JyQkMA33/ySs2dPhzUeX8Zms/HnP/+BlStX89FH8ydkZpAkSZw8eYy2tlY+//xnk0L3SUZmqtPe3s7vf/97+vr6Isbcbjd1dbVkZ+cQExOZIbtw4ccsX75yUsjKPO92UtXtJCv+1Y7hAQRBIDNOR43Fzf3mPtLiUkbEhr6+XiorKygre8aVK5dwuZysWLGK3bv3MHt2yWsXu52dnezb9z0ul5PY2Fj27PmShISEEbFrtLHZ+ujs7EAQBPLyCoB+eapf/vLXHD16mObmpoh92tpa+d3vfsuWLVsnRGb0UPj9fvbv/4FQSORnP/s8QqpFRkZm6nK7sZeTFV1EqZXkxBtQCODwBbnb1IcvJPLVRxkfRPt+IhAKhTh9+iSpqal89NG8CbnGGg6NjQ34/X5iYmJJTh6Z947xyPPnVVy4cI4FCxYxb96CsTZHZpwjO4dlhqStrZUrVy6xZs36V2bVTCaetdtx+kOkxGiHvU9StJZGq4fGXjd55nfL8vL7/dTUVFNRURbOMsvOziU5OZnMzCx27/6M/Pxpr83Y7u21snfvX+nr68NgiGLPns9JSUl9J3vGgtbWFjweNzqdnszMrPDfNRoNmzdvJSsri7Nn4xmPQgABAABJREFUTxMMBgftFwqFOH/+LC0tzWzYsHnCLQQvX75IZWUF27fvIiMjc6zNkZGReU+ePXvKtWsXsNsjszP7G4x2UVRUjFqtHjSm0WjYtGkrRUXFH8rUUUWSJB622hAA7TCbtwqCgEmv5mm7nU/yzRj16jfvNAQulyscZG1tbUGtVpOZmUV6ejqxsXF8/fW3mEyvl4Nqamrk4MF9+Hw+EhIS+eyzL4iJGfkKodFiINiakZE5KAM9OjqGL774imvXrnDr1o2I/bxeD/v372XRosUsW7Z8QlWKiaLIkSMH6evr5csvv57wGdAyMjIjhzcQ4lZDLzqVgqSX1nmxOjUqhYKqTicNVjf5CRO7Ymck8Hq9nDhxlNmz50zYQOFwGZgr8/MLJq0DvLm5maNHD1NUVMzKlavH2hyZCYDsHJYZhCRJPHr0gObmJnbu/HTCOdzehaAo8aTNQaxW9crJoa2tFa1OhzHOGF4wGTRKfHaR593Ot3IOh0IhGhrqKC8vp6bmOYFAgPT0DFavXktRUQk2Wx/19bVoNBry8vJfeRxfUOT80zrOX7kOfomCuHi+/PyLITvej2cGyl/z8wsiMuYEQWDmzNkkJ6dy9OhBLBZLxP5VVZV0dnawY8fuCRP5ffDgHnfu3HrxnU8Oh5CMzFQlFApx4cJZHj16gMEwOMAoSRINDfUIgkBxcWnEHGMymdi5c8+EyUodDhaXn3qLG7NhaP10iX4HbFxcHLGxcShefCbxBjV1Fje1PS7mZRqHfT6/30919XMqKspoaKgH+jNlt27dQUHBNMrKnlJXV0tKSupr50e7N8DxO+XcunsXbUjDnIxkdu/eM+Heg16WafopCoWC5ctXkpGRwfHjx/B43BHb3L59k9bWFrZt2zEhnOKSJHHmzCkaGur59NPPSU5OHmuTZGRkxhEdDh8Wt5/UlxzDoiiiUCgwaJT47SItfZ4p7xy2222cPHmcFStWTagko3dBkqSwc3iySkpYrRYOHfqB1NQ0Nm/eNmkd4DIji+wclgkTCAQ4d+4M8fEmtm3bOWUeIt5ACG8ghO4VGU6hUIiGxgYkSUIQBGJjYomPNxEfH49aIWD3BIfc72UkSaK1tYWKijIqKyvxeNyYzQksXryU4uISjMb48La3b/dn9BQUFEZkmA0QDIn808WnnH9ahyjGoNMlMHdOKTFx8UNuP17pn5x/1EZ8FUlJSXz99S85c+YUFRVlEeN9fX388Y/fsXr1WubM+Whc37vV1c85f/4s8+cvYP78hWNtjoyMzHvgdDo4fPggra0t/PSxM1AZkpycjNkc6fwtLCxi06ataLXDr1iZCLgCIXxBEZNh6PnL5XTS0tJMS0szSoWSOKOR+Ph44uPjERBw+UNvPEcoFKK+vo6KijJqaqoJBAJkZGSyZs06iopKMBgM4W0rK/ubuxYXv1oey+kL8n8cv8vj+k7ARFxcNEkfzZ5wjmGPx0NLSzMwtHN4gLy8Ar799lccPXqY1taWiPGWluYXMhPbXhukHg/cunWDJ08esWnT1gkjpyUjI/NheVlBqK29jeamJhYu+hgBGL8rhg9HZ2cnFy+eY+PGzYPWpJOVtrZWXC4nJlMcWVnZY23OiONyudi793vi4qLYsUPW35cZPvKdIgP0a/OdPn2SRYsWk5OTO9bmfHBep7Fvs9vCXb4lScJmt2Gz22horMerjkVr11MT4yYrKxuNZnCmVHd3N+Xlz6isLMdmsxEbG8vMmbMoKZlOUlJShBNTFEUqKysBKCkpeaVNF+895cKTGnSSj4S4WDJyC6iyeGmzecmK17/bhzAGdHd309fXh0qleuN9p9Vq2bp1O1lZWZw/f3ZImYmzZ0/T0tLM+vWbxqXDpa2tlWPHDlNYWMSqVWvH2hwZGZn3oLm5iSNHDuFyOSPG7HY7TU2N5OXlD3JUQn9FxCefrGTRoo/HdSBrtOjttYb/PySGsFotWK39VSFebTzPxE5y1Hmkp2cMkjaQJImWluZwkNXr9ZCYmMTixcsoKSkhLs4YcS6Hwx52lhYXD12lIUkSP5y7zuN6CzF4SE1OJiYpg7stNhbnmYnSTJxX5draGkRRJDEx6Y1VRLGxcXz55c+5evUyd+7cihj3eNzs2/c9ixcvZenST8alFvazZ0+5evUyy5YtZ+bMWWNtjoyMzDgkOUaLyaDG6vaTEqtDq9ESDAUJ+P2EBCVKpWLEG6FOJOrqannw4B47duxGr584a8j34cemrf3SjZOp2Z7f7+fAgb0Eg0G+/vprgsHJdX0yo8vEeeOdQIiSRFOvh7oeFw5fvwMrRqemICGKTKNu3C0Ga2truHfvLhs3bh5ycTXZ0akU6NQKPP4QQ6nUeT0eBEEIO4hfxhcI0tVaz4EDd1EqlWRkZJKUlIzf76etrYXu7m50Oj3FxcWUlEwnIyPztd9/S0szTqcDnU5HTs7QGTB3797m4uVbhBQZaBQCRqORKK2aXq+XQEh8149hTBgo6cnOzolwrA+FIAjMnj2XlJQ0jhw5QG9vb8Q2FRXldHZ2sG3brg9WXur2h7hQ2cmNqi5CokRJcjTzMo3E6n7MnOvttbJ//16Sk1PYsmX7uHsOyMiMV4IhkVqLm0arG5c/hEopYNSrKUqMHqQf+KGQJIn79+9y6dIFRFGMGGtra8PhsFNSUhqh26rXG9i6dfukznA0qJVolAK+gIhmiGZ0Pp9/yP0kwOfzUVfdwF+f30Sr1ZKVlU18vAm3201TUwN2u53Y2Fhmz54TDrK+jqqqSiRJIiMjc0gdWlEUOX36JM/KG0FIQa1QYjabUaiVeAMigdDEWlHV1g40dx2eVqRSqWTlytVkZGRy4sQxvF5PxDY3b16ntbWFrVu3Ex0d2UhxNLC6/dx63Ma92m40KiUzU2OYm2EcpGFdX1/HqVPHmTVrDosXL/0gdsnIyEw89Goli7LiOV7RSY/Lj06vRwIsdhdONMxIiSX3HXvHTHSePHlEU1O/lORUyi4dqFp9VdB4oiKKIseOHcZi6eFnP/sao9FIT49jrM2SmUBMnafAB0CSJCo6ndxssNJgdeMNiOHOpyFRQq9RkmcysDjXRFFS9Bhb22/vpUuXaG3tYvfuz6bUpPAyKqWCmamxnHveTVK0JsJpl5aWTlJyCjZbH329vfT29uLz+wiiQIGEUXITCARob2/n0aMH2O12lEol6ekZzJ+/kMWLl5CTkzcs52dlZTkA06YVRTgVJEni4sUL3L17GwNKohUBlPHp6IxJNPZ5yTTqSB4DR8n7MBxJiaFITk7mF7/4NadPnwiXDL+M1WrlT3/6jjVr1jFr1pxRdcR6AyH2PmrjudWNQhQREKi3uKnudvHVvAyitSpcLhf79n2PwaCfci9gMjLvSkiUuN/Sx93GPlptXoKiiFIQEJEQRYjRqShOimZJrokM44fJdvH7/Zw+fXJIeZtQKERlZSVKpYbCwsgFR3JyCjt37p70QdiEKA05piiqupzE6CKfdQUFBWRlZ9PX1z+f9vX2EgwF8aFGQ5A4yYXP56WlpZlbt27idrtQq9Xk5xewcOHHLFiwKCKr+FUMzA9DabsHAgEOHz5IbW0NBlGDXithSMlBVEfR7fAzOy2W2CHsH68EAoFwY9u3nVMLCqbx7be/4siRQ7S3t0WMNzU18rvf/ZatW7ePenVZr9vPn+630O4KoEYiFJKo7nbR2Ovh09lpqBQCnZ2dHDlykOzsHNat2yAHW2VkZF7L4lwT/pDIrcZeOlwidqLodrhZXJTI1unJqBRT6xkiSRLXrl0hFAqxZcvU0qO1WCxYrVZUKiUFBQU4HEMHrCcakiRx/vwZ6upq2b37M1JSJkYfHpnxxcR56x3nSJLEzQYrpyu7CYQkEqPVg0oRJUnC5Q9R1e2kodfNppJkFmYZx+xh7PF4OH36BPPmzWLGjHlTvtxgRmoMN+utOHzBQdmeA6iUSswmM2aTGQlwu91UtvagtrTQXvEAq6UHAKPRSGFhEfHxJlQqFZ2dHRw6dAClUklmZha5uXnk5RUM2S1dFEWqqqoAKC4eLCkRCoU4fvwoZWXPEEURg0bNL5cUUi+Zsbj8FCVGsakkmWjtxPlJ22w2OjraEQThnTriarVatm3bSWZmFhcunCMUGqxTGQwGOX36JE1NTWzYsGlYzvl3obLLSXmng4KUWMRAECQIhESqe1w8brOzMCPmRed7P19//YuIEnMZGZlIgqLEqYpOrtdbUSsEUmI16FSDJQZs3iB3m/tosLrZNSuVaYmjG3Tt7bVy6NABuru7Isa8Xg+1tTVMm5aPVmuImFNnzpzN2rXrX6kjP5kQBIG5GXFUdDrwB0U0Q+j5a9RqkhKTSEpMQpIkHA4Hz1p6UPdU87zsfjjIajKZycnJwWiMRxAEamtrqK2tQavVkpOTS15ePrm5eUNmtPb19dLW1oogCBQVDZ5T3W4333//F1pbWxBFkSSDkjUrZvHMpsTlDzE/y8jG4qRws7yJQFNTA36/n5iY2HdqzhoXZ+Srr77h8uUL3Lt3N2Lc7Xaxd+9fWbJkGYsXLx01mYl7zX009HqYkWnE7w2ABC5/kMetNuakx5GqC7F//w8YjfHs2LF7WEECGRmZqY1KIbCmMJGPMuJo7PVwpOMhRfHRfD4vfUo5RqF/TXn69ElSU1OZO3feWJvzwRmQlMjKykar1U4a5/Dt27d4+PABGzduHve9AmTGL2/lSXqbZ+fAtpPlefum63ncaudUZRdalYJ0Y6RukSAIROtUROtUdDp8nKzoJFqrZEbqh+8EPSA6v3LlambMKMRimTzlBu9636XH6ZiZFsutxl40KgU69dCLDUmU6Ovrpb7DgsXmID9koXT5CuLj4wGBtrZWHA57xH6iGKKxsZ7GxnouXTpPXJyR3Nw88vPzycrKQa1W09TUgNfrJioqipycnPA1BAJ+/vznQ5SXlyOKIfR6PTt27CY3Nw9JkgiKEiqFMKFebgSBsCM8PT2D6Oh3K+cSBIGPPppHWloahw8fxGbri9imsrKMrq4OduzYTWJi4vuYPSQtfR6QQKdW4vYH8Pn9aLVaNEqBuh4n3Y8v0N3dxVdfff3iPpkYTLZnOIzeNb3r8Ya731T8Li7VdHO1zkpitGbI7E1BEDAa1MTpVTT1ejn4tJ2fz8sYtQzi2tpqjh07is/njbDZarXS3t7GtGmFxMfH4nb7wtsolUrWrFnH7NlzJ9QzeoB3vfeKkqIoSIjiebeTHLPhlVlZoVAIS08P1R29+Fx2ctRupm3cTGxsHMFgkJaW5iGlDvx+H8+fV/L8eb9Gf1JS8ovgaz7p6RkoFAqqqioRBMjKyiIm5sfAgcNh469/PURbWyuiKBIXF8fnn/+MhIQEVkkSIVFCNYQcxnhl4Luprq5GEPo1FBXvmAWnUvXfr5mZWZw8eRyfz/uTLSRu3LhKa2szW7ZsJzp65AMyNT0uYjRKVAoF3lCIUEgkSqum3e6jscfOjdvHUSoV7NnzOVrt6AR9R4Op+Bx/3+PKyIw08QYN8QYNDckGfI7uCTkvvw9er5cTJ44ya9acYcsPTTbetWp1PFNeXsaVKxdZsmQZs2bNGWtzZCYwb+UcNpvfXmvsXfYZzwx1Pd5AiNu3m9Fq1WQPQ7Mo16ClvsfFrVY7S0pSh8yqGS2ePHlCWVkZv/71jxmMk+07gne7pl8sN8DNRh429ZIYoyQ+StOfNSRJ2Ox2ujq7aO/qwhYQ0Gj17JibwS/XbsNk+rHpiyRJdHd3U11dTXV1NU1NTRGalACBgIfnz8t4/rwMlUpFdnY27e3tQIj58+eQlNSvjehyuThwYD9tbW2o1QrMZiPffvvtpCgVOX68EoNBy4IFc0hIeL97MCEhhoKC/wuHDx+moiJSZsLrdXLgwF/YvHkzc+fOfa9z/RST0Y5KYwNAq1VRXV3FzFkzUalVdLY14Ghr4pe//JrCwon5EiI/H0aPt7VjvNg9kgx1TR02Lw/bnaTEG0gchlROsUFLVaeDJ91u5hS8XoP2bZEkicuXL3Pp0iWUSjAYtIPGGhoaCAQCzJs3N5xJObBNbGwsn3/+ORkZGSNq01jwLvfe36zU8bsbDdR2O0kz6onRqfr1+0URa28vXZ1ddHRbsIsqjFEGvl5Vwo5lXxIV9eN7lCiKtLa2Ul1dTU1NDW1tkZIHAE5nH0+fPuDp0wfodDry8vJ4/PgxSiUsXrwgPMd0dnZy4MD3OBwOtFoVKSkpfPvtt6Pi5PyQiKJIe3sTBoOWRYs+GoE5dT4lJfns3bt3yM+8u7udffv+xJ49e8jJyXmvc/0UU6yeHm9/JZBCIdHU1ERJSTFqtZKyZ/eJkwL8wz/8zagEez8EU+U5LiMznjGZzJSVPRtrMz4odruNkyePs3z5SlJT08banDHB6XTQ1tYKDF+bf7zT2NjAyZPHmDFjFkuXfjLW5shMcN7KOWyxOIYtPyAI/S8Lb7PPeOZ11/O0zU5dl4NMow632zes4xk1Cmo7HNyu6qAkefRfqkKhEBcunEOr1bJmzWbc7hAej2NSfUfw/vfd1kIzGknkcauNujYrPpcDh82KPxBAUGuJiUlgZq6JjTMymZ9lRBSFCKF3hUJPUdEsiopm4fP5aGxsoL6+jrq62iGzisHH48fPuHv3NsFgEFEUcDi8JCYmcvPmDRwOO2q1AoMhhs8++zkqVdSEF5f3+bw0NDTgdvtISEgbsetZvXoTcXEJXL58MUJmAnz85S8/8PRpJWvXrh8xmYkUnRKFKNLt8BGlkDCZE3lYVoNHVOLrfMxXG1ZhMqVOuO9ssj3DYfSuaeC4b8tw7Zhq38XV6m66bR7yEwzDnlNj1Qru1fYwP2XkmtR5PB6OHz9CXV1txFggEKCmphqTyUxGRhpebwDodwy73T4yM7PZtm0HOl30hPvtv8z73HsKYGdpIifLJZ53Oym3OfG7bDhtNgKhIAqtAWNcCoszEtg2K5PCpGg8HhGPZ/DnpdcbmTVrAbNmLcDpdFJfXxf+F5nZCm63j9bWGzx4cA9BEIiJiaexsQ2dTs+NG1fx+/2o1QqSk9PZtesLvF4Jr3dif0cuVy/d3Va0Wh1RUaYRuudUbN/+GRcvnufhw/sRo263j3/8x//K0qXLWbx4yYhl4OXFaXnYaMXh1aASVAgKNY+qW7Db7WjttXz2+W4EQTfhfldT7Tk+EseVkRktzOYEHA47Pp8PrXZi9Wt5Fwaqhjdu3IzROHGqGEeagUboaWnpH6zB6mjS3d3N4cMHyMzMYsOGTVMuE15m5Hkr57Ak8daT/7vsM54Z6nqetNkRALVC0d9uexholQpEUeJpm53ipNF9ODkcdk6dOsGcOR+FSyhevoax/I4CIZHnXU6ed7vwBEKkxmqZnhL73ov7d70mn9tJoqOe+OZKeqxe/Kp4zPEJJJjN5KSYmZ0WR1FSdFh24k3n0Gi0TJtWxLRpReGs4v5FbS0tLc3hrOLe3j4CgeALh6XA1auXKS8vIxgMEh0dxdy5c9i+fRcxMXGT4vdUW1uLKIokJCQSH28ewWsSmDdvIWlpGRw5chCbzRaxxdOnT2hra2PHjt0kJCS89xlzTQZWFiRwp9VOu90L6GnraSHa1cLGT2Yxa9bcCf2dTbZnOIyfa3pbO8aL3SPJT68pEBJ52GInSqNEQBj2nBqnVVHjcFPZ5SQx+v0Xep2dnRw+vJ++vr6IMZfLSX19Pbm5uURFRYftH3gnnz9/IStWrEahUHzw78vtD1HR6aC2x4UoSWSbDJQmxxCnfz+t43e99wKOPtIc1bTWPafHJRDSmkhKSCA5wUx+ionZ6XHkmw2olMP7rKKiopkxYxYzZsxCFEXa2lrDwdfOzo7wdt3d3UhSfx+A3t5ejh8/SlVVJQqFgujoGNasWcm2bTtQqzWT4jc1INOUl1eAQqEcsWtSKlWsXbuBjIwsTp8+gc83OFgjSRJXr16mubmJLVu2D8r6fldmp/VrglZ0u3C4/Yh6E/WVT8mQevhsx3oyMrIm9Hc2FZ7jMjLjHbPZDIDVapn0WbR1dbU8eHCPHTt2o9d/mOa945UBveGCgolZzfkyDoed/fu/JzY2TtbflxkxJk73qnFMl9OH4ScatX6/n/r6OrKzc9DpIjWIAfRqBd3O0RVBb2pq5MaNa6xfvxGTyTyq53pbvIEQB5+286TNjiSBUiHwoNXGzYZets9I+WB6zG63m+fPK6moKKe5uQmVSsW0aYVsWDGd3Nw8FArFiETiBEEgKSmJpKQkFi36GK/XS1NTI3V1tRw7dgSAhIRE7HYblZUVBINBQqEganU8arWaP/zhdxiN8eEGPJmZ2RO2udGPk/PolPSkpqbxi1/8mpMnj4WjxC9jsfTwhz/8M+vWbWTGjJnvdS5BEFg9LYFFhck8qO2ms6sLRVk1Cnc3y5f9i/c6tozMVMPtD+H0BQc1dAWwO+x0d3WRlZ2DWjW0BrFCAX2ewHvbUFb2jDNnThIIRB6rq6sTq9VCUVFxxPNXrdawZ88eUlKyx8RRYnH52fe4jdoeF0pBQBDgQYuN23G97JmdNmp6zD/FZuujoqKC8vJn9PR0o9PpmV1czJcl08nIyAQYkTlVoVCQkZFJRkYmn3yyIpxVXFdXw9OnT4D+ObWjo526ulokScLv95OWlo7dbucf//H/S1JSSnhOTUtLH7Uma6OJJElhOaXRmlOLi0tITk7m8OGDdHV1Row3NNTz3Xe/Zdu2HWRmZr3XuTQqBbtnpWINQVmDhcaGOkRnFfkpJkpKSt/r2DIyMjJAeE1ssUxu5/CTJ49oampi585PUQ3x7jSV8Pl8NDU1AhNfb9jn87Fv3w8AL/T3J3/2u8yHYWo/JUaIkBjZPKG+oZ4eSw/WXiuZGZmkpWdEdL1WCAKhUVpBSpLEvXt36OzsZPfuz0ashH4kuVZv5UGLjYw4HfpwJq5Eq83L0bIOUmN1mKNGx26/309tbQ3l5c+or68DIDs7h82btzFtWuEHecjqdDoKC4vIzc2joqIMs9lMamoaN29eJxQKEQgEyM7OCTuoAXp7e7l//x73799DpVKRlZUdbsITH296wxlHn0BIxBcU0auVKF/RECcYDFJXV4taLYzq5KzX69m1aw93797hypWLEdrPgUCAEyeO0tLSzJo1697L0S4IAjkJUXh7unh47CRz89LIz1/O48cPp2QnYBmZdyUkSUjAy48PUZKora3F7XZhsVjIyc0lMTGJnz5hFIJAMPTuc2ooFOLSpfPcv38vYkwURRoa6lCp1BQVlUQ4N00mEzt3fkpJSd6YlLtLksTJik5qelzkxOtRv2ioJooS9b1ujjzr4O8WZ4f/PtK43W6qqiqoqCinpaUZtVpNQUEhK1asJCcn74NktERHRzNz5iySk1OorKzA5XKSkJDErVs3EEWRUChEScl0kpOTwt9fZ2cHnZ0d3Lx5HZ1OT25uLjk5eeTm5o0LHWJvIERIkjCola90qFssFqxWK0qlktzcvFGzJT7exNdff8uFC2d59OhhxLjT6eD77//MsmUrWLTo4/cKACgVAiVJMdgaa7jz8DxbVi4hGAzR0tIcDjDIyMjIvCsajYbY2Fgslp6xNmVUkCSJ69evEgwG2bJlmyw3ANTX1xEKhTCbzeHM8YlIKBTi8OEDOBx2fvazbyaFPIbM+EF2Do8AURoldu+PGUZ9fX309HQD/QvKxqZGgqEQOdk5g/bzB8WI7KiRwO/3c+bMKVJSUsbthOAJhHjYYiNWqwo7hqHfyZYWp6PW4qai08GyvJF7eIdCIRob6ykvL6em5nk4g2j16rUUFhaP2UKwrq6WQCBAKBTCbrdRUlKK3W5n0aJFaDQ6GhrqEMXIDPMBJ2tdXS3nz5/FZDKRm5tHbm4+WVnZHzRC3OcJcKexl8dtdvxBEaNezbzMOOZlGiOcEU1NDQQCfszmRFJSUkfVLkEQWLhwEenp6Rw5cmhIzecnTx7R3t7G9u273utlweFwsG/fX4mJiWXHjt1otVr27/+BgoJpxMR8mCx4GZmJjk6lRKUQ8Id+DOa0t7XhdrsACAQDVFc/RxAEEhMGN6QKiRJRmndzQjqdDo4cOURLS3PEmM/no6ammtTUtEENSAcoKJjG5s3b0OuHrhL6ELTbfdT0uEiJ1g565ioUAplxepr7PNT0uEa0x4Hf76emppqKirJwkDUnJ5ctW7YzbVrhmAWlq6r6s2gVCiVer4fS0un4/X6WLfsEj8dDY2MDQ+mVeL0eKirKqagoByAlJTUcfE1NTfugWcXtdi+3G3up7HQSkiRSYrQsyIpnZmpMxDvdQCVOdnbOqAe2VSoV69dvIiMjizNnTuL3D343EUWRK1cu0tLSxObN28KNj9+F1tZWjhw5xLRphaxatRa/38+hQ/vZs+eLKZ8BJyMj8/6YTGasVstYmzHihEIhzpw5RXJyMh99NH+szRk3DMyV+fkTtxGdJEmcPn2S5uYmPvvsywnbmFVm/CK/XY0AJcnR1Pa4kCQJSZIimteolCrS0tIH/U2UJHwhkaKkkXVIWiwWzp49xdKln7x3ad9oYvMGcPqCxL/QQfT5fdhsNhITk1AIAkpBoMf1/pIbkiTR1tZKRUUZlZWVuN0uzGYzixYtpqSkdFyI8ldUlNHY2IAkSej1egKBAL/+9d+9VB4qEQq5uXv3MfX1dbS2tkRkwQJYrVasViv3799DrVaTmZlFXl4+eXn5o3qdfZ4Af37QQl2PmzidCq1KQafDy8GnHlptXnbMTEX1UhpgdXW/zENRUVF/5/oPUH6dnp7Bt9/+mhMnjg7ZXKq7u4s//OGfWb9+E6Wl09/6+P3lPfuQpP7yngEpmRUrVnPx4nm2b9/13tcgIzMVMGiUFCREcb+lD5NB018G2Nw4aJsoQxQJ5sF64d5gCJVSQbbp7Z1RLS3NHDlyCKczMuPXZuujpaWZ/PwCdLrBsgyCILBs2XI+/njkmnG9K72eAG5/iNQXev1utxuv14vJZEKjUiCKIyO5EQqFaGioCwdZA4EA6ekZrFmzjsLC4hHRnH0fJEmirOwpVVUVmM2JKBQKdDodv/nNvwprzItiCK/Xxr17j6mrqxtSJgGgo6Odjo72QVnFubn9EhSjeZ1NvR6+f9hKl9NHvF6NWiFQZ3FTZ3HT605kRcHge7+mpn/B+yHLZEtLp5OcnMKRIwfp7u6KGK+rq+W7737L9u07SU/PeOvj9/X1cvDg9yQlJbNly/bw9zh37jxu374pd2SXkZF5b8xmMw0N9WNtxoji9Xo5ceIos2bNGTWZoYlIKBSirq4GmNiSEtevX+XZsyds3bqDrKzssTZnUuENhCjvdNDU60GjVDAtMYr8hKiIyv/JjuwcHgGmp8RwpdZCnzeIo6cdj9czaDw7JwfNT0rWe90B4nRqpqeMXBbP8+dVPH78kK1bt4/7EgOdSola2Z8dZkCJ0+mkuvo5xjgjGo0GUZIGZRS/Ld3d3ZSXl1FRUYbNZiMmJpbp02dQWjqDpKSkMV/ID+B2uzl16iTt7a0UF5cCEr/5zb8iJSUlvI0gCKSkpLB4cRQff7wEr9dLQ0N9uAmPy+WMOG4gEAhnFUN/yXO/rmI+mZlZI5p1c6uhl7oeN3lmPaoXmVVGvRqnL8j9ZhulKTHhbDVJksIawMXFxSNmw3AwGAx8+unn3L59i2vXLkc42P1+P8eOHaalpYnVq9cN+zMKhUIcOXKQvr5ePv3080FZwomJiZhMZp4/r6KwsGhEr0dGZrIyOz2OR612vMEQ9fV1Eb/V/PyCiGd4j9NPeqyOfPPwncOSJPHw4X0uXDg3ZMCttbUFt9tNcXFphCyCTqdn69bt5OXlv8WVjR5alQKVQiAQktCoBHp6eujoaGfhwkWIogQCaN5RUkKSJFpamikv7w+yejxuzOYEFi9eSnFxybgIsg7Q2NjA9etXcblcpKVlYDQa+fWv/27QO5FSqSQ7O5uoKBPLl6/C4bC/aBRbR0NDfUTTNRicVSwIAsnJKeHga0pK6ohlFUuSxIXn3XS7fBSYDeH73KhX0+30c6XWQklyTLhpr8Nhp729jago3QfPhjKbzXz99becP3+WJ08eRYw7HHb+8pc/snz5KhYsWDjs9y63283evd8THa1jx449gySfCguLqKwsp6enZ0QaysrIyExdzOYEHj58QCgUmhTNvOx2GydPHmf58pWTWkf5XWhqasTn8xEVFR2RsDdRePLkETduXGP58lXvlMgk82pc/iB7H7ZR0eVEoD+J82aDleX5ZtYWJo4bv9GHQHYOjwAJ0VpmpMZy6XkH1pYWXl4ixMTEkpycMmh7X1DE6gmwMt+M8T07iEN/Gd/Vq5cJBgPs3v3ZhJjg4nQqpiVGc6+5j1idCr2+f0Hv9rjxigq0KgWFiW+XVT3QyK25uZa6uka0Wh1FRSWUlJSSmZk17n7Yfr+f//bf/pH29laUSiVmcwK/+c1/R2xs3Gv30+l0FBeXUFxcgiRJdHV1hh3Fra0tSEOk4g5kFd+7dxe1Wk1WVna4Cc/7LOx9QZEnbXaMelXYMTxAtFZFp9NPeYcj7Bxua2vF5XKi1WrJycmht9f9zud+FwRB4OOPF5Oens7Ro4eHzBR89OghbW1t7Nix6406zpIkcebMKZqaGvm7v/s1sbGJEZnQH3+8hH37vicrK/uVzSllZGR+JN9sINds4GF9B06rZZC2cEpyCjExg4Ofdm8QvyixINuIapgO0EAgwOnTJykvfxYxFgqFqK2tJiYmdsgMk6SkZHbu3D2unKLZ8XpS43S0271kGfXoDXoCwQCBYBCrJ4RRr6Ig4e2yXbu7u6moeEZzcx1tbZ3ExMQyc+YsSktnkJg4/l6WHQ47//k///+w2+1ERUWRm5vLN9/86o3yFjExscyaNYdZs+YQCoVobW0Jz6lDZcVKkhTOKr5x4xp6vYGcnFzy8vLJycl9r6ziToePBqublGhtxOebEKWmxuKmutsVdg4PBFszMjKIjo7+4I0Q1Wo1GzduJiMjk7NnT0U0cRRFkUuXztPS0sSmTVvR61/fFDEQCHDw4D58Ph//8A9/gyiqB12TIAisWrWGM2dO8emnn4+7e1BGRmbiYDKZEUWR3t7eCR9s6uzs5OLFc2zcuHlcvZuMFwYqbAoKpk3IeaOuroYzZ04xd+5HLFr08VibM+l40GKjvNNBplGPVtW/jrC6/Vyrs1KUFENW/Idp6DwekJ3DI8T6okSu3LmLXdIRhQ81IQRBIC8vP7ywlSQJpz9Eh93HzLRY1hS+v06My+Xi9OkTFBWVMH36jPc+3odCEAQ+yTPT0uel1uLGpFcREFQ0WZxExWlYmhtPtunNP0SPxxNugtPc3IRKpeKjj2Yxe/YCcnLyxq0undvt5sCBvTx69BCfz8esWbP5H/6H/+tbOw8HMpiSk1P4+OMlYT3Furpa6uvrXplVXFtbQ21tf3mN2WwOl8q+bVaxPyjiD4XQqX50yLS0NOP3+0lMSkKjVOHwBcNjAwvZ/PyCMQ1iZGZm8e23v+b48SNDlpR1dXXy+9//Mxs2bKa4uOSVx7lx4xpPnz5my5Zt5OUN3YhKpVKxdOknXL16iXXrNo7gVcjITE5USgWbi8zcuHsXOwai8aJERK1Sk/WSdr8kSVjdAfq8QZblmpiXYRzW8fv6ejl06MCQcgJut5u6ulqysrKJjY3UCp8+fSbr1298rwaWo4FaqWD1tEQOPG6jzupBr9DiR0VNp40og4E1hcnEDSMYbbP1UVFRQUVFGd3dXej1ehYu/IgVK9aRnp45bhdVPT097N37V+rqavB4PKxZs55f/erv3jqjV6lUkpWVTVZWNitW/JhVXFdXS2Njw5BZxR6Pm4qK/kql/kqf1HDw9W2zir1BEX9IDC9OAKprqtFqtCQm9TvkvcFQeGysKnF+yowZM0lJSeXw4QNDNniqqanm97//Ldu373plRpsoihw/foSurk5+9rOfYzKZhpxTY2PjyM3N48mTR8yePXfEr0VGRmZqYH4hT2WxTOxKhPr6Ou7fv8v27bveS+d9stJftTogKTHxpDY6Oto5cuQQeXn5rFmzfty+h01kytod6FQK1Ir+3mFGo5F4vRqL202D1S07h2XensbaKhKsFTiFJKxCDG60pCfEI6m0OHxBvIEQNm8QnVrJgiwjW6enoHsP2QSA9vY2Ll++yKpVa0lOTh6hK/lwpMXp+Pm8dG429FLR6UChMaCTfOyamcL8TOMrNV4CgcCgJjiiKJKTk8vmzdsoLCwkPT2Bnh7HB8+gGS42Wx/79n1PR0cH7e2tJCQk8W/+zf80Ilmler0+Iqt4QF6ira11yKxii8WCxWLh3r07aDQasrKyw0144uKMrz+fWkGsTo3V5SdW1+94yMjIxOV2093VRX2fl8RQFHZ7HLGxcYMit2NNVFQUn332Jbdu3eDatSsRn43P5+PIkYO0tDSxcuWaCKf506ePuX79KsuXr2TGjJmvPVdmZhbl5WVyp3UZmWFS/eQOOd4GRCEZh6BHREFhWhq+EHiCQdz+IA5fiBidirWFCayalohS8eYX5rq6Go4dO4r3J/JP0L9A7OzspLCwKCLbVKFQsGbNOubM+WjcvphPT4lBq8zgVqOVuh4nQZQkqANsm5vOzNRXS0253e5wkLWlpRm1Wk1BwTQ++WQFeXl5JCcbx/Wc2trawv79e+nq6qC3t5fi4mJ+85t/OSJSD0NlFQ/MqQONh19GkiTa29tob2/j+vWr6PWGF41i+/+9aeEeq1Nh0Chx+kPE6/vtLyiYht1uo7mllXZXiO5oJ57MaARBoKmpX4+7qGjsZYsSEhL45ptfcu7cGZ49exIxbrPZ+POf/8CKFauYN29BxO/o0qXzVFc/Z9euPW8siZ47dx779/9Afn7BuJdRk5GRGZ8YDAZ0Ov2Ebkr39OljGhoa2Lnz03GbEDXWdHS043DYX6xxc8banLfCZutj//69mM0JbNu284M2xp1KSEj4/X6ePKnE6/Uyb978cBLIUL6TyYz8FBkBvF4vFy+eR02IAqkdp9SLS59EQup0XP7+DA+tSsHKggRmpsaSYdS99+LyyZNH1NfXsWPH7jeW6Y1nUmJ17JqVynp/IoftzyDQycc5kaX8oijS0FBPeXkZNTXP8fv9pKWls3LlaoqKSoiO7pegGKdr9jBdXV3s2/c9TqeDmpoaMjOzWbx4SYT0yEjwclbx4sVL8Xg8NDTUh7OK3W5XxD4D3ecHspHM5oSwozgjIzPixUOlVDAvw8iRsg7c/hAGTX/AI8pgwJ2QSlG8xPwMBdeuXaWnp4uKinISE5PHjU6nIAgsXryUtLR0jh07MmSm9YMH92lra2P79p3hUq26ulpOnz7J7NlzWbRo8bDOtXz5Sg4fPiB3WpeReQNdXV3cu3cHPSIlUgt2yUDInENcvAmnP4QAxOjULC9IoPQl/dXXIUkSN29e5/r1qxEvepIkhZuClpSURszP0dEx7Nix650aa31oChKjyE8w4PAF+V3jFabHmpiVFpkBPfCsHwiyAmRn57Bly3YKCqah1fZ/puN9Tq2pqebIkYP4fD5qamqYMWMma9asf6OUxLvwclbxypWrsdttg7KK/f7IJroej5vy8meUlz9DEARSU9PCc2pKSmrEvWYyaChJjuFWQy/RGiVqpQIBiI2JxRbSMCtNybSEAKdPn6C9vZ3u7i7y8wtISEgYMsv2Q6PRaNi8eSuZmZmcO3cmQmYiFApx4cI5Wlqa2bhxSzgofvfube7du8u6dRuGFTxWKBQvGr5eYNu2HaNyLTIyMpMbQRAwm81YLBPPOSxJEtevXyUYDLJ16/ZxG7QeDwysafPy8ifU+svj8bBv3/doNGp27/5s3FWsTSaifFaq6ppJ0IjMmDkLtVpNnyeAXvVuja4nMhPnFzKOuXbtctipJAAxePnFxoVk5uTjDfY3udGpFO+dKQwQDAY5f/4sMTExbN++a9JMBlEaFZlJZp4+/THbRJIk2tpaqajob4Ljdrswm80sWrSY4uKSN+rBjjeamho5eHAfHo+Hrq5OCgsLUSqVlJR8GFF5vV5PSUkpJSWlSJJEZ2dH2FH86qziHiyWnkFZxQNNeAa0kednGWm1eXjYakOS+gMhnkC/o3htUSKLc00IMwu5du0KT548wWrt4dy5MyxbtoiYmAQEYeyjoNnZOXz77a85duxwOBPrZTo62vn97/+ZjRu3EBcXx5EjB8nNzWPdug3D/g3q9XrmzPmIO3dusWTJspG+BBmZSYEkSZw7dzrcIE6BhFnp5Zc7l6GPMeILhlAIAoYXjrPhMNC9e2CB8DL9lSjPSUhIIjExUuopMzOLbdt2hgOQEwFBEIjVqUkzG+m1/ljiHwqFaGysp7y8PBxkTU/PYPXqtRQVlbyXVu5Y8OTJI06fPonP58Nm66O0dDo6nY6SkldLAY0ksbFxzJ49l9mz5xIKhWhpaQ7Pqa/KKm5ra6WtrZXr169iMEQN0ioeyCpeU5iI1R2guseJShBQKQQ8ARFTlIbtM1MoSY5h3szp7N37V6qqKujs7ODEiRNkZuaTnBzpcB4LZs6cTUpKGkeOHBjS8fL8eRVdXZ1s376Lvr4+Ll48z6JFi5k7d96wz5GUlERcXBw1NdXjohpJRkZm4mE2J9DZ2THWZrwVoVCIM2dOkZyczEcfzR9rc8Y91dUDVauRPSTGK8FgkIMH9+F2e/j5z7+ZcO9nEwW/38/582dpevqMguS5SHFp9PgEurxuFAqBpbmmKSUpAbJz+L1pb2/j4cMHg/5WUDAtLHg+Eg7hAWy2Pk6fPsn8+QvIyysYseOOF0wmM06nI1y2WVFRRl9fH9HRMUyfPoPS0ukkJSWPi4XP21JVVcmxY4fx+XxYLD18/fUvuXDhLKIovlbTdrQY0EVMSUllyZJluN1uGhrqwx3bh5tVPOAo3jE9nekpMZR1OHD6giTHaJmeGkt2vD78fTU01JOUlMT69RspKCigtbWeU6fOkZiYzPTpM0lKSvqgn8FPiY6O5vPPf8bNm9e5ceNahLPc6/Xy/fd/ore3l1mz5rxTeU9RUTFHjhyUO63LyLyCp08f09LSPOhvixYtxmw2A4SrE4ZLV1cXhw/vp7e3N2LM4XDQ2NhAbm7ekC/e8+cvYMWK1ROiyetQmM0JPH9eRUtLczjI6vG4MZsTWLRoMSUlpROycY0kSdy6dYOrVy/j8Xjw+Xx8+eXPOX/+LDqdnpycvA9uk1KpJDs7h+zsHFatWoPdbgs7il+VVex2uyKyigfm1K8+Sqeyy0lFp4NASCIzXs/M1FiSX2TJB4NB2tpaSUtL55tvviUlxcSVKze5fPkS2dk5lJZOf2Nz29EmMTGRb775FWfOnBqy8WNfXx//+I//CZfLxYoVq1i+fOVbn2Px4qXs3/8DmZlZ4Wx3GRkZmeFiMpmpqChDkqQJsb4cCHbPnDl7yIa5MoOxWi309HSjUCjGTdXqm5AkiRMnjtLR0c6XX/4ck8k81iZNSrq7uzly5CB2u40dmzaRV1TK0zY79VY3GqWC4uQYipOiXylzOlmRncPvgSiKnDlzapATSa1Ws2bNuhGfYOrr67hz5xYbNmyakIu5N+Fw2GlubuTRo4c4nQ4SEhIpLCxm48bpZGRkTmiNnYcP73Pu3Bk8Hg9Op4P/8X/8t3R3dyGKIikpqeMiA9pgMFBaOp3S0unhTuwD5bLt7W2vzSq+e/c2Go2G7OwcivLyyS3Ni1iUOp0O2tpagf7gSUxMDMuWLaOoaBYdHR08ffoIi8VCbm4eJSXTxyxLT6FQsHTpJ6SnZ3Ds2JFBTvJAIEB5eRmiKFJaOgOPx/3Wpctyp3UZmVfjcrm4dOnioL/Fx8cPW7rlp1RUlHPq1PGI0nborwaw2WwUF5dElBmq1Wo2bNhMaemHqeoYDbq7u2lsbODChbNYrRaMxnhmzpxFScl0kpKSJuyzRxRFzp8/w8OHD7Db+zUE/92/+39w8+Z1AAoLi8aFMz82No45cz5izpyPCAaDtLQ0h+fUoRq2vZxVfO3aFQyGKHJz85j3Iqv4p/JhTU2N+Hw+oqKiSU1NIzExlpUrVxMKiTQ2NnD16hV8Pi/TphVRWFg0Zo5TjUbDli3byMzM5Pz5swSDPzaodbvdPHv2jKgoA8FgEL/f/9Z2qtVqFi9eyrVrl1mzZv1Imy8jIzMCBEIilZ1Oup0+VAqBXHMUSdGacTEPJSSYCQQCOBz2MQ+ovQmHw86JE8dYvnzlG3XZZfoZaESXmZk1Ir19PgSXLl2gqqqSnTs/JS0tfazNmXRIksSTJ484f/4s8fEmfvGLX4cTUD7OMQ0pbzqVkJ3D78HDh/cjSlEWL172xiZeb4MkSdy+fZPe3t5Jpzfj8Xh4/rySiopympubgP7S+0WLlrBhw6YJpQs0FJIkce3aFW7evI7T6UQURf79v/9/YjTGc/XqZQCKij581vCbGMhgSk1NG5RVPJAF5fG4I/bx+/1UVz8Pl+4kJCSGu7VnZGSGs43T0tIHNY95OYM5FArR0FDHxYvnCQYDFBeXUlAwbUzu+ZycXH75y19z7NgRmpoaEUWRqqoK/P4AM2fOwmq18N13/8zmzVvfupxV7rQuIzM0ly9fjGgUt2bN+rd+BoRCIS5fvsi9e3cixkRRpK6uFp1OR1FRccR4fHw8O3Z8OuaVDO+C3W6jvLyciooyuru78Pn8GI3xbNiwmblzx28jveESDAY5fvwIVVWVWCwWkpOT+Vf/6l+jVCqpqqoCGPI7HWtUKhU5Obnk5OSyatUabLa+sKO4qanxlVnFZWVPKSt7iiAIpKWlh+fU5OSUcHPXadOmDfpeFQpFuPmd3+/n+fMqjh8/glaro7R0OtnZOR882C4IArNnzyUlJY2jRw9itVrx+/1UVJSh0WgoLi6luvo5v//9b9m+ffdbN1jOzs6hoqI8nEktIyMzfuhy+PjDwzbKW22ERAlRkojRqliQZWRdYSKqYcpDjRYDWZk9PT3j2jnc2dnJxYvn2Lhx86RMEhstfpwrJ0aW9f37d7l79zZr166fMDZPJHw+H2fOnKSiopw5c+ayatXaSeVbGwkmtvdtDHE47Fy7dmXQ3xISElmwYOGIncPr9XLmzEkyM7PYuHHzhF/YwYC+449NcERRJDs7h40bt1BYWMQ///N/Izo6esI7hgeyyp88eYTVaiUuLo5//a//b+j1epxOR9gZXlw8/hayP+XlrGJRFMNaxXV1tXR0tA+ZVdzT001PTzd37txCq9XS0dGO3+9n/vwFrzyPUqkkP38a+fnTwoGDw4cPEB0dQ2npdDIzsz7obyA6OobPP/8Z165d4bvvfovD4WD69BlhXUiv18OBA3tZsGARK1asfKtjz507j337vpc7rcvIvKCpqZFnz54M+ltxcclblwE6nU6OHj0Ufsa+jNfrpba2mvT0jCEXV/n5BWzZsn3CZJdAf/bly0FWtVpNQcE0PvlkBSkpqfyf/+f/B71eP+HfH7xeL4cO7aepqZH29nZmzpzJL3/5tygUCurqavF43BgMUWRn54y1qW8kLs4YkVU8EHx9VVZxa2sLra0tXL16maioKCorK9HpdGRkZL7yPBqNhhkzZjJjxkwcDjtlZWXcuXOLpKSxkXJKTk7mm29+xYkTR9m373tEUWTGjJnh973e3l7+9KfvWL16LXPmvF3gdPnylRw9eog9e74YF5njMjIy4A2E2P+4nRanj9RYLVqlAkmS6PUEuFRjIUqjZHn+2EqsxcbGoVKpsFot41Z2oL6+jvv377J9+67wGkTmzbhcLlpbWwAmhC798+dVXLhwjgULFsla0qNAR0c7R48ewu12s337rjGR9ZwITGwP3Bhy8eJ5fD7foL+tW7dhxF5Ku7u7OX/+DMuXr5zwmRCiKNLQUE9FRTnV1VX4/X5SU9NYuXI1RUUlgyQEzOaEIRdHE4lAIMDRo4eoqamms7OD/PwC/uEf/mX43qiqqkSSJNLTM0Y0y/xDoFAowlnFS5d+gsvlCmcVNzTUD5lV7HK5qKysQBRFrly5TGNjI3l5ecyfPxu93ohCEfmb0ev14UY/vb1WysvLuHnzOmlp6UyfPuOD6S8pFApEUSQ5OYX09Iwh5S7u3r1NW1srv/rV18DwMiAUCgUrV66RO63LyNCf6Xv27OlBf9NqtaxevfatjtPa2sLhwwdxOh0RY729vbS1tVJQMA2tdrDzVxAEli79hMWLl04IJ6rf76e2toby8mfU19cB/dmTmzdvY9q0wkGl+QZD1ISfU51OB3v3fk9XVyctLc2sWbOeHTt+bMhbWVkBQFFR0YSToHo5qxj6e0u8rFU8lCRKZ2cHTU0NKJVKjh49zKNHD5k7dwYmU+or+zLExMTy8ceLWbToYzo7x07KSa1WEwyGyMjIxGCIivgtBoNBzpw5RUtLMz//+efDPq7BYGDmzNncvXubjz9eMtJmy8jIvAPV3S4aet0UpsYR9AdA6p9vTQYN/qDIvSYbC7PiR7Q/z9uiUCgwmcxDNs4cDzx9+piGhgZ27vx0widOfWhqa6uRJImUlNRxnRUO/e+vx44dpri4hJUrV4+1OZMKSZK4f/8uly9fJDExic8++1LOvn8N8lPmHairqw0vRgaYOXM2mZlZI3L8iopyysufsXXrjgnVIf1lJEmivb2N8vJnVFZW4na7MJvNLFz4MSUlpa/U2TWbzdTV1X5ga0cOt9vNwYP7aG1tobm5iSVLlvHllz8ftFgbuHcmQ8QqKiqK6dNnMH36DERRpKOjPbywHcgq7uvrRRRF9Ho9er2e7u4uenq6ePbsIcFgv1NjoFw2JiY24hzx8SaWLv0knD11794d7HY7+fkFFBeXRmgxjiQPHtzjzp1b7N69h6KiYo4ePRzRLAugra2F//Jf/gsrVqwbdrPIqdRpXZIkyjscPG6zY3X7yTTq+SjDSOYU6wArMzR3796JcGAuW7Z82Fn1kiTx6NEDLlw4RygUihhvbm7C5/NRUlIa4TzU6XRs3bp93Dd5DYVCNDbWU15eTk3Nc/x+P+npGaxevZbCwuJXviskJCRgtY7PRe9wsFgs7N37F/r6+mhubuTLL7/mk09WhMeDwWC4bLS4uHSszBwx4uKMzJ07j7lz5xEMBmlubnrRKLY27LwY+G98vAlBEGhtbaa3twu324fBEE1ubh55eflkZ+dEzI8/lXKqr++XcgqFghQVlYyqlJMkSZw9e5rGxnp+85t/hcFg4PDhA/T19UVsW1FRxn/9r/+V1as3kZg4vAznkpJSDh8+gNVqmfQNfAIhkUetNp62O/AEQkxLiOKjTCMJUW/XB0FGZjTpcPgQJQmNSkHQ3z+PNTU1kpmVjdGgpsvpp9vpH/N3QbPZPO7mSUmSuHHjGn6/n61bt0+IwPV4Y0DScLzLM1itFg4c2EdqahqbNm2Vv+sRxOPxcPLkMWpqqpk/fyErVqySq4vegOwcfksCgQDnzg3OcNLrDaxYseq9jz2gkygIArt27ZlwGTDQr9lUUVFGRUUZfX19YUmA6dNnvDKj5WXM5gQePLhPKBSacD9eu93G3r3f093dRWNjA7t372Hduo2DtrHZ+mhtbUEQhHGpjfg+KBQK0tLSSUtLZ9my5bhcLurr69i793tUKjUmkzni+/f7fTx/XsXz5/16kYmJSeFu7Wlp6YPuAUEQyMjIJCMjk2AwSG1tDWfOnEQQBEpKppOXlz+i90x19XPOnz/L/PkLmD+/Xy7miy++4urVy9y5cytie7fbzf79P7Bw4WI++WTFsH6/U6XT+vV6K6cquwiJEjqVgsZeD2UdDj6fm05BQtRYmyczhvT19XLz5rVBf0tJSWXu3HnD2j8QCHD27OkISQrgxXOiGqMxfsjgbWJiEjt37h4XTUGHYqBJWUVF2UtB1gQWLVpMSUnpsDIfTCYTra2tH8DakaetrZX9+/dit9toa2vlN7/575k5c9agbRoa6vF6vURHx7xWYmEiolKpwvrBsJa+vl7q6+v47W//G0qlckgHqMvl5NmzJzx79iQ8J/cHX/MjGhEqlUoKCqZRUBAp5TR9+gwyMjJHdJF669YNHj9+yKZNW19cE/ziF7/m1Knj4XeAl+np6eEPf/gd69ZtYMaMWW+0ZaDh67lzZ9i9+7NJu8AWJYljZZ3cbuxFqRBQKwTqLW4qOp38fF46CdGT911CZmKhEICXlOeqnlfR22vF5XaTW1CEQhAYD0tdszmBxsbGsTYjTCgU4syZUyQnJ7N06Sdv3N7pC+INhAhJoFUpiNGqUCom5/NvuPj9fhoa6gEoKBi/zmGXy8W+fd9jMBjk7PARpqWlmWPHDuP3B/j008/Iz5/ciVgjhXwHviW3bt2IyHJYuXLVe2sAOZ1OTp06zsyZsyec09DhsFNRUUF5+TO6ujrR6XQUFhazYUMpmZlZb+XkNpnMiKKI1WolMTFxFK0eWbq7u9m373t6e600NzfyN3/zD2GH4stUVlYC/V1TJ7vWbFRUFCUlpZjNJhYuXMTatevxeDzU1dXS2dk+5D7d3V10d3dx+/ZNtFotOTm54azilz8vlUpFUVExRUXFL2QryjlwYC/x8fFMnz6TlJTU91oYtrW1cuzYYQoLi1i16sfSdqVSycqVq8nMzOT48WMRzbMAbt++SVtbK1u3bh8yE/plpkKndZsnwJVaC1qlgmRj/6JVkiTqrR6u1FjIMxtQTNJFvMzrkSSJc+fODCqdFwSB9es3Dmve6Ovr5fDhgxGNYYFwcConJ2fIZ21p6Qw2bNg0LhtRdHd3h4OsNpuNmJhYZsyYSUnJ9AgH35swmxN49uwpoihOqIBzbW01R44cwm63Y7H08G//7f9MdnZ2xHYVFeVAv37/ZHUGDmA0xpOdnUNmZhaZmVls376LtrYW6upq8flcEduLokhLSzMtLc1cuXKJ6OiYQVnFL2trDyXldOPGtRGTcnr27ClXr15m2bLlgxz8Op2OHTt28+DBPS5duhCR+R8KBTl58jhNTU2sW7cBjeb1mbFxcUaysrJ59uwJM2fOfi+bxyuNVg8PWvpIjNIQo+tfxomiRI3Fzd2mPjaVvl1DPxmZ0SI73oBaqcDlCyIAWZlZ2G02bLY+nlTXM7+kgOSYsdf4N5nMuN0u3G73mGv6+nw+Tpw4yowZs16b8RoUJRosbp602ajscuIPiUgSKBUCyTFa5mUYKU6OJlo7NV09DQ31BINBjEYjCQljq2v9Kvx+PwcO7CUQCPLFF1+NaiXsVEKSJG7fvsm1a1dIS0tn69bt415WZDwxNZ8Y70hPT09ExmBGRiYzZsx6xR7Do6WlmWvXrrB27YZx+wD7KQNZJgNNcPqbiRWwZMky8vLy3znyNbAAsVotE8Y53NzcxMGD+7DZ+mhvb+ff/Jv/+ytlAqqqJo+kxHBoamoMZ3XNnTsPhULxIqvYic3Wxf37T6ivrx/Syerz+aiqqqSqqt+hnpSUHHYUp6dnhB0dUVFRzJu3gHnzFtDT00NZ2VOuXLlEVlY2paXT31rXubfX+v9n7z+D5Li7NT/wl1nedndVOzTaO7SDtyQIS4IAHUjQu/e99753RlcajWJHoZEUUoRmFDMrE4r9sKvVjrSzE3fufS09CUsCBEGCJAzh0d57W13eu8zcD9VdQKO7YRuW/XwhkZWZlVWdled/znnO8/D555+Sm5vHiy++MmfBoaKiir/+699x4MBXjI7OZuUNDQ3yj//4H3nppVfSDKn58KQ7rY/6o/iiScqyDDgmHZhNZoxGI9kmDSO+CP5okkzDo1egW8T9R3t7+ywZodWr15Cfv+SWx/b19XLw4P45nx0p6Rony5bVzCr+iqLIjh3PsmbNukeqmOj3+2hra6OtrSXdZF22rJba2rp7MuO02ewkk0l8Pu8jy5C+EU1NVzl69Gu8Xi/RaIT/8X/8v89ZnEwkEvT0pMZGnwRJidtBV1fq85aWllFTU0tNTS3PPrsLUUxw4cJVenp6GBoanFOrOBgM0NR0laamq4iiyNKlhZSVpWLq9U2HG6Wczp8/h9/vo7Ky6q6knPr7+/jmm8OsWLGKp57aPOt1QRBYu3Y9BQVLOXDgS3w+36x9WlqaGB8f49VXX7/lOnnt2vV89tnHlJVVPLbSbDfDiC9CLClj1qkYGR0hLzcPtVqNVa+m3RFcLA4v4pFBqd1Ifb6FlskQFo1ApslEedUyrnT2ovj96N09qISyh32ZM3LPh1kcDgT8HDlyiC1btt00Hxj2RjjSOsGAJ0JSVsgyqMnQqxEQSMoKQ54IPc4Q2SYtm8tsPFVm+9WRMLq6UnJTlZXVj9RabxqyLHPw4Fe4XE7ee+/Dx86DaC4oioI3kiCalJFkBa1KxKpXP1BN8WAwyJEjBxkY6GfTpqfZvHnLY0WMeBSwWBy+TSiKwuHDh2awGkRRZNeuPXf90FEUhUuXLjA6OsK+fW8+8mPlqUSsm7a2Fnp7e5BlmZKSUvbseYmqquoFcXg3mUwYDMbHxkCnq6uTgwe/wuv14vN5+df/+t+Sl5c/574ej5vx8TFEUaS6+vFih98tphP3ysqqGQ9ns9lMaekSli4tR5JkxsZG6e3tmWIVz2YBAjgcEzgcE5w9exq9Xk9paVl65HaaGZidnc22bTuQZZnBwQFOnfqZSCRMdfUyqqtrbvkbmx7vMRj07Nv35k1ZhVZrBu+99yEnT37PxYvnZr0eDqfO9dRTm3n66WduGpyeZKd1tSiAItPR3Y3bOUFRUTHFxmKSsoJKFFKvL+JXh1gsxtdffz1jm8lk5plnts1zRAqKonD27Gl+/vlHFEWZ9Vp/fy+iqKKmpnZWbDaZzLz66r5HRn4gEonQ0dGWbrKq1WoqK6vYvHkLZWXlCzJeaLenkl6Xy/XIF4en2R4//vgDLpcTnU7Hv/k3/8u8yXpPTzfxeJyMjAyWLCl4wFf7cDAdU29klNlsNtasWcfq1etIJBJTWsUp/X+32z3rPLIsMzQ0yNDQID/++D1msyXdfJ1mFd8o5dTd3cWxY18jiiI1NXW3JeXkcDjYv/8LSkpK2bVr903Xy0uWFKRlJqZ1pK+Hy+XkD3/4j+zatYeGhuXznkcURbZt28HJk9/z0kuv3PT6HkeoRYFkMklzczP+gA+9To/dbkeSFXTqxSR4EY8O1KLAayvyyRsJcKbTQZ87gkrQU1dWTKT7HM6OTs6eNc7ZNHqQsNlS+u0ul/OhrQ8cDgcnTnzL7t0v3DRWdztDfHF1FFc4ToFVj2GOwptVr0aSFSZDcQ61TuCLJtldk/urkZqQZZmenm7g0dQbTk3NHaWvr5fXX39r3rrB44JoQqJzMsTlYR8DnjBJWUFWFNSCgEmnZtVSK/X5VpZYdfe1UN/f38fhwwcBeOutd9NGv4u4MywWh28TLS3N9Pf3z9i2fv3Gu2a3Tusk2u3ZvPzyq49kVwtSD9j+/j7a2lrp6uogHo+zZEkB27btoKam9r5II9jtj65r7PW4cuUS3357FLfbhaIo/Nt/+79itc4vIzBtRFdSUvrQx5YeBBRFSbOcKivnN3uaZjAtXVrIli3bCAaDaQOeaT3JGxGNRmlvb0t/p3l5+elx2YKCpYiimHaAj8fjdHV1cuTIQTQaLXV19ZSWls0q1iYSCb788jNisTgffvjb2/obqVQqdu58juLiYk6e/JZwODbrOzh9+meGh4duajD5JDutG5JBXINdeOKwoqKSJXn5JCQZVyjBptKsX+3I268dp079hN/vn7Ft587nbtpkjEajfP31oTQj5HrE43G6u7vIy8tPF0SvR2FhEXv3vvbQ5XwSiQTd3V20tbXQ19eLLMuUlpbx4ouvUFVVveBNYovFilarxeVyPdLGl4qicOLEt1y8mGqYFxYW8y/+xX910wL5tUmcukd2DbWQCAaDjIwMA9z0b6nRaNLa/ZBqTE8bxQ4ODpBMJuc4d4DGxis0Nl5BFEUKC4soLU3F1JycHNRqdZqpfLtSTn6/j88//4TMzCz27t13W41Pg8HAa6+9wcWL5zh//vSs1xOJBEeOHGRoaJDnnnt+3gZuXl4+RqOR3t7uR95s8k6hDjkZG+gBQWB1XQOZmZmE4xKRhMTKgsXR2UU8WjBp1by7vpg1eSYcgThqUaAw00DzVYHvvvuWn346idFoZOXK1Q/tGtVqNZmZmQ8t9+zr6+XixfPs3bvvprnHqC/KV01jeCNJym3Gm8Y9lSiQb9GlpN16XZi1KrZWPh7TyfeKoaFBotEIBoORpUsLH/blzMIvv5zlypXLvPDCS+k4/ThCVhR+GfBwps+DIxhDEMBu1KBViQiCgCQrBGNJjnVMcqrPTVWOmeeqc8izLOw6V5ZlTp36mTNnTlFcXMJLL+19IqeGHhQWs/LbQCQS4YcfTszYlpGRcdedTo/HzbFj37Bp09OUlJQuwBUuLBRFYWxsdErzsI1wOITNZmPDhk3U1NTedxdom80+L3v0UcB0we/UqZ8YHx/DZrPz3/w3//0ttfCuaSP+OiQlJibGCQT8aLVaSkpuv3tnNptZvnwFy5evQJZlRkdH6OvrvSmreGJinImJ8RtYxdNaxWbq6xuor28gEPDT2trK+fO/kJubR339cnJzc5FlmUOH9jM56eC99z68LaOn61FVVU1NTTn/8A9/ZHR0dNbrg4MD/OM//j0vv7x33t/8k+a0rigKjY1X+O67b6mx5hMpX00gKdLtCiEgUJljYkfVr2OhuoiZmJiY4OLF8xgM156Z02Py82FycpL9+z+fkwXp9/sYHBykoqJyzpH3NWvWsmPHcw+NlT/dZG1tbaG7u5N4PE5BwVK2b9/JsmW193URKwgCNtuj58R+PZLJJEeOHKStrZX+/j42btzEX/3V39408Y3FYmlm0K8lpvb2dqMoCvn5S26pZ389srJsrF1rY+3a9VOs4oF0TPV4PLP2n568GRwc4Mcfv8disc7QKr4dKadoNMpnn32CKAq88cZbd9T0EASB9es30tCwjH/8xz/i8/ln7dPUdJWxsVFeffX1OZtBAJs3b+GLLz6lsLD4luuzxwGSJKUNcdcV1OLPqmYyAU5nCLUosrowg7VFi8XhRTyasBm1ZF0X89euXU8oFOLs2dMcO/YNRqPpobI87fbshxInm5oa6e/v49VXX7/ptKKiKPzU62IiEKPCfvPC8PXIMGiISzI/9rqoW2Il2/T4PwtvhenJkxunVh8FtLQ08+OP37N585bHWhc/Kckc7Zjk596Up0xRph6NavZ3bdSqyDFrCcQkroz4cARi7FuxhFLbwpDk/H4/H330Z0ZGhtmyZRsbNz71qyAL3E8sFodvAz/99APhcAij8dri9rnnnr+rxWZPTxeXLl3khRdeemTEsaMJCW8kSdjvZbi3nba2FrxeL2azhbq6eurq6snLy39gPza73U5bWwuKojxyP3BZlvn226NcvXqZgYF+6usb+E//039+y+AzOTmJ0zmJSqWiqmrZA7rah4tpdt+9jEdPM5gKC4umWMUB+vr67phVPM2iWrKkgI0bN7Fhw0Ycjgmam69O/W2ceL0e3n33/dvSO50LWVlZvP/+b/j++++4ePHCrNdDoSCffPIXNm/ewqZNT8+6ZwRBYPv2nXz33bePvdN6LBbj2LGvaWtrZdWq1ezY8RyhJHQ4goRiSewmLctyzQ9Uh2oRjwYUReHbb7+ZIQmhVqt57rnn573n29vb+Oabw8Tj8VmvjY6OEAwGqa2tm1X81Wg0PP/8C9TXNyzsh7gFgrEkgWiSgNvBQHcb7e3thMMh7HY7Gzc+RU1N7QOVeLDZ7I+sVFM0GuWrrz6nv7+Pnp5u9u7dxyuvvHrL47q7u0gmk9hsNnJzfx0aq9Mx9V4KKClWcSXl5ZU8+2xKY3O6UDw0NDgnqzgQ8M9iFZeVpWLqXFJOoVCQ/v5+VCqR3/72d3fN1i8qKuK3v/0dR44cSjcCrofTOckf/vAfef75F6irq5/1ularZePGp/j55x/ZufO5Wa8/TvD5vBw8uJ/x8TG2b3+W9es3MBGM0T0ZIi4pFFh1VGabUM+RnC9iEY8qtmzZRjgcprHxCgcPfsVbb71LUVHxQ7kWm82enkZ5EJgmGsXjcV5+ee8t1/yOYJwOR5Bck/aO9YOzTVq6nWHaJgJsKX/8ySc3Q2pq9d5j5f3AwEA/33xzmOXLV/L008887Mu5a8iKwvFOJz/2uMgxabDqU02NpCShnoOEIQgCVr0as1ZFvzfCZ1dH+XBtIfnWe5Mj7enp4uTJ48RiEu+++8EjIxn3uGOxOHwLjIwMc+XKZa5/DldVVVNRcWfjmbIsc/p0Sv903743F0RL8F4RTUh8ca6HA790Mub0Eo+GyVbF2FJRxu7dtRQVFT+UjpvdbieRSOD3+x4pgfZEIsGhQ/vp6Ginp6ebXbue5+2337+tY6cXHGVl5Quizfw44HozgIWC2Wxh+fIV1DcsZ9Ad5mrvMCOjY7gdoyieYXTMTmynWcVnzpxCrzdQVpZiFZeWlrFz5y7Onj3NlSuXKChYSmPjVWKxOFVV1Tft4M8HlUrFs88+T2FhMd98c5hYbLbMxM8//8jQ0CAvv/wqJpNpxuuZmVkUFT3eTuvj42McPPgV4XCYvXv3pVl9mRrYWHJnjOxFPHm4evUyo6MjM2Lqpk1Pz8mWl2WZkye/5/z5X2a9JkkSPT3dmExmqqtnN9wyMzN59dU3yMt7cIVDbzjBge9b+fZyL5NuL3IiSoE2zrO1DaxfUU9ubt5DafpkZ2enWaePUtMpGAzw2WefMDIyTG9vD7/73X/C5s23lzC1t09P4vw6JCXi8TgDA/3AwsZUm82OzWZn5aq1dEz4ae0fZmxsDK9jBFVgAg3SjP2vZxWfPHkCi8Wabr4WF5dQUlLK/v1f4nQ6qKqq5uzZ0/NKOd0OjEYjr7/+FufO/cJPP/2ALMszXo/H4xw6tJ+hoUGefXbXrLV1WVk5bW2tjI+P3XXj92Gjs7ODb745jE6n4/33f5M2qsq36Mm3/DrWk4t4MiEIAs8/v4dwOER3dxdffvkZ7777Ibm5uQ/8Wux2O36/n0QicVfr/zuBJEl8++1RcnJy2Lx5y20d0zLuJxBLkme+c8alIAiYtCouDnnZUJz1RGuTOxwO/H4/Go3mkZrOdjgcfPXV5xQVFfP883fvV/UooGUswE+9LuxGDRadGo/Xg8PhwO12sXz5Ssw35LbTEEWB0iwDfa4w+5vH+duNxXfV0JQkiR9//IELF35h9eoVbN68E4PhyZfrfFB4+BXKRxiyLHPs2Dcztmk0Wp59dtcdnScSiXD06BEqKip55pmtC3mJd4VIJEJbRzsfXRikJ6iglpPkZJixLikjrjIwajGgzcp/aKMYdntq1Nzlcj0yxeFIJMKXX36WZje9//6HPPvs87d1rKIoMxLZXwM8HjdO5ySiKC64ntKQJ8Lxzkn6XCGiSQVByEHJy8G4dCUWMUR2ZJixof55WMUR2tpa0xIfiqIwNDTIzp3P8dprbxCPx+nsbOfAgS8xGk3U1zdQVFR8x0F82bIacnNzOXDgqzmlMAYG+tMyE8XFJTNeW7cu5bReXl45q3j8KENRFC5ePM/Jk9+Tk5PLW2+9e8fyHIt4shEMBvnxxx9mbMvKSkkW3YhQKMTBg18xODgw67VIJEJPTzdFRcVkZMyewCkrK+fll1+dU2LifiAQ8HOhsYVPG8cZjwrolSR5tkyMGUXERS0jJjPbM7MfWjJgs9mJRqOEQqFHRofN7Xbx6acfMT4+zvDwIP/Vf/Xfzsn+nAuRSIT+/j7g1xNT+/p6SSaTZGVlkZ29sHI8LeMBTnY7GfZFScoigrYAlhZgVivYRD9m3wCjI0PzsoqvXr3M1auXUalUhEJBXC4X77zzPk89tZlgMDCnlNOdQBAENm7cxNKlSzl4cD+BwGyZiatXLzM2Nsreva/NajRt27aDQ4f2P3aGr8lkkh9++I5Lly5SXb2M3btffGDPtEUs4kFBFEVeeeU1Pv30I4aHh/jss4/54IPfPPD8z27PRlEU3G7XfTUIi8ViHDlykIaGFXfEbO1wBDFqVHe9jrCZNDgCccYDUUqyntxC2rSkRGlp2X0v8t8uAgE/n3/+CRkZmbz66uuPVRy6EYqicHHISzQWg4CDLoeDePwaEcrhmMBcVj7v8aKQ0hwfcEfocYVZlntna1Kv18PBg/txOCbYufM5du/eicsV5AZ/6kXcAxaLwzfBxYvnmZx0zNi2efOWO5KDmJgY5/vvv2PHjmcfqhtlIpGgp6ebtrYWent7cMpGRs1VrK7KwWbNQK1K3QqyotDjCnOmz83rKx+O+7fVmoFGo8Hlcj4SQu2BgJ9PP/2YkZEh+vv7+Wf/7L9g7dr1t328wzGB2+1Go9E80oZAC4lpI7qiouIFTWYGPGE+vjyCKxgn36rDpL1233rCCXoiJkyF6/nbF17GPTmeNuFxOCZmncvn89La2oLdnk1XVyf/x//x/6KsrJyysnL27HmJRCJOa2sLZ86coqBgKXV1DfNqG86FrCwbH3zwW77//jiXL1+a9XowGODjj/88SyNp2mn9hx9OPDZO65FIhK+/PkR3dxfr1m1g27Ydj/XiZxH3Bz/8cGJW02bXrt2z2H6joyPs3//lnEUgt9vF+PgY1dXVaLWzdUyffvoZnn76mfve3IxEInR2ttPW1srQ0CDjKjt+UxlPN+RhNpoRhdT7JySZbmeIqyN+Npc/OCmJ63Gt4ep8JIrDY2OjfPbZJzgc4zidTv7Vv/o3FBWV3PrAKXR3dyJJEjk5uQteKH1Ucf0kzkI2Ga6O+PiyaYxEUibfqkOvTj23k7KCKxSnK57JloZy/rNXsxgdGUzHVK/XO+tcIyPD9PR0U1pazs8//0hj4xXKyysoK6tg1arVeL0empuv4nQ6KS0tp66u7o4kJwoLi/jtb/+GI0cO0tfXO+t1h2OCP/zhH9i9+8UZOtQmk4n6+uVcuHCejRtnN6IeRbjdLg4e3I/TOcmuXbtZtWrNY800W8QibgaNRsO+fW/yl7/8Eadzkk8//Yj33vvNAyVITDeVXK77VxwOBPwcOXKILVu2pScAbgeKohCOS2hVM58BCtDf34fRYMBoNGE0mVDNs/bRiiJJWSGWlOd8/UnB/ZhavRfEYjE+++wTBAHefPPtBTcdfpCIx+P8eLmZExfHSYZ9syaLICWjWVpadlPpE51aRFJkroz4qM4x3XZs6+ho5+jRI+j1ej744LcsWTLbCHcR947F4vA88Pt9nDr104xteXl5rF277rbP0dTUSHd35y3dR+8XZFlmYKCftrZWuro6iMViLFlSwLZtO+hRcpDHw5QW2giHYyhKiqllNpmwGzW0O4IEY0nMugd/iwiCQFaWbU7joQcNp9PJZ599xOjoKOPjY/z3//3/cMeSItMs1fLyiifCFOV20NOTKg4vpN5TUpL5utWBO5Sg/AYzBlEQsJu0mHQqmsf8lGQZ2FZZTFFRMdu27SAQ8NPX10tfXy/9/X14PB7a29uwWKxUVlYhCMIUq7iFtrYWBEEgP38JZWXlPPPMVmRZ5uLFc/h8PioqKqmpqbut37RarWbXrj0UFhZz7NjXc8pM/PjjDwwNDfLSS3vT53ycnNaHh4c4dGg/8XiC119/61fTAFnEnWFgoJ/W1uYZ25YvX05paVm64z9tYnj8+DEkaeaiU1EUBgcHkCSJ2tr6WQtCvV7Piy++cl/vv0QiQXd3F21tLfT19SLLMiUlpezZ8xInXAbMUYn83AzC4RiyrBCJRDAZjRjUIo2jvodWHM7MzEQURdxu10Mfs+zt7WH//i8YHx8jHo/zP//P/9sd6y//2sxdJUmit7cHWNiY6o0k+LrdgaJAyQ3mMGpRIM+iwxBNcqbfQ5ndRH1FFRUVVVPsOje9vd309fUyNDSI0zlJb28PBQUFLF2aKnr4/X6uXLnMlSspVvG0VnF9/QoCAT/ff3+CZDLBsmW1ty3lZDKZePPNdzh79jQ///zjDO1ySCXiBw58yfDwINu3P5tuPNXXN/Dll5/h9S575CdaWltbOHbsa8xmMx9++FcPlViyiEU8KBgMBt566x3+9Kff43a7+fzzT3j33Q8eWN6k1+sxmcz3zZTO4XBw4sS37N79wl16DgjcSI6Mx2OMjo4A4PV6iUYjVFUtw2I2s3Rp4Zzf3ZNcSvP5vDgcEwiCQEXFw8+dJEniq68+JxDw8957v7lr/f2HCUVRGB4eoqmpkc7OdroSVvxCNtY5CsMAyWQCj9t9SzJVtlFLhyPIZDBOruXmBfNkMpkmWtXU1PL88y/8aiQ6HwYWi8Pz4MSJ47PMb15++WVUKtUtqevTN7Feb+DVV19/oPIMiqIwPj5Ga2sz7e3thEJBbDYb69ZtoLa2Lt0Z7bo0jFqcChFKamRxbGyUmppatKYMQnGJhPTwuot2e/ZDN9AZGRnm888/ZWwsZXj0b/7N/0J+/vyLdG8kgTeSICHJqEURi16NzaBO6w3/WsZfQ6EQw8NDAAtaqOlxhRn0hCnI0M3bKdSrVZi0Ki4N+9hUakvralksVlasWMWKFavw+bz8u3/3/2bZslpKS8vweme7tSuKwtjYKGNjo5w+/TMGg5HS0jKWLaudMiX8BkEQqKmpo7y8Ao3m5o/S2to68vLy2L//y1nTCJD6/f3jP/49r7zyalpQ/1F3WlcUhV9+OcPPP/9IQcFSXn557yNjsrmIRwvJZJJvv50p0aTT6dm9ezfRqHLdPkdparo66/jU5EsXNlv2nCPp2dk5vPba63PqFt8rZFmmv78v3WSNx+MUFCxl+/adLFtWi9lsRlEUjn7fk2b1SJJEe3s7wUCAhoblaFVqIg+RraNSqcjKynroMbW5uYlvvjnM8PAQFouVf/2v/+/zNtkURcEZihOMSSRlGY1KJMugQS3H01Ijv5bi8PDwENFoBKPRdEdss1uhdTyAOxSn3D5/o9OqV+MMx7ky4qMuz4wgCAiCgN1ux263s379RgYH+/n3//7/ZM2adeTm5uL3z2b8S5LEwEB/Wjc5IyODsrJyyssriETCdyTlJAgCTz21maVLCzl4cD+hUHDWPpcuXWRkZIRXX91HZmYWgiCwY8eznDhxnH373nwk2UaJRILvvvuWxsYr1NU1sGvX7seaZbaIRdwpLBYrb731Hn/+8x8YHx/jq68+54033n5gk2h2+/0xb+3v7+PChXN3TRYTBAGTToU/mpixPRi49uxTlNQaIxDwEwj4KbzB2C8uyahVQno65EnENGu4qKj4oZDyroeiKHzzzRGGh4d46613ycnJeajXc6fw+320tDTT3NyIx3MtTw4IRtRIN20yTDgmblkcturVTLojOIKxmxaHXS4XBw58icfjZvfuF1ixYtUjGb+fJCwWh+dAT08XnZ0dM7atXLmaoqIinM7ATY8NBPx8880RVq9e+0AZdC6XK8169Hg8mM0WamvrqKurJy8vf9YPKd+i4/KwkmZdTLO0Ojs7sJcsoyQnC8tDYA1Pw263pzUFHwa6u7s4cOBLRkaGUanU/E//0/+G1WqdtZ8kK/S7wzSN+WkZCxBKSMiygiiAXqMiX5ek35ckR6N7JCQyHgSmjY/y8vIXtFg44A6TlJUZCxtFUUAQZgQpu1HLqD/KiC9CuX3mSFosFuOrr74gMzOLf/7P/29YLNY0q7i3t4eBgf5Z7F6ASCQ8i1VcULCU/v5erly5RFZWFlu3PoVOZ2W+vrzNZufDD/+KEyeOc/Xq5VmvBwJ+PvroT2zZsp0NGzai1WrZsGHTI+m0HgwGOXLkIAMD/Wza9DSbN295aBrli3j0ce7c2VmTIFu3bsNsNhONBvD5vOzf/yXj42Ozjg0Gg/T391FWVj7niGltbR27d7+4oA2U6ebQdJM1HA5ht9vZsGETtbV1s1g/giBQmKnn6miqKCYgIEsSSSlJa2sL1qJqqnMfbmKQarjeH0bUraAoCufO/cIPP3xHf38fFRWV/It/8S/nNOaNJ2W6nCGujPjocYaIJiRkJWVkYtaqsCbceGUdVXmZd8m+evwwraFYUVG5oM/ZdkcQnUqcMf45l2mhzaChzxXCH02SYZjJ7vV6PRw4sJ+amjreeed91Go1LpeLvr4eent7GB4emjUFAODz+WaxinU6HS0tzZw5c4qlS5eyZcsmYP6ksbi4hL/6q99x+PCBdNH5ekxMjPP73/9H9ux5ierqZWRl2SgoKKSlpZmGhuV39mXdZ0xOTnLgwJf4/T5eeOElGhpWLCbAi/hVwm638+abb/PRR3+iv7+PI0cO8fLLex/I78FutzM0NLSg52xqaqS/v49XX339njRw6/Is9EyGZjyjg8FrxWFZvrZdr9ejuSG+usIJ8sw68q1PbsOpuzs1tfooTDD+/POPtLQ08corr83ylnlUkUgk6OrqpLm5kYGB/lmTOQqQRIU4i8N+DR6Ph0gkQnl5BfqbNDeFqdz9ZjInzc1NHD9+FIvFwocf/vVDMar8NWKxOHwDEokEx48fm7HNaDSxdev2Wx47MNDP2bOn2bVr931hMN2IQMBPe3sbra0tTEyMo9PpqK6uYdeuPRQXl9w0iajPt3J2wMOgO0y2XkVlRSXJRIJxj4++wSF2VmTdlYPkQsFmsxOJhAmHww+8+9fYeIWjR7+mv7+PJUsK+K//6/9uTvaGN5LgQPM4nY4gcVnGZtCw1KpDJQjIikIoLnG2x4FHLCSeZcYVlch/RMTx7yemO7cLOf4KEE1KM5LYcDhMZ1cnBUsKZgQMjUpAkhXiNwQcSZI4cOBLvF4P7733GyyWVLH/elaxJEmMjAzT25tKbJ3OyVnXcT2rGMBgMCJJEl9//TXBYJSKiirq6urnNNPQaDTs3v0ChYVFfPvtN7OmE2RZ5uTJEwwPD/LCCy9TXl5Be3vbDKd1dzjOkCdCNCkjyQo6tUiGXkOp3XhtGuA+or+/j8OHD6IoCm+++Q5lNzEeWMQiPB43Z8+enrFtyZICVq5cDaTupwMH9hOJhGcdOzExjsfjoaamdlYhURRFtm/fydq16xcsaXQ6nekmkNfrxWy2UF/fQF1dPbm5eTd9n1VLM2gZD+AIRDGJAjW1dTQ1NuKOJggOD7JsXeGCXOPdwmaz09LSfOsdFxiKovD9999x7txZurs72bx5K3/9138753c54ouwv3mcIU8EBcg2asg2ahAFAUlR8EeTnO7zEhOLMFmXEIgmseif7GWsoij3LaZGEhLq6zQsvV4vPT3dLKupwWy6pk2tUQmEEwrxG6bJwuEwn332MTqdln373kwXPrKzs8nOzmb9+o3E4ymmd29vN729PbfFKrZarSiKzOefjxCPy1RX18wr5WQ2m3nrrXc5c+YUp0//PCuZjUajfPXV56xbt55t23ayfv2GKcPXCoxGY2raLhBjzB8lnpRRAK1KJNesozBTf98LUoqi0NR0le+++5aMjEx+85u/+dXoaC9iEfNhyZICXn31db744lPa2lowmYzs2PHcff892u3ZNDZeRZble27EKYrCmTOniEajC1Lcrsu3cLLbiTeaJGuqSRcMXiOsKYqMMOV1cKN8gawoRBISa4oy0TzE3P5+IhwOMzQ0CDz84vDVq5c5c+YU27btpLb20Z4anp44b2q6Snt725xm7reLeDyeZq7/9NNJqqqqKSosumPmfzwe5/jxYzQ3N9LQsILnnnv+kZygfVLxZK+q7wKnT/+Mz+ebsW379p03NdVSFIXz588xOelg37437+sNHI1G6exsp7W1haGhQURRpKKikqee2kx5ecWcTJy5kGvRsbchn2+73XQ7Q6gFAZW9GFVskJzQGL2nDuMre/BusdO43kDHaCy+xd4LA0VROHv2NCdPfk9PTzerV6/h7/7uP5/zoeYJx/no8ii9zhBLM/QYtTP3ERGw6gVUwUlMJIjqivjLxRHeXl3A0own1206Ho+nGd8LbQZg1KqRFAUFGB8bpX+gH51ONythjEkyapWIXjOTYXzs2DcMDPTz5pvvzNt9VKlUFBeXUFxcwvbtO/H7fTNYxTcWcyHFKh4eHsRo1BEOx3G5XJw9exqr1cq6dRtYtqx2ljZSfX0D+flL2L//izkL0D093fz+93/P3r372LZtBwcO7mf9s6/QPB6keSyAP5bgGl9aQS2KFGboWVOUSW2eGat+4ZsQsixz+vTPnDlziuLiEl56ae8jYW61iEcXiqLw7bdHSSaT6W2CIPD883sQBIGff/6ZgwePIMszCzqyLNPX14tWq51TOsBoNLF378KwMQIBP21tbbS2NuNwTKDX66murmH37jqKiopvO0FclmvmuWU5nB3y0+2PoBYFDEsqUA/3kRMb4eoPh6h99/2HtsC127MJBPzEYrEHNqouSRJHjhyisfEKXV0dvP76W+zdu2/OfQc8YT69MspkME5Rhh6teub3LiJg1ihoIk5AxYRs4qPLI7yzuuC+PO8eFTgcE/j9fjQazYLrRZu1KkYlecqfYoDRsREypgyBr0c8qaARxRlTO4lEgi+//IxoNMYHH8xvHKXVaqmsrKKyMqVV7HK5ppqv3YyMDM/JKvb7U8ml0agjEokzMTHBDz+cIC8vn3XrNlBRUTljrSuKIps3b2Hp0kIOHTpAOByadc4LF84zMjLC3r2vsXXrdo6fOEHFum1cGfHRNRkkHJdSxRsFFBT0GhXlNiOrizJYlmOesZ5YKMRiMY4d+4a2thZWrlzNzp3P3ROzcBGLeJJQXl7BCy+8zOHDB7hw4TxGo5lNm566r+9ps9mRJAmv13NPJC9Jkvj226Pk5OTw9NPPLMi1ZZu01OVbONPvIUOnRhCFGcxhRVEQpwgi1zf3ACaDcTINGuryntw1e29vD4qikJub91B15Xt7u/n226OsWbOWDRs2PrTruBWCwSCtrS00NV29bSkVAVAjEZ+nfHi9xJPP52Vy0kHJPOv06Uau7oa1nsPh4ODBLwkEArz44iuP3JTPrwGLxeHrMDk5yfnzv8zYVlxcQn19w7zHTC/uCgoKePHFl+9LVzORSNDb20NbWws9Pd3IskxxcQl79rxIVdWyuxblblhipa7UzqnWcSaDcQxakeL1BZz55nNcrsBDcYudRlZWSiPO7XZRVHT/i8OyLPPdd8c4f/4cXV0d7N79Iu+88/6cf89oQuKrpnF6nSHK7AbU8xQP/H4/8UQcnUpNfVE2A54oXzSO8Zt1RWQanswEoL+/j2QySWZm5oLrK5XbjagUiSvNrYT9bpbkL6GktGyWM68rlCDfqmNpxrXfxZkzp2hqusqLL75CaWnZbb+n1ZrBypWrWblyNZIkMTw8lHZrn6uoC0palsLhcKQdagsKCtm6dSs1NfXpYpPdbuc3v/lrjh8/NqfOqt/v589//gPrn97OkKmSH7++giXLhs2godxmnMGijiYkRv1R+q6Okm3Ssbs2hxVLrAv2PAoE/Bw6dIDh4SGeeWYrGzc+tSgjsYhboqOjfZY80Nq168jMzOKrr75gZGT22FosFqO7u4uCgoI5ZQMKCpby6qv70sz/u0EkEqGzs522tlaGhgZRqVRUVFTy9NPP3FGT9XoIgsC2CjsbqvM40zaOL5rEqleTvzaX4/s/Ynzc88D1E6/HtP6b2+1iyZKC+/5+KQmfz+noaKOnp4d/8k/+U7Zs2Trnvs5QnC8bx3CG4pTZDPO6XLucqQTGZjFRlWulczLIV03jvLt66axi8pOCadZwWVn5ghcO6/ItXBpwcrmvnVgsQmlpGQUFS2cJI3kiCdYUZqRZ2rIsc/jwARyOCd5994PblvcQBCHNKt6wYSOxWIzBwYG0BMVcrGJFuRZT+/p66ehoS5sNbdu2k+LiknScKy0t46//+nccOnQgrUt9PcbGRvnHf/x7Nmx/kdM+I8dPtmM0mcg2alliueZloExNfnVOhmhzBFmaoWdvQz6ltoWbYpuYGOfAgS8Jh8O88sprjzy7bBGLeBior28gHA7x/fff8eOP32MyGVm+fOV9e79rcdJ918XhWCzGkSMHqa9fTnX1soW8PLZW2Bn0ROj3RMgzQlK61niXZTm9drmeuOEOx4kkZfbW55FlfHLZl9PySw+TNTw+PsaBA19RUVHJzp27HjlpIEmS6Onpprm5kd7eHmT5zr0wrITxYURhpoiiLMuEQtcas4lEAotl/jzUF01i1qrIn9IbVhSFq1cvc+LEcbKybPzmN39zS93iRdwfLBaHp5BiOH0z44eiUql47rnd897YLpeLb7/9hmee2Zo2kVoopJgc/WkTnFgsRn7+ErZu3U5tbd2COV7mWvRsqbDPMNkrevuaW+wXX3zKO+88eLaTWq2eMtC5/xqJyWSSw4cP0Nh4he7uLj744K94/vk98+7fOhGg3RGkJGv+wjCAc6oTZ7PbUYsipVkGel1hroz42F55+2OD7nCcrl4XDlcQtSiwNENPgfX+jzveDaYT2crK6gW/vrhzCFdfC27FyLqaWuxzLNzCcYloUmLddaNTTU1X+fnnH9myZds9dSBVKhUlJaWUlJSyY8ez+P2+dKF4Lr1DlUqFxZL6nTqdk/z7f///BRQqK6vZtm0H9fUNaDQaXnjhJQoLizh+/CiJxEyziYgs8venukiY87AKcQoLc9DrZ/8W9RoVRZkGJFlhzB/l86tjROISm0rvXZOzp6eLw4cPo1areffdDx5Is2YRjz+i0SgnThyfsc1isVJTU8cf//gPuN0ujMaZDFav18vIyBAVFZXo9bMnLFavXsPOnbvuqriaMrXrpq2tJb0oLikpZc+el6iqql4Q52NBECi2GTEuy5kRU7PeepuPP/4z/f19fP31YV566ZUH/vyeTnRdrvtfHA4Gg3z++Sd0d3cyMjLCv/yX/+1NE/pLQ16GvVEq7cZ5C8OQkv2AlGyBRiVSlKGndSJA52SQhiW31yxQFIUxf4wObwynJ4ROJVJqM2I3PZpJ8/UxdSGhKAqRkQ6cg/3IWjPrl1fPOQniDsfRqgRWFV7zD/jhh+/o6upk37437+le0ul0VFVVU1VVnTIgdDqnJnW6GRmZrfup1WrTa9He3l4uXDiPRqOhoWEFO3Y8S0lJKWazhbfffo9Tp37i7NnTs5pPk1H4349eRpuVh0Eap2Rp/awGsyAImHVqzDo1CUlmyBflL5dGeGPlEqpz7o15pygKFy+e5/vvT5CdncObb77zq9HOXsQi7gbr128kFApx7txZjh79GoPBeN8KgGazBZ1Oh9PpvKv3CAT8HDlyiC1bti2oeeg0csw63lhZwGdXRukcnSSBKm0OltIiTj3LTGYzcUlmMhgnKSs8V53NxpKHx6a930gkEvT19QILL790u/B6PXz++adkZ+fw8suvPlIEGofDQVPTVVpaWuaUcLsT2JQA40IWCVRouTb5E4mEZ9TQBEGYFX+vhzucYG1RBtlmHdFolGPHvqa9vY3Vq9ewY8dzd0XSWMTCYPGbn0JzcyPDwzMXoxs2bJpX+6ujo52mpqu8/PLeBSvUTuu+pDQP2wiFgmRlZbFu3QZqa+seiI4xzHSLHRsbfWhsJ5vt/rjGXo9pPbq2thYGBgb45//8X7B+/fxjILKicHnYh1oUbspUUhQlzXKavodUooBZp+LSkI9NJVm3HFN0h+Oc7HbRMu4npggkEklkWcGoUVGRbWJrpZ2SrIfrxno9ZFmmp6cbWNjObSwW48SJ4zQ1XeWZshocWcuYCEmoIgky9GoEQSApyTjDCYKxVGF4XVEmkGIaHT36NStXrmbTpqcX7JogxSpetWoNq1atQZKShMMeLl5spKenZ9Z9q9VqKShIJdGTkw7+3b/735GkJHV1y9myZSt1dSmZiQMHvkwfm0SkV8jDK5iwhiaJiQKtrS0Ul5Rgt9nnLC6pRIHCTAOOQIyv2xwYtWpWFNwdw1KSJI4dO8bx499TXl7JCy+8/NDdfxfx+ODUqR9n6OFBiv34ySd/IR6Pc+PtOzw8TCQSpra2ftaiWq1Ws2vXHpYvX3FH1yDLMv39fekmazweZ8mSArZt20FNTe2Cxe5bIcV2TukntrY2YzQa2bHj2QdaINZqtVit1vseUz0eN59++hE9PT34fF7+1b/6t5SWls67fyie5MqIj0yDOj0SOxeisSiBqfspe0p2Sq9RIQCXh33U51tu+X0OeSKc7HHS7QwhCSLxeAJFSblm1+VZ2FqZTfYjVCT2ej1MTjoQRXFBDW39fh9HjhxicHCAF+s30qdeykRUBk0Sk1aFIAjEkjKTwRhJGZ6tzqYqOzVBdv78L1y4cJ5du3YvaJwXBIGcnBxycnLYsGEj8XgMv3+SS5ea6OnpIRCYySo2Go1pzeCurk7OnPkZrVbLypWreeaZrWza9DSFhUUcOnQgnQxH0NIr5BMRtKi9o8REFV2dneTm5WKbp0CrUYmUZRkY9Eb5qnGM99cWUph5d9JgkUiEjz8+zKVLV1m7dj1bt+5YTIAXsYjbwLZtOwiHwzQ3N3LgwJe8/fZ7C07KgtRzyGaz43bfOTHJ4XDw3Xffsnv3C/e14VOcZeD9dUv5/xwawIGaMDq0JEmKWtRqHegsDPliKArkWXRsrbCzpjDjkSQULRQGBvpJJBJYrVZyc/Me+PuHw2E+//wTtFrNDP39h4lIJEJ7ewt9fZ309PRzkzrtHcFEDKsSxoMZrRBJbw8GZ8o56XR6/D4fkizPasCmPIRg5dIMxsZGOXjwK6LRKK+++jrLltUszIUu4q6xuCoh9aP+4YfvZ2zLzMycs5iUMoz6AVmW2LfvzQUpmLpcrrQJjsfjwWQyU1tbS21tPfn5Sx7KA91ut/PGG2+l2U4P0i12GjabnY6OtgU7X1JW6HWFaB0P4AzGicZidLU1Eh0bJD7u4L/77/6HWz6UBj0R+t1hcm6RQHp9XhLJBGq1hszrdJuzTVqGvFE6JoOsLMiY9/jJYIyPLo8w4I6QbdZQbDcTjcRRZIVgTKJp3M+wL7ogTJaFwvDwENFoBIPBuGCLtpGRYQ4fPkA4HGbPnhdZvnwlzlCqaN42EaDHFUEUFBAEckxatlXYebrMhkYlMjExwf79X1BaWsauXfNPACwE1Go15eXlWK05bN/+LD6fd4ZW8fWMYJPJRFlZOYqiMDExxv/5f/4fyLJMTU0da9euw2DQMzw8jEPIwCNYsBAhGY/hCwXxeDwMDg2wbesOsrLmZwHkWnQMeSMc63BQmW2apYl9K3i9Hg4d2k8w6GXHjmdZu3bDE72wXMTCYnx8jEuXLqb/rSgK8XicxsYrs/ZNJiV6erqwWjPmZHxkZGTw2mtvkJeXf1vvPW0YOd1kDYdD2Gw2NmzYRE1N7QNrst6I8vIK9ux5iSNHDnLhwjlMJjMbN256oNdwt0nvfIgmUqP37RMBfNEkwWCAntYrREbGMCcS/Nt/+7/eUl6ofSKIMxyn7BaNzmnWcIY1Y8YkU7ZRS48zxIgvetOiXbczxGdXRnGH4+RadORlGYlE4siygi+S5HS/h2FflHdWLyXP8mi4uU87rxcWFi1YY66trZVvv/0GjUbL22+/R2lpGX2uMD/1uuhxhpgIpiQcVKJIgVXPU6VZrJ4qLHR0tPPDDyfYuPEpVq9euyDXMx90Oh21tbXk5BQiywqTk5P09fXS19fD8PBQmqEkCAKZmZlkZmYiSRKdnR2cOXMKjUbLihUrWbFiBZ2dHXg8HkYEG0FBTwZhYtEo7lCQ9o428vPz2bnjuXkn5ARBoDhTT68rzLH2Sf56Y9FNGe5zYWRkmEOHvkKjEdm3780FZ4IvIoXHdZkyfd2P6/XfDAvx2QRBYM+eF4hGw/T0dPPFF5/y/vu/WXD5OkgRelwu121fryCkJhlOnjzBq6/ueyAkiiVWPbXKKILiwCWYcWNFFlQoKi0Go5G6PAurCzOozjXP0nS9UzwO92Z3dyeCkGIN36zJfCMW4rMlk0m++upzIpEIH374W8zmBy/FOY1pv47m5ia6uzuRJCk9obdQfz8ByMOHTzARRYOeBIlEgng8OuM9zGYzSSmJ2+2a8TuVZYVhb5SqHBOe/mYO/XSS3Nw83nnnvTvWin4c7s27xUJ/tjs5z2JxGDh58vtZNPvnnnt+VucnFArx1Vefs2xZHXV19ff0nsFggLa2VtraWhkfH0On01FdXcOuXXsoLi55JMYRrmc7PUi32GnY7dn4fD7i8fg9y1q0jAf4sdvJkDeCpIAgJRgY6MMbiCGpi9j08gsMCXbKkvJNGcHjU47WNyu2eb1eTp/+GUEQKSgoIBQKodFq0Gq0aFQikqIw4Y/BPNOYSVnhwJRje4XdiEolpBMRQRCw6NWYdSoGvVEONI/zTzaVPBIaxtN6TxUVlfd8/0qSxJkzpzhz5hRLlhTw1lvvpjvxOWYdb64qwBmMMeyLkpQUDFoVFXZjmo3t9/v4/PNPsNns7N2774H/njIyMtOs4mQyeZ1WcU9aKkUQBLKybGRl2Ugmk0xMjPHHP/4DarUGndFEj8lKQnQRCrvThl5qtRqXy8nFSxfYvu3mrKMlVj0DngjtjgBrCjNv+9o7Oto5evQIer2e3/3ud+h01gXrOC/iyYcsyxw79k16nCwej9PT001ZWfmsfUOhEO3tbRQXl8ypIVxaWsbLL796W8mWy+WitbWZtrYWvF4vZrOFurp66urqycvLfySaGw0Ny6ea0d9x8uQJjEbjHbOh7wXZ2dn09vbc83lkReGXAQ9n+jw4gjEEARKRMANDA/gCMjpbA8vWrqAvosauKDctpI34IghKauphPgwODXLlyiW0Wh05OblTMVWLRqPBrFPhCMaZCMTmLQ77own2N43jjyapsBsRRCF9P4iCQJZRg1Wvptcd5kDzOH+zoQj1I+DoPl0cXgiGbjQa5fjxY7S2NlNTU8uuXXvSRstldiOlNgMjviiOYCzNpi6zGdPfw/DwEIcPH6Cmpo6tW7ff8/XcCQRBIDc3l9zcXDZu3EQsFmNgoD8t6zTNKlapVOTk5JKTk0s8HqOzs4Nz537BaDQg66z0mbNBGicU9aeN8LRaLSMjw1y9eoV169bP+5wQBIF8q45+d4ghb+S2p7YUReHcuV/46acfWLKkgL/5mw9JJMTFmHqfYLc/mGmQ+4XH/fpvhoX4bL/73W/5/e9/z9DQEEeOfMnf/u3fkpmZee8XNwVPKE7Iks/VPi9ZnU60apFMg5Zl+RbK7KY5C49Xr16lq6uLf/JP/vqBMUZT+q4e8owKeQSQlCA/Df9CcXEJ/3TrRp55qnbB1zyP6r0pyzJjYylT8I0b15CdfefXebefTVEUPv30U4JBD//0n/4NhYWFd3Wee4XT6eTKlStcvXqVQCA1YaXTqZku890o4XavMCgJkrKfPjkLCZFY0D8jz1apVNjtWeTn5ZGTY0u/vyQr9E4GKc42kuVp5kJfBzt2bOXZZ5+9J7Llo3pvLgQexmf71ReHh4eHZplBLVtWQ3l55Yxto6MjXL78C888s42cnNy7eq9oNEpXVwctLc0MDQ0iiiIVFZVs3PgU5eUVj8QYwo14GG6x05gWIvd43LfNGpsL5wc9HG6dIJGUybfoSETDtLa1EXE5sWi1bHr6GcKyimPtDlyhOK8tXzJvpzUmzb2iHxkdIRKOYDIZOX3mFH19vWg1WiYnHQwODmIwGNDr9ei0OoIqMz86u0n0iJhMJsxmMyaTGZPJhMlkZiwi0OsMUZihnzdhFgSBoikmS+t4gKfLHq5m3fRoJ9y73pPb7eLw4YNMTIyzefMWNm16es7ibrZZR7Z5dsCLRCJ8+unHqFQir7/+1gPXy74RarWa0tKyKSO85/D5vFNu7T0MDg4Qj8cRRRG7PZvMzCwmJsbpmAjgyUuQ9AyCIqFWq1Gp1KhUKkRRRV9fD4IgpMy9rmOmz3hfUUAtClwa9rFqacYtmU7JZJLvvz/O5cuXWLashj17XmTp0hyczsBNj1vEIq7HlSuXGB8fAyAQCNDR0UZ+/pJZmr6Tk5P4/R6qq5eh0cz+jW7a9DTPPLP1po2dQMBPW1sbbW0tTEyMo9frqa6uYffuOoqKih+JJuuN2LBhI+HwtH7iEYxGAxUVD8ZAxWazc+nSRSRJuuuFuKwoHG138GOPC51KpChTj9ftonOgg4jLSUF2DqvXrsEdkfiqcRxvOMFzy3Lmff6E4xJq1ezXeqf0Aw16A0ePfo3f50Wr0+F2u+i0ZqDX69MxNSCa+M7XyWSOdiqOmtIx1Ww20+xKMhGIUm4zzpswq8RUTO1zhehxhVmW+3AncsLhMENDg8C9x9TBwQGOHDlILBbjpZf2UldXP+t7EISUJNFcBXaXy8UXX3xGQcFSXnjhpYfeaEmRKZZRXb0MRUmxint7e+jv702zitVqDXl5+dhsNoaHh+n0hwkqYZKuQURBRK1WI6pU6d9Bc0sT0ViUDRs2otPOnUibtGpG/TGaxwK3VRwOhUIcOXKQvr5eNm58ii1btpKRkbEYU+8jXK7AY1l4F4RUEeBxvf6bYaE/2/PPv8Kf//wHJiac/F//13/g/fd/c89s3WFvhMvDPhpH/QxPSoyGjQito6hUapKygkGT0qZfU5jJ8iUW1CoRRVE4ffoU8XiUN954HY8nhKJE7/0D3gacTide77XniKIoJEIBiEfJMGfgcgUX7L0e9XtzaGgQp9ODXm/AaMy6o+frvX62EyeOc/HiFV577Q30+gf7bI/FYrS3t9HU1Mjo6PC8+xmNOsLh2IK/fzbjRIQkI4oNd1RAVAQERUav11NeVkHD8uXpNXgoFMUXTTIZjJOpShC+co5xOcyLL+6loqIKj+fudJAf9XvzXrDQn236fLeDX3VxOKWp+c2MbVqtlp07n0v/e9o9cWCgnw8/fIdgMHFHf6RkMjnDBEeSJIqKitmz50WqqpYtiAnO/caDdoudxvUGOndbHO5wBDncOoEoCJTYjHg8btra23A6nWnpEK1Ggxkwa9VcGPJi1Kh4uT5vzgRIFJiTm+92ufAH/ASDwTQzKx6P4fN5iUWjaHVatFodOp0O2ZKH1uXBNOGfM0HvFXJxqOw4NRIarRatRoPFYkKr1c9oTIiCgEGj4tKwj02lWXc85riQcDgc+Hw+NBrNVBH0zqEoCo2NVzhx4jhms5n33//NHRs6JJNJ9u//glAoxAcf/HZOg50b31OSJJLJJMlkEklKkkxK6f+ffm32PkkkSb7u/5OYTFrc7sCUNvT1+89/rCRJ+HxexsfHGR4ewuNxI0kSwrIdoCgIyMQTCWKx2LX7UVEQRZHe3m5EUaShYTk52XOP1uWYtAy4w7dkOrlcLg4e/Aq328Xzz+9h5crVdzSatYhFQGoi5qefTgIwMTFOb28Per2epUuvsSkURaG/vw9BEKivrycanRlTdTodL774yrwFsUgkQldXB62tLQwNDaJSqaioqOSppzZTXl7xWGh4btu2g1AoREtLEwcOfMXbb7834zu6X7DZ7MiyjMfjmddP4VY40+fmZI8Lu0FDhkHDyOgIPT3duN0uiotLWbVyFaIoslSrwRNJ8H23iwyDZl4zHJUozFpTKYDDMYEkSYyOjuD1eoBUMuR2uwgFg2h1OrRaLTqdHsWSS69rHGU0PituK0CzUExUZcSvVa7FVKsJk9FCxnXNNb1ahaQoNI/5H3pxuKenG0VRyM3Nm3GNdwJJkvj55x85d+4shYVFvPjiy3d8rmAwyGeffYTZbOa119645e9LUZRZ8S6ZlJAk6bp/z4yL1+KlNCumejxBEonkbR8rSRIul4vR0RFGRobx+30oCAir90EiiiAIxOMxorFo2jBHEFJM8u7uLjQaDfX1DVjm0SPPMmhoHPWzrcKOWTf/dzE4OMChQweQZZk333yH8vKKJ3L09VGDovBYFwke9+u/GRbqs+n1Bt56613+9Kff43K5+PzzT3n77ffuigiiKApXR/0capnAF01gM2ioyrUQGg2TrZHJzEytm0PxJD3OMF2TIbonM9lTk82pk99ht9vZvPkZRFF8oH+70dHRGe8lSTKKoqBWq8nJybsv1/Go3ptdXV0oCpSXVyKKqru6xrv5bBcunOP8+XM899zzVFZWP5DvRlEUBgcHaG5uorOzfZaJ+Y24PuYs9PUJQJHiJOafJCgZUNmXotPpMYgSS0sriCUVJDlJIJYkGJOw6FRkJ93EO89RtDSPl19+F4tlYSZTH9V7cyHwMD7bo59F3UdcuHAep3NyxrZnntmaHm9NJBJ89923ZGRk8Oqr+9Dr9QSDN/8hQmrEYXBwgLa2Vjo724nFYuTnL2HLlm3U1tY9MBOchcSNbrFGo/G+s530ej1ms+WuDXRkReHnXhexpEyZzciEY4Kurk6czkkKCpayds26GcVZo1ZFjknLpWEf64szybfOLtwbNSoURUG+blRWURSCoVSXVqPRoFGrSSSTKICUlEiqEgiiSDIppYyY1FbGJ3vxu7qwWFLJaUZGJhaLBVEUiaJDkJNEY6kEBsAf8JKZYZvFWjdpVfijCWJJGcMtDO7uJ6YlJUpLy26bAa8oColEgkQiid/v59ixr+np6aa2tp6NG58imUymGyrXirTJOZLI1P8nEkl++eUMIyPDbNiwkePHj97WsQsBQbjWnb3dh3gymcTpnMThmCAQCGAwGNBo8ohGIwStOUjJGKIootfpkaTUvSPJEiipZ0wwGMTn82I0zF/0NWpVjAYUAtHkvPs0Nzdx/PhRLBYLH3zwV+TlPXgzh0U8Gfj++++IRCL09fUwPj4OpBbs0wW7lMRE19Tod84sZq/dns1rr72RnhqZRiKRmNFklWWZ4uIS9ux5iaqq6seiyXo9UvqJLxKJhOnt7eHzz1P6iXdbsL1d2KeM3Fwu5129Vyie5FS/G6NGhdWgob+/n4HBPtxuNzXLaqmpreP6+leWQUMkLnGq183KAuucJqwWfYqZdT0ikUj62WwymVGJIpIspwuPKlEEQSCRSBCLJxBVZgZGOnCExrFYrGRmpmKqyWRCFkTiggaVHCcSTRKJpgxUfH4PS5cWzyqWGtQqnKH4HX83C43pmHonrGFZlqcKqRIOxwSHDx/E5Zpk3bqNNDQsx+v14nK55mxYJpPSDU3NJNFolJMnvyccDvPUU5vZv/+LeZup08c+zJgaj8dwOBw4HBNEIhEsFgt6vZ6IJBDWm5FiIVQqFSq9gWQySTwRR5YkmCoO+3xeQqEQev382tVmber+CMSScxaHZVnmzJlTnD79M0VFxQtqWr2IRSwiBYvFyptvvsuf//wHRkdH2L//C15//a07noi5Ourny8YxBKDSbpxqGGkQBIFIJJyWrDBp1Zi0akLxJGf6XFy8cpkPN1ZQX/twzLMmJsZm/Hv6uZudnfNYNMgXCoqi3FWsvFd0dLTz/fffsWHDJtasWXff38/n89Lc3ERzcyM+n+++v9/tQKfTUVNTR9ZAH+VeHz48OAULkimPGGoi4QRqUcCi07BhqYmRplN4RvrY8dRmnn76mUdysm8RKfx6niA3wOfzcvr0TzO25eXlp3/kPp+Xo0e/Zt26DbfV8VcUhfHxsbQJTigUJCsri7Vr11NbWz8r2X0cMdMt9sGwnWw2210b6KTN48xahoeH6elNsZsqyitpWL5iTqZthl7NZDAl1TBXcbjMbsSq1+CNJLAZU13qcDicNkeRZQm9wYAqkSCZTKZGF0URURTRarWIOiOynMQqhygoLsFsNpNIJAgGA/j9XsxmK3JmAaJGRCWokaRrRT3NHF3x6aTpTgkpsizPWzSdmfzdnDE7vf3bb4/idrsxGAx8/vkncx6b+vf0eyTR6dSEwzHcbjddXde0FQcG+hgY6LvDT5Ryqx0ZGaa6ugaPx4PH47njczwIeL0eHA4HLpczfd9MQ61WYzJbSJotKIKIQjyVxMZjCMnU2I6CgizLKFPHGk03Nz8QgFhSnrU9Ho9z/Pgxmpsbqa9fzq5dux+6BMciHl/09fVy5colOjra05pnKdZjyngzEPAzMDBAeXnFnCOgNTW17NnzUvoelGWZgYF+2tpa6erqIBaLsWRJAdu27aCmpvaxL7ioVCr27t3HJ5/8hdHRET799CM++OA3WK3zG5XeK4xGI3q94a5javtEEGcwTnGWga6uToaHh/D5vKxatYbS0rI541COWcvgTUxYK+1mflK5iSSkdIMzGLg2minLEgajkUQigSxJaNQaRDElB6DVasFgRUiEsanj5JaUodfrSSTieL0efD4vZmsmilVJFQVRUg22KWjnaGQqcFdTOLIs31asnGsy5UbGbDQa49ixb0gk4uTl5TM2Njojpl5j4V47l06nIhiMoCgwNjZKf3/flMzKMpqars6ST7sVFEWhra0Vv9/H8uUrGRsbvePv5EFAlmXcbhcOxwRerzetdQ6pJoxWq0WlNSMbjaAGOSaQTCZRFAUxKaCIYnqCSJYkcnPy0NykuKISBSRl7pgaCPg5fPggQ0ODN5XEWsQiFnHvyM7O5o033uKTT/5CX18vX399mJdeeuW2ZW+GvREOt0wgAAUZ1/I9QRAw6A1EIpFZx6iRCDsGiWfmMSrauDf3obvHdPN9GtPF4fz8ecxsnlA4nU48Hk9avu9B4Jr+fi3btu24b++TSCTo7Oygqekqg4MD9+197hQlJaU0NKygunoZoVCQq1cvowJsBMlSgux4ai1llWVIsoJWLeIaG+bo118gCAJvvfXuA/s7LeLu8cQXh5OSTK87jDsUJyEraESBLIOGqz8dm0HHFwSB55/fMzWu3cOFC+fYvfuFW47gud2uKWO5FtxuNyaTmdraWmpr68nPX/LQtdkWEoIgsHv3C4TDoTTb6b33PrwvbrHTyM7OZnBw8K6O7ZoMEknIJEYGGRjox+v1UF+/nKqq6nmLqYIgYNWruTziZ2uFfZYpjc2opWGJhdP97nRxeJo1DBCJpEYVLRYriUQ8ncQCqFQiit6KjTCZ6iRjY04kKUleXh52e4pFJ8syYsRHSNKjIoTRYMSg12O2pAqAw8PDyIo8VRxUcEQV7BqJY1+3Icszxy5nFn9nFoIlWb7jgvJ8iEajdHS0IwgCfr9/zgXV7O8ZJEmgp6ebsbExbDYbFRVVd12cHBsbZXh4iLKy8vvOvrsbRKORNKMpFru19pMgyygqVbq5kEjE0el0SMkUo1whVfQdGR7m7NnTrF+/EfU8jAlFYZamp8Ph4ODBL/H7/bzwwssP1BRrEY83ogmJbmeIQCxJUlbQqkTsBhWfffIXrl69SiKRYl2q1dckZsbGRvH7/dTU1M5itYiiyJYtO1i/fkN639bWZtrb2wmFgthsNtat20BtbV1aauhJgVar5fXX3+Ivf/kDLpeLTz/9mPfe+/C+uZ0LgpB2Yr8bNI/5UaHQ1dHG2NgIoVCIjRufomDJ/AmpRiUiCtAyFpizOFxqN1KUaWDEG6EoK8XYnBlTI6hUKoxGI/F4IlXknXrWCaIIOjN5iQn0osLgYD8qlZq8vDyyslIyFpIsIUb9+FVmEGIYDcapqSQj4UgkpVGrXGu4jYVB60lw0Hl5zng6L2N2AWOq2+1mdHQEvV7PxMT4LfcXBNBodMTjcbq6OvF4PBQUFFBSUnbXxcne3h68Xg91dfWYbtGAfBgIBoM4HONMTjpJJm8x0adIKZkmQUSjSbECE/E4Op2eRDJBPBZL/+1+OXcaBYUV88REWUl93+obZJd6e7s5fPgQKpWKd955n+LikgX4lItYxCJuhqVLC3n11X188cVntLY2YzKZ2LHj2ds69uqoH280QaV9drw1GI2EwzN1UEOhEH19vdRUVRJMilwc8rGpxIbV8GBLKdOTIddjmmhSULDkgV7Lw8Y0a7ikpPSBkFtm6u+/vOA1HkVRGB0dobm5ifb21tvKFx8EMjMzaWhYQX19w4y6WFNT44z9DHo9q+tr0Wg0yLLMqVM/cfbsaUpKSnnxxVduKfW4iEcDT2xxOBhL0jzm5+KQjxFfBElRQBFAUAiHQniGEuQKmdiVABokVq1aTX7+Es6cOYXP52PfvjfnHY8PBgNTBeFWxsfH0Ol0VFUt49lnn6ekpPSJZgrcyHb67LOP7yvbyWazc/XqlVTR9A6/V3coxuT4KBFHP8FggLVr11NUWIQsSSnmrCwRjUaRJQmtVpcuusajSfx+mSvNYXSifB1jJ8XWiQWSeJ3Q6JQwiApj46N4PG4URcHtdhOPxzEYjKjV6tSopiQhqkRCMRFRE2Os4ydcvmGysrKmRmK6aG1tQa3WpMajLTkESjYTiocRpXEEganPLqQMeHQpIx5RrSGAgSxljPbxW4+ZRNDgFiy4sZAQVagUmSyC2JQAJmJ3ndh6PG4gNeZ1u5ISgUCApqYegsEwFRWV5Off/YLG7XbR19dLQcHSO9Yovp9IaR86cTgm7mgMSAAEKYqiMaAoCuFwCEVRUGQFSZYRBRHEqf1EgfHxMXw+L/Y5CmdJSUYUUlqacE3X+bvvviUry8Zvf/u7J2KqYRH3H65QnMZRH5eH/TiC10a9FRSG+nuZGJbRGnPR+scQFInS0lJUKhVdXZ0YDEaWLZs9fmkymXjllT2YTBZOnfqJtrYWPB4PZrOF2to66urqycvLf6KarDfCaDRO6Sf+AZfLyRdf3L1+4u3AZrPfVsFxLjj8YUaH+gk4hkgmkzyzeStZNhvJ6ZgqJYlEImnDL1lOxdREJEH3cJgWvXdOPXaVW2J4UiHglNGg0NffSyQSRpYVPG43iUQCo9GEWq2QSMSRkklElYq4qEMM+uhrOoFJDmOxWJHlKK2tqYKhRqPBYDCSyHITKlhPMOJCUOR0TBVF1VQ81aHT6ZFVWmJoiHiGaOPmTU4FCKHHLVjxYEYSRTSKhJ0ANiWAnltLkM2HaWa3zXb7RrOTk5M0N7ciCAJ1dQ3p4vjdYHh4iPHxMaqqqsnMvPvzLDQSiQSTkw4mJiYIh0O3fZwgJREUCUVUIcUlIuEwCCBLqSZ7qjGvIIgCsiwzOjpCeXkF5jmK4rGkjEYU0xIpkiTx008nOXfubNrA+VEspi9iEU8qyssr2bPnJY4cOcj5879gNJrYuHHTTY/xRRI0jvrJMmjmXF8YDAYcfn/6316fl5GREaqX1aDVaNDKCn3uMG2OwLx6+vcLTuckyeRMqbhp5nBBwf33LniUsFBG6LeDYDDI559/jMlk4tVXX19Q+Y5gMEBzczMtLY133bxfaGg0Gqqra1i+fAVFRcWzfieyLM8qDtfV1aPRaPD7fRw6dIDR0RG2bNnOxo2bnuh1/JOGJ7I4PBmM8UXjGN3OEAa1SL5Vly6OSJLEud42IoKOHvJxYqVe72f9+k0cOPAlpaVlbNr09KybOBqNcvlyN6dPn2NgYABRFKmoqGTjxqcoL6+47aLYk4BrbKc/4nI5+fTTj3jvvZu7xSpTzJybGZBcz8iZHpscHx9jaGiQ48ePYjSabnFs6jiDQY3T6eWbniATsgnFP0FhYSFDQ4P09fXi8bjTxyiKgtFoJPs6Q684aiREvunrQ8ts/TwF0Al2hoRsDCRwT04Sj8dQFIVYNJpONgwGC7FYLFXcU+tQWXIQJzrQx5xoTCa8Xi96vQ6j0YTRmEomkskkmpgPU9RF2FyAEnQiTF2DLEuEQiFCoRAKAoolF7PiRkoOErea5i0mKMCEkMmwkE0MNRokRGSSgoYhshkXsshVvBQrTkTuXPV8OpDdTpFRURRGRoYZGhogKyuTlStXYzDMr+93KwQCfjo7O7DZ7I/EqIqigN/vw+Fw4HRO3rX+ojYwTsKYSygcShVdkhJJKZn6Y6KgEkVUKhWCIKBSqenoaGfNmrXodTOlUFzhBNlmLcVZBmKxGMeOfU1bWyurVq1mx47nflXPrUXcPXqcIfY3jTPmj2LRqSjK1KNRiSQlibbWFsb6O5GM2SRMuSTMI+SF+rBaM2hra2Hp0qK0bt/1yMrKYtWqVfzwwwnGx8fR6XRUV9ewa9ceiotLnugm642wWjN48813+Mtf/sjo6AgHDnzJvn1v3lQ/cXoU/maa6tfi5bV9JicnaWy8wunTP6dj8pzTJded22BQMzbm4LsRDb5IDHU8SFFRMe0dbcRiUXw+P8lkAkmSUBRlSkf/WsM4jA6dEudwx9yjkTICaiGfPiEDkxLB7XalP18ikUBRZFQqFTqdjnA4TDweQ9YYUBszEAYvkqGRUGQtXq8Xk8k0g52STCYwRNzIST9RUzZicBJhKs4lk4m0rJMiqMCaS1ZylIQyhpSRMe/3LyMwKGTjEDJJokKDhIBMWNASIJdRwUah4iRP8d5x0zXVZJ4uDt86pkqSNLWucWK1ZlJRUXlPz3WHw8HAQD/FxSXk5j58/XlZVvB43DgcE7jd7hmyEbcLUU6gCUwQySwhFp5Ia1dLsoQydS+o1CpUogpZllGrVbS1tbJ2zdpZzyF3OEF1jgm7UYPP5+Xgwf2Mj4+xffuzrF+/YTEBXsQiHgIaGpYTDof54YfvOHnyBEaj8aYTce2OIJ5wnHLb3Hmr0WAknkjJurndbjxeDzU1tSm9e1LyMjqVyKWhlEfNg8T4+NisbbIsIYoi+fl3Z97+OMLv9zE+PoYgCJSXV97X94rH43zxxackkxLvvPP+PeWt00gmk3R3d9Hc3EhfX+9dxbb7gcLCIhoalrNsWS06nW7e/Xp7ewgGAzO2rVixmu7uLo4cOYRWq+G99z58IGbLi1hYPHHFYXc4zseXRxn0hCnNMqC5QRZgcGgQORHFTGqB7xeMuO3FfH74a17cuY0l141HThtitbY2T7muq7Hb89i9+wWqqpYtyMPhQeDGwuz1yV8s5mdy0nedG/T8CeKNSaTJZOLixfO0tjZz9eqVtF7z9Xp715/rbh588Xicvr5eTpw4fluJkiCAWi1w/vxFJoRcpCX1lBQVpQ1GUiYDMxlBicQNHVhEREVGzWxNOUgxNpcqLiRERskiojIiikmSsWjK+VoUUKlUWK1W/MEQCY0ZWaVDcHRhnmxDpdGgKDI2m41kMkkikUCtViMIAmq1GkWW0QxdwlCiQbEXoSKJKh4gHAym/pZaE4rGiCrkhtFL9MZ89AJGo4nMzAwyMjKxWjPSXU2HkEm/kIsKmQzCM5JVhVQxfFRIfbclyuQdJbOJRAK/P8WKvdXfJxqN0tXVQSAQoLCwiGXLKolGE3ftwhmJRGhra8NkMqWkQu5TUiaKKRacSqWe+q+Y/v/Uv1Ukkwl8PhcjI0OEwxFEUSQvLx9RFBEEIa07LQgionjt3zduS/2/SEzQ8EtUQrBmEw+kCgUqtYpkMomoEtGoNSCk7mdZligrLZtVGFYUBX8syeYyGz6XgwMHviQSibB37z5qamrvy3e1iCcP/e4wn14ZxRdNUJFtTOuxhiMR2tvbGBjoQ0jGUCdjKKKaeEYRMVs23X0XqK6snrG4TCaTuFxODAYjoHD27Fny84vYtGkz5eUVj42RynTh8sa4KMupmOpweNPGYHfSELVaLTQ2XqGlpZkLF85TV1ef0kKd59i7gcfjpru7i+++O4ZOd2sjP0EAWU5w/vxFvBkNqG1LKcqzpQuQiqIQjc6MqTeO+UuIaJn/ekUUShUHCgLjkomk1owYD5FIRAElXaTNyrIhIZLUZyKq1DB0mczQMBKg1qgxGm3E4zEkSUo/e9VqDXI8jGbwPELpUyg5xailOELMTzgcRhHEVExV69B4h0mOXqY9mZKHMpstZGRMx1RrypEeGBRyGBVs6IljvGHqRgEiaOkXchFQyFPuzDwmEPBPrQk0t5zImm6OJhIJ6upqsFpvn2k8F7xeL93dneTl5VNUVHxP57oZVGnJJNVUHFXNiqnhcBivd5LBwQESiTgajZYlSwpmxdSZcVSc93WPrOdSXEA0ZxAN+VELoEadXn9NP3tUKhWJRJKqqqpZheGEJCMpCquLMujq6uSbbw6j0+l4//3fPFJTS4tYxK8RGzZsJBQKcv78Lxw9egSj0TCvcbo7HJ96TsydNxiMqZyxvaONRCLBqpWrZ+UYFr0aVyhOJLEwJpy3i7Gx2cVhSZIwmcw3NdN80tDdnfKqWbq08L7KFciyzMGDX+F2u3jvvd/cUm70VpiYGKep6Sqtra2z1k4PCxaLlfr6Bhoalt+2fFtj45UZ/87Ly6e5uZELF85RWVnFCy+8/NjUyRYxE49HJnabUBSFr9scDLjDlNmNszTBQqHQDFMNEYUMMcqQL8qyFRvIz1+CLMsMDg6kTXCi0Sh5efls3bqNzZs3EI8Ld1TMujGJvBXr9U4YQLd77DSb50bcjRv0jcjNzaOpqRGPx4Pf76e2tm5Bi3RarRa1Wk04HOF2JiwjkQidnW0MDQ2iz1VhyrajVsswVehVqVRpbd9pXJ/IThdLl3JzFq3IVCE16sMXS5LUZxIX4wiyCpWiIOksxPU2tNosdM5h4kPnyQiNkkhE0eh0qFSaNPNTUZSpRNRMPB4nFoshSjG0/WeI+0aJZ5Wis+VhtuQjKzJEA6jcAyjj7Qixa9qM4XCIcDjE6Oho+nymrFwm8gtRa2WMwmwHdgHQkUQAJoQsbEoQ6y3Gaa/HtJyGyWRKSWLMA4djgt7eHjQaDQ0NK8jIsN4WM/DGwux0EilJEj0958jJyWHLlq0YjaZZ+0wnoKntqhsKvKo5EtLpY2dun+86k8kkXV2dNDVdZXx8DINBS2Fh0V3/lqahKArD3Z0oSoCopQh5ugikgCiIiOpr16PRaNBqtdizZ+t++6JJzFoVSUcvfzr4Azk5ubz99nuP1JjwIh5tRBMSB5vH8UYTlGUZ0s92l8tFV3cnfr+faDSa3l+Qk2jiPnzWPJbUPo1OcCPLMh6Pm8nJSXw+L2Vl5SxfvoK6unqefnodweCdNYjSrL+baarP2dScbbp5p8deL4kwFxYipubk5NDW1orX68Hv9y34RESqMA/hcOS2isNer5fOzjZGR0fJtBSizVmDWrz2N1erZ7NUr/9+UtFXwEZw1n7XQ4NEhTJGPCAQlDRIBhtJdKBoUKlVyDorcYMNLXpk5zDxnivYJC+RaASTyYSiKDMYsyqVCpPJTDgcIplMoo75EXp/IpZZQsxeij4zD0uWBllKQNiHyt2NMt6JkExp/CmKQiDgJxDwMzw8hCiKWCxWtDnFOLLLMKpj6ITZRQEBMBInjI5h7GQRnHMCaT5MT+LYbLZ511KKojA0NMjw8BAWi2Uqocu4rftuvrgYDodpa2ulsrKKjRufShm5zdsQvXbstQLvtZh7YzP1xtg7X0yNRCK0t7fS1NSI0+nAaNRRWlp6zzFVkiQcLVeRrfVE1CaUaVNChVnXo9FoMRgMcxYAnKE4OSYNI81nab5ykerqZezZ89JN1z6LWMQiHhy2b99JKBSitbX5psbp4bjEPHVhIBUnp5+zVmsGbrd71nSkWhSIJmXic5hT3k/MxRyWJAmLxfyrMpWeLg5XVt4/SQlFUfj226P09fXy+utvkZd3d9M0oVCItrYWmpubZulFPyyoVCqqqqppaFhBaemd+RMEgwF6e3vS/45GI4yMDON0TvLss7tYs2bd4hTNY4wnqjg86o/SNRkk36KbVRhWgM6uTuLxeEq/U5Hx+/2UFJdiz8vkfPcI/rafcfa3EQoFMZnMFBUVU1FRidGYkgD44YcfcLsDNySOs5PIGx2qn2QYjUbq6upoaWlOM5IWSvtHRsCPkVjhWvoNFnxCLmokjMTIUoKzdHJTmj1NOJ0OsrKyWLNyGT2qJCH0WLg+mVUTj18rlKYK+ElUKjVJVKiQsCk3T2RhqrDqHcDS30vckE0YM7LOikZnQCXFyVFFyBYDjHua8EYnCEUjmM3mtNTAdKdXEASCwQCBQACLxUp+fgFut4tAwI/e1Q2ePpjMIamIZGVkUGy3kFloQC5Yid/vx+fz4vP5UqOxU1lUKrENMKnOJmyOoQ6PENJp03rFWq12xoNbS5IIWlyCBauSKg7fmETeWDRVqVR4PG6ys7OpqamjoWHFrIJrMpnkwoVzyLLM88+/wFNPbcZoNKJWq8jNzcTvj06Z9s1dwJ0rWCUSCT7++M8sX76SDz/87QMtdiqKwvj4GM3NjbS1taYLYwsZAwcHBxgYGMAfG0CpsYI5ByHkRKPVEo/PNCeYZom7XE6WXKfbHE1IjPsjWPwDXG5sYv26DWzbtuOmY+qLWMSN6JwMMeKLUpSpTz8v/AE/7R1tyLKM2+1KN9pkWSYej5OdbUKlUugNCox3XcbvnkSSklitGWzbtp3a2no0Gi3j42McO3YMtzuQjpU3xtS5mql3K9XyuCAry0ZlZRVdXZ2MjAyj0WhZunRhWIlJRAL6bMIFa+jULMEsZKBBwkx0Tp1cp9NJW1szXq+HoqJiaqsKaRUlomgwTO17fZMz/T7XrXtiaNErcbJuI6aqUDA4u7A4nIR1NsLqTBS1EVFjRidK5Co+bFofvRMXCCcDxGJRzGbz1EitikQiQWZmJtFojGg0gt/vw27PxmQyMTnpIBIJY5xsQ/H0IJjtSKjIzsqk1G7CWJJJcuka/H4fPp8Xr9c7w5BIlmV8Pi8hfRFRbYBQxIVOp0v7ANyYlBuI4ReMeLCQp3gBrms4qmbFu+mYNzDQj92ezYYNGykqKpkVU0OhIGfPnkGv1/P22++xatUadDotOTkZ+HyRqcbozEbp9YXbuRK2QMDPH//4e7Zv38m7735w01HShYYsy/T399HS0kRXV2f63lmomKooCh0dbYyNjhByhBCqt4HeihgPolKp0waaAAICOTk5aDQaAgE/Vos1/ZovksAfjiIMtdHmH2TXrt2sWrVmMQFexCIeIQiCwAsvvEQ0Gkkbp7///m9mGVVr1eJNm04+r3dqAjQ1vdHZ1UGDdjkWiyW9j6woiAKoH6AEViKRwOmcnLVdkmSs1vmlkJ40RKNRBgdTMlWVlfdPUuKXX85w9eplXnjhJcrLK+7oWFmW6e3tobm5kZ6e7kdm7Zqfv4SGhuXU1tbfNbO3qakxvfZ3Op309/eyY8ez7Nv35j15CC3i0cATVRxuGQsQikssscxe2E5MjDMyMkQgEEBRZCKRCBkZmYyNj9Ld201Um0mfu4dSwUlOTi5ms3mq6OYFFoYR9KTCYrGybFkNbW2tOBwTaDSae2I7SQg4hQwcZBAU9ESzMpETcbSCHhkBJ1bGBBtWJUyu4iOLIF6Ph5aWJpzOSUpKimloWIVGoyFf8dIj5BNFk058NRrNjOIwTElLqDSE0JOreDFfV0y+GYLBIIIik5zsRXG7kRMJRKOZwuoqavJXAmAsKeKKZxKDwYAkSahUKvR6PfF4nFAoiMVipbi4hJGRYQIBP6FQkNLSMqqqqnE4xnG5XGgJkZRk8AYY8olEc3KoqKhi2bKUK+i0+Y/H48bpnGRycpJAwM+otRaVzoBRn4UgCFMyBCn9xob65QjpsUsBd1hCqxb5L7ZXoNfObdIw8ztLMDY2OmVs9jfk5c3Uuurt7eGbb46gVmv4u7/7z2cYUgkCZGdbcDoDd/R7kmWZQ4f2Mznp4N13P3hgheFgMEhrawvNzY1zLswWCqOjI7S2Nl8zsOs9g2rZNnTZxcQ9ozP21esN1NctJy8vj4zrNF1D8SQ9416UyW4K5XH2vv4WlZVzj9YtYhHzQVEUroz4EARmyDNZLFays3Po6uogGAwiSUkUOcXmNZqMuN0ukg4HsiUXMShjTsTJzy+goWE58XiCq1evAIsx9WbIzc0jHk8wMNBHf38vWq2GnJzcuz5fAhUTQgZOMogIOhJ2EwFBAEGPMhVTRwQbNiVAruLDQpSxsVHa29vw+bzU19dRWbkMQYA8xcuQkIMaCQ1yWg4pkbhWWJamDepEDXHUFONAc5vs2WAwgCgnSIy2owQDKIkE2swsyuvrKbdXpozEikvo6GhDq9VOmdWqMBpNhMMhvF4vdns2NpuNsbFRXC4nfr+PiooqdDodY2Oj+P0+9IRIJmWSTh99HhUFBUupqKiivr4BtVqTbiK73S5cLieTkw6C4Qj9tmXoBRV6vQ3hOmkfs9lCeXl5arpDFBFEgRFfnGV5q/nt+qJ0Ef1mmJycpL+/D7VazV/91d/OKDgrisLVq5c5e/Y0+fn5/O3f/idpGbS7jaeQSrI//fRjRFHgjTfeemCFYbfbRXNzEy0tzQQC/lsfcBdQFIWurk56eroJhUKAB0VnRl2xCZ3JTNQz05gxIzOLmpo6cnNzMZuujSl7wgkGJlyoJ1pZYomz98O/vmsG2SIWsYj7ixuN0z/99KNZxukWnRpJUdKTmzdi2u9jGrIs09bWyooVK9OTApGEjEGrQq95cMVhh2NixnVduz6JrKxfzzOpt7cHWZanYv39MdVuaWnmxx9/YPPmLSxfvvK2j3M6nVOyES2EQrduij8IGI0mamvraWhYQW7u3a8lIRVXm5quIssyfX29jI+PsW7den73u//kgTaWF3H/8MQUh2VFoWnMj1U3mxmRSCQY6O9HEAQSiQSRcBjVVDITCAQwGIwYLQYMtlWUKX13bCCyiIVjOyVQ0S/kMilkoELGRAzkEP6QD1NWqsOlTO3nwYxPNGHx9jJx9Qpej5vy8nI2bFhHPC6hKJCNn5iiYVjIRkLEQGyWrqUCRGSRKAZsSoBKlRuDWn9bo5PTru+p8c6UVILRaOTppzezcePTabZtaWkp7e1taLU6ZDmVUC9bVsvw8OAU2y6b//K//JecP3+O/v4+BEEgJyeXv/u7f4bJZKS3t50ffzw9Qy85FAridDpYs2YdDQ0rZj2Ug8Eg/8/v2hhw+hHDHqKxawXv3JzcGR1wAKOcICkrIN46iQUYHOwnHo9jtVpnGNckEgl+/PF7Ll68QGlpGS+++DJms+UmZ7o9KIrCiRPf0t3dxeuvvzlDH/x+QJIkent7aGq6ml6I3E84HBNcuHBuBlvNEJ7E4m4jnL8CyZwLsQBiPILJaOCZzVspLr6mCxmOS0yGYjicLsTJbp7O17Bv79/cUrdyEYuYC+5wgn53GLtxJiNSAPLzU9piggDSFMs3xcJLIAoiao0GUatFX1xPjWCnuLhkkWF3hygsLCSRiDM6OkJXVydqtZqsrDvXlI2goVfIxyuY0CJhJkJCCiDFJcyW1N92Wk5pQsjCI1jQj11lvKWZUChIQ8NyVqxoIBKJoyiwVHETQ4NDyERHAh2JWcVhBQhKIoqoIx8vJaogGrVhTpmB62MqpEZFTSZzepJGEASys7PZvv1ZqquXpePxsWNf43A4MJvNRKMRRFFFQ0MDHR3tAJSVVbBp09OcPPk9TufklGlNBf/yX/63xGIxurqaOXv2wgyWs9udYgOvXbueZctqZrGwxiad/D++6yIcCpAIeEhcJ0mVl5uL5YY4Z9BBQhFuW0u7uzvlvF5SUjqjMBwMBjl69Ag9Pd2sWrWa7dufXZDxYUmS+OqrzwkGA7z//m8XJE7fDLFYjM7OdpqaGhkeHrqv7wXQ29tNc3PjDDKAJTCI3mcnaKtGtuRB1I9KipNhtbJr124yp+QkFEUhEJNwBKO4HOMYPT08V7OE3c/vXkyAF/HEQVEUWsYDXB724QzFWZqhZ11xJuV208O+tLvCNeP0P+Byufj00495//3fpJmSldkmjBoVobiEWTf7+VxYWEQsGmPCca2BlEgmaG1rYfnylahVKvyxJBtLsmZ5G91PzCUpAakm5b1q4T5OmI6VCzWpfCMGBvr55pvDLF++kqeffuaW+0ej0bQk0vXypQ8ToihSUVHB1q1Pk5WVjyguDKt8YKCf0dFROjvbiUQiVFZW8bd/+3eLcfEJwhNTHI4nZWJJGe0cD+lYPEZefj49vd34/T40ag1Wq5WMjEyMRmPKAAo1MgKSIs5rRLaImyM3N49EIkF/f4rtpNFo7qhDJQsiA6oluIQMMoQEOpWCKOpQYU2NgxpNaLVaxCmzEUEUGXUHGMCOmLOMl5/JZfu27eTmZhEMxtLjlaJKRbtH4uJ4DF9cQWcLIEyMIgogCyqSgpol2TaeXVXNi/V5mHW35/SdSCTo6GjHZrOnGdMWixWVSsXWrTupr29I71teXsF/+A//F9FolNLSMvr7+xgbG2HXrj2cO3eWQMDP0aPf8MYbbzM56eDEieNMTjr4wx/+gQ0bNvLqqy9SV7ea5uYmLl48j9vtBsDj8fDdd9/y888/snz5StasWZtm05rNZooL8oiozZRkVRCNRfH5fPi8PmxzCDgnJBmNSrzthU5X17TeU1W68DMxMc6hQwfw+bwLrjt0/vw5Ll26yPPP75nXZGIh4HA4aG5upLW1hXA4dN/e53pMTExw6tRPM2QjMjIyUoXd0ASJ7h/QWQpR5VYi2paQlZmBaMlmPBBDkhUiCQkVMpGJAbK8A7y4oYGtW7bckYbUIhZxPSIJiYQkozPMfh4qskJNTR3ff3+cRDyOSqVCp9ej0+nShTBZVLDlF1KyqMd51ygrKyeRSDA56aCjo536+uWzmno3Q1zQ0KcqJCAYsQtxNCoBQTSQtFjx+31kWDOumx4RQRHoc3oZ0hZiyKvkN5tXsWrVarKzM2bEVEUQuTARp82dJJhQEM3Z+D1OEARkQY0sqCgrLmD3ygp2VmWjUd9eUjI2NkpXVyc+n5eJifF08Tg7O4dnn32enJxr2urZ2dn8/vf/EYCKikqGhgYZHx/n5Zdf5YcfTjA6OsKZM6d46613aWlp4vTpn+nt7eHv//7/x7Zt29m7dy+rVm3kypXLXL58Kc3wGRsb5dCh/Zw8+T2rV69lxYqVGI0pneYcm43cnGySNhvZ5mrC4XBqwszrnTG9MY2ELGPU3H5C1tU1O+Ht7u7im2+OAPD6Ak6BKIrC118fZmRkmLfffm/W2PVCYVq3s7m5ic7O9llTW/cL3d3dXLp0EXlKX1gQBGw2O0ajEcXdS9Q9jj6rBDG7BLXRij3bTkTQE/VHScoKkaSMWk4SHe2kIOrgrd2bWb585WKTaxFPJE73ufm63YEkKxg1Ki4OeelwBHlzVQG1efe3aXS/YDQaeeutd/nTn/6Ay+Xkiy8+5e2330Oj0bA0Q09Ftom2icCcxWEBKK+oIBaL4p2aIIZpXfQ2iiuWYdKqqF/yYL+b8fHxObdnZGT+avSGk8lkWu/2fhSHHQ4HX331OcXFJTz//J6bav/39/fR3NxEV1fHIyMjmp2dQ0NDytfDYjHf9VTRfDh0aD+NjVfQ6XSsXLmakpLS+07WWsSDxRNTHJ4L3d3dOJ2TOCYnCIfDKUbe1AiJJElEpzRgF0F6NHQ+U6+5zEbmMvUSRRVXr16ivb0NURRZu3YdpaVls8xM5mIPneh24e6YpD5Dj+G6hCoSiXDp8kXKSsvInErAFKC/r4+4fxItAsXbXueNl9ZTm2+Z80FYCzwfT9I+EeTHtkHOuSZQBFArMjZcrLOqeGv10jta+E9MjKMoCi6XE0VRMJvNqNUqRFE1S3PHaDTy1FOb+f7773A4HNTW1tPW1sKpUz/x2mv7+PbbY7hcTj766I/s2/cmv/vdP+XEiW9pa2vl3LmzjI4OsHnzDlavXsuqVWvo6+vhwoXz9Pf3ASlGzoUL57h48TxVVdWsW7eBpUsLqc4x0zwWQJYV9Do9+lw9eblzjx75okm2Vthn6XXPBVmWZ5gByLLMuXO/cOrUj9jt2fzmN38zI5G/V7S1tfLDD9+xadPTrFq1ZsHOO43rjXDm68zfL4yOjnL69E/phYUoithsdkwmE1lZNnJzc+nr6yUa7ENMTrJ0+dNkLCliSaaRpCxj0KhQxfyMNp5mqRDj5bdeWXATq0UsAqCx8SrhcJj+gT6CwQBSMoksy6g1mimjt9SzXKPRYMyyYVBJ3MTX84nGjWaas0295o6nM49Rs337Tk6e/J7x8TEUBbZvf5bsbPsMLdn5NNs/ujKGb8THBpthhi6i0+mko7OdZctq0iZukiTR3tGO5JtAb7BS//Lf8sZLa8i16OaMqfW14AnHaZ0IcuxinI6gFwCtkiAbFy8syWNX7Z2NuU4zbpxOJwB2ux2Px4NOp5tlBpSfv4T6+uW0tDSRTCYpKFjK6OgIly9fYt++Nzl4cD9jY6N88smfefPNd6iuruHo0SMMDw9x/Pgxhof72Lx5J08//QwbNmyira2VixfPp81iAgE/P/74PWfO/Ex9fQNr1qwnOzub2jwzP/e6yTHrMBmNmIxGCuZIjCRZISEpVOfe3hrT7/cxPj6GIAhUVFQRj8f54YfvuHLlMhUVleze/eKCrld/+ukkra3NvPLKaxQVFd/6gDuE3++jubmJ5uZGvF7vgp9/PiiKQmdnO1euXE7rYE83GAwGA9nZOWRl2ejoaEP2tKFTXOTWbiC/aBlZZh2KomDUqlD8E4w1naEyw8irb79z34rni1jEw0YgmuSnXjc6lUheZor9l2vWMuCJcLLbRVWO+bbygkcRVmsGb775Dn/5yx8YGRnmwIEvee21N1CpVKxamkH7RIBgLDlngVgUBJYtq6GpuWkGUcTn99HYPcjza5dRYH2wze/x8blZqRaL5VdTHJ6eWjWbLQuubxsI+Pn880/IzMxi7959c2o4ezzuKUmkJvz++yOJdKfQ6/XU1qa8f/Lzl9yXJmY8HufQof1899235OTkUlZWjkqlYsWKxabpk4YnpjisVYvo1CLh+DVdO1mRkWSJWCyWdrKWJC36qbGS6w1UJETUSop996AhCAIajWbegus1Y7C5XaavJYiznaJvLPJef6xarSY/PwuPJ4wgiAv2416/fgOHDx+ktbWZxsar1NbWU1Bwc4mJUDzJ5WEfVp16RmEYUg89QRCIRMJkZmYip3XkulAUhU0rVxMz2Lg07KMmb/7kyaRVs7Yok2VZauJXDoFCWkJECtyelML1mC4iTiey2dk5uN0uDAbjnMzcNWvWcfXqZdxuN2azOZ3MHj/+LW+++Q6HDu1nZGSYTz/9iFdeeY1XXnmN2tp6jh8/itvt5uOP/8yKFavZtm0H5eWVlJdXMjk5ycWL52ltbSaZTE4lRh10dnaQn7+EZcvXkmXQMxGMseQmixhvJIFeo6JhiXXefa7H6OgI4XAIvV6P1Wrl44//zPDwEOvXb+SZZ7be9hjt7WBoaJAjRw5SV9fAli3bFuy88xnhPChMd50vXjyffm+NRkNxcQlLlxaSk5OLRqPB6/USjUZRqVTUV1di0Ub4YEcdS5cWIssyp079xNlzp6ksLuGllz5YbHgtYkFg0KjQqERiSRmdOlVYlGSZRDKBJEkp/XS1GkVREIXpwqOC0WjEZrMTFLVolMBDufbpeDiXMVeqiSneUaycGY9vLPJev5+K/PwsvN4IgrBwrP1Vq9bw8cd/ZmxslEuXzvPBB7/FYrn5s3rYG6HTMW3QO/NapkdrI5EIGo2GRCJBS2sLg4P9GI1GNq1uwC3raRrz86xl/iZfllHL5jIbS5Q8Pu39AbgWU+NTxeI7wfj4OLIs43Jdi6lOZ8oHYq4piK1bt9HZ2c7Y2CjPPfc8fr8fp3OSK1cu8d57H/L55x/jdrv505/+wJtvvsN7733I5csX+fHHHxgcHKSr6z/w1FOp4vDy5StoaFjO0NAgFy+ep7s7tb5IJBJcuXKZK1cuU1ZWTl71KnRqEV8kQcYcrPppOIIxbEYttTdZk1yP6Wbr0qWF+P0+Dh8+QCAQYPfuF1ixYtWCJl/T2sXbtz9LbW3dgp03kUjQ1dVJU9NVBgcHZqyxHwRkWaalpZHW1tb0e+v1esrKKigoKMBuz0YURUZHR5BlGZ1Ox/LKUkzaEP/ZntUYDAZisRjHjn1NW1sr61euZufO59INlEUs4knEWCCKN5KgZEq6z+fzEY6Eyc7KYTwQxRuOk21+fEfGc3JyeP31t/jkk7/Q09PN0aNf88ILL1GXb2FDSRan+twUCKkc8Uao1WrqautobLxKPBFHAQIYMPgdZPo0CELRA/scsVgsPTV6I8xmy6/mOTU9tVpVVbWgcTEajfLZZ58gCMzS34/H43R0tNPc3MjQ0OCCvee9QBAESkpKWb58JVVV1Quad9+IiYkJDh78kvb2Niorq9IeGGq1mrq6hlscvYjHDU9McVgUBBqWWDneOUmuWTvDfOvGos/1naDUfiKSoKNY7cemz5q34GqzWQiHE7MSzxuTyGvH3Fjknd42O1F9GBCElC6TSrWwhkDTbrGRSJi+vl4+++yTOd1ir0f7RBBnOE5plnHO8xn0BsKRCElJor2tlb7+XrRaHatXryE3Jxd/NEHXZJCJQIxbEVZNJhM6rXbGeKPX65nXmGA+jI+PE4/H8PtT5mF2ezaTk5NkZ2fPeR6VSsW2bTv58svPuHz5Im+//R7793+J0znJDz98x1tvvcuhQ/vp7u7iq68+5/nn97By5WqKioq4cuUXfvzxFFevXqanp5tdu3ZTVVVNTk4Oe/a8yJYt22hsvMKlSxfT47Hj42OMjx8iZFiCM6MSWbKxJNOIeN21KYqCN5LEHUmwtcKeXhzeCtPjrxqNlj/84R/Q6XS88877FBeX3Pb3dztwOp18+eVnLF1ayAsvvLQgC4EHYYRzK0iSREdHO21tLSSTSURRJD8/n1Wr1szSCHY4xhEEgerqGiwWC3Z7NgUFSwkE/Bw6dIDh4SGeeWYrGzc+tSgjsYgFg82ooSTLSIcjiFWfWiqkdPvjKVkfQUBAQBRViFNSNCaTObVoFEREQU2hVsGms82r2W6zWQiF4rNi4nyx8vbYtqqHHlNFcWFj6vX6iW63m08//Zj33vvwpk7TzWN+wgmJAuvspH76uHAkjFanpampkZGRYTIzs1izZi1Wi5VEIMaVYT+by26tc5yVlTXLq8Hr9dzRZ4RUzPL5fCQSCTQaLVZrBpIkzStPZbFY2bBhE6dO/cT587/w0kuv8NlnH9PZ2UFeXj4ffPBbPv30YyYnHXz00R957bU3WLNmHVVVVZw5c5KrV5v56aeTtLe38cILL5Gfv4Ti4hKKi0vweNxcunSBpqZrmrV9fb309vUSt5TTbS6mNN+OzaidEZdkRcERjJOQFF6oy8aqv72EvaurE0VRiEYj/OlPvycvL5/XX39rwc12enq6OHbsG9asWcv69Rvu+XyKojA+PkZT01Xa29uIRm/PzHehEYvF0v4AiqKgVqunEucV6PUzfyfTkiW1tfXodDqqqpZhMBiYmBjnwIEvCYfDU835hSucL2IRjyo0oohKFEhIMpFIlOaWJgRBoFitR6s3PlBN3fuFwsIi9u7dx1dffU5zcyNGo5Ht23eypyaXhKRwfsiDRSthN2lnsaR1Oh01tXVcbm4lIKsxKVEqlHHaLvZTkpPBypWrHshnmJ5WnQtms+lXwRxWFGXG1OpCQZIk9u//gkDAn9bfVxSF4eEhmpub6Ohoe2CSSLdCVlYWDQ0rqK9vuO+eMoqicOXKJb7//juysmwUF5fMiPHV1TU3XYcu4vHEE1McBmhYYuFMn5tgTMKiV6cN6Kah1WrRaDQUFhYhiiKZGZk0NCwnGEviiyb5p0+VUJg5901+L27Qv0aoVCpeffX1NNvps88+mpftpCgKl0d8aERx3tElg9FIIOCnsTHFSNHpdKxZs5ac7FQl2KJTMxGI0zoeoKH85tVhQRDIzMxKj49CivESCgXvyJBlfHwUl8uFoihYrVb0ej2yLN3UVb6ysori4hIGBwe4dOkCr766j48//jMdHe3k5S3htdfe4Nixb2hsvMLRo18TCoV4+unNvPzyyxQUlHL06Ne43W6+/PIzampq2blzF2azGZPJxFNPbZ4xHjttlmeJjBGJRuhw5tBnsZOfbSPDZCApKwTjEiatih2Vdp6rzrmt4quiKLS1tdDZ2Y7Nls3Wrdt57rnn0w6+C4VgMMBnn32E2WxJj4HdLR60Ec7NEI1GaW1tZnBwAJVKTUZGBtXVNXMW1hOJBC6Xi4qKyjQbfeXKVfT2dnPkyGHUajXvvfchhYUPjr2wiF8HBEFgdWEGbROBtB65IAjE46mYqlKpUNQKWl2qiGe3Z1NRUUlZaRmOYAytSuSfPVM257hm6vyLMfVOYDKZ0vqJTuckX375GW+99e6cbKFwXOLKqJ9M/WyDXkhJXuj1ejxuD729PUxMjGOxWFm/fiOmKX3dbKOGQW+UzskQhUsyb3ptGRmZiKI4w7TT47mz4nA8HsflcuJyTQIpSYnpRDgvb/7R0Q0bNtHYeBWfz5dmEB89+jU///wjubm5vPfeh3z11ecMDg7w2Wcf89JLe6mtreX999+nsPAs3313Td9//fqNbN68BY1GQ1aWjWeffZ7Nm7fS1HSVS5cu4PP5EICsQB/BoJ8rzhyMGVkszcnGoNMQS8pEkjJZBg27G/JZX3Tz720a0Wh0auKnnaqqanbu3MVTT22+p5g3F8bGRjlw4CsqK6vYuXPXPTVbg8Egra0tNDVdTTO9Hxb8fh+trc2MjIyg1xuwWi3U16+YU9rK7/cTjUapq2vAZEqZba1YsZKLF8/zww8nyMnJ5c0337kr88dFLOJxRFGmnqWZegbcEUqyjGRn5zDhdNLaO8zrm5ffdELicUJlZRW7d7/A118f5ty5s5hMJtav38i+5flkmzScH/LS7w6jUQlY9RpUgoCsKMSSMv6YQH5RGfqBVoqUSQykCoXHjn2D1WolO3vlfb/+sbG5Je/0egNqtQaN5skvDo+NjRIKBdHpdAtGRlIUhW++SUlOvf32e2i1Gs6cOUVzc+Mdr2PuF7RaLcuW1dLQsJzCwqIHIuMQjUY5evQIHR3trFmzlsrKZXzyyZ9n7LNixf2/7xfx4PFEFYcLrHqqck1cGfZj1Kr+/+z9d3Rc957diX5O5YhCzonIIAKzSFESo0iKEkmRIiUqXunqdruvu9v2m+e1xmvGz/Y8j2e8PJ63bHf33Nu3u2+QdBWZc85JzCQCkXNGAYWqQuV03h8FHKIIgAQpUqR4sdfiknBQ4dQBcL6/7/7t796SymksVCp1xII7GBLpHfZSlhJFmmk6OOdxQqVSsXnzOxFpsROpnQIhkQGHD4Nq8kZIqVRSVVWB0+lEp9MRFRWFY3hYIocFQUApFxh0Tm1nLyYmkhyGcDM7VXLY4/FgsVgYGAg3svEj5xFWOU3usygIAsuXv8rnn/+O2toa5s6dz8qVqzh69DDnzp0mMTGRNWvWotfruXTpAufPn8XpHObdd7eQmZnFxx//gosXz3P16mVqa2tobW1l+fKVlJaWIQgCcrmc0tIySkpK6ezs4Pr1qzQ01JMkWjEFnAxZB+i1GrGZYshISWFVQTqlKVGkRKmnXGxu377J6dMnEUWRv/7r/4nZs+dM6XkPA6/Xy44d2xBF2LLlnUcinscG4dTV1URsFAG4UWIRjAyhJ4gcJQHiGCZGdKAiOMmr/jBYrUN0dLTj9XqJjY2TVEsT2ZAAmM39pKWlk5SUDIR/fwYGBjh58ji5uXmsXbtOCkuaxjQeNwoS9KSaNHTaPGTHaCM2XOVyBYFAALlcQSgUCqtWRhopqzvA6sKESYnhaTwaTKZotmzZyjff/JHOzg727dvNxo2bxyml7R4/Ll+QON3kTb0gyKiqrsDpdGAyxaBUKnE4hiVyWCGXIQI2t3/S1xiFTCbDZDJFNFIulxOPxzPle3dfXy/BYJDBwUEgXFODwfB9ODV18rATpVLJkiXLOHBgL99/f5E/+7NfMnt2L7du3eTAgX18+OHHbNmylQMH9lJXV8u+fbtxu52sXr2ckpJSsrJmcPLkcWpqqrly5XsaGupYvXotWVnZQNiWYMGChcybt4CGhnquX79KZ2cHmeIA8f5hBgeNtFm6McXGk52WwuqiVGYmG4nVTa1RF0WRI0cOcvPmdaKjY/jFL/6CtLT0KT33YWC1DrFjxzYSEhJZt+7NR1LXB4NBmpoaqaqqoLm5KWIzQAScaLAIBmzoCCFDg484cZgYnE/Esk0URfr6eunv78PvD5CYmIROp6OoaKZE/N6L/v4+8vMLMZnCiiuDwSDZiMyfv4AlS5Y/0fHcaUzjWYNCLmPdzGR23O6m1eJGFp2Kz+5D57URbLuOOD/rufEULSubhdPp4uzZU5w6dQKdTk9JSSnL8xN4ISuG2j4HN7ts9A978YVCyAQBrUrOouwYSlOi6G2ScezYEen1QqEQe/bsIjMzGbn8ya7F+/omJoeTk5Pxer1/Esrh0anVnJzcx7Z5eurUKSorb1NaOotLly7Q1tb6o1siTYaMjExKS8spLCz6UX++4Y3kXXi9XjZu3ExBQSEHDuyLeExsbOwTySuYxtPHc7UCEgSBtcVJDLkCNFtcgDCOEFKp7jZLgZBIi8VFRrSW12cmPTfF71mCTqdjy5at91U7+YIhgqKI8j6BBwaDAXN/Px6PG58viri4eHp6e0hKSpbIMblMwB2YWgMSHR0z7pjVOjTlG11fXy9erwe73Y4gCFJYTjAYJCnp/iE8SUlJlJXNoqLiFqdOneDDDz+mr6+P27dvsn//Hj766BNeeWUper2eEyeOcevWTeRykaVLV6NUKlm6dDlFRcUcPnyQvr5eDh3aT01NNWvWrMVkigbCfwsZGZlkZGRitQ5J47Ea7xApDIG1Hay36eiPI3HeAhJKyib1qxLF8AZK66CDm7cruHzxDHJDHK8vf+WJEMPBYJC9e3dhtQ7x3nsfPfTYzIOCcESgX4imQ4jHiwIFQWSIuFFhxYAOL9liP9E4xz33URG2b1HgcAxjMBix2+0YjUaKimZOOpIzOho76tft8Xiw223IZDKWL1/J/PkvTN+zpvFEoVHK2VCazDc3umgb8hCuqeENuNGF+eh/fT4fnqBIm9VNWUoUr+Q+3nH4aYSRmJjIpk1b2LbtGxobGzhy5BCvvfZ6xL3AFxQJhUTk97k/6HQ6enq6CQWDCIKMuLg42traiIuLRyE1XSK+4NRr6r0qG5vNikaTPKXn9/b2YLUOEQgEUKlUREVF4fF4UCgUxMXdPwxs5swSbty4Rk9PN+fPn2XVqjUMDAzQ2dnBrl07+PDDj1m/fiM63VFu3rzB8eNHUShEysrmo9frWb/+TWbOnMnRo0cYGhoa8fefzbJlKyRyWyaTUVhYRGFhEb29PVy7dpXa2jvoQwMgDsBAK6EBaB/MIGHeAqLzCyYlYEOiSJvFTfuAjavXr3Ht0iWiE9P44O0tT4QYdrlcbN/+LWq1ik2btjy0N2V/fz9VVbeprq7G7XaN+34IgQ4hjj4hhgByFAQREHGJaiwyI0bRTY7Yi47HN5ar1erwej0YjVEMDg6GpwGjoykoKJr08wUCAUwmk2RxNjxsZ2jIQiAQZNOmLeTnP74x5WlM46eEzBgtf/5iFnX9DhzeAGKenstHdtDT7OfmzevMnTv/aZ/iY8PChYtwuRxcu3aVQ4f2o9VqycnJlXJp5qab8AZCeAMh5DIBjVIuTbWmzJmH3W7n8uVL0uv5fF6+/PJLNm3aisEwtdyWR8FkYdkpKanU19f9SXgONzaGyeHHYSkhiiInTx5jz54dqFRaqqsrf/BrPg5ERUVRUlJGaWnZjz7BIooiV69e4ezZUyQnp/Duux9gMkWPTDfVRjy2rOzxZiFM49nBT99I6B7E6lS8MzuV3Dg9Zq+AAy2i7C4HrlSqCCLgQI0loGBGnJ535qQRp3/+d9yeFkbVThqNRlI7jVWcKGUyZEK4YboXItDT28PBg/vx+X3I5HK8Hg8tLU04HA5aWpoZfVYoJKKeojfWRErNyYz+J0JPT48URBcVFYVKFU65lslkU7qZv/zyElQqFT093dy5U83KlatIS0vH4/Gwa9cOfD4fc+fOl9JSa2pq+O67bySvn6SkZD788GNJ5dLa2sLvf/9PXLt2JeLaQrhpX7FiFb/85V+zYsWrREdHS98bHBzk6NHD/PrXf8eZM6fGefB2Wt18daOL/3Gylv+2/zLHmqxY4koJzFzDYEwxZod3ytdsKhBFkWPHjtDW1sqbb741qdfkvfD7/dy5U823337Fb37zK86fPztpQvoAUbQIiYiACRcGvOjwYcRDFC48KGkSkhnmh08SZGZmsWbN62Rnz8DtdmG32+nu7iI2No6ysln39WqKiYmVLEoGBga4ffsm8fEJvP/+RyxYsHC6KE/jR0F2rI4ts1OJ1SsZDChxCxpEQSaRwjKZjJBciV1UMeSDOakmNs9KGRcsOo3Hh4yMTNav34ggCFRW3ubcuTMR31fKhUlrakgUqa2r5eyZU1LNcjiGaW5uwuEYprNjrO2OMGW/yYlq6sOMZPb29kRM4oQzI4IYDIaIYJiJEJ7IWQlAZeVtBgYG2LBhEwaDkcHBAQ4e3IcgCLz66hpefnkJAGfPnuXIkUNSvczNzefTT/+cOXPmAlBRcYvf/e4fJaXSWCQnp7Bu3QZ++cu/YtGixRGetp2dHezZs5N//Mdfc/Xq5XEevDV9w/zucjv/40Q1f3voKhd7gwynzseZu4J+bQYO7+MNRvX7/ezatR2328OWLVsnVdTeC5fLxfXrV/nss9/xhz/8E9euXZ2QGBaBTiGObiEOBUGicKEfqalRghsDHuyCjkYhBe8P1KPI5XIKC4tYu/YNoqOjCQaDdHV1YrUOkZaWzsyZpfclSJKSkqWa2tnZSVVVJfn5hXzyyafTxPA0/uRhUIfJ0aV58SwrzWHl0nAA9KlTJySbuucBoxOcxcUlI8rfnXR3d0V8X6OUY9IqMagV4+wOlyxZRlFRccQxu93Ojh3b8Hofb080CpfLNWlPk5ycgt/ve+6Vw4ODgwwODiKXy8nJyX3k13E4HFy5cpn/6//6z/zN3/x3BEGY0ILox8SoB/7bb7/LP/tnf8krryz90Ylhl8vFjh3fcfr0CebPf4H33vtQEpzV1FRHiC1lMhklJdNBdM8rnivl8CgSjWo+nJ+OMNhMe9UQQbUpbHAIeLUmQIle9FCgDvLhvHSMmmf/MoiiSN+wF5sngEmjIMk4dRuAZwH3Uzsp5QJGtZL+YQ+xY6ZyAoEANbU12GxWFAoFKqUSfyBAKBTC7/PT3t6G1+shMTGJhIQEfCGR6PuM0Y7FZMrhqaKv7y45PGopEQqFMBgMqFQPTvU1GAwsWrSYs2dPc/bsafLzC3jzzU189tnvGRgwc+jQfjZs2ERhYRFarYajR/fT2dnO11//kS1b3sFojEIul7No0YsUFBRw5MghOjraOXnyOLW1NaxZ8/q4YqdWq5k//wXmzp1PY2MD169flVJXPR43ly9f4urVyxQWFjN//gLcKhPbbnXT2NmLc6CLWLWK7KJs7tTcwYeCNp+GL693snVOGilRj8eS5dKlC1RU3OL119eTnT3jvo8VRZGenm6qqiqmHIQTREaXEIsAE6qYBMAgeLCjo4cYDGLPuKClB8FkMlFaWk5paRkAu3btoL+/D7PZTEtLM5mZWQ9UqKekpBIdHY3FMkhzcxO9vT1kZWXzr/7Vv542/5/Gj468eD2fvJCJte4aPQEvQW0sCCCTGxHVGkIEkTsGWBiTxJbZqagVz/6+czAk0mXz4PYHSTSoiJmiDcCzgvz8AtasWcvhwwf5/vuL6PV65s1bAIBBpUCtlOPyB9GMIeldLhe1dTU4HA4USgXKgIJAIEgwGMTrcdPW1orP5yUxMRH1COFpUE+N5J+opg4NTX3DtaurU9qgHVV2BoPBkRT2B/9s0tMzKCoqpra2hlOnjrN16/ts3PgWX3/9Rxoa6rl06QKLF7/M4sUvYzDoOX/+FBUVt3A6naxfvxGlUolarWbVqtcoKprJkSMHJ/T3HwuDwciSJct48cWXuHOnimvXrkr+uzabjVOnTnDhwjnKysqZO3c+zQ4Zeyq76ezpxTvUS1q0ifj4JBoaGwgq9dwwB3Dd7GLrnLTHYskSCoU4eHAf/f19bN36/gObzVAoRGtrM1VVlTQ01Eu2HveDBxV9QjQqAqgZT2zLEDHiwi7oMGMiXRx86M+RlJRMaWkZxcUlDA1Z2L17J06ng/b2NgYHBygoKHpgc19SUobZ3I/f76ehoY6hoSEWLVrMxx9/+ti9nacxjecB8+YtoL29jcbGBvbt281HH/38gRt1zwJEMVzb+4a9+IIhlDIZ8QYVmTFaKZBbEARef30dbreL1tYWduzYxvvvfyRNgd4P4eeux+FwRGSY9Pf3sXfvLjZvfuexh+JOphqGsK2Ez+d/7j2HRzdqMzOzHvr3MBgM0tzcJIWWjk6YxsbGkpeXh9vteyrZFykpqZSVlVNUNPOx5/Y8DDo62tm/fy+BQIAtW94hJydP+p4oity+fSvi8fn5BePWQ9N4fvDss6KPCINaQZbKjaHlDAFdPEGVHmRy8qLy0IfCisEkRcJPghh2+gIcqO7jTt8wbn8QrVLOzCQjb5QkoVc9++c/ilG10+7dO6isvI1er2fJkmUIgsDcdBO7Kl2ERFEq3nKFAoFwIU5LS6epqRFBJiPgDxAIBhBkAmZzPxcunmPh4mVolVqKEqd2s4qJmaiRnTo5PKqyEgRBShMfbWSnuns7f/4L3L59E5vNxtWrl3nppVfYuPEtvvnmS+rqarl8+RKLFi0mKyubn//85/zmN7/FbO7nyy8/5+2335MWMbGxcbz77gfcvn2TM2dO0d3dxeef/45FixazaNHicY2PTCajoKCQgoJC+vp6pfHYYDBIKBSipqaaippamnUFWH2gCzrISk0nKyuLvv4+BCDeqKMwMYoWi4s9lb38YlHmD040rqys4Pz5s7zyylKJWJ0IDoeD6uoqqqoqHjoIx4oOt6DGwOREsgBo8WEVDLhFNToerARQKJTMmjWLzMw8MjLC/mytrS3s27cHtzu849/S0kRx8cwHps/HxMTwxhsb+PWv/5bq6ircbhe5uXm8/fa708TwNJ4a4vUqkgN9GFvOENAnEFJoEN1u9FoNcq8djd9OxpL8nwQxbHZ42VfdS8ugC19QxKhWMD8zmlfz41H8hJLZy8tn43Q6OXfuDCdOHEOn01NcPBOjRsHMJCOX2iwR3rdqtZpgIIhcLiclJY2OjnZksiD+gJ9AMAg+L729vZw7f4aS+S8Ro9WSH//ka6rb7aa5uZlgMIhGo5G8/4PB0EhNndqm79Kly2lsbJAIjfz8AlatWsPhwwe5cOEcSUlJ5ObmM2vWHNLSEvnssy9pbGzgu+++5q233pburxkZmQ/09x8LpVLJrFlzKC+fTWtrC9euXaGlpRkI261cv36NszeqadHm4fZ60OOjYMYMklNSw+saID0uioxYHTX9Dg7V9LFlVuoPFgCcPn2C+vo6Nm3aItkTTYTBwUGqqiqorq7C4Rh+qPcYFAz4UGBivKp4FDJARQAzUSQzhGIK/sNarY5FixaQkZEn5Tjcvn2T48ePEgwG6enpxmzup7x8Fnr9/X9Hs7NnMGfOXP6f/+d/UF9fjyiKlJSUsnXre9PE8DSmMQkEQeC1197gs89+h8Vi4dixI7zxxvpnVpgUDInc6R3mRqeN5kEnbn9oRBcmopTLyI7VMSfNRHlqFEp5ePpp48bNUnD6tm1fTxqcfi8UCgUbN27mq68+j9gEbWlp5tixI6xe/dpjvU6TKbcNBiNGY9SIcvj5tpUYtZR4mCmPsCVSBXfuVONyha0Cw6Hgd9Dp9BQUFP7ov896vYGZM0soK5slbYQ/LYRCIb7//iIXLpwjIyOTdes2jMteGvX1H4uysukguucZP50u6BFgt9sRxBBKZz+aoRYMtjbSFU5icCJDHDd+/6ziSK2Zq+1WDCoFM2J1GFRyrrZbOVprftqn9tAYVTsBfP/9Ra5duwLAzGQj0VolQ667YwsCkD0jBwg3tXFxcchlcpRKJTKZDFEMj0xarUNcqqhGtPWSYpxacdTrDePGD63WoSmZ0DudTpqbm4CwZcYoGXxX5TS1c1AoFCxdugKAK1e+Z3jYTlpaOq++uhqAc+fO0NzcCIR3hj/44CNiY2Ox2+189dUX48agZs+ey6ef/jm5uXkEg0EuXDjHZ5/9LuJx9yIpKZk33ljPX/zFX/Liiy+h1Yal2y32IA3dg1g7GkAUUaqUhEIhLCNhQbGxschkAhnRWtqGXDQO/DB/3paWZo4cOcisWXNYtGjxuO8Hg0Hq6+vYseM7/v7v/44zZ04+UkK6W1AjIiAbMSMRRRG320UgEOlNriRAADlu7k/0p6Wl89prr/NXf/Uv2bRpkxRidPXqZbZt+wa32zWicGqltLT8gcSwTqdny5atnDp1nOvXrxIKhSgvn01qahplZeUP/XmnMY3HCafTgSzkRzXcjWaomVh3D5qhFpSuQQJ+Pw6H42mf4gMRCIbYWdFDTZ+DOJ2KGTFa5AKcahjgcrv1aZ/eQ2PRosXMnTsPgIMH90mkZHlqFCqZDLf/rvpTLpeTlZ0NgNFoJCrKiEwmQ6VUISCACF6vh96+Pm5U1RDtH/xByuGpTuP09fVKlhJxcfFSsxauqYYpK6JMpmjmz38BCBOjwWCQ8vLZzJkzF1EU2b9/rxR4V1RUxNat76HRaOjq6uSrr77AbrdJrzXq7//RR5+QlJSMx+Pm0KH9bNv2DTabdcL3FwSBGTNyePvtd/n003/G7NlzUCqViKJIvcVPS3cvtp5WFHIFMrk8XFNH1NKxsbGo5DIS9Spq+hyYHT/Mn/fatStcu3aVV19dTV5e/rjve71eKipu8eWXn/Pb3/6Gy5cvPTQxDOEQOjkhacImFArhdDrGra9VBPAJSrxMvj6SyWTk5uaxceNm/vIv/wWvvfYaSUlJBINBjh49xJEjhwgGgwwMDGCxDDJr1pwHEsNJScmsX7+R7777murqKrRaLbNnzyEzM4vs7JyH/rzTmMafEnQ6HevXhwMs79ypoqrq2fBlvRf+YIiDd/r4+mYXtf3DmDQKcuO05MbpyI3TE69T0TroYtutbnZV9Eh1UaVS8dZbb0u91bZt3+J2u6f0njqdjs2b35H6plHcvn2TK1cuP9bP19PTPeHx5ORkgsHw9M/zrBx2OIalXnaiejYWbrebGzeu8fnnvx+xRLoiEcNhC8IqFAo5RUXFP9rmoFwup6CgkM2b3+aXv/wrli9f+dSJYYdjmO+++5oLF86xePHLvPPOe+OIYQhbbI2FyWRixozp2vk84zknh20RX+v1kTdwUXz2yWGLy0d1j514g4oojQKZIKBXyojXq6jutWNxPb6Ajx8L5eWzWbJkGQAnTx7nzp1qorVKylOiGHT58Y8JwDHo9SQnhQNtoqNj0Op0CDIBuVyOQqFALlfgDcmw2+w4Wm7yxy/+QE/P5OM3oxAEYVwz6/P5cDofTHL29fVIxOTYm/uoP+LD+D4VFhaRnp6B3+/n7Nmwb+SsWXOYPXuO1MxaLIPS53/vvY9ISUnF7Xbx7bdfSeTxKIzGKN566+2R8B09AwNmvvzyc06ePI7PN/nvisFg5JVXlvLJJ79ApzPQ7lagUgikpiQjk8loa2vlytXLtLa1AhA3QnKqFGGatbLbPulrPwh9feFRrOzsGaxatSZiF7evr4+TJ4/xq1/9Lbt376CpqfGxbOp4vV6Ghix0dXVhNptxuSIXg+EzEJloq8BgMLJw4Yv84hd/wQcf/Izy8tnSiJPf7+fAgX2cOnUCURTxeDz09/cxc2apFJw4GVQqFW++uZFLly6yc+d24uLimTVrNnq9ntzcvAmL9jSm8WNieDiSPIqNjbyHWiwPv2HzY6PF4qLN4iIzWotOJUeQCURrFWgUMq51WAmEno2U6qlCEARWrlxNUVExwWCQPXt20tvbQ3asjqxYHd02T4T3cEJCIkZjFIIgEBMTh1anBQHkCjlKlQqZTIYXFXaLma6KC2zb9g12+4Pv7yZT9DgFzlSVwx0dbZL6atSmCcL3RLVa/VBBOwsXvoheb2BoKBzECrBixSrS0zPwer3s3r1d8oVMT8/gvfc+Ggk1G+DLL7/AbI7cdE9KSuajjz6J8Pf/3e/+cUJ//7GIj49n9eq1vPfeh7j8IfqCWgxKGclJyfgDfhobG7h48TxDQ2EPxVFvP5NGwbAnQG3/o2+01NXVcurUCV54YRFz5syTjouiSFtbKwcO7ONXv/obDh8+SFdX5yO/D4CIAKKI2+1mYGBAsgfx+SInboTRDdkJXiMuLp6lS1fwy1/+FZs3v0NBQaHUtDscDr799itu3boJhO06XC7nA/2FIdzErlmzlh07vuPcuTNkZGRSUlKKSqWirGzWYx/9nsY0nkekp2fw0kuvAHD8+BHJUu9ZQUgUOVpn5lyzhVitMiyiUisi6pFOJSczRkuyUc2VDiv7qnqlXlOv1/P22+9iMBil4PR7w+wnQ0xMLG+9tQWFInKK98yZk9TW1jy2z9jbO7FyODk5RertnmfP4aamcK+bmpo2YS8UCoVobm5i795d/OpXf8Px40fHWXEEg0Fqa+8QCAQoLi75Ua5XYmISK1a8yi9/+dds3LiZ3Nz8Z2JapaWlmT/8ITwR8M477/HSS69MWA99Ph81NXcijpWVzXpmpwem8XjwXK+MbLZIcliniwzimIqf2tOGwxvEEwihV8oJhkI0NTVSUXEbjULA4w/h8D77n2EiLFz4IvPmhdNvDx3aT0tLM8vy4ilI0NNqcUcQxJmZWSjkCtRqNXq9XtqlDQYDqA3RKKOT8LbdpKfyIgMDZv7xH/+RCxfOP5BEnGgMdipKp9raWpxOJzKZLCJFXa3WolKpHmr3dmyQTnV1pVTMVq5cHRFQN9rM6vV6tm59nxkzcvD7/ezcuZ3Kyopxr1lcPJNPP/1zZs4sRRRFrl27wh/+8E+0trZMei4dHe189dXn+AMBZi1cwoLZsyQSGMJNWjAYRKvVRtgbaBUyzM5H26Sw223s2PEdMTGxbNiwCZlMFhGE89lnv500COdh4fG4sfZ3YbUO0dvXh9vtxmAwkJKSSlRU5BhZABkyRMlDUS4P7zJv2fIOv/zlX7F06fJx3mQ2m42vvvqCO3eqgDBR7PF4mDEjd9zC8V7IZDJeemkJR48e5saNq6SkpJCfXyAtIsrLp0d4pvH0cW9gZWxsXMSCclSV+SzD4Q0SCImoFTJ8Ph93qqtoaKhHp5Lj8AbwBn56NXXUAzErKxufz8e2bd9is1pYV5JEglFNq8UtEcQCkDOi+tDr9ajVGilQLRgIoIlJQqE14Ko5R3/LHVpbW/jVr35FVVXlfSdrwgSnKeKY0+mYUkDP7du3CIVCaLXaiMC0mJjokU3gqTdTarWaV14Jh85dunQBl8uFXC5nw4ZNIyTwIAcP7pM+S0JCAh988BFxcfEMD9v5+usvInwkIXx/XrToRT755BdkZGTi9/s5efI4X301nkwehSiKVFdX8e23X2GMTWTOghdZUF4WMbJst9sRRZGYmNgIL0y5TMDqnho5cS86Ozs4cGAvRUUzWbp0OQA2m5ULF87xD//wK7799iuqqyunTH5MBlEUcTiGGe7vYGDIJvn5mkzRpKSkRoT0AfhRoCCIaqSmqtVqZs+ew4cffsynn/45CxcuGtf0d3Z28vnnv5d+Hl6vF1EUyczMemBzqtXqWLDgBbZt+5a6ulqKi2eSkZGJIAgIgjA9iTONaTwEFi58kaysbPx+P/v27f7B94/HiaYBJ5daLCQalEQ9wCpSp5KTHqXhZpeN6t67m90PCk6/H9LS0nnrrbfGHT94cN+4WvIocDiGJ53qGA2jAx5qE/WnhlG/4XtVwxbLIGfPnuY3v/kV27d/S21tzYTcjiiKNDTU43Q6KS6e+UQt+jQaLfPmzefjjz/lk09+wfz5L0w5CPZJIxgMcubMKbZt+4akpCQ+/vhTaeJ1ItTV1USs4aZr558G/qTI4Xv/OEM/AYVQzEhaqs0TIBgIMGix4HK7qG1uQ69WEKP9aRYDQRBYsWIVxcUzJbWTY6ifzbNSKUg00GJxM+D0EQyJKJVKMjLDAV5RUSYUCgVqnQH0cfgUOgz2dhLd7bS1NtPb20soFOLChbN8+eXn9yUrJg7QeTA5fPv2Ten5Y0m/uLhw2MvD+j6lpKRSUhL22D158jiiKCKXy3nzzbtp67t375aa2dExqJKSMkKhEIcO7ef77y+Na9x1Oh3r1m1gy5Z3iIqKwmq18t13X3Po0IGIsanRYvHNN19iNEbx8cc/Jy42jihjFDNnljBnzjySk1Pwej0YjcYJrRFkj7CL6PF42L79O+RyGZs2baazs509e3by61//LSdOHHss6ch+v5/e3h4qK29z/fo1htvuoBUCmJIzSE1NIzo6esIFlRs1RtFNbqKJV19dzT//5/+CDRs2kZOTN+Huant7G7/5zW+kc5bL5Wi1OqKjox94jqIokp2dw7lzp5HJ5MycWSJ5LEJYDT5jxqMn805jGo8Dfr8flytyk8ZgMEaMdY9OOTzLiNEpUStkOH0BvD4vNruNwcEB2nv6ider0CqfvqrjUTDqgZiUlIzb7WLbtm8wyvxsmZVKklFN46ALq9uPKIoYDAYSE5MQBIGoqKjwpqbWQMgQTwA5UdZGYn39VFdV4HQ68Xg8HDy4jz17dt53umZiawnrA899dEMtPj4hgvSLiop+pFHZ0tJyEhOT8Hg8XLx4DgiHwG7c+BYKhYKGhnrOnj075n1MvP/+R9KG7HfffS01o2Mx6u+/evVrqNVqyd//woVzEQ2p2+1m//49HDiwl7y8gpFxTQOxcXGUl8+irKycuLh4vF4ver2B2NjIoDhxTPbCw2BwcJCdO7eTmprGq6+u5s6dar755kt+85tfceHCuXFr4keBx+Oho6OdmzdvcPv2Lfy9jWhVcuKSM0hOTiYqKmrcZqgIeFESxzD5WRmsW/cmf/mX/5LVq9eSmpo2IdFbUXGb3//+9xIpolSGVeRTqalyuZzU1FSOHz9GSkoKOTm5REXd3biYMSMn4utpTGMa94dMJuONNzag0+kxm/s5der40z4lCRXddvwhkSjN1HovnUqOTBC42WmLmKoZDU5XKBRScPpUrAYBZs6cybJlKyOOBQIBdu7c/oPXRfebhg0rh8NE/fNKDnu9XtpGplbz8gokS6SvvvqCf/qn3/D99xfHCRfuRWtrCxbLIAUFhVPylH5YCIJATk4ub775Fn/5l/+ClStXkzQy9fyswG638c03X3L16mWWLl3Bli1bH0haV1Tcjvg6Jyf3iVy/aTxbeG7J4UAgMO5mca9y+KfgOWzUKJifYcLu9TPkFcnIzsOFih6LjVSZ4ycRqDcZBEFg7dp1ktpp+/bvELzDvDc3jeX5Yd/BFouLjiE3SmMcqI2E1EaISkYelYhK9BGoO4u6+yYquZyEhEQaG+ulEZuenu4R5emVCQv8oyiHw4Ft4RGLe/2CRhvjR2lmlyxZilKppLOzg7q6WiBMvGzc+BZyuZyamhouXbooPV4ul/P66+t44YVFAJw9e4qTJ49N+DlzcvL4+c//nLlz5yEIApWVt/nd7/6RurpaBgYG+OMfP+Pq1cu88soy3n33A2JjYkiJ0jA8okrXabXMyJ5BXFw8KpUqQk0M4PQHSY16uOTYQCDAN998Q39/P6mp6XzxxWds3/4ddXW1P1jRHwqFGBwcoLb2DteuXaG5uQmFQkFhYREL584mPwoElR4fE5NAPrmOuNhYfvHGEj755FPmzp0/qSWEKIpcv36V7777WiLOTCYTCQmJ43yMJ0IgEEAul9Pc3EhpaRlbt75PZ2fkmG9ZWfn0+Os0njpGPWFHIQgCOp0Oo/Gu2s9msz3zEzmZMVqKkox027z4BDVJaVk40NDX30dh1KNtdD0rUKvVbNmylZiYGGw2G9u2fUuyTsb789JZmBmNNxCiccBFl82DIT4Vn0yNTB9H0JCIMioBhXuIwJ0TqAfq0Wo0REfHRChx6uvr+P3v/2lC4hQeraYODJil5nespQRAVNTUw+jGQiaTSRM5t27dlMagU1JSWbVqDQCnTp2isbFBeo5Wq+Wdd94jLy+fQCDA7t07pI3gsXiQv39rawt/+MNvaWlpZv36jbzxxnoSTXqMGgXD3gACEGWMIjMzi4SEBORyOTExd8nhkBi2M4rTP9zndjgcbN/+LYGAH73ewD/8w684cGAv7e1tD3n1xiMQCNDb20tlZQXXr1+lq6sTg8FASUkpi0rzydSDX2UgKIyvqSLgU0aRlRzPv3pvA1u3vs/MmSWTEhnBYJDjx49w+PAB6fcuOTllykovn88bXju2NLNs2UqWLFmO2dwf8Zjy8tkP9fmnMY1phDfY3nhjPRC+rz5O24RHxaDTx53eYWJ1D3e/jNcraRl00mGNtJQbDU4f7ZXOnTsz5ddcsOAF5syZG3HM43GzY8d3U7IsnAz32iOMwmQyodPpxiiHn09biZaWZqkWfP/9RckSaaqq7O7uLrq7u5gxI/eBuS8Pi7i4OJYsWc4//+d/zZYtWyksLHrgpOjTQENDPX/4w+8YHrbz3nsfsnDhogdO35jN5nG2U9O1808Dzy3jEPaEjfzFv5fg+SmQwwDL8uJ5rSgRjVKOqNaRlpRIltiPpeLUlANfnlWMqp2Sk1MktRN+N2/MTOKvXs5m86xUMmK1qBRy0tPTURAiWenF0HmF+O7v0VpbcIx4S4+OC9rtdkkVEggEOHnyON9++9W4EJmJlcOWccfGoqWlCZvNikwmi2joAMkz8FF8jIzGKInoPXPmJIFAePQyrAAKN7MXLpylqeluMysIAsuWrZCa4OvXr7F//x7puWOhVqt59dU1vPfeh8TFxeF0Ovj7v/87/pf/5V/jdA7z4Ycfs2jRixIJOTs9iqAoSvYeNpsNURRRKVUYxpBBLl8QlUxGacrUdxI9Hg+//vXfsWfPHhwOOzU11Y8UhHMv7HYbTU2NUrq81+sjO3sGCxYspLi4hPj4BGQyGamihRTRghcldrR4UeAXFKii4tGn5lNYVMzPl5fzSnHmfd/P7/dz8OB+Tpw4Jt1LsrNnkJaWMelibiwcjmEGBwdQKBRs2LCJ1avX0tTUiMfjkR4zPcIzjWcFZnM/MtndmqrRaJDJZBgMd5XDwWBgXKrxswaZIPBmaTKv5MYhAlpTPCkmLdnBHhq/P3Jfb/afAkb9E/V6A2ZzP7t2bSdOK+ft2Wn88qXssNWEQY1WrSIlOQWVECJZtGJsv0hi/w3kQ+24Rza65HI5Ho8bQRAkmwCXy8muXds5eHB/xL0KHm0a58qV7wmFQuh0+nFrNIMhCoXi0dRQWVnZ5OcXEAqFOH36hHS8rGyW5MM7NqAOwsqrjRs3U14+G1EUOXLkEBcvnp9w0/Vef//+/j7+03/63/gv/+X/wGg08vOf/xnFxTMB0CjlzE0zYfcGJKWaZXAQmUyGyRSNYoxtxpDLT7RWSXHS1D3mLZZB/uN//I9cvHgep9NBTU31lOw87ofwJusgtbU1XL16mebmRmQyGQUFhSxYsJCCgkKio2OQCQLZYj/x4jAu1AyLGnwoCMiUqKOTMaYXMrukmH++ag6FaYn3fU+Hw8F3333NjRvXpWPl5bNRKBTjMkQmwuDgIE6nE71ez/vvf8QLLyykqipS+aTXG8jNzXu0izKNafyJY8aMHBYufBGAI0cOPvUedNDlw+ELYlJPTMh5vB6sNiv2YTsOpxOX243H60FJCLcvwMCwZ9z9fbLg9Adh1P//3vvL0NAQu3fveGQrjsn6iZSUVIAxnsPPn3LYZrOyf/8erl+/SmtrC3fuVD3UdRwYGKC1tYW0tHRSUlIeyzmp1WpmzZrDBx/8jE8//WcsWvTiM5sJEwgEOHz4MLt2bSczM5OPP/4FaWnpU3puZeWtiK/1egM5OdNTrH8KePa2Nx4T+vv7I3ZFtFrtON+6n0IgHYBSLmN5fgIvZscy7A2gV+aya3s7XV0W9u3bw/vvf/RMGJw/KtRqNZs3v8NXX33O0NAQ27Z9y3vvfUiURsPCrBgWZsUQEkWCIZH9e1uprx/idsiOUwwRGxvH4OAAoVBIIjbr6urIySkgJyePmzfDTUZ7ext/+MNvWb58pWSmfu8oJzy4kb18+XsgHEJw7+5gVFQUcrn8kX8WCxYs5PbtW9hsNq5du8qiReEF2KxZs3G7bZw9e4H9+/fy0UefROx+LliwEL3ewKFD+6mpuYPL5WLjxs1SSNpYpKdnsHnzO/zd3/0PWlqaR+wifPT395GUlCz9zRQmGJgRq6Np0MmMWJ00FhUbGyttufiCIbpsHspSo8iOvX/YmiiKtLe3UVlZwdGjh2hvb2PWrDIMBhNTnNqaEG63G7O5H7O5H4/Hg0ajISUllYSExEmVRjJEssV+TKILtyEFTOlEmaLRaVSUJBspTzWRFaO9766q3W5j9+6dEYu2l19+GZfLz7lzZyd9HoSvRU9PNw7HMK+8sow339wkkSqVlZGNbHb2DGnTYRrTeJoIq+/u/k2MjqONHTETxfDExmjT8qzCoFawoTSZFfnxePxBlGI6X37RjMUyyPHjR3n99XVP+xR/EKKjY9iyZSvffPNHOjra2b9/Dxs2bCLBoGZpnpqlefGERBG/P5svPq+mz+fihs9KQAird4eGLOh0OukeeOvWLTZv3orH45XUtlVVFbS3t/Laa2+QnT0DYMKa+iDy4ObNG8D4SZzRevpDQmOWLl1Oc3OT9G+0sVmx4lU8nmFqaurZvXs7H3zwMRqNBgirjtesWYter+fSpQucP38Wp9PBypWrx01wjPr763R6/uZv/n/09HSTlZWNw+FgcHAw4m+jPDWK6502OqweMqM1Uk2NG3PNXL4gQ24/K/ITiH6AZVggEKCpqZHbt29y6NB+3G4nhYUzUas1j3y9Rn2E+/v7GRwcwO8Pq5BHVc4q1cQTQkqC5IndWEQj3ugMFFFpGKNMGDQqZqdFUZ5qIsl4/+minp5udu/eKU38hX2iN3DzZtUDFWKhUIjW1hYUCgWrVq1hzZrX0Wg0BAIBqqqqIh5bWlr2k14vT2MaTxsvv7yEzs4Ouro6n3oP6g+KiKLIZMv1wYFBWtsmzlqxo+WrhrOcxC4FnCsUChQKOQqFEpfLSVNTI9XVlcyb9wLZ2dkRjxn9f6VSSXx8FA6HF5lMQX5+IS0t4fWETCZDJpNRX1/Hd999xfr1G1EolCOvoXjgVKAoipOG0SUlhcnOUbL0eVEO+/1+6uvrqKqqoLW1hStXvicQCDy06tdut9HQUEd8fPx9fXWniszMLMrKZlFQUPiTsPAYGrKwb99uXC47r766mtmz5005SG6i2llWVj5dO/9E8NySw2Zzf0SxuNdSAn46yuFRaJRyNCN+iOvXv8kf/vA7enq6OXv2tKQefVYx4PDSOODE5RuxKlDJyY3Xk2AINwyjaqdwWnhY7bRly1bpBiwTBGRygeXLV9DS0kRaWgb19bUjieux+Hw+qbnz+/1cunSBDRve4p133uPw4QPY7Xa8Xi+HDx+koaGeNWtex2AwolAoIpS2VuvQyEJj/A1UFEVu3RptZCPHX6Ojo5HJ5D+oOKtUKpYsWcbBg/u4fPkipaVlkipv7dq1NDW109nZwa5dO/jww48jyN+ZM0vQarXs2bOTtrZWvvnmSzZvfidC1QfhseAjRw4RExPLv/23/4Gamjv09vZw+PBB7typZs2atcTExKJRynmrPIXvbnXTPOiie3AYOSPXOhhi0Olj2BekKMnAhtJk5LKJC47NZqWqqpKqqgpsNhs9PT20tbUyY0YOiYmJuFwPr27y+/0MDJgxm/sZHh5GoVAQH59AQkLClHwENRoNRUXFlJaWk5ycgssfwh8MoVHKp+Q32tHRzp49u3C5wmNiSqWS119fh8Gg4quvvn3guTc2NhAI+PnZzz5lxYpXpWI7MDAwrgmeHuGZxrMCs9kcmf49UlPVajVKpRK/P+xn293dzdy5k73KswWDWoFBrQDUrFu3gW+//YqqqgqysrIpKSl92qc3KURRpMvmoc3ixhMIIhMEjGoFBYl6yXcxKSmJTZu2sG3bN9TX13Hs2BFWr35N+hnKBAG1SsmKFa+yffu3JCen0NnZMRIsF43f75PIQLvdzqlTJ3n33Q/Izy/k5MljeL1e7HY73333NXPnzmPp0hVER0+04Tr5NI7T6ZSmYe6tqaNBOz+kCYuNjWPOnHlcu3aFU6dOkJ09A5lMhlwu5+233+a//be/lQLqNm3aIl0bQRB45ZWl6PV6Tpw4xs2bN3C5XLzxxoaITeHRsNezZ09TWlrOe+99yLVrV7DbbXz33deUlc1i2bIVaLVa4g1qNpYls7Oih9o+O2aHBzXhjWaPP4jZ6cMXFJmfEc2K/PhJPhH09fVSVVVBdXU1breL5uZGrNYh5s6dg0ajf6TN1tFN1oEBM263G7VaTWJiEgkJiVMK0jEaoygpKaW0tIzomFgc3gAhEbRKOWrFgwcUKysrOHbssLQWMxqj2LTpLbq7W6mru//outvtpq6uFpPJxKef/jlz5txtgBsa6vF4IsfGp8NdpzGNHwa5XM66dRv47LOn34Oq5TJkgkBQBMUEbUhScjKxcbGEQiJiKEQwFCQUChEKhuiw+3kpM4cco0ggECAQCBIMBggEAgSDAVJT01Cr1TQ2hjfhwhZAMSOPDYw8NvwclUqG3e6Usox8vvBG6tgJjlu3bnDhwnlpMxXCm5FKpXKEaJZHkNRKpRKv18PNm9cQBJlENI/+6+rq5PLl7+noaKevr5fGxga0Wq1EXCuVyjGvd/e1w+8nnzJR+GNgVDRTWVlBbe0d6brZbFYCgQAqlSrCwuxBcLlc1NTUYDQaycsreOTPajKZKC0tp7S07Ccl1KmpucPRo4fQ6XT82Z/9GUql4aHWBvX1deNq5/QU658OnnNyeGwjO17Z+Kx7I94PUVEm1q59g127tnP16mUyMzPJzc1/8BN/ZLQNubjaZqWmb5hhb0ASnokiRKkVFCYaeCErhuxY3YRqpzfffCtiZzU6OoYFCxZy8eJ5Ojq0uN1u5HK51PCFQuGfaU9PN99/f5Ho6Gh+/vM/5+TJ45Iqs6mpkd///p9YtWoN0dExEV6aXq8Xl8s1YUPU09NNX1+ftEAYi9FG9oeO9ZSUlHLjxjV6e3u4cOGcNNo0GlD3+ed/YHBwgIMH97Fx4+aI3/EZM3J4990P2L79O/r6evnqq895++13iYmJxev1curUCSoqbpGfX8Dq1WFl1Lx5C7h27SoXLpyV1NUvvbSE+fMXkGhU8+H8dI7ebmZnvRevXM9gUIXd5hlRoMUzPyN6hFy5C7/fT11d7Yiy7K7focUySEtLE6mpaaSmPpyyMBQKYbEMYjb3S+rumJhYioqKw0nvD9h9FwRB2vXNzy+IIBwM6qm564iiyM2b1zl58ri0sRQdHc3GjVtwOofZu3fvfZ9vt9uor69Do9Hwb/7N/4fS0rKI71dU3Ir4WqfTj0vmncY0ngZEURxHDo/eIwVBwGg0YrFYEMUQvb3dT+s0fxAyM7NYvPhlLlw4x7Fjh0lJSXns/nQ/FKIocqfPwbV2K82DTlz+MDE8OhYbo1NRnhrFC5nRJBjUZGZmsW7dm+zdu4vbt2+i1+t5+eUlEa+Zk5NLbm4ePp+P7u4uQqGQ1DyG73Ph125tbeHYsSNs2bKVn//8zzh4cL90f79x4zqtrS2sXr0WYcz5wP2ncerra7HbhzEYjOMmPZKTU+nq6vhBymGAF198ierqKgYHB7h9+6ZkKWEwGNi0aTNffvkFjY0NXLx4npdeeiXiuWG/eT0HDuylrq4Wt9vNxo2b0Wg0DA/bOXBgH+3tbcyf/wJLlixDoVBQVjaLc+dOc/PmDSorb9Pc3MSrr66msLCI/AQDH83PYOeF23QBfk0cHcNBVPIQaSYNczOimZtuQimPrEkul4s7d6qoqqqMsG3p6uqkt7eX/PwCYmNjH2qzNbzJOsDAQD92ux25XE5cXDw5OXmYTKYHNtMKhYL8/AJKSsok0n0UUw2GCgaDnD59guvXr0nH0tMz2LBhE7W11Vy+fOm+zzeb+2lqaiQ1NZV/+2//v+PGhu/1jM7MzBpnBzaNaUzj4WEyRbN27TqpB83KyiIn58e3a0kyqjFplVjdfuL142uFQi5HIR8/RWjz+ElShlg8O4tk4+TTFmvWrGXfvt3U1tbg9/tYvnzluMkoQYD4eCNms51gMCSRx319PXz77dd4PJ4wIT3yr7CwiPz8QomIvvffKOkcCAQYHBwkFBIJhfyIYvj5wWAIUQzR0dFOZ2dYNNTU1MjRo4ce6tqNqpfDhPFY5bQCuVwuEdQKhYLYWCNOp+8e0ll+z2soJzimIFKVHVZLj9YXh2OY6upqqqpuTxggb7GEN5djY2OnTPD6fD5qaqpRqZQUFc186MwWpVJJQUERpaVlZGZmPVMk+oPg9/s5efI4t2/fpLi4hDVrXiMlJZ6BgYezbry3H83Kyp6unX9CeI7J4Ykb2bH4qSmH70V+fgHz5s3n+vVrHDx4gE8++fSZSpGs6Lazr6oXmydctBMNd8dURVHE5glwrdNGvdnJ+tIkZqWaJLXT9u3f0tBQP07tBLBw4YtUVVWSlpYujbgKgkBcXJxUXERRpLW1mbNnT0tEen5+AUeOHMLpdOB2u9i7dxfDw3Y0Gm0EWWi1Dk34+1JTcweHw0FsbNy40Yrk5FQcDvsPHusRBIEVK17lq6++oKLiFnPmzCMpKezTZzAYePPNTXz99R9paKjn0qULLF788j3nkcIHH3zEtm3fYLVa+fLLL3jppVe4evV7XC4Xr732umSrAeFd6xdeWEh+fj5HjoTtHk6fPkFt7R1ee+0NEhMTSfb1UCa2kZhRzOKFWagVMtJNGknFPnq9u7u7qKysoK6uZpzf4fCwnfr6OmJj48jOnjHlYmuzWTGbzQwODhAIBDAao8jJySUuLn5KirLo6Ghp1/eHpJMHAgGOHTsSYfuQnT2D9es3YrNZ2bNnF0rlxJ9JFEW6ujppb28jPj6B/+1/+99JT4/0Mw4EAlRXT4+/TuPZxOg9cyLlMITDM8PksIjFYsHtdk85QOpZwosvvkRHRzvt7W3s3bubDz/8+JkJFwmJImebBjlRbyYQEknQq0iNUks/k1BIxOL2c6phgPp+B2/NSiErRkdhYRGrVq3h6NHDXLx4Hr1eLxGko1i+fCWtrS0kJSXT0xMm94PBIMnJyfT1hUda/X4fHR3t7Nu3m/fe+5CtW9/nxo1rnDlzikAggMVi4dtvv8Js7ic2Nk5qyByOYXw+34Qk761bN/D7faSlpY37XnJyMq2tzej1hnHfexhotVpeeulljh8/yvnz5yguLkGr1Yy8RwqrVr3GoUP7uXDhHImJSeTnF0Q8v6ioGK1Wy+7dO2hvb+Prr/9IefksLlw4h1Kp4p133otQgo36+xcXl3D48AEGBwfZs2cnBQWFvPrqalJNRpJdrZSF2igufomZJRnoVHLSo7UoxkzghEIhWlqaqKysoKmpcZyYob+/j7a2VjIyMklKSprStQiFQgwNWaRNVlEUiY6OoaCgcMJ1zURITk6hrKycoqKZP+hv3Ol0sm/f7ogN5Dlz5rJixSrq6mo5deoEOt3EVhTBYJCWlmb6+nopKCji3//7/zhOVTY0ZNa8I2MAAQAASURBVBkXxjc9iTONaTw+5OcXMHfuPG7cuM6BA/ufSg9q1CgoT43iTOMAcTrllHuLQaef2WlRJBnub3cjCAKvv74et9tNW1sr27d/xwcffDThxrEgCJK1oFqtJicnj/fe+5Dt27+N4Bvq6+soLS0jN7fkged5+vRJnE7HuONxcXH84hd/AcDVq5c5f/4sf/3X/68x5PJdVbPf7x9HOgcC/nFq6bvH7x7z+Xy4XC78fhdWq2PM44LSazwslyKKIna7nYGBfqxW60hekAy5XBahkB4NFg0GA0RFRdHW1oogCJIYLPxYIUJNLYoiDQ31+P1+SkrKCAaDiKIY8ZqTIS0tnbKycgoLiye0ZXzWMTAwwN69u7DZrKxd+walpeUROSFTxXTtnMaz0fU8ZjgcDlwu56SN7ChEUZzUQuCngqVLV9DZ2UlfXy8HDuzjnXfee+hdsieBerODPZU9BEIiuXG6cddYEASitUpMGgXddi97KnvRKOQUJhoktdOePTsnVDupVCqWLl2OzWalo6NdIiKtViu5uXm0tjYBYcWSxWLh0KH9I6Ml+aSmpnHs2GHq6mqBcICJ2dxPXl6BpAYeGhoaZ9g+aikRCPjHeSNCuJG9c2fwB6ucIKycKSoqpra2hlOnjrN163vS91JT01i9+jUOHTrA+fNnSUxMGqcujYmJ5f33fzYS7HKNU6eO88orS/n4408n3fmLiYll69b3qay8zenTJ+nt7eHzz3/HwoUvUldXi5IgL5XkMjM5sgFzOIapqqqiurpiwl1fCI991tTUoNfryc9/8HiPy+WSfIS9Xi9arZbU1DQSEhKkUKT7QalUUlhYTGlpGRkZmT/473t42M7u3Tsl0gTghRcWsWTJMux2G9u3fzcy/jx+MeHz+WhoqMdmszJjRg7/8//8bycMRWhsbMDtdkUcmx5/ncazgv7+fgDpb0kul0s2PoAUxjGqGO3p6f5JBlfIZDLWrdvA73//W/r7+zh9+oQUCPq0cbltiKN1ZowqOXETKKRkMoF4vYpYnZJWi5sdt3r4YH46SUY1s2fPxel0cuHCOY4fP4pWq6OoqFh6bmxsHPPmLcDpdNLb2yP9HN1uN5mZWfT0dAHh1O+kpCR27NjGhx/+jHnzFpCdncPBg/vo6elGFEX6+nrp7OwkP79A2mS1Wq0kJkaGkTkcw1IdnqimJiUl4/P5iIn54TV19uy53Lx5g8HBAS5dusCKFXdHoMvKyunv7+X69WscOLCXDz/8ZNz5ZGVl8+67H/LNN3/kwoVzHD58gA0bNvHWW29PSpCmpaXz8ce/4NKlC1y+fIn6+jra29tYvPhl2tpaURNk2axC4uMja+rAwMCIbUTVhKQAhK9nY2MDSUlJZGTcPzhVFEWGh+0jthHhTVaDwUhWVjbx8QlTWrPodHpmziyhtLR83M/xUdDb28Pu3Tuw2+/6C69atYby8tm0tbVy6ND+SZ/rcrmkDei5c+fzr//1vxlnnwVhq4qx0Gi0FBQU/uBzn8Y0pnEXy5atpLOzk/7+vqfWg5anRHGt3cqA00+C4cH3M6vbj0IuMCvtwRMScDc4/dtvv6K3t4dt277hgw9+NqUQsuzsGaxZs5ZDhw5Ix0RRZN++Pbz33ockJSXf9/mThdGN+g1DWC2qUoXtvZ6EF+6oMnpgYHhCa4JQKHQPuTwR6Rygr6+Puro7NDY24na7UKs1JCQkSorqe5XRTqdTCsQdtRMMP1ZEFEPjNkxFUWRgwIzX6yUxMYnq6spx53qXJA6T0Vqtlry8HBISUpDL5dTX19Hc3DTOf3qsGnrUouPucfmYx090TPFEbTxEUaSqqoLjx49iMkXz4YefkJCQ8OAnToKKisjsG61WN27TfBrPN55LcnjUJkAQwgXq3kZ2LEKh0E9anadQKFi//k0+//z3tLe3cenShXGjkT82AsEQx+vMuP0hsmI0970hCoJAapSatiEPJ+rN5MbpUMjDidhj1U46nY65c+dLzysunsmtWzfo7e2hpaUZCBNxwWCQvLw8amrCTWdrazPR0dHs2rWDDz74GXFxcWzYsImamjscP34EjUaDz+fjzp0qkpNTyM6eMWGATmdnB319vSgUinGJ7IIgkJSUzO3bNx9bYV6yZBkNDfW0tbXS1NRIQsJdE8+ysln09vZw8+YNqZmNi4vcxfb5vAhCuAFPTU0jEAjQ09Nz37EQQRAoL59NTk4ux44doaGhnpMnj1Nbe4eCgiKJ7AkEAjQ2NlBVVUFLS/OESe6j8Pv91NRUo1DIKSqaOenfms/nk3yEHQ4HCoWShIR4EhISp6xESE/PoKysnIKCose269vZ2cGePbukJl2pVPLaa29QXDwTp9PJtm3fjGxEjX+u1WqloaEOCBMQv/jFX0yaljvR+OuzNtI+jT9dmM2jNTX8i37vZusoOTN6L+jt7flJksMQJrrfeGMd27d/x40b18nMzH7qpJJ1RBGsVcgmJIbHQiYIZMdqaRp0cb55kM2zwiOwixe/jNPp4Natmxw4sBetVhsR0jJqv5CQkChZF9hsNjIzsxDFIB0dnSNq1hY0Gu2IgipcUz/44GdcvnyJCxfOodFosVp7qKi4RUZGJmlp6VitQ+NIxdraGoaHh4mKihoXohYTE4NWq/3BnsPSNZHJWL58xcjP9Bpz5syJIGWXLVuJ2Wymvb2N3bu38+GHn4xbM/p8XkKhEB5PmDC3WAYZGrKg1Y5XPY9CoVDwyitLKSws5vDhA/T29vDdd1/T29vL/PkLpLrt8Xiorb1DVVUl3d1d9/0sTqeTuroaoqOjycnJm3R9FfYR7sNsNuPxeFCr1SQnp5CQkDihzdpE1yw3N4/S0nJycnIf2zq5qqqSo0cPSf7CBoORjRvfIjU1jb6+Pnbv3kEwGJywpvb19dLc3IRGo2XhwsX8s3/2ywmJ4WAwOI4cLi0tfWamAKYxjecFCoWCDRs2PtUeND1aw8qCeA7W9IPDS7xeNel9ccjtx+LyszwvnsLEqU+lTBacPhm3MBZlZbOw2WxcvHheOubz+di+/Ts++ujjSacaRzdbJ8LYXiI8mTO+ToqiSCAkopAJT1QEJ5PJUKlUE240hr1/q6msrJDWFTExMeOsGSdCe3srHo+HuLj4iM3sUYwK/MKEcpDm5qYRDqAAo9EYQTiP/QcCaWmpI0Griej1KiyWYfz+u6prj8dzj81HpFr6YW1JBUGYMPTwXhuP+5POcu616AiFQnz//QWamhopKSlj2bIVaDRqXC7XiC3Iw9W8YDBIVVUkqV5SMl07pwKXL0hN3zBdtvCGRnaMjoJEw5RyF541PJc/7XCq+thGdrxydRQ/dXIYwqqfVate48CBvVy8eJ6MjEwyM7Oe2vk0DbrotLpJHjPyej8IgkBylIpOm4emQZdUsMeqnU6cOIZOp5cKhCAIrFy5ivb2Njo7O6S01q6uTl566UWsVjvd3d243W66u7tJT09nx45v+eCDj9HrwyqYjIwM/vjHz2hqagTChIbVOkRycuo4X8ba2rClRFxc3Lhd8djYWNRq9aSjs4+C6OgY5s9/gcuXL3Hq1AkWLIhUka5YsQqz2UxnZ4fUzKrVakRRpKLiFidPHsdgMPAf/+N/5tatG9TW1rB//x6cTgcLFiy873uHm7XN1NfX8bvf/SMul4u2thb279+DwaCnvr4hwqheBFyo8aFAANT40OInGAxSU3OHQCBIefmscU1+MBikvz+sEB4dLYqJiSUjI5OYmKn5S40NwnmcZKooity+fZPjx49KI1Mmk4mNG7eQlJSEz+dj585tE/ppiqJIR0cbnZ2dmEwm8vMLeeuttyNGj8fCah2ira014lhZ2bRqeBrPDu6tqffa7iiVSrRarUQOP4jgetaRk5PHggULuXr1MocPHyApKemphpHc6R3G6vaTE/dgUg/CBHGCXsWd3mGW5nqJN4Rr8auvrpECvHbv3sG7734gKZfUajVLliyTpjZGf5ZdXZ3MnTsbu92B1WodIUXD973du3fw9tvvIpfLefHFl8jJyeNXv/obent7CIVCtLW1MjRkYe7cBeMI9traGhyO4XFBdBC2aQLw+fyPrabm5OQxY0YOLS3NnD59ivz8T6TvyeVy1q/fyBdf/B6LxcKBA3t56623EQSBYDDI+fNnuXLle9LTM/iv//W/c/z4UXp6uvn22694881ND/TaTExM5MMPP+batav89re/wWaz0tBQz759uxFFaGpqiAjGDQFOtASQISCiw4uKIF6vl5qaajQaDQUFRePWIuFN1oGIsNa4uHjy8hKJioqaUk2Nj0+grKyc4uKSCYnXR0UoFOL06RNcu3ZVOpaWls6bb27CYDBis1nZseO7cZZUEF4rNDU1YDabSU5OoaCgkA8++Nmkm93NzU3jVNdlZbMf22eZxjSmcRdPuwcVBIHFM2IRgBMNAzQOuojWKIjWKpHLBEKiiM0dYMjtR6OU82pBPMvzE5A9JGE6WXD6VLJmXnrpFWw2W4Sa1el0sH37d7z//kcTkswWi2XC+yGE7X1GEd5EjayTnVY3h2r6GXT6SDCoWFucRKop/B4Ob4C+YS8quYxUk2bSQPFHxYMskaaKwcGw3/C94qdRhO0owrYSPT3dWCyDFBfPJDFxYpulpKRkyRJpdIP0QaroyTBKSD9ILX0vwTyWgJ6IdB7NPQo/1h9hBTJqETK6NnM4HNTX1+Lz+cjNzaOtrZXPPvvdPdcIDAYtXm9wQoL5Xp/ovr4+KipuRVh1zJ49l+vXr44JTowkricKVHwWQw+fJHqHPWy/1UP7kAuBMC9yQbCQn6Bn86xUorWPX9H/JPGcksP3VzmNxU/dd3gUJSWltLe3UVl5m/379/Lxx59OKWX6SaCqx05IBI1i6qS7RiEnGApR0W2L2M1dvPhlXC6npJLVaDQSyZaUlMycOfMkP1cAr9eD2WxmxowcPB4vFssgnZ3tJCYmYrVa2bVrO1u3vo9SqcRojOK99z6koaGe1tYWgsEgHo+HEyeOkJ2dzSuvLJV25urq6nA4HKSnp48799FG1u/3/2B/xLFYtGgxlZUVDA1ZuHr1Knl5d/2p5HI5GzZs4osv/sDg4CAHDuxl9eq1HD16iMbGBmbNmsPy5StRqVRkZGSi1+u5fv0ap06dwOl0snTp8gcqugsLi8jJyaGxsQGzeYAvvvgDarWa3Nx8YmJiEAELRvqFKOyCjiDhn7eSANEhB872G3hcTkpKyqSFjyiKko/w8LAVj8eL0WgiNzePuLj4Ke1O3i8I53EgEAhw/PjRCEP+zMwsNmzYhE6nIxQKsW/f7gibiVF4vV7q6uoYHraTmZlFWlo6y5e/ysyZk3uLjR9/1Tx1peI0pjEWE2243guj0SiNiff09PzkLZuWLFlGZ2cHPT3d7N+/l3ff/eCpbCQHQyI3Om1olfKHamZNGgWNAy5q+h28MuKrKJPJeOONDbjdbtrb29i27Vs++OAjiWQrLS3j1q0btLe3MTg4AIT951wuF0VFxVRUVOByOUcmcubS3t7G4cMHef31dSMTNEm8++4HDAyY6erqlLwFd+3aRnx8HLNnz0UQBGw2K93dXTidzgnHFZOTw4T1RE3vD8GyZStpa2uloaGOlpYWjMa79hF6vZ6NGzfz1Vdf0NTUyIUL5ygqmsmBA3sZGDDzyivLeOGFhchkMrZufZ89e3bS0tLMzp3bWbPm9QcmectkMubNm8+hQ/vo6uqkra2V3/72HzAYwpZXer2eEAJmIYp+TDgFDaERclglBogOWrE0XEIgPDk1WiuDwSBWqwWbbYi+vn5EMWwTVVhYFOH9fD9oNBqKi2dSWlpOcnLKY/+7dbnCGQ9jfQxnzZrDypWrUCgUuN1utm//FodjfGiOw+Ggrq4Wv99PYWERiYnhXIqx5Mi9uDdMZ9SWahrTmMaTQUlJKW1trVRVVTyVHlQ2QhBnxeqo6hnmVreNLpuHoCgiEwSMagWv5MRRmhJFdqz2ke9xEwWnb9z41gOfJwgCr732OsPD9oj74MCAmT17drJly9Zx64uJegwI15JRAjQQErG5/SjG1Em7x8/229302D1Ea5TUmZ24fN38fGEmNo+fHbd76LF7UMgEZqeZ2FCaPC4E9VEwFUukqcLtdkv2oPdO696L/v4+2tvbyMzMGkcMa7U6SkpKKC2d9VgskUYxSpyGRU8/br5GIBDg2rWrnDp1nOXLV7Jq1Wvo9YYIYnoscW00qhkYsI3xm77rLT2WpHY6ndy5U4XDMSyprI3GKGpr70jPe1iMt+MYr5a+P+l8/9DD8DrIi93uQSabOPTwSSMQDLGnspf2IRfZsVoUI2suXyBEbZ+DwzV9bJ2T9pPqh55Tcvj+KqexeNQdrWcRK1euoru7i8HBAQ4d2s/mze88lV/G3mEvWuXkhaavv+/urtQY83lZMEhbvxW73RAxNrFy5eoRn7la9uzZGaF2evnlJVRXV9Dd3SXduNrb2ykpiaagoJCqqkocjmHa2lrJzy+gu7uLAwf2smHDJmQyGVFRJtLS0jGZomlsrMdut+N2u7l69TItLc288cZ6XC4XTqcDr9czoXpstJF9XP6Io1Cr1bzyyhKOHj3E6dOnSU2dgVZ7l5QxGAxs3PgWX3/9R65evczFixfIysrmrbfejvAhDofcrUKvN3L27CmuXPkep9PJa6+9PiHZMbrre/XqFQ4fPkgoFKK4uJiOjnY8Hg937lSRkJiIMmchfcpERBG0+FEQ3uH2inJa3Qq8xkKK41MxGsOjsGFFmhmfL+wjnJmZidEYPW6keDI8riCc+8HhGGb37p0Rysf5819g2bIVUtjB0aOHJbX5WAwODlJRUYVMJpMC8ObPX8CCBS9M+n6hUGgcOVxSUvpEfMOmMY1HQTAYxGIJ+4nfr6aG1X82ANxuF1br0E863TisJg1bNnV1dXL+/FmWLl3+o5+H2x/E6vZjUE1MTPsDASyWwXBIi0yOMCagJeD309FvYThBGVFTN27czDfffEl/fx/btn3D++//DIPBMKIuXk1DQ71EDkO4pmZn51JcPJPKytu4XC56erpJTU2jurqS6OhoaZQ4Pj5hJNk6ZsRL3Y3D4ZCsitaufYPa2lrcbjc6nQ6VarwFUHJyCqIoTjou+6hISEhg1qzZ3Lp1gyNHjvDWW+9J9mOj77t69VoOHtzHjh3fodXqyM3N48MPP47whlSpVLz11tscPnyQ6upKDh3aj8vl4oUXFk645vL5fNTV1XL69Elu3LiORqMhMzOLtrZWHI5hbt++SWpGFr6MBQwI0cgJocWHnBAi4EVBvUsNieXMi/KgVI5usvYzODhIMBggLi6WGTNyiItLmFL9EASBrKxsyspmkZ9f8MTGRvv6etm9e4d0b5DL5axcuYrZs8NWWX6/n127to/LLBBF6OzspLa2XvI81mi0rFnz+n0ta4aH7TQ3N0UcmzVr9uP9UNOYxjTG4dVXV9PT08Xg4OBT6UEFQSA9Wkt6tJaXc2Lpd3jxB0WUcoFYneqxqfcmCk5///23H/g8uVzOm2++xVdffRFRX9vaWjly5BBr174Rcb36+ib2G46PD9/jWwZdHLjTy+1eFWohlpctLrJjdfQOe+mxe8mO0YVtkKI1dNk89No9nGocpNPqJitGiycQ4mq7lcwYLQsyH2zzMBEexhLpYTC65jSZTPetZ3f995NJT88AwsRtTk4upaXl5Obm/eSnw8fC7XZz5MhB6uvreOGFhSxduuK+tfthlNF2u42OjvaIjde1a9dJG9+iKE5BLT2edB6rlo4MRvRLoYfBoPsetXTka0/G1QkC6HRqXC5vxOcTBOEhSeexJPZdMjvyNcKEtlKpjHhMm81Ps3mYVJMW+ZjNeJVCRpJRTV2/g75hL8lRU+M6ngU8d+RwKBSSbrqj99j7+as9L8phCDcs69dv5I9//APNzWFy74UX7m8h8CTgD4YmVTiJhMO3JoILFW1igL+/tSfi+GijW19fh91u49q1qyxc+CImkwmFQoHfH765DA1ZEAQBu91GIBAiOjoGo9HIwICZpqZG5HI5BoOBgQEzDoeDl19eIu0whUIhcnPz6e8Ph+l4PB7M5n6++OIPKBQKXC4X0dExEy50Rm+kj8sfcSzKymZx8+Z1nM6wX9XKlasjvh8XF4/RaOTMmVPExMTys599Mi6gDsI3ykWLXkSv13PkSLihdbmcvPnmW9LY7r27vn19vYRCIQwGI4mJScTFxdPe3kZPTzedPi1uu4Jo3TAmjQKBu9fFNzyE3zqEPi6VTgwM1l7EP9iJUqkkISGBhIREDAYjev34G/q9GG0Ky8pmPXHlT1dXJ7t375R2vBUKBWvWvE5JSan0mIsXz49TJYVCIdrbWzGb+zAao8jLK0CpVFJUVMzy5a/ed3Hc3Nw0Ti01Pf46jWcJFotFWpjdbxrHaDRG+I8/yOP8p4Do6BjWrHmdPXt2cvnyJTIzs5gxI+dHPYdAKOyrJxMm3nD1ej2T1tRhtDhbbHSejfQtHK15lZW38Xq9I2uFRWg0GpRKJaFQCLfbhcvlkmqqx+NDo9FiMplobW2hurqKUCiEWq1m795d2O02iotLEAQBp9OJQhEOBu3sbMdmsxEKhWhtbeH3v/8nnE4nw8MTW0qMevgHg0FCodBjVQ4DvPTSEmpq7tDb20tVVeU4C5/s7GxcLhfNzU1kZmbyxhvrJwwNksvlvP76OvR6PVeufM+ZMydxOoele74oinR1dVJZWUFdXQ0+n08iLWNj40hOTiE2Npbm5mYGBwdo8Brw2yFea0OvHrOOEEVcll5wudAkZFHrG6al9gwBpxWNRkNKSiqJiYnExUU/sJ5C2O+xtLSckpLSSb0uHxfu3KnmyJGDku2XXm/gzTc3SU18KBRi//49dHZ2RDwvnGtQz/CwjeTkFLKyspHJZCxZsuyBCu3KyoqI+5BaraawcLxf5TSmMY3Hi3APuump96AABrUCg/rJURz3BqenpiZQVjb/gc/TarVs2fIOX3zxGS6XUzpeVVVBdHQ0ixe/LB3r7Z3Ybzg5OQWb28+Oim4GHD4EMYhNVLLzdg+/WJSJUiZDIRPwBkI4HMNYunsxxIcnQgacXmJ1SjxuJ3KZnJAo0u/wcaHZgs3jJ1anZG56NKr7+KSKokhbWyuVlRU0NNQ9kqL0QbBYwpYS97MLjPTfzx2xRJrFzJmP1xLpWUF3dxf79u3G6/WyadOWxx4SN3HtLJK+HvVNDpPRPy7ROTb0cCzpHAoFiIrS0N9vlUjpyQjmiYhrt9s9hvC+S1yPfY375SoB9ArRNAvJ9BIOlVcolCwcue8Z1XL6HV4Gnb5pcvhpwmKxSDeqqdhKiOLzQw5D2NtuxYpXOXr0MGfPniI9PZ3U1MkDU54EtEo5Qy7/hN8TgMUvvhT26wmFEMeYxHcPe0nQyNhStHDcH6vf72fevBc4duwwFssgra3NI+SukoKCQlpbW7BYBkcayiAdHe0EAgGpebVYBrl164bU5NXV1XL9+lVSUlKpqbkj7VJCuDG5ffsmgUAAQRDo7u4iFAqRkJCIzWYb48UjIJcruHTpImq1moqK2wwPOyJuoI+SbKpUKqWRiHCQzkr279/JrVs3mDVrrpSk3tPTzYEDe3E4HLzxxnqsViunTp0gLS1jUo+msrJydDote/fupqWlmT/+8TNmziyhsbFh3K7v6DWJjQ0TPHK5nBkzcoiNT+CKJ4FQ0I/dbMav1RETE4NCocDhcGA29yOXy/FYegjo4lHEzmBmkimCXL+fmOBJBeHcD6P+wqMkWFRUFJs2bYkgBW7fvsmFC+cinufxeKivr8XpdFJUVEBMTDwgkJmZxeuvr3+gauJeonm00Z/GNJ4VjE7iQLimqtXqCZUKOp0+4ve9p6frvnYqPxUUFhYxe/ackSC3fXzyyS9+1MZDrZAhlwn4J9nI1usNvDhSU8P/goRC4ZCW1iE381K0vJKmHrcoDgQCzJ49hyNHDuN2u2hvb2PRosWEQiFKS8toaWmiubkZEAmFgrS1tRIXFy8Rtv39fdy8eUOqD3V1tcycWUp0dDQ1NdURXokej5vr16/i8/kIhYL09IQVURkZWfT0dEckiJtMJg4d2k8wGKSxsYHr169iNvePUWvcf8xwIhXI2DFDnU7Hiy++xJUr5zl37kxEgGl9fR1HjhwiLi6elStX4/G42b9/z4QBdRD+e1i2bAV6vZ5Tp8J+uoODA6SmplNTUy01uBBuqO/W1HB9VqnUFBUV020Z5raYRshtwzLsxmcwYDJFI5PJGBoaYmhoCJVKhbu/lZAhmdTkfIp1XozGqBHfxfv/DqlUKgoLiyktLSM9PeOJq/lCoRBnzpzi6tXL0rHU1DTefHOTFDAriiInThyloaE+4rnDw3bq6moJhUKUlZWi0xkRRZgzZy4LF774wPe9t6YWFc18bL7V05jGNO6Pe3vQjIwMUlNTn/ZpPRGMBqcfO3aYM2fO4PfDnDkPJohNpmg2b36bb775Uto4Azh//iwmUzQlJaUEg8FJw+iSk5Ppc3gZcPjIitFibrITo4/C7PBidvjIjtVSnhrF9Q4byAw4Qj5SfYNkxRQSq1PRPOgkUSOnpaMbVWwKt7ps2Nz+kU1N6LR62FSeMs6L2GodorKykqqqCslC7EnA5/MxPBx+/dH1xb0Y9d83GIy8/fa7zJ07/4lYIj0LEEWRK1cuc+7caVJSUnn33Q8eewbGqFhgLIqLn1zt9AdDNA446R8OrxOTozTkxulQTGJvMlno4agyWq+PfSjP6KliNPBwMg/oQCBARa8DT6ODFN2o2/BdBEIicpmA8icWSvfckcMDA2bp/wVBhkqlvq+a83lSDo9i1qw5tLe3UVtbw759u/n4419MKVH1caEgQU+j2Tmp56QgCMjl8gjSTxRFcMP8/ERyciZXiM6bN5+vvvocq9WK1Wrlvfc+RK1WM3v2XP7Lf/k/6O3tRqkMq4lzcvKkRFSr1cqdO1XS7mI4xVRk+fJXyc3N4+bNG1KyaTAYYvHil7DZbJw/fwa73YbL5cLtdmE0RmEymaQEVIPBiCiGcDod2O02rNYhmpsb8fv9UxqJmAxjk02VSgXNzc309PTR0dHB/Pkv0NbWSlNTIzExMSxYsAiTKYqOjg5aW1v4v//v/8zatevQ6XTjGuQw+RxuFLdt+xaz+TQHD+6juLgEnU4nNdBhH0MrMH7nNmRMxhCVhtbej8Mr4Ha7cDqHEQQZDscwCoUSg8GIwaBHpjUgyqLRhtoQmHjDYBSjQTgzZ5b+aF5lwWCQEyeOcuvWTelYZmYW69dvjDiHpqYGjh49HPHcUUW6QqGgrKycpKR4XC4vcXEJbNy4+YFjusPD9nH2FNPjr9N41hBJDssm/duUyWQRnuujBODzgOXLX6WrqwuzuZ8DB/by9tvvPnav88mgUcjIidNxq8tOrG78Ql0gXC9kcjnI5UB4veMPhtBpBebkppOTGjXp65eXz+abb77E5/MRCPhZv34jMpmMGTNy+bu/++8MD9tQKhUEAkFKS8skG6Cenm6am5tGNhz1I6SxkjfffAuTyURHR7tEUodCIVavXktt7R0uXjyH0+nE5XIxPGxDp0vBYDBIj4uJicXr9TI8PIzLFbYj8vt948YTH3btNnbMUC6XUVlZid3uoKenh/z8Aurr6+jq6iQtLZ25c+ejUCg4c+YkbW2t9Pf3Sx7+99ZUuVxOQkISKSmpHDp0gDNnTmEymSgqKkapVEk1NWxN5UUulxMdHR15bnGZGMVEQtZOnH6R4eFhbDYboijidDrQaLTodLrwddYakVOEQWxD4P7dUEZGJqWl5RQWFv1oBKnL5WLfvt0RIatlZbNYtWpNRE28fPkSN2/eiHhuZ2cn7e2tGI1GCguLiImJwuXykp9fwMqVqx/Y+Le2towjLaZr6jSm8eNi1qw5tLW1UldXO9KDfgoYn/ZpPRHMnj0Xl8vFzZuXOXHiGFrt3eD0+yElJZV1695k9+4dEcrEw4cPYDAY0Gi0kypyk5NT8CnkKOUCTl8QAYGegUES1AbkQgYKuYyNZSlkx+qwuf2YtClY669Rc6eK14vz2X67m75hL1ZfiNkGBX1OP+kmDTKZQMeQm0M1ffhDIeamR5NhVNDcVE9bWwN37tQ9EQLuXgwNWRBFEYPBMKHt4ChxXlJSxr/8l//TT35C7X5wOp0cOrSf5uYmFi58kZdfXvJEBFOtrc0T1M45j/19ANqH3Oyv7qXD6iYYEhEAuUwgK1bH+pJkKTjxWcBYvmpURHAvohL8VNhaEEWRBEPkY/qGvSQa1GTFTC1M+lnBc0cO36ty0uvv/wN5HslhQRBYvXotvb09WK1Wjhw5yIYNm360HbWS5CjONVuweQJT9niyewIY1QpKkidvYiHsszuaFtvf3yelxc6YkcOSJUvZtu0b6bGdnR0SORwdHU1eXj5tba0kJCRKjdL582coKysnKiryfRMSEtm4cTMymQyHw8HQ0BBqtRqv14Pb7SIvrwCNRkN5+Wxee+11IGxLsGLFq8yZM2/ceU80EjFKHoeJ5ECEWnqsn08oFKC0tIhvvvkOm83GhQvn8Pt95OXlk5OTSygUxGw2k5aWTnt7GwMDZr788jMKC4sJBoPSwsPj8dDf30d/fx9erxe/34/Z3E8wGBy5LgkolSoEQcDjcTMwMIhKpaS29g5yuVxSdzlNWdhjTSg94URVh2NYOn+93khiYiIKhRJRhKB7GLcyij6XG1PIIb2GXC5DEEKAnJKSEmbNmkNqatqPRrhAOOhm795dESOt8+cvYOnSFRHFt7u7i717d0vXMezJ3Exvbw/x8Qnk5uahVIZvpUZjFG+/vXVKmzFVVZURi0KVSkVR0czH9fGmMY3Hgsiaev9JnLGK2r6+XgKBwBPzMv0xoVQq2bBhE59//jva2lq5fPkSL7740o/y3oIgMCvNxO1uO95ACPUUFQgDTh9JRjUFCfffaEtOTmHjxs3s2PEddXW16HRHefXVNcyfv4DS0lIuXboAMGKT0CX5vaakpOL1emlra42wZjh16jgpKWmSx+wosrKyePXVVTgcw3i9PhQKJVqtFodjGJ1Ox4wZOSgUClatWsOcOfMYGBhgcHCA9977kLS08UGw49UckSOE4ePjJ5CCwfBj0tOTOXToCB0d4ZoZDAaZNWs2KSmpeDxu/H4/GRmZXL78Pf39fQwMmMnIyIxQejkcDvr7+zCbzQQCfjweDwMDZok4j49PkGqn3W7DZrNhMBi5detmxASSNb4Ep0GD3OvD7/fhdDgJBsMEeHRMLHFxccjl4XDcoHsYu1xFv9OBBr9UTyGIx+MnKspEaWk55eWziI9P+FGVVH19fezZs0PaWJbJZJK/8NjzqKys4OzZ09LXfr+f+vo6bDYraWnpZGZmIRtRraWmprNu3ZtTWhvcq3xKTEya0BJkGtOYxpODIAisWfP6mB70EJ9++tHTPq0nhsWLX0KhCHHmzPlxwen3Q35+AStWvMqJE8ekY8FgkD17dkqe7BDWIrpQE0LAIA+SkJAIgoy56dFcaR/CLtMRlZREebKe74/tRVy4kJycPBZm3fURDmW8yoED+yjR6/jFoix6h72YexW0d/fSK8Tj9oe40tABagOeQIgTd7o5er0O1XA3WcEuTLofLwdlMkuJmJgYiotLaGysR6/X8/77P3uuieH29jb2799LKBRiy5at9/Xa/6GoqIisnUlJyU+kdpodXrbd6qbf4SXdpJHWs55AkKZBF9tudfOzBenETCCEeFYRrVXy8oxYDtea8VjdxOrC/MeA04dSLmN5fvyU1+3PCn76Xds9uJccvl8jCxAK/QjbYE8BGo2G9es38uWXn1NXV8vt2zcjis2TRKJRTXGSgcttVvQq+QNTUAPBEP0OHwsyo0k0PPiGEBMTy9tvb+Xrr/9Ie3sbBw7sZf36jbz++nrOnj3D4GD4d2C0GTOZwr56iYlJeL1eOjrapcLt9/u5dOkioihGEHpDQ0P4/X4GBwcoK5tFY2O9FJhis9m4ffsm2dkzpDC6cMMZnNQfcbKRiKlAECAuzkBDQwv79+9FJovhP/yH/0RmZta4x27cGA47CAQCvPDCIhYsWEhNzR0qK2/T1tZKYmIS8fEJkvI5bItQj8vlJBQKkZycgk6np729Fa/XS1xcnDRKHAqF8Hq9OJ1OnGoHoSELMpmAVqvD7XKhUCgwGg04nWHVuCiKiEBQL9DS3ozS0TfyeQSio6PJyspApzNSXV1FdXUVwLjR4HsVWpMlmz7syLHZbObQoQO4XE4pcXbNmtcpLS2LuJ4WyyA7dmyTCAGXy0V9fThMKTc3j6SkZKnp1Wg0vPnmO9LY7P0giuL0+OtDwOLyMeTyo1bISInSjBt3m8aTg9k8dhrn/jV1rHI4GAxiNveTkvJ8jJTGxcXx6qtrOHRoPxcunCMjI1PyTn3SyIvXkxWjo8XiYkasdlJP/1G4fEGcvhDL80xolA9WmWRnz+CNNzawb99ubt68gV5vYPHil9m8+R0qKm7j83mAcCp4enqGdJ/Kysqmrq4Ws7k/3LACdrudvr4+VCpVxCbb0NAQZrMZmUxGcfFMOjrasVqHpNe12azk5RVEePgDT6ymRkdruX27iuvXr5GQkMT/+r/+uwkbzerqKg4c2AvAG29sIDU1jaqqipHr4iM1NY3k5BSpRjocwzQ01OPz+QCRjIxMlEoltbW1GI0h0tLSMRqjpEkll8uN0+nCgR3RNoRcLkOn1+F0OlFrNKjVGhwOh1RTQ3IVolJLfUsdcp9TuhapqcmYTLGoVGquX7/K9etXIyaQHlQvJ7a9UkTUznuPjbXOam5u4uTJ4wSDQWmK4M03N5GRkRlxPZubmzhy5KD0tc1mpb4+rEibObMkIpk+Pj6eDRu2TCnLwel0jrOoKC+f9VyOGf9QiKJIn8OL0xtEr5aTZFBPX6dpPFZoNBo2bNg00oPWcP36dbKzC5/2aT0RCILA2rVr6ekZoK6ult27d/Deex9OiVybN28BNpuVa9euSsc8Hg+7dm0nLi4euUpNi5DEoGBERCBZr8TiDpBgULO+JIkZcTq+br5CeVoMW1+dSyhQxvffX6SysoKlS5dL91OZTMbatW+wZ89OFmt1FKSkkh+fT0PVdeISk7nSNoTVK6IOeZD7nXjtFkIIWNAjF+IxYZvsIzxWhKdWw+uC2Ng4VCoVBQVFlJWVk5aWzsGD+xkcHOSdd96TLBafN4RCIS5dusDFi+fJyMhk3boNGAxPTnnvcDjG5VY8qYmbG502eu0ecuN1EetYjULOjBgtzRYXFd12lub9tH62L+fGoVcruNw2RL/DiwDkxOt5MTuWmUk/Pf/r554cftB4+vOoHB5FSkoqS5Ys5/TpE5w8eZzU1PQfzc/0taIkhlx+GgacZJg0kzaoHn+QdpuH/AQ9rxUnTnmBmpSUPKHaaf36N/nDH/5RelxXV6dEDgOkp2fQ3NyE2+1Gq9UC4YVyTU01ZWWzJJWb1TpES0vzSFp62IbBZrPR2FiP1+sdCUxp4MaN6+TlFUhN8NhGVRRF6s1OzA4vOpWckuSoR9o9crlcnDhxkN7eHlJSUklPz8BiGZyQHA6nrb/GN998xeef/57Dhw9KquiJmmijMYro6Bhqa2uw22309/eRmxsOtIuKMlFUNBOdTs/g4ABmsxmbzYo82oBBbyDalINGpcRs7ken05GYmBShEhRFEZ8ow4eCIkMhycYyCguLyc3NQ6vVEhWlwWy24vffL/10/LHw+LNrQnP6qYwc9/f30dTUKD1GrVZTXFzC8eNHOHXqhNQgBwJBbty4hsfjGVGQD0vel+npmbjdbtrb26Rx5cWLF9Ld3Ulvb+99k00VCgWdnZ1YLBZp5Bimx18nwrAnwPF6M9W9dpy+IEqZQEaMluV5CeQ9QBE5jR8Ot9steb/Bg2uqwRD5vZ6e7ueGHAYoLS2jra2VO3eq2L9/Dx9//AupjjxJKOUyNpQm8/WNLlosbrKiNZN6sw17AvQ6vMzPiObFGVNX1RQVFeNyOTl+/Cjnz59Fr9cza9YcXnxxMWfOnATCjVtPTzdZWdlA+PchP7+AxsYGYmPjpDrocrlobW2hqKhYur9ZrRZqa8Mkc0JCAkajEbO5n5aWZgKBgOQhWFFxm/j4hBFyFVSqu8RgIBiium+YYU+AGK2S4mTjA4nyiWCxDLJr1zFCoRCZmVnEx8fjcrkmJIdLSkrp6enm+PGj/Nf/+p9JT8+QfuYT1dSoqChiYmK5c6cKj8dDb28vOTm5qFRK1OpoiotLEMUQZrMZs7kfp9OJSucjyhRLbJwBuUxGf3843DQhITFCMSuKIi5RiUwMUWwsIzUxnoKCInJycklIiIoIZRmrlo60uArXyrG10+v14nK5xkwxBca8jv++oSyiKNLe3hYxgWMwGJk5cyY7dnw3QjqH657T6eTGjeuIYghBEBgaGsJisaDX60lPT2doaEjKddDrDaxevZKGhjrk8omzGcbW1Bs3bhAIBKTrpVQqmTmzdMJz/lNG77CHY3Vmmgac0iRCXryeVwsTSDY+O+O80/jpY7QHPXPmBIcPH+att2KkTcTnDTKZjHXrNkh9wbZt3/LBBx9NSdm6bNlK7HY79fV10rHwlGc/CWVL6FeY0OJDJoZwymM5XNvPR/PD9hGz00ycDg1QGDcThUwAlYolS5ZhsQxy+vRJ4uMTWLjwRakPeeONDezZs5NVq9YQGxtHeWEBe6sbsdjVuDxuggEfOny4UKLDhwY/AxjxiE7AO/mHeEywWockodLmzW9HiGbOnj3NnTtVrF+/cdym4/MCh2OY/fv30tHRzksvvcKiRYuf+ERtVVVlRM8cDlR//FOs/mCIim47Jo1iwnWbXCZgUMm51WVnSW7cT2rDUiYIzMuIZlZqFENuPwIQq1c90vr0WcBzRQ57PJ6IUcapKYcfzgv2p4YFC16gvb2V5uYm9u3bxUcf/fxHUScaNQremZPGnspeavvDqpdYnRKNQgYCePwhLK6wAX5pkpGN5SlEaR5ubGUitdPq1a9x8uQRmpqagbB3kcPhkMadBUFgxowcBgbMUoOnVqvxeDzU1tYwc2aJFAJTW3sHCBviDwwMEB0dzezZc2ltbaavrw+ZTIbZ3M/vf/9PvPjiYoAIcvRc0yBH6834g2FPnbIUB2/PTsUXDHGqcYD2ITcxWiVL8+JIM01MMIyqbNRqOVu2bGV4eJgTJ45x7txZiopmRqidh4ftVFdXUVVVwcCAmb6+XgYGzJSXz0anm9xeJdxEldDQUM/g4ABVVRX4/eFk+u7ubsn/yWQykZ9fiCkugWqFhgACloEuAoHAOGJ49Fr75VoKEwz882UfRAThjJrIR0UNPxEPq7E2HqPNrc/n4+zZU9hsNoqKZhIKhUhMTOKVV5agUqnGPD6cYHry5DFksjDx29vbg81mxWg0EhcXTyAQkBYxoihSVFRMdXU1NptjSp+nrq5W8keXyWQYjUZ27PjuHiJ5MuXWveqvB4UeKqQG/V4l9rNcfL2BENtvd1PdO0yCXkVGtBJfQKR50IXZ0cX789LJjv1p+Tj91DDWwx9ALlfclwxVKlVotVrcbjcA3d3dzP1xBlZ+FAiCwKpVa+jt7cZisXDo0H42bdryo/wdpZo0vDs3lV0VPbRZPShkArFaJSqFLOxN6wsy5A6r6xdnx7K2OPGBUzv3Yu7c+TidTi5dusDRo4fRanW8++6HXLt2Gas1vLbq7e0hLS1dut+PBpVarUPExYXVHhqNBotlkJaWZmbMyEEQBCwWC8PDrUCYPPR6vSQmJmEymWhoaMBms6LT6bl9+yYdHW0SsTeqHA6GRPZU9XKtw0pIBIVM4OWcWF4rSsTs8HG6cQCz00dKlIYV+fETWlqJosjt2zc5deoEKSkJ/MVf/CU3b96ksvI2p06d4IMPfhbxszSbzVRVVVBTU013dxc2m5XhYTtlZbPuq2bVarWUlc3izp1qnE4HN25cGyE89dTX12Kz2RAEgdjYODIzs1BGp1Cj0EBQxkB/FzKZjPj4hPFNoSAgKnQsyjTw0ZJVJCQkjB7+0UJZxhLMDoeDo0cPYrfbiYoyEQqFyMnJZeHChYgikt2U3+/HarVy/PgR1Go1Pp+Xrq4uXC4nMTGxREdH4/F4cLlchEIhBEFGSkoK33//PXa784GfSRRFbt68Lt13ZDIZKSmp/Pa3/zBSG5URdW+yCaS7xx88gRR+7MShh88qLC4f39zopsvmJsmgJtEgx+ULcrvbzqDLz0fz0yf0NZ/GNB4VCxa8QEdHK729nezd++P1oE8DCoWCTZu28PXXf6S/v49t277h/fd/9sAAW5lMxhtvbGB4+Et6eroJhULSBKazbwAxLQUVQXp6u4kKybhaDQuMTjIzMtFqtZKIaSxiY+N48823aGpqZMeO75g7dz75+WE7xNdfX8dXX/0RQ0Iq51tt3LEr8GhiCfkDeAQFbrkemWBAKQYw4UJOCLeoYGLH1ccHozFKqpMvv7yU8vLZ0vdu3brB999fZNmylRQXP5/2e83NTRw8uB+ZTMbWre9PKAB73BBFkcrKWxHHCguLn0hOlS8YwhcIoRoRyQVDIerqasnMzMQwMnWoVshw+4MEQiJK+bNbSyeDQi4b5zv8U8RzRQ6Pb2RlD/wFf56VwzA67rKOzz77HYODg5w4cYy1a9/4Ud47Wqvkg3lpNA44ud1tp8HsYNgbNthXyWXMTotidpqJ3Hj9QzexoxivdtLxySef8O/+3b+XHtPZ2RERECCTyUa8jERAQBAE1Go1NpuVpqYG8vIKcDiGqa2tAcKj0gMDA0C4+OflFRAbG4fZbEYQBHrd8Osj1xiyBJlv9ZID2Nx+zrVY0CpkZEarcfuDVPXaKeuPorLbzq0uGwa1nDaLi75hL5+8kBHhseP3+zl79hTXr19jxowZfPTRe3i9EAgEuXXrBoODg1y6dIFXXllKQ0M9VVUVtLa2SOqe7OwZuFxObDYbtbV3KC+ffV/vT7lcTmFhEXfuVFFZGU6iNZmiiIqKIjMzi4SEBFSquze8BNFKjUtHwBckKT5+3MLEFGVCEx1PqjaKD+ZnkJHyYKuFx4l7R44dDgdHjhyio6NdUpLPnTuP5ctfHWfuHwwG2bHjO2JiwiO6dXW1aDQaZs58icTEpHHvtXLlKubPX0B8vBGz2T5OuRX+2i8dGx4eZmhoiNjYWGkUee7c+eTl5U+aiOr3h/0s76eW/iGhhxORzgqFnJgYIy6X/wePHEcS14op7YTX9g9T1+8gK0YrKe4VKsiO0dI06OJii4WsGO0z3Yz/1DF2EgfClj73u9yCIJCcnEJLS3hzrre3+0me3lOBWq1m/fqN/PGPn41Mj1xj3rwFP8p7p5m0/GJRFnX9Dm522mgfchPwhDdZNQoZr+TEUZYaRWbMg60nJsPLLy/B6XRSUXGL/fv38PbbW1m3bh1//OOXQJjw6+3tibDUUKlUGI1GKYR2dN3V09ONRqMhNTWNzs5wQJ1SqYz4+1erNZSUlNLb24PX60EE6i1+Th++ht8LZlcAvR7ahlzc7LSRoFdhUCsYcvm50jZEQYKBQzX9tA25MKjktA66GHL5+HB+RsSkjtPp5PDhAzQ1NTJnzhy2bNmI3e7FYDBSV1dDd3cXd+5Uk5OTS23tHaqqKunpufv7W1hYREXFLdxuNw0NdRQXl9z33qNSqSgpKeXmzev09fXidrtJTEzEaDSSm5tHXFy8VJNFfEQFh2lxCshESEpIiKhLgiAQGxOLYIgj3xTFu4uySfgRQ1smCmXp7+/nyJEDWK1WTCYTMplMyly497o4nU6++upz0tLSGRqy0NBQT0xMDAsXLiIqyhTxWLlczubN7zBjxgyppt6rdL43r6Gzsx2LZVCqp6FQiBUrVhEXF3fPJvGDJ5DG1usfEno4Eek8tqaOWlyNrZ+j9TLyNSafQBpbr6dSB2912ui0ucmL1UmezlEaBXqVnOZBF7e6bKzInzwQehrTeFiM9qDbt39JX9/Aj9qDPg2o1Wq2bNkqBadv3/4t7777wQO5CKVSyaZNW/jqq8/p6OiQejm3dYBQtAuDToYxyoTKGINveJC9e74HwuKl5uYmuru7yc8vjNi8FwSBvLx8srKyuXr1MjduXCM+PoH29jaa+4a41eJHHZeOQuZBDPpBriQYCiGEPAQRCMqUeGVGDIIX2QPCTx8VCoWC/PwCSkvLycjI5Fe/+ltCoRD5+QXSY5qaGjh27Ajz5s1nwYIXnsh5PE0Eg0HOnTvDlSvfk5OTy9q16360UPaOjnaGhoYijj2pKVa1Qo5OJcfu8ROtVUrWYmP9ud3+EAkGdVgFP42nhueKHL63kY2NjcPhcNz3Oc87OQyg1+tZt24D3377FZWVt8nMzKKk5McZt1PIZRQlGSlMNGDzBHD6wuSwXqXApJnagvZBGKt2OnbsCB9//CE5OXk0NTUC4RFSl8sVoZ5VKMIKOEEQcLlcaDRhtVt/fz9qtQatVotWqyUjIxOXyzXuPWNj43jllaV0OkWutntxycGuUvDrk1WEgLL8XHyBEDFaJf3mfmSCjCA6zA4vDQMOko1qtEqBRKOalkEXdf0OYnQqQqKIxm/n5JED2GxWVq5cxbx58zEajXi9w8jlcpYtW8lnn/2Obdu+5sqVSwjCeKJNJpNRUBDZzBYVzZzwens8HszmfmnENRQKoVKpMJmiMRqjSE1NG/e8UGcFoj8WbfpMQmoFIfxoVaqwEiw2juGADH8IVuTHUZL8dFOKe3q62b17pzQeL5fLWb36tYgQpVGIosjhwwdpaWmmr6+XlpZmtFrtpOrrhQtfjCCGRgnX+xHxV65cloISIfy7uGXL1h88nh4KhSSV1sMENN07cjyWdBYEAZ/v0UeOJ4NMJotQNE9EMFe6DHR71AQtIJMJ6A0Gkkc8nuP1KpoHnQx7Aw89cTCNqWOs3zCEfXctlsH7PicpKVkihy0WS4SFz/OCpKRkli1bwYkTxzh9+iTp6Rk/WvCVVilndpqJ8tQoLC4/Hn8QuUzAqFZgUP/wJV040PY13G4XDQ317Ny5nU8//Rl79uyT0qy7u7tISUmNIDBVKjWxsbHS9JZKFVaItra2oFarcTgcZGRkkp09g+bmpnHvmZKSyosvLuZsfT+NQzJcKh/OgIv//bvT/L9fn4+gjcIXFNGp5LR3tBNlisUbDG+wdljdzIjVgigSo1XSMuii0ewI34/lAqGhbo4fPQTAW2+9TX5+/sjGYZgcfuGFRezfv4df//pvycrKnvB+plQqKSwspqqqgqGhIdrb2yR7jbEQRRGn04nZ3M/AgBm3240oiqjVaozGKGJj48b/rogigcaLyPS5aJJzCSpEFPjR6/QkJSaii45jyBNCo5Cz7hlI866rq+XQof2S9YdOp2fDho0TKp18Ph87d27DYrHQ1tZKV1cnsbGx5OUVTKi+Xrt2XUSzOEq43k+pXVVVKanWIXyfWrduww9eX040gRRpexX5b6Lj99ZLURTxeNzSsck2gx8Wo8rmiUjnUYL5rD0aV0hOk3VEJBETQ0xMLHKZgF4lp7pneJocnsZjh16vZ/Pmzfz61//wo/egTwP3Bqfv3r2DLVu23rcvGH3e5s1b+a//9f+Ujqms7Tj74xlMzkNnTGLBzDzenp1GlMxHe3s7DQ11DA1ZOHPmJJWVt0lISCQzM5OMjCwpH6C1tYW+vl4aG8Mkq1xrxJmxCKVKhX+gHYMhGrugAAGEkP/ufTMYJCRocQtqbCE1j9MFNiUllbKycgoLi6X1YXt7Gx6PG61WJ4XQ9vR0s3fvbvLzC1i+/NXnTgxis1nZt28Pvb09LFu2kgULXvhRP+Pt27civo6Liyc1Ne2JvJdCJjA7LYqDd/qxDTvo7u4iIz0D3cjP3x8M4fYHmZtueu5+zj81PFfk8L3K4YSEpGlyeASZmVksXvwyFy6c49ixw6SkpBAXF/fgJz4mCIJAtFY54ajn48DLLy/B5XJRUXGTnTt3snr1Gv7+75ukEJeurs6InUgI+2mWls6iru4OWq2W0c2zjo52FAoFOTl55OUVcP361QneETIzs7H7Yon3d2Btr8XlNOONjubrE1fw9rWRoMun3eYh3hBDTWMLSQkyEo1qZIJASBTp6e5GpzfiDyo5VmfG4QtgsVjwDnSwMEbFRx/9nISEBEmp53Q6qa6uoqIiHC5ntQ7h8XgjVNFjoVKpKCoqprKyAovFQkdHG5mZ2UBY/TUwYMZsNmO325DL5cTFxZOcnIJMJsPlcqHVaunr68Xv91NQUCgRAf39fXS2tVCUBSqtE58pC0EfjU6nxy8IWHwCqSY1L2bFMjfj6d7kKysrOHbsMIFAeFPCaIxi48a3JvVBPXv2NLdv36SpqZGBATPJySlkZ88Ypy4GmDmzlCVLlj3U+Uw0wlNQUPRYyDOZTCaF6wE4fQE6B1x4Agp0KgW5SbophVONYnRUeWDg/tYfk40c379Zvqt2noh0DgYD+IdFQsEAbo8/PGo8Rm0oFwRCYnjUfBpPDvduuMbHJ0yJHB6Lnp7uJ5qy/LQwd+582tvbaGioZ+/eXfzsZ5+i0fx442SykU2SJ/LaMhnr1r3J9u3f0tnZzs6dO1m5chW7du0AwpMt/f194+6jFouFuXPnc+PGtZFxV2/Ye7++jmAwSGJiEomJSeOCw0aRl1/ElUA6KR3d9DRV43NZGXDH8o87D/L6ghJidfF0WD0YYxK41djGrLxMYnQqBCAUgpbmRpJSM3H7g+yo6GHY7WdgoB9hqINV2amsX7s2YsR3aMhCZWUlt2/forGxAa/XiyAIk/oZGgwGcnPzqK+vo7OzA73eIIXieL0eyUfY5XKhVKqk+i2Xy/F4PGg0GlpamvH7/WRmZkm1sbW1Bbu5m1lx8QTUbgLRGSgN0ajVatwCBH0iufF6XsmJozDx6YWbhEIhzp8/y/ffX5SOJSensHHjW+MUwKOP37dvN62tzdTV1eFwDJOdnUNa2sTN57JlK5k5s+ShzsntdlNfXxtxrKxs9mNZd9w7gTTk8tE95CYQVGHSKpgRq5vU+3siPExNvXcj994JpIk2acdvBkfW1EAwRCgYwh0M19SxG95ymYB/up5O4wkhOzubxYtf5vz5uz1oeILz+cRocPo333wZEZw+0dRcICQy6PQx4PAy5AZ17kK85gAEvMh8DnS9lYjWVmbOe4FPF76BSasEtJSWlpGWlkZDQz1vvLGeUEiko6OdhoZ6zp49Q39/H263G41Gg8lkIirKRGFhEY1OBd3OILFyG3KDnt5hB0TFIcrkgJzRqVpkcmRiEBlyWsVYYhj4QQpinU5PSUkppaXlkiXS/5+9P4+uo972PMFPRJx51Jk0z5Mta7A8AzYGG4zBGJv5wuXCHTKz8lV1Vq5aWauyV/cfXaszO7tqrarK6sp8me9lvvfuyH33XjBgbDxgDNgGYzwPsjzIlq15Pjo68xAnIvqPIx0sS/KEZDDos5aWrVCcODHv396/vb/7Rq5ezYwLqqqqEUWRsbEA7733Lrm5eTz77JY5196937S1XWbv3l0YjUZ++tM35ywoOxMTiWM3MtdNXJcU53B+IMzhs5ewGK0UFhWjaRrhpMJgOEm1z0pT4f2tNJ5nKj+o4PDNWU65ublcv94+w9oZfizBYYCHH15Nd3cXXV2d7Nz5IT/72Vvf9S7NGhNakPF4lN7eTi5fvkx5eWX2+g8PD1FSUjqltOfKlUs88cRTdHd3ZZepqkpHx3UcDic+n2/Ge6SgoJDT1+O4c5zkmRbQ3dVJKpFAsQi0tpxGcvTgLVtJMq2jrqocw0ALuVIxDfl2jnQGEI05XOsZJC+/gMFgDC3QQyQcQbYXMlZUQJ9swJJI0d/Twf79VzhzpgVFyexLeXkFZ8+O4fePEAyO4XTmTLuPNlumhPXKlTa6u7vHyynlrI5wTk4OtbULss2Euro6ASgpKcXn89HWdpnRUT8XLpxn4cJFRKOZrqYLFy7itdd+Sl1dPaqo58pIhEhCQRDAbdF/K6mQ2UBRFA4c+JSTJ09klxUXl7Blywsz6n+dOnWC/fv30dZ2iXQ6zYIFC/F6p8+iKS+v4Jlnnr1rI9rT043fPzm4NtslPKqmceT6KIc7RvFHMxlIggC5ViOPVXtmfVZ2upLj2cB7fZTtLf1UeSxTSuTH4jKFThP2+azhOUPTtCkTrncyoXiz9MoPNTgsCAJPP/0sg4MDBAIB9u3by3PPbfmud2vWmChz/fOf3yYSCSKKBnJychgbGwMyzV7z8vKnOGydnR2sWbOWq1evMNECIh6PMzIyzIIFdTO+I/R6PR6vj7QapjA/DykZYmhokFQqhaJXOfP1AYy5lVDQiKzpWFZbhnngHGWrSqj2Wbk0GEG1eLjYM4TD6WZoLExqsJNYWgFXFYGCInpjUCIlaL96mc7OK1y82JYN0pWVVdDWdmn8uPImySjdiM+XSzQapbe3h7a2S0QiRUQiYUKh0LhklZvy8gpyclwIgsDFixcQBIHa2gWIokhnZwc9Pd2kUkmqqmoYGOinv7+PNWvWsnnzVqqra4jIGu0jUeLjWeH5dhNl7nuXCpkNEokEH3304aSs7/r6Rp566ulps3o1TWPfvr0cO/Y1V69eQafT0di4GLt9+kqi5ctX3FPJ8IUL57OTv5AJxM92VmIyrfJp2zCne4IEE2kEQUMSBIpzzGxY4KPGN7sB+zupQLoXtHP9fN0xSpV3cslyxjlP03Cf5b/m+XHx8MOr6er6xgd94423Zv0e/z4x0Th927a/cPnyJczmj9mw4elvmrTGZS4MhDnZM8ZIJEUirQAC1+MWhMpVmeQ2TUFIpzCEB+jv6STkH8RZXJz9jlQqM8b3eLw4nTmk0zIjI8OIoojFYkGWZfz+Efr6ejN9mGx2wuVrsZollESKWCqFohlQUzE0JY1gtCFIOgRRQFRkjKKKJJmIaQbGsOLm1gl3NyOKIlVV1TQ2LqaionLaRBvIvIMmJo1ramqJxWJs2/YXTCYjL7zw8i0rRx400uk0Bw58yqlTJ6mtXcDTTz87Jxq/t6O1tWUa29k4p9+ZY9azSBrhdHwYT2UjHYEEmpapCGsudrKpLndWKuDm+Xb8YK6ApmlTspxyc2/fFfXHFBzOiN4/x29/+2sGBwc4cOAzXnvtpe96t2aNiWynvXs/5OLFNhwOR1YDUdM0+vp6pwQpkskkPT3drF+/IStDEY/HxtfvYWhoMLuuBqTGHxmbPuME1sWCXBqKEEiJ5FXWY7LaiF48SMgJDkA7v5ulzStZt+ZRNKWInTu38+RTm/BaDfSGEjjjfcRTo3T1jKBqoNmKkAUDJ7pHae/pQw2PUCL3kG9RJ92rVquVvLx8Bgb66ei4TlPTzJkyE/IZPT3d9PR0U1lZRVlZOV6vb4pW8ERWoNvtxuPxsmiRnkuXLhAKhWhpOYvL5Wbr1hf5+c9/NSkosLhwatbQd0U0GmXnzu3ZQDfAkiVLWb9+w4wDk8uXL/H73/+Gzs4OrFYr9fWNMxrrvLx8tm59ccZt3Ypz585O+t3tdk/S7pwNvmz3s+fSEGa9RJnLjE4UkBWVoUiK7S39ACwryZnV75wL6vPtHOkYpTMQpyTHhE7MNN4ajckomsbKMte8LtUcMjYWyJaNTzBdtsfNGAwGPB5PdhLkRt3WHxpms5nnnnueP/3pbS5ebKW8vJz169d817s1a5hMJl555Sds3/4OfX2D5ObmEwgEEASBZDLJ8PDQlExxv38EvV5PQ0MTg4MDANlGY319vfT1fXM/qEAKPSIqRbl5GHQSDfl2Drb7kfU2ChcsQULF39aKN88JQ9fQjfawes3jPLR0CYFRD5/u28XzG7dwMseMP5ri6tljDEdhcHiQlGBE5yggpggcahvg+MV2hPAQ5UovHsvkoLbX62VgwEEoFKKzs3NKpVF2n1UVu91BPB7H7x+hv7+PmppaqqtrcLs9k4IdiqIwNpYpSfJ4vFitVgwGA1evXmFoaIhEIkFOjot//s//O555ZnP2czm679c7emRkhO3btzE6OgpkxlqPP76eZctWzDju+OKLg2zf/h79/X14vV6qqmpmDAQtXFh3TyXDmqZNsak1NbWzqteoqBoftQ7wdWcAt1lPpScTpE+kFbrH4rx7po/XlxZT4fn+N0dtLnLS0h+iL5gg33FDFVsoic2oY0nx92ccN88Pj5t90IMHP+OJJ576rndrTikrK882Tj9z5jRWq41VD63mWNcYh9r9+GMpLHqJHLMOs96IklZoSyUQjDYMqogcHAJNJekup99m499t+4J/9fJ6aoszk/DJZIJAIMBnn+1nYKA/G+wzmUyYTCZyc/PQNI1kMkkwOMZQAsKqDob70HRG0tZ8EpoABgtKaAQpNYyg06MBKiqGHA+aoCFqKmOCFbd2Z8Fhny+XxsYm6urq7+h9PDQ0RDAYRK/XU1RUzAcfbCORSPLGG2/esqH6g8boqJ+dOz9kZGSYDRs20ty89Duprp3OdtbWLpjzcx0KBWk5dojXFjewaGUdg+EkAAUOEwUO47ycxPeEH0xwOBQKkkwmJy2brnnUzajq3TVxetCx2x08++xmtm17h1OnTtDcXI/Xe39LGeYSvV7P66+/zn/8j3+TbX6TTCaRJInBwYGsBtONnD9/ji1bnqeoqJje3p6sxrBOp2f79g/Izc1FNJjoEHIJCJkMkSq7npSisawkh7SqsefkGH4hxV9tXEH51ib+9m/+A1eutFFWVk7r6aMMdl/j2Wef4+mnN7F37262bn2RFUVWtrUOsPNkJ1rlGmTBgJyIo5BCTIeRiRHRTKSEfHK0IWDy/V1SUsrIyDCRSIShocFJTno8Hs/qCCcSCQwGA3l5+WiahiRJ5ObmTXHUEokE0WgUQRBwudwAuFwutm59kcuXL9HWdolkMsnGjZu+t+U9AwP9bN/+XlYbU5IkNmzYOKnr7c20tV3mf/vf/r8MDw+TX1SCs2wRo6IJDTBqaXKIoCMTmHc6nbz00qv3lCGbSCTmrPx1grG4zJfXR7EaJHJv6Jiql0SKnCZ6gwkOXvVTn2+/K4mJ74Ics56Xmgr5sKWfzkACNNDQsBl1PFHrm3dk55ibK3HMZgtW6+0z5FRVIT+/8IbgcH92ku6HSFFRMWvWrOXQoQPs37+PxsYFCMJ3qwk7m9hsdt58803+w3/4z7hcLhQljU6XyeLp7e0hNzdvyrU9cuQwq1c/yqlTxwkEAsTjE7r9GU330tJSUqKR60IeYcGMiIrV5EHVNJ5ckIskiXx8bACvUeW/3foE0lgNf/u3/wlFUSguLuHIgX30d1zh6ac3sWrVwxz+fC+bN28lFAryd59eYijqQCloIpVWkeMxZFlFVkPoSBLBjCrk49Im39+CIFBeXsG5c2fHJTMKsNkyWa6aphGJRMZ1hEeQ5VQ2M3iiIZjPlzvlPIyNBVBVFZPJlHW6iotLqK9vpLW1hfb2q+TnF7B27bo5uHKzQ1vbZXbv3pmdKDKbLWzZ8vy0essTHDp0gL/92/9EPB6jrHohxrwqBgUdAmDSUjiJIo2XJ5eWlrFp03P39H4YGOifkhQyXS+Bb0PHaKYRYoHdOCmjyaSTKHeZueaP88U1P+Xu739z1AqPhc31eey7NMw1/ze9NNwWAxsX5lLufvCDMN/zSzAjE/v9oO7/rbjx2ByOjA/63nsZH7SsrHzGibgHhdtdu7q6OhKJGJ988jGfffU1X/j1BAQHNqNElXdyZdzFgQBBrAgCaGYniAbE0Q7E2Ah2p5mBtJl/t/0Ir6+uxxLu5YsvDnLx4nmsVgtGo3HSPkxIvimKkj33isPKqMGJZAC/kIOsCiDH0Qw2JEcuaqAPUR3PJhUlFMmARUthEBVS6G55f5pMZurqFtHYuJi8vKnjglvR3t6GIEBZWRn79u1haGiQ119/A7fbfcfbuBfu53N34UIrH3+8B5vNxptv/oK8vNvHqL4tMx1ff38ffv/wpOWLFzfP6XnQNI39+z/GaDTy2GOPYzKZKHF9O0nFH8t7cza3dyf8YILDNzuyJpNpWg20m1F/hBpblZXVrFixihMnjvLhhx/yyitvYLd/+0BLWlHpHksQTaVJqxp6ScRp0lHoNN3XcsiJbKe33/49VVXVfP31V1nZhf7+vmmdmmPHjlJeXkE0GslKTOh0eoaHB/H7R8hpWsegmIOZjIM0IOTwVcco62t8PFzuRjcscri7nzVVGf3Bf/Nv/hf27dvLO+/8KZvB/Ic//JZHHlnD2rXr+O1v/wFFUVAUmVK7xEVFYzSZQlNBJ6qI6IhjwCbECWNhRLXiJjppnw0GA8XFJXR0XKerqxOnM4exsQBDQ0OEwyF0Oh0ej5fq6lycTiepVCrboK6t7TJ1dZMb1E1kDTscTgoLi7KzvpIk8etf/9ds5vW2bX/hxRdfnvWM12/L+fMt7Nu3JztzbrPZef75F2+p43Tu3Fn+1//135JIpshvepSIo5whwYiGAGgIAhg1mTwCVBgSvPzyazPKUtyOCxfOT2o0I4oiDQ2zW8LTNhxhLC5TOUMWU67NQPdYgvaRKPUPQAlphcfCf/NIOW3DEQIxGaNOpNprxWczfO8d8QedqRr+vjvKlldVlcLCQlpbW4BMJcbYWCA74fRDZNWqh+nq6qSz8zrvvvsuL7zwWjaA+m1IyJnsxISsomgaBknEazXc9/vf4/Hw8suv8uc//yPFxaVcvNiKy+Uel4sYmZJRnkgkuHr1KrW1Czl+/CiKomQ10fv6ekimEmgL1jMq2LBoCRRB4mrSxvn+ME2FDp5emIvSHiOkj9JY6IDCBv73//3/4i9/+SOffLKP/PwCAH77239g/foN1NYu5O///m/HtfKt+JIpLiVkIrIGaOhFjRh6JBSsxAlhIaCZMZOYtN92uwOfL5fh4SGuX79OdXVNVps/Ho9hMBjIzc3F5/NhtdqIRiO0tMzcoG4i09bt9lBWVk5DQxO1tQsIh8Pjjdk8eDxe/vznt3n55Z/MKA/1XaBpGl9+eYgjRw5nl+Xm5vHCCy/dcj/37NnF3//936LTG8hduoEhUz4JwcCEjqUgaFi1JIWanwUeE88//9I9l5bf3EzH6XROamY3G1waipBS1GlLXQVBINeeaY46GE6S7/j+TwotLc6h0mOlbThCNKlgNUrU+mxz1g/kfuPxfLcNkL8tD/r+34qJY/N6lxAMDvPVV19x6NB+Fi2qxul88Cf7b3XtNmx4nIii8usv2wleG2T5QhMlNwUHVU1jIJpCJ4KeNKm0TFpnQDVYUeIhUrEQicQQI6qef9vVS1G6H2ngAqOjfjo7r007PpMkCVEUkSQpU2GdDhHJ8ZKOR0nneBDVGAgqWiwANjcmbwGCmtEtNxiNWCQFr5Agjh6TXsKim5wYIwgCVVVVLFmyhAULFtzzu7y/vwuLxUg6nWBkZISf//wNFixYcE/buhfm8rmTZZk9e/Zw6tQpli1bzLPPPjurEnx3ws3Hd/jwZSyWb/bB5XKxdGnDnI4rW1tb6e/v5ic/+QnFxbPb+PTH8N68n/yAgsOTswd8vtw7dmR/jKxd+zi9vd0Eg3527PiQ1157457K5AGCcZmLg2FO9QTpDSZIqxpoGhpg0kuUuywsLXGyINeG+T5lK9psdl555TXefvv3uFyXGB4ewuv1MTDQT2Fh0RT9ooGBfhKJOC6Xe1xrUEPT1Gwm7Zg/itGnYECmv78Pt87EkfNXaXIJeDweZFlGr/8mI1kURZ5+ehNLly7nH/7hv3LhwnmKiko4dOgAu3btZGwswFg4jLt5A9d1RkajSRRVQUNC0xsIihZCWDAiY9WShDQj04VW8vLyuXbtKn19vYyMDON05uByuViwYCFut2dShm+mQd0iWlrOEgiMTnFmw+EwBQWFvPjiK2zYsBFBEEin02zb9hfSaYV/+2//Fw4c+Iy+vl7eeedPbNnyAtXVNSiqRsdojOujMaLJNEadSJHTTI3Pel+yU1VV5cCBTzlx4pvGgUVFxWzd+kI28+tmNE3j88/381/+y3/GYDBStPRR+oyZILKVRDarSQUSgoFuMZ+VyxfiusdZ7PtR/goQSykIgpCdjPH7/chyirz8AgQyGcQaEJUfnIoJi0GiuejBdxweNKaTabqTigFVVac0Kuvr6/tBB4cFQWDTpuf4/e9/zdDQEJ99tp+nnnrmnrc3FE7SOhDidE+I4WgSRZ2QRwKbUWJBro3FhY77qu1eUFDI1q0vEo/HuXr1CmNjAXJyXPT2duP1eqc4Fdevt5NMJnC53PT0dGMymQiHwxkHdWSUdFEau11GSCcJDA+hszg5caGNclsNDocTWU5NstMGQ6ZJ68MPr+Hv//5vuXjxAmVl5Xz44ftEo1EGBwcQTTbEqlVcQ0c0mUKVUyAZkPU6AoKdIFZMmoyFBFHNwHQ5K4WFRXR2djA0NMjAQD92ux2Px0NlZSVOZ86k47RabVRV1dDWdmm8QZ01q1OvaRqxWIySklL+6q/+bzQ0NAEQiUR4772/UFBQyC9+8U/56KPt+P1+/vjHP/Dyyz8hNzeXVFrl6kiU7rEYCVnFbJAod1uo9Fjvi5ROIpFg164dWaktgLq6ep5+etOM2o+pVIp33/0z7733Dm6PF131wwxIXvQo2IkxcZcqCMQEI136Up5dvfyetRaTySSXLl2YtOxW8lr3SjAuY7jhGevt68ViNmffZ2a9xEg0RTT14NjUHLOelaWu73o35gS//9bN/r6vCEImCPCg7v+tmO7YFi9eSWvrZfr7+/jNb97m9dfv3Qf9rrmTaxdJpjmf8KJYwliCfbRdaEWHMCkormoaiXgCVdNQNA1NA0EUMJktJMISgcAYoKEjgWq0MWqvotRoxB2LU129YNrxmaKoBAKjjIwMMzo6imywo1mTSDojigCiKGX8BVGHpiSxk8BgtpDWCVilJGYlBWgokhExHSOWylSwulxuGhsXU19fj92eSTQZG4vf0/kLBse4dq2Tvr5egsEImzZtxuMpZGQkfE/buxvm+rkbHh5mx44PCAaDPPnkUzQ2NhEOpwiHU7f/8Cww3fElk0mOHj1JOv1NstKyZQvx++9OT/puiMfjbNu2naKiMny+4lm7tj+29+ZsbO9O+AEHh32IopjVm52JH2twWJIknntuK++++0f6+no4fPgL1q59/K62oWkap3qCfHJ5GH8shVknkmc3YNJJ2b/HZIV2f5TLwxEK7EY2N+RT7Z3dgNhMuN0eXnnlJ/T393Lo0DCjo348Hi8DA/3TdiPv7e0lGo3g9XqRZZlUKoUgCBgMBpKhUZLWPCxmDYvViiro6Ll2iV9f+RyLxUo4HCKRyGRReTyerIOSm5vLv/7X/w8OHTrA73//Gw4c+BRVVbDYc7A2PsVgSIfTqkOLx0BvAQS0dKbDuyDqiEt6kujwqJMznEKhIENDQ/j9IyQSSRRFQZJ0NDU13zKz1WazUV1dk+22brPZWbFiJdXVtdnS71WrHso+N3v27KKvr5dXXnmN4uISXn31dXbu3E57+1U++GAbzY9upEPz0DkaI6moSIKAomWateTZjTxe7aW5yDFns5GxWIwdOz6YpC+8ePESnnhiw4wz2JFIhO3b32P37o/w+Xx4S2q4IBUgomJhssEWAQspissruTgGV4aj99QtfnBwYJJ+Ncx++SuASZfR5dU0jbSi0H6tHYfdns20U8YrJSae0XnmmYnpJlxF8U4mXDV8vlx0Ol02i39goG/Wm0R937DZbDz77HPs2vUBZ8+eprS0nIUL6+5qG2lV48DVEY5cHyWUSGM3ShQ7TdkAsKZphBJpTvcEOdMbosJt5vnGAnLt9ycLpaKikq1bX6Szs4NTp05k74dAIDCl/FMURXp6egiFgni9PgQBwuHQuDSJQizoB72JHJ2AxeZAURRaTh9n5NQ+cnJy6OrqpKCgkFAoOKkKrLq6hv/5f/7/8NFHH/LOO38er/TRyMktQljQhBrTYzVIBFNxNJ0RNA1VTmZkaSSJqKgnIehIaMHsNlVVJRAIMDw8RCAwSjotZ23/smUrbtkMx+fzEY1G6O3t4erVK9jtdpYsWY7b7UYQBMxmC4sWZe79VCrF+++/Szqt8Nprb+BwOHnjjbd4992/MDIyzJ///Db1azdzIayjb3yiXRrXhdVJIqXjDdBubig2m9ysLywIAo89tp4VK1bOaMeHh4f505/e5vDhQ1RWVqHPreSy6MGMjIH0pHUlNFxSmtyKGg53R6kvSeG1Gqbd7q24fPniJE10QRBmvRIHMpMx8ngj4Gg0SmdnByXFJdngcDKtoJdETPrvp9TWjw0tk5vywDLX+/9dSjzdeGyiKLF581Z+97tf09vbw5df3r0P+n1jpmunaRqfXxmhfSTGygVltF9N4h/1c/HiBRoamrCNJ4mICBjTUcKanqQmkUZATURJjA3hcGR07hUlMwklpaKkBIlO0YXF6EQQxOx3q6rK2FggGxCe+AyAmAiii/pJ2fOQEmFUszPTUFqUcEopctAQiMINQz0ZCZ2gkqdL0biwmcbGJgoLi7L30be9X69cucLw8DB+/yjPP/8yzc3L7vszPNvPnaZptLSc5dNPP8HpzOHNN3+J1+vNftf95sbju3jxwrRVrHO5XwcPHkCWZZ544qk5+Z4H/b1/K76LY/sBBYdvLoHNNKMTRXHSi/FmfqzBYYCcHBdbtmzhd797m6NHj1BSUkpFReUdfVbTNA5fH2XvpSF0gkCV24J4U0aLIAhYDTqsBh1pRaUnmOQvp3p5oamARfn3J02+oKCQf/JP/jltbZfp6LhOIBBAp9NTWFg0ZZY6nU7T3dONw5PPwiXNtLReADREvYRhrJOY2cWwWIjVXcLqxXW81PgYSniErq5O9u7dTWdnB7/+9X/FarVRWlpKSUkpxcWlRCJhWlrOMTIyPB64g5RvASmDFyk4QDJlBGMhmqiHVBRhYr9UGVVNo+ktjGhW/HGV8GAXIyPDJBIJTCYTBQWFNDYu5tq1qwSDQfr6eqitXXjLczKhjZhIJHG73Tz22HoGBvozJZK5edmS0UOHDnDxYitbtryQDaYbDAaef/4l9u3by1ctl/mHL9qw+QqpLy/CavjmfMqKymA4yfvn+kgpKqvKZj9LZXBwgO3b3yMYzDj5kiTxxBMbaG5eOuNnOjqus3Pnds6dOzveUT6HHsFOEh1OYtN+pqqyivx8L9f8Mc72Bu8pODxd+eudPmt3Q7XXit2oIxCXGe3vQlWVSU0YR6Ip3Bb9jLIT88wDmTK4QCAwaVkmOHxnmcOSJJGXl09vbw+Q0R3+MVBeXsGaNWv4+OP9fPzxbvLz88nJubN3X1rV2NU6wFcdAXJMOqq9lilOvCAIOM16nGY9ybTKlZEofzzZw6tLCilyfjvttjtl0aJ6fvrTn9HRcY2hoSEkSaSnpxuXyzWN5u4owVAEuzefosqFnD5zBp3Jio405pE2onoTgjsPZ34+65bU8XzdWgJDfXR3d3LmzGmGhoaIRv8TLpeLkpIySkpKKSoqoq+vj4sXLxAMjpFRIodobgOazok01IHF7UaT8kHQQTqOMJH5qWQau2p6M72KA2uoDf/QACMjI6TTMlarjbKycpqbl3D+fAupVIqhoUGKiopvPg2TKCsrx2AwIEkSbreXJ57YwJEjXwJQVVWNKIqoqsrOndsZHfXz+utvZgPedruD11//Gdu3v8fp7gBffnaO/IISaot8GHTfPG8JWaFjNMZfTvfySnMhNb57kze6FVevXmHXrh3Z/h0mk5ktW56fUaohUxFzhj17do1LVdVjtli4KjjQEKYEhiEzJl9YV4fD7uDqSIyLg2EerfTc9b7ebFOrqqqzGWyzyYJcO193jBFLpWlvv4rJZKboBkmtoUiKKq+VggdAUmKeHy99wQSfXB5mJJqkwGHiqQU+vLb7W9p+Mzk5LjZu3MSOHR/ctQ/6INE2HOVoZ4BcmwG9TqK2dgGtF1oJhYJcuNBKU2MTJpOJZDKJMtYPskhK0IOqokuMIaYTmEw+bDY7Q0OD2biFmAwRNbqQnVWomkZwLMDIyAijo/7sxPzNCIAl2ofoLcOu1xCNCqqgIZHCQpKbpw00AIuLR2ry+avHnsVomP175ujRr7lypY3HHlv3wE8QQCYzd9++PVy8eIHFi5ewfv2Tt5xgvt9MZztnqrKdDbq7uzh79jRPPvnUnNjoeWafH0RwOJ1OZ/VSJ5gPDt8Z9fX1NDcv4fTp0+zatZNf/OKf3JGm6tm+EPsuDWHWSfhs02d99I8HHM0mMyaziVKXid6xBB+eH8BqlChz3Z8AVXV1DW+88Rb/4T/8e0KhULY53YQWrQbEMDJsLiJSWYyYW0S3Mx91UTGJRBxZEhGVFIKcJD14lQpbET9fWYLLYgCPnfLyCsLhMAsX1vHoo4/R3d1FW9tlPvnkY3p7exgaGkLTVIqLS1i8eAmDo2Nc1FeRDI9i0pL4YxGU3Fw0RUYTdKBqCCIgiAiChKjKjMkypzqHsY/14/X68Pl8k7KpyssrOXfuDMPDwxQUFE77AjYajSxYUEdjYxP5+QVs2/YXOjs72L59W3ZbE40hTp8+ydGjR1i37okp2W+SJPHEhqc5GLCS7PNjGOliUCdTUVGZDQ7oJZHiHDOD4ST7Lg1R6jLPqvOUEfbfnZ39tFptbN36wow6yKqqcvjwF3z99VeMjo5mnXmAADb0KBmVYU0b14JWMBgMlJaUZbNuc8w6ro5EiaUULIY7z7xNpVJcvNg6aVlj4+I5yd7w2owsK8lhd0sXw4N+FlWUYTAYUDUNf1QmJis8Vu2ZVj9xnnkmmJjImkAQBDweL+Fw6LafnbCpBQUF2eDw4OAA6XT6nvXoHiTWrVvH+fOZyowdO7bzxhtv3bZcNpNZNMxXHRkH0j7N86mRGWSbjCZMZhNmk5kqt4XrgTgfnBvgjWVFGZt0H1i7dh3Hjh3l/fffZXR0FFGUCIWC2YlFDQhjJuBaSNhtRSwoodfhgoZ8wpqKDg1BSSGkYqR6L7K8bBlvLCvGYpDw5SygtnYBXV1d5OXlUV1dS3d3J62trXz44fv09PQQCPgRRYnKyipWrXqIq4NBOmz5KIEBTJJG3+AQFPjQ1DSaIIGW0Y9HkBAEEUlJMRBLE+0cwp4YJT8/H6/XN0nmp6ysnCtX2ujp6cbny53SyBYydqe+voGGhiasVit/+MNvGBsbY8eODwgEMpm3NTWZqpxPPvmY69ev8eKLr0xpRGM2m1m/6UU+f+cQajBMsPcKfqNKwbjtgYxEV4XbTNdYgo9aB/mr1eZZk+nSNI2vvvqSw4e/yC7z+XJ54YWXZpzcmHCAW1rOEQyOUVubKWuWkQgKGUksyLwPVFVBVTUMBgM1NbU4x8cbZr1I68DdB4eHhobo7++btOxWTWe/DVUeC3X5Ng62dhKLxFjSsAhREEirGoPhJEadyOoK933tqzHPPHdDKCHz7pk+eoNxHCYdp3uChJNpfr6i5DtvTLxwYR1dXR2cOXN3PuiDgqZpHO0MICsaznFdb1EUqVtYR8v5FmKxKK0XztPY0ERHZwej/hEAbrY2BoMh20dmYnwmAGpomLDeyWcnzmBOBZgJSZJwudx4vT6cLjfXJY0hwYmFRLbh9o0YjUZ8vjxSRiceu4VfPVmLSdBmPYOxt7eHzz/fj91u52c/+/kD30tkcHCAHTs+IBaL8dxzz1NXt+i73qVJDA5m5LJupKlp9qtYJ0in0+zbt4eiomKWLFk2Z98zz+zyg/DU/P6RKdIRE7pvt8t0UtUHRydsrli37kl6enoZHh5i164dvPrq67d8QSdkhc/aMgZspsAwQE93Nyn5m7I/SZQwGk1EdDZ+4+/lxToXHo+HnBwXFsvULKnZZMuWF/j666/4/PNPCQbHuHz5Ivn5BSREEz2ChzHBRsDhBG0ETU5iIUEoNoJV1JNOqWiihGqyo4guLoVE9p65xpbl1VgNmUdIllMYDAbi8Tj9/X0EAqPZ341GI06nk0QiQUvLWRRvNTq3GyHQh5xOo0hGFFVFjQYR9QY0vQkNAUFV0eQIoiAg6SWs5c0s0edhmOaWttls5ObmMjg4yPXr12lsbMqez9LSsmwjnBsd3Oeee54//OE3jIyM8PXXX1Fbu5Dq6lquXr3C/v37WLZsOcuXr5z2fLb7YwiOXBbp9fR0Xqd/oJ+ULFNbUzvpmcu1Gbjqj3G+PzQrwWFVVTl48HOOHz+aXVZYWMTWrS/MOCMZCgV5//136ezsQpJEUqkUsViUVCqFLMsMeu2kEQkkwpPeB83NSykp/UZ+RCeKxGWFlKJi4c4H1NOVvzY2Nt3NYd8V66pcHDz4GWGLg6jeydWRKCDgNOt4aoGP1RV3n6U1z4+LmyUlXC4Xer3+DjOHM89QQUERkNEBVxSF4eGhKVrEP0REUeS557bwm9/8moGBfg4e/Jz165+85WcGw0mOdARwmXXTBoYhk8090Sx1Ap2kw2Ay83WfFS3QzZM1XlwuFy6Xe84bnvzqV/+MlpZztLScxe8f4cqVKyxbvoIQFnoEDyFMxF1G1GgQQU5gUWPo4n50BjOyoqBJelSzCwWRI51BGq/08fjCoqyERkZz2EAkEqanp4d4PIYgCKRSCSwWKw6Hg0BglEBgFLmoGYPFTjo+RiKloBptqLKMlogjGq1oOj0ggKKAHEXT69DpJHJqVrDYMDJtYM/ny6W/v59IJEx3dxdVVdVAxsmurq6hoaGRioqqSc/E88+/zB//+DsuXDjP8PAwNTW1lJdXcPToEc6ePc0zzzw7qZLjRq744zhyi8kxDjA4NMC1a+3IKZmS0tJsNpcgCBQ5jHSOJbg0GGFJ8bfXYk8mk+zatYOrV69kl9XVLWLjxk3TBsQB+vp6ef/9dzPnXk6jKAp9fb3IcoqYIjHqywE5jpaKZyeLJElizZq1eD3e7Hb0kkjiHvTvW1rOTPrdZrPPeF6/LTpJ5IlyK4cPXcfqLmIopWNkJAYCeK0GNizwUZf3w22GM8+DT28wQV8oQYXbQiDgRxdPcH1EZTCSvG9JOrdi3bon6e29cx/0QaI3mGkAfbOvrNPpqF9Uz7mWsyQSCS5cvIDDbp9WClOSpOzEutlsxmq1MTIyhCynkVMphBwro6INX2pw0jtbFMXxgLAXl8s9aZK6QsvI3I0IDgRNwySkMIrgcXvx+Hyk9RZCiTQ+m4EXGguo9NlmXQM4Eonwd3/3t+h0etaseSwbt3kQ0TSNU6dOcODAZ/h8ubz88k++l302zp07Pel3u91BRcXc2E6Ao0ePEAgE+PnPX/zBPNM/Bn4QweGhoamO7MQLUhBuFxz+cWcOA+j1+mygsLOzg6NHj/DQQ4/MuP7loUhmUJEzc7BPUZRJgWEARVWIxaMoJGgJ61A7T2Eb7xZuMplwudzjPxnn1u12k5PjuueGJTei0+l46aWf0Nvbw8WLFxgcGuJ0fxSKa0gKegzpGEKoH6JhEO3EYzHi5lwEsx1JklCDQ+hjfjQ0JGsx24620RdV2dJcilUOcurUCYaGBunq6iSdTnP9+jWGhgYpKCigqqoGnU6HoiiEQiHatDyiAkg6HUlrLqrBBkYbAiLpsX4EKZPdJGgqJoMeU44Pp5gC1UFcDWKYQf6gtLSMkZGRcf3jBE8++RT19Q0zZv5YLBaef/5l/uN//PfjWskjKEqanTu3U1NTy7p1T874Mr80GEHVNCqKirAajbRduYzfP8IFWWbhwrrsQEYQBBxGHWf7Qjxe7f1WzZNisRg7d26ns7MDyDy71dU1rFixiv7+fq5evUI0GiUajRKJhMf1ATs5d+50phzbmZPV/dXpdBgMBvR6QyZr2GTHYhCQJBFRlPC4PdTW1E4qsUopakZbUHd3x3BzCU9lZdWcltacPP41ubEufvnymwQ0EwlZxWKQqPVZ71tm4TwPNtPpDcPtJ1thcubwjfT19f4ogsMADoeTTZs28/7773LixDHKysqoqqqZcf3zA2HCiTTV3pkd9UR8arOXtJImHQ2TIsnhkEro0hH0ZIJtVqsta0tvtKcTgf5vi9vt4aWXXsHvH6avr49rnZ0Yax8hnlOEgogYH0OKDCEmEsh6jajZRNpZgmq2I6gKWmgAXcyPJogornL+/rNzdAZlNi3KJzHax5kzp7lwoZXCwiISiQRXrrQRDoeorq6lpKQUUcxM9AVDIVoNpUhKEk1vIuX0oerMYLRBOoUcHETUGxAQEDQFs8WMwWTHJSVRFBeyGsQ4jfyBIAiUl1dw/vw5BgcHaGho4pFHVlNXV4/FMv11ys3N5ZlnNvPXf/3/o7e3h0WLGmhru8yhQwdYvfrRGXXmNU3jdG8Qq0FHYXU1BqOB7u4uunu6SMkpqiqrsrZYJ4lIgsD5gdC3Dg77/X62b9+G35+pvFNVleXLV1Bbu5Br19qJRiNEIpFxu5r5f1vbZS5duoDZbEGv1zE2NgZkxpF6vQGdyYwkgGS2YjRlpDYkSaK4qITCm57/VFqdcTJkJmRZprX1/KRljY1Nd/Ruuhc0TePrQ5/SaBxj47PP0R9VSCsaOWY9tbnWbILAPPN8X9GJAqIAsqoSi8Xo7O0jxSAH0x2sW7GY4uKS7zRwc7c+6INEuz9GXFYodEydrDUYDNQvaqCl5RzRaITh4SFMJhPxm2y9wWAgmUwSi8WIxWIoShoQ0DQV0FATITRXKSNdp8n3ZoLBHo8Pj8czY9WSDpVKbYAcLUrSWYJqK8RktSNJIkFVwK0T2VDro7nISd40+/5tSaVSvPfeOwwNDbJo0SIWLaqf9e+4X8Tjcfbu3cWVK20sX76CtWvXfS+r5GRZ5uLFyU1c59J2TiSerVr1MD7fgxv4/zFyV3fv3diOiXXvh70ZGRma9D0+ny/7uySJt9wHTVPvaB/v5/HcL248Jp/Py5NPPsXevbs4fPgQJSUl05boq+NOjCQI6G4RJEskEjP+TYdCDCN+0YZdy6yXTCYYGOhjYKBvyvoWi3WSc+t2fxNEvtnJvdV1WrJkCatWPczQiJ9RWznXhDwKZRmnQSYSDyGJIjqdDlEUGUwIKGYnoiJjNpuJO/NRVBldMohDr6Gmxjhw4hynLrRRlOqh//o1jEYTo6N+rlxpQ5ZlSkpKcblcRCLh8dLKzI9oNWEQJFI2DxhcqNEQajqN5MhFtHsgNIQgipn9sdiRBA2bkCQi6FAFYYom1ARWq401a9bi94+Ql5fHqlUP3TYIkJ+fR1lZOefPn8PvH+G//Jf/RG3tQjZv3oJ0i0BuMC5j1ImZ7BmfF71ex8VLF1EUJTPIvGEnTfpMdlBKUbMaijNdp4kO7zc6o9FolN7ebg4c+JyxsTFkOZPxW1pahigKXL/eDmQCV1arDavVitlsHm8C188jj6ymqqqa48ePUVpail5vmHRs/Ri4Jjiwo0MA7DY79Q0NUwZVY3GZtVUezNNISsx0PMPDw/T3905avnhx85y9R0ZGRjh27AgPPfQwdeXfLhD3Q3/nzcV25+pz9/tajIwM32RTcxGE29tT+Mam5uTkYLVaicWiAOO65t+s90O/v2pqali2bDmnTp1gz55d/OIXv5p2UiiWUjjTG8Rh1iGIM5+MeGLmTuBGUoQFC2PYyCWjwR6LRYjFIvT2dk9Z3+FwTLKlGdvqJicnZ8p771bX6ZFH1nDu3Fn27N9PonApbQkLJekUDp2GPxZGkkR0ej0aGsNpI4rBiqik0ZutJClAVVLo1RR2SSEZHWHHlyc5dEygTO6mv7+PkpIS+vp6uX79GqIoUFFRidVqJRQKjksVqCiqhmQwYkynke25oLehRsZA0xBtHgSzAxIhBEFAlCR0ZgcGFCykSCCgCuKMNrWgoACz2Ywsy+Tl5bJs2fLbBlHq6uoyWvY9XVy4cJ7R0RFWrnyI1avXzHivp1WNaErBrM88X6WlpRgMeq5da0dJp6exqQKhuDzl2ky3fVVVicWi47Y0QiSSmUC9erWNL7/8glgsRiqVaYJbXV3D6dMnOX36JACSpMNqtWK12jAYDHR3dxKJhHn22ecwm81cvnyJmprMJOuNPSfaBR0DuHCMT2T7fLnU1tROOgZV1UgqKg0Fjmn3e6ZjunLlMslkYtLypqamOXuPtLVdpr39Cs8//xI1+TnMPMVze37o77y52O48355Sl4WFuXZaBkLoLF7yK3LIF8PEh87xpz+14PF4Wby4mfr6Rszm+6NdfzNeb8YH3bNnF19+eYji4ul90AeNnrE4elGY0W6YzWYWLarn/PkWAoFRFOWbhDVFUZBlmXRanhIwNplMaJqakdZLJZDsLqy5xVjNAjU1C24bnLTZ7FlJJJfbTVcgTjAho6oZn60kxzxn8nOqqrJjxwf4/SMUFBRiNBqzkoYPGr29PezcuZ1USubFF1+huvrbWIi55fLlS5NiM3NZxappGvv27cHpdPLww6vn5DvmmTvu6sn3eO6+dOpePnO3JBJhLJZvZraqq8vxejPf63BYYJqskAkcDnN23TvhfhzP/WbimNatW00gMEhLSwuff/4xf/VXfzVloDAQTDAYkyn2WrGYZw48RiNB9LfQsrJoKiFcmHQRROF2IkZpAoEhAoGhKX9xOBx4PB48Hg9utxuPx4OmeXC5XNPMmNpZv34tF2NGTg2rqJFRgv1hnKWlJJMJJEnEYrFkdPMkEygpBC1NOh4ByURaNJCMRunu7iKVSqEBo3YfI1YLqbiI0HuF9vY2rFYrZWVlmM0GZDmBKIrodBKaJhIMhgnJfoKSgoKIJinoBA1NTaGlouj0JiRXLmo6jSCI6HUSXimOAQWdaMBi0GMRJ8/ilpSU0NzcTH19PZIk8dd//dcEg0GuXDnP2rVrb3lmVVVFp4PS0hL6+vpQ1TT/0//0rygouHU5jNNhQh9JZZ87iyUPu8OKwWCYUoqa0AQEOY1OShOLhYlEMkHfs2cz/4bD3yyLRqNTsvlDoRBXrlxBkiTsdgsORz7PPPMM1dXV2Gw27HY7NpsNs9mMIAgEAgG2bduG3W7mf/gf/iW5ubn88Y9/JD9/+pnLIk1mOK2QwEKuWWTZ0mb0Nx3DYCiBx2FibX0BXu/Memg3vx9OnDg86d1ks9lYubL5thqk94KmaezY8S5FRfls3rxx1mauf8jvvO+au92P+7HfmQma0KT7dsGCCrxeOxaLNGn5dOTkWLI2tba2kra2NgBCIf+0tvb7ci1mk4ljevnlrQSDI/T393Pw4Ce89dZbU7I0WnqDhNMqFV4bultVVmjpW9rUhCYQEZyU62aemJ0gnU4yMjLAyMjApOWiKJKTk5O1pRM/opjG5XJO2Xev187yVStoVTy0BwXUsX5CWgRbYSGpVDI72SroDMjokNIJNEFDTWogGkhpEnIsyvXr7ciyjAYE3MWM6E0EY2lCrS2oqorb7aa4uBidTkCWE+NltiKKohEKB4kwRjwpo1i8aIKMXiehynFIJ9CbbeiMRhQljSiKGCXw6eKIgF4nYtXpMd/guAuCQE1NDc3NzdTW1hIOh/nrv/5rhof7CQQGqK29tRM7NjZGfr6P7m4Hw8MDGI06nn/+Wez2me9zVdWwmA3Iipp9viory3G7c3A4HFPOuz6RxmzWAcms7bxyZbItnfiJxWKTypQ1TWNoaIju7m70ej1Op43c3Eo2b95MUVERNpst+2M0GhEEge7ubrZt20ZxcQH/4l/8twSDQXbv3k1enpfpKFETjCkgY6LYbaexsR7hhmPQNI0Of5RSn41H6wuyWpzTcfP74fr1y5PeQZWVlVRXl978sVkhkUjw9deHWLp0MY88snzWtvtDfufN8/3DqBN5ubmA8m4LY7EUXquR5aU5GKRH6Ozs4Ny5Mxw48BmHDh1g4cJFLF7cTGFh0X3PJm5oaKKzs5MLF87z0Ucf8vOf/5PvLFg9G6RVjb5g4rY9SkRRxGQ2EwyOoSoq4vg4YMIX0umsUz4jCAI5OS40TUPVwGi2YnTmEg920dZ2ibq6+inXb0ISqbGxifLyykl2pdx9f+RFMkHDvXR0XGf58pUcO/Y1DoeD3Ny823/4e4SmaRw9+jVffnmQgoJCnntu66Q+QN9Hzp07M+n38vKKbJ+I2ebs2dP09HTz2mtvfC+zqOe5NXd1xfz+8B2LkQtCZrBwN5+5W9KKij8mc6Z9gGQc9KQxoGAwfKONE4uliMWSM25jdDRyRzo69+N47jfTHdNDDz3G5cvt9PcP8fbbf+b551+aZGB6R2OEoymsOoFYbGZJjtFACPkWWnIqAmlEwrKcLYO9F2KxYQYGhicts1iMxOMpHA7npCxjl8uNHzfDhgJc5kFGx5JEZY2enp5MRu+4JnIqlUSVk2iCDlHTECUdICIJIOh0SJKUHbBo6QiyaiGW24Ap7GfxgiqKi4uz50xRFEZHR+nv76Ovr5dIJELCG0OoXIUoKEg6PZJgAU1F1YlIchgxEUQTRAQ1jRqKEDUZEb35iGoK0lFiyJNmfT2ejIZsJCIDMsuWPcxHH33Ixx9/SmnprbuQdnd3MTjoJxyO4nJ5KCkp5R//8R3eeuuXtxyUuQ0iwUiCgKSQltOk5FRGwzeVIiXLk/4dSYk41BD/17HebOKQJEnk5nqATGaS3e4iP78km6U0kf17+vQpTpw4Rl1dAwD5+QU8//yLU4xwLKYQi0W4dOkie/fuxmw288ILP0EQRH7969+TSs38DoAkxfTTqS/G4C0nEJWxyiqCIBCXFYbCSURB4Om6XByo074vpnuW0uk0X311jETim+9ualpGIDC9LMi35cyZU1y6dIXXXnuDsbGZswzvlB/LO282t3u33Ol+3K9rkZAVekfGuD6SCZ4ZkdGhotNZGBkJk0gkbmlPAUZGQtjtmWfEZnNn14/F+unqGsyW5P9Y7q916zbyu9/9hgsXLrNz515Wr3500mf6h0MkE2lSSZnUNNucIDAWvqVN1UgTAWK3fNfdnkgkTk/P5IYlFouRZDKdlaWYyDZ2udyMGouIWRLYwx2E1DShUJh0uhtN09DpdAiCiKKk0ZQ0aVFEEFRESQ+qgE4U0MYrdiYcCC3uJ2EoJFXQjH34NE319ZNKElMpGb9/hIGBfgYHB4nFIqQqbAi+SkRNRjTkIIqZBnSqqKFLjiHIcXQICIqMHIgQddgwuPLRK0nScowYGm63h8bGxdTX12dtZuY9qqOuroljx77m/fd38Mtf/tNbTu6dPHmKsbEwOp0Bp9NIbm4Bv//9P/LKK6/dsnwz36LjZNcYBmWyHR0cGJ5kU5PJJCNpHUXqMP7PR7KfdzptCIIOq9WO1WolJ8dHUVEFVqsVmy1jV/V6PQcOfE48nmLRohwAamsXsmnT5imTupGITDicusEBLuKVV15hYGCADz/cPkUX80b0JMlHZMhcis5VzGg4gVkvoWkakZTCUDiF06RjQ5UbOZpgJDp1QmO6Z2l01M+FC5cnrVdZuXDWtTAn2LdvD4FAmBdffHRWvuPH8s6bze3OMztYDToeq5rab6K8vILy8goikQjnz5/j7NnTnD9/Dp8vl8WLm1m0qGFWpP3uBEEQ2LBhIwMDfYyOjrJnz0e88MLLD6xWaUJWSKZVjNNM+qZkmZGRYYaHhohEI8iyjN3uIBQMIqdSgICky9iZG+2N0WjCYrFgsViQpPF3aiQCaGjSeJPtQIBr165SWVmNIAjk5eXT0NB4S0mk+8XXX3/FuXNneOaZzdmGxTU1tQ/UNY5Go+zevZOOjuusWvUwq1c/OicJP7PJyMgIPT2Tq8jmqolrJBLm4MHPaWxcTGlp2Zx8xzxzy10FhzWNuzb+9/KZ2zEWl7kwEOZkzxj9Y1EuJTIyEjoUPFqIuN6BomqIgoAoirf8flVV72r/5uJ4IHNMHaOZoFGF23LLTIrZ5sZjMhiMbNnyAm+//Tva2to4efIEy5atyK6rqBlpCREyLclnIBG/dfaSgIYGqJpwq83cNRP2RdM0xsbGxvXwrgGQQsdFoZhITCYdDSKKAslkimAwU4br8XjR6/Ukk0m0sX5UVwkpvRFF1tApIQyJMVweL/F4nHQ6k42eSqVIBtvRnPnkNK2nyJeRjggE/AwPD2Ub2kxk7xiNRpxKkLReQFA1VDkClhwkSYdJVHGTRDSZCARGs2VE0ahMRIpSZkzQ1Fg1Zdb35vtx4cJFnDx5gr6+Xg4dOsQzzzw74/m6fPkybW2XMRpN/Ot//f9k//6P8fv9/OlPb7N+/Qbi8TjRaGSKlu9wJElXwks3GqbxruQAOp0eg16P3mDAaDBisthQFT2bqspZUvLYDYFfEz6fg5GR6R2KeDzORx99yPXr17LLGhqaeOqpp9HpdFM+I8syn3++nzNnTrNwYR1PPfUMyWSCP/7xDySTtw+W5BlSPP/0Ui6FJK75owyGU4CGXhQpdVl4uNxNY4GdjM7XzNu58Vm6fPnylFKwhoamOXl/RCJhDhz4nMbGZkpKymb1O+bqnfdd8n05prvdj7nYb03TGIwkudAf5lRvkL7hAB1CpgmWQZMpkGLEBTMOVUMQbm1PYbJNzc8vmLR+f38flZXVc35MAAPhBL1jCQySSI3Pel+7st94TC6Xhw0bnmbXrh0cPvwlxcWlkwbMijJuSm9zDm5+l9yMgIaq3f763C0TNlVRFEZGRhgZ+SYgGcHERbGYeHAU0ikEQSCRiCPLKURRJD+/IFMWm0igjPVBThGqpEdNKUhyCJ0cJcebSygUzAYbE4kEyVAbQk4hvkIX3hwVWU7j948wNDTIwMAA0WiUxLjMhtlsxpHykzbXIySjqKoDwexA0klYBAW3UUJJ6fH7/cjjfRDGgmOIgpUGS5Qlzc00NjZRUFCYdVBvPocPPbSalpYW/H4/p0+fmjQmupnW1lYuXGilvLySf/bP/ort29/j6tWr7NjxIc3NS8btaOQGu5r5tyuiciXloYfUpO7xer0ha1PNJjM6iwOjoOPVRTVU+BzjwV8bhYUe/P7IjNd/dNTPBx+8h98/Mn5dBR599DFWrXp4vAnS5PUjkQi7d++ks7ODVaseZs2ateMltB+iqre/yRY6VH7y5DLODiboHouTVlVAwKQTqc+382ilhwqP5bb3643P0tmzZyetbzZbqKqqmZP3R09PN6dPn+bJJ5/CZnPM29Tb8EM8ph8TNpuNhx56hFWrHub69WucPXuazz7bz8GDn1NXV09z8xLy8wtuv6FvidFo5Lnnnuftt3/H1atXOHXqxC3ft99ntHHDPmFXMr5hgKHhIQKB0UkTbHq9npKSUgK2ANevtZNMJXHYM3bMZDJhNmcCwlOzMAWcTicRQZwk2+P3+2luXsqLL75KXt73Iyu3peUcX3xxkDVr1lJf38DBg58D3LIfw/eNzs4OPvpoB5qm8fLLP6GiovK73qU7oqXl7KTfLRbrnElgfPrpJ0iSjscfXz8n259n7nmgcr01TeNsX4i9l4YYjaYw6yWMmoyFJBoCaSQGJC/bLgZpD8GmRXm3FdpWlHvPWp0tBsNJ/ny6l96xTEC1OMfEa0uKyLXPbbfxmcjLy+fxx9fz6aefcODAZxQXl5CXlw+AXhKQRIG0qnGrvly30kcE0BAQ0BC5fw0BhwQHEcGEx5SiX1WRJB2CkCIejyMKAv6REUxmM/F4jEQ8jhANI5odWCxmDKQRVBmTyYXVamNgoJ9YLEo6ncZgMJKKjjJmKeRsx0VCXRcJh8PEYlEURUGn0+NwOLBYrOh0OiSdiCrESXnKcell0kLmuutJI6GBTofX6yMajTA2NoZgsmM2G8gXAzgcTkpLy295XwuCwPr1T/L227/j/PlzLF26DJ8vl1hscoA3HA7zd3/3N/T0dPPYY+v59NN9DA0NcerUCRRF4cSJ45SVlaPT6SZl9BYVFVFrteEI6TkbgHy7EZfVjF6vn7RfKUWlczTOqjwbTy8rnhScudUk8dDQENu3b8s2uhFFkXXrnmDp0un1Hv1+Pzt2fEAgMMpTTz3N4sVLSCQSbNv2DpHI7bN9RFFky5YXqKwsZ6Wm0RtMMBJNoWngNOsoc1mQbqEFOhM3l/CUlpbNWffaTz/9BJ1Oz2OPrZuT7c/zw0RRNQ62j/DltVFCyTROow69msja1JSgo89QyH890smaSjery3Juv80bNPNubkDX398/JTg8F7QNR3jvbD+BWCZguSDXyk+WFH1nzaPq6xvo6uqkpeUsH320g5///FdYrZlSUb0uM1WqadqM2TMaZIOhM6EhoPsWVTh3iwb0Cy5kJHJMOoZDmeobQRCIx+IZ7f7BQSRJIh6PkUwmESMhRJMVo9WCXokjaCo2WyajdWhoMDOJqqoYDQZSyQj9FjfqpeP4+zqIRiPE43FUVcVgMOByuTCbM9lTBilJQqeg5RSRo1OQyZwrA2lENCSDgfz8fILBIOFwCMHuxWkSydXF8fl8kwLD02E0Glmz5lH27dvL4cNfsmhRA3q9ftLEaTQaYWRkmD/96Q9EIhGWL1/Jxx/vZnBwkIsXWzl69Ai1tQvw+XIxGAzjQd1Mlq/X62WB2YrFr6cjrFHiMmM3m9Dr9ZP2K5ZS6A0leKzczaON+dm/CQK33P9r167y0Uc7snqDJpOJzZu3zPgsTucAj4yM8MEH27IT47fCbLbwyiuv4fF4WFGp0TkaI5RIIwjgtRoocpruOlNMURTOn2+ZtKy+vmFOSlbT6TQff7yHwsIimpuXzvr255nn+4ogCFRWVlFZWUU4HKKl5Rznzp3h3Lkz5OXl09y8hIULF2E0zp1/eisf9EFCLwmIgkAoHGW4z8/I8DBp5dbvT4fDgcPpxO8fIZlK4rZ5cDqdmEzTV3JqmopOZ8Rhc6AMgNvtJjc3H7fbTTgcZnTU/70IDl+/fo2PP95NU1MzDz+8mt7eHmKxKCaTiZKSuZEFmk1UVeWrr77kyJHDlJaW8eyzW7DZZpYY/D6RTqen2M6GhsY5yXa+cqWNy5cv8dxzzz/QkjA/dh6o4PDJ7iA7WgcQgEqPBVEQ6O3zZwJqaOhQ8VpM5Jj0HOkMEE+rKNz65r9Z3/S74MtrfnrG4lS6LSSTSbrH4nx5fZQXm+Z+lnYmli5dTldXJ1eutLFjxwe89davMBqNuCx67EYd4UQak23mc3u7LKcUOuxaHOk+BYfTiIzgzGj3SjqsVhuappFMJG5wUjSSyQSqoqJqGiQiaMkoqbgJi8sFfNM1VlVVVEXFYDBmthMJkTY5iIwk0Pp6EUUJi8WC1ZrR4ZUkCbfbg9frIycnh5Qo0iakiQgW7MQRb0ob0+sN1FQvAJOdrsERCpV+3Mkkx48f5dq1dp599jny8vJJJpOTso8m/o1EIgQCATo7r3P58iVqaxdMOSc9Pd1cv36NoqJiVq58CKfTSXPzUpqbl3LkyGEMBgMbNz5DU1PztI7cCkVl94VBjnWN0RtV8JhFjDqNtKoRiMkkFY0FeTZebCq446y9y5cvsWfPR6RSmQwvs9nC1q0vzFiacv58C598sheHw8HPfvYLcnNzkWWZDz7Yls2Quh0bN26isrIKyAyMi3PMFOd8O6M2Ouqnq6tz0rLFi5d8q23OxLwxnudeUDWNTy4PceCqH6dJR43HgiAIBPvjN9jUFLkOPXpRYN+lYRKyggYzNvCCyTbVZDLh8Xjw+/1AJnN4rtE0jX2Xhggn0lR6LETjCS4NRjjTG2J1xdxMztwJTzyxgb6+Xvz+Efbs+YiXXnoVQRDwWAyYdBLRlDJjA5hUKnnbsUoaESvfTlLibohjYEywYUZGbzRiNI7bwmQCQRQQBFDSabTxRqyapqHExtASIeSUFaPdjiRlNIkVJT0edNQwGI3IskwiNMiIzszoUASGBtHpdNhsdiwWC3q9Hr3egNfrxev14nA4CZHiiiAQ04zYhMSUe9RsMlNaUkYUA4NDQ1QL/RgSKfbv38eVK20888yz2O2O8WqZybY0Gs3o+XZ2djA66qe9/QpFRcVTzklLy1kCgQB1dfXU1dVjtVpZufIhLl68wMWLF7BYLPz0p2/O2GipKZHmg5Z+WgfCRKJpPBYRnSiQUjT8sYxNXFnq4pm63DsKrmZ0EY/wxRcHs1lqHo+XF154Cbd7aon5TA5wOBxi27Y/37LR8AR6vZ6XXnolK3elEwWqvFM1M++Wq1evZJtbTjBXZbHHjn1NIDDKW2/9as46uc8zz/cdu93BI4+s4aGHHuH69XbOnDnNvn17+fzzT1m0qJ7Fi5fMWdB2Jh/0QSEUCtLaep7OtgH8cfWObfOEbKHD4URVFGLRKIODGTkuu90+JUisaRomsxlnYSHPrn6Ttq/3T/r7nj0fYbfbv9PmfoODg+zY8QHl5RVs2LARQRC4ciXTi6Kysvp7L8kQDof46KMd9PR0s2bNWlateviBsguZKtbJcoZNTYtn/XuSyST79++jsrKKhQvrZn3789w/HpjgcGcgxp6Lg0gCFDi+0T+KRSff8FaLFbtJh04SONMbRJ+2k8PURmYTfB+Cw8G4jFmXcZDOnDlJ2pTDZS2CXJeROfguEASBp59+lsHBAQKBAJ988jHPPvscVoOOpkInn14Zxms1TOugyOk06bQ8zVYzqICKiI/QLYMMs0kIC3HBgI2Mc+NwOIhGI0g6CWFc20kQRFRFJT3eHVzTNBAEFCWNLMuYTCaCwYxUhSiKGIxGotEIqqJkZoMjAYScInK8hThMEjqdDpfLjdfrxeVyTzImJmRqtH7aySckmBE0DbOYxu104PZ4EfRmArEUelVhfY0LW2CYQwevkUgkkeUUn3yyl4KCQvLy8idtV6/XZ7N8GxubCIWCSJJEXd0iFi2qz2b/dnd38Td/89csX76SJ57YwNatL0w6XzabjWPHvuazz/aTn1847cyzXhLZXJ9Ptc/Gmd4g10aihFMKogBFOWaWljhpyHfcthkDZJ7DL788xNdff5VdlpeXzwsvvDStyH8qleKTTz6mtbWFhoYmnnzyKQwGA6qqsmvXjinaSjPx6KOPzUm31paWc5N+N5stc9KNd8IYV1VVzxvjee6KM71BDrWP4rboyblBxih6UwDGZrXgsRqQRIEvro2SxoGP0Izbvdmm5ucX3hAc7r9lhuxsICsakaSCwyRlHbS01cc1p8LDZTnf2aDeYDCMl8v+lmvX2jl+/BgrV66iyGmi0m2hbTg6Y3D4dpOtMhISGm5tbrRXp2NMsCEjYSaJIAg4HI5MdrAoIiCg0+tBADktoyoqAoxPLAik5BSKomA0GhkaGiIaDaPX61HGneG0kkZRFKRkDLyVeJNDWMymKQHhG+8jB3GqtX6uC3mEsCChYhbTeF1uXG43KUHPWFzGKqlsXuQler2LE+evkkqlOHv2DB9++AElJSW43Z5J2zUajdks36VLl3HixHEEQeCRR9ZQWFiE1Zpp3nby5DEuX77ImjWPsXXrC6xZ800z2Obmpbz33jtcv36NXbt28Oabv5xW+9Fu0vFqcyGtA2FO9wbpHYujqBo6SWRhrp0lxU4W5d2mceE4qVSKPXs+4vLlS9lltbULeOaZzdMGWWZygCeqcEKhmZ/5CQRB4LnnnqewsOi2694tN1fiFBeX4PVO3xDv2+D3+zly5DCrVj1Mbm7urG9/nnkeNERRpKqqhqqqGkKhIOfOneXcubOcOXOagoJCmpuXsGBB3RTd8m/DzT7ovn172bx5y/damzaVSnH58mXOnz9Hd3dXRndf8JEWpk7ETYcoirjdHoxGIz09PcTjMdLpdLZqSKfTEw6HsdszckI+rw9FUSgorcTm8rFmaQWFJo0DBz7NbjOdTvP++9v42c/emnZCcK4JhYK899475OS42LLlhaxO8tWrmeDwXPhFs8m1a1fZtesjdDodr732xgOR5Xwzp06dmvR7aWnZnNwLX355kEQinp0AmOfB5YEJDp/pCRJKpqn2TB5Q3+zIWiyZWTWzXsJl1nNFsWBBwjBDueX3IThcnGPm4lCEWBqKymu5PjRKX9tZ/qbzMPX1DTQ1LZnUkOV+YTab2bx5K3/+8x+5cOE8ZWVlNDYupqHAzpGOUSIpBfs0zuztyl+TGDBpKVxaZK52fQoxwYgG2QxdnU6H2WwhHA5lnFlBwGA0kkwmUFQlExjWMhlymqYRjUZIxOMEg2NIkg7QSMtpNC2jnSyKIjo1hc7sRTHZqawsIC8vf9KMaDqdzjRtk1OkUjKynMIsX0Vny0fxlJOSchgKp+gf60KvpfEQIkeLEBCT6H1u6usbsjq2DodzPMgi8vTTmyguLsFqtWEwTA7Yl5SUcuTIYfr7+3jmmc3odDq6u7vYs2cXRqOR3Ny8aXWH1q59nKGhQTo6rvPhh+/xs5/9YlpnVhIF6vPtLMqzMRaXSaRVdKKAy2JAd4dSDIlEgo8++pBr19qzyxYtamDjxmemnRwZGhpi584PCIfDbNr0HA0NjTB+nT79dB9tbZenfGY6lixZykMPPXJH694N97P89YsvDpBMJnjyyafmjfE8d0xa1TjWOYYoMCkwrGralAwDy7j8QY5ZTyiRpl9y4VVmnti72aYWFhbS2pp5HuLxGGNjgTmTV4FMKWeh00RLX4g8mwVfSSW9wwFajh7iv1w4RFPTYpqaFmO3O+ZsH2YiNzeX9eufZN++vRw69DnFxcUUFhaxpNjJxaEIsqKinybwl7hNcDih6XEQw863b0R5p4QxIaJm7wOTyZx9xwlCppzWaDQRj8dQlDRMhIcF0FSNcDhELBZFEAQkSUcqlSItp1G1zDYlUUSnpBCtLjBaqatbMClwq2nauD2Vx21q5seqtGFxlZDKKUWWbPQGonT7gxi1ND6CWLQw/ZJCbq6HhQvraGu7jF6vx2AwIMsyDoeDDRs24vX6sk3cbiQnx0V7+1UGBweyAeCzZ0/z1VeHyclx4fP5pthUURTZvHkrb7/9WwKBADt2fMCrr74+7USFSS+xrCSHJcVORqMpZFXDIIm4Lfo7fscHAqN88MF7jIwMZ6/HmjVreeihR6bdxkwOcDqdZvv29xgenjnB4kaeeurpOdExDAbH6Oi4PmnZXGQNa5rGvn17cDqdPPzw6lnf/jzzPOg4HE7WrFnLI4+sob39KmfOnGLv3t03ZBMvnTV/1Ww289xzz/OnP73NxYutlJeX09g4+xmP3wZVVenu7uSLL9o5fvw0sjw5McqqJRAEDRVhSoXoBA67g9zcXDweb8ZH6+kmEAggSRLJZAKj0UAikcTvH2FRXT1GoxFREnF7PAwODRJTRCptRlwWAytWrCQYDHD69DcBwUQiznvvvcNPf/pWVs7qfjAxsShJIi+99Gp28mBkZIRAIIBOp/veavYqisKhQwc4fvwoVVXVPPPM5u+8md+9MDYWoL29fdKyuXiG+vp6OXXqJI8/vh6nM2fWtz/P/eWBCA4HYinO94fx3DQ41m7hyAK4zXoSqo6AYCdPG5t225r23QeH11R6CMRlLg2GMVjtbH2okLXFy2m7cI6WlnOcPHmC4uISFi9ewoIFC+ckyDQTxcUlrFmzlkOHDrB//z4KCooo8niozbVxpieI2SOiu8nBuVWWUxqRFDpKGEZ/H/URI5imGGaz2YyqqhnnTwBFyegHRyMRVFVDEAVUTSMty8jpdNaBVNUUoihhMBqx2mzEYhmNYoNeh6Q3gNnBhQvnCQRGURQ167jeGDTR6XTk5+dTU1FJQUERNpsd1WhBb7JitVjIdVrx5jjGs4Ct5OY6GRkJk04rHDlymK+//iq7vf379/Hoo4+xfPnKKY7fqlUP09JyjrGxMU6dOkllZRUffPAebrcHWZYRBGHaZgCiKPLcc8/zhz/8hrGxMT766ENefvknaAh0BmIEYjKKpmHWSVR4LNiMOlyWu88amNAxHB0dzX7v44+vZ9myFVOORdO0bJMMl8vNm2/+Mlu6CnD06JFJA6JbUVNTyxNPzE1Atb39KtHo5ImPuXBk+/p6OX36FOvWPTFvjOe5Kzr8MbrH4uTaJj+z8Xh8UpMUyDSumMBnM3BJMBPCgpPJtneCm4PDN+sO9/X1zWlwWBAENi3KI5lW6R2Lk+Py8GRTNY3OJZxvOcvx40c5cuQwVVXVLF7cPKm55/1g8eIldHV1cunSRXbu3M7Pf/5PWJBroyTHRNe4vNTN76X4Lcr5k+hAgFw1eN8qcVQEopgmaRwLgpB1/gzGb+4rnaRDVTU0VARByFTapNMIsoDRaBz/eyrTlNVsxirZiEQiyHIKvaghmm0kRRPnz7fg8/mQZTkbFL7xXjUYjBQXF9NUU4XPl5tphmqwYjBZsdss5OfYcDns2Gw2LBZztiFqLBbn008/4cKF8wCEw2H27t3DU089TW2ta8qxP/74E1y/fo329qt0dFxHUdJ88snHFBUVIQgCdrtj2lJrs9nM88+/zB//+Du6ujo5cOAz1q9/klRa5fpojHAijYaGzaijwm3BpJfw2u6+jPratfZxfeHMOMxoNLJ585Zp7fytHGBN09iz56Mp8kgz8cgja+ZMOqml5dyka20ymViwYOGsf8+5c2fo7u7iJz/56X0dZ88zz4OGKIrU1NRSU1PL2FiAc+fO0tJyjlOnTlJUVJz1V79t9WtRUfEUH3QuKgbuFr/fT2trC62t54lEQlgsxmkrZnOIYtZSJAQ9FlLZ5SajCV9uLj6fD/NNUhE2qxWTyUQsFsXhcKAoKrm5JgRBpH+gn5UrV+Fxe+jt7WVwaIhcRwFLi53Z3ihPPPEUoVCI9var2W0GAgG2b3+PV199/b5UJE9MLEYiEX760zcn6fNOZA2XlZXParb5bDE2FmDnzg8ZHBxg3bonpvWtHxRurmI1mUzTykx+GxRFYe/e3eTl5T+wzSPnmcwDMfq55o8RSshU3JQ1PNGc5EasNziyoiggieDHRh5j0277+5A5bDFIvLy4kMC4ppzbakAUBAoeW8eaNWu5cqWNM2dOsWvXDj799BMaGhpZvHjJpMDYXLJq1cN0dnbQ2dnBjh0f8Oabv+DZRXmEEmmu+aOUu8yTsp3cLjcN9Y0kEnHi8QTxRDyj45dMEVEN+LQQhdrofdn3CRIYpugby7KMTqfPZP+qKrFoLOMQCAIIWkZXWM1kMQnj2cVoZAMJqqqiKGlMJhPJRJy0LKPIMmlFRA6F0DQoL6/A6XRiMBgwGo2Ul1ewePESmpqa73gG90abJEkSa9aspaqqmt27d+L3+0mn03z++ae0t1/lmWeenRQoNBgMPProWvbs2cWBA59y9OhX2Gw26uoWMTw8RFFR8Yz7caMze63jOr/edRDFU0F3II58Q7dyl0VPc6GD5aUuvNY7N/QXL17k7bf/PElfeMuW5ykrK5+ybiKRYN++PVy6dJElS5by+ONPTBrgtLSc49ChA3f0vUVFxWzevHXOAkI3l78WFRXP+mD2RmO8dOnyWd32PD982v2ZLFXzTVrgsejkShyjwYj+hiCJWS+hIhIULDi16YPDN0+4+ny56HS6bCOrgYE+6usbZuMwZsRrNfCLlSUEYjJ6SSDHnJlYLios5PHH13PhwnnOnj3Dtm3v4HQ6Wbx4CQ0NTfelwYggCDz11DMMDPQzNjbGxx/vZsuWF3i+sYB/PNVDRyBOmcuMeMOLv6iwiJycHBLxOPFEgng8TiIRJ5RUSGh6irURPNw/SQkZCUUQp0zwqqqKKIqZTOBkknA4hE6SsknDmqoykUMsTFTVCBM2VRv/vIDJZEROpUinkpCWSasCsn8kcw2LitDrDRgMhnFHZyFLliyjrm7RHTuaN9rUTIXUFmprF/Dxx3uIx2PEYlG2b3+P+vpGnnhiAybTN1JmHo+HJUuWcvLkCbZvfw9VVamqqsZoNNHf309NTc2MjqTP5+OZZzbz4Yfv8/WJEwyIHoYFJwPhRKbPASAKArk2I0uLnSwryZlRauRmMvrCX3Pw4Oc36At7eP75l6cdK97OAf7880+5ePHCHX13Y+NiVq9+9I7WvVtUVZ3i4NbVLZr1AEckEubgwc9pbFw87RhknnnmmZ6cHBdr1z7O6tWPcuVKG2fPnmb37p189tl+GhoaaG5eitdrv+ftr1r1MF1dnXR0XM/6oN+F5GIsFuPSpQu0tp6f1D/hVnFDHSpeQnTiwyoq5Hp95ObmYnc4ZpzMtVptiKKIpsHSJcsZGhrE4XBmq0aPHfua2tqFVFVWcalnEL0S48qx/eQLKyktLcsm9/zpT28zODiQ3W5vbw+7d+9ky5YX5jTYqWkae/fupq+vl1deeW2K/3P16hXg+ykpcfnyJT7+eDcmk4k33nhrSnLDg8R0trO+vmHWn53jx48yOurnzTd/8UBpMc8zMw9EcDguKzBepngjiqpgs9mJxaKZDtZ6w5SbXi9opG5xmN+H4DBkyvOnyxKRJImFC+tYuLCO0VE/Z8+e4fz5Fk6cOEZpaRmLFy+hpqZ2TrMcBEHg2We38Nvf/gMjI8N8/vl+nnrqGV5ZXMD75/ppG46SY9LhtmakBHQ6HU6nE6czoxWbSquMRFNE5TTrPSZW+SARGWNsLMDo6CiBwCjBYHDOroUGqIKAcEPmsKIojI2NZrOYJpxTRc3oIMqpFPJ4MEMDNI1sUx2dPiNJYTQaJzmjOp2etNmM0eXBKmcyh0RRoKlpMY2Ni6mvb5i1DM+CgkLeeutXfPHFAU6cOA5AV1cnv/nN37N+/ZM0Ni7OGv+GhiaOHTvKZ599gs/n49/8m/+FPXt2AVBdfWvjnJuby5NPPctf7z7C0cujFBeZqS70ZYNKiqoxGkuxv22ES0MRXmoqpMR166ZomqZx+PAXnDlzHFlOjX9PHi+88NK056e/v4+dO7cTj8fZuvXFKRlD16618/HHu293yoCMs/zCCy/P2cAyFApy/fq1ScvmImv4G2P8y3ljPM9dE04o08u+CGAxW4gnMhnElmkmjkRAvgubKkkSeXn59Pb2AJnM4fuBXhLJtU+1qUajkSVLltHcvJT+/j7OnDnNkSOH+fLLQ9TU1LJ48RLKysrn1HkymUw899zz/PGPv+fy5UucPXua5ualvLK4iA/O9XN1JIbXmtGCFsczcg0GA+RkMlnjssJwJIVb01iSa2SxSyE0FiAQGGV0dJSxscAdacTeKxoC2k2ubSqVIhQKoSgKSjoTNNZUDU3MTDLIaTk7QZCxqRqqooIu04DVbDZnbaosp5EkHXq9HtlkweL1YZIyExcWi40lS5bS0NBIXV39rDXhrK1dQGFhEZ98sjfbLKe1tYWurk6eeeZZyssrsus+8sijnDhxgi+//IJly5axadNz/N3f/S1we5u6YMFCmpY/wl9OdnL8VAe1FeWUeJwYdJn3uKxkxksfXRjkykiUlxcXTpJ+mY5UKsV7773HsWMnmUiwra6u4dlnt0yrL3w7B/j48aOcOHHs1idsnMrKKp566uk5e16uX28nHJ58Lzc1zX6G8mef7UcUJR5/fP2sb3ueeX4M3OyvTmQTnzx5nEWLFlBZuZCamgV37a8KgsCmTc/xu9/9mpGRYT77bD8bNz4zR0cxGUVRuHatndbWFtrbr6Iod1fxKggCq8pceAwlJCQLFZ7bJwUZDAb0OgPYPFwYiuJ2FjAaGsZpNZFnzcVisdDefoWBET+qYGLLkkqebCznxIljnDhxjOXLM0Hil156hbff/t2kscDly5c4cOAz1q174q7PxZ1y6NABLlw4z5YtL0zR6A2HQ/T39yEIApWV1XO2D3dLOp3ms8/2c/r0KRYsWMjGjZsmTQo/iFy71k4kEsZi+WYM0NjYPKvfMTrq56uvvmTZshVz1pxynvvPAxEcngm7zc7ipsVomkYikSAlp6asIwjCDCo/GRTl+xEcvhPcbg/r1j3Bo48+RlvbZc6ePc3OnduxWKzj2cTNc1aua7PZePbZ59i27S+cOXOa0tJyFi6s4/WlxXzdOcrp3iAdozF0ooBZLyEKGUmGqKwgAPl2E0+W+FhZ6so6QTeiKArB4Ngk53YicBwOh6eUOt8NAiBqGgoCiWSmE3k4HCYSiSAgoDcYUJQ00nh2m9FgRDJLEE8gpzPSC3q9Lpv9azAYs/dcIpHINAyIx3HmGImn05CIYZBl8vLy8Xp9LF68ZE60bfV6PevXb6C6upY9ez4iGAySSqXYu3c3V660sXHjM9hsdjRNG29qkMDpdBEMhuju7gKguvrWxlnTNLoEDylPFebRfiL911C8dtBnBjiSKOCzGfFYDFwPxHnvXB9vLi/BM0MGcSKRYNeuHVy7djVrsOrq6nn66U1TAraapnHixDEOHTpAbm4er776Ojk5k8t8Bwb62bHjgzuaWLDZ7Lz88k/mVDfq5vJXo9E46+WvE8Z4+fKV0zYKnGeee8Xn9eHz+lBVNSMxMY31HC+gmJHpnKeCgsJscHhoaJB0Oo1e/90OPwRBoLCwiMLCItate4ILF85z5sxp3nnnT7hcLpqaltDQ0DhnGn0FBYWsXbuOAwc+5bPP9lNYWExFbi5vLC/m645RzveHueaPYdSJGKVM5YqiqkRkBYMoUuIys6I0h+Yi55SJc8hUxgQCgUm2NPMTmCJ7c7cI4+FhTdOIxaNEo1FCoSCJRDyjya9pqJqKJEkoShqjyYQkSSS0BGklnQl46w0YjIZsQHjinovH46RSSWQ5U5UTk2WS8RgGVaWgoBCn08nq1WumlUn4tthsNp5//iXOn2/hs88+ITme/fzOO39i6dJlPPbYevT6TLVRLBZFp5MwGs309HQTi0UxmUy3bViTSqsM2ipJ2pJYoyMEuq9S4m4mM+2SmdQocJhIKSqXhyJ8cK6f15cWYdJP39h1bCxTLhyNBrPLVq9+lEceWTMlYJupMrq1A3zx4gU+//xT7oSCgsJsk6G54ty5s5N+z88vmHW7195+hUuXLrJ589ZZm2yYZ54fM263h8cfXz9e/XqZa9cu8dFHH2IyWWhsbLprf3XCB3333T9z9uxpysrK56wJs6ZpDA4OcP78OS5evDhFvvJO8Plyqa9vZNGiRdhsdi4PRfjHkz0MR1L4bLevcIkbc4jLaQZCCRKSGdJm3EYzkVCAXJ8Pk8nCiavdxLtOULaxBovFwtq1jxOLxbJB4hUrVvHSSz/hH//x9ySTyey2jx8/Sk5ODkuWLLvr47odZ86c4ujRI6xb98S012cia7iwsOi+VGrdCX6/n7ff/gN+v5+nnnqaxYuXPLAyEjdycxVrYWHRrDZZzWj078Vqtc5Z5dA83w0PRHDYrJfGnQ1tWidIEATMZvO0g7q0JmAgPeO2vy+Zw3eDTqdj0aJ6Fi2qZ2RkhHPnTnPu3BmOHfuasrJympuXUl1dM+sD9oqKSlatepivv/6Kjz/eTX5+Pjk5LjYsyOWRCjeXBiOc7w8RiMuk0iomvY4an43GQgc1Xuu0QeEJJEnC7fbgdnuoqpr8N1mWGRubHDie+P+dOLnRaJS4PMCoZkGMjgBkpQx0eh16vYFYLJ09XxNOrcvtJplIIMupTDaOlgl8yHIKnU6PXp8pVZZlGVVTSafTGMwGxHQSSZIYHfUTCgXp7OykpeUcTU3NeDwe3G43OTmuWcv4LC0t4xe/+Kd89tl+WloyjlR7+1V+/eu/Z8OGjXR2dhAOh9i4cRNjYwG2bfszqqri9fpu27F0IJzkRFeAhaWF9KlRxsYCXLp0gcVNzZOCuaIoUOEyc9Uf41TPGBsWTDVAfr+f7du34ff7M8odgsDjj0+v5xSLxdiz5yPa26+yYsUq1q59fMr9nDmWd7LX8lYYjUZeeunVOdXmzZTwTHZk76bU+U6YMMY2m23eGM9zz9hNEml15hCvKIozBkVVQbxrm3pjZqKiKAwNDVJUVHQXezy3mM1mli1bwdKly+nt7eHMmdMcPnyIL788SG3tAhYvXkJJSemsOwwrVqykq6uDa9fa2bnzA95885fk2Y1sbSxgbZWHC4MRLgyEiSTTpFUNk15Ho9NMU6GDcrclqzE4HXq9ntzc3GmdgWQymQ0UT9jSid9v11AWIB4aJYKDeDKFkMzIWaRScvZ7BUEgkYij0+lQFAFFUdDp9bgsFhLxOIqiZGQUxm1qKpVCr9dnA6+ZH5W0omKw6BHTSURRHO9cP8q/+3f/bzZu3ER1dQ1utwePx4Pd7piV6yMIAo2NTZSVlbFnzy46OzsAOHXqJB0d19mw4WkOH/4Cj8fD6tWPEo/H+eijDwGorKy+7birbTjCxaEIyxdUcPlCmEQiQdvlS9TXN0zaf4MkUpZj5tJQhEtDEZqLnFO2lSmz3k4yGcdiyUxcb9r03LTluqOjfnbs2M7oqJ8NGzbS3Lx0yvnq7Oxg9+6dd3SeXC4XL774ypxqRobD4Um6mQBNTbPbTCeZTPLJJx9TUVFJXd2iWd32PPP82JnwV9eufYhLl65z9uxpzp07m/VXJ6pf78RfLS+vmNYHnS3C4RCtra20trbg94/c9ectFit1dfXU1zdOmcCq9VnZsMDHnotDDEeS+G6hJy8rKjHBhE4MI8gxXOZcAkBH/wgr66u53NaG4CxgeXUxZ069w3/663/Pv/yX/4qGhqZJQeLjx48yMjLMihWr+OqrLyeNzfbv34fD4ZjVSdarV6/wyScfs2zZcpYvXzntOhNVObersLlftLae5/DhzxFFA2+88fMfTMJNOByac9t5/nymsurll3/yvdSOnufeeSCCw5UeCw6TnrG4jPsuml6pqoYqiPiYOYD4IAaHb8Tr9bJ+/QYeffTxbHnqhx++j9Vqy3Zln82A2Jo1a+nu7qK3t4edOz/kpz99E0mSsBp0LCvJYVlJ5rs0TZs1R1qv1+Pz+abtgJtMJrOZURNBY1mOcfVqBz093QwNDRKJRIh7a1Fy65kIx6blbxxZnU6HJOlQ0umszrDdbsfj8RKPx4nFYqTTaeRUpmmOoqhomowoihiNRlwuF3a7g6bFSxlOQHm+yoWvRrNZxeFwiN27d9LZeR2HI+PgSZKEy+UeDxZnfrxeLy6X+55eskajkWeeeZaamlo+/ngP0WiERCLOf/7P/4F4PMZf/dV/T1VVFb/+9d9x/nwLubm5d9SN+3x/iEhKId9uxFa7gHNnz5BIJrjcdpn6RfWTrrEoCjhNOs70hlhd4cFi+Gawd/XqFXbt2pGdvTaZzLz55s9wOHzcnBTe09PNzp0fkk6neemlV6YdvESjUbZt+wuxWHTK325GkiS2bn1xzo1+e3v7lFLu2W7QM2GMX3nlte9Ec22eHwZVHhuHpFHisjJFd/hWxGUFncCMesOQsbs3U1g4uWy9v7/vexUcnkAQBIqLSyguLiEWe5LW1hbOnj3Nn//8RzweD01NzTQ0NM1aduFEuexvf/sP+P1+9u/fx6ZNmwFwWQysrnCzusKdrUaYLZtqNBrJzy8gP79gyt9isdikwPGETW1ru0ZfXy9DQ4OZSq0iI4o9Hx0ZnWlFyUwYTASHk8kEmpaRahJUcLnc5OTkEAwGkeUUspxGlidsauazGZtqwmQyYTSaqKitJ5pK47EMc6XlOMlkklQqhd/vZ9u2v9DUtBijMZP5ajAYsrb0RrvqdrvvaaLc4XDy6quvc+rUCQ4dOoAsy4yOjvJv/s3/C5vNxv/4P/7fkeUU27a9w9dfH6GubtFtNRQ1TeN0T6ZxoM1kYOHCRbScO0swFKSj4/qUzu0GnYhOFDjdE6Sp0JFNjtA0jePHj3Hw4GfjY62MZNJTTz037YRva+t5PvkkM6k4kwM8ODjI9u3v3VHZtMVi5eWXfzJnWfUTnDlzZtIYXa/XU1dXP6vfcfjwIeLxOBs2bPxBZIvNM8/3lZv91XPnzrBjxwdYrTYaG5toalp822DvmjVr6enppqenmx07tvPGG299q0SoVCrFlSttnD9/jq6uzruuUtXpdFRX1/Doow/hdOYiitPviyAIrK5wIwCfXB7m+miMEqcJnTQ1SUjTyEpvGI2mjEY/Ah6fl0sd3Rg8JaRHOnluRTm6xkXYbA7+63/9GzZu3MSmTZsRBAGLxcJjj63LBol1Oh3Dw8NZuUdN09i580Nee+2NaccBd8uE/F9NTS3r1j057bs0kUhkG5zW1Mx+5c/dkEql+PTTTzh//iwPP7ySVavWotf/cAKc58+3ZMcGkJHuWrhw9iY/o9Eon3/+KYsWNVBZWXX7D8zzQPFABIddFgP1BXa+uj6Ka7yxzJ0wGpex6jRc2syNWm5unvOgotfraWhopKGhkaGhIc6dO82pUyf4+uuvqKiopLl5KZWVVd86WzUjdL+V3/721/T393Ho0IFptYvu1yDbaDSSl5dPXl4+6XSaa9eu0tV1FdDwen3YbHbi8TgjmpkegwExbSIZj6Fqmc7pOp0+u51wMtMR3mazk5Pjoqqyhq7uTkRRRJbTpI0yiUQCo9GI1WolFoshCAKiKJFOJ0hqIqX5Hv7l+tVcebiZTz/9JFsmG4/H8Pv9FBQUjZfMyoyMDDMyMjzlmBwOR9bB9Xi8eDweTKby8UHLrc9rdXUNhYVF7N//MYcOHaCrq5PS0jKOHfsat9vF4sVLOHz4C2Kx6BRH9GY0TaOlP4zdIGWkNXQ6Fi6so6XlHMHgGB2dHVTcoMMI4LEa6BqL0xmIUZeXkbT46qsvOXz4i+w6Pl8uL774EpWVpYyMfPNsqqrK0aNHOHz4i/GmcVuw2x1T9iuVSvH+++8yOnpnTQ2feWbzJL3IueLUqVOTfp+4L2eLG43x7a7dPPPcinKPhZIcMz1jcUpvoxF+I8ORFE4xhZ2Zg8PT2VSHw4nFYs1O5twv3eFvg8ViYcWKVSxfvpLu7i7Onj3NoUMH+OKLgyxYUMfixc0UFRV/a1tnsVjYvHkLf/nLP3L+/DnKysqnNOy7n0Eri8WCxWKhqKg4k9XadpHOzqtIkkheXh4Oh4NEIkGfIDJksiCmw8THr6sk6bJjDIPBSDQSQRRFbDY7breb0tJyrl9vJ5WSSaVSyLJMIhHDarWh1+uz2cagIcspUprIwooS/vufP87ePbs4d+7MeMO4b2zqwoV1RCIRUqkUAwP9DAz0TzoeURTJycmZFDj2er3YbOW3PReCILBs2QoqKirZvfsjDh/+Ar9/BJ/Px6effsKmTc/h8XiJxaJ0d3fe1s6MxWWuj8ZwWzLjDqvFQk1NLZcuX6Svvw+r1TYl09tj0dMZiDESSZFrNyLLMnv37ubixdbsOlVV1fz8528QiciTJlsnHOCWlrPU1zeyYcPGaSefg8Ex3nvvnUmlxzNhMBh4+eVX50zCbAJN06bY1IULF02roXyv9Pf3cfLkCR57bP2sZiDOM888M3Ojvzo8PMzZs6eycgTl5RU0Ny+lqqp6Wn9VFEU2b97Cb3/7awYG+jl48HPWr3/yrr5f0zS6ujppbT1PW9ulO6o+vJmiomIaGhqprV2IxWLG67UzMhKekuxyI4Ig8EiFm1y7kX2Xhrk2GsNulPBaDZOauuslgXynGf9YiLiiEojLSKKIIhlIyCFWFxh49JFVvP/OHzGbLfz8579k797dHDz4GV1dHfzyl/8sKxc0ESRevnwlv/3t33PixDGKiopxOJzjWvXv8uabP88mLt0LgcAo7733Lrm5eTz77JYZ4wzXrrWjqioej/e2VatzydDQEDt3bicUCvLMM5tZt271ba/dg4SmaVMkJRYtqp/V7N4J6am51K6e57vjgQgOAywpdtLSF2IwnCTfcXuR8ISsEIjLlJkVdMycCfGgZw5PR25uLk8+uZG1a9dx6dIFzp49w/vvv5vJbh3PJp4u6HanOBxOnnnmWT74YBvHjx+lrKzsOxOW1zSN/v4+WltbuHjxYra8UlXVbJmq3W7Hg0hKMJKyl5Ic7UcQBEwmE1arDZ1Oh6qqpFIpdLqMtnA0GsXhsGMymQiFgtjtdpLJBHa7HVVVkSQdjz/+BCPDw5w5e4pYLMa1viGKBts5InawdOlyli9fwalTJydl1xgMen7+81+hKGn8fj9+/wijo6OMjvrx+/3EYlFCoRChUIiOjutARuPTYjGiKMK4c+u9ITtqqkSFxZLR9Dp8+AtKSkopLi4hEgmzbds74wY5U+Y7MNBPcXHJjOdWVjSSaWWSHIjVaqW6pobLly9luukyOVytE4WMHrOskkwm2bVrR1ZjCjIyCxs3bsJonGykIpEIu3btoKurk4ceeoTVqx+ddoChqio7d26f1Cn4Vjz++BMsWjS7mUbTEYlEuHz58qRls13C8/nnnyIIwrwxnudboxMFVpbl0DUWJxiXcd6m4RVkAluqBiWGOOItlAems6mCIFBQUJAtcxsY+P4HhycQBIHS0jJKS8uIRqOcP9/C2bOnaG1twev10dy8hEWLGr5V85LS0jIeeWQNhw9/wSef7KWgoOA7c55UVaWj4xqtree5cqUNRUljsRgRBAGDISNd4HSCHQNp0YLOXkpgsAdJ0mG327O6/LFYDFmWMZlM6HQ6IpEITocDk8mMoqiYTCYMBj1ut4t4PI7TmcOK5Su53nGdc+fOIIgSXf2DWEYu86XQw+rVawiHQ3R1dWKz2bP763K5+dWv/hvC4XDWjmbsqp/RUT/JZHLcxo4CGVs0YVMFQZ/NLr7Rrt4sUeF2e6itXcCxY19TVZWRshgeHuLtt3+b0VgGZDnN0NDgLTWHE+mMVIbR9M3Q2+PxUFxcQl9f77RzvwZJJK1oJNIqweAYH3zwHkNDg9m/P/LIGtaseRSTyUQkImeX3+wANzY2TbtP8XicbdveIRKZOYliAlEU2bLlhVnJNLsdXV2dBAKBSctm06YqisLHH+8hNzeP5ctXzNp255lnnjvH5/Nl/dXLly9y5sxpPvhgGzabPeuv3hy4dDicbNq0mffff5cTJ45RVlZ2R/IIo6N+WlvP09rack8NW51OJ/X1jdTXN9zz5JggCNT4bBQ6TRzvGuNUd5DusQQaYNKJmPUioiCQ77RwTUwTUyUURaHMZWFpSQ5NK4s4/+XHFK56jUWL6vnzn98mJ8fF66//jL17d3Hs2Nf8H//H/8o//af/7aQKEavVyn/33/1LPvhgG/v376O3t4eiomIAtm17h5/+9M17GsPEYjHee+8dTCbjbZt9X72akZS4XYXNXDERNP30009wudy89dav8Hq/uyD1XNHRcZ1gMDhp2WzazmvX2rlw4TzPPLN5zquH5vlueGCCw2UuC0/X5bKzdZC+YIJ8h3Fa/WGAcDLNQDhJc5ETa2+atlts94cYHJ7AYDDQ1NRMU1Mzg4MDnDlzmuPHj/LVV19SVVVNc/MS3O57e2HU1NSydOkyTp06ya5dH/GLX/zqWwWc75ZQKMiFCxPaUP7s8pkSrCRUfATpIJdYPJOdVFOzgMqKStLpNK0XztPcvJR4PIaiKKTTaeLxBKIoIkkS5eWVRCMR3B4PiqIwPDzIF18cZPnyFaxcsYoLV9tJphLEhls5Ge+kpeUsJSWl2O12wuFvnK5AINM85ic/+SlOZ86UcoxYLJZ1av3+iX9HMpnJyQR9fb0ZJ/LGY7tJogLg4MHPWbJkGZs2bebjj/dw/fo1AI4f/5pEIobH4+Orrw5TX984Y4m0KAqZxoI3lYl7PV4szUunbeymaZkWVpFwiLc//nP22giCwNq161i5ctWULLiOjut89NEOBEHglVdemzH7akJv92YdpZlYvnwFK1ZMr3s125w/3zKn5a8TxnjTpufmjfE8s0JzkZOhcJLPr/pJqxpuy/RVOZqmMRqTCSbSPF7toXcwgX+a7U0wk00tLCzKPruBQIBYLAbYp133+4rVamXVqodYuXIVHeNBzM8+28/Bg5+zcOEilixZgsdzb47Pww+vpru7i66uTnbu/JA33njrrru6fxuGhoZobW3hwoXWSVr+M9lUMylytAgDqo1EMonRaKSxYTGFhYWMBka5dq2dgvwCYvGMLJOqKsjpNHq9nnQ6TWNjM6HgGBarBaPByPWOa3zx5SFWr16DKIh0DQdIRgKEQ618Fe/j+PGjVFRUodfrkeVvgqCdnR18+uknPP30JjweDzdWq2qaRjQamRQw9vv9BAKjKEqSaDRCJBLJlrpOYDAYxm1qpnInGAxy9OgRtm59kYaGJnbv3snw8BCKonD69EkSiQRWq5XPP/+UN9/8xYyZ3qIgIAgCNyuvlJaW4fPlYpnGFqtkSkMH+nv58NOPss2RDAYDmzY9R23tgknX6GYH+M03f4nX6512f2RZ5oMPtt2xvubGjZvuWwnp2bNnJv3u9fooLJw9KZrjx48xPDzEW2/9ctb6P8wzzzz3hsFgoLFxMY2NixkcHOTs2VOcOHGMI0cOU1lZRXPzEioqvql+ra6uYdmy5Zw8eYJdu3bx7Cs/YyAhkkqr2IwStT4bTrOeeDzOpUsXaG09P8V3uhMyTaXrqK9voLi4ZNaqeKwGHY9Xe3mozMWV4Si9oThdgQSj0RSykpFlLLGJKMF+1pS52biqmjx7ZpJWq2/g5MnjWSnCw4e/YN26J9i8eSsej5fPPtvPf/yP/yevvvr6pKCgIAhs3foiqVSK9var9Pb20NvbS1FRER9++D4vv/yTu5LomLAfiUSSN95485bNvjOVve3AdxMcTiaT7Nu3h4sXL9DcvIR16578wUrz3dz7Ji8vb9YmdFOpFJ98spfS0jIaGhpnZZvzfP94YILDAMtLctCJIh9fGuKaP4ZZL+Ey69GJAqqmEU1lsoWNOpGHylw8uyiPzwZvPei7E321HwJ5efls3PgMjz++nosXWzlz5jTvvfcOR44cpLJyIY2NTZOyce6Exx9/gp6eHoaGBtm1ayevvvr6nA6yU6kUly9forW1he7urrvWhiqQokQNIqqvhFyzSH19A4lEgkuXLuJwOKmrW8TZM6eJj5e2Dg0NIhnMyI5C2mMGnDkljMbGcBpFKiuqMJvNnDx5HJvdgc6Zz2uPNlOp1PLh9vfo6+sllUohSRLXr7djs9nJzc1DFEX6+nrZvXsnW7a8MGWgMVHSe2NGryBATo6ZtrbOSQHjCSf3RomKZDLBuXNnMRgMSJLEP/7jH7Jaj1eutNHX14coSoTDIS5dusCXXx5kw4anpz1fOlGgwGHi4mAYj3Vypu9Mg4BoSiEdj3Lw488xpDIz8yaTic2bt05xKlVV5YsvDnLkyFeUlZWzadNzt+xe+9VXX04plZmJhQvrZtS9mm2mK+FZsKDuW2US3siEMZ6u3Hyeee4VURDYsCAXg07ky2ujXB2J4TDpcJh0SIKAommEEmlCiTR2k46nFvp4rMrLH47em029eXDa399HaemD2fxDEAQqKiqpqKgkEgnT0nKOc+fOcP78WSory6iurmPhwvq7KoEXRZFnn32O3/721wwODnDw4Gc88cRTc3gUmYqHixdbaW09Pykb9U4QgDJDnIjmRFdQRrHHSUVFBYGJwHBBIcVFxZw8dWL8Paxn1O9HFnTEbYV0pIwYLLmY9QqxWJiGhibar17h0KED2Jwu7L5C/sVjjWhdJez+/7P33+FxnVl+LvpWrgKqkHMGiJxBgAnMmRRzEiVKolrd7dsTPGP7jO1zxx7bMz7zHPva984cT3JrpqeV1RJzzjlnAETOOaMQK6d9/yiiSBAgEUmRUr3Po6ebG3vv+qpq1177W99av9+p4zgcDqxWK1arlaamxieVvn6IRCKKi4vw9vYmP3/RyDGKRKjVGtRqDdHRMc9sB41GTlVVAz092mcWZHvo6+vDYrHQ2dlBZ2cHg4MDlJaW4Ofnz6NHD6ivr8Xb2+eJWVo1Wm0PUqmU9vY2Cgoekp09+4VVOt5KKd5KGYNm2whNfhGMmRgGGDDZMA70cvHUTSQOpzazr68v27btGpX0NZvNnD07sQmww+Hg5MljtLQ0v/yLfsLixUtfWH080xgMBqqrK1Eonk5RMjOzZiye9/X1cuvWdfLy5s6o9JMbN26mT3BwMGvWrGfp0hVUVJQ9ma/ux8vL60nBUxZqtYalS1fQ0NzKg247D4/cIygsCrFI7DQVtxkJMHdAexmOSc7zRSIRMTGxpKVlkJCQ+EqTiEqZhIwwLzLCnMVVFpsDq8OBRCTijryNe3c7CLaHjOiYTk/P4NCh/a6uE4lEQlFRAVlZOeTnL8LPz5+TJ49x4MB3NDY28M47G11J32EPlm+//cq10Nra2sKZM6ewWCx8+OHHE7rPDsePrq5O3nvvg3ErqZuaGrFYLKjVmtfSefIsHR3tHDt2GKPRyObN20hOTnmtr/860ev1LtO/YXJzc52LCjMgm3Hz5nX0ej3vvvu+W6P/R8xblRwWiUTkRHgT6+9BWccQD1v66dFZsDuclRUqmYQls/xJD/UiyleFWCQaN1n5Y64cHguFQkF29myysnLo7Gynrq6CO3ducfPmdeLjE8jKyiEmJnZCP3qpVMrmzVv58svPaGpq5PbtmyxcuHhGx+twOEZoQz1bMTRRIiOjSEtLJzExma9PX+GUyYbKxwebzUZ5WSkyuZzkpGQkYjHhEREuGQSr3Uaf4IFVrkIwGVCqNQxY5QT6qent7XqSIPbkfkUdioE6lsQsJdQ3nDl5c6moKOPAgX20t7cREhJGRUUZTU2NBAeHEBoaRmVlBVeuXJqwRIBUKiUoKIjAwJF6hIIgMDg4gFarpb29jSNHDuLn509SUjI2m80lUeHcF3p6urFarQQGBvHo0UOqqyvp6+tn9uzcMSUqssO9KesYwmp3jNDEGgsBqGhsw9bTQLDD+ZoBAYFs27Zj1IPD4OAAx47tp6qqlsWLlzJv3oKXXnNFRQUjdItfRlRUNO+8s+m1Ba7m5ib6+/vw8HiaCJrJFh53MHbzqpCIRSyPDyA1RENZ+xCPWgfQ6i3YBZCIwEslY2GsH6mhGoLViica61OLqaGhI03pnNqwM2vY+EOgVmtYsGAh8+YtoKGhjrq6Cs6fP8vly5dISUkjOztnwgkojcaLDRs2cuDAPh4+fEBUVMyMV9nYbDZqaqopLS2mvr5u0s9AYrGYWbPiSUvLIC5uFv/Xbw9QZPPAy9cfnV5PZWUlfr5+xD55jggOCqb9iQ7woMFAv8gbh0KEXmfEofGirm+AeXERtLc0kZGRSXVNDYX17URa6siPXYpH0lpWrVrD7du3OH78CEajkeDgEMrLS5HJZISGhhEcHMKNG9fw9vaZ8AKaQqEgNDSMkJCR16Xdbqe/v5/eXi319XUcOXKIiIgo4uLiXKZ0w3r3RqMJrVaLRCJBo/Hizp3b1NbW8Md//H8wa1b8KIkKpUxCdoQXp8u7CFbLx72f2+x2quqb8R6sQyI4E8NxcbPYuHHLqMXHtrY2vvjiawwGw7gTYEEQuHjxHFVVlS/c51lycmYzf37+hPadCcrKSp4sMjmnKBKJhNTUmVkYHe5A8vT0nPHnVTdu3MwcCoWCrKwcsrJy6Ohop7CwgLt3b7u6XzMzs5EnLaSjtwyFfhChrx2RTEJvVzeDdhFViIkV1AQzMP6L4ZyvOGUj0iZdLDVTyKVi5E+s08NCnUnUzs6OEfvYHAKBqQv4+sR55IpQFsZkUVtwDS8vb2Jj40hOTsHb25vDhw9SWPiQzs5Odu9+z9Xdq1Kp2LnzXb7++kv0eh0xMbFYrVZu375Ja2sLH3748UslBwVB4PLlC1RXV7F9+85Rz3ZjMSwpER8f/9rmMYIg8PDhfa5evUxgYBDvvvv+j15bvrS0ZESBhkQiJSMjA73eNu1zd3Z28ODBPRYvXvrKPQfc/LC8VcnhYXxUMvJj/ZgT5YPWYMFiE5CIwVspQ60Y+ZbE4pffhCZbffpjwakBGUZGRhK5ufmUlpZQWFjA/v3f4ePjQ2ZmDhkZmeO2sPv5+bN69TpOnjzGrVs3iIyMIioqetrj02q1lJQ8pqyslKGhqWhD+bi0oYaDgd1uR99UTpjgCaooCssqwW4nMz3d1b4bGBhEU1MTFosZO2J0VpBK7IjtNrwUEux2D5o6upmTGk9VZSWa0GhCAgcxlZznr//bf+ZP/uTfExwcQnJyKn/2Z39OXV0thw8fICgomOZmp8NuW1srAQGB6PU6fHx8yMnJnfLnJBKJ8Pb2wdNTzb17d4iMjGbPno8ICAgYJVFx8+Y1oqKisVqtCIKAWCxGq9XyN3/z/yM7ezYREZHIZDJ8fHwJCHDqL6q9/fCRCjT2GZjl7/nCoG6z2ymuqKZnQEeCw+nGnpSUzPr1G0eJ4NfUVHP69Al8fNS8994HhIe/+CEEoLa2mnPnzkzo8wgICGTr1h2vtR37+fZXf/8Al5bXdHkajJe5g7GbV4JIJCJEoyREoyQ/1o8+oxWL3YFcIsZXJUMpG9lmOF5y+EUmr0qlEn9/f5fUzFRaPN9khpOm8+blMH/+EoqKinj8uIiiogJCQ8PIysomOTl1XFOQuLh45syZx/37dzl9+uQTE7ipm8WA8zmnra2VkpJiKivLMZlMkz5HSEgoqanppKSkuTpHenu1KPvrCRSHMShE01ZWjkqleiJ14IwV4eERdHR2IAgCVqQY7KAS2xFsRnxUfvQ61NS1dpAWN4u6ujrUYXEEdHVjr7nJ3/xVF3/8x/8HHh4e5OcvZMGCfAoLH3H8+FECAwNpb2+nvr6O5uYmgoKCOXLkIBqNZlrPIBKJBH9/fxQKBZcvXyA3N8+lx/i8REVnZ4frtSwWC/39fbS0NPPf/tv/RU7ObAIDg1AoFPj6+uHn5zTCU3n4oMRG24CRcJ8Xt+GazWbulVZjMhmIe2KqPH9+PosWLRnxGxyeAN+/fwtPT2927tw9bqy4e/c2BQWPXrrPMAkJiaxcuea1Tuifj6lO06cXf1aTobS0hMbGBnbu3D2jBj1u3Lh5dYSEhLJuXeiI7tcvDh6lRhFPgIcM48AAjU31iMVilEolHoAeBe34EsAQEsZ+LvHw8CQ1NZW0tAyCgoLfqAKMYc3gnp5ubDYbUqkUm93B4cftPGoZok/mj8VsZX9RO6kh2dy+dxu1WkNgYCChoWF89NHHHDp0gNbWFj777Dds2bLd1UHj7e3Djh27+N3vvsZqtSKTyYiJiX3SqXgWb29v5s6dP2aS+MGDezx8+IA1a9ZNSOtZEASqq51FV/Hxr0dSwmAwcObMSWpqqsnLm8vSpcsnJZnxNiIIAsXFhSO2JSUlo1Kp0OvH9xR4GQ6HgzNnThEQEMicOfOmdS43bz5vZXJ4GJlETIjm5a3b490MfmqVw2OhVCqZPTuPnJxc2tpaKSws4Nat69y8eY3ExCQyM7OJiop+YdBMS0unsbGBkpLHnDhxjI8//vmUdFENBoNLG2qihmPPolAoSElJZfHi+ahUPjzv7tLQUIfZbCTZU0K/rZsCo4WE2EQU8qcVn2KRiPDwcOrr6xA90fqzWm2olXIQQCQWERDoT0tbG4rASNpbW5kXAMq8NIaGBvm//+//ys9+9gtXwjcubhZ/8if/J01NjXz55W+5desmEomErq5Ouro6aWioZ+/en7N8+copS3IIgsCZM6doa2tl1673XK2mz0tU1NXVIJcrnrQYyfj++2+4du0yFouzrWhgcIiouERMdujR9rg+PT0qmkSh1Ms9CFKJ0Xh6oFKp8FA5/9dis1FYXs2g2Ua40Iu/SMeSxctGVQPb7XauXr3Mgwf3SEhI4MMP38NgsL+01aWtrZVjx45MaBFHo/Fi167dMybnMBGMRiPV1aON6GbiAXNkMH492sluftooZRJCZS+PmdOJqaGh4a7kcHt7+492cVaj8WLhwsUsWLCQurpaCgsfcfbsaS5fvkhaWjqZmTkEBQW98PglS5bR0tJMe3sbx48f5b33PpjSxGZgoN9lwPO8uddE30daWhpLlixAJFKOuldXVlYgQWBRqJQCbT2DgoK4mLgRsUyhUBAYGERXVyciBASHA5sg4KFSYncIyKRS1FIVfUM6HF7B6HvaWOBvJzB8Ps3NTfzFX/wZ//Jf/msiI6Oc3WM5uWRnz6asrJTf/ObXVFSUu5Lf7e1tNDc38od/+K+nJYFgsVg4dGg/VquN3bv3uHT5n5WoMJlMFBUVEhwcwkcf/Yzm5ia++upziouLsFjMNDY2oO3vJzImAb2lm47ODldMNeFFvSSEapmcQA8pnh4eqDxUrrg6OKSjoKoem91OjNCNr1xg/frtJCUljxin0Wjk9OkT1NZWs2LFUrKz57kM8l5EcfFjrl27MqHPITw8go0bt7xWTd62tla02p4ROsoz1Ymj1+u5fPkiKSlpr0072Y0bNzOHUql0xYDD96uoL2zBqutkYGAAu92O2WwiLCwcsViMCgs6kZJBQYUvetc5JBIJ8fEJpKVlEBsb98YmDb28vFEqVZhMRnp6ugkJCaWyS0dB6wDBGjkOP0+qqisJ9sykrEvPptnLuHjxHBs3bkGtVqPRePH++x9y+vQJysvLOHToAPn5C5k7d76zKCAklE2btnL48AHXs5hcLqe3V8v8+flUV1dx794d5s9fQECAsxOloqKcy5cvMn9+PtnZsyf0Ptrb29DrdSgUihHyTq+KlpZmjh8/itVqZceOXRNKYP8YaGlpHuHBBJCVlT0j53748D5dXZ188MHeN/b34mbmeKuTwxNBJHLLSkwUkUhEeHgE4eERrFixitLSYoqKCvj++2/x9/cnMzObtLSMMSs4Vq1aQ3t7K1qtltOnT7Bjx7sTSpDZ7Xbq6mopLS2mtrZm0hrQYrHYpQ0VH5+AXC4jIEBDT8/QqIlseXk5ADarFVn7Y/bkb6DKqKJGayBYrUCjkDjbYINDaG5uBpsVjchCt02M3i5Ca7Dg7ynHW6OiunGQLH8p25YkcfSLv2XRoiXMm7eAAwf28eWXn9HQUM+WLdtdk6qoqGj+7M/+gosXz/Gb33yKXu98UOnv7+fv//5/UVj4iOXLV5KenjnpapZr165QVlbC5s3bXuiU7qx2cra/JiQkoVAo+E//6S/4+7/34/z1mzgCYnHE5VApOM3tgr09CZHo8TR149HXA4Y2GizBtFmVMGhGRg8gYDTbGDSakDos+Jk6UIoHmbNhI4mJSQiC4LoG+vv7OHbsCN3dXaxYsYq8vDl4eHhgMLx4NbO3V8vBg/snJCWiVCrZuXP3azVFBCgtLcZms7kmshKJhLS0mRHpHw7GH374sTsYu3ljGO++/vLkcCglJY8BMJmMT9rzf7zVe2KxmPj4BOLjExgY6OfxY2c18aNHDwkPjyArK4ekpORRmoYSiYRNm7bwxRe/pbW1hZs3r7NkybIJvabZbKaqqoKSEqc2/2SRyWQkJCSRlpZOdHQMEonYFVOfp7y8DEEQ6OtuJxIxCxdsorTPTn2fkRC1wqWrGx4eQVdXJ3JseGBhyC4Fsx2JxU6Qpxy1ZwDVDU2syEokXiblyLfHWLlnL0uXLufw4QP81V/9D3bv3uOSNhCJRKSlpfNXf/W3fPnlZxw/fgSLxYIgCLS3t/OXf/lfWLNmPfn5i0hKSp5UctPhcHD8+BF6e7W8//6HeHv7jLlffX0ddrsdf39/QkPDnnRiZfEXf/GfKK5rwRGehDEsmXKRhED/AILVcgIZRGnsRt7bg9jSTpMjgEaLAnG/ESl2BEFAZ7JgMJlROMwEGFtQqgUWb9tJaGjoiJja0tLMiRNHsVisbN++i/nzZ4/53PMsdXW1nD17akKfg7+//7ju86+C56uGfXx8Z6QbDeDKlUsIgsCKFatm5Hxu3Lj5YRCJRHh6+RIaYiPaJ5qOjnaKigrw9Q113e/FOA2y7U9kGsLDI0hLSycpKeWFRtxvEs75aDCNjQ10dnYQEhJKXa8Bu0PAU+5M3wT4B9DV1ozYJ5SWITurVq3l9OkTbN26A5lMhlwuZ/Pmbfj5+XPr1g3u379Le3sb69dvRKFQEB+fwIoVq7h48bzrde12O+fPn2HPnr0olUru379DeXkR3t4BXL16hdTUdBYvXjrh9zGsgRsXN+uVzmUEQeDu3dvcuHGNsLBwNm7cPO2uq7eJx49HGtENa1JPl4GBfm7cuMbs2bkzagrr5s3lR58cdmsOTw2VSkVe3lxyc+fQ3NxEUVEh165d4fr1qyQmJpOdnUN4eIRroiKXy9m0aRtff/05dXW13L9/j8ycPLp1FgQgwFPumigKgkBHRzulpcWUl5e73LcnQ2BgEOnpGaSkpL3UxGwYq9VKbW01XV2dKJUqNm/exty5mXQMmbhc3UNll45OnRlPmQQPuYSgkFBaW5rwEpkYMBqQSHxRS3zwVEiRScTsnJuAruoO+Wve5YZ/IOXlZWzatJWPP/6Ew4cPcu/eHVpbW/nkk1+OqKJeuXINSqWK06dP0NjYgMFgxOGwc+fOLQwGPTduXCMzM5vZs3MnFNQKCx9x9+5tli1b+VKNweHgHBUV7TJJkkgkLNu6lxvGEDqHTNhMdrxUEnQDvZitdnTBocREzGLbO6EEKqCrR0tRYxdFbYO0DRjp6u5G192OcqAV2VAbUhl4Jady//5d7t+/i0QiwcfHF7PZTHV1JT4+vmzbtoPk5NRxE0w6nY4DB76f0LUhlUrZtm0ngYGB4+47kziN6EYG44SEpBlpf302GE9Ez8uNm9fF+DH1xdmp5x8sW1tbCQuLnZFxvel4e/uwePFS8vMXUVNTTVFRAadOHefSpQukpzuriZ81GPPx8WXt2nc4duwwd+/eJjIyisCwKLQGCxKRiCC1ArnU+V04HA4aGuopLS2hpqZqStr8UVHRpKVlkJiYNCEjve5upwlqU1MDkZHRvPvu+8TFzWJ2j57LNT009BqwDDrQKKSoZDJ8/QLo7e3BV2xA329ELAnCWx6ASi7FWyXnvTmxyHqrWLpmLQe/stPQUMfcue/z8ce/4ODBfRw8uJ/GxgZ27HjXJRskEon46KOf4eXlxe3bt2hqasBqtWEymbl06QJdXZ34+vqSk5NHVlb2uF0lgiBw4cJZ6uvr2L5910u1op9qKD5tk1UqlSzd/XuUnbpNt8GMv82BUga92i6MtgCGAiNJikjjw4wQlFho6eimsKmb4vYhuoZMdLR3YOptRzXYimyoA5nGA4/AJC5ePMfFi+eQy+X4+Pii1WppamogOjqGrVt3Eh099qLwswyb8kzkmVet1rBz5+4Zk3KYKCaTicrK8hHbMjOzZ6QTp76+jtLSYtav3zClzjY3bty8WXjKJQgCSCUSIiMiiQiPYHBwkJLSYgDsiJBLZeSmZLJ6Tjp+fv4/8IgnT3BwiCs5DCB6piM2Pj4egXhqaqqxGU2IRN4EBASQlzeXM2dOsXHjZkQiESKRiMWLl+LvH8CZMydpbW3l+++/Zf36jQQGBpKbO4eBgQEePLjnOrfJZOLgwe/54IOPWbFiFUNDPfzZn/1n5HIFu3a9N6l78lixcqbR6XScOnWcxsYG5s/PZ+HCxa+14+WHZqzYmZEx/dg5rNGvVKpYtGjiCwJu3m5+8snhyVaq/tQQiURERUUTFRWNXr+KkpJiHj8uoKysBH//ALKzc0hLy0CpVBIUFMSKFas4fe4s314r5Gy3EvOTqjBvlYxkfxleulZqKkrQansmPRanNlQaaWkZLi2miVJfX0dnZyfNzc38/Oe/dLXph2iUvJcTTseQmZL2Qaq69PQZrQgefujFvTgcdmRSC/aBTmLjg1mfE05KsAZvlYwCeigqKiAgwB+TyczDh/fJy5vLe+99wJkzJ3nw4D5//df/k08++eUIDdr8/EX09/fj5eXN4OAAzc3NmM1mamtrSUxM4t69Ozx4cI+kpGTy8uYSFjZ2crCmpprz58+Sm5s3ruzAcHB+1tyosc/Ayao+/MOikLfXYdDrkTqe/GYMWgYa+6k0RrPfIfBRXiQxUc7/1lssnDp1gsr+VoQQB0ZvL4KCEkhPz2BwcPCJ43svJpOJe/fu0NHRTkBAIIGBQZw5c4ozZ07h7e1FdHQEMpkHfn7++Pn54+8fgKenJxaLhYMH99Hf3z/u9yoSidiwYfMLK6afxyEINPUZnYkLmwOFVEycvycRPspJB9H29jZ6erpHbJuJ9tfhYKxSuYOxmzeP6cTUgIBAp26ezWmO0dLS8pNJDg8jkUhISkomKSmZvr5eHj8uorj4MQ8e3CcyMoqsrBwSE5OQSqUkJ6fQ1NTAvcLH/M2xG/gl5mFyiBCLIECtINFLhLyvnsryUnS6yWvK+fn5kZaWQWpq2gsrZF9ERUUZbW2tGAxG1q17x9WmPyvAkxg/D5r6jJS0D1Kr1TNosiH2CmKwV49IDFKxEfFgBxn+MSxNjyApSI1KJuHs2TqamhqJjIyip6eHhoZ6YmJi2bv3E44cOUhJyWM6Otr52c9+4RqvWCxm48Yt6HQ6AgIC6OnpobW1GYfDmWAWi+O5evUSt2/fICMjk9mz8/DzG1uT9+7d2xQWFrB+/YaXyg7YbDbq6mqBkTG1qG2QW+1WQoJD0WhbMRmHkMuci9eOgQ56Df0UmqIAgT25ESTHx5EcH8eGoUEOHz5Eu2cXDiUYfX2ZNWsu0dEx9Pf3odVq6evrRafTUVDwiIGBfsLDI7BarRw48B1isYjw8BCUSjW+vv74+/u74qpKpaK/v48DB/ZhsVjG/V4VCgU7drw74evBandQ26OnbcCETRDwlElJDPIkUD3+AsPzVFSUjVjYEIvFpKdPvxPHarVy/vwZoqKiSU+futyIGzdu3hwSA9VolFL6jFb8PJwGn17e3nh6qvH09MSm9CUu1I8d+TFIxzHUflMZXqDs7OwEIM7fg1sNYobMNjQKKSIgOCySgqoG4uc5n6ViY+MYHBzg+vWrIzqOUlPT8PHx4fDhg/T393HixDHmz19ASkoqy5atYHBwYIRJ6cDAAIcO7WfTps2cOnWUrKwcNm/eRlFRIQ8f3mfu3Pnj+qs827UaGxs3sx/OExoa6jl58jgAu3a9R0zMT+uZEpwmrsPP1TDcxTp9E9fy8jLXYvlEigbc/Dj4ySeH3ZXDE8fT05N58+Yzd+48GhsbKCoq4PLli1y7doWkpBSys3NIScvkQFE7Dd1mumsayElNZGhokLLmXm7qjPgJQ8QLvRO+8KRS6RNtqHRiY2dNeSXw3r07VFaWk5WVw+rV60YkAkUiEaFeSkK9lKxKFBgy2+g1WLkj76H4cSE9hjbaassJjnYwP2aJ67j0jGx+s+8wjYMiMlOyaOvspqammvj4BDZu3IK/fwBXrlzi00//nk2btpKXN9e1irtu3TsMDQ3S1NRIWpo3AwMDtLW10N3dRVZWDl1dnZSXl1FeXkZ4eARr1iwnICDcJZPi1KI8QkJCIsuXr3ppYlOnG3KZP8XHO7WXBEHgRl0vfQYLmbFhFA10IhGL8fHxxWg0YDabcTjs6DvqeDSkI9pLyq7cGPr6ejl8+CA9Pd2IALFEwrp17zB/fv6IMfT09LBv3+8IDAxi2bIV+Pr60dfXi1arxWDQMzg4SG1tLQaDeUQbrFwup6GhHr1ej0rl1ExWqVQolWMnb1esWDVKh/FFtA+aOFXWSUOvAbPN+bsXAJVMQnyAJ++kBBEwiQnt8+2vvr6+M6KnVVFR7g7Gbt5YphNTJRIJISGhtLQ0A87K4Z8yvr5+LF26nIULF1NdXUVRUQEnThxFpfIgPT2DrKxs8vKXcbjGSJsBBhobSE+Io6enh/t1/Vw2mQkV+ogRhpjo0pZSqSQ5OYW0tAzCwsKnVFkiCALXr1+loaGebdt2jtIelIhFxPp7EOvvgUMQGDBa6TNaOXO2ntaWZlr6qunvaCRpcRTZ4Tmu4+YvXMJv9h2lEy+y8xZz995d1GoNAQEB7N69hzNnTlFQ8JC/+7v/xZ49HxIb60zgymQytm3bybfffgngShK3t7dhMOiJiIiir6+Xhw8f8OjRQxISElizZgUeHr4MexOUlpZw7doVFi5cTEbGyxf5mpoaMZvNqNUaV2eH2ebgSo1Tqz8zPoqHg11IxGIC/APp6+/Fbrdjt5oYbKnmpk5HSqAHi+KDaG5u4ujRwxgMekRPvp+tW3eQkpI64jXr6mo5eHAfsbFxZGXloFAoXMZ4FouZ3t5eDIZ2BKF6xHEymZyqqgocDgcqlcoVV8eKLRKJhC1btk948b2yS8f5ym5aB0zYHA7XNahWSEkL0bAuJcjV/jwRno+pSUlJqNXql0plTIRbt26g0+nYuXP3G2U45caNm6kTqJYzL9qXS9U92BwC/h5yJGIRKemZdA2ZkYhFLJsV8NYmhgFCQpzJ4e7uLux2O4lBauZG+XCvsZ9OnRkRzsXivGg/TG2VEDUfgKysHK5cuURxcdGIeBYWFu4yquvr66Wg4AHt7a0sXbqCDRs2MzT0zQjPn9bWFv7rf/3PZGdnsnPne2g03qxYsQqdboh79+5w794d5s1b8EK5gZoaZzyKioqecT8Yh8PBzZvXuXPnFlFR0WzYsHlCncQ/NsbqYo2PT5h2h4zRaOTSpQskJSW7cgdufhr85JPDL3JWd/NiRCIRMTGxxMTEotPpKCl5TFFRASUlj7H7RtMlj8Jb2gFWA3dvX0elUiESiVAjplekoQc9IUL/S18jIiLSpQ013YDS29vLyZPHUSgUfPzxL156TYhEIryUMryUMgIXz6G9/D4oRHQ4bDx8+MCl+ae32DhS3EGtYhZFg0Z6O8VkxCbT/aAQjUZDcHAI+fmL8PPz5+TJ45w+fYKWlhY2btyMTCZzTcK+/fYrtNoevL298fZ2Jolra2uYPTsPcJrItbW1sG/fPqRSp3FgZGQ0Bw/uJygomA0bNo97jQ8H57CwcNRqDQAdQ2aqu3UEqRVInug2l1eUMTDQT1ZmFu3tHXR2OQ107Po+Dl17iLy7isaqUkwmI+CsMNq4cfMosf/i4sdcuHAWLy8v/viP/49RxksGg4H+/l7sdiO1tU1otVp6e7X09fVRWlpMV1fXqPfgciD28ED1xAgvP3/RuJP4YToGTXz3qJX2QRNhXsoREid6i53i9kEGTFb2zI7A33N8DVSz2UxFRdmIbbNnz0YkEk1rIms0Grl48TzJySnuYOzmjWS6MfXZ5HBHRwc2m21cE60fO1KplJSUVFJSUtFqtRQVFVBc/Jj79+9iDEjGogrEy9iMbUjPrRvNeHp6IgFUSOgU+eAr6PF5xnDnecRiMbGxcaSnZzJrVrxLlmGqlJQ85sGDewQGBrF7956X7isWifD1kOPrIWfzkrl8+20legX0O+zcvn2Ldes2ANCtM3OwqJtKSRSNZgf2BgupoXkcP3eed7dsxtPTk40bNxMQ4Fx0/eqrz1m+fBWLFi1xPl+o1ezYsZtvvvkSk8lIQEAA/v7+aLU99PR0k56egcFgoLGxgerqKlpbG9FofMnNnYuHhwdnzpwkIyOL/PxF477/p22y8a5kY3W3jo4hMxHeSuQSMRHhETQ1NzE0NEhmZjZ1dbUMDPQjRmCov5cvTl9nMMGDspIi14KKt7c3W7fuHJGcdTgc3Lp1g9u3b445ARYEAYNBhyCYqalppKen50lM7aW/v4/Hj+8xNDS6qlwikYxIFqtUKjZv3j5hjcKKziEOFLVhtDoI81KgeCJxIggCAyYbdxr60JntvJsThmock0uAzs4OV+v0MLNnT8zw6OXn7eT+/bssWrTkrWwrd+PGzdiIRCJWJgYil4i429hPQ59zbiIWObtClyX4kx6q+YFHOT18fHxRKBSYzWa0Wi1BQUFsTAshIVBNXY8ehyAQ6+9JcpAnx48eZGAg2dX1sXTpck6cOIrCU4NFFYDZ5iDcW0mIlzd79nzEiRNHqa2tQaFQcujQAdavf4ft23fxzTdf0N/fjyAIVFaWMzQ0xDvvrMPLy9s1v1GrNaxYsdqVJL579/aIJLHNIdA6YORuRT1WJDM+nxkaGuTEiWO0trawePHSUQboPyU6Ozvo6uocsS0zM3va571y5RIOh52VK1dP+1xu3i5+9DMysXjqzupuxketVjN/fj7z5i2gvr6Of7hSSU93FyqbnqGhQQQBHA47arUGCQ4kOOjGm2D6R1U6eXt7k5aWQVpaOr6+Y7d9Thar1cpvfvNrbDYbS5YsJSpqYvID4KyUzszM4u7dOwD09HRTVlZKWlo6V2u0FLYMEOavocY2gKfDSHO/iciQTC5cusjmjZvQaLxITk7B29ubw4cPUl5eQk9PFzt37sbX1w+VSsXOne/y9ddfotfrXJ+BEwGHw0FaWjpSqYzm5lp6evo4d+4M5eWlhIWFs2PHrgmZxQwnh5/Ve2obMGGw2AnVOKuHfP388Pb2YWCgn9bWNhITE/Hz96OmpgaHxUyXzsqnX58kTGkjLi6e4OBgtm7dib//08mWxWLh/PmzlJYWk56eyapVa8Y01/Pw8MDT04OAAA1RUQmuh43Lly+i1+vx9fXHaDRgNBpd/2u32zEYDBgMTg3iwMAgqqoqqa7+/+Ll5fVElsJ/lESFM1krcL6ym/ZBE3H+HoifqxpXK6TEySTUaQ1cqelhR9b4Gr9jtb9mZ2djNo976EsZDsZuwxw3byrjGYqMF1Of1dC22+10dXUSGuo2uRjG39+fFStWsWTJMh6XlfO/bzUyqGtHYjZgNJqwWq1IpRIUCiVy7BiRoxWp8RFGJ4eDg0NIS0snJSVtxnRWBwcH+Oyzf8bDw4N16zZMavE2IiKSyMgoBgcHAOd9dHBwALXGixOlndRq9cwK9qa1vBtvWSLVfWbSo3M5deq4y2BnwYKFTxZdj3H9+lXa2lrYsmUHSqXyiYnaDvbt+x12ux2RSERAgFOLXiaTIwh6cnPzsFgsNDXV0tnZwb59v6OqqpLMzCxXovllCIJATU0NMDKmtg4YcTgE5E+q1MLCI+jo7MRsMdPX20taWjod7W00NDYgt1to7DHyv6/vIyrQm8jIKGJj49i0aesInd/hCXBLS7PL9Pb5xRlnYlxDQEAYGk2AK546HA727fsOo9GIwWAYM6bqdDp0OuezR0xMLDdvXuPWrev4+Pjg7x8wKq4OmziZrHZOl3dhsjqIek6SSSQS4aOSoZJJKOkYZFazB4vixk/KPn5cOOLfXl5ezJo1i97eFy96jIfD4eDs2VP4+fkzZ868KZ/HjRs3byZSsYjlCYHkRfpS16vHYnM4n+n9PV0LVm8zwybpTU2NdHa2ExQUhFQsIi1EQ1rIyMT3smUruXLlEps3b3N1qS5buY4///Y8Dt9IZDIZPioZ2zJDSQnWsG3bTq5du8Ldu7eJjY3j+PGjLFq05Mki6xeUlBTT399PWlo6VVVV+PndIzd3pITh80nie/fukJ07l3s9Yh419VLZLcdTFMG7wTNjKgpQW1vNqVMnkUqlvPfeBzNiuvY283zHjbe397SlNRobGyguLmLt2vWuojI3Px1+Aslht6zE60AkEhEdE0dgtANNiBnbUC+VVZV0d3c9k/AEOTbMIhk2QYIMOwqFgsTEZNLTM4iIiJzRlT9BEDh58hjV1ZWkpqaSnT170uefM2cehYUFqFSqJ1Wd54hLTOFx+yA+KhkeUjEajRd9vd1kx8bRrreyaN5yTp8+ydatO5DL5YSGhrnaeNrbW/nqqy/YsGEjs2Yl4O3tw44du/jd774ekWysrq5iw4bNaDQaHjy4S1ZWFiaTnS+//ByTyYynp5qvv/6CxMQkcnPnjDAHfBaz2UxjYwPAiJVbm0NwPTyAs7E2NiaWtvY2op84g/v5+pGZkcntO7cwGGyoRWK6u7uRyeRs3z4yMdzZ2cmJE0eerDBvmrRO4KNHD7h//y6enp5jJjHMZhMGg3Niq9FoSE5Opa+vzyVRMTg4SEND/YhjlEqls1JIHcDtIS/81SrMJvGYEhUSsYgAtZzyziF69BYCxqkefj4Yz5oVj0ajwWyevO7nMO5g7OZtYFja5kWMF1Of11Bvb29zJ4fHQCqVEhGbSFirjFhsDGq7KCsvxWg0jLhHynBg4GmC1tNT7dLmf75rY7qYzWYOHNiHVttNcnLqlPRg581b4LpXm0wmrl27Svai1dT3GgjzUuAwG/Hx8aGno43IxDSa9Q42ZeRy9uxpNmzYhEgkIikpGW9vbw4dOkBDQwNffvlbtmzZQXBwMJGRUaxfv5ETJ46OeN3y8lLeffd9BgYGKC4uZPHixbS0dPLll5+7FhF/85tfk5aWTm7u3BHx7Vk6OtrR6YZQKBRERT2d8FrtAs+GFYlYTGxMLAaDgZCQEEQ4F0Y8PDy5dvsWRrOATCSipaUZLy9vli1bMSIx/PwEeKK6+vBUt76pqQG1Wj2q1VYQBEwmE0ajAYPBSFhYOGFhYfT19WI2m+nr66Ovrw8YKVHh6anG39+fIWUA5YOeRPt6YLGIkSsUoxb7FVIxnjIJD1sGmBvl6zJPHAuLxUJZWemIbRkZWdM2FHr06AGdnR3s2fPRuItabty4eXvRKKVkhY1v4v02EhQU/CQ53PHSbkl/f39X4cyw3F5ZtxHBPxpzVyNxSUl06O2cq+giMVCNRCxi6dLl+Pn5c+7caYKDQ7h//y6RkVFERkZz+fJFZsUn4u3jAzgLeDQabxITk0a99rNJ4q8u3OVmh0CAhwQ1JqwqX240G0iYpre23W7n6tXLPHhwj/j4BNat2/DaTVPfNCwWC+Xlo2PndHIpVquVc+dOExEROSMVyG7ePn4CyeGX/0Be5qzuZnKIRc5VXLFERmRkFOERkXR3d9Hb20tvrxYAByJECMRGx5CdkU5CQuKEql+nwpUrlygvLyMoKBhPTzXJyanjH/QcXl7OauayslKMRiM1NTXUNzZhsTnwkEkQiURkpGditpjpbGvBrg5E7qFhwYKFnD59gk2btiIWOxPI77//IadPn6CiopxTp06QlZXDokVLCAkJZdOmrRw+fADhGU2CM2dOsnPnbrZv38XgYDf//b//D+RyOX/0R/+azs4OGhrqqaysoLKygtDQMHJz55CUlDxiElRfX4fdbsfPz2/EZFcpFeOsThZcvxFPT08Snkkgm0wmyivKkcoVaNRKJAhPHhqiOHbsCI2NjSxdupyKijIuXbqAr68fH330yQsn1S+iqqqSixfPv3QfhUKJQqEkKSmZ99//0KWXaDQa6e3VotX2uOQpenu19Pf3YzKZaGtrpUOkp00Ugq7TQBPOhQylUkVYaCghIaGu1/BRSqnVGmnuM740OdzZ2UlHR/uIbdM1orPZbJw/f4bIyCh3MHbzRjPdBVcvL288PDwxGp0VgW1tbcxA9/iPEolYhEQsQi5TEhcXR0REBINDzoUw85M2BQcipBJISUgjLS2dmJjYV+LSbbfbOXr0EK2tLcTGzkKtVr/UtO1FxMbGER4e4VpwvXPnFtGZC7DanQahiFVkZmQzODSIfqAPkcqL4PBIMOtGGOyEhITy0Ucfc/jwQTo62jl48HuWLFlOerrTYG9goJ/r16+6XtdqtXL48EE+/HAvKSkpNDVVc+zYYaKioti0aRtVVRV0dnZQWFhAYWEBcXGzyMtzmsI9O9Gqrq5yvY9n5Tk8ZBKev/QDAgJG/HtwcJDKqko8NT7YJSZkIoGExGR8fX35+usvWLhwMbm5c7hx4xr3799l1qx41q/fOOkJ8K1bN0ZV4j6LSCR6IimhIj8/hU2btroS5Hq9zhVLn8bVXoaGBtHrdej1OupFRrpEvpi7nrRxi8WoVB5ER0fj6+Preh0/TxldQ2Y6hsxE+apeOJ7KygrX9Tw8vuka0Q0ODnDjxjVycmaPa5rkxo0bN28qz5vSvYy5c+dz4MD3REfHoFQq0VvsSCUSEuLisNtseCll6C12LHYHqied1RkZmfj6+nL48EEMBj29vb3cvnOLeRs/oqTXTptITIjNTJDQwcmTx1Cr97xQY1it1hCTlEGN0EF7xSNEIhEhPmq6dGZsDgHpODmZF9Hf38fx40fp6upkxYpV5ObO+cnKSDxLRUXZCKNZkUhERsb0TFfv3LnF4OAg27btcn/GP1F+AsnhqTuru5kcIpGz1eVidQ9BajlikYjgoGCkEim9vVpUSg9k6kCWp4SzZ96rcS0dprDwkWty1dBQT0BAIIGBgVM619y58zh9+iQ9Pd3o9TqKH90lKHw+zX0GvJQe+DxZVX1UVoWfp41gtZwAdRSDg4NcuXKRFSucej1yuZzNm7fh5+fP7ds3KS0toaurk3fe2UR8fAIrVqwakSQdnozv2fMRDQ1V+Pr6s3btBrq7uwgJCWX+/HzKykopKyuhvb2NEyeOcvXqZWbPziMzMwuVSuWayMbHJ464ycf6e+CjktNrtI6ZCO3v76eysgKb3YYRBf4eAn/8b/6Qhtoq6uvrAHj48D4nTx7Fy8ubpUuXs3z5qklrWba0NHPixNERSfEX4e3tzc6du0cY6ahUKsLDI0ZN/mw2m2tR4lptDz2tJtR2MUajAYfDgdFowP7cTN5ZSQ3WcZJbxcWFI/6t0Xi5jJGmyu3bNxkYGGDr1p3uYOzmjWa6MVUkEhEWFkZtrbMq8VnzEzcj8fWQEemjorpbj5dSilwuJ8A/AIPeQHNLExqNNwoPf96bE8eK5JBXNg5BELh48RxNTY3ExyfQ3NxEfPzUFnZFIhHz5+dz7dpljEYjg4MDtFSX4KWMoNdgJUitwNfXF28fH249riAryQc/lZyQrBwuX744wmBneNH11KnjVFZWcPPmddrb21ixYhXz5+czMDAwIklqMOg5eHAf7733AWVlZSQkJDFnzjwaG+tJS0tnyZJlFBQ8pLa2hrq6WurqagkMDCIvbw4pKWlIpdIRMfVZ4gI8UcrEGCx2l6b9s3R0tFNXX4cgCJhREesn5vf/7D9y//49l9nQuXNn+OqrzwkNDWXt2ndcJraToaiogJs3r09o36ioaN55Z9PTDqInEhVqtWaUuaqzoriXnp4ejpVrMfRaUNlEmExGHA4Her1u1FilYjF2QcBqHy+mjjTTiYmJdelmTgVBEDh//iwKhZLFi5dN+Txu3Lhx80MznBzu6urE4XC89BlMKpWSn7+IGzeusmrVWgI95UglYkxIUEkl9AyaSAlWPykQekpERCQfffQx//RPv+bu3dukLlxHmdkLhZ+CwT4tTYIPFpGNaGsXhw4d4MMP9+LzzELgs/ioZIhEYkRyJWLBDkoNAZ7yKSeGKyrKOXv2FCqVig8+2DuiqOenzvNGdHFxs9BovKZ8vu7ubu7evc2CBQtHLW67+enw9gvyjIPbkO71khXujZ+HnOZ+E44nCT9fX18yM7MInpVKVGgQC+In5oQ9Vaqrqzl//iy5uXmuyUpycsqUz+fn5++qDNXrdTQ21JHiLSCTiqnvNdBrsNA6YMLTPwR5X4PL0CwtLR2FQsmjRw9c5xKJRCxevJQNGzZjNBro6elm//7v6OhoJzd3Dnl5I/WcTCYTf/3X/5Pr16+zevUali5dzo4d7xIdHcO9e3fw9PTk449/zqJFS/D0VDM0NMjVq5f49NO/59y5U5SWFgOQkDByIuullJEZ5kWvwYrtmYmbALS2tlJaVoLNbsOOCJFcxa6lecyZPZudO3ezdu16zGYTRUUFtLa2YrVOzVCqu7ubgwf3Y7PZxt1XqVSxc+d7E3ailUqlBAUFkZycQk5GOiEhYWRmZjF/fj65uXmkpqTh/5w5je1JF4FK+uL2U6vVOkb7a+a0KvWGg/H8+fnuYOzmjWe8bpyJLPQ8qzvc39/n0hJ3MxKxSMTcKB8kYqdh2/BnGxISQk5OLprwWSRFBJMTNTMa/S/i9u3bFBYWsHr12idyA9OLqQkJiS4pEb1eR1XJI3LDPNFb7DT3G+k1WJwdHIFBeA40uCQJli1bQUNDvUsqCUAmk7F58zby8xcxMNBPY2MDBw58j043xOrVa0dp72m1Wv7yL/+curo6tm/fSX7+It59931UKg/u3r1NTEwsH3/8C2bPzkUul9Pd3cXp0yf59a//njNnTtHR0Y5YLB5VNR3lqyLGz4O2wafPPuCspK+praG2rhZBELAiwdPTg59vXE56eiYfffQz5s1bQG+v04iwp6cbh0OYkgxCbW01586dmdC+AQGBbN26Y8ILugqFgpCQUNLTM8hOSyE4NJzZObOZPz+fnJxckpNTUHuOjM9mmx25RDxmsnyYnp4el0HlMFlZORMa04uorKygtraGVavWjFhMduPGjZu3DT8/P+RyOVarld7e3nH3j4qKxmaz09bWSlqohhUJAdgFgT6jlfgATzamhrxAhtDiim29NikSpSdqh4lwH08U2OhFjcDTRVaj0Tjm6+eEexOhsGAUZFjk3sQGerEuZfISV8PyBseOHSY2No69e3/uTgw/Q3d3N21trSO2TSd2Dmv0+/r6Mm/egukOz81bzE8+OezWHJ5ZQr2UbM0IQaOUUqs10NhnpGXATIdJjEIqZmNaMHH+M2OMMxadnZ3s37+fWbPimTcv3zWJnM5EFmDlyjWAU8bAZrPRV1PA7pxwEgOdwTJALWdHdgQbMsIpKipwHZefv4iOjg4qqqspahvgflMfLf1G0tLS2b17DzabnaGhQc6dO8Pjx4UsW7ZihJ5TT083paXFGI1G0tKcbZYikYjo6Bh27HiXyMgoLl++iN1uZ+/eT1i/fiOBgUEMWgSOXX/I9aJyautqsVqto5I2i2L9iA/wpL7XiN5iw+5wUFVVSUNjPQJgQYLDM5A1uamsSn+qrWixOB8ggoKCycrKwd/fnwcP7vHFF78dJbfwIoaGBvn6668xm03j7iuVStmxY9ek5SqGiQ/wxEspo99oRQQoFUp8fX1HGSn1Giz4e8qIC3hxC29lZQUm09MxT7eFRxAEdzB281YxEzH12eQwQEeHu3r4RaSGaFiXHIRdgBqtgeY+I206G216B0FqBdszQ/H1eLlG+nSorKzg3LlzzJ+fj6+vHzrdEEqlclqGJyKRyCUPodPpMJvNePbXsT0zlFAvJQIQ4+/Jz/ITiFHZaW1tcR23bt0G7t69TUNbJ49a+nnY3E+vwcqiRUvYuHELg4MDDA4OcPjwQVpamtm8eRuBgU8npk1NjZSXl+Lj4+PS8RWLxaSlpfPuu++jUCi5dOk8fn7+/OIXv2Lp0hVoNF70GGzsv3iTO8XlDAz0MzQ0Ul9eLBKxNjmIQLWC+l4DZpsDi8VCSWkJnZ0dCIAJGQrfEHYuyiI7+mknk8ViRiqVER4eQVZWDkqlkgsXzrFv3+9c5n3j0dLSwtGjRya0OKPReLFr1+5JmQk+S2KgGplEjNFqRywS4aFS4e/nPyrR3KO3EuWrIljz4gTt8/IXHh6ezJoVP6VxAU+8Ic6TmJg0alHcjRs3bt42hudbwITnWEuWLOP69asIDgcrEwL4l4vj+INFsXwyN4qgMe7Hg4MDHDy4j8DAIP7rf/1vJM6aRW+vFrlCQVJSMh5qb8Q8fbbTarUcOXJwzOIepUxCrK2VVEczW+I9+cX8aMK9XywrNBZarZavv3aa4q1du55Nm7ZOOV79WHn8uGDEv9VqzZSkvoYpLHxEW1sra9asn3QXsJsfFz/6b18snp6zupvJkxKsIUSjoKxDR32vAQGBKB8VaSEaAtSvropDpxvi0KH9BAX5s3HjFsrKSnE4HAQHhziNyaZBTEwM4eERtLa2oNfrqa6uZNGiJfxsbiQWu4BMIkIsEuGI9uHgwX3ExyegVmuclcLLV/Pn357H7jWEXKHASylla0Yo6eERLqM6rbaHiooK2traWLNmPUNDQ1RUlFNdXUVAQCBeXl6cOHGULVt2uJIzIpGImJhYoqNjaGxs4OzZUwQHh5Czcis1DxtprKplMMofraOX7/f9juCgYPLy5pKSkopEIsFbJWN3ThjHSzspa+ujvqkZm9mIgBI7YsIC/VmaMYuNaSF4yCUYDAZOnz5BbW0N+fmLWbRoCQUFj7h+/Qp2ux2ttoevv/6CBQsWMn9+/gsrn0wmEwcO7EOvH3/SKxKJ2Lx527Q0A3095GSGabhW24taLh3TGMdktTNgsrEmKRBP+Ytvi8+3v0ZHx0yr/XU4GO/Z85E7GLt5K5iJmBoSEjqicqWtrY24uKknhH7MiEQi8mP9iAvwpLRjiLYBE1KxiFkBnqQEq/FSvhrNfoC2tlZOnDhGbm4WixcvdVWlJiQkTft+tWDBQn7zm19jMpmw2Ww8eviAX+XNJTfSB6tdQC5xGqYm+C7j2LHD7Ny5G4lEgkwmY96ytfx/jtxCFRiFRCIhWKNkd04Yqalp+Pj4cPjwQSwWCzdv3mDWrHi2b9/JN998RW1tNc3NTcTExNLf38/Nm9dZuHCJa0zDSeKUlFTKy8s4efIYiYlJpK7cSU1BI82makyRITTZBvjss38iJiaWvLw5xMbOQiQSEeGj4v3Z4Rwr7aC6vZfmllYEmwUBJYJYQmxYKGuy4liZGIBELEKr1XL8+BF6e7Xs3PkuKSlpXL9+hUePHgJOk9LPP/9nVqxYTVpa+gslJnp7tRw5sg+bzTrm359FqVSyc+fuabWexvh7EOPnQVW3jjg/DyRjdBMMGK0IQG6kD+IXjNtms1FaWjJiW3p6xrTM465du4LNZmXVqjVTPocbN27cvEkEBwfT0tJMV1cHML4eu4eHB2lpGTx8+IC5c+fho3rxc8LwnEwiEbN9+y6USiW7Vy+i/UwBZY3ttOqqSYiLQip0Iep7elxzcxOnT59k48bNI2KT3W6nsb4GL0wsyUxArZjcs0JJSTHnz5/By8uLDz/82Ywb6/4YcMbOkV2s6ekZU+5iHRoa5Pr1q2Rl5UzK/NbNjxN35bA7OfxK8PWQszDOjw/zIvgoL5Kl8QGvNDFssVg4eHA/AHv27EEul1NeXgYwJSO6scjLmwM422AFQeDevTuIRCIUUrFr8iMWi1myZDlXrlx2HVfebQC/KCy9rURqpJisDs5XdmOzO/D29uGDD/Y+SfDWYzYbOXbsMLNn59HYWI+nlzdRCWk4EFNTU83lyxdGjWs4Sbxjx7sEh0Xy6dl7dPfrCJQ5CPbRoIjJYUjqQ1dXJ6dOHefTT/+B27dvYjAY8PWQszjQhrrxJgGmVrwFPQFiE9vz4viPW+ayOycctUJKc3MTX3zxW9ra2tixYxfLl69EJpMxd+489u79uUsTy+FwcPPmdb755kt6enpGjdVms3HkyEG6u7sm9JmvXr2W+GdM8qbKioRA0kI0NPQb6RwyY3vyu7faHbQPmmgeMJEd7s3iuBcvImi1Wpqbm0Zsm04Lz9DQINeuXSE7O4eIiMgpn8eNm9fJTMRUpVI5YsHOrTv8ckQiEaFeSlYlBrJ3TiR7ciOYF+37ShPD/f19HDp0gODgELZu3YogCFRWVgLT78QBUKvVLkd1vV6H0Wjg8eNCxE9i6vBkU6VSkZGRxf3791zHlvRYkfiEYe1pJsZXSafOzLVap+ltWFg4H330MZ6eajo72+nsbOfatStkZmbR0FBPUFgUAeExOASncdvzC34wspJ4yCHj84uPMJvNBKsE/Hz9EEfNxihS0NBQz4ED+/jtb/+JoqICrFYrET4q5nv249l4iwBrF96CnlCFjU+WpPMfNs1mXUoQMomYkpJivvrqM+x2Gx988DHZ2bNRKBSsWrWWXbvecyVvTSYTp04d58iRg+j1+lFj1el07N///YSkWaRSKdu27Zyy/4LrPGIRm9NDiPRRUauWjFtLAAEAAElEQVQ1oNVbXFIaJqtTGkRrtLIo1o/MsBcnoaurqzAaR457Ouauzc1NFBUVsHTpctRqzZTP48aNGzdvEkFBEzelGyYtLZ3m5kYGBvpfuM/wnEyn042Q7gvWKPhX67J5Pz+JIEsnPl1F7F2zYNR9tby8lBs3ro3Y1tzchMlkwsPD84XGdWNhsVg4efI4p04dJykphY8++sSdGH4BVVWVmEwjZT2mEzsvXDiHVCpj6dLl0x0aNT16vrjXzP++Uc/5yi5MVre319vGj75UbSITWUEQ3CZQbzEOh4Pjx4/Q19fLBx/sRaPRoNW2uRJ5ycnJM/I6KSlpXLlyCZ1OB0BZWQkLFy4aVTkaHByMWq2mrq6GuLh4DE/cYhPj47Hb7XgpZRisdsx2B1KJGLlcztatO7h27Qr37t0hPDyCv/mbvyIoKZcuz2iKHWLUdgcRtPPw4QO8vX1GaRODM4HgHxJBSKQFfV831f1afH38CIiMZlXSbJR99Tx69BCdbojr169y69YNlEolWq0WpVJJNE596K1bn04eHQ4Hd+7c4saNa0RERLJx4+ZRFUeBgYF8+OHH3L59kzt3buFwOOjoaOfLL3/L4sVLXaY6giBw+vQJmpoamcjPLT9/EdnZs6f0XT2PWiFld044txp6KWwdoKnPhACIRRDoqWBpfADzo31Ryl5csTRW++t0EtfDwXjJkukHYzduXhczteAaGhpGXZ0z2dje3u6Ow28QJpOJgwf3o1DI2bbNqUvb2NiA0WhApfIYZVY2VbKzZ1NeXoZOp8Pb24f79++RnT17VFVySkoqR44cpL+/Dx8fXwaMVrw8lfh4RSA4HHjKxAwYn1bNenl5s2fPR5w8eYzKygrCwsI5dPgAsQs20IIvjxHha7cRQStnz55GrdYQGzvaJFcsFhMaPYugNimmriaMBgOhgcF4R8SwMTWbgcYyiouL0Gp7OHv2NFeuXEYQHOh0OrzkcrwYIioqmk2bNuHp6ZTTslgsXLhwjpKSx6SlZbB69Vrk8pGyILGxcXzyyS+5ePG8yzegurqK1tZW1qxZ55KeMpvNHDy4j4GBfjw8Xr74LhKJ2LBh84xVBQVrFHyQG8HNei0l7UPU9xoRAJlYRLi3kjlRPsyOeHHVMIyOqVFR0VPu8rLZbJw7d9olzeHGjRs3PxaeNaWb6LOSSCRi+fKVXL58kS1bto86xjknO0lbWyvvvvv+KOm+EI2S9/JTWZcawtmzxzl27Cj5+Yu5fv0KFovFtd/t2zfx9vYmMzMbgJqaYdPWhAlXsnZ1dXH8+GGGhoZ4551NpKePXx39U+b52BkdHfNCg8DxqKqqpLq6ii1btk9buqOl38i+glYGTTaUT3yZTFYHG9OC3c/3bxE/+eQwOCez02ljc/PDcvnyBerr69i+fZdrlbGysgJBEAgLC59W2/+zBAcHExERSX19HeC8bu7du8Pq1etG7Zufv4hDh/YTGRlNkFqBTCpGbxejkknoHjKTEqxG9UwiUiwWs2zZCry8vPnrv/4fiD18sAemIxHJkOl6GXIoqRWFkCo0cfnyRby8vEdoEw+jVkjxUclpbneg9vJB7uWHTCIh2EdNSlI+c+bMo6KinHv37nDr1nW6upwVvL6+fsybN58PPvgYDw+n5q5Op+PkyWM0NTWyYMFC8vMXvfD3JJFIWLRoCbNmxXPq1HG0Wi02m43Lly9SU1PN+vUbePTooauaezwyMrJYuHDxhPadKB5yCasSA8mP8aO534jF5kAhExPlo3ppUhicbVIlJcUjtqWlpU/5vjGTwdiNm9fJeDHVbp9YlUBY2NPksMlkpK+vd9ryP26mj91ud1WpfvDBXldSs6KiHICkpKRpGXA+S1hYOGFh4ej1zgXXoaFByspKXJPMYUQiEcuWreDy5Yts3bqDCB8lha0DCEoPjHbQme3kRY7UNBxedD116gSff/4b/OMy6fKMwkMiwTjYi9bhgUUUTIqjhWPHDvP++x+NWaXko5ShUUrpsotQeXoi1vihVkiIDPInd9YqFi5czOPHhdy+fZP79+8yODiIWCwmICCQtWvfYdu2Ha44MTwBHhwcZP36jS/Vq1cqlWzYsImEhETOnj2N0WjAYNBz5MhB0tIyWLZsBSdPHqOzs2NCi60rVqxyVWrPFP6ecjanh7JkVgBtAybsDgFPhYQoHxVSycuvkf7+vhHGguCM+1Plzp1b9Pf3s3fv6CSIGzdu3LzNBAQEIJVKMZvNk3pW8vPzJygomKqqylH3/2vXrlBRUcamTVtf2r3o6+vHL3/5S3772y+5fPmCS3bp2UKAc+fOoNF4ERMTS3V1NQAJCeMXzwiCQFFRAZcuXcDPz5+PPvpkyv4yPxV6e7U0NTWO2Pb8M9NEMZlMXLhwjvj4hDFzCpOlVmugz2gl1keBSCSi3ySmpGOQ1UmB486z3bw5/ORlJcAtLfE28/DhfR4+fMCqVWtGCLFXVFQAM9P+OkxQUAje3j5IJBJXAqS4+LGrkvhZ5HI5c+fO49atG6QEq1mdGIhIJGLQbCMxUM2mtJBRFTUOh4O6uhoSEpIIjk1mwOwgXCMnxNcbjciECTkm5AiCwMmTx0a5lAIopGI2pAVj1/ehQ4lS7c2iOD+SgpytQhKJhMjISMRiEcHBIfj7+yMSifD09GRwcJDvvvuGx48Lqamp5vPP/5menh527XqPRYuWTOi3FBoaxt69P3dJcICzxegv//LPOXny2IQ+57i4WaxZs+6VTfA85BKSgtRkhHmRGKieUMAau/01e0qvP9PB2I2b18l49wFBmFg8DQkZaUrX3j4xoxU3rw5BEDh37gytrS1s27bDNUmz2WxUVQ1LSsyMTBM4q6GCg0Mwm82ubXfv3h7zmczX14/Q0DAqKsqZF+1HfqwfZpsDg9VBbqQ3yxICRh1jMpno6GgjIyMLuV8IVoeIAJWEIB8NHiILBpRYkWA2mzl0aB863dCocwRpFKyM98OgH0KHCl9vb9YlB7tMfRQKBRERkUilUsLCwvHy8gbA29uburoa9u//jurqKgoLH/H1158jFkvYu/fnEzYyTUxM4pNPfjnCXK2k5DF/+qf/lsLCRxM6x9y588nNnTP+jlPERyUjNURDRpgXcf6e4yaGAR4/HinnoVSqppy87unp4e7d28ybt2Dakhlu3Lhx86bxrCndZKQlwHn/Lyh4OMJMu6DgIXfv3mbZshUTmicPa9Xn5MymtLQEHx+fEeanDoeDY8cOU1ZWwtDQIHK5nOjol5vWmkwmjh8/wrlzZ8jIyOTDDz92J4YnwPOxU6XymLL56vXrV7BYzKxatWZG5twSETgcAlVVVRiNRhyCgAiRe8H2LeMnUDk8/gXpTg6/ndTUVHPp0gXmzJk3Qn5gYGCA1tZmRCLRjCaH1Wo1Xl7ehIdHotfr8fLywmaz8eDBPZYtWzFq/7i4eEpLS+nu7mZpfBCzI3ww2+z4qGSjJk/Dk/KGhno++uhnDIlU/LdjD2ju6CYjOR65lw9DDS1InrjFWq1WDh06wIcf7h3VSuIvMTPLUIVZrOCT5SuJDfJ23Zibmho5duwIBoMeLy9v/P0DWLhwMUNDgxQXP6a7u4tPP/0Huro6yc6ezS9/+XsEBwdP6nOSyWSsWLGa+PhETp8+QU1NDdXVzjaj3l4ts2YloFDIxzw2NDSMzZu3vXGV/M+38ERGRk35Ieb69ZkNxm7cvE5mSlYiMDDwiXyAMzHY3t5KWlr6dIfnZhrcvXub4uKiUfIDtbW1mM0m1GrNjOqjBwUFI5VK8fb2wW63I5FI6Ovro6KinNTUtFH7z5kzj/37vyMmJpYt6SEsneWPQwBfD9moxVabzcbhwwcwGIz80R/9a+7W9/BPV8vR9hvISEnB3NyBTdvliqmDg4McPLif99//cJTMg59VS6qtAaWXPz9fnkzgM27vxcVFnDt3Brvdjr9/ADExcSxYsJDm5kYqKyuoq6vl/Pmz6PU6li5dzrvvvu+qxp4oarWarVt3UFpawsWL56iqqqSlpRlwxsyYmJgXHpuamj4jOoIzicPhGKMTJ21KJofOZ6fT+Pj4MH9+/kwN0Y2bnwwWm4PqHj3dOjNKqZjEIDV+HmM/o7v54QgODqatrZWOjnZSUia+SCuVSlm4cDE3blxl1aq11NRUc+HCOfLy5jBnzrwJn0csFrNy5Rr8/Py5ePE8FosZiUTqum+bzWY+//y3eHl5kZSU/NL7eXt7G8ePH8FkMrFly/YZ72r5sfKiLtapxM6WlmYKCh6xcuVq16L2dIkP8MCkbUXw8KfHIsaBnVWJfijGMIJ38+byo/+2xnNWB3dy+G2ko6Od48ePkJCQOCoxO+zgGRkZNeOmJMHBwfj5+SGVPr2uCgsfYTQax9x/+fIVXL16CUEQ0CilBKgVY1bV3Llzi8ePC1m79h1iY+NIiwph+6Js8PDidnk9RruIOZHeePC0wspg0HPw4L5Rr11dXY0cG+mRgcQF+7j0fh8+vM++fb/DYHCa2vj4+PDBBx8zd+58Vq5cw549e7FabfT0dBMaGoZUKuXrrz/n9OmTLvmJyRAVFc2KFasZGhp0bevt7aWg4BHd3d2j9vf19WX79l2jJuY/NP39fTQ01I/YNtX219bWFgoLC1i8eOm0grFDEGjpN1Kn1aMz26Z8HjduJst4MXWi8VQikRAW9rR62F05/MNSXl7GtWtXWLhw8agk/XBMTU5OnjFJCQBPT0+8vLwIDQ3DYnka2+7cuTWiKmmYYfmi69evIBKJ8PWQ4+8pH5UYFgSBU6eO09nZwY4du/D19WNpxixWzU5mCAXXHlfh6+dDlr8YCU9fp7Ozg2PHDo+6hqurq1BhZW5StCsxbLfbuXDhLKdPn3R1EkVGRvHRRz8jOzuHTZu2smXLNvr7+9DpnNrDQ0ND/PM/f8rVq5dHxMWJIBKJSE/PYPbs3BEVzu3tbRQWFjAwMDDqmOjoGNav3/DGLULW1taMqtLOyMie0rmKigpoaWlm9ep1U5ogD2OxOWjoNdDQa8Bsc88J3Pw0GDLZ+OZhC18/aOZUWReHHrfzj7cbKe8c3UXh5odlWHe4s7Nj0sdGRkZhs9kpKHj4zNx55ZTGkZOTy86du/Hy8qarq3OEMVprazPl5WVERcWMeawgCNy/f5dvv/0KlcqDvXs/cSeGJ0FtbY1rDj/MVLpYbTYbZ8+eJjQ0jJyc3BkZmyAIFN2+wu7sMNZlRpEZ5s22jFCWxY/u6nLzZvMTSA67ZSV+bAwODnDo0AECAgLZsGHzqIlPSUkJwCsJOMHBIU7n+NCnDqwWi4WCgodj7q9Wa4iPT6CoqOCF5ywpKeb69assWrTE1WoqEYvYlh3Bv9s0n9WzvPHrKiDT20Z0VPSIY7VaLUePHsJme5ogHDYDGG4zsdlsnD59kosXz7uu9ZiY2BFOsDU11Xz33TcEBPjzP//n/8Mf/MEfEx4egd1up7i4iM8//w3ff/8tdXU1Y07ax6Krq4tTp44TFzeL1NQ0V9LXZrNSVVVBWVkZVqvTRMjDw5OdO3dPuqLqdVBc/HjEv5VK5ZSuLbvdzpkzpwgJCZ1WMLbZHRwt7uAfbzfym9uN/PPdJlr6x16ccONmphmvG8fhmNj9ASA8/Ol9tKurc8R9zM3ro6WlmdOnT5CWlkF+/qIRf7NarS6ZpqSkmevEGSY4OASZTEZo6NOFgp6ebmpra8bcf7hyubW15YXnvHz5IpWVFWzcuMXllq6SSfgkP54/2TiPBUGgab7DkqTQUZ03dXW1XLhw1hXn7HY7dXXOsQzHVL1ez759v+PRo6dxf/bsXN59933UajWCIPDgwT2OHTtCenomf/u3n/Leex/g6+uLyWTi7t3bfPrpP3D8+FHa29sm/FlVVVVy585t0tIyiIub5eqwMZmMFBQU0NDQ4IrxQUHBbN26443rwoHRnThhYeFTcqXX6Ya4evUymZnZRD33bDSp85htfPuohd/cbuSfbjfy9YNm+p8xOHTj5sfKzXotpR1DhHopiA/wIM7fgyGTjZNlnegt7nj8JvG8Kd1kyczM4h/+4W9dc+fpLPTGxMTy4Yc/IyUllcbGRgYHBzCZjOj1egwGPWVlpaNyKwaDgUOH9nP58kVmz85jz56Ppmyi9lPl+VxCREQkAQGTT77eu3eHvr5e1q59Z0YW/AVB4MqVSwQHB7MkN4PN6aG8NzucedG+SCfQwe/mzcKdHGbiGolufnic7tz7kUjEbNu2E5lMNuLvfX29tLW1IRaLSUx8NclhcLbp+Pj4uLY/eHB/hHvrs2Rnz6a6umpMPcP6+jrOnDlJZmY2CxYsHPE3qVhEZrg3f7htJZ9sWUlZ6WNsNtuoYNrU1Mjp0ycRBAG9Xu+aNMfHJzA0NMjvfvc1JSVPE5zz5i1g587dqFQq7HY7ly5d4NCh/URERPDxx78gKiqa5OQUPvzwYz74YC/JySmIRCIaGxs4cGAfv/3tP1JY+MiV2B2LwcEBDhz43qUl6evrR3b2bAICnuoBdnV1UVDwCJ1uiJ0738XX1++F5/uhcDgco5LDqalpo667iTBTwbiobZC7jX14KaSEeytp6zdysmxqD4tu3EyWmZKVAIiIiHD9f7vdTlfX5LT03Eyfvr5eDh8+SFhYOGvXrh+12FpXV4vFYsHLy9uVaJ1JhmOqn1/AiETmi6qHARYvXsaNG9fGND988OAeDx7cY+XK1aN0+JQyCfNiA/m3H2xmXX42N29eJzAwcJQpaGFhAffv3wOciXOTyYSHhydhYeF0dLTz5Zef0dzcBDirmdev38CqVWuRSCQYjUYOHz7ApUsXyMnJ5YMP9hIUFMTs2Xn84he/Yvv2XURFReNwOCgvL+Wrrz7n22+/oqqq8qW/nZaWZk6cOOr6TEJDw8jKykGj8XLt09razOPHhYjFYnbu3I1CoXjR6X4whoYGqaurHbEtM3NqnTgXL55HKpVNWzbjRl0vJe1DBKrlBKvlVHTpuFbbM61zunHzpmO1OyhuH8JHJUUplSAIAlarlXBvJd06C/Vaw/gncfPaCAgIRCKRYDKZGBjon9Sxer2ekyePERkZRVRUzJTmMM/j7+/P3r0/Z+nS5dTV1VJT41xE9fLyprW1mfPnny6yNjc38cUXv6WtrY0dO3axfPnKN3Lh8k1mcHBgRrpYtVott2/fZM6ceVNalB2Lu3dvo1KpRkh8unl7+QloDrsrh38sDAveDw0NsmfPXtRq9ah9hiucoqKiX0kV6rD+bl9fL8uWreDSpQuAs3KnqKhgTP0mkUjE0qUruHLlMhs3bnZt7+zs5Nixw0RHx7B69dqXtn7m5uYCco4cOYxY7Lyun71uy8tL8fHxcZkEBAeHMDAwwNGjh10tKDKZjHXrNri0qvr6ejl+/Cjd3V2sWLGK3Nw5o8YQHh5BeHgEAwP9PHr0kMePC9FqtZw7d4Zr166SnZ3D7Nm5I+Q7jEYj+/d/PyoZLpPJSEpKxs/Pn/r6WkDAZrNitVopKirE19fvjZvM1tXVjnofmZk5kz6PVqvl1q0bMxKMB4xWHAg4TDrMdhl+HnK0egtmm8PtBuvmlTOTyeFnK4cB2tpaX0kC0s3YGAwGDh7ch0qlZMuW7WO25ZeXlwG4FglnmuGYOjDQT0ZGJoWFzsqYtrZWmpoaiY6OGXWMSqUiIyOL+/fvMX/+Atf2ysoKLl++yNy585k9O++FrykWi1m7di1SqQfnzp1BrVZjNBpHvL8rVy7i5eVFa6tT23fWrHjKyko5d+60q8Jdrdawdet21zU7nMC1WKxs376L+PiEUa8bH59AfHwCnZ0dPHhwn4qKMlpammlpacbHx4fZs/PIyMgaEQt7eno4dGj/qMp65+eQSWtrCx0dToNas9mC0WikpOQxc+fOn1EZkJmguPjxiKS/XC6fkslhdXUVlZUVbNq0FZVKNa0xdelMqKRiBvt68PP1w0MmoWNo7MV+N25+LNgdAla7w1XZV1hUiE43yNy5C5yJYru74OBNQiKREBAQSGdnB52dnROuurVarRw+fACz2cIf/dG/5vLliwwM9OPt7TPtMalUKj74YC+enmr++q//BxKJlNjYOMBZ5erl5Vy8vHHjGhERkWzcuHnEgqabifN87FQoFJP2VRrW6Pfy8hrVJTZVhqU1x/JecvN28mY9Nb4CJvJgPFb1yZuEyWqnsc9AS78R+yRadn9MCILAhQtnaWxsYPPmbS9so6ioGJ7Izpyj+rOo1Ro8PdU4HA6CgoJHJEXv37/3wrbooKAg1Gq1qz11cHCAgwf34ePjO2EDtujoGD78cC8qlQcWi2WU7tDt2zddyWoQ+P77b137eHt7s2fPXldiuKKinC+//AyTycgHH+wlL2/uSyf+3t4+LF++kt/7vX/JypWr8fHxwWQycufOLT799B84ceIYnZ0drocQrfbFVTeBgYHk5MzGz8+PWbMS8PX1o6iogC+++GdXNdabwvPtr6GhYZNO7gqCwPnzZ2YsGGuUUkxGE/Wt7SgUSnqNVnw9ZMjdgv9uXgPjJ4cnHk+9vb3x9Hy6yPe6dId1ZhsNvQY6h8w/2Yp7m83G0aOHMBpN7Njx7pgJNrPZ7JJ3eFUxNTg4FHCalWZn5464vu7cufXC41JSUmlvb6W/vw9wykycPHmM5OSUCVeSZmVl8+6772OxWLHZrKP0+0+ePM6DB/dwOBxotT2cOnXcFePDwyPYu/cTwsLCEQSBO3du8d133+Dl5c3PfvbzUYnh0e87hA0bNvGrX/0BCxYsRKXyoL+/n0uXLvDrX/8dly5dYGCgn6GhQQ4c+G6E0/yziEQiIiMjyc3NRaPxIiUlFYVCwbVrV/j226/o7dVO6LN4HQiCQHHxSKf1lJS0SfsMmM1mLlw4R1zcrBkxHfb3VNDV10//wBCCWILBYifQ883yPnDjZqZRSMXE+nvQa7AiCAKJiYn09fXzoKQCD5mYMG/l+Cdx81oJCXHGy4nqDjscDk6ccBYBDevvL1u2gsuXL87Ys49EImHt2vWkpWWg0w3R09ON3W7HYrHw61//HYcPH2TBgoXs3r3HnRieIs4u1pGxcypdrMXFRTQ3N7F69boZqR4vLy+jo6ODZctWvHHeBm6mzo++clgkmkjl8Js5ORQEgcLWQa7U9NCjtyARi4j0UbI+JZgIn+lVSryJ2B0COrMNhyCglElQPVMFef/+PQoLC1i/fgMxMbFjHt/T00N3dxcajceodtKZQiQSERwcTF2dDq22h7y8uVy5chFw6t+VlDx+YVtFfv4iDh3aT0BAEAcO7EMiEbNjx65JVcv6+fnzwQcfc+zYYQoLC9DpOgkKclZe2e12rly5hIeHB/Hxia7K6ejoGDZt2oqHhwdWq5XLly9QWFhASkoqq1evG9VS+zIUCgW5uXPIycmlpqaahw/v09zcRFlZCaWlxWi1PYjFYnx9/V4aKORyOf/qX/0rbDYRly5dxGKx0N/fz3fffUNu7hyWLFk2LXOZmUCnG5qR9tfi4iKamhp59933ZyQYh8steOhaEAXPomnARLDaeU943pTJjZtXwXgxdTKVw0799lCqq6sBaG9vndbYxsPuELhWp+VuQx+DZhsKiYj4QDXvpATh+yN0Z7faHegtzmS9SiZxOUYLgsCZM6dob29j9+49L5T0qa2twW634e8f5KrwnWnUajVqtQadbgir1UJyciplZU7fgMbGhhdWk4tEItckd8mS5Rw6dIDQ0DDWr984qUlKVFQ0H330MYcO7aeiogKLxeyqqBoc7Ofx4yI8PJyxdDhxnZ2dw8qVa5BIJOh0Ok6dOk5jYwPz5+ezcOHiSVXrqtUaFi9eyvz5+ZSVlfDgwT20Wi0PHtzj7t3bdHV1olarx51UazQa/uzP/pyOjg7u3buDIAi0tbXyxRe/ZenS5eTk5P7gk7eGhvpRxnlTianXr1/BbDaN23E1UcLpx8s+iMQvgpZ+E7MCPFkyy3/a53Xz+nlbH4OGx/06xy8SiVgU509Tn5EarQGNQkJESi4NjfXEd1UR4JEwI+P5Id7b6+R1vr+QkGAeP4bOzvZxX08QBC5dOk9tbTXbt+90GQD7+/sTFBRMVVXFhBbXJvL+6utriY+Px8/Pj6qqSu7evY1IBFKpDKVSQWxsLJIxzNh/aN6Wa7OhoY6hocER48zMzB533M++P51Ox5Url8jIyCQ2duw8ymRwSolUsXHj5nG9SF4Vb8v3NxVm+r1N5jw/+uTwRCoy31RZidoeA0dL2nE4BEI0CuwOgZoePfsL2/jF/Ci8lNNPNL0J6Mw2SjuGeNQyQI/OjADIJCLSQjRkhHpj6m7kypWLzJ+f/1J9neGq4VmzZqFSqXhVBWHBwSHU1dXS2dnJihWruHPnlsut9d69O2RmZo85OZTL5eTm5vFXf/U/8PPzZ8+ej0ZUHk8UpVLJzp278fX15fTpk9TX1xETE0tXV+eTyjuBWbOcVUtz5sxj6dLliMVitFotx44dfqJ7u/5JYJnaXcep6ZxEYmISHR3t3L9/j1OnjtPW5kzuqFSqJ1W2wWP+BrOzc1iyZAlarY6oqBhOnz5Jc3OTy8invr6ODRs2uVbJfwiKix+PuDdMpf11OBinp2e+cFFjMgwM9HPtygX+dNcWei1iLHYHwRoFPqq3815gszuwOgRkErHbtOAtYbyYOtl4Ghoa7koO9/f3o9frX5kx5YPmfs5WdKGWSQjzUmCyOihsGcBss/PxnCgkP5JrsEdvobR9kEctAwyZnZWuKpmE7HAv0kO9qCu+T1lZCZs2bSU8POKF5xmOqWlpaYhEolcYU4PR6Ybo7Oxg3rwFruQwOLXstm3bOeZxvr5++Pj48g//8DeEhYWzdeuOKS0q+vr68cEHH3P06CEuX76I0WgkJCSUlpYWWlqaUavVriqdVavWkJXllBZqaKjn5MnjCILAzp27Xe20U0Emk5GVlUNmZjb19bXcvXuH06dPurQlNRoNYWHh+PsHjBm3N2zYQExMEklJKcTHJ3Dq1HH6+vqwWq1cuHCO6uoq1q/fgJeX95THOF2e78QJCgqedIxva2uloOARy5evnJG26ObmJuori/nz3ZtpG7IgAJE+qhHFCW8LgiBgcwjYHQJyqfgnuWDs7z/5Z+o3idc9/oAADYH+am7Xaant1pES4UsTLdi7irl7V8PmzaNNv6fK2/7djMfreH8pKfHcuKFAp+vH31/90u/m1q1bVFaWsGvXdvLyRhYtbdiwmm+++Ya8vMwJFwi97P11djbj4aFg/fr3uHXrFp999hlKpZKlS5cSGBjA2bPH+eUvf4m//5u56PamX5sXL1bh4fG0kCwsLIz09Jd3Jz2Lv7+Gy5fPotGo2LlzCx4eHtMaT1NTE7W15ezd+/4PXsgFb/73Nx1+iPf2w3+jr5iJrGa8qcnhgtZ+jFY7s/yfTpRjfD2o7zVQ0aVjbtTb7/LZ1Gfk8ON2WgeMKKRivJVSxCIRZpuDG3W9XKtsx9xYwMrkVBYvXvrC8wiCQGVlOQDp6emvdMzDBjqdnR2uhO/Nm9cBZ3KjvLyMtLTRY3COsZK2tla2bt0xJYfRYcRiMatXr8PfP4Df/vafePToAR0dHVgsZjQaDVVVlfzbf/t/kpc3F3AmOi9cOIuXlxcffvizGROhB2ebU2BgEOHh4YjFYjo6OjAajdTV1dLU1EhwcAihoWGuCumEhERWrXpa8ePj48vu3Xt48OA+169fwW63o9X28PXXX7BgwULmz89/7cYFY7W/JienTloT+fLlC4hE4hnRYtLpdJw+fZJ33tmIl0bNDzfFnx5Wu4PaHj2FbYM0aA04BAGpWERikJqMUC9i/Dx+NEm6HyMT0RwWBGHCE8rQ0JHJoY6ONtfi1kxicwjca+pDIRETpHH+juUSMTKJiNoeAw29BmYFvJqk9Ovkcdsgp8o60eotqBUS1HIpiMBgsXOuspvTBXXQXMyuxUtdMkNjYTQaqa+vA15PTK2traGzs5PZs/NISEikuroKcGrLdnd3ExgYOOo4i8VCY2MDzc2N/It/8fvT0p5VKpXs2vUevr6+fPvt13R0tFNXV4vdbkcikVJfX8d/+k9/QXR0DA6Hg5s3r3Pnzi2ioqLZsGHzmB4IU0EkEhEbO4vS0hLi4mbR1tZKd3cXQ0NDVFZWoFAoCA0NIzg4xDUpy89fRF5eHj09Tn388HCnuey1a5d59Ogh4KzC/uyz37BixWrS0zNeexWxXq+npqZ6xLbMzKxJjcNut3PmzCmCg0Neqik9UTo7O7hz5xZbtmxHLpeToHw7uweMVjuVXToeNQ/QpTPjEAQUUjEZoV6khWoI81L+4FXjrwutduiVLWK9SkQiZxLghxi/ClgR48OKGB8ABqPW89ln/8yNG7dxOCQvnXtNhB/yvb0OXuf7k0g8MJmsGAx91Ne3vnCxr7y8jOPHjzN/fj4xMUmu2PAsmZl5HDp0nDVr1r30Ncd7fxaLhcePyzAYdNy8eZehIT3vvruHR48eUlRUTHx8AkFBQXz66T8/0Sd+c56z3oZrU6fTUVAwslgpLm7s7/R5ht/f3buPuHfvIRs2bMZgsGMwjH/si+js7OTq1Uts2bKd/n7j+Ae8Qt6G72+qzPR7Gz7fRHjzavxnmIm09wnCm5kc7tZZ8HhSvdDZ2cmDB/dBcIBIxJBpbG3bt4n2QRP7CltpHzIR6+dBpI8KL6UMtUKKv6ecCI2EzqY6ehRhSGLnvvRcXV1daLVaJBIpSUlJr3Tcw+21PT3d2Gw2Zs/OG6GZd/fu7TG1nK5fv0pZWQm/+tUfUF1dOSN6T7Nn57F+/Qba29vp6GjH4XDg4+NDYmISJSXFDA0NcfLkcU6fPkFyciofffTJjCaGAUpKirl27TJyuYLo6Bjy8uYwa1Y8KpUKm81Ga2sLDx/ep6qqAk9PNRs3bhn1uxSLxcydO4+9e3/uSr4PT8C/+eZLenper3N4Y2MD/f39I7ZNtv21rq6G8vIyVqxYNe1VWpPJxMmTx1i9et0PWvk1Xbp1Zj6/18wX91sobBlAEAQkYhFWu8Cthl4+u9vE7x61/Cjubz9WJhZTJ35vCwkJHZG4eFW6wyarnUGjDU+5M6bW1NRQVlaGUibBZne4KmzfZso7hzhS3I7Raic+wINQLyUapRSNQkqwRkGg1EpLazP9vkmIw17eTlpTU4XdbicgIHDGY8bzPLvgCjB/fv6Iv4+lPexwODh+/Aj9/X38/u//MY8fF0x7HGKxmFWr1jJv3nxqaqrp6+tDEAQCA4OIiYmlqKiAwcEBvv/+W+7cucWiRUvYteu9GUsMD3P58kXKy8ueSEQlkJc3l6ioaGQyOWazmYaG+icdNrXExsaxcOHiUeeQy+WsWrWWXbvec0lSmM1mTp8+wZEjB9Hr9aOOeZWUlpaM8PeQSqWkpKRN6hz379+lt1fL2rXvTNtor7dXy5Url9i4ccukNY/fJGp79Hx6q4HfPWqlVqsHnDHVYLFzvqqbf7rdyMmyTiy2N3OeM9MIwtv735syfo3Gm3nz8omKiuXWrZsUFDz60by3t/27k0ik+PkFIAjQ0dE55j5NTU2cPHmclJR0Fi1a+sJzRURE4XAItLS0TOv9NTQ00NXVSUVFBQ6HwPvvf8S/+ld/wubNWwkMDKKqqpKGhgb6+vo4fPggFov1B/++fojvbqr/FRcXY7c7XP+WSmUkJ6dN+HiLxcL582eJjo4lJWXix431X29vL5cuXWDDhi3I5Yof/LN5G76/N+m9TRR3cpg3t3I4WKNAb3VWYSlVSlrbWigrL0cQHHi/5ZISgiBwtaaHziEzMb6qUZWCNpuNsrIyPGSQHh/D/ZZBGvtevEL1VFIiftLVnZPFy8sbpVKF3W6np6cblUo1Qme4p6d7VIVMYeEj7ty5xbJlK8nNnUN8fAKFhY+mNQ6bzcbZs6cpLS0hN3cOYrEYi8VCcnIKarWa+vpa/vRP/y1VVRVs2LCZ9es3zPgkqK6uljNnTo7YJpFICAkJZfbsPFJT0/D29kEQBHQ6Pf39fezb9zsqKyvG/N0FBgby4Ycfk5+/yPXb7eho58svf8v9+3d5XeZRz7e/BgYGERoaNuHjLRYL586dISYmltTUyU2An8dqtXLixFGWLl3+xrZkTYQevYXvClqp7tYR5qUgzt8Df085vioZgWo58f6eBHjKKWodZF9hK3rL25+s+zEy0zFVqVTi5/f0um5vb5vSuMZDJZPgo5Khe5IEVqqUVNdUUlXbgEwifutjqsXm4EJVN2abnTAvxahKQYPRSGVlBSFeKiLDw7hco33pIkxFhbMT51UZ0T3L8wuuoaFhREfHPDOWMvr6el3/Hjaora+vY/PmbeTkOONva2vLtMZhMBjYv/87hoaGSE1NY7gCPikpCblczu3bN/kv/+XP6O/v5733PmDBgoXTTlI+z/37d3nw4N6IbTKZjMjIKPLy5pCQkIiHhyd2ux2j0URdXS1HjhykoaFhzPgYGxvHJ5/8krS0DNe26uoqPvvsN1RVVc7o2F+EsxOncMS2pKSUSVV69/ZquXXrBnl5c6etfz04OMC5c2fYsGHTtKrNf2jqtHr2FbbROWQm2ldJtK8KPw9nTA3WKIj398BDJuFarZYTpR3Y3lB/FTdvHnl5cwCBjIxMzp8/6+rkcPPD8/xi6rP09PRw+PABwsMjWL9+w7gdA0uWLOPGjWsjFu4mg81m4+DB/ZSXl5GUlMzPfvYLwsMjEIvFbNmynYULFxETE0drawsVFWU0NTVy6tTx1zaXe9sZK3ZOtov10qVLGAxG1qxZN60OkqGhQc6ePc2GDZumXfDk5s3GnRyGKd8UXzU5Ed6o5RKa+k3IVWoS0rKp7OzH1tdBUtCb05YxFbp0Fqq69QSp5aN00RyCQEVFOVaLhZSUNAI1KkxWOyXtg2OeSxAEV3L4ZW2yM8WwKR08Dc55eXNG6O7cuXPLFfxqaqo5f/4subl5zJnjrIDOzp5NTU01Ot3UWjt0uiG+//5biooKADCZjCxYsJD4+AQqKyspKyvh8eMient7iYqKmnaCciw6Oto5duzwSxNBvr5+pKdnsHDhYnbseBelUklrawtHjx7ib/7mb7h//+4oF3aJRMKiRUv44IO9rmSozWbj8uWLfPfdNy53+leFXq8f9SA82fbXGzeuYTROPxjb7XZOnjzG3Lnzf1D95ekiCAJnKzpp6jUS6+fhMsZ6Hg+5hGhfFRWdOq7Xal/zKN1MhIlINU02pj678NLe3v5KJg4SsYi50T7YBGfXSkBQKIHhcZQ1d+Bh7SfK9+1NEgFU9+hpGzARqhndQm6xWikvK0Uml5OclEyIRkmv3kJZ59jxR6/X09jYAEBycvKrHjoajRcqlQcOh4Pu7i4AFixY6Pq7IAjcu3fX9e+7d29TWFjA2rXriYubBcDixdOb5HZ2dvLVV5+53rcgwOLFSwkLC6O4+DGlpSWUlZXS399LTs5sIiOjpvhuX0x5eRmXL1984d/FYjFBQcHk5Mxm+fKVrFv3DiKRiOrqKj7//HO+/PKzURW64FyA2bBhE1u37nCZ6xkMeo4cOcjJk8dHxeCZpqWlGa125P18Mp04giBw7twZ1Gr1mFXSk0Gv13Pq1AnWrXtnSp4Pbwomq50TpZ0MmqzE+KqQjjHXEYlE+KhkhGgU3Gvup6h1YIwzuXEzGolEQn7+ImQyOUlJyRw/foSWluYfelhugJCQsZPDOt0QBw58h0bjxdatOyYkx6dSqUhPz3R2Jk+Svr5evvnmSx4+vEdc3Cz27v35iMU2uVzOjh3vkpKSQkpKKv39/RQXP+bx4yKuXLk06df7KdLU1Ehf38g572RiZ3t7G3fv3mXRoiX4+ExditRgMHDypFOCZDxzXDdvPz/65PB4zurw5lYOx/l7sj0zlBAvBVq9BZ/AUGI1EuSNd3n88M4PPbxpUafVozPb8VKMlL0WcDqkDw4NkpycgseTQOOtlFHSPoR5jNa4jo52BgYGkMvlroniq2Y4UTccnNVqDRkZma6/t7e30djYQHt7G8ePHyEhIZHly1e5Ju0ikYilS1dw+fLkA2RbWytffvm5q0pKIpEQHBxCcnIK//7f/0cEQeDxY6debkZGJrW1tSMm1jNBf38fBw7sw2KxjLuvQqHg449/wa5du/nVr/6Q/PxFqFQe9Pf3c/nyRT799O+5dOn8qKRvaGgYe/f+nLy8uVhEMjpEPlxpMfMffnuM356/R9uA8ZUkkcrKRre/pqZOXHOzo6Odhw/vk5+/eFrB2OFwcPr0SdLSMoiKip7yed4E2gZNVHfrCdEoxtUTlkvF+KhkFLYOuuUl3kBeRUwddtEG50LXs1WiM0lupA8bUoLwVEjp1luITUgi2NGPreIqNdWvp4ryVVHdrcMhOH8/z+JwOKioKMfucJCamopUKkUiFiGXiCntGDs5XF1dicPhIDg4ZERV96tCJBKNmvBGRkaNMMsrKXnM0NAgpaUlXLt2hYULF48wqFWpVGRkZHH//siq24lQXl7Gt99+ycCAM3kml8uJiooiKSmZP/mT/zd9fX2UlDzG29uHlJQ0bty4Rl1dzXTe8igaGxs4der4hPb19fXlX/yL3+e99z7gF7/4FdnZOchkMjo7Ozh58hiffvoP3LlzC4PBMOK4xMQkPvnkl8THJ2JATqvIj2Nl3fz7fzzEodul9BnGj+dTYfh5ZBh/f38iIiInfHxJSTFNTY2sXr0OmWzqFf5ms5mTJ4+xcuWaacXmN4GqbudiUIT3+HrCaoUUqUjEo5Z+7O7qYTcTJCoqGovFQm7uHMLCwjl06MBrl3hzM5rhyuGOjqfJYbPZzMGD+xEE2Lnz3QmbzAGkpqbR2to8qcKb8vIyvvzyMzo7O0hJSSUuLn7MBVO1WsOOHbsJCQklIyMLu93G48eFXL58gYKChxN+vZ8qz8fOgIBAwsLCJ3Ss3W7n7NnTBAcHP+kEmBoWi4WTJ4+xfPmq1/I86OaH50efHH6bZSUA0kO9+L38GH5vYSy/vzCW//7xWgJUIm7evO6qGn0bMVodIBptWmSzWhkcHCA+PgFvb2/XdoVUjNXuwGQdXRVUXj4sKZEwrYnDZHja1tPp2jZnzrwR19ulS+c5eHA/QUHBbNiwedS1GBQUhEajmdQk8/HjQn73u69dFcdeXl6sXbseDw8PTCYTjx8XkJc3h5ycXARBoKqqErvdztWrl1xtwtNFr9dz4MD3GAzjaxZKJBK2bNnuqrRWq9UsWrSE3/u9P2Tz5s34+wdgNpt58OA+//RPv+bo0UO0tDS7kr5iiRRpdDaG+JU0yyPpEvnQ7lBztKiF//i7q3x3vx7jGNfEVHEm1gtHbEtMTJ5w66nD4eDMmVMEBga5qsSnOo6LF88RExNLQkLilM/zplDWMYTeYketmJixoJ+HjF6Dlcou3SsemZvJ8ipi6vOSLW1tr0ZaQiwSsTDOnz9cFMuv8mP4oyVx/Oc9q5Bj4+TJYzQ3N72S130dDJltyMdYeDEYDZhNJlJSUlAqnk4YFVLxCxdfXqekxDDPx1SRSMT8+Qtcf3d2URznzJmTZGRkkZ+/aNQ5UlJSaW9vnfDigsPh4MqVSxw/fgSr1Qo4r8X58xei0XgxbEy6ePFS0tIyGBjop6GhHrvdzrFjR8Zs650KXV1dHDlycEJVzx4enuzcudtl6uPv78+aNev5N//m37B48TLUag063RDXrl3h00//nnPnTo+o2pXIlUgTFjIQtYhmSShdIm+aLQq+vFnJf/j+BufK22dUfsBoNLrMgofJyMiecEeNXq/n8uWLpKamExsbN+Vx2Gw2Tpw4yqJFS8Y0N3zbKGodQCQCmWRi07gATzmNvUaaXiLP5sbN8yxZsoybN6+zZct2NBoNBw58x9DQ2F2cbl4PgYFBiEQi9HodOt3Qk3h0mP7+PnbseHfSlZ0ikYhly1Zw5cqlcQturFYrZ8+e5vjxI8TFzSIrKxu1WsOsWfEvfDYMDAx0XT+ZmdkolUqKix/z3XffUFtbPeYxbpzVulVVFSO2TaaL9cGD+3R3d7F58+j8w0QZjpsLFiyctpyTm7eHH31yeCJtFW+qId0wMomYMG8lwRoFvr5+LFy4hMDAIM6dOzNK2/ZtQSIWIRojBslkMnKyZxMUONIAxyEIiEWiUVWHgiBQWem8eb4OSYlhhm+S3d1drgmdj4+vy2DFarVy7twZTCYj27btfGHSOj9/Effu3R23Atdut3Pu3BnOnDnler2oqGg++ugT+vv7aWtrpbGxHo3Giz/6o3/Dv/t3f0pKSiqDgwMUFxdhNps4der4tNvCLBYLhw7tp7d3YpPv9es3EhMTO2q7TCZj9uzZ/Pzn/4KdO3cTGxvn+i6//fYrvv76C0pLS7hS3cXp8i48PDxZmpNCQpA3XhjxxoBJ18/+m8V8er5wxsxWWltbptX+ev/+Pbq7u1i3bnqGOTduXHNJcvwY6NZZUEjEoxeD7HYcYzyMSsQiRAj0Ga2va4huJsiriKmBgUEj7pEdHa8mOTyMSiYhwsepzxkXF09ycgoajYbDhw/Q3d39Sl/7VSETi8b8Lak91eTm5qF5roXeIQhIJaMnGTrdkCtJ/jokJYYZS0cxLi6ewCfPAnq9noMH9xEcHPJCuZ7JTHKNRiMHDnzPvXtPu7AyMrJ4//0PaWlpora2hpaWZmJiYvnTP/1P/PKXvyIubhZtba1UVJRjNBo5eHA/g4PTa9UfHBzgwIHvMZvN4+4rl8vZufNdfH39Rv3Nw8ODBQvy+dWv/oANGzYTHByC1WqlsLCAf/7nTzlw4Htq6uo4XtrB9fpeQgP9WZadRKS3Ai+MeGFAq+3mN+cfsP9OxYx15ZSXl2KzPV2EkEgkpKVNvBPn0qULiEQili9fOeUxOBwOTp06zuzZeROuunqTEQSBjiEzarl01N+sVitjfXMecglWh4N+d0x1MwnUajXx8QlUVVWwc+e7ABw4sO+VS9G4eTFyudxVwdnR0c65c2dobGxgy5btUzaP9fPzJzg4xDWfHouenh6++upzSkuLWbfuHTZs2ExDQz3AuEUsMTGxrF37DjKZjLS0DAICAqmoKOdv//b/eWU+E287z3exSiSSCXex9vX1cuvW9SdV/xP3y3kWZ/fqCbKzcybV6ePm7edHnxyeWJXT29VmNXfufBQKBbGxcRw/fmTaJiw/BIGecsRi0ZhJvbG+swGTlWAvBR7ykYmJlpZmhoYGUSqVYyYhXxU+Pr4olUpsNtuIZOK8eQuetPGWYbPZCQoKeqlwu1wuZ+7cedy6deOF++h0Or744osRBna5uXns2vUeIpGI/fu/o76+jkWLlrJnz0f4+PiSnJzC1q07n7Tx2CkqKqKvr5fDhw/S2zs1Lddhd/iJBvJly1aOq3UsEomIi5vFrl3v8fOf/7/IyspBKpXS3t7G/pNn+OfTtzH2a/FVSZBLpcTHx5OSkopcJkeODZVdz9WyBv7x0KlRLbRT4fkWHj8/vwlrS/b19XHzpjMYT0cf+P79u4hEIvLypl55/KZhcwg8n8txOBxUlJdR/QJTJAHGTHa5+WF5FZXDYrHYlRyEV1c5/CJWrFiFRuOFWq3hwIHvp53w+yEI91FhsQtj/mbG+s50FjsxY+gsV1Y6E4Ph4RF4e/u8iqGOyVgLrs7q4XwsFjPl5aXIZHLCwyNeukDh6+tHaGiYq6NoLLq6uvjHf/xH18RWLBazatUa1q17B622h6NHD9PV1cm2bTvZtGkrSqWSxYuXsnLlmhGLrlptNwcP7p9QYncsjEYj+/d/PyHvAbFYzObNW8eNLcPJ1717P+G99z4gISERkUhEXV0tvzlwgoPXC5BbhvBSSFAqlaSlpRMXG4dELEaFFbFFz8FbpRw8d2VEUncqCIJAUVHhiG3x8QmuqufxqKmpoby8lOXLV074mLHGcPbsaZKSUqZVefwm4RCGCyZGbrdYLBQ9LqT1JUUAblkJN5MlO3s2lZUViMUSdu58j6GhIY4cOTjt+4ObqTP8vHTp0kWKi4tYt27DtOfAc+bMo7Dw0ajEvyAIFBYW8uWXnyEIAh999AmZmdl0d3czMDCATCab0GtnZGS6zMYTEhKJjo6lvr6Ov/zL/zKqKOenzrPykMMkJiZPyAhuWKPfw8ODRYuWTPn1z58/y6xZCcTFxU/pHG7eXtzJYd5sWYmxkEqlLFiwEB8fX0JCQjl4cP9bd2OND/Ak1EtJt358jTubw4HVLpAT7j3KvG7YiC4+PnGEIdyrRiQSERQ0bErX7tru5+fH0NAger2elJRUOjo6RkhPjEVcXDxDQ0N0dXWN+lt7extfffU5TU3OSi6pVMr69RtZuXINbW2t/PrXf09rawtpaens3r1nxKR57tx5LFy4iMzMbFQq1RPdvgYOHtw36UTqcLCprZ2YBEZe3pxJyyoEBASwdu16fvWrP2TRoiXolYHobQ56Oxp58OAedXW1GI1G/Hz9yMnOIcA/ACkOEAQeNvby29/+Zlo6kCaTacrtr4IgcOLECTw8VFMOxgDFxUUMDg5M23TnTUOjkGKxP52UCjgn/oNDg4SEjk52CIKAAChlE5OhcPP6eFUx9Vlpie7urtc68fTy8iYuLp6MjEzEYhEHDuzDaHy72q9TgjV4q6QTqgzUmW2opGLSQke3nw5LSiQlvb6qYQBvbx+USiV2u52enqfV2zExsa4kbmpq2pNOmJcnY+fMmUdxcdGY32FFRTlff/2Fy+TFw8OT3bv3MHt2HqWlJfzd3/0vrFYrCxcuZvnylSN8Atate4esrJwRi651dTUcPXpo0kZ4VquVw4cPoNVOTMNz7dp3JjVJE4lEREVFs23bTn75y18xe3YefVJfzGYzLQ01PHhwn6bmJqxWK6GhYWRn5aBRa5Bjw4aYy4+r+eqrz8d9fnkZHR3tLoPBYTIzsyd0rMVi4cSJE0RHx0yq0vhZBEHg8uULhIWFvfbr+VUiEYvwlEsxPVNcYbfbKa8ox+EQCBhDNsPmEBAhQiV3x1Q3k0MsFrN48VKuX79KQEAA27fvpK2tlVOnjr8S3w834xMcHExnZwd37txk8eKlM9JlKJVKWbhwMdevX3Ftc+q0H+fIkSOkpKTy0Uc/c8nyDEtCxMTETljSceHCxaSlOccaERFBcnIq7e3t/If/8O/Qat/Orq1XQVtb64jnIJh4F2tpaQmNjQ2sXr0WuVw+6dcWBIGrVy8TFBT0Sszs3bz5/OiTwxNJ7EzV3fqHJDY2DpPJxMKFS1Cr1Rw48N2Eqk/eFORSMfOifTHbHQy8ZDLrcAg09pmI8vUgJfi5tliHg8pKZ9VhcnLKKx3vWDxNDj9tg71y5SJSqYzExCQ0Gud47927Pe65li9fwdWrI1thi4uL+N3vvnbpe2k0Xrz//oekpaVz+/ZNvvvuG8xmE9nZzsnq8yuKIpGIlSvXkJSUTFpaOgEBgVRVVVJYWMChQ/snlXy5devGKC3eF5GcnDLCfG+yeHp6kp+/iNjZi4kOD8XTwxOHw0F7RzuPCh7S09ODTCYjKSmZxMQkPCUCOpGSPoOJAwf2cfbs6SlVcpWXl7p0J8H5QDzRSWlZWSm1tbWsXr1uSsEYoKqqkqamJlasWD3lz+5NJTFIjUiEq1OgqamR7p4uEhIS8fbyHrW/zmLHQyZhlv/4q+RuXi8TMaSz26eXHLbb7TOm5zpRcnPzqKurZdOmbeh0ureuMirAU05mmDdag3VMbf5hLHYH7YNmkoI0RD1XOTww0E9rawsikei1x9SRC67O735YSzEwMIjU1HTkcjkmk4nC/z97/x3eVpqnZ8I3AIIgmHPOYpAoJkUq55woiZRUQVWq6q6e6fa0Z7w73+56194d72fv9X32eu3ZHXt6PNNdQSVVlSRSgRKVA5VzpCgx55wjMnD2DwgQITCAFCkG4b4uXVU8POfgPQB43vP+wvM8G9pvQSKRWC1yDQYD169fIyfnBDqd8T4fGBjEl19+RUBAIGfPnuHs2dPIZDJSUlKZM2eu1X3YwcGB9PTdhIWFkZycirOzMen68OF9Ll26YHOgxGAwkJubY7PM0/LlKy0Mb0eKl5c3S1asJWTWPCKD/ZE5ytDqtNTUVPP48UP6FIo3hn7JRIZH4CjS04krLS3NHDr0Pffu3RlVwufdyicPDw+bq9tu375Jb2/voBIitnD37m1cXNxISZkzquMnM8nB7ig0Rlkmk7+EUqEgISHBQlvcRHufBm8XKZHetvkn2LHTn6CgYMRiEbW1NYSGhrFtWzpFRYVcu3bZHiCeALRaLWVlpbi7e7Bo0ZIxO29YWDgGg0BdXS1NTU38+ON3lJQUs3v3bjZv3mqxvikpKQaM3SC2Ykqymky2fXx8SEpKpqOjnf/5f/6fpmQn9Hjw7tzp5eVlkzG5QqHg2rUrZpPA0XD//j1kMhlz5swb1fF2pj4fRXB4uEqnqVY5bGLlylU8eHCXjIw9GAzClNOBmh/myYpoH9qVWmo7laj7VUEYBIEOhZbSNgVB7jJ2JQdaSUpUV1ehUPQhlzsTERH5gUePub3TVFnz8OF9Hj16yM6du5k3760zaGHh62GlHFxd3YiNjePZsyfo9XouX77AuXO55uBEeHg4X3zxFW5u7hw79gu3bt1g8eKlREZG4egoG3RyNrai7iIoKJjY2DgiI6Ooq6vl6tXL5OScsOmh7vnzp9y+fdOm9yQ8PIItW7aPSXBTL4CvtzepqXOYPTsRLy9vJGIJHp6e5n38fP1ISkzE1dUdAZF5vN9//0eqq6tG9HrvTsYxMbG4uroOe5xCoeDq1cskJiYyY8boJuPKygpevy5g06Yt0y4wDBD7plOgqUdNU1MjtbU1RERE4udrXeEkCAJNPWpm+LoQ4mG747KdD8N4VQ6/q4v2oXXoJBIJS5Ys49WrfDIy9tDQUE9ubs6Uej7YEO9HaogHNV0qmnrU6PoF6fUGgZZeNVXtSuIDXNmeGDBAJ45RbzAsLBzXdzSKPwRv59RGBEHg/Pmz1NbW8Gd/9s8sZEcePXpgkcgbCJNGXm1tzRt94KPcv/82UZuSYtQXVqnU/PjjdxQVvWbTpi14eHgikUiIiRlYQ1Eul5ORsRcPD08SEhLx8/OnuLiI06dPcu/enWGv0WQ2WjyInM67pKbOGZPFv94gIJZICAkMZO68+cTFxePq6oZM5mROLItEIkJDw4iNiUPm7IKAMUB/40YeP/3044gkqTQaDa9fF1hsS0qyzUynqamRR48esGrVqgH1lW3hyZNHaLVa0tIWjer4yU5CoLFToE2hpaKinI7ODuLj43F1sX5m0RsEOlU65oR44DKATrEdO7awfLnRnM5gMBAXF8+6dRt49OghDx8+mOihfVQ0NTVx584tvLy8CAoKHhNJvf4sX76Sw4cP8uOP3+PgIOXAga9JTrZMTnZ1ddLU1PhGGnBk6x6TUbmPjy8ALi6uJCenolD08u/+3d+MmXn6VEWtVpu7ok3Y2sV67doVBEFg9ep1o3rtZ8+eoFD0jWnCwc7UY9oHh2H4xexUWvz1x83NnYiISKqrq8nM3Ed3d9eUqnaSiEVsmuXPruQg/Nxk1HerKWtTUNbaR3mbAq3BwOJILz6bG0qIh3W1w9v213ibTJLGGtNitbm5iVevCrh27QppaYuZM2eexY1VEAQePLg/7PlSUuZQUPCSgwe/48mTx+btqalzOXDgAC0tzXz//Z9obW1lz55PmDdvgTnLOpQZgKOjIxkZe3B3dyckJJSZM2fR2dlBdvZRzp/PHXJMZWUlXLx4ftixA/j6+rFzZ8aYyXt4yaWotAZEgKeHJwmzEpg3bz7Sd86vQ0J8zAw2rVtrzmp3dXVx5MhPXL162aa/h8bGBqtKRVvbX/PyrmIwGNi0aZNN+79LQ0M9jx49YMuW7RPyPf4QODqIWR3jS19fL/nlNQQGBBISEmq1nyAI1HSq8JRLWTHDZ1oGyqc64xUcdnNzx6VfYGMiTErCwsLRanVIJBJ27NhFcXERV69emjKVUU5SCZkpwWyZ5Y/cUUJVp4qyVgVlbX1UdiiRiMWsjfPlkzkhuDtZt4GaZHUmohMH+pvSNXHr1g0KCvLZsmU7UVHRFjJFfX295Oc/H+w0ZpYvX8X587kcPPgdFRXlgPH7u2bNOtLT0ykoyOfQoe8RiyV8+eWv8PLyRqlU4OQkH1Jr3tPTi4yMPchkxsRsZGQ0dXW1/NM//YOVxu673L9/j6dPnwy5j4nY2DjWrds4JvdBJ6kYudQBpdaAWCTCz9eP5OQUkhKTePfsIgdHFs9JZlHaYvNr19fX8cMP3/LkySOb/h4KC19ZGO2KRCKbqp8NBgPnz5/F19ePxYsXj+gaTbx6VUBrawsrVqwa1fFTAV8XR5ZEeVPV0ExlYwvRUdEDBtL1BoGKdgURXnLmhXl++IHamTbI5XISEhJ58uQRgHmtk5d3hYKClxM8uo+D7u4usrOP4u8fQNqb+/NYdlmpVCouXTpPS0szTk5O7N9/wGx+15/SUqOkRGho2Kj04OVyOZmZe83PfI6OjiQmJqPVavmv//X/5u7d21PmuWusGaiL1RbZkIqKcgoK8lm9eo1NhU3Wr/uKxsZGCzktOx8nH0Vw+N2Ay7u3m5E6q08m5s1bwKtXL3F1dWXXLqMO1LlzuVPmpioWiVgY7sVvl0RyYEEo22cHsCUhgMzUYH67NIqMlGD83WRWx+n1enPlzcyZCR962ICxzcPR0ZG2tlaOHz/GrFmzzYuR0NAwC3fPgoL8YU2OmpoaaWxsMFfpSiQSNm3awrp1G8jLyyMr6wj+/v4cOPArIiOjKCsrxWAw4Ofnj6en15DndnV1Y/fuvchkMry9fUhKSkGr1fLtt3/k8uULAx5TX19HTs5Jm75Lbm7u7NmzDyensav0TApyRy8IaPtVv72rayUIAl0qLUnB7iycO5evvvq1eVEvCAKPHj3ghx++pbGxgaF4VzLD3d3dpvbXysoKXr58wapVo5uMW1tbuXnzOtu2pdus2TVV8RcrkNY9xdXVDcEjiE6F1myeZTAItPZpKGtT4CpzYFdyEJHedkmJyYhEYv3YMBZzqkgkIqif/vREOVgvX76SGzfyiI6ewfr1G3ny5DH379+bkLGMBpmDmNWxfvzFsig+mxfCtsQAtiYEsm9OML9fHsWmWQG4yqwTeO3tbTQ2Nrwxi4mfgJG/NaV78eIZd+7cYuXKNcyaZZzfU1LmIJe/vSc8eHBvWEmw6uoqysuNCyYAudyZPXs+ITExmezsbC5ePE9iYhL79x/Ax8fH3CY7Y0bMsEmQoKBgtm1LRyQSERISwsyZCXR2dvB//p//P6uqHxMvX+Zz48Y1m96LkJBQtm1LtykZYwtSiZiUEHe6VTrznC7Cek7VGwQ0eoHUUE9WrlzNZ599gZeX8flCq9Vy+fJFjh79edjnmXc7caKjZ+DmZq1x/S6PHz+kubmJTZu2jCpZWlZWQllZ6ZgF1SczgbpWpM2vcfMJROnoQU+/z1anN9DYo6a8TUGYl5yMlGC8nUcneWXHjonExCQqKyvMcndGvdtkzp/PNWvD2xkfTAamDg4Sdu/eYy6waG4evS58f4wJwD9RVVXJN9/8luDg4EHlKkcjKfEuHh6eZGTsMc9BYrGYuDijNnx29lHOnMmZMsVuY8m7c+eMGTHDri+1Wi2XLp0nPDyCxMSRS1CVl5dRWlr8XjJOdqYPH0Vw2ICEdlwpEQXxXBTJU3E0L0QRVIj86UaObgpqDpsQi8UsXbqcW7euExYWztatOygsfEVe3tWJHtqIkErEzAxwY1m0DytjfFkY7oWvy+APspWV5ahUSlxcXC2CsB8SsViMs7MLr1+/Ri6Xs3nzVgvzmkWL3la96PV6Hj0avPXq5ct8fvrpRwwGAzKZDLVaxaef7icyMoqffz7M7du3Wb58FXv2fGKeJEpLjZPzUFXD/fH39yc9fTdisRgXFxeSk1ORyWT8/d//HZcuWQaI29vbyM4+NmzrLoCTkxOZmftsWviNhHh/V8I8najuUGIYwGFbEATqu9W4O0lJCTa+tqenF/v2fcaqVWvNFcxtba0cOvQDt2/fHDCYYGx/fbeFJ2XYRXn/ydhWo4D+dHV1cvnyBbZu3TGmQfXJSHd3F8ePHyPB24F/mb6YtAgvtAYD5W0KytoUVHQoEYlErIzx5csFYVb64nYmD2KxGC0SmkUevBaF8kwUxTNRFPmicGpEPvQhG7WOf3BwiPn/Ozs76evrG6th24yrqyuxsXG8ePGM1NS5LFmyjBs3rvHyZf4HH8v7IJdKSAn2YHm0Dytm+DA31HPAoLCJoiKjpER4eMSoKoHGAi8vb/r6eikuLmLGjFgWLkwz/04qlVpUD3d3d/PqVcFAp8FgMHDz5nVOnTqOp6cnvb09uLm58eWXXyGTyfjhh28pLS1lx45dbNiwGalUiiAII55TY2PjWL16LWA0o01KSkGjUfO//+//m9XYysvLhu3UMeHj48OuXZljnjBMCnLHx8WR2i7VgElfgyBQ1akk2MPJfA8OCQnlwIFfM3fuW/3BqqpKvvvuj+TnvxjwPM3NzdTX11lss6UTp6urk1u3bjB37jwLDXJbqamp5sWL52zevHXMguqTlbq6Ws6fO83GOD/+atNcEgLc6FHrKGtTUNqqoLpThYujhM0J/nwxP4xgu0STnTFAJBKxYsVqrl/PM/+8ceNmIiIiOXky+4N7BXws6HQ6Tp06Tl9fHxkZ+3B1dcXf39Rp837vuam79aeffsTFxZUDB35FfPxMVq9ea5Yp6I9SqTTr5ds6Vw5GYGAQ27fvtAhIhoWFI5VKefToPr/8cpje3t73eo2phKlIrD8pKanDHnfnzq1Ra/TX1dXy7NkTNm/eNu3nTTu2Ma2/BYIg8LC6g2dCCEXiEFpF7mhEDhgQoRY50iDy5pU4jNwKNWWtH34ROlaEhoah1xtoaKgnPn4ma9as4+HD+zx8OLyUwVTFpI04c+bMCbuZ9fb2UlT0GkdHR2bPTrSSU4iKmmE22AF4/vyZVbBDr9dz9eolzp49bc6QpqUtJiwsgq6uTr7//lt6err46quvWLTobYunVqs1t8mOZHKOjIxi48bNgKmNJwlvbx/+8Ie/4/TpUwiCQG9vL1lZR1Aqh9exkkgk7NqVaXavHUucpBJ2JQcR5OFEaZuCll4NWr0BncFAp1JLeZsCiVjE9tkBhHq+lR0Ri8UsXJjGF198bW5TNhgM3L59k8OHD9LaaukOX1T02sLAztb217t3b9Pd3c369SOfjHt7ezl3LpfNm7dOWCDmQ6FSqcjOPoZYLCIjYw9xgR5kpBg7Aw4sDOezuSF8tTCMv1gWydaEAPsidhKj1Ru4VdlFviiCUlEQXSIXtCIJepEEpUhGtciPAnE4pwo7aeoZuSmkSXPWRGPjxFQPp6TMobi4iL6+PpYuXU5ycirnz+dSXl42IeP5EJgSZKZK3YmgqamR6upqvL29iY2Ns7qvpqbORSZ720n04MFdKwkTlUrF8ePHuHv3tnnbxo1b8PX1paioiMOHDyKXy/ntb39rIZ/R0tJCZ2cnDg4ONpumAcyfv5B58+YDmJOuDg4S/u2//RuzPFRjYwM5OSdskltxcXElM3OflcHsWBDgJmN7YiBODhLK2hR0KLXoDAa0egNtfRrKWhX4ujiyMynQIpHg6OjIunUb2bv3U3MSWK1Wc+7cGU6ezLZ6rsnPf2bxs6ur27B6/IIgcPHieZyc5CxbtnLE19bU1Mi9e3fYunXHmElbTVba29s4fjyLoKBgtmzZRmKQO/vnh/KbJREcWBDG5/ND+DotnL9YFsWaWD885dO7K8nOh8Xf3x9nZ2dzpbBJhsnb24esrKN0dnZM8AinF4IgcO7cGerr69i9OxMfH6PMg6nT5n2CwwqFguzso+TlXWH+/IV8+ul+PDw8AWOyNjAwyEoDeCRdq7YQExPL2rXrLbZ5eXnj6CijoaGBQ4e+N3v7THcG7mKNHvKYpqYmHj68z+LFSweUABmK5uZmbt+++VHMm3ZsZ9oGhw2CwKWiFk68aESNFBdUuKPEGQ1ytDijxgMFcjTU9uj5+UkdLxu6J3rYo2b58pXcvHkdg8HAvHkLSEtbzLVrV6wqIqcDOp3OXOEzUZISGo2G7OyjODu7kJCQQEeH9cOQsXr4rfawVqs1a3UB9PX1cezYLzx69NC8LTV1Dp988jlSqQN/93d/S2iosWonPNxS/7C6uhKtVou7u7tFANoWkpJSWLx4KWBq44knNDSMgwe/5fDhgxw9+jOdnZ3DnkckErFtW/qQ2ozvS4iHnP3zQlkb64tELKKuS0VNpwq1zsC8ME/2zw8lJcRjwGP9/PzYv/8AS5YsMycQGhsbOHjwWx48uG9eqL/bwhMVFY27+8DnNNHc3MyDB/dYvHip+UHNVlQqFbm5Oaxbt9H8EDZd0ev1nDp1nJ6ebjIzP7EwufJ1cWR2oBspIR7MCnAbUAPVzuRBpdVz4kUDl0s70YvEuKHAzTynanB5M6dK0VHQouSnx7XUdChH9BpBQcEWAcGGhqHlYMYLsVhsnlNFIhEbNmwiKiqanJwTw0rUTEVaWlpobW0Z0ohtvDHq4B8jJCSE2Nh4WlubrfZxcnKycNBua2szt7eCUabn0KHvzUF8kUjE6tVr2bYtnfLyCo4d+4U5c+bx+edfmqUSTJSVGTUUIyIiLRzZbWH16nXmJK0xWZyEi4sL/+k//Qdyc0+TlXXEQn93MGQyGZmZ+8Z1Xpgd6Mb+BaHG7g29gdpOFXVdKgRgZYwvX8wPG1TSJzIyiq+//obZs9/qH5aUFPPtt/9klvnS6XQUFFhWTScmJg2bxH/9+hUVFeWsX7/RIgFgC+3tbeTlXWXbtvQRf3ZTjb6+vjfPnnILjweRSESIh5zZQe6kBHsQ7++Kk3R6ehjYmXiWLl3OvXt3zEUtRm+TvTg6SsnKOjLmJmkfM9evX6Ow8DVbt+6w6JQ1Fb90dnaiVI7sWQuMskvff/8nGhoayMzcy6pVa6ykfBYuXMTz508tzO5Nc+X7Vg33Z+7c+cyfv9Bim1QqRSZzRCyW8PPPP1rM9dMRrVY74i5Wg8HAxYvn8Pb2YeHCkZmvdnS0c/XqJbZtSx/xnGtnejNtg8N3K9rJK23FQ+6Au1iLxEoV0YgDBvzloNHpOZnfOGUriF1cXIiLi+f586cArFixitmzkzh79jRVVZUTO7gxpry8DLVajbu7u0Ub8ofCYDCQk3OCjo52Pv30C2QyJ5qbmwZsr4yLi8fb+61JyNOnj1GpVDQ1NfLjj99RXV0FGDPvGzduZsGCNH755TCNjY3Ex89iyZLlyOXWZnwlJcbJOSYmdlT6QMuWrSAhIdH8c2hoGJGRUXz77T9x6dIFmxaya9asIz5+5ohfe6T4usrYnBDA75dH8WdLIvnN4gh+tyyKvXNCiPYZuupWIpGwbNkKPv/8S3MQV6fTkZd3hSNHfqKsrMRs6mciJWXOkOc0GAxcuHAWLy9v0tJGZpij1Wo5c+YUK1aswtfXd0THTjUEQeDChXPU1taQnr572l/vdMYgCJwvbOZhTSdBHjKc0Qz48CACHNET6iahsUfN8RcNtPYNfy8xYdJEN/Fua/qHJCgoGIlETG1tDWKxmO3bd+Lj40tW1lE6OtonbFzjgcmILioqesD5ZrxRKpVkZx/F0VHKzp2ZSCSSQSuF5s1bYCG3cO/eHQRBoKSkmEOHvqe93fjZODnJ2bPnE4KCgjl48DucnGSEhYWxePHSAbVsTQvP0Sx4xWIxW7fuMEshmJKu7u7u/Mf/+P/nyZPHw1YNmxzcTdVg40mElzMZKcH8s2VRfLM4gt8sjuT3y6PYNjuAgAE8Hvrj5OTE1q3b2bkzA2dn4/yrVCo4eTKb3NzT5Oc/R6WyDFQMJ7ukVCq5evUyM2fOGrGGZU9PNxcvnmfr1u0T8t39kGi1Wk6cyEKt1pCRsXfaX6+dyYtMJiM1da5Fh6qLiwuZmftQqdQcP37MpnXEdMMgCBQ0dHP0aR3f3a/makkLHYrRvw9PnjziwYN7rF691mq9JZfL8fT0BEZWPWwwGLhz5xZHjvyEt7c3X3/9a6KjB+7skEgkLF26nMuXLwOWXavvozc8EKtWrSEuztLvQKVSIZVKCQsL5+TJbO7duztlPJVGSmHha4sgvEgkGtaI7smTRzQ2NrBx4+YRafT39vZw4cI5tm7dPi5dSnamNtMyONyp1HK9rA25VIKXXDps8EwEhHg40aPWkVfaajZJmmokJ6dSUlJMb28vIpGITZu2mG+o06klw2T2Eh8/64MLpwuCwKVLF6isrCA9fTczZ87EwcEBtVo9YMBALBZbBBBVKhUnTmRx+PBBuruNleouLq588snnyGROHDz4HWq1is8//5Jf//o33LyZZ7WoNBgMZqfY0VZ5mb4f4eER5uvq7OxAJpNRV1fD8+dP6esbXOdp4cJFzJu3YFSvPVpcZQ5EejsT7eMypB71QAQFBfPll79i/vyF5u9MTU01f/u3/5fFQ5WLiyvR0TOGPNfTp49paKgfsWGOXq8nNzeHBQvSRqWnONW4e/c2L1++YNOmrURERE70cOy8B5XtCh7XdBLoKsPFcfjWMzEQ6SWnplPJ/aqRtZj2T/g1NjZM6EJg2bKV3L59E4PBgKOjI7t378HJSUZW1pEJ0UMeDwRBsJhTPzQ6nY4TJ7JQKJRkZOw1SzoMlnA1Sje8DTY2NTWSlXWEEyeyzMEIf/8AvvjiAI2NDfzyy2E8PDz4+utvyMjYy82beVbn7O7uorGxAZFIxIwZo1vwOjo6smtXJh4exq4TvV5Pd3cXUqmUiooyXr58MWSwZPPmbSOSsxgLvJ0difZxIcrHecSdG3Fx8Xz99TcWwfSCgnz+8If/YtFWHhEROWzrcV7eVQwGPWvWrBvRGBQKBbm5p9m4cbNFV8p0RBAEzp49TUtLMxkZe8aknduOnfchPn4mjY0NFn/vXl7eZGbupbW1hdOnT9okpTNdEASBy0Ut/PSkjie1XZS39XHuVTM/PqqlpXfkMlslJcVcuXKJ+fMXWFXVmjBVD9u6xu/t7eHo0Z+5ffsmS5YsY+/eT4e9d4aFhSMIAnV1tVRXV6LRaHBzcze/9lhhSrK+W/TV0tIMiEhLW8yNG9c4dy53WhrV5edbdrFGRkYN2UXU3d3FrVs3SE2dYzYntAWlUklu7mk2bNg05l5BdqYH0zI4/Lqph06lFj9XYwBJJB46gCgIAiKRiEA3RyrbFVSPsBV2siAWi1mxYhU3b14H3laieHl5k519lK6uzokd4Big0WgoKysFJkYb8d69Ozx//pSNG7cQFRWNWCw2yzoMNjknJCTi7u6OIAhUVJSTnf02ox4cHMJnn+2noCCfnJwTREfP4Msvf0VgYBCurm7ExsaZq8FN1NfXoVD04eTk9F6SDg4ODqSn78bHx4fq6iqam5txdHTE3d2Dzs5OXrx4Tltb24DXs3Ll6lG/7kQhlUpZs2Yd+/Z9hoeHBwaDgfr6ekpLS3j1qgCNRkNiYtKQAd/u7i5u3rzOnDlzRzQZC4LA+fNnmT076aMIlObnv+DWrRssX76S2bMThz/AzqQmv74btc6Am5MDYhsScoIAErEIb2cpL+q76VHZ/iAfFPRWd1ilUpkrQScCuVxOQkIijx8bpX9MlVEajXbaVEY1NzfR3t6Og4PDmFcCDYcp4NXY2EBGxh68vX3w9vZGKpWi0WgG/ewXLEhDLBaj0+l4/foVOTknzb+bNSuBHTt2cenSBW7evE5a2mI++eRz3N09zPdsk5mOCVOyNSQk9L004F1dXcnI2IdM5khxcSE9PT3I5XLkcjmtra28ePFswKTrqlVrSUiYPerXnShcXFzYuTODLVu2I5PJUCqVNDU1UlDwkrKyUvR6/bBGdFVVleTnP2flytUjCvCq1WrOnDnFmjXr8fLyHv6AKc61a1coLi5i+/adH0Vy2c7kRyQSsXLlaq5fv2aRyAsMDGLHjl1UVJRz8eL5aVvp+S6NPWruVnbgJpMQ7eNMmKecaB9najqU3KscWZK8vr6OM2dOERcXz+rVgyfNTAHa5ubhK4fLy8v4/vtvaW9vZ+/eT1m6dLnNnj3r1q3j1q0bZuPa2NjRda0Oh1QqZdeuTHNFtImyshK0Wg1bt+6gsPAVR4/+PG0S9GCUxHr3uWSoLlZToZpM5sSKFbavxzUaDWfOnGLVqrUj1ie28/Ew7YLDOoPAk5ounBzE5kWsiOGCw8b/ujg6oNYZprT2cGBgEFKpg1muQCaTsXv3HhwcJNNCB6qsrBStVouXl9eYZy2H4+XLfG7evM6yZSssDMuGMwWQSCQkJ6fy6tVL6uvr0Go1NDU1kpycyvr1Gzl58jgvX+azceNmK+2flJQ5lJaW0NPTY95man+Njo4ZUeXqQMjlcmJi4iwC2xKJBLlcbq4o6z9hRUREsnnz1g9esT2WhIdH8NVX3+Dj44tOpwWM2ktPnz7ByWlwMzRBELh8+SKOjjKWL19l8+sJgsCVKxcJD48YU42uyUplZQUXLpwlOTnVQnPbztSkU6nlZUMP3s7GykJb/vZNi0EvuZQOhYZXTT3DHPGWoCDLqpGGhokxpTORmJhEVVUlPT3G5wJPTy8yM/fS1tZKTs4J9Hr9hI7vfTFp3M2YEfPBdeeuXbtCUVEh27fvNFcLWSZcB55T3d09CA+PID//Oe3tbXR3d9Hd3c3KlWtITEzm558P0dLSwp49n7B8+UqLBfDy5au4ffumxedmmlPHQm/Zx8cHLy8fC91+qdQRqVSKVqslP/+FRdJ1/vwFLFgwcFXYVMDU+vr1199YbG9sbODVq4IhW1Z1Oh2XLp0nNDRs2CDyu8fl5uawdOly/P39Rzv0KcPjxw959OgBa9eu/+AJHDt2hsLb2wcfH19zgs1EdPQMNm3ayosXz7h9++YEje7DUtOhpFejw+uNAWRDQz0dHW24O0kobO5Fb7AtSN7R0U529jECAgLZunXHkM9cw82VYOxiuX79GllZRwgICODAgV+NuEhFLpcze3YSeXnXgLGZKwfDxcWFjIx9ODlZyuY8fvwIpVLBJ598TkdHB4cOfU9LS8u4jeND8q4RnbOzy5AmrkVFhZSVlbJu3Qabn9t0Oh1nzpxi8eKlH0S+ys7UZdoFh7tVWtoUGjz6ufMOt5jtn9V0cZRQNUUrh00sW7aSu3dvmxc/rq5G92uFQsmJE1lotdoJHuHoMbW/zpyZMOznahAEipp7OVPQxMn8Bp7WdqHSjm4hX1lZwfnzuSQnp5rN3Ey8besZeHJuamri2bOn9PUZA/MikQhXV1cCA4P46acfMRgM7N//FSkpc6yuyZiZX8PFixcB43fVZMY3FoHG4uIiHjy4R0JCgkWgWSQSIQgC7u7uVFVVUlxchK+vHzt3Zrx3QHoyIJPJcHNzIyFhttnAxsXFhevXr5GTc2LAJEpxcRGlpSWsW7dhyCDyu9y+fRMPD0+LhMJ0paWlhVOnjhMREcn69RundBLBjpGWXjU9ah0eprbzEQSHJWIRIhE09djeUunn52ehKdvQMHG6w2C8F65YsZrr1/PM2wICAklP3/0mEXJuylZGCYJg1hu2xdxVozPwvK6LU/kNnC5o5HVTj80L3nfpH/B6dy4bLuFaWlpCWVmp2YTHwUFKUFAwGo2arKwj+Pr6cuDArwaUaZDL5SQnp3Lnzh3A2GJZU1MNQEzM4IsxW7lz5xaNjQ1WQTyxWIwgCMjlzuaka3z8TFavXjct7pMuLq54e/sQHT3D/Izg6urK0aM/c/36tQHbgO/evU1XVxcbNmy2+T0wGAycPXua1NSRde9MVUpKirl69TLz5y9k7tz5Ez0cO3asSEtbzOPHD606aRITk1ixYjV37tzi0aNHgxw9fRCLjKVowpt/7R0dFBUV8ur1axrqa+nsHL4Lqq+vj6ysI1aGk4NhWn+2t7ejVls/Z3V1dfLLL4d5+PA+K1euITNz36i7Yzw8PGhtbUYQhHE1IgdjknXXLuv15rVrV+jt7eWLLw4gkzlx+PAPZoO8HpWO4pZeKtoU6PRTR87EaOL60mLbUF2sSqWSK1cuERcXb3McwGAwcO5cLqmpcyxMDe3YGYjhxQOnGBq9Ab1BQNLvQdPTywu5szMikcjin1gkApEId/e3rWwSsQiVdurcVAbCycmJxMRkHj9+xMKFaYAxu5uZuZdffjnM6dMn3wT5plZuQKVSmV3Ih1vIGgSB86+buV3RjlZvQCwScbeyg9mBbuxJDUY+Ahfn5ubmIQNe/TWfTBIlJl6/fsX587lotVqCg0NoaKgjJiaWxsYGDh36nrVrN7B27fohHbb9/f2pr/egrKwENzdPOjo6cHBweG99wtraGs6cOYUgCLi6uhEXF09h4WuLQEdvby/BwSF0dnYgCAJarXZauJp2dLRTXV2Fl5c3qalzKS8vMxsHFha+pqamhs2bt5hNGlQqFZcvXyQ2Ns7KMGEoHj16gCAILFiQNi7XMZno7e0hO/sI7u4e7Nixa1okEeyARi9gEARM6kwiwNfXz/j//eZS0/8jEuHUzyjJQSQaUVJOLBYTGBhkDtg1NDSM2bWMFn9/f1xcXKioKCcqKhowmrdt3ryN3Nwc3NzcWL585QSPcuQ0NNTT1dWFo6PjsFrrKq2erOcN5Nd3G+19BYF7lR0sjvRi86wAJMPId/WnuLiIq1cvs2BB2oABr8ESroIgcPfubW7duoFEIsHHxxelUkF09Azu379Dc3MTmzdvJS1t8ZDBxpkzZ3HlylkCA8Opq6vHYDDg6+v33m2W/avk/Pz8UalU5i4u0/g1GjWBgUFvdDpF6PX6YQMAUwFjsF5BUFAwnp5elJQUExAQiCAI3L9/l/LyMrZs2W4O/Le0tHD//l0WL15qs1mpIAhcvHieuLiZw35fpwMNDfX9WsvXTvRw7NgZEKlUysKFady7d4cVK1ZZ/C4tbRG9vd3k5uayYYNoXCtOJ5ooH2c85VKaetQEusmYnTCbzu4eCmpbobWCP/3xDpGRUaSkzCEmJtbqGbm/4eT+/V/aZBTm4uKCu7s73d3dNDc3WQRtS0qKOXfuDI6Ojnz66f73TqaVlpYQGRlFb2+vzXIU70NYWDibN2/jzJlT5m2CIHDmzCk++eRzPvvsC86cOUX28Sz8klbS5OBHp1KLRCwixMOJrbMDiPCa/GZrJSXFKJWWBUlDmbjeuJGHTqdl7dr1Np3fJEExY0bMoMaDduz0Z2pFB21AKhYjFmFhKhcZEUl8XDxxsXHExsQSMyOGGdEziIqKJioyykKvzCCAzGHqV3EkJMympqaK7u4u87agoGDS03dRXl7G5csXply1U0lJMXq9Hh8fX/z8/Ibct7Jdwd3KdjycHIjxdSHax5kQDxkvG7p5Vtc15LH96e7uIjv7KJ6eXoMGvHx9/ZBIJKhUSrOus8FgIC/vKqdPnzRXaqemziEhYTYVFeW0tbXh4eHJxo2bhwwMm1i5ciUPHz4wV06Hh0e8V5C2tbWV48ezLKp5vL19rALOBoOBjo52fv/7f4FKpeLQoe9pbm4e9etOFl68eCv8L5VKSUmZw5df/srcxtTX10tW1lHOnz+LWq3mxo1r6HRa1q3bYPNr5Oe/oLOzg2XLVoz5+CcbarWa7OxjCAJkZu6dFgkEO0akEmPQt/9sER8XbzGnGh86386prv0qU/QCyBxG9qgRGPhWd7i5uWlSdLssWbKM+/fvWtwzZ89OZOXKNdy9e5tnz55M4OhGh2k+mTEj1qJaeyDyG7p5Ud9FkLuMGT7OzPB1wUsu5W5lB2Vttmv/1dXVcubMKWbOnMWqVWsG3CcgwPj5NzU1mp9T1Go1J09mc+vWDfN+q1atJjQ0zOzyHRERyaJFS4Y3IRaJ2LhxI3l5V82dOO/brl9WVsLFi+cttoWFhZvbfk1oNBr0ej2///2/oKyshCNHfqK3d3Dz16lCf28EuVzOpk1bLExbW1qaOXToe+7du4Ner+fChbN4eXlZGPYOhSAIXLt2haCgIGbO/PDGiR+azs4OsrOP4e8fwJYt26dFdbmd6Ut0dAydnR20trZabBeJRKxdu55Zs2aRk3OSurraCRrh+OPj4si6eD9EIhGlbQpKW/to00pYkRjNv/7mE7Zs2Y5Wq+XUqeP8wz/8V65fv2Y2MjcYDJw5c4qWlmYyM/eOyHDSlExtbDQm0nU6HVeuXOTEiSzCwyM4cODX7x0YFgSBkpJinJzkJCUlU1j4+r3OZysJCbOtEg46nY7jx7NQKPrYtSuTwNmLOPOynorqasI8nQhwc6S6Q8nx5w0j8ruYKN6VlAgPjxg0UV1TU83z509ZsWKVzWZyly9fxt/ff0r6GtiZGKZdcNhV5oCLzIFezejkAxQaPf6uUz+wYZIjuH79msX26OgYNm7czLNnT7lz5/YEjW50mNpfbTGiq2xXotIZ8HwjL9LU1Iheo8ZRIuZ1k20LMZVKRVbWUcRiERkZewYNeEkkEvz8/N+8ThNKpZKsrCM8eHDPvE9iYjLJySl0dnYiFktISZmDTCajuLjIprFIpVIWLEjjwoVzwPtJSvT0dJOV9QsqlbV8SnBwCMHBb81OxGIxMTFxvHz5gt27M3FykvPTTwet9MWmEnq9npcv8y22JSYmkpSUzK9+9Y1FRdKLF8/427/9j1y/nsfy5SttnoxLSoqprq5i7doN035RZzAYyMk5QWdnBxkZe+3ut9MMDycpzlIxveqRP2QLgoDeIODlPHwCrD/9DZcMBgPNzbY5cY8nMpmM1NS5PHx432L7woVpzJs3n0uXLpi1a6cCBoOBwkKjuYwtc2phUy8OIhFyqQQBqKurQybWo9EbqGyzzcugvb2N48ezCAoKZvPmbYPeG318fHBwcECtVtPZ2UF7exuHDv1gfn9FIhHLlq0gODiUlpZm3NzcSEmZQ1tb64AmqgPh5eWFv38g9+/fBd5vTq2vryMn5yQGg3XXWUxMrIW5jkwmIyIikvLyMvbu/ZTOzs4pn3Tt6uqksrLCYltKyhwWLVrC/v1fmZ+P9Ho9N27k8e///f9BWVkpGzZstrlq+t69Ozg7uwxp0jNdUCqVZGcfRSZzZNeuzGETN3bsTAaM5nRXrQqPxGIxu3fvJigomOzsYzbfo6ciC8O9+FVaOJtnBbA61pdP5oTw+bxQvF3lJCYm8fnnX/L1179h5syZPH/+lH/6p3/gl18Oc/Dgd5SUFLNjx06L5Lgt9O9e7eho5/Dhgzx79pR16zaQnr4buVw+zBmGp7W1lc7ODiQSCdu2pfP8+VOzrNN4k5a22EqTXqHoIzv7KCqVCpFfDAGBIag7Gil6XYADAhFechq61RS3TO7Ea2dnB1VVlRbbBtPf1+l0XLx4jpCQUFJT59p0/nv37iKTyZgzZ957jtTOx8S0Cw7LHMTMDfGgW60bcWWsWmdAJBKRHDw9ghu+vr64ubmbpRhMJCWlsHz5Sm7fvsGTJ1Oj2kmhUJgXH7ZUjfT/7A0GA9U1NTx79oTKygoaGhuGrUTT6/WcPJlNb28PGRn7hnXRNk3ORUWv+fHH78xjFYvFrFixCo1GzdWrl1m/fiPz5s03T9b37t2x+Xvq7+9PY2MDCoWCGTNGV+VkCnh3dw9uuhgZGY2Pjw8ikYi4uJm4u7vT1dXF5csX2bPnEyIiIjlxIosHD+5jMBho6lHzuKaT5/VddKsmvsJvOMrLy6wc45OSUgFwdXUjI2OvuaLbYDDw9OkTqqsraW9vt6mCsaqqkoKCfDZt2jLtA8OmdqWqqkp27Nj1UZgDfWz4uzoS4+dKq2Lkf9tdKh1uTg7MCnAd0XH9E1Qw8aZ0JuLjZ9LY2PBGEsCISCRizZr1xMfPJCfnJNXV1RM4Qtupra2ht7cHJycnmySKBAFM3r4mnd5Hjx5SX1dHY1PDgIHR/rzVUnQeVkuxf8L10aOHHDr0A21txoo0JycnNmzYRFlZKc+ePWHPnk+YNWs2UqnULGFgK/7+/tTV1eLkJB/xgtxEe3sb2dnHBp0bRCIR8fGzcHZ2wcHBgVmzZiOTyaiuruL582d88cUB5HJnc9LVIAhUdSh4XNNJQWPPqH0SPiQvX+ZbPMfIZDLi42cCRv3oL774ylzRrdGoefz4IU1NjTQ3N9n0/PP06WPUajVpaYvG7RomCzqdjpMns1EolGRm7rOptdyOncmAh4cnISFhZpPT/jg4OLBrVwaurq5kZf1Cb6/tJrVTjVBPOWtifdk8K4A5oR44vSNj6Ofnx9q1G/jd7/45W7Zsp7S0hBMnsujs7KS2ttZcTWwrJqme58+fcvDgd2g0avbvP8DcufPHbA1iSiRHRETi7OzMsmUruHkzb0zOPRwikYj16zdaPae0tbVx8mQ2rb1qgvy8SZydhNTREbFE8kbmShhVUcOHpH8XK4CTk3xQ6cJ79+7Q2dlps0b/8+dPUSj6WL58+ZiM1c7Hw7QLDgMkBLnh5uhA1wjbCZp71QR7yJjhOzqx9snIkiXLePDgnpUZyKJFS0hNncOZM2fMYu6TmZKSIgwGAwEBgTbpAkZ4OSOTiOlW6RCLxcybN5/omHgMIjGtxU/4wx/+jsuXLwxYrSMIAufO5VJXV8uuXZk26eEFBATQ2mo04zK5lDs7u7B69VqeP39KdXUV6em72bYtnTlz3mb8mpubqKgoG+Sslpj0nrq6Oke1YDAtOlpahq5QEolExMbGs3DhInx83r7XDQ31XLx4jh07dpGWtphreVf4j0cv8Q+3KzjytI6fHtfxh9uVvKgfPPA8Gejf/goQEhJqIVMiEolISZnDV1/9Go1Gg0qlJDo6hidPHnHw4Hfm1q2BaGxs4OHD+2zduuOj0Ny9f/8ez58/ZePGzWYtVjvTC5FIRGqIBwAqne2BKkEQaFVomenvit8Iu3Hc3NxxcXkbUJ4swWFjR85qrl+/ZhHUEolEbNmyneDgEH7++Wer1trJiKkTJzY23qbqzTh/V7R6AbXOgLNczvwFCwkKj0bQa3l9P4//9t/+ntu3b1pIWZnQaDQcP34MrVZHZuZemyqZ/P39qamp5tSp46hUKsAo4bRo0RLy8q6iVCr47LMv2LJlO+HhEebjXr16aZZ3Go7y8jLCwyNQKhWjWkT39vaSlXXESi/wXRwcHEhKSmLu3PkWZkAFBfnk57/g00/3ExkZxbETx/m/Tt3hT3erOPK0nh8f1fCPd6uonsQmyQaDgfx8ywVuf6NXMF7/ihWr+OyzL2hqakQsFhMaGsaVK5c4cuSnAb8zJl69KqC5uZmVK1d/FMnWc+fO0NBQz+7dmRaSd3bsTAUWLFjIixfPzPfs/sjlcjIz92IwCGRlHR1wn48JqVSKRCLB0dGRb775LWvXrjNXEx858hOFha/NxvJD4e3tQ2lpCQ8f3ic8PJIvv/yVuWBprDAFh00dNqGhYQiCMcn8IZBIJKSn7zYnjU3U1FTTUVtCj1qHm5sb8XHxiEUiNHpjsd9Iu9Y+JAaDwaqLdfbs2QM+j7W2tnL//l3S0hYPK6sJRu+choYGVq9eO+3nTTtjz7QMDge4ypgb6kFLnwaljVUXbX0aBAGWRfkgnWJGbUPh6OjI3LnzrappRCIR69ZtJC4ujlOnTlJfP7GO8MNhykTb4qgORmOAhRGetCu1lLUpqOpQ0id2Yf28BP4/BzJJSZlDYWEh33//Rw4fPkh+/gtz5c/Nm9d59eolW7Zst8mR1WAwUFFRTlFRIV1dxsBoQEAgiYmJXLt2BWdnF7788mtzJc2CBWkWgcO7d22rHi4pKcbR0ZH58xdYBTiHw7To6G+OMxTLl6/kL//yv8fDw8NqDNevX2XFilXEL9nM/bpeqirKCHeXEuklp1et40xBI8091q65k4Hu7i4qKsottg0m/K/T6XF2dmbr1h3m96GtrZVDh37g9u2bVg9tLS0tXL9+jW3b0j+KNtBXrwq4ceMaS5YsIylpcPMEO1OfOD8XZvq7UtOpsskFWhAE6rpUeDg5kBZpu3aeCZFIZFE9PFmCw2BciPn4+FpJ65gqo9zd3cnK+oWensmbJOsvKWGrfmtKiDuzA92p7VJS0a6gulONyNmTPSvm8vv9e4iOnsHDh/f5b//t78nOPmqsgjUYMBgMnD59kra2VjIz9+Lh4Tnsa2k0GoqKXlNdXUVPj7HCbMaMGAIDA8nLu0pUVDRffvkrs/xIf91ag8FgJf0xEIIgUFpagpubOyEhISNe5Bp11o+ak8FDIRKJ2L17L9988+dWHgO3b9+kqKiQ9PTduMWmcau0iY6mWqK8nQjzcKKuS8Wp/IZJW0FcWVlu1Yk0WFtsX18fwcGhbN26w7wArq6u4rvv/kh+/gur56CSkhLKykoHNAKejty4kUdh4Wu2bt3x3hqhduxMBBKJhCVLlnH79o0Bf+/u7kFm5j66u7s4eTLbqnDpY6K6uoqzZ08ze3YS27btsKgm1uv15OSc4A9/+C/k5V0dtJq4paWF48ezaVGL8UpYBiGJlHZo0OiGf06zlZ6eburq6hCJRBZdqytWrOLWrRs2BbDHAplMRmbmXqtOXkNDIX2drVR1KOlV6+hQaqlqVxLt40yc3+Qt9isvL7OqoDd1sfZHEAQuXDiLh4cHixYtsem8xcWFbNiw6aOYN+2MPdMnCtoPkUjEhpn+zAv1oLZLRYdCO2jwTW8QaOhW0avRszbOl9SQ6SEp0Z/Y2DhaWpqtJhexWExGRgYBAYFkZx+jvX1y6kD19vaanetnzpxp0zESsYgtCYF8NjeEheGepAR7kJkaxCdzQwjx92PlytX87ne/Jz19N1KplHPnzvCHP/wd//iPf8+VK5dYtWqtTTqMJm24oqJCRCIRWq2G0NAQ5HI5Dx7cZ968BXz22RcW5gJubu7Mnp1k/rmurtZ8fYOhUqnM+2zatI2ystIRtWVdu3ZlwFavgUhKSmHp0uW4urqSkbEPJycni98/evSQx48f0if3JSw8ArG6l/z8F+h1WkI9nOhQaietztPA7a/WwRGjXMJ5PD09+frrb/jii6/NmXiDwcDt2zc5fPiguUKwq6uTs2fPsnXrDqv3azpSU1PNuXNnmD07iaVL7S1L0x2pRMzOpCBifF2oePMAPticqtUbqO5UIZWI2T47cNRu0f11hzs7O+nrs930bLxJS1vM48cP0Wg0FtudnJz4/PPPASZ1ZVRVVSVKpQK53JmIiEibjpFLJeybE8yelBBSQzyYH+bJp3ND2T47gJDgYDZu3MzvfvfPWb9+I729vRw/fox/+If/yv/z//xnCgtfs2PHLpuqmTo62jl06AdaW43PI319vSQnp9LV1UVh4Ws2bNjE9u07Le6zkZFRFrIQL148H9bkrba2lr6+XmQyGbt27Rkw4TcYer2eU6eO09TUaNP+a9asY+bMWQQEBLJ9e7rVgu3ChbOUVlSg9ggjOjSYnvZmXr0qQCIWEe7pRH23iop223SdPzTvtsUGBAQO+DmrVCouX75IfPxMDhz4FXv3fmrWp1er1Zw7d4aTJ7PNf+e1tTU8evSIzZu3IhZPy6WKBc+ePeH+/busWrXGXEhgx85UJDw8ApVKPej90c/Pj127Mqmvr+PcuTNTzhx9LGhtbeXkyWxCQ8MsJOikUimJiUl89tkXfP31b0hISODFi+dW1cSCIJCf/5w//niIZ2ov5PN30eE9k3OFLRx6VMM/3KmktGVsnplMifCgoBBcXd92dMnlcpKTU21Kxo4Vbm7uZGTstUiyuqPEvfEZMm03PWodWr2BBeGeZKYEW0l6TCbeLfIKDg4ZUJrv+fOn1NXV2qTRX1dXy9Onj9myZftHMW/aGR+m7TdH5iBmV3IwK2f4oNYbKG1V0NitoketQ6HR063SUdOhpKJdiUwqYUdiIKtifKdllmWwVlgwTkS7d2fi7OzMsWO/TErX7OLiQgRBIDg4xKaqIxMOYhGJQe5kpATzydwQFoZ7Ie83UUgkEuLjZ7J376f82Z/9Dn//AC5dukhTUyNFRa8tqokHoqWlhUOHvqeiohyxWIyLiwv+/v6UlpbR1NREZuZeVq9eO6C8QFraIovv2r17d4a8ltLSUvR6PT4+vvj4+LBixWquXbtq0/vw8OF9Hj16YNO+0dEzLLKNvr6+7NyZYXUNV69epqq+GU9XV5JTUvD28UEqlZqPU41h1nqsMBgMVq6ws2YlWFVygdGIrqammvXrN+Hg4ICfnx/79x9g6dLl5gm3sbGBgwe/5caNPM6ePUN6errFg9N0pbW1lRMnsggJCf0odJXtGPGUS/lkjjEw2KnSUdamoKVXQ69aR59GR6dSS0W7gppOFX6uMvbOCXkv/f7+wWGAxsbJUz0slUpZuDBtwPu2u7s7GRn76OnpnrSVUSan8fj4+BEtIJykEuaHe7JvTgiZqcEkB7vj0K/TymTad+DAr/jyy6/R6XTcuGF0ZH/69LG5mngwysvL+PHH72ltbcHZ2RlHR0e8vb159uwJgmBg//6vSE2da3XPEYlEFhU1Op1u2DmvqMhoBhsdHYOLi4vNi1xBEDh//qyVAdtgLFy4iHnzFph/njEjlnXrNljsYzAYOJVzis6eXgL9fEhMTMLLywuxSISDWITeIKDSTr45tbe316qCPiUldcB9b97MQ6NRs26d0aQ1MjKKr7/+xiJRXlJSzLff/hN3797m7t3bZGQMrU09XSgvL+XSpQvMmzef+fMXTvRw7Nh5b1auXM2NG3mDBn7DwsLZunUHhYWvuXbtygce3cTS29tDVtYvuLm5k56+e1AJOj8/P9asWc/vfvd7tm7dYa4m/ru/+1v+/b//Pzh6/Dgdvok4BscT7O2OBwo8BCUh7k40dqs59ryemjGQJDIZwQ5k2jprVgINDfUj1kl+HwICAtixY6fFs4sXfcjL8tgeIeH3y6PZOycEH5fJKynR09Nt5Qc1UBdrb28P169fIzk51UI+ayCam5u5ffsm27alfxTzpp3xY9oGh8EYIN42O5DfLolkS4I/rjIpfRo9nSotSq2eEE85malB/MXSKNIivKZ1kMPLyxs/P/8B3dTlcjl79uxDrzeQnX0UtXpySQKYFrK2tr+OBqVSSUNDPZ988hl/9Vd/jUwmM1cTD6RNXFxcxOHDP9DRYTQmcnJyIiYmjuaWVrSCmP1ffk10dMygr+fl5W0hkVFZWTGklq2pBTgmxtjS4+/vj7u7+7B60a9fv7L5wSsoKJgdO3ZZPaiEh0ewadNWi22CINBY8oy2nj4cHWVERUYZzWZ0BiQiEf4j1Bj9EFRWVtjU/mqajJOSUiyq6iQSCUuXLmf//gP4+Bh1qFUqFX/603+jp6fno6h+6O3tJTv7CK6ubgMmDexMbzzkUj6bG8I3iyJYGeOLg0REr0ZPl0qHRm9gpr8bn80L5bdLIoj3f79ESWBgkMWcXF8/eYLDYAwqdnZ2DKgv7Ofnx+7de6ivr+Ps2dOT6t6g1+spKTEGRm2VaRoN7e3tqFRK/vIv/3u++OIr+vr6OH782IDaxIIgcO/eXbP7OBjlOwIDg2hsbsXdJ4DPPv9qSMPL2Ng4830ZjJWYQ7mpvzunzpw5i8bGhmEXuTdvXqegIH/IfUwkJCSycuVqq+1z5sxjwYI0i216jZKWqkJae5S4u7kT+kZWoFutw1kqwd9t8i10X77Mtwj2S6VSZs2abbVfbW0NT58+Yfnylbi7v5WqcnJyYuvW7ezalYmzs7H9t729jT/84b8gkTgMa3I4HWhsbCAn5yQxMbGsXr1uWq9D7Hw8uLq6MmNGjJUeeX/i42eydu16Hj168EGrTycStVpNVtZRBAEyM/fa1GkolUqZPTuRzz77gu3bd1JXV8OTJ49p1Eip7dXjjhIvN6OOf29fL44OYiK8nOhQaHhQ3THM2Yemf9dqbKy1EbpIJGLVqjXk5V39oM850dExrF+/0XKjwcDNizloet7vmj8E78ooOTo6Dvg8duXKJRwcpAM+R/Sno6Odq1cvsW1bOjKZ9fpbbxBo6VXT2qeZVM+jdiYnH0Vqwd9Nhr+bH0ujfOjT6NAZBKQSMW4yhzeOlh8HaWmLyco6QmRklFW1pEkH6ueff+TUqeNkZOydFIGf7u4uamtr3jh+j0+rXWdnB9nZx/Dz82fHjl1vFjgJdHZ28OLFc/LzX/DkyWOCg0NITk6hra2Vhw/fViV5eHiid3CivFGNIXkH9YHhfPukleRgNXNDPQfNXqalLeb16wLzz/fu3WHnzgyr/XQ6HSUlxiBw/8ztkiXLyM4+SlhYxIDVr1VVlZw9e9qm98DLy4vdu/cMeB6A2bMT6erq5Nattzpi3roOyuoreC2WEOjhjN4g0KnSMSvAdVLqPL1bNezvHzBg++vVq5cRiyWsWrVmwPMEBgbx5Zdfc+3aFX7++UfCwyPp7OzgD3/4A2lpy0hKSp2WCzyTqZReb+DTT217qLUz/RCJRIR7yQn3krM21heFVo/BIODoYJxTx+q7L5PJ8PHxpbW1BZhcusMmVq5czeXLF9m9e4/VdYeGhrFtWzqnTh3H1fXypAn8VFaWo1KpcHV1IzQ0bFxeo6qqknPnzpCUlGI2EktJmUNjYwPPnz/j4cP73Llzi+joGSQkJFJUVEhxcaH5eH//QFqVOprk4YjmLuS1bAZ/fFjH3BBPUkPdcXG0fnQViUSkpS02z3kajYanTx+zZMkyq33b2tpobW1FIpEQHT3DfPyqVWu4du0KO3dmDPhZPXnyaNguHxMREZFs3rx10M981ao1dHd3UVRkvG4R4K1spLbWBZEoEm8XR9Q6A30aPYsjvQl2n1z3W2Nb8zOLbfHxs6wWpnq9ngsXzhEUFMycOfMGPFdsbBzBwSHk5Jzg3Llc4uLiKS0t5u///u9ZvnwtkZHT0+y0q6uT7Oxj+Pj4sm1bur0N2M60IjV1LllZR96sW9wG3Gfu3Pn09PRw7doVXFxcSUiwTi5NF0xyRF1dnXz66RdmWR1bEASBp08fc+3aFRITk/kf/8d/xXf3Knle00p5aTEikYjOzg70ej0GgwGxWIyPsyOFTb10q7S4O43OB6Wiohy9Xo+fXxDe3j4MFFf08vImMDCIs/de4OoXgrOjhKQg93GXdEhJmUNnZ6eFp5LJC2D//i9H9P5+SEySIP2ZNWu21fq7pKSYoqJCtm/fOaSJb29vDxcunGPr1u0DmtUXNfaQ/aCKui4VYpGICC9n1sX7EuIxvDGwnY+Tj+pJxNFBjJezI36uMjzl0o8qMAxGw5yFCxdx586tAX/v7+/Pzp0Zb/REcydFdslU3RMaGjYuN3qFQkFW1hFkMkd27cq0MBLz9PRixYpV/Pa3f8HOnRmIxWL+83/+j/yX//J/U15eRl9fH76+frSr9DzsdUMWtwwnd280SgUKjY6LhS38+KiG+q6BdSf9/f3NVUtgrEYeqAqturoKtVqNq6ubRau1sbV5Ebdv37Q6prm5mZMns23SUHR2diEzc5+Fi/pALF68lMTE5LfHoSFaU4W4uRi9Xo9MKmFdnC97UiefztNg7a/vLtxLS0soLHzNmjXrhpyMxWIxSqWC3/zmd4SGGiu8NBoNFy6cIzv76Ij0oKcCBoOBM2dO0d7eRkbGHovqLzsfL05SCd7Ojvi6ynB3ko558LP//a6xsWFSzEn98fDwJCQkbFA997i4eNat28CjRw8tEooTyevXo5OUsJWWlhZOnswmLCzcyhAlMDDIrE28YcMmWlpa+Lf/9n/jp58OvpnnVAQGBlLa1sdLfQAu8UuQObuiVvbR2qvh5MsGfn5SR7dqYLmnhITZFiaqjx5Z60LD2zbZ8PAIi2Cmp6cXQUEhA36excVFXLlyyab3wN8/YNjOCpFIxJYt2y2MxzzpI1RRhqGtEoMg4CF3ZFtCAFsTAiZFYqE/1dVV5s4pEwNJSjx4cI+OjnY2btwy5PfNdH2/+91f4OZmDCR1d3dz7NgvXLp0fsDPcSqjUqnIyjqKVOpg9expx850QCwWs2zZCi7mXedJdQcvG7rpVVvLLK1YsYrZs5M4d+6MzXI9Uw1BELh48Tw1NdXs3JkxZBfMuyiVSk6dOs7lyxdJTZ3D559/iZ+fH3JPH+Kjo5iTOpfAwCAkEgmRkVGYnpJkDmI0egPK95AkKi01zpXx8fFD7qfyieWXZ/Wczq8n63kDR57WfxAT1RUrVln5A/X0dJOdfWzSdUGbqKysoKury2Lbu5ISarWay5cvEh09Y8iuaaVSSW7uaTZs2DRgjKS+S8XBe5WUtSpwlzngLJVQ0NjNsWf1dCkHl82083HzUQWH7Rg1ZXt6emhpaRnw9xERkWzZsp1Xr15y/fq1Dzw6a4qKxk9SQqvVcuJEFkqlasjgqEQiwdvbB4Wij6ioaAIDg2htbaWo6DVXrl6mVO+JR2gsqVFBOKNGrFPiJRMxw8eZhm41pwsa0RkGDmq86zzaPwNqwjQ5x8TEWC0Qo6Nn0NfXR1NTk3lbd3cXWVlHbJoYHR0dyczci5eX97D7ikQiNm7cbCG14IKaoN5SIjue8JfLItg0K2DUGerxpKDg5bDtr8bJ+AJRUdFDmhGaNCdnzZrNkiXL+OqrbyzkKcrLy/j22z/abAA42REEgatXL1FeXsaOHTttMpWyY2csCA5+GxxWqVS0t384XTtbWbBgIS9ePBvUfG7OnHksWrSEvLwrFBS8/MCjs0Sr1Zrnk/GQlOjp6SYr6wgeHp5DainKZDLc3T3QaDTExMTh5eVNY2MDBQX5XL5+gwZ5OIHhM5gd4o0cDQZlD8EeTkR4ySlq6uVKsXUSFYzBiLS0xeafVSqllekLDK2huGDBQvLzn1tIUtTW1nDmzCmbkhMeHh5kZu4dsLXzXaRSKTt3ZuDl9daw1pM+/FpfkGqo4PfLIlkR44ujw+R7VH/XiM7Hx5fg4BCLbW1tbdy5c4sFC9KGDIao1Wpyc3NYu3YDixcv4+uvv7F4znj69Ak//PAn6upqx/QaJgq9Xm8238vI2PdReBXY+TiRuPlyo0XK/33hJQcf1nDwUQ3tCstEj0gkYtOmLYSHR7wx+mwa5GxTlzt3bpGf/5xNm7babAILRoOxgwe/pbq6il27Mlm7doNZT9ZTLkWlE3B2diY6KpoNGzYTHhaO5E0STqnVI3MQ4+I4umIdnU5n1sUdygy+W6XlblUnoYEBSHqbCfVw4nVTD8VjZIg3FCKRiM2bt1l1QTU3N5GTc2JSShMN1MXa31AXjBr9arWK9es3DpoY1mg0nDlzilWr1uDt7TPgPs/qumjtVRPlI8dV5oC7kwPR3s7Udal41TS9ipjsjB2T74nTzrizatVqbtywNqczMWtWAmvWrOPBg3s8fvzwA4/uLR0d7TQ01CMWi4mLG1tJCYPBwNmzp2lubiIjY8+QwdGSkmIOH/6B9vZ2nJyciIiIYtmy5URFRRORuIBOg5y2qiJqaqqQiI2TcG9fL2KxiBB3GdUdSiraBp4kg4NDLETmX78uoLPzbTWOIAiUlpYCEBNjvZAFY3vq9etX6VFpqGnt4pejtlWuisViduzYaTUpDYVEIiE9fTe+vn4W2+trqrh86fykq+yDwdtf35VFuHXrOkql0qra7d1zXb16ifDwcOLijJl0mUzGpk1b+PTTT9HIfakQ+fNC7cU/nLnBzydOolBMTpd5W3n48AFPnjxm/fqNQ+po27Ez1gQGWprSTUZpCYlEwpIly7h9+8ag+yxfvpLExGTOn8+d0Mqo8vIyNBoNHh4eVoG898WkpSgSMWRwVBAE7t+/R1bWEVQqJa6ursTHzyQtbQmRkdH4z1xAm0JPS8Vr2tvb0ev1aHVaNBo1jhIxPi5SChp7rAIMJhITk3FxeRtse/jwgYUpYG9vDw0NdQAWnTsmJBIJy5at4Pr1PLqUWoprGsnKzrLJWNDJSU5m5ie4ug7cQj0QLi4uZGTsxcnpbaeKCHj5/AlPn0zc89dQKBQKCxkQsO7EEQSBS5fO4+7uPqC0hwmdTkdubg6LFy81B5Dd3T3Yu/dTNm7aTKfEkzJRAPc75fynn3K4cPXapDR5tBVTcrmurpZduzLw8Rl4UW/HznTgRlkrgps/Qlcj4V5OlLcquFNhneQ1rS28vLzJyjpCV1fnhx/sOJGf/5zbt2++qZBOtOkY0zz588+HcHV148CBX1klM5OC3DEIAuo3BuDifvdfgyDQptQyO9ANV9noFET7d62GhAz+vKDWGdDoDfh5uuMfEICjRPRmXONfOQzGruidOzPw9rZcx1dUlHPp0oVJtS7t6+uz6mJNTk55x1+jjqdPn7Bs2Qo8PDwHPI9p3ly0aMmQBTtNPWrkUgkIUFtbi0EQEItFiIG2PnvlsJ2BsQeHP0Lc3NwJC4vg5ct8lBq9eWLpz/z5C1mwII2rVy+bDeE+NCYtvvDwiGElD0ZKXt4ViouL2L5956CLZEEQuHXrBidOZPWrwhUBAk5OTvz+9/+C9E9/TXhUDOHBgbS1tdHc0kRXVyfaNy2QTlIJOr2B5p7BWyL7Vw8bDAYLY4aGhnp6e3uQyWSDOpW6uroi+M3gb47f518fvc3NDmd6GV6fcOPGLaMK9jk5OZGZuddiAQ5QUJA/oMTFRFNTU21VcfhuC09DQz1PnjwecjIGuH37Jm5uHiQlWbvKNom8UUYuodc9gnaRK5Uif86UKvi7b3+gvLx0TK7lQ1NQUEBe3hUWLVpCSsqciR6OnY8MPz8/i3ZrU1BvshEeHoFKpaahoYE+tQ6d3nJONXVdhIdHcPJkNk1NjRMyTlMnTnz8rDGVKTBVQvb0dL+phBw4OGqqdLl+/a15jUgkQqvVEhgYyL/8l/+aVVsyiIiIwNfbi8amBlpamlGplKhVxjnYUy6lW6WluWfgzhgHBwcLs7fe3h4LAznTwiw0NHTQcQYGhVDQ48C/O/2Evzl+j+cab9TDWHQ4ODiQkbFnVME+b28fdu/OtKq0zsu7an4Omky8evXSQrJKIpGQkGAZ9MjPf051dRXr128aVDLBYDBw7twZUlPnWlV+CUCdNBh15BK6nYNoF7lRJgrk58c1/OngwSlbXZiXl0dBQT5btmwnLCx8oodjx8640q7Q4i53JDIiHJFBQO4gpnOQdnZHR8c33idSsrKOTPnCCjAmZC9cOEdq6hyLrpah6OvrIyvrCNevX2XBgjQ++eTzAdclM/1dmenvSlWnki6V1jynKrV6KtqVBLrJSIvwsjrOVobqWu2Pp1xKsLsTDT1q9BInajpVuDs5EPQBdfKdnZ3JyNiLXG6pufv8+VPu37/3wcYxHAUFlnOng4ODxdyp1+s5f/4sAQGBzJ07f8BzGOfNXJKTU4adQ7ydpfQq1bx+/QonJyfEIhGCIGAQwN3po7AdszMK7MHhj5TZKXM48rCcf5Pzgv+UV8alomYr6YNVq9Ywa9ZscnNzqK6u+uBjNLXlD9XiPxoePrzPo0cPWbduw4CVQ2BsYT5xIsusz2wwGNDpdOj1OmJiYjlw4NdmrUCp1JHwsHDmz19AWtpili5ZbpHJE4ZZg0dERFpoa+bnvzBX/poWsrGxseZWonep6VDyWuVOSUUVqp52ekRyykUB6If4816+fCVJScmD/n44jAaGe60E9I2tUy9Gfd7xYKD21/46j6bJ2N8/gHnzFgx6nkePHmAwGFi4MM3qd50KLecLGnCUSlmeFMu8uAh8xBp6RU6UKWVkZR3l/Pmzk1YDayBqa2s4ceIEs2bNZvnylRM9HDsfIWKx2KKzoaGhYQJHMzSpacv5T2cf8e9yX/G318t5VN1pUbFiqozy9vYhK+uoRYfIh0CtVlNWZkxSjeWcaqqErK2tYefODPz8/Abcr7Ozg59++tE8r2u1WrN5zoIFaXz22Rd4enoBIpyc5MyYEcOC+QtZ9GZOdXd/q6c3XFg7JSXVohL3/v275vZS05w6VJvsi/puGiT+FLzKB42CdpEbVaKBrwuMAe7t23dazCsjJTQ0jC1btltsEwSB3NycSSWnIAiC1ZwaFxdvYYTT29tLXt5VEhOTiYyMGvQ8Fy+eJyYmzmwK2J+KNgU3S1oJ9HJhVeosEsMDcBOp6BC58rpNzaFD33Pv3p1J2TY8GC9ePOf69eusWLF6zJ9r7diZjIR4ONGn0SOVu6E0gFJnIHCIoKGrqyuZmftQKlUcP34MrXbqVjc2NTWSk3OCqKho1q0bXB6gP9XVVfzww7c0NTWRmbmPlStXDyrP5CSVkJESzMIwTxQaA2VtSsraFDT3aoj2cWZvasiQ7/VQ2NK1akIqEbMzKYiZ/q5o9QLeLo6kJwYR6vlhDc+8vLzZvTvTaq1848a1SSHzZ0sX68OH92lvbxtUo9/YkXOBGTNimDFj4PhFf7z0nbQ11uHkG4q7lzdqnYHKDiW+ro4kBNjljOwMjD04/JFyp7KTTudQ6urq0RsMXClp5XFNp8U+Ri2frYSGhnHyZDbNzc0fbHytra20tDQjkUiGnZhGQlFRIXl5V1m4cNGgztltbW0cPvyDeRGpUqlQq9XIZDI2bNjErl2ZZrOyQHcZTg4iFFo9YpGIAP8AC0MchUaPo1hMoPvg+oMikciielin05nNi0zaiEOZATT1qKisq8dVrEWv6sUFFUqR46CVTqmpc6y0jkdDQEAg27enWz3wXLhwdtKYSiiVSqv213dbeB4+fEBrawubNg1umPPyZT4dHe2DBkmrO5W092nxd3NEbzDg6enF3Llz8XeT0yVyQYeYFy+e8f33f5yQRMtIaW9v48SJbEJCQti8eeukM0Oy8/HQPzjc3Nw0KReLgiBwtbKHdokXHe1tdKt1nClopKzVsvLJ0dGRjIy9E1IZVVZWilarxcvLC3//gDE77+3bNykoyGfz5m2DdrdUVlZw8OD3NDcbqz2VSiV6vR4XF1cyM/eyZs068wI42MM4V+oMBiQSCSEhoRaLpw6FFne5dMhFr0wmY968t1U3nZ2dFBa+Rq1WU1VVCQw9pzZ2K6lvbMBFbEDQKHFCS4/IGcMgYen16zcOqF88UmbNSmDFitUW23Q6HcePZ9HRMTn0tuvr62httfSs6K+5D3Dt2mVEIjGrVq0Z8ByCIJCXd5XAwMBBg6TVHUpUWj3uTlK0Oh3BISHMSU7BReZIB67o9Xpu3Mjjp59+pL29bUyubTypqCjn4sVzzJ8/n7S0RRM9HDt2PgirYnxJDnanXaGhR6VjfpgHS6OG9jjx8vImI2MPLS3NnD59ckolgEx0dXWSlXUUb28ftm/fOaz5q8Fg4Pbtmxw58hPe3t589dWvBkyavYubkwN7UoP58yUR7E0NZndyEF+nhfPrRRGEe40+OGtL12p//N1kfJ0Wzl+tjOYvl0eRFDz2BvK2EBISytatO6zWLGfPnqa2tmZCxmSitraGtjbLuap/F2t7u1Gjf/78hQQEDPyMdv36Nfz8/EhImD3g700YDAauX7+GqrmKf7lnBQGertR3qWjsURPs4cTu5CB8XYf3RbDzcWIPDn+klLb04ePhiodMhJdMghhjpca7SCQSdu7MwN3dg6ysI3R3d1mfbBwwtb9GRkaZA7HvS21tDbm5OcycmcDKlasH3Ke0tIRDh74338C7u7vR6/UEBwfz+edfMm/eAotJJ8xTzgxfV+q71ejeeYDRGwTqu1VE+jgT6W3Z6vIuMTGxFjq+z58/pb6+jra2ViQSCbGxg2cIy4tf0dXZgUjqhIuLKxoccMCAA9Z6T7GxcTZnsG1hxoxY1q3bYLHNYDBw6tTxQU0PPySvXr200Cd8t/21o6OdO3duvpmMB9ZtKi0tobKygrVrNwz6vokAkQgUCiWvX79CpVTi6OhIVPQMwkLDcJQaK6y7uro4cuQnrl69PCmDXGBsacvOPopcLueTTz4ZtGLdjp0PQX/ZH4PBYA4wTiYUWj3VHUpiQ/1B3UuIuxMKrZ66bmuTOhcXFzIz96FSqT9oZVRhobFyZubMhDG7/7948Yw7d26xcuWaARcrgiDw8OF9jh37BZXKaPDW3d2FSGSc877++tdW1S8z/d0IcpNR06my0gpU6wy0K7QkB7njKR/a+HTu3PkWnS337t2hvLwMvV6Pl5c3vr6+Ax4nCAKvnj+mT6HAydkFR5kMjSDBUdAiwlq7cMmSZaSmzh1yLCMhLW2RlYSPUqkgO/vopGizfrdq2NPT0yJ4UF5eyuvXr1izZp1FNXF/7t+/i1wuH/J9M31Duzo7KS4qRKvV4OriQnRUNKFhYebvcH19HT/88C2PHz+cVNqS/WlqMpojRUZGsWXLFnuy1c5Hg6vMgc/mhvDX6+P43dJI9qSGGDVQhyEoKJj09F2Ul5dNOt3Y4VAqlWRlHUUqdXgjk+E45P49Pd0cPfozd+7cYunS5ezd++mIdOtFIhGB7k7MD/ckLcKLGF8XHMTvd48xFUdFR8+weQ0gFolwlTngIJnY0FJ8/ExWrrRMTOr1eo4fz5rQRKJ1F6uPWU7J1Enj6urK0qXLBzz+3r27yGSyQeUmTPT0dHP8+DH8/PzZsGETaTP8+GfLIvn1ogh+sziC3y6JJNbPXjVsZ3DsweGPFGdHB1Q6AzNmzEDsIEGrF3B2HPjrIJPJyMzch0Qi5tixIxYu3uOBIAgWC9mxoK2tjePHswgOHrgSUhAE7ty5xfHjx1Cr1ej1elpaWnB0lDJ//gK+/PJXAxq3iUUitib4E+XtTEW7krouFe0KDfVdKsrbFIR5ydk+OxDJMBP1u9XDGo2Gs2fPABAWFm5lnmbi5ct8yp/cwE/oRokjXcgREBEstOH4TnA4JCSUbdvSh81gj5Q5c+ZZaDyCsYU5O/uITcZ444UgCDx//sxiW2xsnFm/2jQZu7i4DDoZV1dX8fLlCzZv3jrk+xbhLUek7uVFWTUxMTG4ubmhMwi0K7QsTYjim6+/NmtDCYLAo0cPOHjwOxobJ1ebvFarfaOxrSEzc++YJWbs2BktQUGW9936+smnO+woEeMoEaPUGoiPj0f7JlEokwx83/fy8iYzcy+trS0fxFFbpVJRUVEOjN2cWl5eysWL55kzZ+6AUjtarZbc3NNcu3YFQRDQaDQ0Nzfh4uLK6tXr+OSTz3Fzs64ucnaUsCMpEG9nR0rbFDT1qGlXaKjpUFLTqWJ2oBurYwcO7PZHLpdbBFlbW1u4efM6YJwHBgvQXbt2BVXNSzyFPnqQ040zjugJE9qs6oaTklIGnTtGi0gkYv36jURFRVtsb29v5+TJ7Ak1Y1Or1eZnMxPJyW+N6DQaDRcvnicyMmrQyqZnz56gVCqH1d+M8JbT09lGRUMrs2YlIHOUodLpURsEtqQl89lnX+DlZdTT1Gq1XLlyiSNHfvpgBQy2Ylqoe3p6sWPHrjF//rJjZ7LjIBET6uVMoLvTsGuh/kRHx7Bx4xaeP3/K3bu3x3GEY4dOp+PkyWz6+vre6O8PHYQrLy/l+++/pb29nX37PmPJkmWT4h5h6lq1RbpgMrJgwULmzLFMPqpUSrKzj9LXN7BB/HiiVCrNRW8mkpLezp0vX74YUqP/+fOnKBR9w3b9VlSUc/bsGVavXmcxBztJJczwdSHS2xnpBAfv7Ux+7N+Qj5Sl0d54ODlQ1NhDWavCmHUMG1y43qgD9QkKhYITJ7LGtdqpubmZtrY2HBwcBtUEHgm9vb1kZf2Ci4sLO3dmWGVB1Wo1J09mc+uW0W1eoVDQ1NSIv78/O3dmsG1b+qDO6wC+rjL2zw8lPTEQX1dHQIS3iyPbEwP5Yn4YAW62tW7MnDkLT09P88+3b99Er9cP2q5aXl7G+fO5iBGIFhqJM9QxQ2hkpqGWQKHTYl8fHx927coc1BjmfVm1ag3x8ZYajt3d3WRnH0OjGdyMbzxpaKgfsv21oOAlVVWVrF+/acDMfmNjA/fv32Xr1h2Dan6B8WHw3o0rzHZTEx0ZSW2PnvI2BRXtCiK9nVke7Y2npxf79n3GqlVrzd+/trZWDh36wfw5TzQGg4Hc3BxaWprJyNjzRv/Tjp2Jxc3N3aKKZrIlVMCoubcyxgdBgKLGHqralczwdSExaPDWysDAIHbs2PWm3fz8uFZGlZQUo9fr8fX1G1QTeCQ0NjaQk3OS6OgZA3ZUdHV18tNPP/Lq1UvAKOvQ2dlBZGQUn366n+XLVw65AI72ceHAgjA2xPvhInMARIR4yslMDWLf3BCb3dcXLFhovnebEsCCIAw6pxr9CB4gRU+8UEecoZ4YoYGZQi2eWC4oo6NnsGHDpnGpAhWLxezYsctK/qO2toZz585MWBXd69cFFs9+YrGYxMQk88+3bt1AqVQO+r68fv2KxsZGVq1aM+T71tfXx9Pr50gLc8E7IISKDhVlbQrqutQkBrozN9SDkJBQDhz4NXPnvpUHq66u4rvv/kh+/otJUWmoVqvJyjqKSAQZGcNXENqxY8eSpKRkVqxYxa1bN3jx4tlED2dIBEHg3LkzNDTUs3t35pDmpHq9nry8q2RlHSUoKIgDB35lk3zDh6C9vc3ctWqLtMVkRCQSsXbtBmbMsDRd7+jo4OTJ7A/eufn6dYFVF+vs2cYu1r6+Pq5du0pCQqJVUhigsPA19fX1rF69dtB502AwcPPmdYqLi9i9e3TGuHbsmLD3C3+kxPi68OWCMFq1Ar09SuL8XPEbRn/Gx8eHjIw9HDnyE7m5OeNWBWGqTJkxI2bIoKwtaDQajh8/hl5v4NNP91lV4Jq0VdvaWhEEgZaWFgwGPUlJKezYscvmhbS7k5Rl0T4sjfJGZxBwEItGvGgUi8WkpS3mwoVzaDQaOjraaWxsHDBAblycv604EyPgQy8DdL2+0XXcN2iL51ggEonYsmU7vb29FuY5TU2NnD59kl27Mj94Nnyg9teIiEjANBlfYdas2QM+/LS1tXH9+jV27Ng1ZEC9o6OdS5cuvNERnMuz0mZeNfbQq9YT6C4jMdAdtzeOsGKxmIUL04iOnkFubg5NTY1mnbGyslK2bNk+aKvzhyAv7yolJcXs2pVpYZBox85EIhKJCAoKoqTE2IUwGSuHARaEeeIll9KLCI1CzexA92GDmNHRM9i4cQvnzp3Bzc1tzKtQTZjm1LEwwerq6iQ7+xg+Pr4DailWVVWSk3MSpVKBIAg0NNQjkzmxYEEaW7fuGLaSyoS/m4z18f6sjfNDP8o51dXVjaSkZJ49e0pXVycdHe1otdoB72+vX7/i2rUr5p8dMOBL94BzqimwP1TS8H2RyWRkZOzh0KGD9PR0W4zTw8OTFStWjdtrD8a7c+qMGTHmxE1jYwOPHz9kxYrVAyYWy8vLKC0tHlAPsj81NdXcvn2TtWvXM3NmNPcKGylp6UOrNxDu5cysAFec3rSlOzo6sm7dRmJi4jh3Lpeenm7UajXnzp2htLSY9es32fx9G2v0ej2nTh2np6ebTz/9YkRt4nbs2HlLWtpienq6zZ1+k7Wa9fr1axQWvmbHjl1muYCB6Orq5PTpUzQ2NrBq1VoWLFg4qaRmSkqMkhJDda1OBcRiMdu37+Tnnw/R1NRo3l5XV8vZs6fZsWPXB3nfh+tivXr1MiKRiNWr11odW1FRTnFxIdu2Wfv7mOjt7eHChXPEx8+ym4fbGRPslcMfMaGectbNCmBZtM+wgWETwcEhbN++k5KSYq5cuTjm1RmCIJhbL+LjZ73XuQwGAzk5J2hvbyMjYy/u7h4Wvy8rK+HQoR9oa2tFp9NRVVWBVOrA+vWb+OKLr0ZVYSUSiZBKxKOecGbPTsLV1Y329nYEQaCnpxu53DKo29nZQVbWUZsqck2SIB4enqMaz0iQSqXs3JlhbvU0UVZWOi7flaEYqP01KemtEV1e3lUEQWDNmnVWx3Z3d3Hp0nm2bt0xpKxCUVEhly9fZNOmLeaH1VBPOevj/dmVHMTiSG9zYLg/vr6+7N9/gKVLl5sDK42NDRw8+C0PHtyfEPONx48f8ujRA9auXT8m1fp27IwlQUFvdYe7urompC1wOEQiEXH+rmxICGRRpLfN1a2myqjbt2/y/PnTMR+XQqHoZ8I2c+idh8GopXgER0cpu3fvsUicmeRyjh37BaVSgUajpry8DC8vb3btynijozjyQJ34PefUhQsXIRaLzVqDKpVqwID22bOnbTqfl5fXG1PB8a8CdXNzJyNjr1WS/N69O+PyXRmKpqZGq6p9k5mOwWDg/Pmz+Pn5s2DBQqtja2trePbsCZs3bxs0SSwIAvfu3eX582fs2pWJv78/YrHxb2pLQgDpSUHMCfUwB4b7ExkZxddff8Ps2W+rmEtKivnuuz9SVFRotf94Y5KsqqmpJj1995hU69ux87FiqgKNiYklJ+fkpEwQP3jwgAcP7rF69doh59ni4iJ++OFb+vp6+eyzL1i4MG1SBYYBSkuNkhJjYbI60RhNgPfg7m7ZxWUyp/8QNDY20NLSbLEtKck4dxo1+gtYvXqtOVhsoq6ulidPHrFly/ZB582qqkrOnMlh5co1Fl08duy8D/bgsJ0RExMTy8aNm3n69An3798d03M3NjbQ2dmJo6OjVTvISBAEgUuXLlBZWUF6+m4L509BELh79zbHj2ehUqno6+ulrKyUsLAI9u//is2bt05Y+5+DgwMLFiyko8O4kHVxceHlyxfm3/f19b1xuR8+OCKRSKyufbxxcXEhI2MvTk6WQdWnT5/w8OGDDzaOwsJXFsFzsVhMUlIyYMzEFhTks3r1GqvJuK+vj7Nnz7Bp05ZBAxk6nY4rVy5SX1/H7t17rJIOtiCRSFi6dDn79x/Ax8fXfN68vCscOfITnZ0dIz7naCkpKebq1cssWJA2rNGBHTsTwbu6ww0N9RM0kvEhLW0xc+bM5eLF82YjmLGiuLgQg8FAQEAg3t6jbzXU6XScOJGFQqEkI2Ovxb1Tq9Vy9uwZrl69jMFgoKOjnaqqKmbPTuLXv/4zFi1aMmELYE9PL2bNSqC9vR0AvV5nEVxobm7m5Mlsm6R9nJ2NZoLvzhvjib+//4AV2pcuXaC8vOyDjePdlm43N3eiooxdNw8fPqClpZmNGzdbjbOpqYm7d2+zdeuOQY2NFAoFp04dx8lJxtat20fVMebk5MTWrdvZtSsTZ2fj56NUGs975kwOKpW1OeR4cffubfLzn7Nx4xZzt5IdO3ZGj1gsZuvWHQQEBJKdfcxsGj4ZKCkp5ty5c8yfv5D5862TY2CcPy9fvsDJk9mEh0dw4MCvLcx2Jwu9vb3m+XG6FIq4urqRkbHPal55+PA+T58+HvfXf7fjxsPDg8jIKDQaDZcuXSAiItIsMWGiubmZ27dvsm1b+oDzpqnr9NWrAnbv3jOhXad2ph/24LCdUZGcnMrSpcu5cSOP/PwXwx9gI69fmyQlYt9LH/fuXWNlzcaNWyw0fDQaDTk5J7h58zoGg4GGhgbq6+tYvHgpf/7n/8zqBj0RzJyZYK6M8/b24d69uxgMBrNEhmmROxybN28jMjJqPIc6IN7ePuzenWk1oeXlXflgVTzvTsbR0TNwdXVDq9Vy6dJ5wsMjSExMtthHpVJx5swp1q7dMKjebmdnB8ePHyM8PJLVq9e+d1txYGAQX375NfPnv20rq6mp5vvv/8Tz50/Hvdq6vr6OM2dOERcXz6pVa4Y/wI6dCSAwMMgiuDjdgsOmyqjY2DhOnz5pIc3zvhQWGjtx3seIThAEcnNP09jYQEbGHosgc3d3Fz//fIiCgnwEQaCiopzu7m42bNjEN9/8+ZDttR+KqKgZqNVqJBIJHh6e3Lt3BzCOPSvrCGq1ethzSKVSMjL24OXlPd7DtcKkb9wfU2dUU1PTuL++Vqs1P5uZSEpKRiwW09nZwZ07N5k3b76VXEdHRzvXrl1m69YdgwZ86+pqyck5weLFS0lNnfveSYTY2Di+/vob4uLizdtevXrJd9/90WzKOJ68fJnPrVs3WL58pb2Sy46dMUQqlb5J/jiTlfXLhBpem6ivryMn5yQJCQkDygKAUb7w0KEfeP78GevXbyQ9ffeklWsoKytBEASCgoIHNIydqvj5+ZGevtsqeXn58kWKi4vH7XU1Gg2vXxdYbDOZuN6+fZO+vj4rjf7Ozg6uXr00qN9Rb28vJ09m4+7uPqHFbHamL/bgsJ1Rs2TJMlJS5nDhwlnKy0vf+3xGSQlj8PB9tBGfP3/OrVvXWbZshblaFIwLlUOHfqCoqBCdTkdxcRF6vY69ez/jq69+/V5VVWNJfX0dAQGByOVynJ2d6e7u4sWLF5w+fdLmoMiqVWsHdQv/EISGhrF58zar7bm5OWMa+BiIpqYmq/fJZER3+/ZNent7rSZjrVbLmTOnWL585aAtoCUlxVy8eJ4NGzaNabuVVCplzZp17Nv3GR4exipkjUbDhQvnyM4+Om4PwB0d7Rw/noW/f8CwOpB27EwkMpnMXGEP0y84DONTGdXb20NNTTUAM2eOXlLi0qVLZt27/tVONTXVHDz4PY2NDahUKl69eomHhydff/3NuOvcj4S2tlZ8fHzx8vJCLBZTWlpCZWUlx44dsen+KhaLSU/fNaFa7MnJqVZO5aaEcX9N4vGgqKjQovJWJBKRlJRslk+Qy+UsW2apddjT082FC+fYunX7gN8DQRB48OA+T548ZufODAICAsdsvC4uLqSn72bLlu3mIExPTzfHjv3CpUvnx80kt6qqkvPncwf8rOzYsfP+yOVy9uzZh8EgkJV11KbE3njR3t5GdvYxAgOD2LVrYP3agoKXHDz4HTqdlv37v2LOnHmT+lnb1Lk0HSQl3iUyMoqNG7dYbBMEgWPHjo2b0fG7XawikYjExCSamhp59OgBS5Yst0g49/b2cP782UHnzerqqjdr1VVmaQo7dsYae3DYzqgRiUSsX7+R6OgZnDp14r0X7LW1NfT0dOPk5DTqitfKygpOnTpFcnIqixcvNW8vLy/jxx+/p7W1hZ6ebgoK8gkNDeX3v/8XrF+/cdB2x4mgpKSYoKBg/P0DEIlECILAH/7wB0pLbQvAz5+/YEDdvw/NrFkJrFix2mKbTqfj+PEsOjpsq34eDfn5zyx+dnV1Izp6Bk1NTW8m42UWiQC9Xs/Zs6eZP3/hgG1eer2eq1cvU1NTxe7dewatKn5fwsMj+Oqrb8yBbDB+b7/99o9WVVvvi0KhIDv7KE5OMnbtsq7ytmNnstE/MNfY2PBBNcw/FKbKKBcXlzGpjCoqKkQQBIKDQ0atO//48UPu3LnD2rXrzdWYgiDw5Mkjjhz5CYWij9bWVoqKXpOSksq/+Bd/bdEJMRkoKSkmNDTUfN/X6/X8h//wH2hra7Xp+I0bNxMdPXqZq7Fi+fKVzJplmfTt6eke9yDJu5ISkZFReHh48upVAZWVFWzYsMmiekmhUHD27Bk2btw8YPWZUqnk9OmTSCRitm3bMS5VdKZF+Fdf/dpC2uHp0yf88MOfxjxJ3dLSwqlTxwkPj2D9+o2T6vtvx850wt3dg4yMvXR3d9ksCTTW9PX1kZ19FGdn+YCdkhqNhnPncsnNzSEmJo4vvvj6g0r8jQa1Wm32J5ispn/vS1JSspXxr1arJTv7GN3dXWP+egOZuLq4uHL+/Fl8ff0s1upKpZLc3NNs2LDJat40avLfIT//Bbt377Hr2NsZV+zBYTvvhckN1N8/gOzsY+8V9DMZ0cXExI0qWGXUDjxOdHS0+eHcZHKSnX0UpVJJXV0tZWWlrFixiv/uv/sfLFoPJwN6vZ7y8lIcHBzMbuQ1NdUUFRWZDXWGYubMWaxevW7SLEzS0haRkjLHYptSqSAr6ygKhWLMX0+r1fLqlWULj6l6/MKFs3h7+7BgQZr5d4IgcOHCOWbOTBgwIdHd3cXx48cICQllzZr14x5ElclkbNq0hYyMPbi4GDWPVSrjQjon58SYvGc6nY6TJ7NRKlVkZOydNNV9duwMRXDw2+CwSqWyWV5nqjGWlVFvJSVGZ+5aXFzE1auXWbJkiVmPXKfTcf78WS5fvohOp6OsrJSmpkZ27crkn/2zvyIwMGiYs35YOjraaW1twd3dg9TUuQiCQElJMa9evUKpVA57/PLlKydNhY5IJGLz5q2EhYVbbG9paebYsWPjEiRpbW2ltrbGYltycioKhYKrVy8za1aCReBco9GQm5vDqlVrB5TgaGio59Sp4yxYkMa8eQvG/VnF3d2DvXs/Zd26DWapso6ODn766UeuX7+GTqd779fo7e0hO/sIbm7upKfvfm+5KTt27AyNv78/O3dmUFtbw9mzZz5oslir1XL8+DE0Gi0ZGXutjKtbWlr48cfvKSx8xebNW0eto/6hqaysQKfT4eXlNa01bJcsWWZhXgrQ19dLVtbRMdWmb25utjJPTE5O5dGjhzQ3N7Fp0xbzXKHRaDhz5hSrVq2x6mLu6+vj5Mls5HI5W7Zss8tI2Bl37MFhO++NqdpJLnciK+vIqJzkDQYDhYVGSYnRLGR7errJzj6Kl5cXe/bsQSKRoNFoOH36JDduXHuj+/OKnp5uvv76N3zzzW/HrQL0faipqUalUuHs7MKGDZtpbW0xtwW/u0B7l/DwCLZs2T5pAsPwtrq8v+4zGBfsv/zyy5gszPrzbvsrGIPDT548oqmp0WIyFgSBq1cvERoaOqC7cFlZCefO5bJu3YYh3YfHgxkzYvn6628s5FUKC1/z3Xd/pKxs9IZVgiBw9uxb7dCJ0M+0Y2c0BAZatvRPRsfyscLd3YPMzH3vVRnV3d1FXV0tIpFoVHNqXV0tZ86cIj5+FuvXrweM8+zPPx8iP/85SqWSFy+e4ejoyF/91X//xoh08ukolpQY75dhYeEsW7aCiopyc8XwcNWjqalzJp08gIODAzt3ZuDjY7mALC0t5fLli2MeJHm3atjZ2YWYmFjy8q4iCAZWr15n/p1Op+PMmVMsXrzUqkpOEAQeP37Iw4f3SU/f/UElOkQiEXPnzufAgV8REhJqHs/9+3f58cfv30u3WaPRkJ19DEGAzMy9UyIIZMfOdCA8PIKtW3dQWPiKvLyrH+Q1DQYDp0+fpK2tlYwMy05CQRB4/vwpP/74HSKRiC+++JqkpJRJtSYbipISo/ZuTEzclBnzaBCJRGzatIXw8AiL7a2tLWNaiT5QF6u3tze3b9+w0OjX6XTk5uawaNESK3ml2toaTp8+yZIly0lJmTOtPxc7kwd7cNjOmODs7Exm5j40Gi3Z2UdHrOlWXV2FQtGHXO48YndnlUrFsWNHEIkgI2MPMpmMzs4ODh8+SGHha7q6unj27Am+vr78q3/1b1i/fuOkrewwBf5iYmJpaWmyaCvu7e2hs7NjwON8ff3YuTNjUsoDiMViduzYhb+/5WKxurp6zDP++fmWLTyRkVGIRCJu3brBnDlzLWQj7ty5hZubh4WMAxirt/PyrlJeXkZGxt4JC6A6OzuzfftOtm/fiZOTsTKhr6+X7OxjnD9/dlQVhdevX6OoyFo71I6dyY6fn5+FSWlj4/TTHe6Pn5/fe1VGmZKtYWHhuLq6jejY9vY2jh/PIigomC1btiESiaitreHgwe9paKinubmZ/PznzJ6dxP/6v/5/mTt3/qRdtJjm1NjYOBoa6unr6zX/rrm5GY1m4PtobGwc69ZNTnkAuVz+puvDxWL78+dPuX//3pi9jk6no6DgpcW2xMQkamqqefnyBatWrcHV1djhYjAYOHfuDKmpc6xMCE1mrwaDge3bd1pV2n0ovL19+PTT/axYsdr8DNjS0syhQ99z9+5tDAbDiM5nMgXs7OwgI2PvtDJwmqqIRFP331Qf/0Rc26xZs1i7dh2PHt3n8eMH43wNAleuXKSioowdO3YSFBRk/p1arebMmVNcvHiOxMQkvvzyK/z8fCf8fbf1n8Fg7FoViSAuLu6DfX4T9c/BQcKuXRkWFdIiEdTUVHHx4jlAeK/z63RaCgpeWmxLSkri6tVLODvLWbZsBSIRCIKB8+dzSUlJITw83OK79uDBPZ4/f8ru3ZkEBgaMeizT7bP7mK5vrK/NViZfJMnOlMXDw5PMzH388sshTp06zu7de2wOwpraX+Pj40cUuNXr9Zw8mU1vbw+fffYlrq5ulJWVcfDgYRQKBbW1NdTX17F8+Sp+/evfTOqHd1O7K4C7uzs5OScJCgq20HKura21qnh2c3Nnz559k7Jqy4RMJiMjYw+HDh20MM8pLHyFu7sHK1eufu/XaGtrM1dZm0hKSuHy5YvIZE4sX77KvP3x44fodDor7SmTic7s2UnvZYo4lsyalUBYWBjnz5+lvLwMMFZzVVVVsHnzNqvs92A8e/aEBw/usWbNukknp2LHznCIxWICA4PMf+P19dM7OAxvK6NOnz6Jq6vroG7oA1FYaNQpH2nVcF9fH1lZR3B2dmbnzgwkEgmPHj0iK+sEGo2W8vIyuru72L17L5mZeyd1i2NfX5+540ar1XLjRh6hoWFm93BBMFBXV2fV2RISEsq2belWzuaTCU9PL3bvzuSXXw6j17/twLlx4xoeHh5jMn+VlpagVFpKGc2aNZucHKO2rkluQxAELl26wIwZsVbazE1NjVy7doUVK1ZNioSkWCxm0aLFREVFc/bsaVpamtHr9dy8eZ2yslK2bNlmkzmxIAhcvnyBysoKMjL24u/v/wFGb2c4fHxGlgibbEz18Q/FeF3bxo1rEIv13L59k9DQABITE8fldW7fvk1xcQF79uxm3rw55u319fUcPpxFX18fX375+bi9/nhSXl6ORCLg5+dNcvLMAee+6ffddOPP/uzX/PGPf7TYWl5exKtXwaxcuXKQ44bnxYsXSCQCzs5vO0kCArx58eIxn376KSEhvgiCQG5uLvPnp5CU9FbmQqFQcObMGaKiotiyZWxkIqffZ2fJdL6+ibg2e3DYzpgSEBBAevpusrOPcv78WXPV0VDo9XqKi4sAiI+3fSErCALnzuVSV1fL3r2f4uPjw4MH93n48Dbd3V0UFRWj1Wr49a//nE2btkzqhR5Ac3MT3d3d6HRaHjy4j1arRSZzws/Pn44Oo95wV1cnPT3d5iC3k5MTmZn7JnXQ24SbmzsZGXv5+ecfLaq17t+/i6enp5U28Uh5t/1VLndGEAyUlZWya1emud2zoOAlbW2trF+/yWL/8vIyHj68z/r1G21aHH5IXF3dyMjYy4sXz7h27QoajYauri6OHPmJefMWsHz5SouqyncpKyvh0qULzJs3n/nzJ96s0I6d0RAUFGwODre0NKPVaof83k8HZs6cRV9fL1euXMLV1dVCM30wOjraaWxsQCwWExtreyJIo9Fw/PgxtFod+/Z9hlQq5cKFc5SWvqanp4eiokLkcmf+h//hf2H+/AXvc1kfhPLyUgRBQCJx4ObN6wB4eXnj4uKKRmOUH2pqaiQ0NMz8PfLx8WHXrswp8b0KDg5h27Z0cnKOW2w/e/Y0bm5uVhW8I+X586cWP4eHR1BU9Jru7m52796Lydfh+vVr+Pv7k5Dw1ixPEASePXtCdXUV6em7J6xaeDACAgL44ouvuHPnFvfv30UQBOrr6/jhh29ZsWLVsNXw9+/f49mzp2zevNUquWBn4mhr62EqepWKRMYgwFQd/1B8iGtLTU2jrq6Zw4d/ITNz34g7UIfj1asCzpw5w+LFS4mIiKO1tcdszJqXd5WoqHC2bEnH09Ob1tb3M5KdCO7ff4JCoSYmZhbt7ZbSkNP7uynhs88+47/+139Aq9Wat+fmnkcQpCQmJg1x9OBcv34HheLtOjcoKJhLl64RFhaNj08wra09XL9+DTc3N4KCIs3fmfr6Om7cyGPVqrUEBgbS1tY72EvYeH3T97OD6X19Y31tpvPZwoiCwyNJXvQvh54OTLfrgfG7JmO2axtnzpzC3d3NbKw2GFVVFajVSlxdXc1tFbZw8+Z1Xr9+yfbtxvae3NwcXr8uQKXq48WLl/j4+PLXf/1vpkyVZGmpMZjd2NhAeHiE+X0IDQ0zB4dFIqMGUULCbCQSCbt3Z+LvP3VcSwMC/ElP30V29lHzNpEILl++gLu7O9HRM0Z1Xr1ez6tXLy2+O/HxceTlXSUuLp64uDjAWAlVUVHG1q3bEYuNOxsMBm7fvolSqSAjY8+oggIf4v4gEolITZ1DZGQkZ8/mUltbDQg8fvyAiooytm3bMaAZVGNjAzk5J4mNjWXNmnU2j9F+zxv5ecfrOPtnYSQ4ONi8vyAYaG5ufO8A2FgyXp/T/PkL6O3tIS/vCm5ubsNWhRYWvkYkgoiICFxdXYbc14TBYCA39xRtba18+ul+HBwk/PLLYRoa6ujsbOP160Li42fx13/9P00Zp+zS0mL6+nrp7u4hODjIYk4tLzfKTRgMehoa6omIiMDFxZU9e/bh4jJ1TDrj4+NZvXoN9+7dAozfPYNBz4kTWXz++ZdW2sS20tnZQXV1pcV3OTQ0jPv377B48TJ8fY3nvX//HjKZjLlz55n3U6vVXLp0AT8/43w/msqnD3HPk0odWLlyFTExMZw9e4aOjnZ0Oi1Xr16itLSYLVu24e7uYXXcq1cF3Lx5jaVLl5GcbLtZof0+PvLzjhRBYEoHCab6+IdifK9NxKZNW+nr6+PEiWw++WS/le75aKmuruLs2TMkJCSxdOkKBAGUSiXnz+dSUlLM/PkLyMjYQWenckp+doIgUFpagiAYJQ0Hu4bp+t0MDg5m+/adHD+eZSHfdf78WVxd3UacaGhvb6O6uspim1KpQq/Xs2bNegTBOG86OEiZM2f+m/dV4NGjBzQ2NpCenoGTk9OYvtfT9bMzMZ2vbyKubUTB4dGUNk+3Uu/pdj0wPte0YsUiHBwMXLx4kdDQABYuHLxa8ebNSpydZSxcOBd/f+sH8YF4/PgxL148ZufO7SQkxPPLL79QX19PY2Md1dXVLF68mH/1r/6VWQ9vKlBTU05paRGhoaEWrSjOzjL8/PxoaWkBoLe3G0HQsX//fmbPnj3Y6SYtvr4pSCR6cnJyLK7z8uWz/OpXvyIwMHCIowfm1atXgM7ifIKgxdFRzCefZODm5kZlZSWVlcV8+eWnZumSnp4eTp/OJTExkeTk5Pe+tg9xf/D1deOf//Pfcu/ePa5cuYJOp0Ol6uX48V9Yvnw5K1asMF9fZ2cn58/nEBUVxldf7R9V4Nt+zxs/RjqOyTLusWQk1+ToGM+lS2//xpXKLnx9J4f8S3/G43PKyNiBWKwnL+8ioaH+REVFDbpvbW05zs4yFi9egK/v8GMxGlWepbGxlq+//gKZTMaRIz/R2dlJRUUpbW1t7Nu3lz//8z+fEhW1YKyCrqoqo6SkkJSUFIu5ISwsmIaGWkAJQFtbM4mJs/jNb349qvlnotm4cS0Gg4YHDx7022rg/PlTfPPNN7i42JYg6M+LFw8t3jOZTEZjYzVhYcFs27YBiUTC48ePkUoFNmx4q83c2NjI5csXWLNmNeHh4e97aR9oTp3FrFkzuHz5svk9bG1t5MiRH9m8eTMpKW9Npaqqqrh+/RKLFy8kPX3LqALfH/t93I6d8UAikZCevptffjlMdvZRPv/8Czw8PK320+gMtPZpUGj0CAg4O0rwcXbESWotadjSYjQpCw0NY9Mm4997XV0tp0+fRKPRsnv3HmJjYyel34utmLpWpVIp4eGREz2cCSEmJpa1a9dz+fJF8za9Xs+pU8f57LMvLbSJh+PFi+cWP6vVKtraWtm8eSuurq48f/6Uvr5es0yYUqnk0qXzZjmryehzYOfjYkR3s5GUNk+3Uu/pdj0w/tcUF5dEbW0T2dkn0WpFxMfPtNpHp9Px+PFzNBo1wcGRNrXjlJWVcPx4Nqmpc5FKXfjP//nv6Oxsp6ioCKVSwZ/92W/YuHE7KpWASjU12nva2to4f/4iXV1dxMbOtGhHAQgPD6e+vsH8s0zmQkBA+JRsXwKIiIhl+fLlXLhw2bxNoVDzj//4LV98cWDEMhl5ebcs3jO53IUXLwrYsGETajVUVZVw82Ye6em76egwaihWVlZw794d1q3biK+v73u9lxNxf4iNTcTLK5Dc3ByamhoBOHfuIk+evGDLlu24urry008/otPp2bBhO11dKkBl8/nt97yRn3ek2DoO+2dhPgqx2NFs1PnqVQmxsZNH32+8P6elS9fQ2NjKn/70A59+OnBlVEtLC5WVNUgkEnx9Q2y6r927d5cbN26xadNWqqrquXz5Ip2dnRQVFeLgIOFv/uZvSEycO+J7yETy4sVz7t9/gMEgIBJJB5xTX740ag/rdAaCgsJxcHCZknOqSASbNm2itraR0tIS83aFopF//Mfv+OSTz0YU1DcYDNy6dc/iPXNwkFFRUc3nn39JR4eC169fUVVVycaNm2lr60UQBF68eEZ5eRkbNmzG2fn93suJuOctXLgcf/9Qzp3LpaenG4VCzU8/HeHBgyds2LAZtVrN4cMH8ff3Z8mS1SNu+bXfx0d+Xjt2RoLR32QvP/10kKysI3z66Rc4OzujMwiUt/WRX99NSUsfCq0ejc5oQCmViHBxdCDax5nkYHdifF1wkIjp7e0hO/sIbm7u7NyZgVgs5t69u9y6dZ2goGC2b08fsLNgqmHyuomKip4yyd/xYO7c+XR2dvLo0dskq0qlIjv7CJ9/fsCmYjO9Xs/Ll/nmnw0GAz09PcyZM4/k5FQKC19TX19vTjQ0NNRz/fo1Vq5cTVBQ8Lhclx07I2VEweHRlDZPt1Lv6XY9ML7XtGrVWnp7ezlzJge53JmwMMtKkpLSUrrUBiSu/jToXWio7kQuleDr4oi3iyMOYssMWkNDPadOnSQ6OgY3N3eOHTtCW1srJSUluLm58m/+zf/B6tVL3+hBjc81jTWCIPDjjz/Q0dGBh4cnDg5Si7GLRODm5oanpxcdHR2EhISi0Whoa2ubdNq4I2HNmjVUVzfw6lWBeVtPTw/Hjh3ls8++MGsED0dXVyeVlZXm98xgMNDR0U509AySk+fQ2tpGXt5VduzYhVTqiF5v4O7d2/T09LBr1x4cHR3H7Lvyoe8PPj6+fP75Ae7du2N2W29sbOT77/+ERqPBxcWV/fsP4OzsYjEunUGgS6lFazAgFYvxkEut/tZM2O95k2cck2XcY8lIrykwMIiSEmPQqaGhflK+H+P1OYnFEnbsMFZGZWUNXBlV8Po1CsERn8BoClrUgBpXmQN+ro54yqWI36lKefWqgOvXr5GWtpiGhnqePXtKfX0dVVWVhIaG87/8L/+a5OSZU2pO1Wg0/PjjDygUSrMJ2rtzakBAACUlpahUamJjY6mpqUGjmboa1mKxmG3b0vn558M0Nr5NJNfX15Gbe5odO2yXdygrK6On521gV61Wo1a3kpa2iODgUMrKyiguLmLbtnRAhFqt4fLli3h7e5OenvFGi3hsrutD3/MiIqL46qtvuHLlEgUFxkV+SUkJ5eXlKBQKQkJCSU/PQCyWWIxLozPQrdahMxhwcpDg4eQw6Pttv4/bsTN+uLq6kpm5j8OHf+TEiSxWb9nNtbJOXjX1oDMIeDg54OMsxVEiRgSo9QYUGj1Part4VtdNnL8Lq6I8ycs9hiBAZuZetFotp04dp6qqkrS0xSxdunxE5umTGVNwOCYmboJHMvGsXr2W7u4usw8SQFdXF8ePH+OTTz4f1oC3tLQEheKtZnNNTTWBgYFs2LCZysoKiosL38ybRmP0urraSanJb+fjZur2QdiZEohEIjZv3kZf3xFOnMji00+/wM/PD7XOwOumHn66V0mFOAI3mT9HnzbAm2dpuVSMn4uMuWEeJAa64+bkQGdnB9nZx/D29kEslnDt2hWqqiqpr69j1qwE/uW//Nd4eXlN7AWPgps3r/P4sTFTOZQ+YGhoGA4OUiIiIhEEgfv377F589YPNcwxx/jd2EpPT4/ZZAqMRlM5OSfYvXuPTQ9f+fkvLHSimpubCAwMZsOGzfT0dHPp0nm2bduBXC6nt7eXixfPERsbz9Kly8fluj40EomEpUuXM2NGDLm5p2ltbaGw8DVtba2sW7cRieStEWOPSserph6e1nbR1KNGLwhIRCL8XR2ZG+bJrABX3J2mZnDEzsdBUFCIeTHT1dVFX1/fqNrmpyqDVUb1qnXkN3Rz+HkL7eII/IQgap7Vg2AMhjo7SgjxcGJuqCcJgW7IHMRUVVVy7twZZsyIpaammqqqSkpLi2lvb2fVqjX8xV/8FTLZ0IuhyYbBYCAn5wRlZaXA4HOqWCwmODgUg8GAn58/CkUf+fnPmTt3/occ7pji6OjI7t17OHz4B7q6uszbi4oKycu7am5jHY53zV3b29uIjY1n+fJV1NXV8uzZE3bs2IVYLKalpYUrVy6yZMkywsMjxvJyJgwnJye2bt1OXFw8Fy6co6enmxcvnqFWq4mPn2XxvNHap6GgoZsntV10qbQIAkjEIsI95cwJ9SDe33XAdnU7duyMH97ePmRm7uXvfz7BzaxbuPmHEeLhhLOj9d+iXCxBLpXg4+KISqvnVUMPN58UEKzW8Zef7aO9vZ0zZ3IQBIHMzH3TyoCys7ODlpZmxGIxM2bETPRwJhyRSMTWrTvo7f2J+vo68/bGxgbOnDllriAfjP5z5//b3n8FR3ZmCZ7n/7p2hytorYEIAKF1MEgmVVIzGAJBsliVWZ2TNVNjPTP90GMza/swD7MP3WXbvW1tu7Y929O9NVvT3VWVSUYERVImZVKF1gIhoEVAAw6Ha3HvPnjAEU4gNBAucH5mtMx7XeB8AfH5Pff7zvH7/czOzvIXf/GXhEJBTp8+yZ49+4lEInzxxWeUlZWze/deKSMhMs7tf8KFWCIGg4G9e9txOJwcPPh7OgbH+c8nB/j7kwN0TwYwEKe1spDGIhuNhTbqC6y4LAZGZ0O8d36Y/+NYP6d6xnj33d+jqnEikTDnzp3hwoVzjIwM8/rr+/gX/+Jf4XZnX2L49OmTfP/9n/B6vUCik/rtrF+/gWeeeS45kVy6dAGvd+a2z88Gcz8bP7+A7+np5osvPk+5CFuMqqpcuHA+eez3+wmFQuza9Tg2m41PPvmIl156BbvdQX9/Hx999AFPPvk069Y9fH3hTFNWVs5f/uV/hdVqY2JinKamVfj9Pv7u7/6Wc+fOcH3cx3882sehczcYmgliN+sptBlxmPXc8IY4eO4G/+FIH1fHHq47rhDLqbw8teni8PCNNEWSPnMrowKBIIcPH+Tc4DR/e7Sffzzew2RIw6JTWVNdTGOhjcYiG7X5VmxGPd2TAX53Zoj/dGKAs11DfPDBYex2ByMjN7hypYNz587g8/n5p//0f+Cf//P/+a6rZDKNpml88cXnnDlzmlgssQr4TiWKXn751ZTVUsePHyUejz+KUJeN3W5n//43sVgsKedPnDjG6dMn7/r62VlvMrEOMDk5gU6n45e/fAGv18uPP37Pq6++jsFg4MKF83z//be89tqenEkM36q5eRX/5J/89maJiQCtrWvo7e3m7/7ub+nu7uJkv4f/8FMvH10axRuK4rIYKLAZsRl1XBv38w+nB/k/jvcz4s2OUixC5BK/0UWkdjvjM36UmWGsiySGf85s1KNO32DG7ydcuYUvTnXwzjv/SFFREb/5zV/lVGIY5lcNV1VVy+rVm4xGI/v2HcDtdqec7+y8ztdff3Hb69LELtYeIPFZpKurk1WrVlNf38CPP37Pa6/tYXJygvffP8SWLdvYtm2HJIZFRpLksHgkLBYLb7zxFmOqjb957whXR7zkqQHy1ABOixGnc762mE5J1H+qclupL7AxOhvk335yktPjUYKhENeuXUvenfuf/qf/K3/1V3+dldt7rl27yldffcH09BSappGXZ19wQTenrKyMvXvbeeyxx5PnVFXlxIljjyrcZWO1WmlvfxObLXX13/nzZzl27MgdX9vT08XsbCKxrmka3d2dNDevZtOmLXz88Yc899wLuFxujhz5kQsXzrN//xsUFxcv21jSraPjEqFQkN/+9q9pakqsAohEIrzz+Z/4vx/+npEZP/UFNqrdVhxmA1ajHrvZQLXbSmOBjelAlINnb3B9XBLEIjOVlZWnfKBeiclhSKyM2rf/AKfHIvzbj08w5gtji81iJ0RJvgvTLQ1y9DoFp8VAbb6VapeFK8Me/vVHx+n1wfT0NFevXuHixfO43fn8zd/8K156KTt3pBw58iPnzp1hamoSSNxsvd3F15o1a3jhhZfYtm2+Wa7X6+Xy5YuPJNblVFxczJ49+xescPrqqy/o6rp+m1clXLx4IXnxG4vFktuoi4uL+frrL3jttT3odDo+/fRjvN4Z9u5tz6rGv/cjsUPrJwoKCvnrv/7vkk2JZme9/LtDn/HvvzhNOBqjqchGudNCnikxpzotRuoKrNS4rfTdvCEzNhu+y1cTQiwVXzjGp5dH0Znz2NBYyejYCIODA3d93UB/P+MTo7TVlHJjbJyPLg6xYceTvPHGn+Xk37m5GvXNzVJS4lZ5eXm0t7+FxZKaMD99+hSnTp1IOadpGrG4ytlz51Fvzp0jI8MEgwFef30vf/rTN7zyym4uX77IkSM/8vrr+5LlroTIRJIcFo/MUEAhUrWFUDRGcLQXz+Q4AEVFxdzu3plOgdBYP96pUQaUYk6PBLl27QpVVVX8q3/1b7O2NMDg4AAfffQBmqYlL2QLChZfNex0uviLv/gLzGYz9fUNlJbOd1M/f/4cfr9/0ddlE7c7n/37Dyzo+Pvdd9+m1CT+uVu7wo6OjqCqGnv27OOzzz7m8cefxGaz8f77h7DZbLzyymtZtxLufnR3d/HHP37Gpk2b2b17D7/5zX/N+vUbiaGjVylhyutnousyU1MTi75ep1OocVsIROP84dIogUh2r6ATuclsNlNYON85+tatfytNX9hKrGI9IZ+H6NQQUxNzc+rtO2vrFA3fjS6mZ2bpVso43TtCf38fmzZt4d/8m/9n1tYdPH/+LD/88B1Ack69XUmJqqoa9u1L1ODduHFzSn37Y8eOoKrq8ge8zGpr63jxxVdSzmmaxocfvp9Sk/jnj9+6Lbavr5fCwiKefPIpPv/8U159dTeBQIDDh9+ltbWNxx9/8o5bbLPdyZPHOX36FM8//yIvvfQKv/nNX1FbW0cAMwNKMTPTE4x0X06pz3wro15HfYGNGzMhPrk8mkwcCCGW1/fdk/RPB6l2WykrLaOmuob+/j5Gx0Zv+5rR0REGBvspyC9gaOgGlqiPgqom/O7GnPw7FwgEkgnzpqbmNEeTeQoLC9m3r33B4rNvvvmKa9eu4o/EODXg4W+P9fOvv+7k/3tmgg6liqGolZ7BG2zcuInLly/x3HPP8+23XxOJRNmzZz82my1NIxLi3uTeXzuRkbyhKJ92jILBxLa2RmZnZ+jsuo6maRQV3v5Ctru7m2vXr6GPBgnMTDFiKGHTL17ib/7m31BZWfUIR7B0JiYmOHz4ILFYjHg8jsfjARa/kLVYrLzxxp/hcCRWViuKws6du5KPR6PRBXcxs1VFRSWvvbZnwUqvTz/9KKUmsappTPojdI1McqmrD41Ew5y+vl4ef/yJZN1ITdP4wx/eZ9euJ9mwYVNOb98ZHR3lww/fo76+geeeewFFUTCbzbz00itsfHo3YaOdPCVMXI1x7dpVrl69QjQaXfA+iqJQ6TIzOhvmytiDd5oXYjnduupiZGT4ruVnctHAdJCvr09QUuBiTWMt/f19jI2Podfpb1ueSNU0Ll26wOBgH+a4n2nvLJP2Ona3/zn/y//yv96xBEMm6+q6zh//+BkwX1pIr9cvWmqqqKiYffvakzciLRYLmzZtST4+NTWV0owmm61bt37BDfRoNMqhQ+8yM+NJnoupGhO+MCcvX2dsxo8GeL0zjIwM8/LLr/KnP33DCy+8RH9/P3/609e8+upu6urqH+1gHrG5Os07djzGhg2bgMSN+jfffJuK9Y8T1ZmwEiEUCnHh4nl6+3oXvamg0ymUO810TwUYmA4+6mEIseJ4Q1HODnnJt803Wq6qrqGstIyurk6mpqcWvGZ6eprOrk4URWFyahKHw8GmjRupLnZzcdjLhC/3Vv53dXWiaRqlpWULGtuKhOrqGl5++bWUc5qm8buPPuP/9dVl3jl7g55JP17vDJFoFK9i42I4H2/1YxjzK9m0aQtfffUFGzduYseOnTl9HSpyhySHxSPxQ/cUQ54QVS4LLqeLkuJSAoEAwWDgtnfRevt6OXvuNPF4DK93Bn3UR01jCzWP78WSpbWRZme9HDz4O0KhxEWCx+MhHo9jsVgWlFUwGAy0t7+xIGnc3Lwq5dyZM6cIhXKjpt2qVat5+ulnU87F43Hee+8Qw2PjnBua4f88PsC/+6GHf/PHS5yjhitKJRdH/RhMFkpKyli9upWxsTHOnj3Dvn0HKC0tTdNoHg2vd4ZDh94hP7+A3bv3pqxw0DSNUc1BY309JbesJpyYnODM2TOLfkg26HQYdAqnB2ZQ1ZWXdBOZ79a6w+FwmMnJyTRG8+ipmsZX18bxReIU55koLSnFnmdnZsaDTqdDv8gqJ41EyYBr166iaRoznmlsapC6tdsp3/J8VpZmgsTK8Q8/fD+ZmJtbNex2uxes9nI4nLzxxlsLaitu2bINo3G+EefRoz/lzA2HXbueYM2adSnn/H4fhw69y6TXz7G+af7DT738v3/o4f/zYx8XdHVcp5TLwzOUlpXj9/t54omnOHnyOFNTk+zbdwC73XGbr5YbhoYG+fjjD2lpaeUXv3g65bFQTMVrLmJNUwPOW26mDA0Ncu78OXyL7OSyGfWEonEuDMsNVyGW2/VxP9OBCAXW+b/pCtDQ0Eh+fgFXr15h1jf/u+jz+7h46QKzs7NomkZ9fQOtrW0YjUbcFgPecIyr49m/Q/PnOjsT9YZl1fCdtbWtSZkHgpi4Ei/h5JUeSq0Ktfk2QjMTWIiiD0wRn7kBeUWMupo5ev4yu3fvpaqqOn0DEOI+SXJYLDtvKMq5G4m7uPqbd3Gj0Qj5+flEozGGhhZuC+7t6+XYsSNEIomVGXl5dn7x5FNsWd1Az1SA/ixcgREKhTh48J1k8znglpIShSl3FBVFYffuvYuujtbpdGzf/ljyOBwOc/bs6WWM/NHaunU7mzdvSTnnC4X5l+98xX850cf1cX/iYsszjoEYYxEjN+zNKKt+QUlFFVevdmAyGXn11d0p24VzUSgU4tChd9HrdbS3v7mgbEY4pjLsDZGfZ2b1qtWsWrUagz6xYi4ajXD16hUikciC9000hAwTjEppCZF5ystT67WttLrD/dNBuib9lDlMKIqCBqAo2O0OZn3eRW/6nD9/jkuXLhCPxwmFQhQWFvHcs8/SWFnKuRtevKGFOwky3dTUJIcOvZuyC2LuRkFBQepNVYvFwoEDby26OjovL48NGzYmj8fGRunp6VqeoB8xRVF46aVXFjSMG5zw8L/+7msOnh1i2BvCqofI7AQ6VAZCJiaK1qPVbmV1yxp+/PE7mppW8eSTT+Xk9upbTU1NcvjwQcrLK3j55dcWrPSa9EeYCUYpceexbu06amvqks8JBPxcvdqx4MaCoijYjHoGPNn3uVWIbHPDG0JBQadL/d1VFIVVq1aTl2fn8uXLBINBQuEQJ0+eYHJygsKCQtav30BlRWWy1KGiKBh0CkM59rsbjUaTzdOytZTUo7Rjx2OsX78RgBHFjV8xkxef5drVywQCfqanp1BVlenpKWKRCOV2Hd64EefqneTl5d35zYXIMLn9KU9khK6JAJ5glPybd3Gj0SieGQ92u4Pmpmb6+nsZGxsDEqubOjuv89NPPxAKBVEUhYqKCp55+llKS0qxmfSEYirXxrKrYVYsFuP99w8xPj6WPKdpGtM3L+J/vg34+edfvGODgLa2NTid8xe5J04cX7RMQDZSFIVnn30+eTdbA3qVUvpDJrzDvVS7zaghH/FIEIMaJTI5gC40g1bcyMcd42zb/hibNm3J+e078XicDz44zOysl/b2txZtlhFTNVSN5E2Z4qJiNm3aTP7N7dY1NbWL1mHWKQqqphGNZ3/tTZF7ioqKMJlMRNHjxcrp7mG6J/1MBRbe6MhF18d9hGIqeabEjR6vd4ZoNEJxcTHlZRWJlVE366Cqmsbp06c4f/4s0WgUvV5PQ30jT/3iaZwOJwVWI9OBKJ0T2bUyyufzcfDg7wkGA8lz4XAIv9+Hoigpc6per2fv3vY7NiPdunV7yurpI0dyZ/Xw3PjnanXH0NGllDHgjRKfHqbKbSXgmUSvxdFFg0QnB9DFQoSLVvHJ2R5eeeU1Ghoa0zyK5ef3+zl06B1sNit797Yv6IEAt8ypioKiKFRVVbFh/cbkzq/GhqZFP3vodQrhmMynQiy3IU8Iq3Hx9IZep7u5KtjA+fPn+PbbbxgfH6OpaRWbNm3GsciuCJtRz9BMKGfmA4De3h6i0Sgul4uSkpJ0h5PxFEXh+edfpLSmiUnFiYUoChAMBjl56iSqquLxTDM7O4vZbGbdmnU0V5VyacS3Yj6XitwhyWGx7EZ9iZIHcwmqyalJNE0jL89OU/MqSkpK6ey6ztTUFJcuXeTI0Z8IBoPk5dlZvaqFXY89kXLnzWrQZdXKYU3T+PTTj+jv70s57/V6iUajGAxGXC5X8vyuXU+wcePmO76nXq9n+/adyeNgMJDSSCbb6XQ6XnttD2Vl5cxiZVJxkEeYkN/L9WtXGR0dAWBmxkMwGMRq1FNk1aMvaSRsct3l3bOfpml8/vmnDA4OsGfP/ts2oDLpEyUiYvH5D7Umk4nWtjW0tLTetmNuTFXR6xTMhuzcai5yl6ZpDM+G8TgbuKDUcllXw6f9cf7jkT7+tx96OHTuBtfHfcRzuCRK/3QQq2H+49vERKLJZGFhEatbWhMrozou4/V6OX7sKOcvnCUWi+J0Olm/fiNbt21P3hTS6RQUBUZns6emYjgc5tChd5L1+udMTSVutjqdzmSZCEVRePXV1xesnP05p9OVUn5haGjwnrrbZ4vEyuk3ycuzM6U4mFHycBBkcmKUgYF+RscSc+rU1BThcJgCuwWH2YBW3opqyM4yXvcjGo3y3nsHCYcjtLe/uaD0yByzQYdepxC9ZU6dW3ne2tqG2+1e9HUxVcNqlPlUiOUWisWT15uLMRoMtLWtIRqLMTvrZfu2HaxZs3bRm0EABp1CJK6SSx8prl9PlJRobl6V8wtploper2ftY8+imPMwM78Ya2pqktHREUaGhzGZjKxfv5GCggLcViPeUFR2jIisI8lhsexGvGFM+vnJZ+5CtqiwCAVobGzC7XLz408/cPz4UUKhEMXFJWzetJWNGzel1AIEsBr1TPgjRLJkFcY333xFR8flBefnS0rkJyfndes2LGggczvr1m1IqVN8/Pgx4vHcKQNgMpnYv/8NArYS4ugwkhjb2PgYnV2dyVqj8XicxsYm1reuJqYpXBieSXPky+/IkR+5ePE8L730KrW1dbd9nsmgo6HQhudnW8YVoLCgkNt9JPSEYtQV2LDcZvWFEOkQVzW+65rkb4/206cVoCo6bIQwR6apcJox6nUc7/fwd8cHOHx+OCfLokTjKuO+SDLRpGkak7fMqXqdjtaWVoxGA19+9UcuXjqPqqqUl1eyc8djrF61Gt3PLgbNeoURb3Ykh+PxOB9++F7yBuGtFisp8eyzv6SlpfWe3nv79h0pF8pHj/70kNFmFpfLzd59B5jU56NDRZcoSEJn5zUmJsbx+Xx4PFPo9TraWtewrrEWTyhGx2hu18rVNI1PPvkD4+NjtLe/sWgjwzlFeSaK80xMB1PnVJ2iUHCbRpCaphGIxmkuki71Qiw3gy6x8+1OLGYLj+96nP37DlBbW3fbz8KQ2H2jUxTukG/OKqqq0tXVCUhJiful6A1UVVVhNs7vuCwuLsFmy8OWZ6OxsZmqm+UgdTd3l9y6OEeIbCBX/mLZRWIq+psXXJFIJNklu6g4sdpRpyisXt1CVWUVBoOB2tpaHtu5i4aGhttuz1M1jXgWbPE5ceIYJ08eX3Be07SUesOQaJbwwgsv3fNdXKPRyNat25PHs7NeLl26sARRZw673U5R4wYsuvnvdSwWIxDw09fXQygUoq6unra2NSiAw2ygezJw+zfMARcunOeHH77jySefYs2atXd9/oZKF3pFRyh2b4mycExFATZVuWRFgcgYmqbxTecEn14Zw6BTaCrOw0oEPRpoGuGAn3yrkcZCG4U2I8f6pzl8fjjntnLHVQ1V05IrozwzHqKxmztQbq5aNBqNtLWtobS0DKPRRHPzanbtepyysvJF31OnJFZGZTpN0/jss0/o6ele8FgslmhcC/Nz6vbtO9myZds9v39BQWFKIrmnp5uRkeGHjDqz5OUXU1TdnLLyKR6PMz09ndzdtKq5heqaWnS6RL3NQU9uNLy9nW+++Ypr166ye/deyssr7vhco17H5mo3wWj8rgmoOTOhGA6zgbXlC+tdCyGWVpnDQih69/lMUZR7asQajKqU3qzvnwsGBwcIBgNYLFZplHafzAY9BoORVS1t6HXzPztOp5O6ugZqa+uwOxKlSeZ2r5kNkmoT2UV+YsWyMxl0yUTu5GRihZPD7sBitiSfo9fr2bRpMwfa32TXrifvWBswribu4hoy/DZuR8dlvvnmq0UfCwQChEIhdDodbnc+ZWXlvP76vvvuGL9p02Yslvl/x2PHjiS7tucKk8VCXd180xez2Ux5eQVOp4u2trVUVVVjvLkdTKdALK7lVG2wW/X29vD555+wfv1Gdu7cdU+vaSy0UV9oY9ATuutWe1XVGPAEqSuw0VQkTRRE5ugY9fFt5wRui4GiPFNKzXUgpfu43WygxmXh7NAM33dPPupQl5Vep6BTlOTv8vxOnMKUFcGJlVFPsHfPfnZs34lzkUZsc1RNw6TP/I+D33//p9veAJ2amrpZrioPi8VCW9tannrqmfv+Gjt2pP5dzbXVw6qmYXc4qa2uSZ6z2fKorKzC5XKxdu0GKiurkivpdIpCNMc+U9zq1KkTnDx5nOeem+9zcDdryhyUOiwMeO5ehzQSS6z0X1PmoNi+sL6/EGJplbssxLSluQ7QNI1wTKXKnTur/js7rwPQ1NSc8w1Gl1ptvpV8q5GIYmT16pYFNwz6+nrxeKYBmAokei3V5ufOz45YGeSvglh2ZU4z4fjPLmRvUyPVZrNhv0tnz2A0TrHdhDGDL2b7+nr55JM/3PbxuVXDbnc+RUVFtLe/uWhjsLsxm81s3rw1eTw9Pc3Vq1fuP+AM5rIYMZptNDXOX7gpikJZWTkGg56ysrLk+VBUxWU15Mwd/luNj4/zwQeHqa2t4/nnX7znMRr0OvauK6PKbaV7KkAgsvgK4mA0TvdUgAqXlb3ryjP690usLJqmcWrAQ1zVKLAl/k6aTWZMt2zt882mbn23GPW4LAZOD3jwR2KPNN7lZNTrKLabCNxcuTh1s5RCUdHiN1RdLtdd55ZwXKPcZV7yWJfSmTOn7piovXUnTm1tHS+//OoDzQMlJSU0NjYlj69du5r83JILrEY9ZoMOZ0ExFeXzNecVRaGysgqdTkm5OR+Nq7gsxsXeKutdv36Nr7/+km3bdqR8jrobt9XInrVl2M0GeqeDi5Y40zQNbyhG33SQllI7L7aU5OTnEiEyTWORDbvJwGz44ef9QDSO1aijMUdKwmiaRmdnot7wvd4ME/PsZgMbK51MB2M4XK4FjVo1TePq1SvMzPqYDkZZV+HEYVm8lrUQmUqu/sWyK7VbUNAIBEN4Z70AFN4mOXwvgjGVmvzMbZAyNjbG++8fumP937nGORUVlRw48FZKw737tXnz1pS6zEeP5k6XdYD1FU7CcZXComKqb1ntBInaWR0dHYTCiVWx4bjK+orca0jn881y6NDvcbncD7TCvNhu5s83V9JaamfCH6Fzws/obJhJf4TR2TCdk37GfRFWl9j5882VlDoyO1EkVpYb3hBdE36K8lKTnA7HfGfxW1cOzymwmZgIRLgy6lv2GB+lmnwr4ViiO3YsHsNoXLiS+l7NrUAutVvu8sz0uXbtKl9++cfbPj7XKRxg9eoW9u5tv++/kbf6+a6MY8eOPPB7ZRqrUc+aMgeeYJS6+noKb6nPDIlmfx0dl4nH4wSjcYx6HatK7GmKdvkMD9/go48+YNWq1Tz99LP3/fqm4jz+bFMllS4LQ94Q3VMBxn2JOXXEG6JzMoAvHGNbjZu3NlViN0uCQIhHodRuZnVJHqO+yENdC2maxshsmIbCPKrdmXvNeT/Gx8fxeDwYDAbq6urTHU5W2llXQGNRHj1TQdwFxVTerDE8JxzXONbRQ5VDz+P1i9ehFyKTSXJYLLumojzyrSZ6RxOrb5xOF2bTgyWf/JEYVoOO5uLMvFjxemc4ePD3hMO3b+4TDofw+WbR6/X89rf/Dfm3aWJyr2w2Gxs2bEoej4+P0d3d+VDvmUlaS+0U283cmAlRVVVNcXFJyuPRaIRLly4zMO2n2G6mtTQzfzYeVDgc5uDBd9A0aG9/A7P5wX53iuxm/sm2Gn67s4bH6wvIMxvQ6RTyzAZ21RXwX+2o4TfbayiRxLDIML2TQfzROHZTasLPbp9PDofDYSKRSMrjBp2CQVG4OpZbyeFVJXYsBh1Do/M7cR50VeJ0MLH1MVPLyAwODvDRRx/c8SJ/ZsZDPB7H5XLzm9/81QP/jZxTWVlFTU1t8rij41KyV0IuWFfhxGbSM+mP0LxqNY5bfo8AfH4fV69eZWgmRF2BjfqC3Fg1N8fjmebQoXcpKSnllVd2P/DvTn2hjf92Vx2/3lrNhgonZqMenU7BaTXx/Kpi/ptdtbyxsUISw0I8Qoqi8FRTEflWI2O+yN1fcBuTgSh5JgPPrCpa0MQ1W82tGq6rq3+g3aoisXPkzY0VtJbaGfVFiNuLMbhK8WNmBitBzNij0xh7j2LV5W5JJpG75BOLWHYOS2Ibxv/vynVM3L6kxN0k7uJGaC2xZ+TK4WAwyLvv/h7fIivYbjU1NZX48PLU0ynbVx/Gtm3bOXPmVHK18pEjP9HQ0JQT2xidFiOvtJVy+NwNBjwhqusaiYTDzNxsPhRHYTyoEhns5+3Xd+HMoS2wqqry4YfvMTPj4e23f43jDnVD74Vep9BQmEdDYR6aphHXQK+QEz8nIneFYnGUm52fbzW3cliv12O3O4jF4/z8csek1y3J9tJMUu22Uldg5eIVP3YefE6NqxpTgSjPrSrKyK2PExMTHD58kFjszt+/yclJDAYje/fuf+i/kXN27tyVbNCmqirHjx/l+edfWpL3TrfafCvPNhXx+dVxIjGVptWtdFw8TyicaDwXRUevJ0idaZRXnmpINj/MBcFgkEOH3sFsNrFv34GUXVcPwqjX0VbmoK3MgaZpqBo59e8lRDYqd1p4blUxH1wcYdIfoTDv/hKhnmAUbyjGy60lOVUz9vr1RHK4uXlVmiPJboV5Jv5yWw09k34uDs8y5LbQcfkSMe84hdosTgL4J+DDD9+jvf1Nqe0ssor8tIpHYm2BHkPQgx9rspP4/Rr3RXCY9fxydXHG3cWNRqO8997BZMO9O5mamqSpqZnHHntyyb6+w+Fk7dr1yeMbN4YYGOhfsvdPtzVlDt7cVEm508LIbARjcS0hkxsPNvxYsBGmbPY6/We/z5mSGpqm8cUXn9PX18uePfspKSm5+4vug3KzqaMkhkWmUwBlkd9rh8PBpo2b2bHjMdauWYvNuvCmoUbu3fzQKQqrzH4MapS40f5ACVFN0xicCVHttmbk1sfZWS8HD/6OUCh4x+dpmobH46G1te2+6sbeTW1tHeXlFcnjCxfO3/XGb7ZQFIUnGwvZs64Mu8XAsC+GtbwRn87ODDbCmMjX/LhGzjB8ffEGgNkoFovx3nsHCQSCHDjwFjbb0iZ9FEWRxLAQGWJ7jZvnVxURiKoMeIKod2nIDImGnUMzITyhGE83FfFEw4Ndr2Yir3eG0dERFEWhoWFpFiatZAadQnOxnX3ry/kfnmzkX//6l2zLj+ImkEyu9fR088UXn+fMdalYGSQ5LB6JwZ5r1GrjuO02xgPx+/5DOemPEIiqPNtcRFWG1X5SVZWPP/6QwcGBuz43Go3idudTUlJKc/PSNgPYvn1HShIk17qsry6x89/uquWfbKvi+ZZS9u5opdHoo0UdZK3WTz5+Ll26wE8//ZDuUJfEsWNHOHfuDC+++IrUBhMrms2kR4UF84ZOp8Nms3GndEw4puLOwFWxD2tq4BqV2gRWp5sp//1tndVuXgBbDDpeai3JuN0WoVCIgwffwev13vW5Pp+P+voGSkpKFtSkfxiKoqTUHo7FYpw8eWLJ3j/dFEVhe00+//0T9by9uZIX2ip4dUszdcokreoALdogeYT55puvuHbtarrDfWiapvHppx8xMjLM/v0HHrqclxAisymKwtNNRbyxsYJ8q4muyQDD3hDhmJryWULTNCIx9Wb/jQB2s4H29eW80FKcUzd75lYNV1VVP1SfG7E4m81Ge/ubWK2pNx3PnTvDsWNH0xSVEPdPksPikejouIwbP6+vKcZi1NM9FSS8SIfnn4upGn3TQYLROC+0FPNYXWZ9oNc0ja+//uKeL55KS0uprKyiqKh4yS9O8vMLaGlpSx739vYwPHxjSb9Guhn1OlpKHbzUWsrbOxr5v7z1PCXGCDrmP+j9+OP3XLhwPo1RPrzLly/x3Xff8vjjT7Ju3fq7v0CIHNZUlIfTbGAmdH/lISJxFRRoK3Pc/clZJBKJ0NXVSZnm4bW1lQRjKn3TQWL3sDIqHFPpngpiNurZu66c1RnWbCwWi/H++4cYHx+7p+fX1tZRWFhIQ0PTQzWhW0xTUzNFRcXJ47NnTxMM3nklc7axGvVsrHTxSlspv31qDX/98i6cBJM3XDRN4+OPP+TGjaG0xvmwvvvuW65c6eDVV19f0EBICJGbFEVhfYWT3+6s4dU1pTjMRkZmw3RNBuia9NM1GaB7KsDwbBirSc8rLSX8dkcNW6rdGbdD9WF1dl4HEvOaWB75+QXs338AgyF1QcJ3331DR8flNEUlxP3JveU0IuNMTEwwPj6GXq/nxa1r2BqGz6+McX3cj05RyLcZyDPpMdysyRNXNYLRONPBKOGYSpXbyvOri2kpsWfE9uC4qtE3HaB/OsilK1e51tGDAyuOWy6oFpOo8aQwNTW1bPWedu7cRUfHpeTx0aM/sW/fgWX5WpmgrKyc3bv38t57B1NWAnz++Sc4nU5qa+vSF9wDGhjo59NPP2Lt2vXs2vVEusMRIu2K7GZaSx0cH/DgshjueR6Y8EUotZsztoHpg+rsvE40GqUgP5/XtzTSMu7ni6vj9E4FMBt05FuNWI365KqnmKoSiMSZCsRQNY1VxXm82FKSMbtwonGV6+N+Rrwhjp88weiQFxdmrITvOKfu3LmLq1c7gOWpoagoCjt2PMbHH38IJJLyZ86cyum/y21ta/B6Z/juu2+T56LRKIcPH+RXv/pL3O789AX3gM6ePc2xY0d45pnnWL26Jd3hCCEeMbfVyNNNReyszWdkNsykP4IvkujRYjPqKLabKXOYsRiX9gZjpggGg8lSg5IcXl6VlVW8+urrfPjheynXpZ988gccDgdVVdVpjE6Iu5PksFh2cxdvdXX1WK1Wqqzw663VdIzNcnbQS/90gKlANFEPSgFQsBl1VDgtbK52s6bMkTHdnrsn/Xx1bYK+qQDjUx5GR0dBKUGvqDi0AFXaJE4WriyqrKzipZde5X//3/8dsHzNAIqLi2luXpXcPnT9+jXGx8cpLi6+yyuzV1NTM8899zxffvnH5DlVVfngg8O8/favs2rsExMTvPfeQSorq3jxxZcz4maIEJlgS7Wby6OzjMyGKXda7vp8byhGKKbyQm0+ZkNubZK6ciWxAqWlpQ2dLrGbospt5dLILKcHPIz5Ioz6IoAGGuh0CjajnlXFeWyqdtFa4sCUAf8mmqZx7oaX77smueENMTI6xvR0CJRSDEoct+ajRpvAQnTBa9et20Br6xqOHv0Jg8GwbKV3Wlvb+PHH7/B4PACcPHmCrVu353Sn9x07HsPj8XD+/NnkuUDAz6FD7/Dnf/6XWBep7Z2purs7+eKLz9myZStbt25PdzhCiDSyGPXUFdioK8idJnP3oru7C1VVl2XXqlho9eoWnn76Wb755qvkuXg8nrzJ+qC9l4R4FDIj4yZylqZpKReyc0wGHRsqXKwvdzITijHhi+CLxNA0sBp1FNnN5FuNGVXv6dq4j4Nnb+ANxbBqQcJj3bhuljOIomNGySOImSZtGBeB5OsKCwvZt+8Aw8NDRCIRHA4npaVlyxbnjh2PJZPDkKhd+9prry/b18sEmzdvxePxcPLk8eS5UCjEoUO/51e/+g12e+avHPT5fBw69Hvsdgd797Yv+RZpIbJZfaGNV1pL+cOlEQY9QcqdlkXnB03TmApE8YRiPFFfwI7a7FvpeCehUIienm4gdU61mw3sqM1na7Wb6WCUCV+YYFRFUcBuMlBkN93XqutH4WjfNJ9cHgVACUyhTg/iItFEMIqBccVFCBPN2jBW5usqNzQ08sILL3HixDEAampqMZvNyxKjTqdj+/ad/PGPnwEQCgU5e/YM27fvWJavlwkUReH551/E652ht7cneX5ycpL33z/EG2/82YJts5loZGSYDz98n6amZp555pcZ9bMvhBCPSmdn4ppwuRYmiYW2bt3OzIyH06dPJc+FQsHkTVap+ywyVfqXjoicNjY2xuTkJAaDYdGtLIqi4LYaaSrOY2Oli01VLlpKHRTlmTIqMewLx/jDxVH8kTjF5jh9nddStosYUXEQJIqeXqWEKInEXl6ePdkV+/r1uXpPTct6kVJRUZlSTuHKlct4PNMLnjfhC3NmcIZzN2bwhhauzMo2zzzzHKtWrU455/V6OXz4XSKR+2vY9KhFIhEOH36XeFzlwIE3sVjuvjJSiJVmS7WL9g0VOCxGeqYSpX28oRiBSBxfOMawN0TnRICYqvH86mJebivNqHlkKVy/fo14PE5RUfGiuyL0OoWiPBMtpQ42VbnYWOmiqTgPt9WYUcmxgekgX1wdx6zXYYn5GOrvTT6mACZiuAjgU6z0KsXJqvJlZeW8/vo+9Hp98ibocl/wrl27Hrt9vm71yZPHicVS619rmsagJ8ipAQ+Xhr2EovFljWm56fV69uzZT3FxScr5RNmjjzO++/rMjIdDh96lsLCI117bg04nlztCiJUnFoslbyhLcvjRURSFZ599nsbGppTz09PTvPfeQaLR7L/uFrlJPi2JZTVXUqKhoXHZVvY8CpdHZxmdDVPlsqCgLHqhoQB5Sgi/YsFDHmazmQMH3sLlcqNp2i3NAJZ/cr61y7qqqhw/Pt8pVdM0vumc4N//1Ms/nh7i708O8r/92MuZwZllj2s5KYrCq6++TkVFZcr5kZFhPvroA1T17g0Q00FVVT766AOmpiZpb38Dp9OV7pCEyEhzzWX+6eN1vLmxkup8K8FoHE8wii8Sx2kx8tqaUv7p43X8clUxhhxLDMOtJSVa0xzJwzk/7MUXjlFsN6EoyqKJawWwEcar5OHDQn5+Pu3tb2IymZid9TI8fANFUWhsXN4aigaDgW3b5ksS+HyzXLw43/Q0ElN5/8II//FIH78/M8R/PjnIv/+pl57JwGJvlzUSn2HeTEmMA3R0XOKHH75LU1R3FwqFOHjwHYxGA/v3v4HRaEx3SEIIkRZ9fT2PZNeqWEin07F7917KyspTzt+4McQnn/wh42+yipVJksNi2dyupEQ2On/Di0mvoNcp2O121q1fv+jqTh2g01Sm9C727NlPaWkpkJgI/H4fZrOZmpraZY+3pqY2JUl64cJ5fL5ZAK6M+fj62gQKCo2FVhoKbAQjcT6+PMKwN7TssS0no9HIvn0HcLvdKec7O6/z9ddfZNxErGkaX3/9Bd3dXbz++l754CbEPbCbDWytcfNf76zln/2igf/uiXr+2ZP1/PdP1PNUUxFF9uy9EXkngUCAvr5eILuTw8FonAs3vMnVzEWFRaxpW4tBv7BUgZE4cXQEzIUcOPBWcivm3M3WiorKR1I2aMOGTVgs87V2jx8/mrzheLx/miO90zjMehoLbdS4LYx4w3xwYZhAJLtXEDsczmRC/lZHjvyYUpM4U8Tjcd5//xB+v5/29rdk664QYkWb27Xa3NycUbuHVgqTycT+/QdwOp0p569evcK3336dpqiEuL3MLxomstbIyDAejweTybRgW0U20TSN6UAU6y1dbK0WK+vWbeDUqRNMTU1x63wb0dswlJUwMjLC6OgoOp3CmTOnGR6+QX19AxcunEuulFIU3S3/P7EiOfU48b8ej4Ppaf9dn3/r4y0trXR1dSY/DPzpT9/y1FNPc6p3gmA4QpndRjwex2AwUOE00zkZ4OqY756aPWWyvLw82tvf4u///j8RCs03Bzx9+hQul5tt2zKnVuSJE8c5ffoUL774Mg0N2fs7IkQ66HWJskQrxbVrV1BVldLSsqxuaOKPxAnF4rgs8x9BXS4Xa9et5/jxowQCgVvmVIWwCexlpVy9evXmnAdff/0lIyPDlJdXcvbs6eR8CHeaTxOvnZtTPZ7AHZ//8/l21arVHDt2BEVRGB0d4eTJE7S0tnK0exyTTsVqUFBVFYNeT02+hf7pEF0TftZVOBf5V8gepaWlvP76Xg4fPpiyA+ePf/wMh8NJfX1DGqObp2kan332CUNDg7z55tsUFmbv74gQQjwsVVUf6a5VsTi73UF7+1v8wz/8J8LhcPL8iRPHcLvdbNq0JY3RCZFKksNi2XR0JFYNNzY2Z/22Pp2iLFh1ajIa2bRxMx1XLic7mYNGSUkNtRXFVFUVoGkamqbh8UxjtVppa1uL0+lE0zRUVUs+rqoqmqYRj8dvnlOTj4GGokSZnvYlXzP3vzD/2p+/l6apBIPBZL3hsbER4vE4l2bymA4rKF4NnV5HY0Nj4sIYhWCW10mck2gC2M477/wj8fj8mL799mtcLveC2sTpcOVKB99++xU7d+5iw4ZN6Q5HCJHhrlxJlGnK9p04OiUxp6o/28iRZ7OxZctWOi5fJhCcL8lQUllDbU0hVVWJuTMUCuHzzWK1Wlm7NjGn3jqf3joPqqp6M6F56+Nqypya+trbzacaiqIwMTGerBX47rv/yFPPvED3iBkNjdCkis1qo6qqCoNOh4pGKJYbc2pDQxPPP/8in3/+afKcqqp8+OF7vP32rykpKbnDqx+NH3/8nkuXLrB7916qq2vSHY4QQqTV8PANAgE/FotF/iamWXFxMXv27Ofgwd+n3GT98ss/4nQ6l708lhD3SpLDYllomsbVq1eA7N7+ColVRnUFVo73e/j55Y/FYmHDhk10dXUyNjZKRXkFcUcpa6oLqKpK1BianJwEoLCwiCeffOq+ay8rChQVOZiYmOV+qyKUlpbz0UcfJI8LCwt5rqWFzzvGaCyyobu5PCsaV9HQKMmh7djV1TW8/PJrKePXNI2PPvqAP/uzv1hQm/hRGhwc4JNP/kBr6xqefPKptMUhhMgOPt8sAwP9ALS0tKQ5mofjtBgpsJkYmw3hMKd+DHU6nGzespUrVzrwemdoaGzCr3fQWlNOVVUBkLjx7HA4KSwsfKAVNw8zp5rN5pQa/quaGvGU2LgwPEtDgTW5U8cXjmHW6yjOoTl1w4ZNeDwejh07kjwXDoc5dOgdfvWrv8ThSN8K6QsXzvHTTz/w1FPP0tqa3TdPhBBiKcw1ba2vb0Sv19/l2WK51dXV8+KLr/Dppx8lz2maxocfvs/bb/9qQW1iIdJBag6LZTE0NMjsrBeLxZIxWw4fxroKJ3qFRVfW6hSFpqZmVq1aTUllLSa9jrXl8xdJc5NzTU3tI2/K19LSSn5+fvL41KmTtBVZqHBZ6JoIMOmPMO4L0zMVpLEoj9ZSxx3eLfu0ta3hF794OuVcLBbj8OGDTE9PpSWmqalJ3nvvEBUVlbz88qtSA0wIcVdXr15B0zQqKipxudzpDuehGHQKW6pdBGMq8Z8vHwaMBgNr2tbQsroVo70Al9WYMjd1dibm1HRsk926dTsGw3xC+9ixI+yszcdh1tM9FWQqEGHEG2J4Nsy6cic1+dY7vFv2+cUvnl6QfJ2d9XLo0Lsp22UfpZ6ebj7//FM2btzE9u2ZUzZKCCHSJdEIPTFXNjdLSYlMsW7deh5//MmUc9FolEOH3mVmxpOeoIS4hSSHxbKYa0TX1LQq5UIqWzUU5tFa5mDQEyIcUxc8rgAOdwE3ZkK0ljmoK7AlH0vn5KzT6dix47HkcSgUZOD6Jd7eXMnOunwURcGo1/NMcxFvbarEZsq9O8s7djzG+vUbU84FAn4OHXqHYDC4+IuWid+f+Lo2m5U9e/bnxO+GEGL5zZeUyO6dOHPWljmpzbfRMx1cNEGs0+kw2V14QlG217iTtaVjsRjd3V1AeuZUu93OunXrk8fDwzfQ+8b4s01VrClzoGrgsBh5pbWE19eWJXfn5ApFUXj55deoqqpOOT82Nsof/vB+ynbZR2F0dJQPP3yP+voGfvnLF+VmqxBCkNi1OjU1hV6vz4lFWrlk164nWLNmXco5v9/HoUPvEgpld2N4kf0kOSyWnKqqXLmSGyUl5hh0CnvWlrGmzMGAJ8iAJ0ggEicaVwlE4gx4ggx6wqyrcLJnbRl63c2tpb5ZbtwYAqCpKT31hNra1qZs9zx58jhFNgPtGyr450838s+fbuDVttKcbeykKArPP/8idXX1KeenpqZ4//1DxGKxRxJHNBrlvfcOEolEaW9/E6s1t1aUCSGWh9c7w9DQIIqisHp1dpeUmOOwGGjfUE6120L3ZIBhb4hQNDGnzoZj9EwldrY8XlfAM01Fydf19/cRDoex2x2Ul1ekJfbt23febH6XcOzYEZqK8/j11ir+x6cb+We/aOCZ5mIsxty72QpgMBjYu7edgoKClPPd3V18+eXnC/ozLJfZWS+HD7+L253P7t17U74nQgixks0tTKqtrXvku1bFnSmKwksvvUJNTW3K+YmJcd5//1BKrxwhHjX5JCWWXH9/H4GAH6vVRm1tXbrDWTJOi5G3NlfSvqGCcqeFqWCUIW+YqWCUCpeV9g3lvLmxAvstNRTnusRWVFRit6enZIPBYGDbtu3JY7/fx4UL5wAwG3QY9bn/Z0Cv17Nnz36Ki1OrRg8M9PPppx8v+8Wsqqp8/PGHjI+P0d7+Bm53/t1fJIQQkLzZWl1dk9a6rkut3Gnh11ureXVNKQ6zkXF/hBveMLPhGC0lDt7aXMlra8ow3DJHzZeUaErbKlGXy01r65rkcX9/XzJ5bzHqMehyf/WqzWa7eZPTlnL+7NkzHD9+bNm/fjgc5uDBd1AUaG9/A5PJtOxfUwghssVcSUMpKZGZ9Ho9e/e2U1hYlHK+v7+Pzz//9JHdZBXi52RPs1hyc43oVq1anXMF8K1GPTtq89lS5WLMFyESVzHpdZQ4zIteEM5NzumojXir9es3cuTITwRvdoA/fvwo69dvzLnvCr84VAAAJsxJREFUz52YzWYOHHiT//yf/098vtnk+Y6OS7hcrgW1iZfSt99+zfXr19i374A0HBBC3Je5Mk25smr4Vm6rkaebithZm8+EP0JM1bAa9ZTYTQuSv4kaip1A+ufUHTse4/Lli8kLuKNHf6K9/c20xvSo5ecXsH//AX7/+39I2YHzpz99jcvlWradY/F4nA8+OMzsrJe33/512m68CyFEJvL5ZhkevoGiKDQ2pmfXqrg7i8XCgQNv8l/+y3/C7/clz1+8eB63282uXU+kMTqxUuX+kkHxSMXj8WRyOFdKSizGoNdR4bJQV2CjwmVZNDEcDofp7+8D0n/n1mQysXXrtuTxzMwMHR2X0xhRejgcTtrb31ywyujo0Z84f/7ssnzNU6dOcPLkcZ577vm0lRYRQmSn6ekpRkaG0el0rFqVe8nhORajniq3lboCG6UO86KrgkdGhvH5ZjGbzQu2Yz5qRUVFrFq1Onnc1dXJ6OhoGiNKj8rKKl599fUF5z/55A8MDg4s+dfTNI0//vEzBgb6b+4GKl7yryGEENksddeqPc3RiDtxudy0t7+B0Zha2vGHH77j4sULaYpKrGSSHBZLqq+vh1AoSF6enerqmnSHk1Y9Pd3E43EKCgooLCxMdzhs2rQlpe7UsWM/rchtK6Wlpbz++sL6hH/842f09HQv6de6fv0aX3/9Jdu27WDz5q1L+t5CiNw314iupqaWvLy8NEeTXnM7cerrGzKimeetzV4Bjh8/kqZI0mv16haefvq5lHOxWIz33jvE1NTkkn6tI0d+5MKFc7z00qs5VbZMCCGWytxcKauGs0NZWTm7d+9dcFP8888/oa+vNz1BiRVLksNiSXV0zHVUb1nxzUEypaTEHIvFwsaNm5PHk5OTyRhXmoaGJp5//sWUc6qq8uGH7y3Z6q8bN4b46KMPbl44P7sk7ymEWFnmksOtrW1pjiT9Mm1OLSsrT+kCf+VKx5InQ7PFtm3b2bRpc8q5YDDAoUPvEAgEluRrXLx4gR9++I4nn3yKNWvWLsl7CiFELgmFQhmza1Xcu6amZp577vmUc3MllCYmJtIUlViJVnb2TiypWCyWbBazenXulpS4F/F4nO7uRG3ETJqct2zZlrLi6ujRlbl6GGDDhk0LVn6Fw2EOH36X2VnvQ7339PQUhw8fpLS0jFde2Z22xklCiOw1MTHB+PgYer0+YxKi6TI1Ncnk5AR6vZ6GhsZ0h5O0c+eu5P/XNO2RNGPLRIqi8NxzL9DY2JRyfnp6mvfeO0g0Gn2o9+/r6+Wzzz5m/fqNKf/mQggh5s3tWi0sLMyIXavi3m3evJWtW7ennAuFQhw69Ht8Pt9tXiXE0pLksFgyPT3dhMNhnE4nlZVV6Q4nrfr7+wiHw+Tl2amoqEx3OEl2u5316zckj0dGhpe8lEI2+cUvnl6wIm921suhQ+8SDocf6D0DgcRqKYvFzN697Rmx/VkIkX3mGtHV1dVjtVrTHE16Xb+eqKFYXV2DxWJJczTzqqqqqaqqTh5funQBr3cmjRGlj06nY/fuvZSWlqWcHxoa5NNPP3rgG9Hj4+N88MFhamvreP75F+VmqxBC3MbcIq2VfkM5Wz3zzHMp/Qwg0Sfo8OF3iUQiaYpKrCSSHBZLZr6jeuuK//A+Pzk3Z9y/xfbtO1NKfhw7tjLrJEJitdPLL7+WcnEPMDY2yocfvoeqqvf1frFYjPffP0QwGKK9/U1sNttShiuEWCE0TUvOqS0tUlJibk7NpJ04kJhDdu6c34ESj8c5cWJlrh6GRPPb9vY3cDqdKeevXOngT3/65r7fz+eb5dCh3+NwOHn99X3o9fqlClUIIXJKLBaju7sLyLy5UtwbRVF49dXXFywsGxkZ5qOPPrjv61Ih7pckh8WSiEQiye6oK702oqZpdHbOlZTIvGYATqeLNWvWJY8HBvqXpat4tjAYDOzd205BQUHK+Z6ebr744vN7Xu2kaRoff/wHRkaGaW9/g/z8gru/SAghFjE2NsbU1BQGg4GmpsybRx4ln8/HjRtDABn5b1Ff30hJSWny+Pz5c/j9/jRGlF52u4P29rdSGuACHD9+lLNnT9/z+0QiEQ4dehdNgwMH3lzwfkIIIebdumu1vLwi3eGIB2Q0Gtm37wButzvlfGfndb7++osVWw5SPBqSHBZLoqurk2g0Sn5+/oIthSvN6OgIs7NeTCYTNTV16Q5nUdu370xZ0Xz06E9pjCb9bDYb7e1vYrWmrvQ9d+4Mx44dBSAWVxmbDTPoCTI6GyYaT717++WXX3Lt2hVee21PRpUSEUJkn7lVw42NTSs+Kdbd3YmmaZSXV+BwOO/+gkcssXp4vg5uNBrl1KkTaYwo/YqLi9mzZ/+CxsRffPF5sh9DKBpnZDbEoCfIuC9MXJ2/4FVVlXfffZfp6Wna29/MyO+7EEJkkq6uxCKt5ubM27Uq7k9eXh7t7W9hsaSWFDt9+lTK54uYqhGMxonGVUkaiyUhxTDFkpCSEvPmOqrX1zdkbL3ZwsJCVq9u4cqVDgC6u7sYHR2ltLT0Lq/MXfn5Bezff4Df//4fiMViyfNffPc9fREr44orcQGraegVhQKbiS3VLtrKHPRfu8CPP/64aK0oIYS4H7eWlFjpzV1hfk7NxFXDc1atWk1hYSGTk5MAnDlziu3bd2ZUfeRHra6unhdffJlPP/04eU7TNP7xg09ofeJlun0K3lAMTdPQ6xTKnRa2VLlZXZLHke++pKuriz179lFSUpLGUQghRObTNC1Zmz+T50px7woLC9m3r5133vlH4vF48vzX33zFrJKH11TA1TEfMVVDpyiUOsxsrnKxusSOxSglmMSDkZXD4qGFQqFkUzOpjXjrhWxm13vaseOxlONjx1b26mGAysoqXn319eSxhzwuK9X87mQPvaNTuK0GSu1m8q1GpgMRPrg4wv/js/P8/suf2Llz54Ius0IIcb+Gh28wMzODyWSisbEp3eGkVSQSoa+vF8jsOVWn07F9+/ycGg6H76uEQq5at24Du3Y9AYAGjCpuzsXL+PsfO5jxBSm0GSmxm3GaDQxMB3nn7BD/4v1j/HCug927d1Nf35DeAQghRBYYGRnG55vN6F2r4v5VV9fw8suvJY/DGLhCBf/uT1f5quMG0biKQacAGtfH/fzD6SH+/Y+9XBv3pS9okdUkOSweWmfndWKxGIWFRRQXF6c7nLSanp5iYmIcnU5HQ0NjusO5o9LSspQYr169klz1tJKtXt3C008/hwcbnbpywhhxqH6mB66ji0cxG3TYTHoqXBZKzSrXevsYc66irG1HukMXQuSA+ZISzRiNxjRHk149Pd3EYjHy8/MpKipKdzh31Na2JqUR28mTJ4hGo2mMKDM8/viTtLWtZUxx06uUoAF5MS8T/dcxKhpmgw672UBNvhV73M+VwVH8FVspqpNdOEIIcS/mFiY1NDRm7K5V8WDa2tbwi188TQQD15UKJhUHJjVE4EYnDoOG22qkwGairsBKrdvCuD/CO2ducGV0Nt2hiywkyWHx0OYuZFtb26SkxM0tPdXVNVit1rs8O/1urZOoaRrHjx9NYzSZY93GLQTL1hHVdNiVEAoQi8e43HGJyM2L/VA4xJUrHZTZDJRVVPHe2SF84did31gIIe4gUVLiCiDNXSF1J06mf77Q6/Vs374zeRwI+Dl//mz6AsoQiqKw6fFfMmWvQ4eKjQgKEAgGuHL1CurNOokz3hm6u6/TWORA7yzk8OnBlDrEQtyNomTvf9ke/0odW6aMr7PzGooCzc2rcnJ8ufy9u5f/duzYSbRqIzOKDSdBjKhEY1Eud1xKlEJUAAUMBh01+RZCsTh/uDTKpC+c9tjl+5cZY7tXcmtJ3DNN0xj2hrk04uXamJ9gLI6ixuns9VOAjabmlnSHmHadnYkL2ebmzN3+equqqmqqq2sYGOgH4NKlCzz++BM4na40R5Ze18b9mPLLqIqE8XpCyfOhUCIhvHrVai5fvoxep6OltQ29wcANb5iO0Vm2VuenMXIhRLaIqxp90wEuDnvpnQoSiatEgz6G/GbKzQq1tXXpDjGt4vF4snlZtsyp69Zt4KeffiQQ8ANw/PgxNm7cjF6/suv/dYz7yS+rwjR0ndD8lMrMjIeurk4qKyq50tGB0+GkubmZUEyle9xP33SA+oK89AUuskphoSPdITyUbI//TnJ5bJDe8U1OThIMzmK3W9m+feOy1LrP5e9fNoxtYDqApayBmkg3wZlw8nwsFqG7+zrrN6xPaQC7ymbm2qiP84MzPNOS23X7s+H796DSMTZJDot7MhuK8WnHKJdHZ/FH4uQZ9Rj1CuOTkwzjZsZawgedfl4z2yl3rswGLH6/n6GhQSC7mgHs2PFYMjmsqionThzjuedeSHNU6aNpGqcHZ9ArOtpWr+bCxQv4/fO1m7zeGb77/lucDhfr12/AZDSCAmaDjlMDM2yqdKPX3cctOiHEijMyG+LjS6P0TAaIxFXsZgN6BfpGphhVigjlOTl0YZSXW0txWVdmaYmBgX5CoRA2Wx4VFZXpDueeGI1Gtm7dznfffQPA7KyXy5cvsm7dhjRHlj7BaJyzQzPk28zUta3h/PlzRGPz5TaGh2/Q19dLYUEhLS2t6BQFm0nPZCjC+RteSQ6LezY5OYuWhYvNFSWRBMjW+O8kl8cGmTG+Y8dOEwiEqaurx+eL4vMtXTmjTBjfcsmmsX1/dYwpX5jWhgYuXvTjv3kDGmB8YpLz5y4mGqLfcvlp0FSO9kzSkm/GqM+9YgHZ9P27X0s9trn3uxe595MiltxsKMbvzgxxfMCD3WSgqdBGhctCsd2M6pvCRYDqIhedE37+4dQQg55gukNOi+7uTjRNo7S0LKtW3tbXN1BWVp48PnfuLD7fyi1kH41rjMyGcFr06PV62lrbMJvMycenpiaJxeK0tLamlA5x2YxM+CMEo/HF3lYIIQAY9ob4x1NDXB3zUZRnoqkojzKHmaI8E6p3HBcBKoryOTU4w+/ODDETXJl1a7u6EmWaGhubUlbEZLpNmzanrNw6duwIqqqmMaL0mg5E8QajuCwGLBYLrW1tye+npmlMTEwk5tq2NSm1Mu1mA4PTK/PzpHgwmpa9/2V7/Ct1bJkwvs7O62haovxSLo4vl7939/pf13iAPKMeg8FAa1sbpluuSyGxszUWj4NG8j+31cjYbJgJfyTt8a/0718mjO1eZc+nbZEWmqbx8eURro77qM+34rQYmKv7F4lEmJnxAFBZWkx9gZUxX4j3LwwTiKy8BNlcbcRs2f46R1GUlNrDsViMU6dOpDGi9IqpGqoGups/5yaTida2Nej1ehRFYdWqFrZt3Y7rZzcA9IqCqmrEpEaiEOI2QtE4750fZng2TEOhDZtpvtyAZ8ZDNBbFaDBSUVxAXb6Vzgk/f7g0kqzLulJompa1c6rZbGbTpi3J46mpKa5evZLGiNLr53Oqw+5IrHACDAYDba1tbNu2HbM59WJXr1OIxFfWz70QQtwPn8+XlbtWxf0JxeLJXalmk5nW1jb0usTnx8KCQtasXYfhZ+WrDDqFeFwlElu5N6fF/ZPksLijoZkQHaM+yu0LtyRMTk4AiQ/6FosFnaJQm29lwBPiytjK6pAZiUTo7e0BEndus01z8yoKCwuTx2fPniZ0a2HAFcSkVzDolJQkb57NRsvqVlpb22hZ3UJRUdGC10XjKnqdgikHt+4IIZbG1XEffdNBat2WZLJszuTEJABFhYXoFAWjXke5w8y1cT+DnpX193hsbBSv14vRaMzK2stbtmzDaJwvB3L06E9oKyzBP8ds0KHXKURvWT1dWFBIU1Mz69dtoKWlFXuefcHrInE15eaJEEKIVHO7VsvKynE4nOkORywTs16XskjAnpfH6tUtVFRUsnp1C/pFdlfFNQ2dTsFkkOtSce/kp0Xc0cXhWQLROHbzwg/oExOJ5HDhLYkyg06HQadwZnBmRa106u3tIRaL4Xa7KS4uTnc4901RFHbsmF89HA6HOXPmVBojSh+DXseqYvuCrdxut5t89+2bzU35I9QX2rAa5c+qEGIhTdM4MzCD/mbi91aqpiVvuN46p+aZ9ISicS4Mex9prOk2t2q4vr4hJcmaLWw2Gxs2bEwej4+PJZvrrTSFeSbKHGamAqlzamlJKTabbdHXaJpGIBxjVbHUGxZCiNvJ1h024v7UFtjwR+IpN5nz8/Opr6tP7uj+OU8wSpHdTP4K7VshHoxkMcQdXR334TDpF/zhCUfCeGcTF6s/X0WZbzUyNBPCs4LqJM5Nzk1Nq277RzrTtba24XLNl0o4efIEkUgkjRGlz7oKJwa97p7rB4djKoqisLHSlbXffyHE8vKGYgx4guTbFvYC9nimicVjGI2mlJI1iqLgMBu4Mjq7olae3jqnZqtt23agv2Wb59GjR1bU93COQaewudpNOKYSv8eySzOhGE6rkTXlshJOCCEWE4lE6OvrBbJ7rhR3t67cicWox3+PZTs1TcMXjrOtrgCLUXbgiHsnyWFxW6qmEYrGMSyyTX6u8VpBQWFKsy4Aoz6xJX+l1LhRVZWursSKoGy+c6vX69m+fWfyOBgMcP782fQFlEb1BTaaivIY9ITuWkM4rmoMTgdpKrHTLKuchBC3EYknkmPGRbb/GQ1GCguLKCkpWXCDyahXiMZXTj1zj2ea8fExdDodDQ2N6Q7ngTkcTtauXZ88HhoaZGCgP40RpU9bqYMKl5V+T/CuCfJITGV8NsLGajcldtMjilAIIbJLT083sViM/Pz8RcvdidxR5bbQVJTHyGz4nm6y3vCGKbAZ2VTtXv7gRE6R5LC4LYVEmYjFykNYzBaaGptobWld8JiqaeiUxGqRlWBwcIBQKIjVaqOysird4TyUdes2kHdL7b8TJ44Ti8XSGFF66HUKe9aVUV9oo2cqgC8cW/SC1h+J0TMVoMpt5e1tNQu2igshxByDTkGnUxadUx0OBy2rW6hbpL5uXAWdQrIZSa7r7LwOQFVV9W3LDmSL7dt3pCT7jx79KY3RpI/DYmDvujLybUa6pwKEFtmVo2kaM8EofdNB2sod7NlYKTtxhBDiNnJh16q4N4qi8EpbKdX5VrqnAoRvswBPVTUGPUEUBV5pK6XEaXnEkYpsJ5kMcVuKolDttjAbvr/koDcUw2014rSsjBo3nZ2JybmxsQndIivCsonBYGDr1u3J49lZL5cvX0xjROlTYDPx9uZK1lc4mQnF6JoMMOwNMe4LM+wN0TnhZyoQpa3UwZ9vqaTMJROwEOL2HGYD+VYjM6H7m1NnIzGq3NYFDexy1VxyOBc6r+fnF9DS0pY87u3tYXj4RhojSp+6Ahtvb6qioTCPUV+ErskAo7Nhxn1hbsyE6JwMEIiq7KzL561NFdjNC8uvCCGEgHg8Tnd3F5Ddu1bFvSvKM/FnmypZVWznhjdE91SA6UAUXziGNxRlwBOkeypAntnA/vUVbKx03f1NhfgZ+eQl7mhDpYuzQ17CMRXzPXS7VG/WuHmmuXhFdMfUNC3nmgFs3LiJY8d+IhQKAXDs2BHWrl2f9YnvB5FvM/GrLVUMekJcHPbSOeknHFVxGnVsqbaxttxJTb51xazoE0I8OINex+ZqN+9fGL65w+bufzciMRUFVsyH/EAgkCy9kCtz6o4dj9HRcSl5fOzYEfbubU9jROlTnW/lr3bW0jPp5/wNL0MzISJxlXybnpYSO23lDkrtZnQypwohxG3N7Vq12fKoqKhMdzjiESm2m/nN9mquj/s5d2OGnskA4YiKToFyp4Ut1W5aSuy4pAmdeECSHBZ31FhooyrfQt9UkIYC6123rYzOhsm3GWkrczyiCNNrbGyMmZkZjEYjdXX16Q5nSZjNZjZv3spPP/0AwPT0NFeudNDWtibNkaWHoihU51upzremOxQhRJZbU+bg++5Jhr1hKu+y20DTNIa8ISpdiVpzK0FXVyeaplFSUorL5U53OEuipKSEpqbm5Iroa9euMj4+TnFxcZojSw+DTqG52E5zsf3uTxZCCLFALu1aFffHqNfRVuagtdROIBonElMx6HTYTHpZrCQemvw1EXdk0Ot4ra2MQpuR3ungbYuga5rGsDdEXIOXWksoylsZTUTmJue6unqMxty5S7d581ZMpvnv4dGjP63ILutCCLGU3FYjL7eUoABDM6Hb/l1VVY3e6SAui5HX1pStiJ04MD+n5sqq4Tk7d+5KOT527EiaIhFCCJHNcnHXqrh/iqKQZzKQbzPhsBgkMSyWxMq42hAPpSbfypubKil1mOmZCjAwHcQXjhGOqQQi8Zv1VwMY9Tr2rC1j0wrZ/gqpzQByic1mY8OGTcnjiYlxuro60xiREELkhvUVTvauL8di1NE5kahlHojECcdU/JFYsm5cid3MGxsrqCvI7qZs9yoajdLb2wPk3pxaUVFJTU1t8vjKlct4PNNpjEgIIUQ2Ghsbxev1YjQaqV2kia0QQjwoKSsh7kldgY2/2lFLx9gspwdmGJkNEVM19IqC22rkqaYi1pQ5KLab0x3qIzMz42FsbBRFUWhsbEp3OEtu27btnD59kng80VX86NGfaGxsko64QgjxEBRFYWOliyq3lcsjs5wa8DAdjBLXNAw6hQqnhc3VblpL7SumsSskmrVFo1FcLhclJSXpDmfJ7dy5i/7+PgBUVeX48aO88MLLaY5KCCFENplbmFRf35BTu1aFEOknyWFxzxwWA9tr8tlc5WbKHyESVzHoFfKtpntqVpdr5uoHVlfXYLPl3souu93BunXrOXv2DAA3bgzR398nd6mFEGIJFOWZ+EVjITtq8/EEo0TjKia9joI8E4YVuD1wbk5tbl6Vkzcha2vrKC+vYHj4BgAXLpxn164nsNtXRo8GIYQQDy9Xd60KIdJv5WX0xEMz6BRKHGaq3FbKHJYVmRiG+ck5F1cNz9m+fWdKo4OjR39KYzRCCJF7zAYdpTfn1BKHeUUmhlVVTSaHGxub0xzN8lAUhcceezx5HI/HOXHieBojEkIIkU08nmnGx8fQ6XQ0NDSmOxwhRI5ZmVk9IR5SMBhkcHAAyO1mAG53Pi0tbcnjvr5ehoYGCcdUQtE4qjSpE0II8ZCGhgYJBgNYLFaqq2vSHc6yaWxsoqioOHl87twZfH4/oWii5rQ0fhVCCHE7czdRq6qqc3LXqhAivaSshBAPoKurE1VVKS4uwe3OT3c4y2rHjse4fPkiEQxMKXb+9WcXKK0NoGlgMepZX+FkbZmDUoc5J7cCCyGEWF637sS5dbdKrlEUhZ07d/HRRx8QxMRg1M7/7YNT5BeXoSjgMBvZVOWirdROvs2U7nCFEEJkkLnkcFNTbu6wEUKklySHhXgAnZ2JC9lcXjU8p6ioCEPVGk7dCBHGiH7aj6s0hM1ixReK8vmVMX7snmRTlZsXW0pWbJkRIYQQ90/TtBU1pzY2r2Yir4aeoIkIBiwjE+QXlaAoOsZ9Yd6/MMy3nUaebCjgiYZCdHLTVQghVrxAIMDAQD+wMuZKIcSjJ1kcIe5TNBqlp6cbyP3JWdM0fuieYtBUjYoOJwHshPBPjJBvM1LmtNBUaMNq1PN99yQfXBgmGlfTHbYQQogsMT4+jsfjwWAwUFdXn+5wllVM1fj0yjgzzgZ0aLgIYFEDhGcmKbCZqHRZaCy0oWkan3aM8fX1CSk1IYQQgq6uTjRNo6SkFJfLne5whBA5SJLDQtynvr5eotEoTqeTkpLSdIezrLomAnx5bZwil50Kl5W59UvjE2MEQ0EgsU3WbTVS6bRwcmCGn3qm0hewEEKIrDK3ariurh6TKbdLKZwa8HC0d5rmiiKcRiU5pw7dGEJVEzdWdYpCid2M22LkT52TXB6ZTV/AQgghMsJK2mEjhEgPSQ4LcZ9urfeU6zV2Tw96CMVUivJMVFVVpzw2NDSUcmwz6bGbdJwamCEUjT/KMIUQQmSplVJDMRpXOd4/jdmgw2k1UVFZOf9YNMLo2GjK8/NtRmKqyqnBGVk9LIQQK1g0GqW3tweApiZJDgshlockh4W4D7F4nGvX5y5kc3tyHveFuTLmo9BmBMDpcuFwOJOPj42NEo6EU15TmGdi1Bfm6rjvkcYqhBAi+0x7PAyPDKMoCo2NuZ0c7prwc2MmTFFeYnV0WWkZBoMx+fjQ0CDqz5LARXkmuib8DM2EHmmsQgghMkdvbw/RaBSXy0VJSUm6wxFC5ChJDgtxDzRN41jfNP/ykwv8FC5l0FhJcVnl3V+YxYa9YXzhGC5Lom+lAlRVVSUf1zSN0dHUlU5GvQ5N07ghF7JCCCFuIxpX+fzKGP/ys8ucVeoJFTZjsdrSHdayGvaGiatasmmrXq+norw8+Xg4HGZ6OrUsk92kJxSLM+yVOVUIIVaquR02zc2rcn7XqhAifSQ5LMQ9uDQyyx8ujTA0MY2KwrStkm+7cru2bjSuoihKyoeQ/PwCbLY8rFYrzU2rFpSaANArCqGoNKUTQgixuB96pvj6+jgTnhliioFBQxmnBz3pDmtZJZq1pq4MLiuvQK/X43S6aGtbQ0FBYcrjiflXIRKXshJCCLHSBKNxjvdN8e21UTzk0dDQlO6QhBA5zJDuAITIBn3TQSIxlSKrjpgB8vMddIz5eKVNy9k7uAa9goaGps2PUQHa2towmczcbtSqBhaj3HcSQgixuGtjPswGPQUWHQSiOOx2Oif8bKvJT3doy8agXzgvGg0GNm3cjNlsvu3rNDRM+tz8nCGEEGJxoWic350e4nTvGANRFyZDPkOqk7p0ByaEyFmSHBbiHpj0CqoG1dU11FTX0O8JYjHo0x3Wsiq1m8kz6pkNx3Ba5usimk23v4iNqRooUGK//XOEEEKsbBaDjmhcZVXzKlRVpXsqtALmVBM6nUIkrmK6JVF8p8SwPxLDotdRLHOqEEKsKJdHZ7kyNos5MouLICZnKd93T7Gpyo3NlNvzpRAiPSQ5LMQ92FDh4sLwLJ0TfhRFIc+k58mGgpxdNQxQ6jDTXGzn/LA3JTl8J5P+CIV5RlpK7cscnRBCiGy1s66AAU+IzokAGlBsN7Gl2p3usJZVU7GdMoeZCV+ECpflnl4z4Y/SUGijJt+6zNEJIYTIJOFYokRfY10NBW4HUcVAJK4SjsUlOSyEWBaSHBbiHpQ4zPx6axWXRmaJqRq1+VaaivLSHdayUhSFTVUuOkZ9TAej5FvvnCAOxeJ4wzFeqCsmzyR/WoQQQixudYmdX22touvmDdeWEvs9J0yzldmgY2u1mw8vjhKI3P3i3huKoQFbq93ocvhGtBBCiIXKnRZsRgMjvih2m4spX4SWIguOe1ywI4QQ90syOELco2K7maebVtbWzpYSO79oLOCr6xPEVY1Cm3HR1dK+cIxhb5h1FU6ebChc5J2EEEKIeXUFNuoKbOkO45HaXpPP0EyIkwMeSu1mHGb9gjlV0zSmg1GmgzGebChkXYUzTdEKIYRIl7oCG7vXlvL1tQlCsThtZXZeX1OGQSc3C4UQy0OSw0KI21IUhWebizHoFH7onqJzIoDDrMdmMqAoiS1PnmAUk0HH1ho3r60pxWKUrU5CCCHEz5kMOvasLcOk13FmaIYxXxiXxZho4qpBIJrYgWM36XmmqYhfriqSVcNCCLFCba5ys7bMSTimkmfWy3wghFhWkhwWQtyRXqfwdFMRbWVOLo14OTvoxR9JbHc16XU80VDAunIXtQVW+dAihBBC3IHFqGfPujI2V7u4ODzLxWEv/kgcAKtRz866fNaWOylzmHO6r4EQQoi7Mxl0mAy6uz9RCCEekiSHhRB3pSgKpQ4zpY5inmwoJBCJo2oaVqNeVgoLIYQQ90GnKNTm26jNt/FccxGhm42HbEa9JAGEEEIIIcQjJ8lhIcR9Mep1uKxy8SqEEEI8LIvcZBVCCCGEEGkmGR4hhBBCCCGEEEIIIYRYgSQ5LIQQQgghhBBCCCGEECuQJIeFEEIIIYQQQgghhBBiBZLksBBCCCGEEEIIIYQQQqxAkhwWQgghhBBCCCGEEEKIFUiSw0IIIYQQQgghhBBCCLECSXJYCCGEEEIIIYQQQgghViBJDgshhBBCCCGEEEIIIcQKJMlhIYQQQgghhBBCCCGEWIEkOSyEEEIIIYQQQgghhBArkCSHhRBCCCGEEEIIIYQQYgWS5LAQQgghhBBCCCGEEEKsQIb7ebKi3P9z7+c1mSzXxgMypmwhY8p8uTYekDE9yPsu1+vke5EdZEzZIdfGlGvjARlTtsi0OVUIIYQQD07RNE1LdxBCCCGEEEIIIcSDmJiYJRuvahUFioocWRv/neTy2EDGl81yeWwg48tmSz22ufe7F/e1cnhy8t4DVBQoLHTc12syWa6NB2RM2ULGlPlybTwgY3qQ971f9xqHfC+yg4wpO+TamHJtPCBjyhaZNqcKIYQQ4sHdV3JY07jvyf9BXpPJcm08IGPKFjKmzJdr4wEZUybFkSlxLyUZU3aQMWW+XBsPyJiyRaaMKVvLUeRiyZE5uTw2kPFls1weG8j4stlSj+1+3ue+ksNCCCGEEEIIIUQmyfbVxtke/53k8thAxpfNcnlsIOPLZukYmySHhRBCCCGEEEJkrWwt2ZGLJUfm5PLYQMaXzXJ5bCDjy2ZLPbb7KdUkyWEhhBBCCCGEEFkrU8pbPKhsj/9OcnlsIOPLZrk8NpDxZbN0jE33aL+cEEIIIYQQQgghhBBCiEwgyWEhhBBCCCGEEEIIIYRYgSQ5LIQQQgghhBBCCCGEECuQJIeFEEIIIYQQQgghhBBiBZLksBBCCCGEEEIIIYQQQqxAkhwWQgghhBBCCCGEEEKIFUiSw0IIIYQQQgghhBBCCLECSXJYCCGEEEIIIYQQQgghViBJDgshhBBCCCGEEEIIIcQKJMlhIYQQQgghhBBCCCGEWIEM9/NkRbn/597PazJZro0HZEzZQsaU+XJtPCBjepD3Xa7XyfciO8iYskOujSnXxgMypmyRrXNqpsnFn405uTw2kPFls1weG8j4stlSj+2+criapmlL82WFEEIIIYQQQgghhBBCZAspKyGEEEIIIYQQQgghhBArkCSHhRBCCCGEEEIIIYQQYgWS5LAQQgghhBBCCCGEEEKsQJIcFkIIIYQQQgghhBBCiBVIksNCCCGEEEIIIYQQQgixAklyWAghhBBCCCGEEEIIIVYgSQ4LIYQQQgghhBBCCCHECiTJYSGEEEIIIYQQQgghhFiBJDkshBBCCCGEEEIIIYQQK9D/H2pat5vz34J/AAAAAElFTkSuQmCC"
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "\n",
+    "fig = plt.figure(figsize=(18, 12),tight_layout=True)\n",
+    "rows = 2\n",
+    "columns = 3\n",
+    "node_scale = 10\n",
+    "edge_scale = 0.5\n",
+    "\n",
+    "deg = nx.degree(g)\n",
+    "pos = nx.spiral_layout(g)\n",
+    "\n",
+    "grid = plt.GridSpec(rows, columns, wspace = .025, hspace = .1)\n",
+    "sizes = [node_scale * deg[n] for n in g.nodes()]\n",
+    "weg = [edge_scale * g[u][v]['weight'] for u,v in g.edges()]\n",
+    "\n",
+    "ax = plt.subplot(grid[0,1:2])\n",
+    "\n",
+    "ax.set_title('Les Misérables Original Network', fontsize=20)\n",
+    "nx.draw_networkx_nodes(g,  pos=pos, nodelist=['Child1'], node_color='white', node_size=[node_scale * deg[n] for n in ['Child1']], alpha=0.01)\n",
+    "nx.draw_networkx(g, ax=ax,\n",
+    "                 alpha=.5,\n",
+    "                 # width=.6,\n",
+    "                 node_size=sizes,\n",
+    "                 width = weg,\n",
+    "                 # node_color='k',\n",
+    "                 pos=pos,\n",
+    "                 with_labels=False,\n",
+    "                 font_size=50)\n",
+    "plt.legend([f'E: {len(g.edges())} \\nN: {len(g.nodes())}'], handlelength=0, handleheight=0)\n",
+    "\n",
+    "titles = ['Boolean Filter', 'Threshold Filter', 'Fraction Filter']\n",
+    "for i, backbone in enumerate([backbone1, backbone2, backbone3]):\n",
+    "    sizes = [node_scale * deg[n] for n in backbone.nodes()]\n",
+    "    weg = [edge_scale * backbone[u][v]['weight'] for u,v in backbone.edges()]\n",
+    "\n",
+    "\n",
+    "    ax = plt.subplot(grid[1,i])\n",
+    "\n",
+    "    ax.set_title(titles[i], fontsize=20)\n",
+    "    removed = g.nodes() - backbone.nodes()\n",
+    "    nx.draw_networkx_nodes(g,  pos=pos, nodelist=removed, node_color='white', node_size=[node_scale * deg[n] for n in removed], alpha=0.0)\n",
+    "    nx.draw_networkx_nodes(g,  pos=pos, nodelist=['Child1'], node_color='white', node_size=[node_scale * deg[n] for n in ['Child1']], alpha=0.0)\n",
+    "    nx.draw_networkx(backbone, ax=ax,\n",
+    "                     alpha=.5,\n",
+    "                     # width=.6,\n",
+    "                     node_size=sizes,\n",
+    "                     width = weg,\n",
+    "                     # node_color='k',\n",
+    "                     pos=pos,\n",
+    "                     with_labels=False)\n",
+    "    # plt.legend([r'$\\bf{N}$' + f': {len(backbone.nodes())} \\n' + r'$\\bf{E}$' + f': {len(backbone.edges())}'], handlelength=0, handleheight=0)\n",
+    "    plt.legend([f'E: {len(backbone.edges())} \\nN: {len(backbone.nodes())}'], handlelength=0, handleheight=0)\n",
+    "\n",
+    "# plt.savefig('./images/toy.pdf', dpi=300, bbox_inches='tight')\n",
+    "plt.savefig('./images/toy.png', dpi=300, bbox_inches='tight', transparent=True)\n",
+    "#"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "# Experiment 1"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "In this experiment, we focus on assessing the connectivity of the structural backbone extraction methods in the air transportation network using *netbone*'s comparison framework. The aim is to have a connected filtered network when applying filters since connectivity is an essential property in transportation networks. To accomplish this, first we define an instance of the *Compare* class from the *compare* module."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "outputs": [],
+   "source": [
+    "from netbone.compare import Compare\n",
+    "framework = Compare()"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-03T09:23:44.047559500Z",
+     "start_time": "2023-07-03T09:23:43.360079500Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "After initialization, the first step is to add the original network to *netbone*'s comparison framework using the *set_network()* function. For this purpose, we must provide a *networkx* graph or an edge list stored in a *DataFrame* object. In this experiment, we use a *DataFrame* object."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "edge_list = pd.read_csv('./data/data.csv')\n",
+    "framework.set_network(edge_list)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-03T09:23:44.079860300Z",
+     "start_time": "2023-07-03T09:23:44.047559500Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "The next step is to set up the filter in the comparison framework. It is done using the *set_filter()* function. It specifies the filter used to extract the backbones before computing the properties. In this experiment, we choose to use the *boolean_filter()*. Since the selected methods extract one subgraph by there definition."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "outputs": [],
+   "source": [
+    "from netbone.filters import boolean_filter\n",
+    "framework.set_filter(boolean_filter)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-03T09:23:44.079860300Z",
+     "start_time": "2023-07-03T09:23:44.079860300Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "After setting the original network and filter, the next step is to add the backbone extraction methods to the comparison framework. This is done in two stages, first we apply the backbone extraction method. Then we add them to the comparison framework using the add_backbone() function. Here we chose to use eight structural techniques. We recall that in *netbone* the computation process is separated of the filtration process. Subsequently, the backbone extraction method in *netbone* returns an instance of the *Backbone* Class."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "outputs": [],
+   "source": [
+    "import netbone as nb\n",
+    "ds = nb.doubly_stochastic(edge_list)\n",
+    "hb = nb.h_backbone(edge_list)\n",
+    "hss = nb.high_salience_skeleton(edge_list)\n",
+    "msp = nb.maximum_spanning_tree(edge_list)\n",
+    "mb = nb.metric_distance_backbone(edge_list)\n",
+    "umb = nb.ultrametric_distance_backbone(edge_list)\n",
+    "pmfg = nb.pmfg(edge_list)\n",
+    "pla = nb.plam(edge_list)\n",
+    "\n",
+    "\n",
+    "framework.add_backbone(ds)\n",
+    "framework.add_backbone(hb)\n",
+    "framework.add_backbone(hss)\n",
+    "framework.add_backbone(msp)\n",
+    "framework.add_backbone(mb)\n",
+    "framework.add_backbone(umb)\n",
+    "framework.add_backbone(pmfg)\n",
+    "framework.add_backbone(pla)\n"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-03T09:24:48.024656600Z",
+     "start_time": "2023-07-03T09:23:44.079860300Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "The final step is to add the properties used to evaluate the backbones. To add a property, users can use the *add_property()* function by passing it a name and a property function. Here, we use six predefined property functions from the *measures* module"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "outputs": [],
+   "source": [
+    "from netbone.measures import node_fraction, edge_fraction, average_degree, reachability, weight_fraction, density\n",
+    "framework.add_property('Node Fraction', node_fraction)\n",
+    "framework.add_property('Edge Fraction', edge_fraction)\n",
+    "framework.add_property('Weight Fraction', weight_fraction)\n",
+    "framework.add_property('Density', density)\n",
+    "framework.add_property('Average Degree', average_degree)\n",
+    "framework.add_property('Reachability', reachability)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-03T09:24:48.024656600Z",
+     "start_time": "2023-07-03T09:24:48.024656600Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "Now that everything is set up and added to the framework, we call the *properties()* function to compute the added properties. This function returns a pandas *DataFrame* that can be inspected to compare the computed properties of the backbones"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "outputs": [
+    {
+     "data": {
+      "text/plain": "                                 Node Fraction  Edge Fraction  \\\nOriginal                              1.000000       1.000000   \nDoubly Stochastic Filter              0.926316       0.638045   \nH-Backbone Filter                     0.805263       0.262244   \nHigh Salience Skeleton Filter         0.918421       0.033478   \nMaximum Spanning Tree                 1.000000       0.039161   \nMetric Distance Filter                1.000000       0.069746   \nUltrametric Distance Filter           1.000000       0.039161   \nPlanar Maximally Filtered Graph       1.000000       0.099711   \nPrimary Linkage Analysis              1.000000       0.038748   \n\n                                 Weight Fraction  Density  Average Degree  \\\nOriginal                                1.000000   0.1344       50.936842   \nDoubly Stochastic Filter                0.834884   0.1000       35.085227   \nH-Backbone Filter                       0.988625   0.0544       16.588235   \nHigh Salience Skeleton Filter           0.096433   0.0053        1.856734   \nMaximum Spanning Tree                   0.186046   0.0053        1.994737   \nMetric Distance Filter                  0.503583   0.0094        3.552632   \nUltrametric Distance Filter             0.186046   0.0053        1.994737   \nPlanar Maximally Filtered Graph         0.355704   0.0134        5.078947   \nPrimary Linkage Analysis                0.177826   0.0052        1.973684   \n\n                                 Reachability  \nOriginal                             1.000000  \nDoubly Stochastic Filter             0.988669  \nH-Backbone Filter                    1.000000  \nHigh Salience Skeleton Filter        0.100007  \nMaximum Spanning Tree                1.000000  \nMetric Distance Filter               1.000000  \nUltrametric Distance Filter          1.000000  \nPlanar Maximally Filtered Graph      1.000000  \nPrimary Linkage Analysis             0.384294  ",
+      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>Node Fraction</th>\n      <th>Edge Fraction</th>\n      <th>Weight Fraction</th>\n      <th>Density</th>\n      <th>Average Degree</th>\n      <th>Reachability</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>Original</th>\n      <td>1.000000</td>\n      <td>1.000000</td>\n      <td>1.000000</td>\n      <td>0.1344</td>\n      <td>50.936842</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>Doubly Stochastic Filter</th>\n      <td>0.926316</td>\n      <td>0.638045</td>\n      <td>0.834884</td>\n      <td>0.1000</td>\n      <td>35.085227</td>\n      <td>0.988669</td>\n    </tr>\n    <tr>\n      <th>H-Backbone Filter</th>\n      <td>0.805263</td>\n      <td>0.262244</td>\n      <td>0.988625</td>\n      <td>0.0544</td>\n      <td>16.588235</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>High Salience Skeleton Filter</th>\n      <td>0.918421</td>\n      <td>0.033478</td>\n      <td>0.096433</td>\n      <td>0.0053</td>\n      <td>1.856734</td>\n      <td>0.100007</td>\n    </tr>\n    <tr>\n      <th>Maximum Spanning Tree</th>\n      <td>1.000000</td>\n      <td>0.039161</td>\n      <td>0.186046</td>\n      <td>0.0053</td>\n      <td>1.994737</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>Metric Distance Filter</th>\n      <td>1.000000</td>\n      <td>0.069746</td>\n      <td>0.503583</td>\n      <td>0.0094</td>\n      <td>3.552632</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>Ultrametric Distance Filter</th>\n      <td>1.000000</td>\n      <td>0.039161</td>\n      <td>0.186046</td>\n      <td>0.0053</td>\n      <td>1.994737</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>Planar Maximally Filtered Graph</th>\n      <td>1.000000</td>\n      <td>0.099711</td>\n      <td>0.355704</td>\n      <td>0.0134</td>\n      <td>5.078947</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>Primary Linkage Analysis</th>\n      <td>1.000000</td>\n      <td>0.038748</td>\n      <td>0.177826</td>\n      <td>0.0052</td>\n      <td>1.973684</td>\n      <td>0.384294</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "results = framework.properties()\n",
+    "results"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-03T09:24:48.263466300Z",
+     "start_time": "2023-07-03T09:24:48.038680700Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "To perform the comparative analysis of backbone extraction techniques visually, we plot the properties across various dimensions using a *radar_plot()* function from the *visualize* module. This function takes two inputs: the results *DataFrame* and a *String* representing the title of the figure and the name of the saved figure file."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "outputs": [
+    {
+     "data": {
+      "text/plain": "<Figure size 500x500 with 7 Axes>",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI1CAYAAAAkQDCmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xV9f3H8de5+97c3CyyyAISiAgIYQuIinuAWrW1KlbtEKv2V621VKtVK2qdbbVWtNa9EHErKioIKCCyBAlhJBCyQ+bd45zfHzcJRBnZNwmf5+ORB3DP+t6Qcd7n+/1+voqmaRpCCCGEEEIIIbqELtINEEIIIYQQQoj+REKWEEIIIYQQQnQhCVlCCCGEEEII0YUkZAkhhBBCCCFEF5KQJYQQQgghhBBdSEKWEEIIIYQQQnQhCVlCCCGEEEII0YUkZAkhhBBCCCFEF5KQJYQQQgghhBBdSEKWEKJbPPbYY+Tm5lJTU3PQ7eeeey6zZ89u9VpZWRl33nknZ5xxBscddxwTJ05k5syZ/OUvf6GsrKzN1/7ss8/Izc1l0qRJ+P3+g+4zY8YM5s6d2/Y31IPee+89nnvuuUg3QwghhBAdZIh0A4QQAqC8vJwLLrgAh8PBVVddxeDBg3E6nezYsYOPPvqI4uJiUlNT23SuhQsXAlBXV8eSJUs4++yzf7TP448/jt1u79L30FXef/99tm/fzpVXXhnppgghhBCiAyRkCSF6hQULFlBbW8sbb7xBRkZGy+unnnoqc+bMQVXVNp2nqqqKL7/8ksmTJ7N+/XoWLlx40JB17LHHHvFcgUAARVEwGHrmR6XH48FqtfbItYQQQgjRfWS4oBCiV6irq0On05GQkHDQ7Tpd235cvfXWWwSDQa688kpOO+00vv76a0pKSn603w+HC65evZrc3Fzefvtt7r//fk444QRGjRrF7t27WbRoEbm5uaxcuZI///nPTJw4kTFjxjBnzhyKi4t/dO6FCxcya9YsRo0axcSJE7nuuuvYuXNnq33mzp1LXl4e27Zt4+qrryYvL48rr7yS2bNns3TpUkpKSsjNzW35aPbKK68wa9Ys8vLyyMvL48wzz+SRRx5p0+dGCCGEED1DQpYQolcYM2YMqqpyww03sHz5cpxOZ4fO8+abb5KYmMj06dO56KKLUFWVt956q83HP/LII5SWlnLXXXfx5JNPtgp9t912G4qi8NBDD3HrrbeyadMmZs+eTUNDQ8s+8+fP57bbbmPo0KE8/vjj3HrrrWzbto2f/exnFBUVtbpWIBDg2muvZfLkyTzxxBPccMMN/PWvf2Xs2LEkJiby+uuvt3wAfPDBB9x1111MnDiRxx9/nCeeeIIrr7wSt9vdoc+VEEIIIbqHDBcUQvQKM2fOZO3atbzxxhusWLECRVEYMmQIJ5xwArNnzyY9Pf2I51i7di1FRUX85je/Qa/XM3nyZNLT01m0aBHXXXcdiqIc8RyZmZn861//Oui2kSNHcu+997b8Oycnh5///Oe8/PLLXHvttTQ0NPDEE09w4okn8vDDD7fsN2nSJE4//XQee+yxVq8HAgGuu+46LrzwwlbXcTgcmEwmxowZ0+r1devW4XA4+Mtf/tLy2vHHH3/E9ySEEEKIniU9WUKIXkFRFO6++26WLFnCX//6V37yk58QDAZ57rnnOPfcc1mzZs0Rz9Fc8KI5tCiKwgUXXEBJSQlff/11m9px+umnH3LbzJkzW/177NixpKWlsXr1agDWr1+P1+vlggsuaLVfamoqkydPZtWqVT865xlnnNGmdgGMGjWKhoYGbrrpJpYsWXLIyo1CCCGEiCwJWUKIbqHX6wEOWbAiGAwetKBEWloal156Kffeey+ffPIJjz76KD6fjwceeOCw13M6nSxevJjjjjuO+Ph4GhoaaGho4LTTTkNRlJYAdiSJiYmH3DZgwICDvlZXVwfQ8ufBzpGUlNSyvZnVam1XhcPzzz+fe++9l9LSUn73u98xZcoULr74YlauXNnmcwghhBCi+0nIEkJ0i+ZAUlFR8aNtmqZRVVV1yCIXBzr77LPJzc1l+/bth93vgw8+wOPxsGnTJiZMmNDyMWvWLDRN49NPP6W+vv6I1zvckMLq6uqDvhYbGwvQ8mdVVdWP9qusrCQuLq7N1zqUCy+8kNdee421a9cyf/58NE3jmmuuOWhxDyGEEEJEhoQsIUS3mDx5Moqi8OGHH/5o25dffonT6WTKlCktr1VWVh70PC6Xi7KyMpKSkg57vYULFxIVFcVzzz3HCy+80Orjlltuwe/3895773XqPf3w+HXr1lFSUsLEiRMByMvLw2Kx8O6777bar7y8nFWrVjF58uQ2XcdkMuH1eg+7j81m48QTT2TOnDkEAgF27NjRjncihBBCiO4khS+EEN0iMzOTyy+/nGeeeYbGxkamT5+OxWLhu+++46mnnmLkyJGce+65Lfs/+eSTrFu3jrPPPptjjjkGi8XC3r17eemll6irq+OWW2455LUKCgrYtGkTP//5zw9aCGLs2LE8++yzLFy4kMsvv7zD72nz5s3cdtttnHnmmZSXl/Poo4+SnJzMpZdeCoQLVvz2t7/lkUce4ZZbbuGcc86hrq6Of//735jNZq6//vo2XWfYsGF88sknvPLKK4wcORJFURg1ahR/+ctfsFgsLdUHq6qqeOqpp4iOjmbUqFEdfl9CCCGE6FoSsoQQ3ea2224jOzubhQsX8u677xIMBklLS+Oyyy7j2muvxWQytex73nnnAeFhf83BLCYmhhEjRvDUU09x4oknHvI6zfOtLrnkkoNuNxqNXHDBBTz11FNs2bKFESNGdOj9zJs3j3feeYebbroJv9/PpEmTuO2221qGCQJcc801xMfH8+KLL/Lhhx9isViYOHEiN910E4MGDWrTda644gq2b9/Oo48+SmNjI5qmsW3bNsaPH8+iRYv46KOPqK+vJy4ujnHjxvH3v/+d+Pj4Dr0nIYQQQnQ9RdM0LdKNEEKI3mzRokX8+c9/ZuHChdJjJIQQQogjkjlZQgghhBBCCNGFJGQJIYQQQgghRBeS4YJCCCGEEEII0YWkJ0sIIYQQQgghupCELCGEEEIIIYToQhKyhBBCCCGEEKILScgSQgghhBBCiC4kIUsIIYQQQgghupCELCGEEEIIIYToQhKyhBBCCCGEEKILScgSQgghhBBCiC4kIUsIIYQQQgghupCELCGEEEIIIYToQhKyhBBCCCGEEKILScgSQgghhBBCiC4kIUsIIYQQQgghupCELCGEEEIIIYToQhKyhBBCCCGEEKILScgSQgghhBBCiC4kIUsIIYQQQgghupCELCGEEEIIIYToQhKyhBBCCCGEEKILScgSQgghhBBCiC4kIUsIIYQQQgghupCELCGEEEIIIYToQhKyhBBCCCGEEKILScgSQgghhBBCiC4kIUsI0SctWbKEGTNmRLoZ7VZaWkpeXh6NjY2RbooQQgghuomELCFEt5s9ezbDhw8nPz+/5bWGhgZyc3PZu3dvRNqUm5vL6NGjycvLa/nYtm1bt1xn69atLf8eOHAg69evJzo6usuvJYQQQojewRDpBgghjg4Oh4NHHnmEp556KtJNafHaa68xfPjwQ27XNA1VVdHr9T3YKiGEEEL0ddKTJYToEZdeeinr16/nm2++Oeh2TdP43//+x6mnnsrEiRP55S9/SXFxccv28vJyrr76asaOHctPfvITduzY0ep4l8vF3XffzUknncTxxx/PLbfc0qEheTNmzGD+/Pn89Kc/ZfTo0ezYsYN3332Xc889l7y8PE466ST+8Y9/oGlayzFVVVXcfPPNTJs2jfHjx3PZZZfh9Xq56KKLALjkkkvIy8vjySefZO/eveTm5tLQ0ABAIBDg4Ycf5qSTTmLy5Mn8/ve/p6ampuXcubm5vPrqq5x77rmMHTuWOXPmyFBDIYQQopeTkCWE6BExMTH86le/4uGHHz7o9nfeeYdnn32Wf//73yxfvpyhQ4dyzTXXEAwGAfjDH/5AYmIiK1eu5MEHH2TBggWtjr/11lupr6/n3Xff5bPPPiMYDHL33Xd3qK2LFi3i/vvvZ/369QwePJiYmBgee+wx1q1bx3/+8x8WLFjAe++9B4Cqqlx77bUYDAY++OADVq1axY033ohOp2PhwoVAuMds/fr1zJkz50fXmj9/PkuXLuWVV17hs88+Q1EUbr755lb7fPjhhzz33HMsXbqUiooKnnvuuQ69LyGEEEL0DAlZQoge84tf/IKSkhKWLFnyo23vvPMOs2fPJjc3F7PZzE033UR5eTmbNm2irKyMtWvXcsstt2C1WsnOzuaSSy5pObampoZPPvmE22+/HYfDgc1m43e/+x0fffQRoVDokO259NJLGT9+POPHj2f27Nktr//85z9nyJAh6PV6TCYTJ554IoMHD0ZRFIYPH84555zDmjVrAPjuu+/YuXMnd955JzExMRgMBsaPH4/JZGrT5+Tdd9/l2muvZeDAgURFRTF37lxWrlxJRUVFyz6//vWvGTBgAA6Hg9NPP50tW7a06dxCCCGEiAyZkyWE6DEWi4Xrr7+eRx55hJdffrnVtvLyctLT01v+bTKZSEpKory8HL1ej9lsJiEhoWV7Wlpay9/37t2Lqqqceuqprc6pKArV1dUkJycftD2vvPLKQedkDRw4sNW/ly9fzr///W8KCwsJBoP4/X6mT58OQElJCUlJSVgsljZ+FlorLy9v9V6Sk5MxmUxUVFS0tDsxMbFlu9VqxeVydehaQgghhOgZ0pMlhOhRF110Eaqq8vbbb7d6PSUlpVWlQb/fT2VlJSkpKSQlJeHz+di3b1/L9tLS0pa/p6amotPpWL58OWvXrm35+O677w4ZsA5Hp9v/o9Hv93PDDTfws5/9jOXLl/Ptt99yySWXtMzJSktLo7KyEq/Xe9BzKYpy2GulpKRQUlLS8u+qqir8fn+H2i2EEEKI3kFClhCiR+n1em688UaefPLJVq/PmjWLl19+mR07duD3+/nHP/5BcnIyxx13HKmpqYwdO5aHHnoIr9fLrl27eP3111uOTUxM5NRTT+Xuu+9uKRpRVVXFp59+2un2+v1+fD4fsbGxmEwmNm7cyPvvv9+yfdSoUQwePJi77rqLhoYGgsEga9euxe/3AzBgwAD27NlzyPPPmjWLJ598krKyMlwuF/fffz9TpkyRkCWEEEL0YRKyhBA97owzziArK6vVa+effz6XX34511xzDVOnTmXbtm08+eSTGAzhUc0PP/ww5eXlHH/88dx8881ceOGFrY6/7777cDgcXHTRRYwdO5bLLruMzZs3d7qtdrudO+64g9tvv52xY8fyn//8h7PPPrtlu06n4z//+Q9er5czzzyTyZMn889//hNVVQH4v//7P+655x4mTJhw0PL1v/nNb5g2bRo/+9nPmDFjBoFAgAcffLDT7RZCCCFE5CjagXWIhRBCCCGEEEJ0ivRkCSGEEEIIIUQXkpAlhBBCCCGEEF1IQpYQQgghhBBCdCEJWUIIIYQQQgjRhSRkCSGEEEIIIUQXkpAlhBBCCCGEEF1IQpYQQgghhBBCdCEJWUIIIYQQQgjRhSRkCSHEDzidTi6++GLy8vIoKChotS0YDDJ37lwuvfRS7rnnngi1UAghhBC9mYQsIYT4AYvFwvz58znjjDN+tO2LL74gOTmZV155Ba/Xy7p16yLQQiGEEEL0ZhKyhBDiBwwGA/Hx8Qfdtn79eqZNmwbACSecwPr163uyaUIIIYToAyRkCSFEOzQ2NmK32wGIjo6mvr4+wi0SQgghRG8jIUsIIdrB4XDgdDoBaGhoICYmJsItEkIIIURvIyFLCCHaYcyYMaxYsQKAFStWMHbs2Ai3SAghhBC9jYQsIYQ4iF//+tesWLGC22+/nUWLFnHHHXcAcPLJJ1NeXs6ll16KxWIhLy8vwi0VQgghRG+jaJqmRboRQggRSTvyCwi6fITcHgDiMlKITogjOjo6wi0TQgghRF8kIUsI0Wepqoqqaq0+NK35gyP8Hd5/+gVqzN7DX0SDhICFc3/9CxQFFEU54M8f/12nU5o+dC1/VxSlZz4hQgghhOgVDJFugBBCHEwopLZ8tA5S+//dGV+/9BYJhhhqOELIUoBQqCWYQfuvGw5fuh8FML1eQa/XodfrJIgJIYQQ/YiELCFExKiq1ipMhUIqwWD4z+6ybeU3BDaVMdw2BFWnsl2rCG84WMZpylP3/e8RgikxzJp1QYfCkKY1h8ZD7xMOXbpWHwaDTnrChBBCiD5IhgsKIbqdpoXDVCCgEgyGWoJUT/74qSuvYtuCz8h25GBQjAAUu4ooNtZTbfL+OGQ1NS3Wa+RXt/8fABMnTua++x5k1KjRPdZuoFXoMhr1TeFL6hYJIYQQvZWELCFEl9I0jWBwf5hq/jNSAoEAXz+9gBzLIGz68CLCtf5qCv0lDJk6ljpnPZt2bfnxgRok+MyMPvsU/vvfJ3nmmafw+bwoisKll87m1lv/SmJiYg+/m/10OgWDIRy4DAY9RqMELyGEEKK3kJAlhOiUcA9ViEAgFPFA9UPfvPEhcbUGBpiTAfCG3OTXbSNt2miMpnBv1vdF+VQ31GBDj5sQaDDQF032iWNxDBjQcq7S0hIefPA+Fi/+AAC7PZqbb/4Tv/rVHEwmU8+/uYMIB69wb5fRaMBgkLleQgghRCRIyBJCtMuBoSoQCBIK9b4fIUUbNlO/cjuZUYNQFB0hLcjOhh1YjknCkbS/98kf8LN667doaAxLSqegci8A0zOmE33cwXupvv32G+bNu5OtW78HYMiQbO6++z5OO+2MXhdoFAUMBj0mk4QuIYQQoidJyBJCHJaqqvj9vTtUNXPV1bPxhQ8YGp2DUWcGoMyzl2qbh4zjjvnR/rsritldUYzdGkVuchbfFoWD09T4CcQen3nI64RCId56ayGPPvogNTX7ADjppFO45577GTYstxveWdeQ0CWEEEL0DAlZQohWmudU+XxB/P5gt1b660rLn3qNwfqB2A0xADQEatnuLiJ7+viD7q9pGqvzv8Uf8JM9cDAJ0XGs2bYOgMm20SScnHPEazqdjTzxxGO8+OKzBINBDAYDV131a/74x7nExsZ13ZvrJooCRqMBs9mAyaSXOV1CCCFEF5GQJYRA0zT8/nCo8vlCPVr1r7M2vP8p1pIgyZaBAPhVL/m120iZciwmi+WQx1XX1/D97nwMej3jho5Bp9OxassaNEVhkmEkA85oe49UUVEhf//7PSxd+jkAcXFx/PnPtzN79lXo9frOvcEeZDDomgKXAYOh77RbCCGE6G0kZAlxlAqF1JZg5fcfZgGnXqq0YCdln6xnsH0IOkWPqqkUOXfCoBji01OPePymXVuoc9aTmpDCoOQMgP0hi+EMOOfYdrdp5covuffeu9m1aycAw4cfy7x5DzBt2vR2nyvS9HoFkykcuIxGvQwrFEIIIdpBQpYQR5FQKDwM0OcL9KoqgO3hdXlY+79FDLVnY9ZZAaj0llFmqCVr3Kg2ncPj8/JN09DAvJxRWEzhHq/Vm1ej6nRM1o4h4dwRHWpfIBDgtdde4rHH/kFjYwMAZ599LnfddS9ZWYM6dM5IUxQwmQxYLEYJXEIIIUQbSMgSop9TVa0lWAUCfa/H6kBfPfcGacFEYozh+U7OYAPbGnaQffKEdp1nZ2khJdVlxEQ5ODYrPCwwqKp8u2U1qt7AZPUYYs4ajsHQ8TlKtbW1/Otfj7BgwSuoqorJZGbOnOv4/e9vxm63d/i8kabTKZjNBszmcOASQgghxI9JyBKiH2qeY+X1hocD9nXff7ESttUy0Boe1hdQ/RTUbSNufA626PYFlpAaYvXWbwmGguRmDCU+OpbPt7tZs9vDSUn5aAYTU7RjeKDcz9RRyZw7aWCn2l5QkM+8eXexZs0qAJKSkrnjjru56KKf9flCE3p9eA6XxWJEr+/b70UIIYToShKyhOgnNE0jEAi19Fr1h+/sqj0lFL6zguzoHPSKAU3T2OMqxJdqImlIVofOWV5TScHeHZgMJsYOPY4vdnj4NrQRQ2oRxxeloxktTNJyeS7lC/ZVJTE1/oROBy1N01iy5BMeeGAee/cWA5CXN457732AcePa1wvXWxkMOiwWI2azEZ1OhhMKIYQ4usmjRyH6OFVVcbt91NS4qK/34PX2/YAVCARY/vhLBJfsZpjjGPSKgX3+SjZ6NxMzdWiHAxZA2b5yAJLjEglpWkvAAkALz1MLoWJXLRhSi1hZu7zT89cUReG0087ggw8+5cYbb8Fms7F+/becddYpXHvtrygvL+vU+XuDYFDF6fSxb5+ThgZPv+hBFUIIITpKQpYQfZTfH6ShwcO+fS5cLj+q2seTVZNVr7xD8XPLGBU9Cqs+CnfIyfp969HGJDJo8phOndvpcdLocaKgkBSXyNpiT0vAUhRQmtKpikq0Gi6qYUgpYsWWik5dt5nJZOY3v7mWjz76gvPO+wkAb765gMmT83j00Qfxer1dcp1I8/mC1Nd7qKlx4nb3n69NIYQQoq0kZAnRh2iahsfjb+m18vn6T2/B9lXr+O6Jd8j1ZxFvSiSoBciv+56aQRqDZ4zHYDR0+hol1eFerHhHLBoGNvi3h8NV8+i2A3uyQpaWbfm+zZ2+9oGSkpK4//6HWbDgbUaPHoPb7ea++/7GlCnjeO+9t/vUOmWHEwppuFz7e7f6euEVIYQQoq0kZAnRB4SHYnnZt8+J0+kjFOqb5dcPpr5qH6see424rSEyogahKAp73bspsOwl5cRR2ONju+Q6wVCQqrpqAKp9cTyxoh6n5my1j9IUstSm4YLNdGZPl7Thh0aNGs2rry7igQceJSkpmb17i/nlL6/g/PPPZsuWrg12kebzBamrc1Nb62oa0to/gqQQQghxMBKyhOjF/P4g9fXhG1OPp+/PtTpQIBBg+RMv43xvK8c4hmPQmagL7OPbxg3Yjx/CwGNyuvR6JdWVqJqKO2hiWaGCN6hhCtla7aNxYE+WteX1Y5NTurQtB1IUhZkzz+ejjz5nzpzrMZvNfP31Sk45ZRo33/x/VFdXd9u1IyEYVGls9DYNc/XJUEIhhBD9klQXFKKXCZdfD+F2+/rsgsFH8u2ixcRU6xhgTgbAG/KQX5dP2rTRGE3GLr1WIKSxZrcbZ91WrAY/BXUDcKlxTM40kzNAz/8Cb6IRHhZ4fEEcqi2BXC0Nv0Xl1QHLUYBbR9yIxWjq0nYdSknJXh588F4+/vgjAByOGP74x7lcffVvMBq79nPTGygKWCwmbDZjny9pL4QQQjSTkCVEL6Fp4UWD3W5/vxoOeKA9m7+nZlk+mVGD0Sk6VC3EzoYdGHIHEJec1KXXCoQ01hZ7+GqXCyMuxgwoJaQpWOzHcGyyBV3TRKyvAxvZGNqGBkzZHoNqSyRHS8VmsPJUyicEywYxwjSJS2dktRzTE775ZjXz5t3Ftm1bAcjOHso999zPKaec1mNt6GkWixGbzSRrbgkhhOjzJGQJEWGapuH1Bvp1FTZ3o5P1z77L0OgcTDozAGWevVRZ3WSOHt6l1wq2hCs3Tn84rI5OKCfO7CTenkBW8o/Lv38d2MhGdRuTCxxotiSGaCmk6BL4YFAh3309EFWFKccmcP6UNJQeDFqhUIg331zAP/7xELW1NQCccspp3HPP/WRnD+2xdvQ0s9mAzWbCYNBHuilCCCFEh0jIEiJCVFXD6/Xj8QT6bbgCWPH062TpUog2xALQGKyjwFVI9vTxXXqdYEjj270eVu5y4/SFw5XDrGNyhgG/+3sActOPwWa2HfT4p30LmVBgQ7OlkKUlMVI3GNeMFDbtqmPRyhIAzhiXzKlju29+1qE0NDTwxBP/5KWXXiAUCmIwGPjVr+Zw881/wuGI6fH29BSTSY/NZsZolLAlhBCib5GQJUQPC5dhD+B2+/pVIYsf2vjh55iLvaRY0gDwq1621RWQOPkYLFbrEY5uu6CqsX6vhxU73TQ2hatos47js6yMSjVTXlNCyb4SbOYoctNzD3meJ30LmFgQhWJLJV0bwFiyaZiRDDqFr7dW8/Ha8FpZF05LY/LwAV3W/vYoLNzJfffdw/LlSwFISEjgz3++g8suuwK9vv8GEaNRj91ulp4tIYQQfYaELCF6SHhYYBC3u39XVKvYWUTxh2sZEj0EnaJH1VR2O3cRzLSTmJnWZdcJqRrr93pZsctFgzccruwmHZOzrBw30IxBp6BpGht2rScQDJCZmEWCI+Hg59JCPO1/kwnbreisaaRqcUxgGI3TEtEs4Rv7JesqWLGlGkWB2adkMWpwbJe9l/ZatuwL7r//bxQVFQIwYsRI7r33QY4/fmrE2tQTzGYDUVFmmbMlhBCi15OQJUQP8PkCuFz9t6AFgN/nZc38NxkanY1ZF+6pqvKVU6KrYdD4UV12nZCqsaHEy/Kd+8NVlElhcpaN0U3hqllNYw07Srej1+kZOWgUOuXgN+eNmouX/R8wbocFgyWdAWo0U5RjcU5MQHWEK/ppmsa7X5eyfmcdBp3Cr88ewpBUe5e9r/YKBAK8/PIL/Pvf/8TpbATg3HPP46675pGRkRmxdvUEi8VIVJRJqhEKIYTotSRkCdGN/P4gLlf/LcXe7KvnF5EWiCPGGA+AK9jItobtZE7Lw2A0dMk1QqrGxlIvy3e4qG8KVzajwvFZVkYPtGDQ/7ggRX7xVhrcDSTFJJE2IP2Q565Q9/FW4DPydpoxmTOIVW1MV0bhHh1LMHH/osQhVWPBsmK27W3EYtRx7cwcBiZ03dDHjqip2cc///kwCxe+jqqqmM1mfvvb3/G7391EVFRURNvWnRQFrFYTVqsJna7nipEIIYQQbSEhS4huEAyGcLl8+P2hSDelW21dtgr1+yrSbOGek4DqZ3t9AbHjsrFFd00vj6pqbCr18uVOF3We/eFqUqaVMWkWjAcJVwBev5dNhRsBODZzBGaj+ZDXKAzt5ePgVxxXaMJqzCRaNXOyMgbPcAeBtNaFMgJBlReWFFFc5cFuNXDDrBziHYc+d0/Jz/+eefPuYu3aNQCkpKRyxx1/48ILL+7Riog9TVEUbDYTVquxX79PIYQQfYuELCG6kKqquFx+vN5ApJvSrfbtLWPHoi/JdmRjUIxomkaxqwhPkoHkoYO65BqqqrGpzMvyHW5qPeGwajMqTMy0kneYcNVsd+VuKmrLibY6yBmYc9h9N4e2syK4nmOLDEQbBmFVDZymjMObbcc/+Mdh0eMP8ezHhVTW+UiINnH9eTnYrZFfKFjTND755CMeeOBeSkvDFRHHjZvAvfc+QF7euAi3rnvpdAp2uxmzOfL/D0IIIYSELCG6QPNaVy5X/64YGAgE+Hr+AobaBmPVh4ei1firKAqVMWRyXpdcQ9U0vivz8eUOF7XucLiyGprCVboF0xHCFYTD7vqd6wipIYakZBMTdfgy56uD37E+tJXcYj2xymDMqo4zlAn40q34jjn4sQ3uAM8sLqTeFSAtwcqcc7OxmHpH9Tufz8ezzz7NU089gcfjAeCnP/05t99+F8nJPV+CvicZjXqioy1SHEMIIUREScgSopMCgRBOp7ffz7ta8/p7DGiwEm9KBMATcpFfX0DGtDFdMu9K1TS2lPn4cqeLfa5wuLI0hauxaRZMhrYPBauqq6SwohCjwciIzJFHHEb2eWANBWoROSV6ErTBGFQ4W5lEIMmM57i4Qx5X3eDjmcWFeHwhslOj+NVZQzD0opv7iopyHnroft5//x0AoqKi+P3v/8icOddhNkd+iGN3stlM2GwmGUIohBAiIiRkCdFBqqridPrw+YKRbkq32vnNRlzfFJFhy0JRFEJakB31BUSNTMOeEN/p82uaxpZyH8t2tA5XEzKsjE23YG5HuGq2ZfdmXF4XqXGppMSnHnH/D/zLKNYqyCrXkRIcgk7VOFeZTDDWiHv8wcu+NyvZ5+H5T4rwB1WOGxzDZTOyel0hho0b13PPPXeyefMmADIzs7jrrns5++xz+3UIkSGEQgghIkVClhDtdLQMDWysqWXzS4vJic7BqDMBUOLeQ11MkLRjh3b6/Jqm8X2Fj2XbXVQ3hSuzQWFChoVx6RbMho71CLm8Lrbs3oyCwoiskRgNR77BXuD/mBqtnoHVChnebBRNYyaTCdn0uKYkHvH4naWNvPzFHlQVjh+ewAVT03pdeFFVlffee5uHHrqf6uoqAKZNm868eQ8wfPixEW5d9wovZmzB0MGvKSGEEKK9JGQJ0Q5Hw9DAQCDAqv++wRBTBlEGBwD1gRp2enYz5ITxnT6/pmlsrQj3XFU5w+HKpA+Hq/EZHQ9XzXaV7aS6oZrYqDgGpwxu0zHP+d7Bi4+kOj2DnYNB05jFZDSDQuNJyW06x3eFdby5Ilxs4rRxyZw+tnfOfXK5XMyf/2+ef/4Z/H4/Op2OK664mrlzbyM+/vC9dn2dDCEUQgjRUyRkCdEGmqbhcvnwePp31cB1b39CdIVGoiUcEHyqh/y6bQycehxGU+eGXGmaRn6ln2XbnVS2hCsYn25lfIYFi7HzvQzBUJANO9ejaipDBw7Dbj1yGfmQFuJp/5sADHTayKgbCMBMbSIKCg0zkqGNw/9W5e9j8TflAFwwNY0pxw7o4Dvpfnv3FvP3v89jyZKPAYiJieWPf/wzV131K4zG/ju8Tq9XiI62YOyi9duEEEKIg5GQJcQRBAJBGhu9hEL991uleMs2qr/YTJZ9CDpFh6qF2NW4E112AvEDkzp1bk3T2FblZ9l2FxWN4flrJj2MS7cyoYvCVbPymjL2VO3BYrRwTMbwNvVYODU3L/nfR4dCui+O1KrwPLMz1XGYFAON0xLRLG2vGvjZ+gqWb65GUeDyGVkcNyS2o2+nR6xe/TXz5t3F9u3bABg6NJd58/7OSSfNiHDLupfVaiQqyiy9WkIIIbqFhCwhDuFo6L1yNzpZ/+w7DI3OwaSzAFDuKaHS4iRzTOfm6WiaRkFTuCpvCldGPYxLszIh04K1C8NV8/W+K9yEN+AlPSGdxNi2hcMKdR9vBT7DhoUBqoPU0vAQyenBMcTqzTgnJqA62t6zo2ka760qZd2OOvQ6hV+fNYTsgV2zMHN3CQaDvPHGa/zznw9TX18HwOmnn8ndd9/HkCHZkW1cN5JeLSGEEN1FQpYQB3E09F6teOZ1MknBYYgFoDFYT0HjLrJP6ty8K03T2FHtZ+l2F2UNTeFKB2PTLUzIsGIzdU/xgQZ3PfnF+egUHSMHjUKva1vvU2GohI+DKxlALNFKFEl7LKAoTPCPINVoxz06lmCipV1tUVWN178sZltxI2ajjmtn5pCWYO3I2+pR9fX1PP74P3j11ZcIhYIYjUZ+/es5/OEPfyI62hHp5nUb6dUSQgjR1SRkCXGAo6H36ruPl2EodJFqTQPAr/ooqNvGgMnHYLF2PAhomsbOaj9Ld7gorQ+HK4MOxqZZmJjZfeGq2faSAmqdtSREDyAzKbPNx20O7WBFcB0ZJOPwu7CXJ4JOz0hvLkPMsXiGOwik2drdnkBI5cUlu9lT6cZuMXD9eTkkOPrG2lQ7d+7g3nvv4quvVgCQkDCAv/zlTn7+88vR6fpnhb5wr5YVo7F3LCgthBCib5OQJUSTQCBEY6On3/ZeVRQWU/z+KgZHD0GvGFA1ld3OQgIZNpKy0jt8Xk3T2LUvwNLtTkoOCFdjBlqYlGUlqpvDFYA/6GfDzvUAHJN+DFZz20PRmuB3rAttZXKdB9DQ6oeD3shQ9xCGWxPxZtvxD+7YcD+vP8T/Pi6kss5HfLSJ62flEG3rG0UlNE1j2bLPue++v7Fnz24ARo0azb33PsikSZMj3LruI71aQgghuoKELHHU0zQNt9uP2+2PdFO6hd/nZfVTbzI0aggWfTh8VPsq2KtUMWjC6A6fV9M0imoCfLHdyd66cLjSN4erTCt2c8/1eJRU76VkXwk2cxS56bntOnZlw/t8Z3Zz2j4nHp2OYP0xaAYTGa4M8mwDCUVV4Dq+45+nRneAZxYXUucKMDDewrUzc7CY+k5vid/v56WXnueJJ/6Fy+UE4LzzfsJf//o30tMzIty67qHX63A4LBgMfef/SQghRO8iIUsc1UIhlcZGL4FAKNJN6RZfv7iIVF8sscbw+kfuUCP59dvJnJaHoROT/Yv2+flih4vi2vCwSr0CowdamJzVs+EKwmFvw671BIIBMhOzSHC0Y60nNcjnda9SEGXmwooGaox6PA25aAYLSc4UJkdlQaiAhtOmgK7jn699DT6eWVyI2xciOzWKX501BIO+bw2727evmkcffYhFixagaRoWi4Xrr/8911//e2y29g+n7AvsdjNWqynSzRBCCNEHScgSRy2/P0hDg5f++C2Qv2I1we8qSbeF5yYF1QDb67cRM3YwNkfHCxjsrvHzxXYXew4IV8cNtDA5y0K0OTJP/Wsaa9hRuh29Ts/IQaPQKW0PL47q9bxo+p4ys5GrSuvYazbgbMhFNVqJaRzAifZsUIvx5XjxDTmhU+0s3efhuU+K8AdVRg2K4fJTstC1cf2t3uT777cwb96drFu3FoCBA9O44467ueCCi/rlEDuz2UB0tKVfvjchhBDdp289ShWiC2iahtPpo77e0+8CVk1pBav/9ToDduhbAtYeVxE7okpJPWl0hwPWnlo/L6yp5fk1deypDaBXYMxAM7+ZHMtpw6IiFrAAKusqAEiITmhzwDL4G4ipWktM1Voa9OG2RwdVjJoGmgpAQGsufmJD597X6XYOTLDysxPT0esUviuq562VJX3y6+/YY0fw0ksLePjhx0hJSaW0tIQ5c37JueeexsaN6yPdvC7n8wWprXURDPbP3m4hhBDdQ3qyxFElFFJpaPAQDKqRbkqXCgQCfP3UAnKsg7Dpw0UaavzVFAVKGDJlbIfPW1wbYOkOJ4X7woFDp8CoVDPHZ1lxtGOB3u7i9XvZVLgRgGMzR2A2Hrp6ny7oIaphB1F127B4ygEIAbflhNfT+kthFZvsFqoaclDN0RgbrJwVfRxoXnzZxZ3uyWq2uaiehcv3AnBqXjJnjE/pkvNGgtfr5Zln5vP000/i83lRFIVLLrmM2267k6Skzi1i3RvJ8EEhhBBtJSFLHDV8vgCNjV7621f8NwveJ77eTIIpfFPrCbnIrysg44QxHZ53tbcuXC1w1wHhamSKmeMHWYnpBeGq2e7K3VTUlhNtdZAzMOdH25WQH1tjIVH127A696IQDtca4LWlUm7PYL6jCJ2mcc/OKtY6LJQ35BCyOFDqDcx0jAOg4aQEMHRdVcDV+fv46Jtw0LtgahpTjh3QZeeOhLKyUh566H4+/PA9AOx2OzfeeAu/+c21mM19o2x9W5lM4eGDfXGopxBCiJ4jIUv0e/117avCbzfRsHoXmbYsFEVHSAuys2E71mNSiU5qR/GHA5TUB1i63cXO6nClRYX94SrW2nvCFYCqqqzfuY6QGmJISjYxUTFNG0JYXXuIqi/A1lCITgu2HOMzJ+By5OCOziFkjKJCq2WRuoyYQIi5u/exwW6m2JlNyBJLqEHhPPsEdIpC47REtC4Ol59vqODL76pRgMtOyWT0kLguPX8krF//Lffccyfff78ZgEGDBnP33fdxxhln9as5TTqdgsMha2oJIYQ4tI6XyxKiD1BVjYYGT7+qHthYU8vmlz4iJ3oocVGDASh1F1MT7SV9+sgOnbO0KVztOCBcjUgxM6UXhqtm+xqqCakhjAYjDms0ZlcJ9vpt2Bp2og/5WvYLGKNxOXJwOYYSNMW2OocbDwBWzICCQaNlTpaChlcNYdMbUPwqmkXPt9+u5oMP3gegqqqSs8+eyVlnnctVV13G4MFDALjyyl+SmTnoiO0/eXQSTk+IdTtqefWLYmxmA0PTojv9eYmkvLxxvPHGO7z99ps88sjfKSoq5IorLmH69JOYN+8BcnOPiXQTu4SqatTVuYmOtmCx9I11z4QQQvQs6ckS/VYwGKK+3oOq9p8v8eVPvspgYzp2Q7iARX2glh3uIrKnj+/Q+coawuFqe9X+cHVscjhcxdl6Z7hqtqVoMy6fiyHGACM8WzEEnS3bgnorbkc2rugc/JZEOEQvymZ1F8u1TWSQxGnKaGqdG6goCRKyJaA6VaabxhNvNOIeHUsw0dLq2Hnz7uTXv/4tSUlJ3HrrH7n33gfb/R5UVWPBl8XkFzdiNuq49txs0gb0j3LoTmcjTz75OC+88CyBQAC9Xs8vfvFL/vSnW4mLi49087qM1WoiKsrUr3rqhBBCdJ5UFxT9ks8XpK7O3W8C1vr3PqVg/mJGWY/FbnDgU71s2rcR30h7hwJWeUOA19bV8fRXtWyv8jeFKxO/nBTLOcfae3XA0vvqUUtW4/K5UDSVYxo3YAg6UXVGnI6hVKSfTUn2ZdQmTcFvTTpkwAJw4QXAhhl0BrzRg9A4sCcrvJ/ib10opaGhAb/f11LcobKygrvu+gvPPDMfv99HW+l0CheekE5Wkg1fQOXpj3ZRXd/243szuz2am2/+M++//yknn3wqoVCI//3vKSZNyuOZZ54iGAwe+SR9gMfjp6Ghfz3MEUII0XnSkyX6HZfLh9vtj3QzusTerQVUfvYdg+xD0Ck6VC1EYeNOdNnxxA1Mbvf5KhqDLN3uZFvl/s/P8CQTUwbZSIjqvcFKF3BjrSvAWrcVs7ucdYZsdhuSSQ9Vc6zZj8uRgycqs90LBn+hriNf20OekkOebiiVWi3V+d+j2ZLQXEFGMZ4hNjPebDv+wfaW45Ys+QSPx83MmecD0NjYQHS0g0WLXsdstnDOOee1qx1ef4hnPymkotZHfLSJ62bl4LD1r2FoX321gnvvvYudO3cAkJt7DPPmPcD06SdFtmFdRK/XERNjRd/HFpkWQgjRPeS3geg3NC08/6o/BCyvy8PKf72MaVUtQ6Jz0Ck6KrylfKcWkHDC8HYHrMrGIG+sr2f+ypqWgJWbaOLqiTHMHBHdKwOWEvJjrfmehJ2LSPn+KWJLv8DsLseHgWJDIgBRKWOoTjsdT/SQdgcsAJfW3JMVHgqoR4emND13UjS8Tb0Tiq/1nL41a75m4sTjW/4dHR0evjlp0hR27y5qdzssJj2Xn5JFrN1ITaOf/360C4+//8wjBJgyZRpvv/0Rf/nLXcTExLBtWz4XXTSLK674OUVFhZFuXqeFQiq1tS78/v7RQyeEEKJzJGSJfiEUUqmrc+Pz9f0bnJXPvEHlq6sZETMSk86CM1jPt7XrME/KIGts+wpbVDmDLNxQz5Mra9haER6GNqwpXJ03MpoBUb2s9o0awlK/k7iiD0jZMp/44o+xOHejoOG3JFKfPIUtyWejosNiNGOzxnTqcu7m4YLKASGrufCFouINhUOW7oDhgg0NDXi9HpKTw0HX6/USCoUD0ffff09KSsfWvYq2Grni1EFEWfSU1Xh57uNCAv1sPTeDwcBll13B4sVLufTS2ej1ehYv/oCpUydw99134HQ2RrqJnaJpUF/vwePp+w96hBBCdI4MFxR9XiAQ6hdzIjYvWY5uRwMDrekABFQf2+oKGDBhGBZ7+4ohVDuDLNvpYkvZ/vk9QwcYmTbYRqK9lwUrTcPk2outNh9r/XZ0B1QGDJpicMcMxeMYRsgci6ZpbCrOxxv0kR6XSpKjY6Xqmz0X+hAPfs7TTSVBcdCouSksWIPekobi9RLvHs/UuCj2eqtxnBsOuJ999ikul5NZsy4AoKiokKeeehyz2UpUVBTXXvs7oqKiOtymshoPz35chD+oMmKQgytOGdRv12Tavr2Ae++9i1WrvgIgMTGJ22+/i5/+9OfodH37GaDFYsRuN0tBDCGEOEpJyBJ9mt8fpL7eE+lmdErVnhKK3lnJkOhs9IoBTVPZ7SoiMNBC4uCMdp1rnyvIsh3hcNX8jZ2TYGTaEBtJvSlcaRpGTxXW2q3Y6rahD7paNoUMNjyOHDwxwwj8oDJgvaeR/LKd6BQdo9Jz0es6PswxpKk8pb4LwM91M7AqZtyal4KCrzFa0lG8XmzOcZySYCdk0+Oaktjx99tOu8qcvPz5HkKqxqRj4rlwWnq/vVnXNI3PP1/C/ff/jb17iwEYPTqPe+99gAkTJkW4dZ1jMulxOKz99v9OCCHEoUnIEn2W1xugsdEb6WZ0WCAQYNX8BQy1DcaiD/d8VPsqKdYqGDxpTLvOVeMKsmynm82l3pZwlZ0Q7rlKju494Urvqwv3WNXlY/TVtryu6kx4HEPwxAzDbxsIysF7MQrKC6l11zPAHkdmQlqn2uLUPLyofoyCwpW6M1AUBb/mZ8v2lZjM6Sg+L7r6PM5JdKDpofHkjg0D7Kgtu+t548u9AJySl8SZ41N79Po9ze/38cILz/Lkk4/jcoVD909+chF33PE3Bg7s3P91JBkMOmJibP22N1IIIcTBScgSfZLb7cfl6rulrle9/DbJ7mjiTAMAcIec5NcVkHlCHgZj20NRrTvEsp0uviv10vydPCQ+3HOV0kvClS7gwlq3DVttPiZPRcvrmqLHa8/CEzMMrz0LjtAr5Q8GWL9nCwDDU3OwmiyH3f9IKrVa3lSXYcPCJfqTAQhpIdbvXIrVmIni9+LfN4YLU8LzvhpmJEMP3yiv2baPD9eUA3D+lIFMHdFzvWmRUlVVxaOPPsDbb7+JpmlYrVZ+97ub+O1vf4fVao108zpEKg8KIcTRR0KW6FM0TcPl8uHxBCLdlA7Z/tVavBtKyYjKAiCoBdheV0D0mCzssW0v4lB3QLhqnoo2OD7cc5XqiHy4UkI+rHU7sNblY3YWozT1r2ko+KLS8MQMxRudjaY3tfmce2vKKKmrIMpsJTclu9NtLNTKWKyuJgEH5+mnhl/UNFYVLiFaPwgl4MVZNZpLUhwoio7GaYlolp6vwvjFhkqWfVcFwGUzMhmTHdfjbYiELVu+45577mTDhnUApKWlc+ed9zBr1gV9cvidTqcQE2PFYOh9lTyFEEJ0PQlZos/QNI3GRm+frCBYV15F/oLPyInOwaALr39U7NqNM0EjNbftgaHOE+LLnS42lewPV4PijEwbbGVgTITXVVKDWBqLsNVuxdJQiKLtL0HutybhcQzFEzMU1dC+Ih4Q/r9fv2cLgVCQrIQ0EuydDxqb1V0s1zaRQRKn6ccBoAAri5YQo2ShBH04K4/jwmQrJp0Z9yg9weSe70nSNI0PVpexdnstep3C1WcMYli6o8fbEQmapvHhh+/x4IP3UVER7tGbNOl47r33QUaNOi7CrWs/RYGYGBtGowQtIYTo7yRkiT5B0zTq6z0EAn1r7aBAIMCqpxeQbcnCpo8GoNa/j0L/XoZMHdvm89R7Qizf5WbDXk9LuMqKMzBtsI20SIYrTcXkPKAyoLq/dHXAFIsnZiiemGGETJ0rtb7PWceOyiIMOj0j03PRHWLOVnusUb/nW62AXDKYqg9XDlSA5cVLiFOzUIJ+nJWjmJVkJkpvJZC4G8/oyBRiUFWNN5YXs3VPIyaDjmvPzSY9sf1hta/yeDw8/fR/+N//nsLn86EoCpdddgW33vpXBgwYEOnmtZvDYcVsjnyPsxBCiO4jIUv0eqqqUl/vIdjH1gz65o0Pias1MMDctJ5SyE1+3TbSpo3GaGpbMGrwhli+MxyumpZsIjM2HK7SYyMUrjQNo6eyqTJgwQ8qA0bhicnB7RhG0DKgVWXAzthauoMGr5NkxwDS4rqmAMUX6jrytT3kKTnk6YYC4ZC1rOQzEoKZEArgqhjJGUkW4vUWNP0qGk8+v0uu3RHBkMpLn+2mqMJNlEXPdbOGkhhjjlh7IqG0tIQHH7yPxYs/AMKLQP/hD7fwq1/NwWRq+9DT3iA62oLFEuHeZyGEEN1GQpbo1VRVpa7OQyjUdwLW7k1bqF1eQFbUIBRFR0gLsqthB+ZjknAktW24WaM33HO1vnh/uMqIMTBtiI2MCIUrva823GNVm4/RX9fy+v7KgLn4bamHrAzYUd6Aj43FWwEYkTYMs6FrbqbfD31FMZVMVUaQq8sEwiHr88rPSfJkgBrEVT6CE5OjGKgzogRX0DhtOqo9qUuu3xFef4jnPimivNZLnN3I9ecNxWE7+m7U165dw7x5d5Gf/z0AQ4Zk87e/3c9pp50R4Za1j91uxmrtW+FQCCFE20jIEr1WKBTuweorActVV8/GFz4gJzoHky7cw1Dm2Uu1zUPGcce06RyN3hArdrlZt9dD89tOjwn3XGXG9fzNtC7gxFq7DVvdth9XBozOwh2Tiy8q84iVATtjd3UJ5Q1VOCx2cpIHddl5F4Q+Zx8NnKYbR4YSDk4KsKTmC1Ia00FTcZUdw6TEKIYYTCjB9fiGGPAOO63L2tARTk+QZxbvotYZICXOwm9n5mA1H31zfEKhEG+99QaPPvoQNTX7ADj55FO55577GTp0WIRb13ZRUWZsNglaQgjR30jIEr1SOGC5CYX6xpfniqdeZ5A+Fbuhqdx3oJbt7t1kTx/XpuOdPpWVu1x8W+yheVRkmiPcc5UZa+jRamr7KwNuxezc+4PKgOlNlQGHtKsyYEepqsq6PVsIqSGyk7KIsUZ32bmfC32EBx/n6aaSoIQLSSjAJ41fMrAmvCaVqzSHUXF2RlrMKKFtaJZvaTjxpi5rQ0fVNPp5ZvEuXN4Qg1Oi+PVZQzAajs7y4E5nI0888RgvvvgswWAQg8HAVVf9mltu+TMxMbGRbl6bSNASQoj+R0KW6HX6UsDa+OFnWIr9JFsGAuBXveTXFZBy/HBMliOv4+TyqawsdLF2z/5wleowcMJgK1lxxp4LV2oQS0Mhtrr8g1QGTMYdMxSvI6dDlQE7o7JhH4XVxZj0RkakDeuyz4eqqcxX3wXg57oZWJVwz6MCfORdSUZFuGfLXTqIIdHRTLTbQN2LPvAG9dNvQo1O7pJ2dEZ5jZdnPynEF1A5NsvBFacOQn8UL3hbVFTI/ff/jWXLvgAgPj6eP//5di6//Er0+t7f0xcVZcJmO7rm2AkhRH8mIUv0KqGQSl2dG1Xt3V+W5Tt2UbJ4HYPtQ9ApelRNpahxJ9ogBwkZA494vMuv8tUuN2v3uAk0hauUaD0nDLYxKL6HwpWmYnYWY63Nx1q/4yCVAYfhiRna6cqAnbF57zZcfg8DY5NIiem6uVBOzcOL6scoKFypO6Pl860AHwVXkVGSAIC7LJ1kcwwnx9nRlEYM3v/iyTkFb+7pXdaWziiqcPHikt2EVI0Jw+K5eHp6n1xDqiutWLGMe+/9G4WFOwE49tgRzJv3AFOnnhDhlh2ZBC0hhOg/pIas6DWae7B6c8DyujysfWYRQ6OzyY4OV6Sr9JZRZqgl64RRRzze7Vf5qtDNN3vcNFejT24KV4N7IlxpGkZPBbbarVjrCtAH3S2bgoaolpLrQXNCl1UG7Cinz43L70FBIcEe36XnduMFwIrpR59zvd4ImgaKgqKEcDd3MSrhXjxT2abwvKxeEGYGJUdx4bQ03li+l28Kaoi2GjhrYmqkmxVR06adyDvvTOG1117iscf+wfffb+GCC87h7LNnctdd88jKGhTpJh6Sy+UHFBk6KIQQ/YD0ZIleoS9UEVz53JukB+OJMYZv+J3BBrY17CD75AlHPNbjV/mqyM03uz34m4ZBJtv1TB1kI3tA94crg68Wa81WbHXbMBxYGVBvDlcGdDRXBox8cGi2s3IP1c4a4mwxDE7M6NJzF2plLFZXk4CD8/RTW15XgM9ZT1KhFXR6vBWJ6NUELkwJ9+Yp/n+j0/zUT78RNbprSsl3hbUFNby/ugyAWccP5ISRPb9ocm9UW1vDP//5CG+88SqqqmIymbn22uv5v//7A3a7PdLNOySZoyWEEH2fhCwRcb09YH3/xUrYVstAa/hGP6D6KajbRtz4HGzRh79R8wRUvi50s+aAcJXUFK5yujlc6QJObLXbsNblY/JUtryuKnq80YPwxOTis2eA0vvmqwRDQdbv2YKqaQxLHozdEtWl59+s7mK5tokMEjlNP77ldQVYxiYSCo2gMxCojsPvT+KS1FgUQI1agrHmOzw5J+PNPbNL29RZSzdWsnRTFQCXnpxJXk5chFvUexQU5DNv3l2sWbMKgOTkFO64424uvPCn6HS9s2CIlHcXQoi+TYYLiohSVa3Xlmnft7eMXW99yZDoHPTWDDRNY4+rCF+ygbS8MYc91htQ+brIzZoiD76mcJUYpWfaIBs5id0XrpSQN1wZsHYrZtdemq+ioeCzp+OJGRauDKjr3WsrVTXWoGoaFqOZKHPXF9toHi5o48fFSQyKDkVT0QC9Pvx1GTKAIQiBuOEYa77DVLoJ77AzelXP34nHJeL0BllbUMvry4qxmfXkZjgi3axeYdiwY3juuVdYsuQT/v73eygp2ct11/2GZ56Zz733PsjYseOPfJIe5nT6UBRFFiwWQog+SkKWiBhN02ho8BAM9q6AFQgEWDV/ATm2wQx1hNe32uevZE+onMFT8w57rDegsqrIw+rdbnzBcLhKsOmZNtjKsMQfz//pEmoQS/2ucGXAxkIUbf/n02dNDgcrRw6qwdr11+4GmqZR2RBe9yjRHt8tnzNX85ws5cc9BXr00FRdUa8EAQjpwj8sQ/YsNJ0evXsf+sYyQo4jFznpKYqicPaEVNzeEN/vaeCFJbuZc242GYk9WxGyt1IUhdNOO4Pp00/iueeeYf78x1m37lvOPHMGF130M+64425SUnrXfLbGRi86nYLJJL+qhRCir5HhgiIiNE2jsdGLzxeMdFNaWf3qOyQ6o4g3hee0uENOttVtJ+OEMRiMh77R8QVVVu32sLrQjfeAcDV1kJXcpG4IVy2VAbc2VQYMtGwKmOPClQEdQwmZ+l5PRr2nkfyynegUHaPSc9F3w0LHH4S+Yg+VTFVGkKvLbHldAdbqCrAVeFGNVvQNZhqcg5g1OJYoL3iHmjFWvIWpahue7JPwHnNWl7ets4IhlZc+201RhRubWc/1s4aSGCsV636osrKChx/+O++++xYANpuN3//+ZubMuR5LG5Zf6CmKAjExNozG3jesVwghxKFJyBIR4XR68XgCR96xh2xftQ7vumLSbVkoikJQC7Cjfjv2URnY42MPeZwvqLJmt4evi9x4A+FvpXibjqmDbBzT1eFK0zC6y7HV5mOt/0FlQKMdj6OpMqAloeuuGQEF5YXUuusZYI8jMyGtW66xIPQ5+2jgNN04MpT9peEVYL1uB+ZtTlRTFMZGA3WN2Zw5OIY4r4Ivy4RmKiBq81uEbPE0nHRLrxoy2MwXCPHsJ0WU13iJtRu5ftZQYqJk2NnBbNq0gXnz7mTTpo0AZGRkctdd8zjnnFm9phy+oijExtowHKULTgshRF8kYxBEj3O7fb0mYNVX7eP7Vz9haHQOhqhBAOx176YhVmXgiYcuye4PqqzZ4+HrQjeepnAVZ20KV8kmdF14c2bw1mCtzcdWl4/BX9/yekhvxuvIxhOTi9+a0itv9tvLHwxQ6w6/x8To7guLbnwA2PhxD49B0YdLuAOKEh422LyCmBLQ8KfloukM6N016BtKCcV0TxDsDLNRz+Uzsvjfx4XUNPr570e7+O3MHKxm6Q35oeOOG8Nrr73Fe++9zUMP3U9x8R6uvno2U6ZMY968BxgxYmSkm4imadTXu4mNtaHXS9ASQoi+QHqyRI/yeAI4nd5IN4NAIMDXT79BtjmTKEM0AHWBfez07iF72qEnwfuDGt8Ue/hql6slXMVadUzNsjE8pevClc7fiK1uG9bafEzeqpbXVcXQVBlwWK+tDNgZe2vKKKmrIMpsIzdlSLdcQ9VU5qvvAnCJbgY2ZX/QUoDv9XtQvq8iZHFgdqrUNAxnalY0mX49gQEGvMdasW1cgKkyH++QE/EMP7tb2tkVahv9/HfxLlzeEIOSbfzm7GyM0htySC6Xi6ef/g/PPfdffD4fOp2O2bOvZO7c20lIiHwPsV6vIzbWhk7X9x+oCCFEfychS/QYny9IQ4Mn0s3g20WLcVQrJJrD6xx5Qx7y67aRNu04jKaDD6kKhDS+2ePhq0IXbn/4WybGEu65OjbZ1CU3PUrQi7VuO7a6rZhcJT+oDJjRVBlwcK+vDNhRqqaxYc8WAqEgWQnpJNhju+U6Ls3DC+rHKCj8QndGq2CsANv0e1G/LyNkicXiCrCvfiTjMu0MCxgIOnR4xkRhLN9C1HdvErLG0XDyn3p1L2J5rZdnPy7EF1AZnungF6cNQi836YdVUrKXBx64l08++QgAhyOGP/5xLldf/RuMxsh+/xmNemJirL1mKKMQQoiDk5AlekQgEKKuzn3kHbvRns3fs29pPln2wegUHaoWYlfDDvS5A4hLTjroMYGQxtqmnitXU7hyWHRMzbIyIsXc6XClqAEs9buw1uVjaSxqXRnQloLHMQyvI7vPVAbsjH3OWnZU7sag0zMyPRed0j09LpVaLW+qy7Bi5uf6Ga22KcBOQxn+zcWErHFYXT6q64/j2DQbo1UTIauCe4IdQn5ilj6MogZomHoDodj0bmlrVymqcPHikt2EVI3xw+L46fQMuUlvgzVrVjFv3l0UFOQDkJ09lHnz7mfGjNMi2i6TyYDDYZH/QyGE6MVkTpbodqGQSn195Hqw3I1O1j/7LkOjcxgcnQ1AuaeESquTzOnHHvSYYEu4cuP0h4OPw6xjyqBwuOpUT4CmYm7cg612K5aGnT+oDBh/QGXA6I5fow9qLtueYI/rtoAFB66RdfCKewZFj4+msKuE/3QHVdCBrmmIKHoTgQE5mCq3YirdgKeXh6xByVFcdEI6C74sZm1BLdFWA2dP7D3l53uriRMns2jR+yxc+Dr/+MdD7Ny5nUsuuZBTTz2dv/3tPrKzh0akXX5/EJfLh93ee6ogCiGEaE1CluhW4QnbHiLVYbryv6+TqaQwImYEAI3BOgpchWRPH0/mQfYPqhrrij2s2OXG6QvfYEebdUzJsjIytRPhStMwucuw1uZjrStAH9ofOoNGO56YoXgcfb8yYEd5/F4avE4ABkTHd+u1XNrhQ5YePdD89doUsgIqmEEJAqoGOoVAykhMlVsxlm3CM/ycXj1kEGB4poNzJqby/uoyvthYhd1qZPqoxEg3q9fT6/X87GeXctZZ5/LEE//kpZdeYMmST1i27At++ctruPnmP+FwxPR4uzyeAAaDXhYrFkKIXkpClug24cWGvYRCPb/Y8KbFX2Da7WGEJbyYsF/1sa12G4nHH0O29ceFLYKqxvq9HlbsdNPYFK7spnDP1ahOhCuDd1+4MmBtPoZAQ8vrIb0FryMbd8wwAv2kMmBnVDRUA+Cw2DEbfrxAcFdyEQ641kP2ZOkOeCgQ/tMdUNEsoGig+DU0i0JgQA6a3ojeW4++rphQ3MFie+8yflg8Ll+QLzZU8d6qUuwWPWOHdm+o7S8cDgdz597Oz352Kffd9zeWL1/Gk08+zhtvvMqtt/6VSy+djV7fs4VoGhu96PU6WUNLCCF6IQlZotu43X78/p5dbLhiZxHFH65lSPQQdJZ4VE1lt3MXwUw7GXl5P9o/pGqs3+tlxS4XDd7mcKUwOcvGcQPNGDoQrvT+xqYeq3xM3uqW11XFgNcxGI9jGD57er+rDNhRIVWl2lkLQKKj+3vyXM3DBZVD92RpTcMENSUcsgIBFc2goAQ0lICGZgH0RgIDhmGq2IKpdCOePhCyAKaPTMTlCbFmWw2vLyvGZjFwTEbfW7Q6UgYPzuapp55j2bIvuP/+v1FUVMgf/vA7nn32ae6990EmT57So+1paPBIaXchhOiFJGSJbuH1BnC7/UfesYv4fV7WzH+THHs2OY7wPIkqXzkluhoGTfvxelchVWNjiZcvd+4PV1EmhcmZVkYPtGDQty9c6YIeLE2VAc2u0pbXmysDumNy8UUP6reVATtjn7OWkBrCpDfisNi7/XruluGCB5/PokeHhorC/kGDwYCGZgQC4Z6sZoGUEeGQVb4Jz7HnQDfOJesqiqJw5oQUXN4gW3Y38OKS3VxzTjaZSbZIN61POfHEk5kyZRovv/wC//73P9m8+TtmzTqTmTPP58477yEjo2dCt6pqLUFLCmEIIUTvISFLdLlAIERjY8+thfXV84sYGIhjZEx40VBXsJFtDdvJnJbHIGPrhWJDqsam0nC4qveEw5XNqDA5y8qYdoYrJRTA0rALa+1WLM7dP6gMmBouYBGdjWaQyemHU9k0VHBAdFyP3CQ2L0QcpRz8/8Wg6FEVjQP7GUMhDdWooEdD51cJNb0eSMhB05vQeRvQ1+4hFD+oW9veVXSKwgVT03D7QhSWu3hm8S6um5VDUqx8rbaH0Wjkyit/yaxZ5/OPfzzEm28u4L333uaTTz7iuuv+jxtuuJGoqKhub0cwqNLY6MXh6P9VSIUQoq+QEu6iS6mqSm2tG1Xt/i+rrctWoX5fRZot/MQ4qPopqC8gduxgbI7Ww5/UA8JV3QHhalKmlTFpFoxtDVda6IDKgLtaVwa0JOB2DMUTMxTVeHRVBuwop8/NlpICFBRGpudi1Hf/c5/nQh/hwccs3RQGKK0LFiiAy+ynYNNXGC1pmLyN1NaE5/BdMCIeS42KL8uEP2v/UEPbd4swlW/GmzUFz8jzur39XckXCPHcJ0WU1XiJjTJy/XlDiYmS3taOys//nnnz7mTt2m8ASE0dyO23382FF17cIw8QbDYTUVEHHwYrhBCiZ0nIEl1G0zTq6twEg91b6KKmtILtC5eS7cjGoBjRNI1i927ciXpShg5qta+qamwq87J8h5taT7j/wdoUrvLaGq40DZO79IDKgPt76YLG6HBlwJhhBM1SQKC9dlbuodpZQ5wthsGJGd1+PVVTeUp9Fw24RDfjR/OyFMBnCbL5u+WYTekYvU4aG8YTCmrMHBWPvVrFP9CIL2d/j4+hahv2Da+jmqOpP+XWPjFk8EAub5BnFhdS0+gnOdbMb2flYDPLIIeO0jSNTz75iAceuJfS0hIAxo2bwH33PciYMWO7/foOhxWz/P8JIUTEyU9i0WWcTl+3BqxAIMCq+QvIsQ0mNyZcNbDGX0VRqIwhU/I4sO9K1TQ2l/n4coeLGndTuDIoTMy0kpduwdSGcGXwVGNrKmBhCDS2vB7SW/HEZONxDCNgTT7qKwN2VDAUpMbVVPAiumdK13vwoREOUxYOXsVQj55QS+ELBaNBIRTUCDb9Nx84JwsgmJCNZjCj8zViqN1NMH5wN76DrhdlMTD71CyeWVxIRZ2P/y0u5DfnZGMy9K2w2FsoisIZZ5zNiSfO4Nlnn+app/7Dt99+w+mnn8TPfnYpf/nLXSQnJ3fb9RsbPej1NgwGKawjhBCRJD1Zokt4vYFunYe15vX3GNBgJd4UXtfHE3KRX1dAxgljMBj3PytQNY0tZT6+3OlinyscriwGhYkZVsamWzAZDh+I9P6GcMn1unyM3n37z6sz4o0ejCdmGL6o9D7XW9EbldVVsqemFIvRzPDUnB4ZTlWl1bFQXYoVMz/Xz/jRdgXAqmPVlk+w67PQ+92ovgk4G4OcMjqOpEqNoEOHZ0zreTa2zW9jKtuEN2synpEXdPv76A4VtV6e/bgQb0DlmIxorjx9cOcW3RYAVFSU89BD9/P+++8AEBUVxY033sI11/wWs7l7hvbp9Tri4qQQhhBCRJKELNFpwaBKba2rW86985uNuL4pJMM2CEVRCGlBdtRvJ2rkQOwJ+4fnaZrGlvJwz1V1U7gyGxQmZlgYm27FfJhwpQt6sNYVYK3Nx+w+sDKgDm90Jp6YYXjtg0AnHb9dRdM0NhZvxRf0kxGX2iOl2wGKtDI+UleTgIPz9FN/tF0B9FYDy7Z+RKwyCF3Aiz44nrraANOOiyOjSiNkVXBPaF0F0VC1HfuGV1FNdupPva3PhvDdlS5eXLKbYEhj3NA4fnZihtyod5ENG9Yzb96dbN68CYCsrEHcdde9nHXWOd3yObZYjERHSyETIYSIFLlrFJ0SXnDY0+XnbaypZfNLH5ETPZSEqPDwqxL3HuocAdJOHNnq+t9XhMNVlXN/uJqQbmFchgXzIYY8KSE/lvpd4ZLrjXtQaBoeBvhtA8PzrBzZaHq5SekODV4nvqAfnaIj3h7bY9d1NZVvP9RCxBAeLhg0aBBqGi5oDH8NeZuKuegCP34uFUwYgmowo/M7MdQUEUwY0g2t735ZSVFcNC2d178s5tvttURbDZwzaWCkm9UvjBmTx+uvv8W7777Fww//nd27i7jyyks54YQTueeevzN8+LFdej2vN4DRqMdikUImQggRCRKyRKc4nT5Coa6bhxUIBPj6v28wxJTB8JgRANQHatjh2U32CeNpHqSlaRpbm8JVZVO4MukVJmRYGH+ocKWFMDfuDlcGrN+FTtu/ULLfMqApWA1FNXb/Wk1Hu4r6KgDio2LR63pu7oiL8AMB22FClk5RCOqAEKAoGJp6Qb0hFdChBAFVgwOH0un0BBJzMZdtwli6oc+GLIBjMh3MnJTKu6vKWLqpCrvVwInHJUW6Wf2CTqfj/PMv5LTTzmT+/H/z/PPPsHz5MmbMmMrs2Vcxd+5txMd3Xa+u0+nFaNTLQsVCCBEBErJEh/l8AbzewJF3bKN1b3+CvULjOFs4XPlUD/l12xg4ZSTZ5nAZbU3TyK/0s2y784BwBePSrUzIsGAx/uBmQtMwuUrClQHrt/+gMqDjgMqAcV32PsTh+YN+at0NACRG92xFRjdNCxErh58LEzIoEABN0WFoCuzeoIqm6FC0cPELzdJ6iFcgZSTmsk2YyjfjGXEe9GB47Gpjh8bj9Ib4fEMl768uw24xMG6YVM/sKlFRUdx00y1cfPEl/P3v8/jss0947rn/8tZbC7nlllu56qpfYTB0/tezpiELFQshRIRIyBIdEgqpXVboonjLNqq+2Mwg+xB0Fh2qFmJX4w502QPIyhsHhMNVQZWfZdtdlDeGe6Caw9X4DAvWA8OVpmHwNlcG3HaQyoA5eGKGEbAkSWXACKhoCBcUiTLbsJp6djimSwsvRGzj8NdVm+fwKTqa73UDQQ3NoKAENJSAhvaDUwTjB6MaLOj8Lgw1hQQH5HR183vUCSMH4PIGWZ1fw4Ivi7FZ9AzPjDnygaLNMjIyefzx+axa9RX33nsX27cXcNttt/D8888wb94DnHjiyZ2+RjCo4nL5sNtl6LMQQvQkCVmi3ZrnYXW2ZIrX5eHbZxYxNDqHIdHhG9JyTykVlgayThjRcq3tVX6W7nBR3hAOV0Y9jE2zMjGzdbjS++vDlQFr8zH6alpe318ZMBdfVFqfLUrQH6iaRlVjOGQl2nu+Z2R/T9bhbziDLeWvFfS6cI9pIKCimYHAj8u4A+Ehg0nHYC7dgKl0Y58PWYqicMb4FFzeEJuL6nnxs93MOSebzKSoIx8s2mXy5CksWvQBCxa8yr/+9QgFBdu4+OLzOP30M7n77vsYMiS7U+f3eMLzs8xmmZ8lhBA9RUKWaDeXq/PrYa18ZgEZWhIjYsJFLBqD9RQ07iT7pAlkEQ5XO6r9LN3uoqw5XOkgL83CxEwrNlM4KOkC7nBlwLp8zO6ylvNrig6vXSoD9ja1rjoCoSAGnZ7YKMeRD+hiLSHrMHOyoGm4IICioCc8JDYQUNHsCqCh86uEDnJcIGUE5tINGMs3w8jz+/SQQQjPTzt/ykDcviC7ylz8d3Eh183MITlOekW6msFg4NJLZ3POObN4/PFHefXVl/jkk8V88cVn/OY313LTTbcQHd3x75nGRi8Gg8zPEkKIniIl3EW7+HzBTlUT3PzJl+h3OUm1pgHgV30U1G1jwIRcLHYbmqaxszrcc1VaHw5XhqZwNakpXIUrA+7EVrsVs3MPCuEvYQ3wR6XhdgzF68hG03fPGjSi47aW7qDB6yTZMYC0uJQevbaqaTylvoMGXKI7+aC9WQpgsVl4te5jhpaFq+pl2bP5vsBAXLyJU9KjMVaF8GWZ8Gcd5OtLVXF8+TC6gIfGib8kmDise99UD/EFQjz/aRGl+7zERBm5flYOsfaDL+YsusaOHdu57767+eqrFQAMGJDIbbf9lZ///HJ0uo4FJYNBJ/OzhBCih8gjLWDv3r3k5ubS0NDQoeMfe+wxfvvb3x5y+x133MGDDz540GsduK23U1UNp7Nj87AqCotZ+9gbpJZGkWpNQ9VUihp3UhRXQ/rJeZijrOyq9vO/VbW88m09pfVBDDoYn27hmuPjOHmIhXhPIXFFH5CyZT7xxYuxOHejoOG3DKA+eQoVQ3/Bvqzz8MQdKwGrF/L4vTR4nQAM6OGCFwAefGg0Bakj9GTpdEaax8Mqmh9o6skyhm9OlYOUcW86kEDSMQCYSjd2Sbt7A7NRz2UzskiINlHvCvD0R7twe4NHPlB0WE7OUP773xf4z3/+S2ZmFtXVVdx44/WcdtqJrF69qkPnDAZVPJ6uK1bUnZ577jlmz54d6WZ0ubVr1zJ9+vRIN0MI0QN63Riq2bNns379eoxGI0ajkWHDhvGnP/2JUaNGRbppHXb33Xe3advevXs55ZRT+Oabb3A4en4o1ZE4nV5UtX0dn36fl9VPvcnQqCHkOMJP9at9FeylikHTRgNQuM/PF9ud7K0L37TpdTBmoIVJGRbig2XYKr7CWr8dXcjXct6gyYHHMRR3TC4hc2zXvEHRrSoaqgFwWO2YDT3fC9I8VNCCGd0RnuTrFR00RbJwyLK1DlkHm5PVJJAyEnPJeowVW0D9SZ8fMtgsymJg9mlZPPNRIZV1Pp75uJBrzsnGdIi16ETnKYrCSSedwpQpJ/DSS8/xxBOP8d13G5k583TOP/9C/vrXv5GWlt6uc7pcPkwmPQZDz35dHvi7vZnJZGL16tU92g7Y/7vWZrO1ev3LL78kOjq6y69z4O/08ePH8+WXX3bZNYQQvVevC1kAN998M1deeSV+v59//OMf3HDDDSxdujTSzTqq+XxBfL72Pbn++qW3SPHEMMoRnnflDjWSX7+dzGl5DDIOpKgmPOdqT234yapegdGpZk5McZHg+hbrzm0Ygs6W84UMNjyO5sqAiVIZsA8JqSrVznAxksTorlsHqD1cbZyPBaBHB5oaLpKihb8+gwENrWkuoOI/9JzEYGwWqtGGLuDGUL2DYFJuF7S+d4iNMnH5KVk8+3EheyrdvLikiCtPH4xeJ9+L3clkMnH11b9h1qwL+Mc/HmLRojd4++03Wbz4A2644Uauu+7/fhQYDqex0RuRYYPNv9t7i2XLlh32gWYoFEKn08nwSiFEh/TqR5Amk4kLLriAsrIyampq0DSNF154gTPPPJPx48cze/Zsdu7c2bL/s88+y+mnn05eXh6nnnoqL730UqvzFRUVMWfOHCZPnszEiRO5/vrrW23//PPPOe200xg/fjxz584lEAjfXLlcLq699lqOP/54xo0bx2WXXUZ+fn6rY0OhELfeeitjx47l9NNP59NPP23ZNnfuXObNm3fQ93jgtosvvhiAE088kby8PN59913OP/983nrrrVbH/PKXv+Tpp59uz6eyU9o7THDbym/Y/J93GR4aQpwpgaAaYGvtFmqzdQw5eQIljSrPr67lhTV17KkNoFfghFQ/fx5awKXaQgYVvUJ01bcYgk5UnQlXbC7VmbOoGHoFDSnTCFil9Hpfs89ZQ0hVMemNOCyRWezZpYXnElrbFLL0KFpTkFLDwwVDIY1Q08P/Qw4XhKYhg8OB/jVksFlynIVLZ2Rh0CvkFzey4MtiZGpvzxgwIJF77vk7Cxe+x9ix4/F6vTz44H1MmTKOt95a2Ob/h/CwQX83t7Z9tm/fzk9/+lPy8vKYPXs2lZWVh93+wAMPtBpOuG/fPv7whz8wbdo0pk2bxrx58/D72/8ec3Nzeemllzj33HMZPXo0Lperw/cWB/udvnr1asaPH99yrNPp5Pbbb29p9x133IHb7Qb2Ty94++23D3pvIoTo3Xp1yPJ6vSxcuJC4uDgcDgevvPIKCxcu5Mknn2TVqlWcdtppzJkzp+UH6cCBA3n++edZt24d99xzDw888ADffvstAG63m6uuuophw4bx+eefs2LFCi6//PJW11u2bBlvvfUWH3zwAV999RXvvfceEK50N3PmTD777DO++uorhg8fzv/93/+1+oW2fPlyjjvuONasWcPcuXO56aab2LNnT7ve7xtvvNHSjvXr1zNr1iwuuugiFi1a1LJPRUUFq1ev5rzzzmv/J7SD2jpMsK68itX/eo2E7QrptiwA9riK2BFVSupJx7FPtfDCmlqeX1PH7toADp2HS5K2c0/qx1zke43E6lUYfbVoih5P9GBq0s+kfNiV1A88Bb89XUqv92HNa2MNiI6P2FPhtlYWBDAoupY5WYT239AElPBrusOFLMCfEl6CIDxksP/NXcpMsnHxCekoCqzbXssHq8uOfJDoMsceO4KXXlrAww8/RkpKKqWlJVxzzdWce+7pbNq0oU3ncLn8BIMHq5HZ84LBYMuDzNWrV3PTTTexcOHClu2BQIBrr72W6dOns3r1am6++WbefPPNlu2apnHttdeSmJjIp59+ynvvvUd+fj5PPPFEh9rz/vvv88wzz7Bu3TpsNluH7y0O9jv9h+bNm8fu3bt57733ePfddyksLOS+++5rtc+h7k2EEL1br7xrfeSRRxg/fjxjxozhgw8+4PHHH8dgMPDKK6/wu9/9jkGDBmEwGLjiiivwer1s2rQJgDPOOIPU1FQURWHy5MlMmzaNNWvWALB06VIMBgM33ngjNpsNk8nE5MmTW133+uuvx263k5yczPTp09myZQsAdruds88+G5vNhtls5ne/+x1FRUWtnrQNGjSISy65BIPBwIwZM5g0aRLvv/9+pz8XM2fOZNOmTRQXFwPw9ttvM3XqVJKSkjp97rZoyzDBQCDAl/9+GfeHBeTGDMegGKn1V7POtQnHlGwCiRm8+E0tz62uo6zGxUTzTv6Y8Dl3xy7k+ODX2LwVaCj4otKoHXgy5cOupDbjLLyOIVJ6vR9wet24/R4UFAbY4yLWDhft6cnStfRkhdQA+qaS7s2zApUgcJgHD6G4TFRTFLqgF0P1jk61u7fKzXAwa3K4AuOy76pYurHyCEeIrqQoCmeffS4ffvgZ1133f5jNFr75ZjWnnXYiv//9dT/qCTqYxkZvj/ZCNv9ub/646qqrANiwYQO1tbVcf/31mEwm8vLyOOuss1qO27hxI3V1dcyZMweTycTo0aM5++yzW7Z/99137N69m1tuuQWr1UpcXBxz5sw54u/gk08+uaUtf/rTn1pe/9WvfkVycjImkwmdTtfpe4tDUVWV999/nz/84Q/ExcURHx/PjTfeyNtvv42q7h+SfKh7EyFE79Yr72BvuukmrrzySioqKrj22mvZtm0b48ePp6SkhD/+8Y/o9fsn7AYCAcrLywF49913efbZZ9m7dy+apuH1eklPD08KLikpITMz87BP0RMTE1v+brVaaWxsBMI9avfffz9ffvkldXV1LeVza2trSU5OBsK9aAcaOHAgFRUVnf5cxMTEcMopp/D2229zww038NZbb3HjjTd2+rxt0ZZhgt8s+ID4OhPH2cPzrrwhF/l1BaSfMAazK56Xvqll9z4vw40lXGUvZKRpLwZCNFVdx29JxBMzDI8jB9Uoi5z2RxUNVQDE2hwY9JH7kePSwhEp6ggLEUN4uCBa+Cm/qoYwGhRCQY1ASEVTQNHCxS80yyF+nijhIYPmvWvDCxM3VRzsb/Jy4nB6g3y2vpIP1pRhtxoYP6znK0cezaxWK9df/3suvPCnPPTQ/Xz44Xu88sqLvPvu29x00y385jfXYjIdvNBM87BBm61nqrE2/27/ocrKSpKSkloVxUhLS2PXrl0t2xMTEzEY9v/8SE1NZceO8AOMkpISGhoamDhxYst2TdNaBZWD+eKLLw46Jys1NbXVvzt7b3EoNTU1+P1+0tLSWl7LyMjA7/dTW1vb8tqh7k2EEL1brwxZzZKTk/nb3/7G5ZdfzqmnnkpKSgq33nrrQcuflpaWMnfuXP773/8yceJEDAYDv/3tb1ue0qWlpbFnzx40TWv3D8P//e9/bNmyhVdeeYWUlBQaGhqYMGFCqyeApaWlrY4pKysjLy+vXdc51NonF110EbfffjtTp06lrq6Ok08+uV3n7ajDDRMs/HYTDat2khM1CMWsI6QF2dmwHesxqZiyR7NgQwPU72WCaRe/jt2DTbd/bHzAFIMnZiiemFxCppgeeS8iMoKhIPtcdUDkCl40axkuqLS18EV4mKAaCmIw6sCrEghqaAYFJaChBDS0w+Q1f8pIzHvXYqz4HkJBiGDA7E7TRgzA5QmyKr+GN74sxmbRc2ymfF/3tNTUgTz88L+47LIrmDfvTr7/fgt33307L774LHfffR+nn37mQX/3uVx+TCZDj1cbPFBSUhKVlZUEAoGWoHXg79SkpCSqq6sJBoMtQausbP8Q1dTUVBISElixYkWXtOfA38Wdubc40npm8fHxGI1GSkpKGDBgABCeh2UymYiLi8Pj6fialEKIyOuVwwUPNGLECCZOnMj8+fO57LLL+Ne//tXydMvpdLJkyRKcTidutxtN04iPj0en07Fs2TJWrlzZcp4TTzwRv9/PP//5T9xuN36/n1Wr2rbWiNPpxGw243A4cLlcPPLIIz/ap6ioiAULFhAMBlm6dCmrVq1qNZyhLZrb/sO5XMcffzyapnHXXXcxc+bMQz6V7Cyn08nFF19MXl4emzdvbTVMMBgMMm/endww51csfeg57Ju8ZNmHoCg6St3FbDUUEjpuGKt211K14VNmh17jBscnTLHswKbzEzLYcMaPpmrwxVRlX4ozcaIErKNAVWO4YI3FaCbKbI1oW/bPyTpyT1ZVaUXLcMFAKIShabjgnuJSyvaFe87fWfDGYc8Ris1ANdnRBb0Yqws60/ReTVEUTh+fwqhBMagavLRkN0UVrkg366g1dux43njjXe655+8kJCRQWLiL2bN/xk9/egEFBdsOeszhhg0e+HuhoKD113EwGGTu3Llceuml3HPPPR1u8+jRo4mNjeWJJ57A7/ezceNGPvroo1bbHQ4H8+fPJxAIsGnTplbbR40aRWpqKo8++ihOpxNN0ygpKWHZsmUdblOzztxbHOp3ejOdTsfMmTN59NFHqauro7a2lkcffZTzzjuvwwtOCyF6jz7xXTxnzhzeeOMNTj31VC644AJuuOEGxo4dy1lnndUy5jonJ4c5c+bwi1/8gkmTJvHhhx8yY8aMlnNERUXx7LPPsmXLFk4++WROOOEEXnnllTZd/6qrrkKn0zF16lRmzpzJmDFjfrTPCSecwIYNG5g4cSLz5s3jwQcfZNCgQe16nxaLheuuu45f//rXjB8/vmVyq6Io/OQnPyE/P58LL7ywXeds7/Xnz5/P6aefjtvta7Vt5crljCCBP024gjGJeRh1ZuoDtXxbvx7v0Ci8nlIStz7HJdrbzLB+T6zOTUhnwhV7DNVZ5zVVBpxKwCql148Wmqa1rI2VaI9cwQsAVdPwNM2oOlLhi31VlYQCIZrHtLo9LozG8I/KUBAUc/jvPzn7J4e/qKIQSD4WAGM/rDJ4IJ2icP7UNLJTowiENP63uJCK2o4tXC46T6fTceGFP2Xx4i/45S9/g9FoZNmyzznxxMn8+c83U1dX22r/YFDF6z14xbrm3wtnnHHGj7Z98cUXJCcn88orr+D1elm3bt1h2/XQQw+Rl5fX6qO2thaj0cgTTzzBihUrmDRpEg899BA/+cn+7y+j0ci///1vli5dysSJE3nwwQeZNWtWywNHvV7Pk08+SWVlJWeffTbjxo3jmmuuaXfxqYPpzL3FoX6nH+i2224jLS2Nc845h3PPPZesrCzmzp3b6XYLISJP0aT2bp/w9ttv8/zzz/+onHt3uPnmP3LxxZcyZEgOABve/xRrSZBkS3jemU/18n31ZlIGqRhrC0imquXYIHpcUZmE4nLx2rP6zUKsov3q3Y3kl+9Ep+gYlZ6LPoJfC27Ny/PqYhTgF7oz0B2iUqUC7Nq5nSJHLan7IGSNw1RdjiXxDMpKvAxI9hNfUcm41JF8H9xDxowRh72uvq6Y6G+eRdObqTvtdtAbD7t/X+cPqDz/aREl+zzE2Axcf95QYu09v/C0aG337iL+/vd7+OKLzwCIi4vjT3/6C1dccVXL8DtFgfh4O7pDrHk2d+5crr76aoYNG9by2gMPPMDJJ5/MhAkT+Pjjj9m7dy+//OUvu/8NAbfffjuqqh5yeRQhhIi0PtGTdbRzuVy88MILXHrppd1+LY/HSzAYHiZVWrCTdY8vJLN6AMmWgaiaSmFjAdXudxjrWE567UqSqULVFPYwkOIBJ1OVexWurObKgBKwjmbNBS/io2IjGrBg/0LEFkyHDFjNfH4/Rp0BraknS1PAYAgfY49yMCLvOACcNQ0UFRYd9lyhmHRUswMl5MNY1X+HDDYzGXVcdkomAxwm6t1BnvpwFy5v/yth39dkZQ3iiSf+yzPPvEh2dg61tbXMnfsHZsyYyvLl4SF1mgYul+8IZ2qtsbERuz287l10dDT19fVd3vZma9eupaysDFVV+frrr3n//fc588wzu+16QgjRWRKyernmku3Jycmcf/753X69bx5axETdAPa++xX6ldUMiR6KTtFR6S2jqm4ROaYPyDSWolOgMDiA5cok8jNnYzj2fPRJw9H08tRagD/op9bdAEBidOSrzTXPx7K2YT6W2WxCC6pA+GGDotNhNIaf7quaHsUcDoxpiansLTnCcCRFwZ/cvDDxho41vo+xmQ3MPnUQ0VYDVfU+nlm8C3+gd6zHdLSbMmUab7/9EbfddicOh4P8/K1ceOFMrrji5xQVFeL1BqioqDryiZo4HA6cTicADQ0NxMR03zzb4uLilsWI//rXv3LjjTdywgkndNv1hBCis/pnuat+5Pzzz++RcAXw3u2PkesYQ0pqRsv8GWewnn2N6xhi2wA2KA/F8K1vMGX6NCYMSyc7SnqrxI81Lz4cZbZhNR052HQ3pxau0tWWhYiTk5PZumcPCUq4UIfOYGiZk+Xz+NFM4Sf3midI0pAjr1cXSBmBZc9qjJX54YWN+/mQQYCYKCOzT83ifx8XUlzl4fklRVx9xhD0hxiKJnqOwWDg8st/wTnnzOKxxx5lwYJXWLz4Az777FNOPfV08vO/Z9u2/Fbl1A9lzJgxrFixggkTJrBixYpunTN8wQUXcMEFF3Tb+YUQoqtJT5YAYMd335MTPQJFUVAUBU3TKKxfj833PHHmAj7zjOCB+nP5Z8UEytwKZ+dlkSgBSxyEqmlUNYZDVqI98r1YcGBlwSOHrITEJMx6M1pTT5ZOr2fz5vUA1NQ2sOCd1wGwm6IYNuzI61+FHGmolhiUkB9j5cGru/VHSbEWLpuRhUGvULDXyetL96DKFOBeIy4ujjvuuJtFiz5g8uQpBAJ+PvrofQoLd3HnnXe32vfXv/41K1as4Pbbb2fRokXccccdQHgx3/Lyci699FIsFku7ly0RQoj+TApfCABW3buIBFPrp/Jb9i1nqRrPrmAy2fEGpmWaSLZLsBKHt89Zy47K3Rh0ekam5x5xDlRPWKquZ6u2m9FkM04/7JD7KYDFZqHAtZv6bQUo1hSsnnrSh5zBhm9riY0zMX1SAlEbPWgGcE6JbtP1Lds+xbLna/wpo3CNu7yL3lXfULC3gVeXFqNpcMLIAcycPDCilSbFj2maxpNP/pt//ethIFzRtqBgOzk52RFumRBC9F2Rv/sREbforn8Tb0z80et+JYaiUAqXj7Zy4bFWCViiTZqHCibY43pFwIJwdUFo20LEAHr0qEr4+ZOK0rJOVjCgojXNz1KCwCEW6/6hQEq4CqGxKh+C/iPs3b8MS3dw3vHhyqTLN1ezdFNlhFskfkhRFDIzM1v+rWkaZ50lRSWEEKIzescdkIioTFPGQZ8sN4RUQhoEZc66aCOP30ujNzwRvjcUvGjWPFwwSmnb/DA9OtSm4YKaorTMyQoEVDCEKw4CKP62hayQI5WQJRYlFMBYubWdre/7xmTHcerYcE/5h2vK+Wbbvgi3SPxQYmLrkQw7duzgtdcWRKg1QgjR90nIOsot+Mu/iDH++GY4qPopcrsBcAZkRKlom+bFhx1WOyZD76k06W5ZiLitIUuPqmsq4Y6Coan3KhDQQFHQmnq2lLZ+bxywMLGpbFN7mt5vTBuRyPHDEwBYuHwvW3Z3X7lv0T4Gg8KMGdNJTU1t9cDtD3+4KYKtEkKIvk1C1lGsoaGBY6OHt3qteYqeQWfiJ2nHcIFuHVF+uRkSRxZSVaqdNQAkRidEuDX7qZp2QMhq63BBHSFl/zpZzT1ZqqoRCmloTYXX2tqTBQcMGazcBsH2rUfUX5w2LpnjBsegavDyZ7spqnBFuklHNZ0O7HYzMTE2QiGNuXPvaLW9tLSE5557IUKtE0KIvk1C1lFsy8dftgyJauZV3ZQ2bsUX8hFtiGdq0gwc1aWUb1qJpqqHOJMQsM9ZQ0hVMemNOCz2SDenhRdfy8LCFtrWu2ZAR6i5J0vRtczJgtbzsnT+tn9PhKJTCFnjUNQAxoqjb8gggE5ROG9KGkMH2gmENP63uJDyGm+km3VUslqNxMVFAVBb68LjCXD66Wfyj388QXT0/oIuf/rTLQSDsqC0EEK0l4Sso5SmaQybcRJr0nQsq9rA+n0bWVa1gccqy4gzfIE58Dz7vNXoFD3H2CeQZsxlx5rFeCqOsPiqOGo1F7wYEB3fq6rHuVoWIja1uRCHHh0h/f45WYqioDc0Dxk8oPhFO3qyWg8Z3Nj24/oZvU7h4hMzSB9gxeMP8fRHO6l1Hl3FQCLJbNYTF2fDZDJQX+/G6fRx4POz008/kzlzbgBg3LgJzJ//P/x+mZgrhBDtJSHrKOX1BlBVjZE5Cdy+6GWerrHyTjCDcuJ42jkDFS+Jyos4jTsJaSEGmNKYmHAWtaV7KP5mMar/6BzuJA7O6XXj9ntQUBhgj4t0c1pxt4Sstg0VhPCcrGBTMU2tKZgZDfvnZWmmds7JauJvqTJYcNQOGQQwGXRcOiOTAQ4TDe4gT324C5dXeku6k8Gg4HBYsNnMuN0+6us9BIMH//rV6cJf8+npGUydegIeTwBZ7UUIIdpHQtZRSNM0XK79T47Ld6xi9Ws3MeecbM4Yl0JRMJGX3ScAEON8l1ByAS4lgElnIc9xCqm24eSve4/Gou8i9RZEL1PRUAVArM2BQW+IcGtaczWXb29j0QsI92QFmoYL0tQrZzigwmCHerIA1Z5MyBaPogYxlW9p17H9jc1sYPapg3DYDFTX+/jvR7vwBaTHpKspCkRFmYiJsREMhqirc+Pzte/zrKoaHk+gm1oohBD9k4Sso5Db7f/xU0lNI3ugnRl5SURbDaz3ZbI77XQArMWL0Q8ppjFRh6ZppFmGMSl+Jvtqytj19VsEnLUReBeitwiGguxz1QGQ6Og9BS+aufAA4eGCbaVHR9Cwf04W0HqtLFP4NaUdc7LCB+wfMmg8iocMNouJMjL71EFYTDr2Vnt4/tMigiGZ+9lVLBYDcXFR6HQKtbUu3O4AHe2Qcrv9qG1cF04IIYSErKOOqqp4PIee/6BTFI7NcgDwpXc43sHhHi3b1vcwJFXgHm3Dp6jY9A4mOs4h0T6MrZsXU7NlOZomN0dHo8rGGjRNw2q0EGWyRro5P9I8XLA9PVk6RYe/Ze1tBVVVWyoM+v3a/p6sDixv4E8ZCYCxajsEPO0+vr9JjDFz+YwsjHqF7SVOXl9WjCpD0zrFZNIRG2vDYjHS2OihsbH1vKuO0DTtsL87hBBCtCYh6ygT7sU6/D4jB8UAsG1vI65jzsKfOgpFU4nauAD0+/Af78ATp0NRdOTYxjIh9myqPTUUfLUA377iHngXorfQNI3KprWxBkTH9aqCF81ahgsqbZ+TBRBqriio6NAC/gPWylJRm6sLdiBkqVGJhGwJKFoIU8X37T6+P0pPtPHTEzPQKbBhZx3vfV0qc4A6QK8Pz7uy2y14vX7q6jzhBbS7SLg3Sx6mCSFEW0jIOoqEQmqbxtXnDLRjNupweoKU1vhwjb6EQNwglJAf+/pXUIKNBEdF4c41E1I0Yo1JHB97AfH2IWzdsYzybz9ACx29k/qPJg0eJ76gH52iIz4qNtLNOajmnqwope09WQAhY1NXlqIQCngxGMI/Lg8s4a4EgfYOoVKU/QUwSmXIYLOhadGcNyUNgBVbqvl8Y2WEW9R3KArYbCZiY20Egyq1tW683VRI5MD5vEIIIQ5NQtZRxO1u2y9Hg17HsLTwOin5expBb8A14ReEohLR+Rqxr3sZAl5CySY8E+z47DoMipGR9hMY4ziFfaqb71cvxFO8GXpfx4boQuVNBS/io2LR6/RH2Dsymhcibk91QQD1wLWxfB6MTcHKH9DAEF6kGNpf/AIgkNwUsqp3oATc7T6+vxo9JJbTxyUDsPibctbk74twi3q/8LwrGwaDjro6d5tGK3SG1xsgJPPmhBDiiCRkHSVUVcXrbXt1qBGDwvOytu1tBEAz2nBO/CWqORq9qyo8dFANoVl0+PNseAcZUdFINg1iSuyFOKwD2Va2gd1fLUTz1UnY6od8QT917gYAEqPjI9yag9M0rSVktWdOFoDugNAY8nlb5mQF/SooCpqh4/OyVHsioahEFC2E8SivMvhDU44dwJRjwwVUFq7Yy+aiusg2qJcyGnXExlqxWEw4nV4aGryEQj0zxFLmZgkhxJFJyDpKuN3tK787PNOBToGqeh/7GsI3qaotDueEq9H0Joy1Rdi2vAOaFq6YlmnBMzaKoFnBorMy3nEmubbJ1OsDfLfufeq+X47SOzs6RAdVNi0+HGW2YTW1L8D0FA8+NMI3nu2pLgigV3TQVMwlGPC1mpMFoBnD+3WkJwvA37wwcemmDh3fn502NpnRQ2LQNHj58z3sKnNGukm9hk4H0dFmoqOteL0B6urc+Ntb5bKTmtdZFEIIcWgSso4Cqqrh9bbvyaPNbGBwShQA+cWNLa+HYgbiHHs5mqLDVL4Zy47P91/HrsczPgp/anidpEHWEUyOuYAoUzxFjbsp+PIVQnV7UXTSrdXXqZpGVWM4ZCXae2cvFuyfj2XBhE5p3487PfqWkBUK+DE2zdEKNPVcNc/L0nXwBjfQNC/LsG8Hil+GDB5IURRmHZ/G0DQ7wZDGs58UUlYjlRitViNxcVGoqkZtravb5l0diaZJb5YQQhxJ71o1VHQLr7djY/RHDophZ5mL/OIGpo4Y0PJ6MCkX96ifELVpIZailaiWGPwZ48Mb9Qq+oVaC8QHM27xEE8OkmPPY7v6W3Wziu21LSTXEkzbhNIKaEeRhaJ9U66ojEApi0OmJjXJEujmH5Gop396++VgQXitL0cL9YOGQtX+dLKDDCxI3U6MGELInoXdWYizfjD9zYofO01/pdQoXT8/ghSVF7K3y8PRHu7hh1lDiotvXI9kfmM16bDYzqqpSX+8mGIz8D06PJ4DNZuqVFUXbKhQKEQjIIstCiLbR6/UYDIY2/9yTkNXPaZrW7qGCzUZkxfDO16Xsrfbg8gaJsuz/cvFnTEDnqcO6fQnW/I9QzdEEk3JbtocSjHjG6zEXeDHWwDFRExhgHMwW1xLKQjXsW/EagzPGEJ09OjzHRfQpFU1DBRPsce3uIepJzeXb21v0AsIhq6UnK+TH2lRdsGW4oKnjc7Ka+ZNHYHVWYirdKCHrIEwGHZednMX/Pi6kqt7HUx/u5LpZQ7Fbj45fXQaDQlSUBZ1Owe324fOFIt2kFuF1s8JBqy9yOp0UFxfLsEchRLvY7VGkpqZiMh35Z9/R8ZvqKOb1Bjq83kxctImB8RZKa7wU7G0kLyeu9bmHnorOU4d571qivluEc/wVhGLSWrZrJh3eEVZCZQHMu3wMMA3geMPFbHF+TSXb2Fa2kbi928iecDqqJRY1KGGrL/D4vTR6w3NkemvBi2ZuwkPMOt2TFQq29GT9cLhgR3uyIDxk0LrzCww1O1H8LjRTVIfP1V9ZzXpmn5rFfz/aRXWDn2cW72LOudmYjf13kqdOBzabGbPZgNvtb9PSG5Hg8fixWo19rjcrFApRXFyMwWDG4YhBKjMJIdoiGAzQ0FDHrl27GDZsGDrd4R8yS8jqx8K9WJ0bN39sVgylNV62Fjf8KGShKLhH/QSdtx5j9Xai1r+Kc+LVqLb4VvsEBpoIxhqw5nswOSHPMY1iTw757k+o1XtZ/807pMcMImXcifh9Gpo8WezVKpoWH3ZY7ZgMvfspdueGCx4wJ0sNYWiqLqiqGqGQhsEU/rfSiZ5Y1RZPMDoFQ2M5xrLN+LMmdfhc/ZnDZmT2qYP43+JC9lZ7eO6TIn555mAM+t7bi9pRVqsRm82EzxekttZFb177NzzfN4jVaox0U9olEAgX7nA4YjD10qI9Qojex2Qyo9cb2LevAr/fj8Vy+J8fErL6MZ8v2OmhECMHx7BkfQW7ylz4gyomww9uanR6nONmE/31fzA0lBG17mWcE3+JZrK12k2z6XCPsWHa7cNUHCDDmkKc8edsalxJIzvZ7dxN9ZKXyBkxHXNKJn6f2qH5Wl+uXEp5WRmOaAennX46eiX8y39n0XbWf/stAPUNDYzNG0vemPH8+4l/kZycBMCJJ80gMSGp/Rc9ioTUENWNNQAkRSdEuDVH1jxc0NbOhYihabggzcMFgxgOXDcroGIydn64IEAg+VgMjeWYyjZKyDqMxBgzl52SyfOfFrGj1MlrS4u5dEYmul7ci/LMM0+ybVs+iYlJ3HjjHzEYwj+PVq9eyVtvvQlARUU5559/ERdffDHnnXc2w4bloqoa11xzHYMGDYlk89vE4/FhsbR9jkLv0hfbLISIpPb8rOt/jwEF0DW9WAAD4y3E2o0EQ9qhyygbzDgnXE3IEoveU0vUhlchdJDhLToF/2ALntFWVLOC3WDk+NgTyTKfBZoRl1Fl47Yv2LPiPcz6EHpj+748K6rKcbtc/PSinxMfH8/2gh0t27IHDeWiCy/hogsvITY2jiHZOQDEx8e1vC4B68j2OWsJaSomg5Foiz3SzTmi5uqCHQ5ZTUNt1VAIRVFaglYgoKI2VxfsdMhqrjK4C8UnpcoPJ32AjZ9Nz0CnwMZddbz7VUmHh0N3t507t1NbW8sDD/yDzMxMVqz4smXbpElTuf/+R7j//kdIS0vn1FNPxm43k56ewbx5D3HffQ/3iYAFEApp+P2RqXIohBC9mYSsfioQCBEKdX6ciaIoHJsZrh63dU/jIffTLI7wUEGDFUN9CbbvFrUMtfqhUIwB17goAknhp5/H2Af+P3vnHR5Vmf3xzy3T0zsJaYQQegcpShNBpVrW8mNtqKysZRXbuqJiW9eydmzY1t4Lgg27UlR6S0gICem9T5+59/fHZCaEAKGkM5/nyQNz573v+947M/fe855zvocxQRehEfqCIFCiVLPl53eoz96KMUCDIB/dqkFxcREJ8QkAJCQkU1xc2KKNxWrF5XIQHBgCQE1tDR9+/B4//LgG56EMQz8+VFX1CV5EBIR1i5XrpkLEx5uT1ejJavy3ychSm3KyXMAJeIwVYyiuwBgEVDTFO467n5OFvnGBzJ/gyf1cu7uS77eWdfKMDk1Gxm5GjBgJwMiRY0lPb150WhDA5bLgcjmIjIyiutpCUVERt99+E8uXP4nDYe+MaR8XbbGg58ePHz89Db+R1UNpyxomQ5KCAcgqrD9i+KESGI15zGWoooS2fA+GPd9wWO14WcDW34C1vw5VhjCtlkmhk4iQz0JRDTg0Apkl29n97TtI1hoMRtnzVHIEHA4HWp3HY6E36LDZbS3a7M3OJCUl1ff6ssuu4i/nXYQpwMSO7VtbORMnN2a7BYvDioBAREBo6zt0MqqqnpCRJSP5ChkrikfVzZuX5XQqIIPa+JU8EfELAGfMYAC0xdtOqJ+ThaF9Qpg5OhqAbzaWsCG9opNn1BKzuQGj0ePtNZlM1Nc3LVLp9TKhoSZ+++1Xxo6dgMXiRFVhxYr/8fDDTxAWFsbq1Ss7a+rHjMul4HR2HeXDjsLtdvPbb7/w8ccf8Ntvv+B2d+1zUFRUxLhxI8nM3HPU+6xatZLp0yd1+jz8+OmO+I2sHojbreBwtN3FPrlXAHqtiMXuJr/iyEVTXWHJmIddCIAu/090+9cfuX2UFvMoE65gCVkQGBUcy5CA81CUAagq1Mh2Nm9cScEf32MwSGh04mHD6HU6HY5Gw8pmtaHXtQwR27s3k759+/leG/UGAPr27UdZRddcEe8qlDQKXoSagpClrp/OacXhM5KOS8JdaJJw9/pkvZ4sl1MBQUCV2yYvyxE90NN/VS6C7fAeYz9NjB8QwcRBnrzAT9YWsiOnpnMndBABAYFYLJ7wT7O5gcDAQLRakZAQA3q9hvp6K9999z0TJpzm28ejdAennjqZffuyO2Xex4vNdnJFAnzxxecMGzaQuXPP5uqrFzJ37tkMGzaQL774vN3HLi0t4cEH72X27BmceupY5s8/m8cff5Ta2poj7hcdHc3q1d/Sp0/KUY81ffoMPvjgsxObsB8/Jyl+I6sH0pZeLPAUBR0Q7wkZzDhCyKAXZ+wwLP3PBsCQ9V2rIVCqTsQ61IAtWYsqQG+9jqnh4zCKs3ApISiSQL4ln21r/oetJBeTSXvIfK2YmF7k5ecBkJeXS2xsXLP3LVYrToeDkKAQAOxOBwoeY7SgoIDQkK7vneksnG4XVeYaACK7geAFNMm369EeVy0vCQmv+orS6JHVNH7vHA6vjLun7Yl6slRDCK6gWARUtP6QwaNm+ohohqeEoKrwzg95h88b7QTS0gawZctmALZs2cjIkSMICDBgszmpqbFSUVGN1WolJqYXADab1ecJ2bFjO7GxsZ029+PBZnOeNDWnvvjicy6//K8UFTUPSS8uLuLyy//aroZWYWEBl1/+V/Ly9nPffQ/x0Uefc9ttd7Jx4x9cddXl1NbWHnI/p9OJJEmEh0cgy0e/SKbX6wkL69qlOvz46ar4jawehqqq7bKiOLgxZDAjv+6oEs3tfSZhS5oAgHHXSqSq3CPvIAg443VYRhhxG0X0osiksBhSjbOwuUagqhIWjcqOzJ/J+vETJNXhydeSmtxa0ZExGE0mPvjoXaqqquib2pfvfvjG9372viz69G0KFaytqeb9997iw4/fY//+fQwbOvIYzsjJRXl9JaqqYtDoMWoNnT2do8J8AqGC4MnJUvF6sjzfeVnTJHwBB9bKOvH8R68AhsYfMnjUCILAnHGx9OsdgEtRee2bHIoqrZ09LQBSUlIJCwvljjuWUFJSyKRJk7jvvvux2TwiEevX/8b48RN97YuKClmy5O/cfvtNbNr0B3PnnttZUz9ubLbum5ulqipms7nVv7q6Ov75z1sOeR/0brvjjlupq6trta/jEW159NH/oNFoeOqp5xg5chQxMb2YMGEizzzzPOXlZbzwwnIA5s+fxauvvsx9993D6adP4qGH7j9kmN4vv/zM+efPY/Lk8fz974tYvfoLxo0b6QtvPThccMWKF7jkkov46qtVzJ8/i9NPn8TSpf/EbDb72qxfv5ZFixYyffokZsyYys0330BBQf4xH6sfP92drh/z4+eYsNlch02DOhH69Q5EEgWqG5yU19qJCmlFrU0QsA6cg2itRVu6C9O292kYsxAlIPKIuykBEpYRRnQ5drRFTvqZ9MTohrGuujcOZSNaqZgytYaaX94lPmYIMUPH4lbc2KxuUGHSxCnN+ps+babv/0MGDW32XlRkNBdfdNkxnYeTEVVVKfMKXgSGdgvBCwCz6nnYPp5QQfDkZLm9nqzGbRr5gJwsmows8QQ9WQCOmIEYstYgV+ci2OpQ9UEn3OfJgCQK/OW0eN74Lpf8cisrvtrH9XP7EhZ0fJ97W6HXy9xyyxJcLgWz2Y7drnLddUt875955qxm7fv06ctTT73Y0dNsU6xWJwaDtttcI7yoqspZZ53BH39saJO+ioqKSEpq3RN5yinj+fLLb4/6fNXW1vL77+u55pprW9TnCQ+PYObMs/j++2+57bY7AHj77TdYuPAqrrjiykP2V1RUxL/+dSsXXngxc+eeQ2bmHp5++olW51FYWMDPP//Ef//7FPX1ddx55z95443XWLz4OgCsVhsXX7yAlJRUbDYrL730PLfffjNvvvleq8Vb/fjpSfi/7T2M9lpJ1GslUmJNAGTkH2XOiCBiHnExrpAERJedgM1vH12+iSRg76vHMliPohEIkiVmREQSr59KvXM8qqLDIQtkV+xk17dvYa0qx2TSHjFfy8/xU2dtwO5yIAoiYabuE1JpOYFCxOAJF/R6srwmVJMnqzFcUNs2OVkAqj4YV3BvBPwCGMeKRhb5v6mJRAbraLC6eOnLfTRYOydHSKPx5F0ZDFoaGuzU1dlwu0+OMDpFUbutAEZ3MAzz8/NQVZWkpORDvp+UlExdXR3V1dUAjB49hgULLiU+PoH4RuXdA/n0049ITEzi+utvIjExiTPOmMmsWXNanYeiKNx1172kpPRl+PCRnHnm2Wzc+Ifv/WnTTmfq1NNJSEigX7807rzzHrKz95KTs+84j9yPn+6J35PVg3C53LhcJx62dDgGJwWTWdBARn4dk4Yc2SPlQ9LQMOZyAtc+h2SpwLTlHRrGXA5y6w++7jANltESukwbmko3w4MMxBn6sa4qBtQd6MW91MgO6rasppcpnt5jp2EyabDa3CjteB5ONkrqygEIN4UgdaNVSHNjTtaJhAsqgooEKI0PYN6cLJfj4HDBtnmIdkQPRK4tQFu0HXvyaa3v4MeHQSdxyfREXvk6h8p6By9/lcM1s1PQa6UOGV8UwWjUodXKWCyOk04IwovV6kSr7V6PFoIg8OWX32KxHFnYCTyhcBdc0Hoo5wcffNIsHPRQGI3GNjXuvFEs3j779x9wxPZ5efsZMGBgs20DBw5udZxevWIxmUy+1xERET7DDqCgIJ+XXnqenTt3UFNTg9ooIFRaWkJKY41KP35OBrrPE5OfVrG288rtoERPXlZRpY06y9GPpWpNNJyyEEVrQm4oxbTtQ1CObrVT1YjYBhqwpepQRYjUyJwdFUqkZjS1rmkoShCKJFBoK2DH929SuS8Lg17CYNIgiF1/ZbKrY3c5qLHUARAR2L2Sny1qY07WcRQiBpAFj5EFTVLtLXKytJ5LaFvkZAE4oweiAnJNHoK1pk36PJkIMmq4ZHoiBp1EYaWV17/NwdUG9QJbw2DQEBpqQlWhutp80hpYAA6Hq01qNHY0giBgMpla/Zs69XRiY+MOaxwJgkBcXG+mTj291b6O1cCKj49HEITDeoT2788hKCiIkJAQAAyGI+fPqqp6iDm0vmB0sHCGIAgoStNnfsstN1JbW8MddyzllVf+xyuvvAF4xDf8+DmZ8BtZPQRVVbHb2/cCFmTUEB/puWjvOdqQwUYUYzgNYxaiiho0Vfsw7F51+BpaByMIOHt5pN7dgSIaQWBCqIlTQuMwu8/A4hoGiohFo5KR8ytZP3yCraEBo1GDziD5QwhPAG8uVoDOiEF7fMZKZ2H2hgsep5ElIaKIjUYWXk+WxyvSQviiDcIFwVPU2x0cD4C2eHub9HmyERGk46/TEtHIAtnFZt79Mc+nDtnW6HQSoaFGtFqZ2loLZrO9XXJiuxs92ciUJImHHnoEaBli6H39738/jCS1vQc1ODiEsWNP4eOPP8Rma14HsrKygm+++YrTT59x1MZbYmISu3c3L5Kdnr77hOZYW1tDbm4OV1xxFWPGnEJych/q6upOqE8/frorfiOrh2C3t4/gxcF4vVkZ+cd+0XSH9KZh5AJUBHTF29Bn/3RM+6sGEcswI/YEDSqQqNMyOyaYQDmNatdM3O5oEATKqGXX+g8o2upJYjaZtMha/1f9WFFUlfL6RsGLgO7lxYK2yclyC43GlC9c0Fsnq1EQwyt80UZGFoAjxqMyqC3yG1nHS1yEgQsnxyOKsD2nls/WFR6XktvhkGWB4GADRqMOi8VOba0Vl8tvXXmx2Zxter67GnPmzOP119+iV6/m4haxsXG8/vpbzJkzr93Gvvnmf+J0OrjxxmvZsmUTpaUlrF+/lhtu+DuRkVFcc821R93XOeecx/79uTz77FPk5e3nu+++ZfXqLwA43ijGwMAggoND+OyzT8jPz2Pjxj94+unHj68zP366Of4nzx5CR60ceqXcc0st2I8jwdkVPQDL4PkA6HN+RVuw5dg6EAUcSXosw40oegE9AqeHBzI8JJx696k0OMcjuDU4ZIGcqt3s+f5daouL0WgkTAEaBNn/lT9aqs01ON0uZFEmxNS9lO5UVcXSBhLubl+4oOeJQz6MuqDgAtqoRpAzeoAnZLA2H9FS3Wp7P4emb2wg50zw1Mpbv7uS77aUnnCfoggBATqCg404HC6qqy3Y7d1T6KE9URQVl6tnn5c5c+axbdtuVq78khUrXmXlyi/ZunVXuxpYAAkJCbz22lvExfVm6dI7OO+8ufznPw8ycuRoXn75dYKDg4+6r9jYOP7970f56acf+OtfL+STTz7i8ss9SoQajfa45ieKIvff/xAZGeksWHABTz75X6677sbj6suPn+5O98pO9XNI3G6lwxSdokJ0hAdpqaxzkFXY4DO6jgVH4jhEaw2G7B8xpK9C0QXgikxtfccDUIIkzCNN6LNtaEpd9DfoiDNo+LlMpNIdRRDbkcUcjzDGzi/pldObyOFTMRk1KIqIzeZGPUkKZx4vpXUVAIQHhBxXMd/OxIYDtTG34Hgl3CUk3JLXyPIcv+YgdUFkT76WoHrEL1T9icemqrpA3CEJyDV5aIq3Y0+ZfMJ9nqwMSQ7BbHPz9cYSvt1USoBBZvyAiOPqS6/XYDRqG40rM0r3SzvqUGw2FxpNz37EkCSJU0+d1HrDNqZXr1juuuveI7b57LPVLbbFxsayYcPmZtsmTZrMpElN15jXXnuZqKhodDrPdXP27LnMnj3X9/7VV1/D1Vdf06yPiy5awEUXLfC9Hjv2FN577+NmbQ4c91Dz8OOnJ9K9npz8HBK73dVhYwmCwKBEj1fjeEIGvdjSZmKPG4GAimnHx0h1xcfeiSxgSzNgHaBHlSEQkbOjg+gfaKLOPZI61zREt6FRGKOQzF/fpmJvJi63gtGoQav3S74fDqvDRr3NU1wyspsJXkBTPpYe7XEbiBIiTvEgT1ajuqCiqB5ZbkFAlds2LwsOCBn052WdMOMGhHPqII9h9enaQrbvqzmm/bVaT96VTidTX2+locHuN7COAk8Iu38hq6vz0UcfsHv3LgoLC/jqq1W8/fYbnH327M6elh8/PQK/kdUDaG/Bi4MZnBQCwN7CBtzH6w0SBCxDz8cZnoLgdmDa8g7icaqpuSI1mEeZcIVIiCqMCDAwo1cgshBGhfssnMoQBAUsGpU9+39j/6+fU1dZiygKmExaJI3/Z3AwXi9WkCEQrXx8YSOdiTcf63i9WAAyIi7Jq4ns+Y7IcpNV7vKFDDY2aSMZdwBn1ABUBOTaAkRLVZv1e7Jy+ogoRvQNQVXh3R/zyC5uQFFUsosa2LK3muwiz+sDkSSBoCA9AQE6rFYHtbVWX5ion9ZRVRWHo2eHDPYECgryuO22m7j44vN59dWX+b//u4SrrvpbZ0/Lj58eQc/25Z8EtHdtrEORGGXEpJcw29zsLzXTp1fA8XUkyjSMuoTA9S8g15dg2vw2DWMXomqOLDt7KFSdiHWIAU2hA12Og3BVYk6vYH6vtZDX0A+BeCKlDbikKsqopWbTR8RFDSQkbTQGgww6CavNhepPXsetuKmo9zzYR3VDLxaAWT2xGlngCRd0yoCzSV1QEARkWcDlUnE6FXR6qTEvS20zGXcAVReAKzQBTfV+NEXbsPed2mZ9n4wIgsDsU2Kx2NzsKajn5a/2oddKNFibogCCTRrmjY9laJ8QjEYter0Gq9VJfb3Nrxh4nNjtTnQ6/2NGV+bGG2/hxhtv6exp+PHTI/Ev4XdzbLaOCxX0IooCAxI8IYPpxyjl3gKNgYaxC1H0QUiWSkxb3wP3cR6TIODsrcMy0ojbKCIrMDHQyOTYQEQMlLmn4mAcsktsFMZIJ+fX96ktLMZud2PUazAY5eOXVeohVDRU41YVtLKGQP1xGtCdjPkElQXBEy7oOMCT5a0D4/VmefOyvOIXYht6sgCc0f6QwbZEEgXOn9SbiCAtLrfazMACqDU7eeO7/ewrsyGKIjU1ZiwWh9/AOgHsdlcLD6EfP378nCz4jaxuTEfUxjocXsGLPfl1Jxx3r+qDqR97JYqsR67Jx7jz06OvoXUIFJOEZaQRR5wnjitWlZgfH0K0UabBEUeZMgeN2htUlRrZQfruryjZ9B0NdRZcbgWTSYNGd3Lma6mqSlljqGBEQNgxF8vsKpjbIFxQQsSp8RpZAqrTATTlZTUVJG77nCxoVBkUBOS6IkRzZZv2fbIiCQL2VkL+3vluH7W1Vtz+SLc2weHo+IVAP378+OkK+I2sbozT6e60VcJ+cYFoZIE6i4uSalvrO7SCEhiDedQlqIKItiwdfeaaE+tQFLCn6LEM1qNoBbQumBocwLjYAARkSp2nYBemo3NpGoUxisha/z51uXsxm53IkojJpDnp8rXMdgsWhw0BgYiA0M6eznFjUU+sEDGAKIjYvelogojb7glBbPJkHSTj3saeLFVrwhWaBICmeFub9n2ysr/MQr31yA/9NQ1OckrMHTSjnk9PLkzsx48fP0fi5HqC7GF0pKrgwWhkkdTYQADS89qmmrsroi/moRcAoM/bgHb/7yfcpzvMI4rhDJcQgGRVZl5SCKEGCbMjhGJlDjqpP6Jb9Qhj5K2l8PfPaaiqx2JzodNJGAM0CFL39OgcKyWNXqxQUxCy1H1zKbzCF6YTMLIAVEny/d/l8PSp8XqyGo0qtbHQdVvmZHnxhQz6CxO3CQeHCB6OOovfMGgrnE43brdfMMSPHz8nH34jq5vSmaGCXgYnefKy9pxoXtYBOHuPwJJ2JgCGzG/QlO4+8U41AraBBqz9dKgiGOwwIyyQEXEmQKDYOgizPBuTOwAEgXLqyNj8ETXpG7E0OD35WgYNeqPUo0MInW4XVQ01AEQGhnfuZE6QtggXBJqFS7objSxZcxhPVhuHCwI4o/qjCiJyfTFiQ3mb93+yEWA4uoWDIKOmnWdyctGZC4J+/Pjx01n4jaxuitPp7vSE7IGJwQgClNbYqWlwtFm/9pQp2BJOQQCMOz9Dqsk/8U4FAVeMFvMoE+5AEVGB/oqG2SkhBBhErHY9+e6Z6HRj0bjAKQvkVKeTs+4DbBVlmM0OFEXFZNIia3vmz6a8vhIVFYNGj1F77AqPXQVVVbFiB05M+AJAEiRQPcaU18jSyF5Plme74hW+aAcjS9UacYUlAX4BjBNFkkQGp4QRHHBkAyrEpCE5xtRBszo58Odl+fHj52SkZz4tngR0hZuWSS+TGOV5GMloQ28WgoB18HwcUQMQFBemLe8imivapGvVIGIZbsSeqEUFAi0wKzKIQb09x1FcH0+d9hyChChQVWobhTHKt/6A3ezAYnGi0YiYAjSIcs/5+XgELzziChGB3VfwAsCGAwWPwXPCRhaiT4TF7RO+OLS6oOAC2iFH0hsyqPEbWceFIIDJpCUwUI/L5WbmqJgjtp87PhZR7L7f/65IZ+YPtyeKopKeW8X6nSWk51b1uGNcvPhqnnji0SO2mT9/Fu+993YHzahtGTduJD///GOPGbeoqIhx40aSmbkHgE2bNjJu3Ejq69vw+czPMdF9ky5OcrpK+MWgpCByS81k5NcxbkAbhpgJIuaR/4e4/kXk2gJMm9/x1NDStYGkuCDgSNThCpUxZFgRbSpD0BCfFsJP++uw2iCX04gNr0Gs+gmLxk2hvYjqDe/TO3k8amwfRFnEoJdQVAmb1YXazW+utdZ67C4HoiASZgrp7OmcEN58LD1aROHEDGEZEUFVUJFwuT3hud6cLG8xYmRQBRBUj/iFqm/bB3RnVH/U9NXI9SWIDWUoAVFt2n9PRq+XMRi0OBwuamstqCoMTAjigsnxfP1nMXWWputooEHmnIlxDEkO6bwJ92AcDhd6fc8Jw/wzo4y3v9lDVb3dty0sUMeCmWmM6d8+v9H77ruHL7/8AgBJkgkKCqJv31RmzJjJrFlzEcXuufD36acf8fHHH1JQkI8sy8TGxjF9+kwuvfRywHPcDQ31PPLI45070WNkxYoX+OWXn3jzzfeabV+9+lsCA4OOu99x40a22DZ06HCef34Fq1d/S3BwyCH3W7VqJU8++RjffffLcY/t59jwG1ndEJer66wKDk4KZvXvxewvs2C1uzHopNZ3OlokLQ1jriBw3XIkSxWmLe/SMOYykLSt73sUKEES5lEmdNk2tCUuQutgTmww21x2MvMsFFWGYNCfQ2/tVqrNWVg0kJm/lsiCncQMnY7iMiJrRYxGDS63G7vNDV3jYzlmShsFL8JNIUjd9Ebtpa3ysQDEAz1ZLo+RdXBOFoKAKgsIThXBqaKemNZGC1SNAVdYMprKbLRF27D1O6NtB+iBaLUSBoMWRVGpq7Pidjf/YQ5MCKJ/70D2l1n4YkMhVfVOZo6O9htY7UhPMrL+zCjjmY9aepar6u0889F2rj9/aLsZWuPGTeCuu5bhditUVVWyYcM6nnjiMX744XseffQJZLl7PdatXPkZTz31OEuW3MaIESNxOp3s3ZtFTs6+zp5auxEeHnHCfSxduozx4yf4XsuyBkmS2qTv1nC73QiC0G2N+o7Ef4a6IV0hVNBLRJCOqBAdqgqZhW3vklZ1ATSMvRJFY0SuL8a07SNQ2lCpShKw9zNgHaBHkUG2qox0aZk+KBS9QcJqU8mqG4Yucj7BbsMBwhgfU5u1CZdDwWz2hJF113wtu8tBjcWjEBkRFNbJszlxzKpHav1EQwUBJA7IyfJ5sjwLCc4D6i2pjc+ObS3j7sXhL0x8VEiSQGCgDoNBi9XqoL7e1sLA8iKKAskxJtJ6e1aU95daO3KqJx0Oh+uEayq2J6qqYne4W/2z2ly89c2eI/b11jd7sNpcrfZ1POdDq9USHh5BVFQU/fsP4PLLr+SRRx5n/fq1rF79ha9dSUkxt956E1OnTmTatNO4887bqaxsqrd33333cNttS5r1/cQTj7J48dXNtrndbh577D9Mnz6JGTOm8sILyw877wceWMbNN9/QbJvL5eLss8/giy8+O+Q+v/32C6effgZz584nPj6BPn1SmDHjTP72t78DHm/Ql19+wS+//MS4cSMZN24kmzZtBGDv3iyuvXYRkyePZ8aMqTz00P1YLJZm/X/xxWdcfPH5nHbaKcyaNYPHHvtPs/dramq4/fabmTx5AuefP49ffvm52bE/+OC9nHPObCZPHs8FF5zD+++/02z/TZs2snDhJUyZMoHp0ydx9dVXUFxcxKpVK3nllZfIysr0zXvVqpVAy3DBsrJSli79JzNmTGHKlAlcfvkCdu7cccjz5SUwMJDw8AjfX3BwcItwwYPn+cADy2hoaPDNZ8WKFwBwOp0888yTzJkzkylTJrBw4aW+cwweD9j06ZP47bdfuOii85g0aRwlJcVHnJ8fD91rycMP0HVCBb0MTgzmh5oyMvLrGNYnpM37V0wRNIy5nMANL6Gp3IshfTXWgbM9yRZthCtSgztIQr/HhlzjJrJKZXZCMFtsNrL3WygskTEY5pAYtI+a8o04GoUxgtdlEzdwKoRE4hAV9AYZnVbCYnOjuo7PGPxl7U+UFBcTFBjEGTNmIAmeJ/j8gjy+XfMVwUHBCKLIeedc0CbH7i0+HKAzYtC0sRumE/B6sk7EyNr4x5+UVZZTP0ZCwIAKuN0uMveks2HDDqIjTqO6qhbwrFbvyclkYHQq336xirTpI+ndO6ENjqQJV2PIoNRQhlhfghJ45LyinsJbb73O3r1ZREREcM011yHLnt/Crl07ef75p4mKikaSRJYuvReDQYNOp8FqdWCz2VvpuYnEaCPr0yvJLfXXxmpPVNWTm6XVdr3HDlVVeeB/G8kqqG2T/qrr7fztsZ9abZfaO5ill40+4RzY0aPHkpraj59++oF5885BVVVuu+1mDAY9zz+/ApfLzaOPPsTSpf/k+edXHFPfX365ijlz5vHKK2+Qnr6b//znAWJiejF//rkt2s6dew6LF19FRUU5ERGRAKxbtxar1cLpp884ZP/h4eFs3ryJ4uIievWKbfH+ggWXkpubg9ls5q67lgEQFBSMzWblppuuY9CgIbz66ptUV1fx73/fz2OPPczdd98LwMcff8jTTz/O3/9+PePHT6ShoYHt27c26/+VV17iuuv+wXXX/YMPP3yfZcvu5NNPVxMcHIyqKkRFRfHggw8TEhLC9u3b+M9/HiA8PILp02fgcrm4/fYlzJt3Dvfd92+cTie7d+9CEASmT5/Bvn3ZbNiwjmeeeR4Ak6lluoPFYmHx4quJjIzkkUeeIDw8nD17MlDVti17MHToMG666RZeeukFPvjgEwAMBiMA99+/jOLiIu6//yEiIiL5+ecfuemm63jrrQ9ISPDcy2w2G//732v86193ExwcTGho91+Q7Qi63tXOzxFRFAXXcT68txeDk4P5YVsZ2UVmXG4FWWp7b447NBHz8IsxbX4TXdEWFEMI9j6ntekYqk7EOsSAptCBLseBpk5hjKwlYZiO9Zl1WK1uMqyJxMX1IbLqe8pdFdTKDurTvybGGEvk4MlYFRVJI2LUSyiKiNXq5lhkIEvLS7CYzVxw/sX88ed6sjL30j9tgO/91H5pTJo4pc2OWVEVyuurAI/gRU/AcoLhgpXlZVhtVs4662w+rv6hKVzQ7SYiKoY5c5P5Y101qiqRt38/CYmJOAQ3AGdNPQtH7xP3oB2MqtHjCu+DpiLLEzKY1vONrJycfdTW1rBs2YN8+umH/P77eiZOnOR7f9y4Cfz1r5ej03nyrlwuFzU1lmNWXY2P9DxolNfasdhcGPX+22J74XC4uqSR1RNITExi794sAP7443eys7P45JMviI72XCuWLXuAiy8+n927dzFw4KCj7jcqKpobb7wFQRBITEwiO3sv77339iGNrKFDh5GQkMhXX63mkksuB2D16pVMmzYdo9F4yP6vvHIRWVm3cM45s0lISGTw4KFMmDCRadOmI4oiRqMRnU6P0+lsFgq3evUX2O127rnnfgwGjxruLbfczi233Mi1195AeHg4r7/+Mhdf/FcuvPD/fPsdfOyzZs1hxgxP2ZjFi6/jww/fY/funYwfPxFZ1nD11Yt9bWNj49ixYxvff7+G6dNnYDabaWhoYOLESfTuHQ9AcnIfX3uDwdBqCN+3335FdXU1r776JsHBwQDEx7e+SHf33f9qFq63bNkDpKamHba9RqPBZApAEJqHKxYU5LNmzdesXPk1kZEew3jBgktZv34dq1d/zuLF1wMej+Rtt91Bamq/Vufmpwn/1a6b4XC4O3sKLYiLMBBolKm3uMgpMZMaF9gu4zh7DcY6cC7G3SsxZP+Iog/CGTusbQcRBJy9dbhDZfQZNiSzQkyZytl9Q9hcZyN3v5nCQjd6wzRSe9dQnfs9Fo1Ckb2Y6g3vE588DmNsCmaXgkYrYjJpcLpcOOzKUeVrFRcXkdB4gU1ISCY9fWczIys7K4uS4mJS+6YyYvjoEz7cqoZanG4XsigTagw+4f66Ama10ZN1nIWIS0tKiY3tBYBJZ/SFCyqKm7DQUKyNYgmCICM0qtBV1lVCFGTu3E1sr4FotW1vaDmiB3qMrOId2PrNaFNPblckK2sPQ4YMBWDY0JH8/Mv3zYysP//cQG7uPiZOnMgZZ5x13ItPJr1MWKCWqnoHuaUWBiYef0K6nyNjt7sIaAPtorZGEASWXjYah7P179CevGoee29rq+1uuWg4aQmhR2yj1YhtpuSqqqqvr9zcHKKion0GFnge/gMDA8nNzTkmI2vw4CHN5jhkyFDeeect3G43ktQyB3vu3Pl89tknXHLJ5VRVVbF27a88++wLh+0/IiKSl1/+H9nZe9myZRPbt2/n/vvvYeXKz3jyyWcPm/eTm5tD3779fAYWeIw8RVHIy8tFEATKy8sZM2bsEY+vb99U3/8NBgNGo4nq6mrftk8++YiVKz+lpKQYu92O0+mkXz+PMRMcHMysWXO48cZrGTPmFMaOPYXTTz/D58U7GjIzM0lLS/MZWEfLP/5xc7Nji4iIbDbvo8XjNVO54IL5zbY7HM5mc9JoNM3OlZ+jw29kdTO6WqgggCgIDEoIZkNGJel59e1mZAHYkyci2mrQ7/sF4+4vMGsDcEWktPk4iknCMsKILseOptCJrsLNKTotCaN1/LmrFqvVzY6cIGJ7X0yceT0lddlYNZCZv65RGOMMUI04HQ70BgmTSYvN7sLdyk3c4XAQEOA5f3qDDpvd5nsvKjqaSy+7HICVKz+nV6/exESfmEejrN4TKhgRENqtZdsPxOvJMgrHZ+jYHQ5fWIcsyk2erEZjS25UFxQEidhYT3jLmNMmQjEE6wP5+ecfOOOMs07oGA6FR2VwFZK53BMyGNSrzcfoSlgsZl9IitFkpKGhAfDkUg0bNpCXX34Zq9XFv/99P4kJfemTcvzXgYQoI1X1DnJKGvxGVjuiKCoulxtZbkOBpDZCEAR02tbnNbhPOGGBumaqggcTFqRjcJ/wDi0FkJub47segXrI67nHEPP8XxSFFrlVLteJP1+cffZsnnvuGXbs2MaOHTvo1SuW4cNbquEdTEpKX1JS+nL++ReydesWrrnmSrZs2cSoUWMOs4d62HUmQRDQ6Y7u+n+wUIggeCKGAL777lueeuq/XH/9TQwZMhSj0cjbb7/Brl07fe3vuuteLrjgYjZsWMd3333Liy8+x9NPP8fgwUOPavyjnefBhIeHt/B4HY+RpSgKkiTx+utvtzBoD/Q+6nS6HvOM0JF0vyz9kxhVVbuU6MWBDE7yPJjsKahDaefkZmv/s3D0GoqgKpi2f4hYX9o+A4kC9hQ91iEGFK2AaFeJLVKYOTCUxCRPXa2iAhtZ1lH0SjuPELe+URijnozNH1OTtRFUsFncWKxOdDoJY4AGQTr8hUqn0+FoNKxsVht6XZM3RqfRIQkaJEFDnz4pVFSWn9DhWR026m2ePJSIwCOvuHYnLL5CxMfnydLptDgdHjETwa0CTZ4sgAZzre/hxCvjrg3w3CgjAsPJz8877rkfEVmHM9xjSGiLt7XPGF0IkykAq9Xz/bSYzQQEBGAwaAgONqDR6LBYXCgKjBo1hv15uSc0VkKU52Eix5+X1e50xYXCY0EUBRbMPHxYFsCCGWkdamBt3PgH2dl7mTr1dACSkvpQWlpCaWmJr01Ozj4aGhpISvKEs4WEhFJZ2bz+ZGZmZou+DxZg2LlzB/Hx8Yf0YgEEB4cwadIUVq1ayerVK5k9e+4xH4835M5q9YjRaDQybnfzKJ6kpD5kZWX62gBs374NURSJj0/EZDLRq1csf/75xzGP72Xr1i0MGTKU88+/gLS0/sTHJ1BQUNCiXVpafy67bCErVrxOnz4pfPPN143z1vgMtsPRt28qmZmZ1Na2TT7gkTjUfNLS+uN2u6muriI+PqHZX0coFfZ0/EZWN8Lp7Hqhgl5SYgPQaUTMNjdFFe2s0iWImIddiDM0GcHtIGDLOwi29rtAuUNlzKNMOCNkBBUMRS5O0eg4bVw4BqOEzaawfbeAPfZ8kqNHoXWBUxbIrc4gZ937OGrKUd0qlgYndrsbo0GD3ijDIe7BMTG9yGt8SM/LyyU2Ns73nt3R5NUqKiokJCTkhI7LK9sebAhEK7eNLH5no6pqkyfrOHOyoqOjKSryKCdZzZamcEFU7DYbH3/8PpLcJONus9lxSR6jS7E6iYqKPtHDOCzewsTaou3HlOvXHenbtx87dnjUFHfu2s7IkcOQJJHaWiuVlTW+w8/I2E1MzIl5dL1GVmG5FZe7a+W89jS68n3saBnTP4rrzx9KWGDza0xYkK5d5dvBE+1QWVlBWVkZGRnpvP76K9x22xImTjyNs86aDcDYsaeQkpLKPffcSUZGOrt27eTee+9ixIhRDBgwEIDRo8eQnr6bL79cRV5eHitWPM++fdktxisrK+XJJ//L/v25fPvt13z44XtceOHFR5zj3Lnn8OWXq8jNzeHss+ccse3DD/+bV19dwbZtWykuLmLnzu3cd99dhIaG+sKFe/WKJTs7i/37c6mpqcblcnLmmWeh1Wq57767yc7ey6ZNf/Lf/z7CmWfOIjzcU7Pzqqv+xrvvvsX7779LXl4eGRnpfPDBe0eaTjPi4+NJT09nw4Z15OXt58UXnyM9fbfv/aKiQp/Xrri4iN9/X09eXh5JScm+eRcVFZKZuYeammocjYt3BzJjxpmEh4dz++1L2LZtK4WFBfzww/fs2NH2C2m9esVisVj488/fqampxmazkpCQyMyZZ3HvvXfz44/fU1RUyO7du3jjjddZt+63Np/DyYY/XLAb0ZVvTrIk0q93IDtyaknPr6N35KGTXNsMScY85jIC1z2H1FBGwOa3aRizELW91PE0ArYBelylTvTZdqQGhTgLhA4LY1uxhf25ZgrzrVTo+zBg6ADse76i1FVBreykPuNrYvSxRA6ZjBsZs8uBVidiMmlxOF04HU35WtGRMRhNJj746F2CAoMYNXo03/3wDdOnzSQrK4sdO7chigKxsXH0jo0/7sNxK24qGgUvInuI4AWADQdK48k8XuGL8MgoDHoDX331JY4BWmjsR1Fh/e/rqKqsolekBVkykpOTR2iYju9Xfsm1IxYguUWmTT20ilZb4IzshyrKSJZKpLpi3MEt1bh6CsnJfQgJCeWBB+4iMjKKefPm88QTT3L11YvZsGE9P/zwLZIk0a9ffwYMOPock0MRHqjFqJOw2N0UVFhJija10VH4ORin090sf6i7MqZ/FKP6RbInr5qaBgchAVrSEkLb3YO1YcM6Zs2a0ViMOJC+ffuxZMmtnH32HF+4lyAIPPLIf/nvfx9h8eKrEASR8eMnsGTJbb5+xo2bwMKFV/Hss0/hcNiZPXseZ501i+zsvc3GO+usWdjtdhYuvBRJEvnLXy5i/vzzjjjHsWNPITw8gj59UnxiCodjzJhTWLXqcz755ENqa2sJCQlh8OChPPPMC76iuvPmncvmzZu44oq/YrFYWL78JUaNGs2TTy7niSceZeHCS9Dp9EydOo1//ONmX9+zZs3B4bDz3nvv8MwzTxASEsLUqdOP+lyfc875ZGbuYenSfyIIAmeccSbnnfcX1q9fC4BOp2f//ly+/PILamtrCQ+P4C9/uYBzzvGcn6lTT+enn37g2msXUV9fz9Kly1p49jQaDU89tZynn36CJUtuwO12kZzch1tu+edRz/NoGTp0GOeccz5Ll95BbW0NV165iKuvvoa77lrGa6+9zNNPP0F5eRnBwSEMHjyECRMmtvkcTjYEtSsXrvDTjOpqCy5X2xpa2dlZjB8/isDAIP7448RWTjbvreLdH/OJCNJy3byOSZAUrNUErV2OaK/HGZqIeeQCENt37UCwKegzrMh1nhVvZ5hEcTBs2VqDxeL5fGJ7G0gILqNw93eYNZ52BqfgE8bwdCRgMEiIooDN7m41X6stKa2tILeyAK2sZVBsard/4PFSqdbygfIjOjQskI7+ZupFAPRGPTaLDRXY5M7EkFWJaoggwFLL8InzAFj7SzkN9S5OmRhOVLQenCoBGz31WepPDYB2fNAybv0AbXkG1pQp2Pq3fe5XV0AQGuvOyTJWq6NDQsze+XE/mQUNnD02hqnD2s8b2R14/fVXePjhB5g371xWrHi9zfsPDjZ0qsqgzWYjO3sfEREx7SJSc7Jjs1mZPXsmd955jy+E0Y+fnoLDYaeiooSUlD7o9Ude2PeHC3YTVFVtcwOrrRkQH4woQEWdg8q6o69TcyKohlCPB0vSoqnej3HXynYPo1L1ItZhRuyJWlQBNFVuehconD42nKQ+3lwtK1uygwkfeTnxgX2Q3CpWjUpm/joK//gct80CqorV4sJic6PXSRhMR87XarP5q2qPFLyAtqmRdSCyIKEKHuP3wG+VfEC4oGcDqI2nsb0KEntxxnjCfbTFPS9kUBDAYJAJCTGiKCq1tZYOy+HxhgzmllhaaennROnKURl+jh9FUSgvL+fFF58nICCA006b3NlT8uOnU/EbWd2E7nBTMugk+vTyqLKl59d12Lju4FgaRv4VVRDRluxEv/f79h9UEHAk6rAMN6LoBUSnSsAeB6NCDEw4NRyjUcJuU9i6qZZy/QTSRl1IiGJoLoyR+ScAqkvB3ODE4fDka+kM0iHztdqKBrsFi8OGIAhEBPQcwQsAs+rJBzzeUMGDkRB9RSEP9DNqGhUGnV6DShBQGw0vwdnORpYvZLAKqa6wXcfqSLRaiaAgA7IkUVtrxWJxdqgNmRjlWSDZX2Zuobrmp23pDvczP8dOSUkJc+bM5Pvv13Dnnfe0UO7z4+dkw29kdRO6y01pUKP88Z78+g4d1xWVhmWIpziiPncd2vw/O2RcJVDCPMqEI8ZzM9EWu+hdrDB1YgTJKY1erUIrf25TCR6+gJReBwhj1OwhZ+37OGrKAHA7FcxmT2KsyaRF1rbPz9MreBFqDEaWetZNsEn0om1y8yREFLFR1OIAw1fWHOTJAlSN59/29mQhaXFGeMJxtUXdX2VQkgQCA/UYDFosFgf1DXYUpeONnF5heiRRwGxzU1HbMkHdT9vhzcvy07OIjY1lw4bNrFz5FWPGnNLZ0/Hjp9PxG1ndhK5YhPhQDE7yFK8rqLDSYO1YqV5H/BisqZ48HEPG18hlGR0zsCRg72fAMlCPIoNkUQncZWdEpJEJp4VjNEnY7QpbNlZT4OpP2qlXEC2Hg6pSq3GSkfENZVu/Q3W7QAW71Y3F4kSjkTAFaBDltvuZOt0uqhpqgJ4leOGlzcMFkXxCGuoB7kWN7PVkHWhkNXqyHO2fW+eM9oQMarpxyKA37yooyIDT6aK21tqpi0myJBIb7jHOc0oaOm0eJwvdZeHQjx8/fo4Xv5HVDegO+VheQgK0xIbrUVXILOi4kEEvttTp2HuPRkDFtOMTpNqOC6dyR2iwjDbhCpUQVNDtdxJXrjLltEj6pHjCKIsLbaz/vQH9gPkMGnAmJqeIIgoUOUrI3PA+lkKPspOqqFjNTqw2NwZ9Y75WG4gplNdXoqJi0Ogxag0n3F9Xw6yeWCHig5GQfJ4s9YDctSZPVpOB4zWyxPb2ZNEYMihpkKw1SLUt67Z0dfR6T94VQE2NBZuta9ROSoj018vqKPxGlh8/fno6fiOrG9DdbkaDEj3erIwODhkEQBCwDDkXZ2Q/BMWFacu7iJaqDhte1YpYBxuwpehQBZBrFYJ22Rja28jEyRGYTBIOu8KWTTXsrYggZdoiEg4UxihYT8Hvn+NuLBKsNOZrOZ1ujMYTy9dSVZWyukrA48XqSYIXXnzhgkIbhQsKIm6v8MUB58ubk+U6MFxQ2zE5WZ6JaQ4IGdza/uO1ERqN1FhMWKauzorZ7OhSjriERun23FK/+EV7093ua378+PFzrPiNrG5Ad7sZeUMG95WYcbg6obCnKNEw8q+4gmIRnRZMm99GcHTgyrQg4IzTYhllxG0SEVxgyHTQq1pl8tQo+vRt9GoV2Vj3WyUkTWXwKRcS2iiMUSHUk7H5E2r2NOWVuRzN87UkzbH/dGut9dhdDkRBJNQU0iaH2tWw4FG1bLtwQRG3cChPVmO4oPNQ4YIdYzU4YwYDoC3e0eVDBiVJIDBAh9GoxWp1UF9vw+3uenOOj/R4dytq7R0e7nyy4c/L8uPHT0/Hb2R1A7pLPpaXXmF6QgM0uNwq+4o7KbdB1tEwZiFuQwiStRrTlvfA7ezQKShGCcsII/beGlRAU+4mcKeNIckBnDolElOAjMOusHVTDem5GhKmXkHf2NFNwhi1e9h3gDCGL1/L6kSr9eRrCceQr+UVvAg3hSCJPe+nr6rqAUZWWwlfSLikxv6FpnOmPZSR1ShU0iGeLMAZnoIqaRFttUg1eR0y5rEiCGA0aggKMuByu6mrs3bp65lRJxMepAUg1x8y2O50twVEP378+DkWet6TVg+jO+VjeREEgYGNIYPpeR2fl+VF1QfSMPZKFNmAXFeIafvHoHawZ00UcPTRYx1qQNEKiHYVw04bUWaYPC2SlFSPV6ukyMban8txhA1j8LQriZYjQFWpO1gYA1Ddnnwtm92NUS9hMMqep9kjYHc5qLF4PovIoPD2PeZOwo4TpVFovS0l3F2it07W0eVkdYTwhWdyGpyR/YCuqTKo08kEBxsRRYGaGgtWq6urO9yApnpZOSV+I6u96W73Nj9+/Pg5FvxGVhfH7e6EcLs2wBsymFnY0ClyzF6UgCgaxlyGKkpoKjIxZHzdKaFV7hAZ82gTzkgZAdAVOAlItzMoNZBTp0QSECDjcChs3VzDzl02YiZewKCBZ2FySgcIY7yHpTCrqU+ngtnsxOVWMJk0aPVii3wtVVWps9aTW+ERRzBpDeg1bWOAdDXMeGpk6dAgCW1zaZMQfZ4sDhEu6DpEuKDYQZ4sAEf0IMAbMtg1rhUajUhQkAGdTqahwUZDQ9fKu2oNr/iF35PV/rg6I5y8DVEVBWdhOo6s9TgL01GV7n08J0pRURHjxo0kM3PPYduMGzeSn3/+sQNn1TYcOO+jOU4/fgB6VpGcHkh3vQklx5gwaCWsdjf55RYSGxPKOwN3WDLmYRdh2vI2uoKNKPpg7MkTO34isoBtgAFXmAP9XjtSg4JxmxUpScukaZHsSa8nO6uBkmIblZUOBg6Oo/+Zf6P8j28orNmLVSOQWbCBiIJd9Bp6BpLBBCo47QpOhwO9QcZkkrHZXbidClXmGvZXFOI4IEzS5nJQbakl1Bjc8cffzrR1PhZ4wgUdsgrO5uGCGrllnSzF68lyAYoKbaAG2Rqu8BRUSYdor0OqzsMdltTuYx4OURQwGbVIsoTV6sBu7545TV5PVmGFFadL8cn1+2l7unO4oCP7Tyy/vY1qbhJWEkxhGE9dgDZlTLuMed9999DQUM8jjzzebPumTRu59tpFrFnzM4GBgYfcd/78WZSUFAMgiiJhYWGMHz+R66+/iaCgoHaZb3fjwHPkJTIyii+++JrVq78lMPDQ5+lozr+fkxP/3aOL013DKSRRoH+C52LTmSGDXpyxQ7EOmAWAYe/3aIp3dNpcXNFazKNMuIJEBAX0+xyY9joY2D+I06ZEEhAo43QobNtcw/attYSOmMHgUy46QBijgYwtn1Cz54+mlVMVbBYXFpsTnU7C7K4nqzS3mYEF4Fbc5JTnU22p7YQjb18aVI8nq61CBcHjyXLKjW4YQURpPN9eT5ai0CTgIIPaaFd1lPgFknxAyODWjhnzIAQBDAYNwcEGXG6F2lpLtzWwAMICtRh1Em5FpaDCrzLYniiK2qmRDseLI/tPzN8808zAAlDNVZi/eQZH9p+H2bNzWbRoMatXf8tnn33Jvfc+yJYtm3n88Uc6e1pdCu858v698ca7AISHR6DVatt1bE96SPe9dvppid/I6uIcuFLe3fCGDO4pqO8SKlL2PpOwJXk8WMZdK5GqcjttLqpexDrMiD1J65F6r3Zj3GYlXBCZNC2Kvv0CEQQoLbbx2y/lVFoD6DvzSlLjxh4gjJFJzvoPcVSXNvXrUjHXO8gsPLIQQkFVSZf4TNoSSxsXIgaPkWX3GVkCqtPjLZPlJi+VL2RQEFDlDpRxb8QR0xgyWLKzw0MGPXlXBmRJpLbWitXq7FahgYdCEAR/XlYH0lUWElVVRXXaW/1T7FYsv711xL4sv72FYre23l8H/1iMRiPh4RFERUUxatQYzj57Nnv2ZPjer62t4a677mDOnDOZPHkCCxZcwLffft2sD0VReOON1zn//LmcdtopzJt3Nq+99vIhx1MUhX//+37+8pf5FBcX+bZXVFRw443XMXnyeM45Zzbff7+m2X5792Zx7bWLmDx5PDNmTOWhh+7HYmla8Ljvvnu47bYlvP32G8yaNYMZM6by6KMP4XI1LSo6nU6eeeZJ5syZyZQpE1i48FI2bdp41OfI+xcaGgocPsyxqKiIa69dBMAZZ0xm3LiR3HffPYDnO/Xmm69z7rlzmDx5PH/964X88MN3vn03bdrIuHEj2bBhHZdfvoDTTjuFbdu2tDpHP90Hf7hgF6Y7il4cSFrvQGRRoLrBSXmtnaiQtlF8OxGsA2cjWmvQlu7CtO19GsZcgRIQ1TmTEQQcCTpcoTL6DCuSVcWQYUeKkRkwMJBecXq2bKymod7F9i01lBbbGDB4FINThlC47nPKnOUeYYw93xKjjyFyyFQESabe1oDDdWQlRafbSYPdTKA+oIMOtv3x5mS1lbIggIyEXdP4QhBx221IOgOCICDLAi6XitOpoNN7ErdUDeDsQE8WjSGDsg7RXo9cvR9XWHK7jynLIkajFhAwm+3dejHoUMRHGsnIryfXb2S1Oy6XG622cx9FVFWl/tMHcJdktd74aPozV1P7yt9abSfFpBJ4ztJOqVlYVlbGb7/9yqBBg33b7HYH/fsP4JJLLsdkMrF27W/ce+9dxMbGMXjwEACee+4ZVq78lH/842aGDRtORUUF+/fntujf6XRy993/orCwgBdffJWwsDDfey+99Dx///v1LFlyK199tZq77/4XffqkkJzcB5vNyk03XcegQUN49dU3qa6u4t//vp/HHnuYu+++19fHpk0bCQ+PYPnyFykoyGfp0n+SmprG/PnnAnD//csoLi7i/vsfIiIikp9//pGbbrqOt976gISEhDY7j9HR0Tz00KPcccetfPDBp5hMJnQ6z0LfCy8s56effuC22+4gPj6BLVs2s2zZUkJCQhk5cpSvj2effYrrr7+JuLg4f7hhD8NvZHVhuqvohRedRiIlLoA9+fWk59d1CSMLQcQ84mLEDSuQa/YTsPkd6sdeiarvvAubEihhGWlCt8+OttiJtsSFVOtGTNUzaVoUWRn17M2sp7TERlWlnQGDg4ifciERhdnkbl+DWeOmyFFK9Yb3iE86BUdwxFGN63T3rLAEi+rxMhmEtvVkuQ+4SrrtVsCzsilrvEbWwQqDascpDAKIEo7INHTF29EUbm1XI0sQPHXaZFnu1nlXrZHY6MnaX2ZBUVXEHli4u6vQXfOOO4u1a39l6tTmOcXKUQpuLF/+NC+++ByKomC32xk0aDD/+MfNvvejoqJYsOBS3+sLLriIDRvW8cMP3zF48BDMZjMffPAuN998O7NmzQGgd+94hg8f0Wwci8XCkiU3YLfbee65lwgIaH5/nTZtOvPmnQPA3/72d/74YwMffvg+t912B19//RV2u5177rkfg8FTt+6WW27nlltu5NprbyA83KOOGxgYyC233I4kSSQlJTNx4mls3PgH8+efS0FBPmvWfM3KlV8TGRkJwIIFl7J+/TpWr/6cxYuvb/Ucebnmmuu48MKLD9tekiSCgjxRO6GhYT4jyWq18t57b/Pssy8wZMgwAOLierNt21Y+++zjZkbWokWLOeWUcYcdw0/3xW9kdWF6ws1ncGIQe/LrycirZ/KQTvIYHYykoWHMZQSuew7JXEHAlrepH3MFyJ2ouicJ2FP1uMIk9Jl2j1drhxUpQUP/gYHExOrZuqma+joX27fUUlJkY+CQZI8wxp/fUlid5RPGCCyNhJCYVofUSD3r5+8NFzQJbWfMi4Loy7MCcDltvv/LsggohyxILHagJwvAGTMIXfF2tCU7sQ6eB22krngger2MwaDFbndSW2vp9mGBRyImTI8sCVjsbspr7ESHdoEFoh5KVxC/EASBwHOWgsvRaltn0R7Mqx9rtZ1p1i1oYtOO3EjWHrMXa+TI0dx22x3Ntu3atZNly5b6Xh9ohJ155tncfvudgMfQmDVrDqoKZWUlPP/8syxZcgMvvPAykiThdrt5443X+O67bykvL8fpdOBwOH3GTm5uDg6HgzFjxh5xjnff/S+ioqJ49tkX0OsNLd4fMmRoi9eZmZm+Mfr27ecbE2Do0GEoikJeXq7PyOrTJwVJknxtwsMjyM72eCL37MlAVVUuuGB+s3EcDifBwUcWffKeIy8hIaFHbH84cnL2YbfbueGGvzfb7nQ66devf7Nt/fsPPK4x/HR9etZTVg+jO4cKehmYGMwnvxVSXGWjzuIkyKhpfacOQNWaaBh7JYFrlyM1lGHa9gHmEf8HotT6zu2IO1yDZZSEfo8NudqNbr8TqdpNaF8dk6ZFkZnu8WqVldqpriqn/6Ageo2dSWjtaPJ+X0m1aKHOVYHgDkMVNUesn1Vnq8ekMyK2wwN5Z2Buh5wswCMHr6ogCLgcdt92zSELEnd8ThaAK6wPiqxHdDQgV+XgCk9ps761WgmDQYuiKNTVWZuEPnowsiQSG24gr8xCTkmD38hqR7ziF2IHqHEeCUEQ4CjKW2jiByOYwlqIXjTrKyDM064dir4bDAbi45uHu5WVlTV77RVrADCZmkLCQ0JCfPsmJCRw0023cNVVl7Np00bGjj2Fd955k/fee4cbb7yZvn1T0ev1PPnkYzidnvBzbxhca0yYMJGvv/6SnTt3MHr0kQ0yL023KvWwt60DDVJZlg96D5+IiqIoSJLE66+/jXjQZ2A0Go84jwPP0Yng9S7+979P+7xpXg4W0DjQoPTTs+gZT1c9lJ6Q5xBk1NA70nMB2ZPf+SqDB6IYw2gYcwWqpEFTlYNh9xedUkPrYFStiHWwAVtfHaoIcp1H6l1T5aL/oCBOmxpJYJAGp1Nlx9Zatm6qRtWH0nfmQlJ7n4LeCZK5pLGzwx9PaW0lmaX7cCj2w7bpLqiqeoCEe9s+EEuIPkEJt7NppdsrfuF0HBwu2LE5WQCIEs4oz6q5po0KE0uSQGCgHoNBi9XqoL7eflIYWF6a6mX5FQbbm+60oCiIIsZTFxyxjXHignYxsI6W+PgE39+BuVAHIzYuKtrtngWqrVu3MGnSZM46axapqf2Ii+tNfn5+s351Oj1//vnHEcc/99y/8Pe/38Ctt97E5s2bWry/c+eOFq8TEz1hzklJfcjKysRqtfre3759G6IoEh+f2MqRe0hL64/b7aa6uqrZuYiPTyA8/OjC6Y8FjcazeKwoTd/j5OQ+aLVaSkuLW8whOrr1SBM/PQO/kdVFUVUVt7v73HiOhFdlMCO/vpNn0hJ3SG8aRixAFQR0xdvRZ//U2VPyIAg4Y7WYR5pwB4gIbjBkOdDttREcqGHStEj69fcoEJaV2vntl3KKCiwE9x/NoNOvJFbRoqnLA6W5AIZW0pAanUS/6GRkUcZit7GrYC/VtioEqfvmndhxouAxhAy0rcyux8hqXCE9QBL/0J4sz7aO9mQBOGM8Cezakp2gHP+1w5t3FRRkwOl0UVtrxeHoGdeiYyEhutHI8otftDvdLTRemzIG08zrEUzNDRghIAzTzOvbrU7WiWKxWKisrKCiopxdu3byzDNPEhISwtChnpyh+Ph4/vjjd7Zv30ZOzj7+858Hqays9O2v0+m45JLLWL78Kb78chUFBfns3LmdlSs/azHWBRdcxN/+9nduueUfbN3aXDHvhx/W8MUXn5GXt58VK55n9+5d/OUvFwJw5plnodVque++u8nO3sumTX/y3/8+wplnzvKFCrZGQkIiM2eexb333s2PP35PUVEhu3fv4o03Xmfdut+O8+wdnpiYXgiCwG+//Up1dTUWiwWTycT//d8lPPnk46xe/QUFBfns2ZPBRx+9z+rVX7T5HPx0Tfzhgl0URVG7glOlTRicFMxXf5aQU2rG5nCj13ZuSN7BuKIHYBk0H9POT9Hn/IqiD8bRe2RnTwsA1ShiGW5Eu9+ONt+JptyNVGfFlqojbWAQMbEGtm6qpq7WyY5ttZQU2xg0JJiEqRcRUZhNzrZvaTDqUQUZndNFcsxATKYQAIbqjGSX51FrrSentIgqUx2pvRJQ3RJqN6td4w0V1KFBEtr2+yUhIagKKjSTCJY1Xk9Wy5ysDhW+aMQVmoSiMSA6zJ6QwYi+x9yHXi+j12txOl3U1PTsvKvWiI/wGFmV9Q7qLU4Cu0ioc0+kO4o8aVPGoEkehat4D6qlBsEYgtwrrVM9WK3x0kvP89JLzwMQGhrKgAGDePrp5wkODgHgiiuupqioiBtvvBadTs/8+ecyefIUGhoafH0sXHg1kiTx0kvPU1FRTkREBOecc/4hx7voogUoisqSJTfw5JPP+oy5q666hjVrvuXRR/9DWFg49977IMnJfQDQ6w08+eRynnjiURYuvASdTs/UqdOaCXQcDXfdtYzXXnuZp59+gvLyMoKDQxg8eAgTJkxsfedjJCoqiquvvobnnnuGBx5Yxllnzebuu+/lb3/7O6GhYbzxxmsUFhYQGBhIWlp/LrtsYZvPwU/XRFB7WrGcHoLD4VlBbm+ys7MYP34UgYFB/PFH24QZHYqH30+nos7B+afFMTgppN3GORH0e77GsPdHVATMwy/CFZna2VNqhlTrQp9hQ7SrqIAzTsbRW4sC7N1TT2ZGParqefjvPzCI2DgDqqpSvvFbCquycEsCqCoRBNJr6BlIBhOqqlJaV0FeVRGqqiKJEqm94gkxBeFwKHCcV4f1v6+lrLSUwIBAJk+dgiR4HlDz8nLYvGUTAgLhERGcOnEyAK+++pIvbn3CxFMJD4s8XNeHJF8tY5WyjlACOEc67fgmDQiA3qjHZrH5Dv0T96/0zw1BlfUkiiLxwyYBsDeznuysBhKSTAwbGQKAaPGEdqoyNEzoeMVKw64v0BVtwR4/hpe2N7B3bxYRERFcc811yLLnM9i6dSOffvoxAgKJSUlcccUiNBqJSy65iJSUviiKymWXLSQhIanD59/VWL5yL+W1di6dnsSQ5CMnzPckXn/9FR5++AHmzTuXFSteb/fxNBqJkJAj58q0JTabjezsfURExKDVdqLgkR8/frodDoediooSUlL6oNcfOT2h6y65nOR0x5W9IzEo0fOAkp7X9UIGvdj6zcQeNwIBFdOOj5DqilrfqQNxB8uYR5lwRskIgLbQhWGnDcmu0m9AEJOmRREUrMHlVNm5rZbNf1bjcKhEjz2TweMuJlQxgiBQITSQseUTqjN+B1UlJjiSIXFpGLV63IqbjMJcskvz0elFJPnYLxHlFWVYLRbmzT2XkNAQ9mXn+N4LCQtnztz5zJt3Hna7nbJyTyHlkNAQ5sw5hzlzzjlmAwvArHoWJAxtLHoBnnBBoXEtyn2A7L03J8t1QLig4vVkuYBO8AY6GwsTS0XbqautZtmyB4mL683vv6/3tYmLS+Suu+5n2b3/xmw2U1yci8mkJTY2jjvvvJe77rrPb2A1Eh/pLUrc0EpLPydCT7vf+fHjxw/4jawuS0+76QxuXAXeW9SAu6uGogkClqHn4wxPQXA7MW15F9Fa09mzao4sYOtvwJqmQ5VAMisYt1uRS50EBcmcNjWStIFBCCJUlNtZ+3M5BfkWNMHhPmEMnROcssD+uixy1n+Ao6oUg1bPoLh+9Ar2GDjltdVs2puB3W3FYJIR5KPP1yotLSEuLg6A3r0TKS0t9r0XFBCEJHiilEVR8KlF1dbVsvKLT/n1t59wuY9cSPlQtJeyIBwkfHGgkdWYk+U4UKBGxif53hl5WZ6QQSOy2868fkFoCrcyMSWGrMx0X5vIyEg0GhmjUYNerwVEamutlJSUcO+9S3nllRdxOLq/GEpbkBDVKF1d6s/Lak+8CoN+/Pjx05PwG1ldlJ5mZCVEGjHpJexOpWs/sIgyDaMuxRUYg+gwY9r8FoKz/cM2jxVXtBbzKBOuYAlBAf0+B/o9dkQ39OsfyKSpUQSHaHC5VHZt93i1bDY3IQPGMOj0q4jRRCKoKnUaFxmZ31K6ZQ2CopAQHseAXiloJQ0Ol4PtuVnkFBeh14roDdIRJeG9OJwOtDqPC12n12K3t3xgLysvw2azEhnhqZ120YV/Ze6cczCZjOzevfOYz4e3Rlb7eLIkn5F1oHqUttHIOtCThSCgyp2kMAggirgDowEY7MgkYOu7pOWvYmFYLppiz3nV6WSCg43s27eX6upqevVKQFXhiSee5Z57HiA0NIQ1a77u+Ll3QRKiTAAUVdpwdjNxhu5GT7vn+fHjx4/fyOqi9LQbjigKDEgIAiAjr2tJubdAo6dh7EIUfRCSpQrTlnfhAA9GV0HVi1iHGrAla1EFkKvdGLdZkKpdBAVrOHVKJP0P9mrlmRG1OuKnXMjAQWcT4JJQRIFiZyl7NryHOT+TIEMgQ3qnEdYokFFUXcbWfZmYbTaMRhmNVvQkLx0GnVaHo1ES2G6zt6it0mCuY/26X5k8+QzfNkNjwcrk5BQqKiuO+VyY1UZPVhsWIvZyoLqgW2n6XfqELw7yWKmN+gidYWRpStORq3JabA+SFEyb3ySodg86ncz+/QW88PyLLFp0va9NYKDn93nKKRPYvz+3o6bcpQkN0BCgl3ErKvnlfin39qSn3fP8+PHjx29kdUE88u09L3RiSKPgxZ6Cerq63oqqD6Z+7JUosh65tgDjzk+7RA2tFggCzngdlhFG3AYB0QmGDDvaHDuiCqn9A5k87QCv1o46Nv1RhdXqxhiXQtrMv5EYnIrkVrFpIKvodwp+/xTBYaNvVCJ9IhOQBBGz3cqO/VnklZYhimA0ag6brxUVFU1hYSEABQV5xMT08r3ncNr54YfvOe20SRgbCzA6nA4UPB6ioqJiQoKPXWDA68kytYORJSNCozy8oh5oZLWUcIdOVBhUFQx7vjnkW14HpLDpE0pLKnnyyce58qpFBDeea5vN5isZsXv3bmJi/HVcwFP8NL6xzl+OX8q9XfEbWX78+Olp+CXcuyA90cACSI0LQCML1FlcFFfZiA3v2lXOlcAYzKMvJeD3V9CWpaNkfostbWZnT+uQKAESlpEmdDl2tEVOtCUupFo39lQdgUEer1Z2VgOZ6XVUVjhY+0s5aQMC6R1vJGrsTEJqR5O/4XOqRAsVmKnZ8ilxYalE9BtLkN7E3rL9NNgt5FUWUmetJzEqjgCjDnQiNpsb9YDvbGREFAajkc9XfkJgQCDDhg/nl19/YNJp09i5ayf1dTWsXeupVTJy9Fh0Gi2//Po9sqxDq9MwdfL0Yz5+S7vmZEmAx5OpHCC3qDmE8AU0GVliB3uy5Oo8RPvhvcQCIFhr2LbmA0pLS3jttVcAOP/8izAajbz00rPodAZMJhOLF9/QQbPu+sRHGUnPr/cbWe2M38jy48dPT8NvZHVBeurNRiOL9IsLZNf+OjLy67q8kQXgCk/BPOwvBGx9D33e76j6YOyJ4zp7WodGErD31eMKldBn2pGsKoYdNhzxGpyxGlLTAomJ1bN1YzU11U5276ijtNjGoKEhGILDSZm5kPCMjeTlbMAuC+yv20v1+lzi+k9hYGwqRTWlFFSXUGOpw5xvISm8NyGBQRj0MoqiYLO5fZLv409pXotk0mnTABg5fBQjh49qMfVzz7nouA9bVVUsePK+2ktdUPV5spoMJ68nS1E8CyNSYzFnVdvoyepg4QvBfnQKeKeNHsG4eVe02P7vf/+3rafUI0iM9uRl7S8zo6gq4lHkJfo5dnrqfc+PHz8nL/5wwS5IT77ZDEpszMvK77pS7gfjjBuBJe1MAPSZ36Ip2d3JMzoy7nANllFGnGESggq6PCf63TYEu0JgoMerNWBwEKKIx6v1czn5+82oqkpI/9EMmtYojKF4hDH2ZK2hbOsaYgPDGRTbD52sxel2kVWWy/6yQhrMdhRFxWjUtJqv1R7YceJuNILaT13QYzAdaDbJByguHhgy2BQu2LFGlqoLOLp2+o6v39WdiQnVo5EEbA6Fsmq/6mJ70ZPve378+Dk58RtZXZCefLMZmBiMIEBZjZ3qBkdnT+eosadMwZZwCgJg3PUpUk1eZ0/piKhaEdsgA7a+OlQR5DpPkVy5wokgCPTtF8jk06MIDdPidqvs3lnHxt+rsFpcSDq9RxhjyKwDhDHK2PP7+whl+QzpnUZkYBgAZfWV7CnaR229BavVhSQJGI0y4nHU1zpevKGCWjRIgtTm/UuIqEKjJ+sAM0sQBJ+h1czI0nqOvSM9WYIA2rgUVEPwYetHq4CiD8YVltxh8+oJSKJAbERjXlapv15We6GqoCg9997nx4+fkw+/kdUF6cn1Qkx6maTG8JuM/C6uMngggoB18HwcUQMQFDemLe8hmo9dBa9DEQScsR6pd3eAiOAGfZYDXZYNXCoBgRomTo5g4JBgRBGqKh2s/aWCvEavljG2j0cYI+QAYYziPyj+cyWJAWGkRiUhixJWp42MkmxKa8qxWlxY7Qp6nYjeKCOI7e/Was8aWeDJyVIbTZeDHwG9CoOuAwyqjha+0OkkgoMMqIhY+s3wzOEwbR1RA0DwX/aPlQRfUWJ/XlZ70t3ufYqqsKdqL38Ub2FP1d5mwjidyapVK5k+fdIx7XPfffdw221L2mlGh6eoqIhx40aSmbkHgE2bNjJu3Ejq67tPtMvhmD9/Fu+99/Zx77948dU88cSjbTijjuHgz/B4vo89BX9OVhekp6/mDUoMIqfETEZ+PeMHRHT2dI4eQcQ88v8Q17+EXJuPafPbNIy98qjDtDoL1SBiGW5Eu9+ONt+JpsKNVGfFlqpDCZJISQ0gOkbH1k01VFc5SN/pydUaPDQYg1EmasxMQurGkL/hM6qE5sIYg/uMYF9lPnXWBgqqS6i1NpAUEYfq0iBrRAwGGbdbwW53H/7J/wQxq546Zu2RjwUgCyKKoCIB6kGxkLLsUR50OlqGC4rt7MnSaCQMeg2KqlJfb/MU+Y4agGXoXzDs+QbhABEMVdIguJ3o8zbgDo7FkXBKu86tp5EYbeLXnRXsL/XLuLcn3cnI2ly6gw8yPqPaXuvbFqoL5oL+8xkZPaRdxrzvvntoaKjnkUceb7Z906aNXHvtItas+ZnAwECmT5/BhAmntsscDsTtdvPWW//jyy9XUVJSjE6nIz4+gXPOOY/Zs+cdV59Dhw5j9epvCQjo2vdVq9XKK6+8xA8/fEdFRTlGo5Hk5BQWLLiEU0/tHINi1aqVPPnkY3z33S/tPlZRURHnnju7xfaZM89i6dJlR/wMV6x4gV9++Yk333yvvafZ6fiNrC5Id7rRHA+Dk4JZ9XsxeWUWLHYXRl03+hpKWhrGXE7guuWNNbTeoWH05SBrO3tmR0YUcCTrcYfJ6DNsiHYVwy4bzjgZR2+tz6u1b6+ZjF21Pq9Wv/6BxCca0QaFkTJjIREZG9m/bwN2jUcYI/DPXJLTJlFtCCK/qph6WwO7i/aSGBZHiCkIl0tBp5MwGjU4HO4WSnxtQXsqC4LHk+XCY2QpB4keaA4h4654PVkuQFGhjb15kihgMGoRBQGrzYnT6W72vjN6AM6oNOTqPAR7A6ouAFdIPIbMb9Hl/4lpxyegqji6qoBLF6R3Y7hgVb2DOouTIKOmk2fUM+ku977NpTt4cdv/Wmyvttfy4rb/8bdhl7WboXU06PV69Pq2L2dxMC+//CKfffYJt9xyOwMGDMRsNpOevpu6uuP3Qmk0GsLDu/7i68MPP8ju3bu45ZbbSUrqQ11dDdu3b6e2trb1nXsQzzzzPH36pPhe63S6DvsMXS4nsty1r8X+uJEuhqqq3eZGc7yEB+mICdWjqpBV0P1CAlRdAA1jr0TRGJHrSzBt/9AjMdcNcAfLmEeZcEbJCIC20IVhpw3BqiAIAimpAUyZHk1ouCdXK31XHX9uqMJi8UiYB/cfzaDpV9NLG4WgqNRrXOzZ+z3ivq0MiumDQaPHrbjZV5HH/spCjxfL5sZqdSFrRIwmGaGN87XaP1xQRBE9n696kL3UlJN1wG9WbmrXlnlZguCpTxYYqMfpdFFXb2thYDU1FnGFJeHsNRhXWBKIEta0M7HHjwXAtPNTtPs3tNncejp6rURUiOf7lVvqDxlsLzozH1lVVewue6t/VqeV9zM+PWJf72d8htVpbbWv9qoXeajwrFdffZmzzjqdadNO5cEH72P58qe55JKWqq5vv/0Gs2bNYMaMqTz66EO4XM7DjvPbb79w3nl/4fTTzyA2No7U1H7MnTuf//u/v/rarF+/lkWLFjJ9+iRmzJjKzTffQEFB/mH7PFS44Pbt27jmmiuZPHk8c+eexX//+whWq9X3/vz5s3j99Vd44IFlTJt2KvPmnc1nn33crN+yslKWLv0nM2ZMYcqUCVx++QJ27tzhe//XX3/mssv+j0mTxnHuuXN4+eUXcblcRzz2yy5byIQJpxIbG0v//gO54IKLmDVrzmH3WbXqc04/fRK//+659ubk7OOmm65n6tSJnHXWdJYtW0pNTfVh93c6nTzzzJPMmTOTKVMmsHDhpWzatNF33h54YBkNDQ2MGzeSceNGsmLFCwDU1dVx7713ccYZk5k8eQI33ngdeXlNeeXe78uGDeu48MJzmTp1IjfeeC0VFeWHnYuX4OAQwsMjfH8BAYFHDPlctWolr7zyEllZmb55rlq1EoCGhnoeeuj+xu/paVx77SKysjJ9+65Y8QKXXHIRX3zxGeeeO4fTThvX5WuudiMXwslBV//CtBUDE4MoqbaRnl/PsJTQzp7OMaOYImgYcwWBG15EU5mNIX011oGzm6q+dmVkAVt/A64wJ/q9NiSzgnG7FXuiFle0jClAZuKkCHKyzWTsqqO6ysG6XypITQsgIcmEpNXRe/IFhBfnkLvlaxo0bopdZei3fE5y71FUBUVSUldOZUM1DTYzyRHxGHUGbBYXoixi0IkoGgGbTWmTAs8WtdHIaodCxOAxstyCV13wMJ6sA/OvBAFVFhCcKoJDRW0D20+rlTDotThdLmrrrMd32gQBa9pMVECf/wemnZ8CKo7E8Sc+wZOA+EgjZTV29hWbGZoc0tnT6ZF01gKjqqo8+udysmty26S/GnstN/54V6vtUkKSuHXMtQjtfN/4+usv+d//XuHWW//J0KHDWbPmG9555y1iY2Obtdu0aSPh4REsX/4iBQX5LF36T1JT05g//9xD9hseHs6mTX9y3nkXEBp66Pu41Wrj4osXkJKSis1m5aWXnuf222/mzTffQxRbX3DbuzeLG2+8lkWLFvOvf91DTU01jz32MI899h/uuuteX7t33nmLRYsWc9llC/nxx+955JGHGD58JElJyVgsFhYvvprIyEgeeeQJwsPD2bMnA7Uxh27DhnUsW3YXS5bcyvDhIygoKOA//3kAgKuu+tthjj2Cdet+Y8qUaZhMplaP4+233+B//3uNp556lsGDh1JRUc7ixVcxb945/OMfS7Db7Sxf/jR33nk7y5e/dMg+7r9/GcXFRdx//0NERETy888/ctNN1/HWWx8wdOgwbrrpFl566QU++OATAAwGY+N+95Cfn8ejjz6ByRTA8uVPsWTJ9bz33kc+T5DNZuPtt99k2bIHEASBZcuW8vTTT3LffQ+2emzHwvTpM9i3L5sNG9bxzDPPA2AyBaCqKkuW/IOgoCAef/wZTKYAPvvsY6677ho++OBTgoODASgoyOf779fw0EOPHtX3p7PxG1ldjJ7uxfIyOCmYH7aWkV3cgNOtoJG6/o/lYNyhCZhH/B+mTW+iK9qCYgjG3qf7JHe6ojSYgyX0GTbkWjf6HAeuaje2vjoEjUCfvgFEx+jZuqmaqkoHGbvrPblaw0IwmmQMvZJJi/4bFZu+o6ByDzaNQHbJRsLVAFLTJpBbV47d5SCjJJtewVHEBEeiuBQsbgWNRsRolHG53Dgcygnla3k9WaZ2MrJkJNxio5F1kGiEV/jC2aIgMeA8cRl3WZYwGjx5V2azHdeJrvQLgqegtiCgz/sd087PPKGDSRNOrN+TgMQoI5uyqtnv92S1GyfL/e9EWLv2V6ZObV6HsLU87g8/fI85c+b58qSuvHIRv/++Aau1eY5hYGAgt9xyO5IkkZSUzMSJp7Fx4x+HNbL+8Y+bueOOW5k16wySk/swdOgwTjttChMmNM1v2rTTm+1z5533cNZZp5OTs4+UlL6tHu/bb7/BjBlnctFFCwBISEhgyZJb+fvfr+a22/6FTudZxZowYSLnn38BAJdccjnvvvs2mzdvIikpmW+//Yrq6mpeffVN38N6fHyCb4zXX3+FSy+93OeFiovrzaJFi1m+/KnDGln//Oed3HPPUmbOnEpqaj+GDRvO1KnTGTZseIu2zz33DF9++QXPPfcSffumAvDJJx+RltafxYuv97VbuvQe5s49i7y8/SQkJDbro6AgnzVrvmblyq+JjIwEYMGCS1m/fh2rV3/O4sXXYzIFIAg0C9XLy8vj119/5qWXXmPo0GEA3Hvvg8ydezY///wTp59+BgAul4vbb/8XvXvHA3D++Rfy6qsrWv18rr76CsQDQuJfeOGVI7bX6/UYDAYkSWo2z40b/yA7ey9fffUdWq0n/eKGG27il19+5Mcfv2P+/PMAjzfvnnseOKxR39XwG1ldjJPlJtM7wkCQUabO4iKnxEy/uO5Zu8cZMwjroDkYd63EkP0Tii4IZ9zwzp7WUaPqRKxDDWgKHOhyHcg1bozbLNj76HCHebxaEyZFkLvPTPrOOqqrnaz9tZzUtEASk0yIokjUmBmE1I0mf8PnVAlmKgUztenfEh/al+rQaKotdRTXllFnayAporenzpZDwelU0Os9+Vp2uxu36/gMCG9OVnsJX0iChMtnZLWekwVe8Qv1uBUGRUHAaNQgSSJWmxOH4zBhgceDIGDrNwMQ0OdtwLTrcwRU7EkTW931ZCYhyrMqXFRpxeFS0HZgmYKThc4SfRIEgVvHXIvD3XpZkazqfTyz5cgPkgDXj7iS1NA+R2yjlbTH7MUaOXI0t912R7Ntu3btZNmypYfdJy9vP+edd0GzbQMHDmLTpj+bbevTJwVJaiqDER4eQXZ21mH7TU7uwzvvfEhGRjrbtm1h69Yt3HrrjZx99hzuvPNuwGMcvPTS8+zcuYOamhqf96i0tOSojKyMjHQKCvL55puvfNs8aRUKRUWFJCd7zrHXeAHP5xkeHk51dRUAmZmZpKWl+QysQ42Rnr6b119v+lwVRcFut2OzWdHrDS32GTFiFJ98spKdO3ewffs2Nm78k/ffv5Krr76GhQuv9rV75523sNmsvPbaW8TF9W425qZNG1sYzJ5zVtDCyPJ43lQuuGB+s+0Oh/OwxwWQm5uDJMkMGjTYty04OITExERyc3N82/R6vc/AAoiIiPCdvyPxwAMPkZTUVBYkOjqGHTu2t7rfwWRkpGO1Wpg5c2qz7Xa7nYKCAt/rmJhe3cbAAr+R1eU4WYwsQRAYmBjMhvRKMvLquq2RBWBPmohorUW/72eM6asw6wJxRaS0vmNXQRBwxutwh3pEMSSLgmGPHUe0G0eiFkESSE4JIMrr1apwsOcAr5bJJDcKY1xBxJ5N7M9ej10jUFifTUBVLvHJp1Bob8Bst5BetJf4sF6EB4SCCjarG0HyGFvoRGx2N6rr6H8DqqpiwVMgtj1zslySCu5DeLIOlZPFAQqDx+jJEgTQ62V0Wg02uxOzxdEWEZWHHMjW7wyPR2v/eoy7VoIK9mS/oXU4gk0aAg0y9VYX+WUWUmK7tvpZd6Qz73+CIKCTW7+GDIxII1QX3ExV8GBCdSEMjEhDbIdyCQaDoZkXBqCsrKzV/Vraci3PtSw3fyQUhNY/E1EUGThwEAMHDuLii//KV1+t5t577+KKK64kNjaOW265kejoaO64YykREZGoqsr//d9fcDoPn+t1IIqiMH/+eVxwQcv8sZiYXkeYu+Az2r3ersOhqipXXfU3pkyZ1uI9rfbw+8qyhuHDRzJ8+EguvfQKXn31ZV599SUuueRyNBpPGN7w4SNYu/Y3vv9+DZdeekWz4zr11Elce+0NLfqNiIhssU1RFCRJ4vXX324RJmc0Go90dIfeqqrNDPxDnb+jSV+Jjo5p8X08HhRFJTw8gueeaxkqGRjY9HxoMLQ0eLsy/qW4LkZPl28/kMFJntWXPQX1KN08F83a/0wcvYYiqAqm7R8i1pd09pSOGSVAwjLSiCPWc3PQlrowbrcimj1eFJNJZsJpEQweFowkCdRUO1n3Szm5+xp8F+PgtFHNhDEaNG7K89bSq7YMk9aAoirsrywkpzwfl+LpV3WrWM0uHHYFg05Gb5COOrfNgRN3Y/WqdvNkeY0saDEv+XCeLG2jwuAxCF9otRJBgQZEUaSuzorN5mofA8uLIGBLnY6tMSfLuHslupzf2nHA7o0gCMRHem7w+4r9RYnbg+6wyCgKIhf0n3/ENhf0n9cuBtbxkpCQyK5du5ptS0/f3S5jeT1LVquV2toacnNzuOKKqxgz5hSSk/tQV3ds9THT0gaQk5NNfHxCiz+vIdMaffumkpmZeVjlv379+pOXt/+QYxxL3k9ycjJutxuHw+7bNnDgIJ588hlef/1V3nqrSZEyLa0/OTn76NUrtsWYhzIk0tL643a7qa6uatHeG3an0WhaPEMmJfXB7Xaxa9dO37ba2hry8vKaeaA6kkPNMy2tP1VVlUiS3OL4QkK6j+fqYLrOVcAPAG5317/JtBUpvUzoNCJmm5vCCmvrO3RlBBHzsAtxhiUjuB0EbH4HwdYNpVxFAXtfPZbBehSNgGhTMeywoSlwQOPKV3JKAFOmRxEeoUNRYE96PX+sq8Tc4FFi8gpjDBo6mwCXjCoKVDhKkPb/SaToWS2rttSSXrSXeltTfovbpWCxOHG7VYxGGY1WhFZsLW8+lhYNsiAdufFxIiHhlA6dk6VtNLIOlqZvKkjc+u9ZlkQCA3XodDJmsx2z2UGHPWt6Da3GnCzj7i/Q5fzaQYN3PxKiPAnufoXB9qM7GFojo4fwt2GXEaprHqYVqgvpdPn2Q/GXv1zEF198zurVX5CXl8err77M3r17T1hw4447buXdd99i584dFBcXsWnTRh577D8kJCSSmJhEYGAQwcEhfPbZJ+Tn57Fx4x88/fTjrXd8AJdcchk7duzg0UcfIjNzD3l5efzyy8889tjDR93HjBlnEh4ezu23L2Hbtq0UFhbwww/fs2PHNgCuvPJqvvxyNStWvMC+fdnk5OxjzZpveOGF5Yftc/Hiq/n004/IyNhNUVER69b9xgsvLGfUqNGYTM293EOGDOOJJ57h1VdX8O67bwGenKe6ulruvvtf7Nq1k8LCAn7/fT0PPLAMt7tleHhCQiIzZ57FvffezY8/fk9RUSG7d+/ijTdeZ906z+JYr16xWCwW/vzzd2pqqrHZrCQkJDBp0hQeeuh+tm7dQlZWJvfcs5TIyEgmTZp81OewLenVK5aiokIyM/dQU1ONw+Fg7NhTGDx4CLffvoQNG9ZRVFTE9u3beOGF5e22INAR+MMFuxgni7ogeB4u03oHsj2nloy8OuIjj+Ty7gZIMubRlxG47jmkhjICNr9Nw5iFqJr2r1fS1rjDNFhGS+gybWgq3ejyncg1bmypOlSdR4p9/Gnh7M+xsHtHLTU1Ttb9Wk7ffoEk9TEhCEKjMMYinzCGXSNgL9tKhBhKXUQiDreTrNIcooMi6BUS5Vn5VWnM11LR60U0Ghm7XTlsvlZ718gCkBFxeK+UjSEo3tXNJuGLg8IFtZ73j+TJ8kqyy5KM1eZo27yrY0EQsPX1JKfrc9dh3L3KEzrY57TOmU8XxpuXlVdmQVFVxO6gJtrN8Py+2mfBpC0ZGT2E4VGDyKreR629nmBdIKmhfbqUB8vLmWeeTVFRIc888wQOh4PTTz+DWbPmsHv3ztZ3PgKnnDKeNWu+5o03XqOhoYHw8HBGjRrDVVf9zRd+dv/9D/H444+wYMEFJCQksmTJbfz971e30nMTqan9eP75FbzwwnKuueZKVFUlLq4306fPOOo+NBoNTz21nKeffoIlS27A7XaRnNyHW275JwDjxk3gv/99kldeWcFbb72BLMskJiYxd+78w/Y5btx4vvxyFc8/vxy73UZERCQTJ57GlVce+tiGDRvOf//7FEuW3IAoSlx44cW8+OJrLF/+FDfeeC0Oh5OYmBjGj59wWO/ZXXct47XXXubpp5+gvLyM4OAQBg8e4hMaGTp0GOeccz5Ll95BbW0NV165iKuvvoalS5fxxBOPcsst/8DpdDFixAgef/yZTqsxNXXq6fz00w9ce+0i6uvrWbp0GbNnz+Xxx5/hhReW8+CD91JdXU14eATDh48gLCysU+bZFgjqyfRU3w2oqbEcvvZNO5CdncX48aMIDAzijz+2ddi4XrbsreadH/MID9Jy/bzU1nfoBgjWaoLWLke01+MMScQ8agGI3XQ9Q1WRS5zos+0ICqgS2JO1uCKbLs4Wi4ttm2qoKPeESASHaBgyLARTQNMxO+qqfMIYAJJbQI5Io07ytDFo9SRHxKPXNDeWBFlAr/M8cNlsbtQDPL2KqvKHspstZBFGEHPFCSf80CsAeqMem8Xmi2SvVc18W/8bA6v7gKowbuA4ZL3nYbuuzsn6XyvQ6kRmzmrKD5BqXBjS7SgasA0w4A5uCoEUBNDpZPQ6DXaHs/3DAo8WVUW/9wf0uWsBsAyY1a3UMjsCt6Lyn/fTcbpUlpzXj15h3Ss/4Gh5/fVXePjhB5g371xWrHi9Q8cOCTGi0bSvkWWz2cjO3kdERMwRc256Mtdfv5jw8HCWLXugs6fix0+3wuGwU1FRQkpKn1aLfne9JZeTnC7xsNWB9E8IQhIFKuscVNTZW9+hG6AaQmkYuxBV0qGp2Y9x5+fd94MVBFy9tJhHmXAHighu0O91oMu0QaNAhdEoM+7UcIYMD0GSBWobvVo52U25Wl5hjLSE8eic4JZU7NUZBFYXICFgddhIL95LeV1lM2+u6jogX0vvzdeCfWoRbynfsAWP8lUVdXyg/ESu2va5cBIido13TgKKvSm0VdMofHFguKBU6UK31/NdFp1g3G7F9LsZucLZmHelR5ZE6upsWK1dxMCCRo/WNGzJpwJgTF+NLvvnTp5U10ISBeLCPYZVTrE/ZLA98K/7tj02m5V33nmLffuyyc3NYcWK5/nzz985++zDF87148fPieM3sroYJ9sNxqCVSI7x5Dlk5B1bQmxXxh0US8PIv6IKItrSXeizvu/sKZ0QqkHEMtyIPUGLCmgq3Ri3WRHrPF5XQRBI6mNiyvQoIiI9uVqZGfX8vraShsZcLYAgnzBGNIKi4nDXIFfsRu+0o6oq+dXFZJfvx+l2NRvfm6+lKCqFmlK+Uf7w5WN5sWDjB2VLmxtaEiLuRmMKQcDtaBrXK3yhKJ58SqnShT7TjnCQcJbgUNHvtqGrUjBbnDSYHV1T7EUQsKVMbTK0Mr70G1oH4Q0ZzPHnZbULJ9s9sGMQWLfuN6655kouv3wBv/76Kw899Chjx57S2RPz46dH001jmHouJ+MNZnBSEHuLGsgoqOfUwS2lS7srrqh+WIach2n7h+j3r0PRB+NIGNPZ0zp+BAFHkg5XmIwhw+oRxdhlwxkr44jXgij4vFp5uZ5crdpaJ+t/LSclNYCkPgGIotAojPEXwotzyN36DQ2yC6U2C702HHtQL+qsDaQXZZEQHkeIMahpfNUTMvi9suWI0/xdSSdBjG6zfBkJEUVo8lS5DjCyDigpQ2mxhb6ljSGBB/XhqZoFyq56XGNNR62e2Ck0erRAQJ/zK8aMLwEVe8qUTp5Y1yAxygRU+IsStxMn4S2w3dHr9Tz77AudPQ0/fk46/J6sLsbJeIMZlOhRaCoot9JgdbXSunvhiB+NtZ+norphz9fIZRmdPKMTRwmSMI804YiWEQBtkQvDDiuC1WOICIJAYrKJKdOjiYzyeLWy9jTw+7pKGuqbXDyGXsmkzVxEYmgaGreK6qhErt6L7HLgUtzsK88jr7KomdRrMRUtPFgHY8ZGKa0XUTxaZCRPflbjj9Pt9BQsLS228suP5b52+VsbEB3qYQURBUC0q0i1nSRwcYzY+k7F2piTZcz4Ct3eHzt5Rl2D3pEGBAGqG5zUmo+u1o+fo+dkXGj048dPz8RvZHUxTsYbTEiA1pfnsKeg54QMerH1PR17/BgEVEw7PkGqLWh9p66OLGBPM2AdoEeVQbKoGLdbkYsdPmPEYJQ4ZWI4w0aGIMsCdbVO1v1awb699T6ZZlEUiRp9BoMnLCCcAES3DbEmC9lcAUBFQxXpxXuxODx5UBb16PL2jrbd0SAgeBxPjcflcjkoLbaydXMNdluTAWgQj847dTSy7l0Fe8qUJkNrz9fo9v7QyTPqfHQaiahgj1hCbonfm9XWnIS3QD9+/PRQ/EZWF+JkNLC8DEz0hIVl5Nd38kzaAUHAMvgcnJH9EBQXpi3vIlraztPSmbgiNZhHmXCFSAgK6HOd6DNsPkNCEAQSkkxMOSOayGgdqtro1VpbQf0BXi1NUBh9zrictMSJ6J0qkrUETW0ugtuF3eVgT3E2JbXlGNAe1byMQtsphgmCgIQEjUWP3U476btbLgZYj7K+j7dQcXfBY2h56qkY93yDPstvaHnzsvaV+IsStzUn833Qjx8/PQu/kdWFOJnvLUOSPSGDOSVmHM5D10Tq1ogSDSP/iisoFtFpxbT5LQRHz1gFV3Ui1iEGbH20qALINQqGbRakqqbQT4NB4pQJ4QwfFYqsEairc7H+1wqys+qbFR8N6jfCI4yhi0Gy16OpyUK016ICRTWlmMsaCHGZjjgfE3oSdTFIbVSvRlFVBJfi+4GWVFVit7UMay13uDC7lcM+JKqAIuORc+9m2FMmY23MyTJkftPthVxOFG9R4v2llk6eSc/Db2T58eOnp+A3sroQJ/PNJSZUT2iABpdbJbu4h64OyzoaxizEbQhBstZg2vIuuHtITocg4OytwzLSiNsoIrrAsMeOLtsO7iavVnyikanTo4mK1qOqsDezgQ1rK6ivazoPklZH70nnM2joHAKdAnJ9PnJ9ISgKZruFtNJYwiwBh52KCT1upwuNTkankREOmyXVOrlqCdv3/sSowniQPLXB6o0GTNHpaA37m7VVgc11nrDGg3/LKp6cLMHlkXjvjtj7TMKaMhUAQ+a36LO+6+QZdR5eT1ZxlRV7B9Y1PBk4iW+Dfvz46WH4jawuxMlsZAmCwMBGAYz0/J6Xl+VF1QfSMPYqFI0Bua4I0/aPQe05njvFJGEZacQR5zFINGUujNutiA1ND6J6g8TYCWEMHxWKRiNQX+di/W8tvVqGXkmkzVxEclh/dJYqNDV7EZwWUFVSq2LoV9ULSWkyoLyhhGXUsMWdjd3mQFEV9AYtWlk8ZlMrVy2hYu8uNJo4VFHT/E1RQhNibWFoFdic/FZjwXJQ6KCqFXAFeOZgSLchVXZP49re5zSsfacBYMhcgz5zTSfPqHMINmkIMsooKuSV+b1ZbcnJfB/048dPz8JvZHUhTvZ7izdkMKugAfdR5rd0R5SASBpGX44qSmgqMjGkf9WzPnxRwJ6ixzLEgKIVPFLvO21oCppEMbxerSnTo4mOObxXSxRFIkdNZ/DES4hUtGhq9yFZykBVCbWYGFuayhTHcOaKE7lUPItThaEAbFL3kK+U4XQp2Kx2BEFEp9chi0d3yVNUld8duzBKMTROuHmDxteaoHq8uVpeCmxOviiroyhGwJaqwzpQj2WkAdtgPa4wCUEFw24bUlU3NbSST20ytLK+Q5/5bSfPqHOIj2ysl+UXv2hTupORpSoK5vR0ajesx5yejqr0nAUzL/Pnz+K9997u7Gn0SIqKihg3biSZmXs6eyp+2gl/nSw/XYakaBMGnYTV7ia/3EJS9JFzb7oz7rAkzMMuwrTlbXSFm1AMIdiTJ3b2tNoUd6iMeZQJfaYVTaUbXb4TucaNra8OVe8xdvQGiTHjwyjMt7JzW43Pq9WnbwB9+nrqagFoAkPoc8blRGRuYf/etVgcDTgDe6OgxVrWQHCQASEEBgvJVFBDhprHT+o25qoTCBJM2J0uJKeCrJOQkHDZ3bg5/ANRKVXEF7lRpSMIbQgCSBo0uhKc9thmb6nAz1uq6TcgkH79AxEajTJbqg79HjtyjRvDbhvWwQLukO53GbYnnwoIGPZ+jyHre08Ns7QZnT2tDiUhysiu/XXk+utlnZTUbfyTkrffxlXdJGIkh4YRs2ABQaPbpx7ifffdw5dffsE555zH7bff2ey9Rx55iE8++ZCzz57D3Xff22ZjvvbaWxgM+jbrr70pLCzghReWs2XLJurq6ggODqF//wFcf/2NJCQkdvb0mhEdHc3q1d8SHBzSbmOsWPECr7zy0hHbfPLJKmJjY4/Yxs/x4fdk+ekySKLAgHiPymB6Xs8NGfTijB2KdcAsAAx7v0dTvKOTZ9QOaARsAw1Y++lQRZDqFY/Ue5mzmVerd4KRKWdEE93L49XKzmpg/W8V1NU29/YE9RvBwDMWEScFoavKQrRVA1BSV86e4r3YXQ4mCcOIIhQHLr5TNuNUPTlQbhTsdidupxuNXtOYr3VoLKodg/PojB9RapKL1+tFhg4PIba3pyRBZno9v6+txG5vDJcUBWxpOlzBIoIChp1WxG5SN+tg7MkTsaZOBzzfX/2eb3qWR7YVvHlZeWWWZmGufk6M7vAVqtv4JwXPPtPMwAJwVVdR8Owz1G38s93Gjo6OYc2ab7DZmuoF2u121qz5mpiYmDYfLzQ0FL3e0Ob9tgdOp5Mbbvg7ZrOZ//znMd5//xMeeOA/9OmTQkND18v1liSJ8PAIZLn9FtoWLLiU1au/9f1FRUWzaNHiZtuio6N97Z3O7hlh0VXxG1ldim5wd2lnBid5jKw9BfXdKmzkeLH3mYQtyePBMu76HLkqt3Mn1B4IAq4YLeZRJtyBIoIb9NkOdFl2cDV9xnq9xJhxYYwYE4pGI9JQ72LD2gqy9tQ1e4iVNFp6TzqfwUNnE1ZTilyXB4obi9NOelEWVQ21zBTGYERHDQ38rGxr9l1yKQp2mx1VVdAbdGgOka9lFHRYNUcnUBEXIjN0eAhjxoUxaVoUveIMDBkWwqChQYgilJfZ+eX7MqoqG40xUcDWX48ryGNoGXdaEOu7qaGVNAFramOx7b0/oM88eQyt6BA9WlnE7lQorj5ygWw/XR9VVVHs9lb/3FYrJW+/dcS+St5+C7fV2mpfx3OPS0vrT3R0DD/91FRK4aeffiAqKpp+/fo3a7t+/VoWLVrI9OmTmDFjKjfffAMFBfm+97/8chVTp04kLy/Pt+2xxx7mL3+Zj9XqEfE5OFxw3LiRfPrpR9x88w1MnjyBCy88lx07tpGfn8fixVczZcoErrrqsmbj3HffPdx225Jmc3viiUdZvPhq3+vFi6/mscce5oknHuWMMyZz1lnT+eyzj7Fardx//z1Mm3Yq5503l3Xr1h723OTk7KOwsIBbb/0ngwcPpVevWIYNG87ixdcxcOAgoClEb82ab7j66suZNGkcF198Pps2bfT143a7efDBeznnnNlMnjyeCy44h/fff6fZWN5jevvtN5g1awYzZkzl0UcfwuVqMlLmz5/F66+/wgMPLGPatFOZN+9sPvvsY9/7B4cLbtq0kXHjRvLnn79z+eULmDx5AldffTn79+c2G/vVV1/mrLNOZ9q0U3nwwftYvvxpLrnkokOeE6PRSHh4hO9PFMVm25Yvf4Y77riV//3vVWbPnsFf/jIfgLKyMu6883bOOGMyM2ZM5dZbb6KoqKhZ36tWfc6FF57LpEnjuPDCc/noow8O+9mcrHS/OJUezEnybHJE0noHIksCNQ1OymrsRId2nzCF48U6cDairRZtyU5M296nfswVKAFRnT2tNkc1iFiGG9HmOdDud6CpdCPVW7H31flkzQVBoHe8kchIHdu31FBSbGPfXjNlpXaGDAshKLhJgMIQk0i/mYuo3PIDeZVZ2IJ7o2oDyK8qIqjewPSo0awS1pNHGVvVvYwQUpvmAjhcCoLLgVYjodPLuBwu3I05FfGaSH6JkwgpcHhELw7OyfJ1pKIXLPSKa7nS2zveRHCwlq2bqrFY3Kz7pYIBg4Pp09eE0GhoGdJtjd49C5ZhRpSAbijvnjQeAEPWGgx7f2wMHZx5+HPWQxBFgd4RBvaVmMktafAVVPfT/VBVldwHH8C6N6tN+nNVV7Nn8d9abWdITSXpX0t94cRHy+zZc1m1aiVnnnk2AF988Tlz5sxj8+ZNzdpZrTYuvngBKSmp2GxWXnrpeW6//WbefPM9RFHk7LNns3btryxbdicvvfQaf/75O5999jEvvfQaBsPhv8+vvvoy//jHEv7xj5tZvvxp7r77TuLi4rjssiuIjo7hwQfv5bHHHubJJ589puP68stV/PWvl/HKK2/y3Xff8sgjD/Hzzz8xefJULrvsSt57723uvfcuPv989SG9ayEhoYiiyA8/fM9FF/0fknT46+kzzzzJjTfeQnJyMu+++za33noTn376BcHBIaiqQlRUFA8++DAhISFs376N//znAcLDI5g+vSksetOmjY2GyosUFOSzdOk/SU1NY/78c31t3nnnLRYtWsxlly3kxx+/55FHHmL48JEkJSUfdm4vvLCcG25YQmhoKA8//CAPPHAvK1a8BsDXX3/J//73Crfe+k+GDh3OmjXf8M47b51QuN/GjX9gMpl4+unnUVUVm83KtdcuYvjwETz//MtIksRrr73CTTddx1tvvY9Go+Gzzz7h5Zdf4OabbyctrT979mTw0EMPYDAYmDVrznHPpafh92T56VJoNRJ9Yz3y3CdDyCAAgoh5+EU4QxMRXHYCNr+DYOuhxy4IOBJ1WIYbUfQCokNFv9uGNtcOB3irdHqJ0ePCGDkmFI32IK+Wu6mdVxhj6PiLiKmrQDKXgKpQ57RSkV/MBOsAALaoe8lxFFGVm0F+1kZyczdT6CzDrSrYnS6cdheyRkZv8BQxFoBTNIOwuEs8Ax28AqKqnj9BYL/iJmfDl4c83MAgDeNPjfCJe+zeUcvG36twOhWQBKwD9LgDPN49w3YLorm7erTGY+3nefgwZP+Ifs/XJ8WqUXyUX/yix9CN1gTOOmsW27dvpaioiOLiInbs2OYzuA5k2rTTmTr1dBISEujXL40777yH7Oy95OTs87W5/fY7qaio4PHHH+X++5dx5ZWLfF6fwzF79lymT59BQkIil1xyGcXFRcyceRbjxk0gObkPF174f2zZsumIfRyK1NRUFi68ioSEBC677Ap0Oh0hISHMn38uCQkJXHnl1dTW1rD3MMZwVFQUS5bcyooVz3PGGVO49tpFvPrqCgoLC1q0Pf/8C5k27XSSk/tw2213EBAQwMqVnwEgyxquvnoxAwcOIjY2jjPPPJtZs+bw/ffN1VQDAwO55ZbbSUpK5tRTJzFx4mls3PhHszYTJkzk/PMvID4+gUsuuZzg4JAWxvDBXHPNtYwcOYrk5D5ceukV7NixDbvdEwnx4YfvMWfOPGbPnkdCQiJXXrmIlJS+R3uKD4leb+Bf/7qbPn1SSEnpy5o13yCKIv/619307ZtKnHcpEAAAz3pJREFUcnIf7rprGSUlJWze7PH4vfbay9xwwxKmTj2d2Ng4pk49nYsuWtDMU+fH78ny0wUZlBhERn49ewrqmTKs53l0DomkwTz6cgLXPYdkLidgyzvUj7kCZF1nz6xdUIIkzKNM6LJtaEtcaItdSLVubKl6VKNn7UcQBP6fvfMOr6LK//A7M7e39F6B0KvUAEqxKyKIXdYuCva+P93F7tpde8OCoIh1UcCCioLSe+8kJCEkJKTdXuf3x00CIRVISG6Y93nuA5k5c+bMzL0z8znflpRiIDpGy6b15RzId7J3t53CAje9+4YRFn44KYXaHE6nc24gZtd69matxh6RjF+lw3/IzWBVMi7HQZxSKQ5JA5pgFksht4gi/xbCM7qTIQZnAWVZrnzXEkgX4pEzoGz3NjRSbI0kGELAi8tXiFGIwqcxsF+jw/3X/+gyfBziURkMVWqRvv3Dycm2s2OblYJ8F4vLDzJwSBRh4Wqc3XXBbIP2APqNTpx99QQMIWjRSstERsCw8xf0e/4EWcbV7YJ2bdFKqxRZ2UpR4pBGEATSH/03ssfTaFv7jh3kvvpyo+1S7n8QY9euDe9XozlmKxYELTbDhp3Ojz/ORZZlhg07nfDwiFrt8vJy+eCDd9m8eRNlZWXIleVCCgsLql/MLRYL//rXY9xzzx307t2X6667sdH9Z2Qc9gqIjIwCoFOnI5dF4na7sdttGI311zRsqF9JkggLC6shIKr2VVJSWm8fl112JRdccBFr1qxmy5ZN/P77r3z66ce8+OJ/GTIks7pd7969q/+vUqno3r0H2dlZ1cu+++4bfvjhfxQUHMDtduP1eunSpeb17NixUw1rWVRUNHv21BSARx6TIAhERUVRelQsX+3z0KVGnwClpSXExyeQk7OPSy+9okb7Hj16smbN8ccBduqUgVp92Etk+/Zt5OXlcuaZp9do5/G4ycvLo0uXUgoLC3j22ad47rmnq9f7/f5jut6nAorIUmhz9EwL47u/93OgxEWFw4vFoG58o3aArDFgG3wT5iVvI9kOYtzwFfbTrgEx9F64m4Qk4O6ixx/hRbvLheSQMWx04klT440/7KJXZdXan+dk8/oy7DYfK5YeIr2jkYzOZkTp8EuKpXM/eqf3IH/ZXPIkO35DFIJPh16dUiviURbVqMWkYC2sbipSPbHBulqGoIuqTq+lsycRd0YcB3xFePfnIXkDGNUmNia52atyo/MfZPC+WNwaA8XGcNx/f0evoRcjqWtmJRQEgbQOJsLCNaxfW4rD7ufvPw/Sq284aR2MOHvo0G9xIjlk9BucOPoZkPWh52jgSRsCEBRaexchIOPsdmG7FVpJ0XoEAcrtXspsHsJNDWSjVGjTCIKAoG18UsvUqxeqiMhaSS+ORBUZialXL4Qmlow4HsaOHcfLL78AwEMP/V+dbR588F7i4uJ45JF/Ex0dgyzLXHPN5bWSG6xbtxZJkiguLsLlcjb6olwzUYNQ77KqWFpRFGrFn/l8tWNeayeAEGosqxKkciO1JY1GIyNGjGTEiJFMnnwH99xzB9Onf1hDZNVFVf+//baA119/hbvuuo/evftgMBj4/PMZbNmyucHxCgK1kuDUbiMQaCTVf13HfGS/tW+nJ+Y1cLRraCAg07Vrd5588plabSMiInC7g5MRjzzyb3r27FVjfUMumqciofcUb8e00/eQY8ZsUFe74Wxvx4WJ6yJgiMQ2+EZkSYO6JAvDlh/avduVL0aNY4ARX0SwhpQ224tumwvBU/NBlJSsZ9Q5wcQSsgxZe+ws/buY8rKas8+SWkPKiEvp12kQptLcare++mpdGaR4ljg24A0cdtXz+vy4nR5EScKg05KmjSc9vT8pnQcSmd6N0zV9iSEMl+RjQ4dyTF4XCAJWczTrl/+A11b39zY8QsOwM2KIitEQCMDGdWWsW12KDxlnDz1+vYDolTFscCA4Q7PmjidtCI6u5wOg27sY/fYf2+13WKuWquNGlVTupwaCKBI/cWKDbeKvmdiiAgsgM3MYPp8Xn8/LkCFDa60vLy8jOzuLG2+8hUGDhtChQ0cqKmrflzZu3MBnn33KSy+9htFo5JVXXmz2sYaHR3DoUHGNZTt37mz2/dSFIAikpaVXJ/KoYvPmw9l8fT4f27dvIy0tHYD169fRu3cfLrvsCrp27UZKSip5ebVdDluD1NQ0tmzZUmPZtm1bm3UfXbt2Iy8vh8jISFJSUmt8TCYzUVFRxMTEkp+/v9b6xMSkZh1LqKOIrDaForKq6JkWzDK4PcfayiM5+fjDkrGdNhFZENAUbEK354/WHlKLI2tFnL30uDppkAVQlQcwbHAiHao546rVSgwcEsmAwZFoNCJ2m4/lSw6xc1sF/spYLVmWKTnkpswfgyGic8OzF4KALGlIzvdTSM2Z6QAybo8XnzcYr6XVqKnKQ6gSJM4WB2BER7lgZ1u6i0h/UKQ5TdGs3fA7rkMFde5SoxEZMCiSjC7B2eK8HAd//1mEzeXD1VNfHatm2OhAcIWo0EodjKPrBUCl0No2v90KrdTKosR7lbisUwbLwEEk33kXqojIGstVkZEk33lXi9XJOhJJkpg9+1tmz/62TuuB2WwhLCycOXO+Izc3h9WrV/LGG6/WaGO323nyyalcfvlVDBs2nKee+g+///5rrdijE2XgwEFs27aVH3+cR05ODtOmvcvevXuadR8AO3fu4KGH7mPhwt/IytpLbm4OP/wwh3nzvmfEiFE12n777Vf8+edCsrOzePnl57FaKxg7dhwAKSkpbNu2jeXLl5KTs4/333+n2YXM8XL55Vcxd+73zJ8/l5ycHD7++EN27959XG6n9XH++RcQFhbOQw/dz/r1a8nP38/atWt49dWXOHiwEIBbbrmNTz/9hC+/nEVOzj52797FvHnfM2tWw5k3TzUUd0GFNkmv9DB+WlVA9kE7Lo8fnebUMkH74rrh6HUJxk3focv6m4AuDE/ygNYeVssiCHiTtPjDVei2V8Yo7fTgjfXjTtfCEW6Bicl6omI0bN5QTn6ek6y9dg4WukhM1pOzz4G7UpxoDQFU4Y3vWu9VYfPaycvPw+/zIqnUxCX1QKVW4wsE8Lk9qCURrV6D3+vD6/OjF7ScIw5gXmA5+UIx4elGOu/XUeD34DVEsG7nSnold8Oc0qXW/gRBoFNnM+ERGjauCxZhXvxHEX37R5DcU4d+swvRLVdnHZS1oTcf5kkdBAIYtv+ELusvQMbZ/aJ2Z7JPjTWwckcJ2YrIahZC5ethGTgIc/8BOHbswFdehiosHEPXri1uwTqShtz6RFHk6aef49VXX2TixCtITU3j/vsf5vbbD6dN/+9/X0Kn0zFlyp1AMMbo9tvv5oUX/kPv3n2JjW2emOjMzGHcdNMtvPXW63g8bi66aBwXXDCGPXt2N0v/VcTGxpKQkMhHH33AgQP5gEBCQgK33DKZq6+uaX28/fa7mTlzOjt37iApKZkXX3y1Oq7tkksuY+fOHfz73/+HIAicc875XHrp5SxbVn/6+JPF+edfSH7+ft588794PB7OOuscxowZy9atmxvfuInodHree+9D3n77Df7v/x7E4XAQExPLwIGDMBqNAIwbdwk6nY7PP5/BW2+9jl6vp1OnDK688ppmG0d7QJBPhWJEIYLX66es7OQGUO/Zs4uhQwdgNltYuXLDSd13Y7zw1XaKy91cenoSvTuEt/ZwWgXdjl/Q716IjIC935X4Ymq/sLdLAjLabDfqPC8CENAKuDprCZhri+0D+51sXF+Gx13b6qPW5qOJaoI11FGAoI2smdzC78EYcJKWMfDwMkCtkhBVKnweL75AgH2BQn6X1wIwXOhFQrGaXEc5CCKix0G3sBgiu9U/s+12+Vm/tpSy0qDVLr2jkV5dzRi3uRHdMn69gLOvAVkTekILQJO7GsP2YPZFV/pwnD3Ghs6bdBOocHh59dudCAI8dV2vdjEhNH36R7zwwjOMGzeBadOmn9R9azQSYWGGFt2Hy+Viz569REfHo9G0z+RCCnWTn5/PhAkXMWPGF7USWYQqd901haioKJ54onYMlULz4/G4KS4uoFOnjuh0DZcZCs2ndjulHb13NAu9qlwGc089l8EqXF3OxZ3UHwEZ46ZvkSryG9+oPSAKuDvqcPbRE9AIiG4Z/WYX6lzPYbczWUYq95OiVXP24Cjqirf1uuPB72vcVU0fF6yHdQSyqMamsrBv9+EilcH6Wn68Li+SWkKn1dBRSmCgEHxYL5U344jR0jEsHiHgI6AxsM1aQv7ahdSHVicxKDOK9I7BGcLsvXb+Xn6Iko5qAhoByRlMhnF0jFqo4EkZiKPbGAB02UvQb21fcYYWg5owoxpZhpyDSpbBE6U53Z4UFNobLpeTWbM+Y+/ePWRnZzFt2rusWrWCCy9UalO1RRSR1YZQHi416ZkeTLW9O9+Gzx+aL5gnjCDg6HMZ3qgMBL8X47ovEJ31p69tb/jDVdgHGPFGqxAAbZ4X/WYXqgIvhrVO9Ftd6Ha5CdvtZUyUhWTd0ZkoRbwVlS419dW6aiQxhl3U4zsqG5efAG53MF5LrVUxUNOZzkISMvBLYCVzLGvYEp2H4Pcgq7Tslf1s/fvreo9TFAW6drdw2oBwVCqBslIvf/5VRG6MQEAtIDkD6Dc5wRua4sSTMgBH9yqhtbTdCa2UmGB2rqwCWyuPJPRRnoMKCg0hsHTp30yefDM33DCRv/76i+eee4nBg4e09sAU6kARWW0I5eFSk9RYAyadCrc3wL5TuQ6NKGEbcC0+czyix45x7ecInlPofKgFXN11OLtqkSWQbAG0WR4ET82XdIMocHq4oZbQ8jjT8JbpIVCz0K8Q8CI4DjYpMcbWvOWsDexkRyCHXLmIErkCl+zB6/fjdnmQkTnLMIBwTPgJ4MSN1eBjbUIegs8JopoSfSSb/pzVYPre2Hg9Q8+IxmJR4fXKLF1dwhaNj4AKJHsAwyYH+EJTnHiSB+DofhEylUJry/ftRmilKkWJmw3lMajQkiQmJrJ8+dqQdRXU6XS89dZ7LFjwJ3/+uZQZM2YxevRZrT0shXpQRFYbQnm41EQUBHpUugxuO8VSuddCrcM2+GYCujAkRwnG9bPB7218u/aCIOCL02Dvb0AWgrFRR/9cqiYp+lv0tdZ5nGnYC7tj8RiI8DsJV3lJ7tENs9bYpN2rPHr2VeSwJLCFXwOrmRNYwqzA78wILOBL/5/8z72Un+0rsFEzTbBHE2BV8n7w2kCUKLfEs2XRl/jdrnr3ZTCoGDIsmuTU4Iv75t1WljmdBCoFZmgLrf44u48NCq19y9BvntMuhFZqbPB7lFvkxB8I/eNpTZTJRgUFhfaCIrLaEMrDpTa9Kl0Gd+RaaxUzPNWQdRasg28ioNKhKs/DsOl/7eIF9VgQ3TJCA4csCAJGSSRGU1fiVJEDxSm4AkPo0GE0aYZUtLqmBdjLujC6lKeRmZPK4Kwo4qwGkINugzacHKSUbArx4a+1rV8FK9ML8fuCyTDKw+LZsGwOXmtZ/ccpCfTsHUbvfmFIkkBOsZuFJTb8IkjWAPrNDvCH5rX3JJ+Gs0el0MpZjn7z/6CR4qJtndgwLVq1iMcX4ECJs/ENFOpFeQ4qKCi0FxSR1cZQHjA1yUg0oVGJWJ0+DpTUP/t/qhAwx2MfeB2yIKEp2o5uxy+tPaSTytEugvWhF2v/juLidQgCFBe5WbK4iO1by0ntNBTB76lfrMoyBHxIzjII+JElDYI6gvTyRDJz0jkzO4ULbH05m4F0Jrne8ciCzOq0IlxySTDOLiye9et/xXmw4QKXiUkGModHYTSpKHL4+O2gFR8yqooA+s3O0BVaSafh6HFxpdBaUTlhELpCSxQFkqODcVlKKvcTQ3kEKigotBcUkdXGUB4wNVGrRDonBRMXbMs5xV0GK/FFdcLe9woAdLkr0WYva+URnTxkTdN+IL4jRJNOHyxgPHhYFKPOjiU2Tossw74sB8uWVKD1VqYlrCsxBhAueBmSeTF9o5KItpWidpZWCi4VdpWWkjI7tpxiErNloit09VvaBNiQXIJRCooJtymGDbtXYcve3uCxmMxqModHkZCoo8TrZ2GxDZ8soyr3o9/ihBB1T/Mm9asWWtrclSEvtFKUosTNgjLRqKCg0F5QRFYbQ3nA1KbaZTDv1E3lfjTepH44ul0AgG7Xr6gLtrTyiFoeQQBdog50Io3JitMjTZzVNZyhp0dx9vlxJCQFrQwms5ohw6MZPDQKo1HC6wlwqKQH3jJdrcQYBHx4y3TEJIxCFEXM6d3odsYlDMocR9/oJGJsJagdJRDwIYsqXCo9nSqSGZzbgYHZUcSU6xDkmr9ns6ina1pfknRmkGV8+gg2Fuzi0OblDR6PSiXSu184PXpZKPX7+eNQpdAqawdCq+e4I4TWdyErtNLignFZ+wrtp7xr84mgPAIVFBTaC4rIamMoIqs2PVItiAIcLHNTavW09nDaDO6OI3GlZiIAhs1zkEpzWntILYZWKxFm0ROQwdkxWDD46NdYufLj1wqIQGwFpO4PoCr117JSxSXoGHVOHN17mgHwONOxF3bHc8iMr0yD55AZe2EPPM50tm+tqPHSLIoi5rRudD1jAoOGjqdfdDKxthLU9kMQ8IIoIaki6GhNZnBuOgOzo4kv1yMGBIZJfTDoJNI6dKJDRCwEAgS0ZrY7Sshf/WuD50AQBFLSjAwZFo1dBYtK7EGhVepHtzWEhVZi30qhJaDNXYVh47chKbSSovSIAlQ4fJTZTqGkNM2M8gxsu2Rm9mfRoj9afD/z5v3A2WePaPH9tDWOPL/5+flkZvZn584drTwqhRNBEVltDOX5UhuDTlU9S3zKZxk8EkHA2WscntjuCLIf4/rZiPbi1h5Vs6JWS1jMOtRqCavVhdPpwxetxtVDV8t1UNYKuHrocAw24uysJaAWEF0y+h1udNtcCI6aL+6iKBAeqT1yCV53Im5HB7zuRKpujy5XgNKSusW9KIqY0rrR5YwJDBp2Cf2iUwmvKEBtLwpmfxQlJFU4adYkBu3vgGd3Afty83C7vSQlJtMjuSNCwI+sNpBFgOy//off76fMWkpRSSFl1tJaVhFLmJqhZ0QjR0j8VWLHL8uoS/xotzpDNhGKN7Evjl6VQitvdUgKLY1aJC5CByj1sk6EUBJZgYBMXnYpOzcXkpddSqCFJzqeeupxMjP788ILz9Za9+KLz5GZ2Z+nnnq8yf2tWbOazMz+WK1N8xKZP38BQ4cOb3L/R5OZ2b/6M2rUMC67bBxPPfU427dvrdHu7LPP5auv5jSpz1ATZOPHj6lxHjIz+zN27PlAw+f3WK+VQtugrhRcCq2IWEfAvgL0TLeQVWBnR66VYT2iW3s4bQdBxN7/GsRlH6Aqz8W49nNsg29G1ppae2QnhCQK6A0aREHA6fLi9dZ05fNFq/FFqZDK/QgeGVkj4A+TqmcpfAkafDFqtDlu1Pu9qMoDSBudeONUeFI0oAq2c7tqZwOsC7vdR2SUtsE2QcHVlV5pXfH5feTtW4UtNwu7qMarDwNJg0Ml4rAWk1txEIPfT1xsIr06dGXr3u34JS15Bon89X8SEKXqflWyTKJWT3K3gYhS8JatVoucNiCC7L12/s6yc3qEEU2JH98mB/7ehpCcrfEm9MGBgGHzHLR5q0GWcfS9DITQmQtMjTVwoMRFVoGD/p0jW3s4IUmoiKzd24v465dd2Kzu6mUms5YzzutMRreYFttvXFw8v/76C/fc8wA6XVDUu91ufv31Z+Lj41tkn16vF7VaTVTUiT97//3vJxg6dBhut4fc3H3MmfMdN998Pf/61+NceOFFQLAWVNWxtUduvXUK48ZdUv23WHm/b47z2xiyLOP3+1GplNf/k0HoPL1OERSRVTe904JxWTlFDhxuXyuPpo0habANugG/IQrJVY5x3SzwhaZbpSCAwaDGbNbh9fqosLpqCawjG/vDVfhi1fjDVbWFhUrA3VGHfaARb6SEIIOmwIdxnQNVQTCjoFZ3WMwIQKxGRZpOTaxGVaPW1rbNFWzaUEZFedPcwFSSivSOQ+k18hoGDb+UfrFpJFgPobEdRPC5QRBxqNRklRSxKXsXUtXYRRWBo0SFD8hxO1m76HMObVh8xOELdOhkIrl/GCttTgKyjKEsgG+tLXQtWgm9cfQaH7Ro7V+DYcPXIWXRSqusl5VdqCS/OF5C4Rm4e3sRP32zuYbAArBZ3fz0zWZ2by9qsX137dqNuLh4/vxzYfWyP/9cSGxsHF26dKvRVpZlZs6czoQJYxk5cij/+MeVLFz4GxB0R7vjjlsBOOeckTWsYFOmTOLll5/ntdde4bzzzuTuu6cAtd0FDx4s5N///j/OPXcUo0YN44YbJrJ586YGx282m4mKiiYxMZEhQ4by3HMvcd55F/Dyyy9QURH0VDnaOrVr105uv/1WzjzzdM488wyuv/4atm3bypo1q3nmmSew2WzVVqFp094D4Kef5nPDDRM588zTufDCc3jssUcpKSmp7rPKMrRq1QpuuGEiI0cOY9KkG9i3L7vGeBcvXsQNN0xkxIhMzjvvTP75zweq13m9Xt588zXGjj2PUaOGcdNN17FmzeoGjx/AYDAQFRVd/YmIiKjz/FbR0LVq6BofeZzLly/lhhsmcsYZQ9iwYV2jY1RoHhQp28YIhQdMaxBp0RIfoaOg1MXOPCv9OkW09pDaFLLWhG3wzZiXvo3KWoBx49fY+10NYujMo2g0EnqdBq/PR3mFs9l0gqwXcfUy4C31od3tRnIG0GV58Rf4iE3XoNOLRMsS/S16jNLh82X3B1hb4WS/24ssQ36ek/w8J2HhalLTDMQn6BGlxn+voihiSu2KKbUrHQIBHHm7KMzeRAl+PPowZJUOj3BY7NUSi4IAsozLksCewg2wAaL6Hn4BiYjUYMgMZ+N6K31UGiLsAgeWlqMfYkFShc71r8Kb0LvSovU/tPvXAuDoe3lIWLRSYoMJVgpLXTg9fvQaqZEtFI6mtZ6Bsizj8zYu6AMBmcW/7GywzeJfdpGSHtHosajU4nFZ7i666GLmzfuB88+/EIC5c79n7NhxrF27pka79957mz//XMjDDz9CSkoq69at5Ykn/k14eAR9+/bjuede4pFHHuKrr/6H0WhEqz1srf/xx3lccsllfPDBx3UmcnE4HEyZMomYmBhefPG/REVFsWPHduTjmBS56qqJ/PjjPFauXM7ZZ59ba/3jj/+LLl268vDDjyCKErt27UClUtGnT1/uu+9BPvjgPb766jsA9Ppglk+fz8utt95OWloapaUlvPbaKzz99OP8979v1jpHd999PxEREbzwwrM888yTTJv2CQBLlvzFI488yA033MTjjz+Nz+djyZK/qrd9+uknOHAgn6effo7o6BgWLfqD++67k88++4rU1NRjPg/1ERcXV++1auga9+8/oLqPt956nbvuuo+kpCTMZnOzjU2hYRSR1cYQQ+il+GTTM81CQamL7bmKyKqLgDEK26AbMS97D/WhPei3zcPZY2ybdx1TqSQMejUBWcZud+Pzt4zlwh+hwjFQQp3vQbvPg+SUMWxzc36sBZ279kuEQRQ4PdzAgWgBb6SK7D12DuQ7KS/zsqmsnO3bKkhOMZCSZkSvb9rL9NGCy7V/DwVZGygSRbzGBtzLBAEkDbLaSG7+RiJ6Dat2HYRgYpCUwWHs3Wqjk0siwS+RtbgM/SAzRrP6mM9Va+NN6IVDEDBs+i4otGQZR78r2rzQMuvVhJvUlNm85BTa6Zpiae0hhRStKbC+/XQtB/KaJ+bXbnXzwct/NdouITmMS68/7ZiF1gUXjOHdd98iPz8fQYBNmzbwzDPP1RBZTqeT2bM/56233qN3774AJCUls2HDeubM+Zb+/QdgsQQ9RCIiImu9eCcnp3DXXffWO4YFC36itLSUjz+eSVhYsJ+UlOMTFmlp6QAcOJBf5/qCggImTryO9PQOADUEjNFoQhBqu9qNHTu++v9JScncf//D3HTTtTgcDgyGw0XoJ0++o1qMXHfdjdx//9243W60Wi3Tp3/E2Wefy6RJU6rbd+7cBYC8vFx+/fVnfvjhZ2Jigu6hEydex7JlS5k//3umTLmr3uN9++03eP/9d44Yw51ceeXV9baXJKnOa9WUa1zFrbdOYciQzHr3odAyKCKrjaFYsuqnV4cwfl9/kD0HbHj9AdRS237hag384SnYT7sG45qZaPPXE9CF4e408qSOweV08up/X+TAgXz+7//+RVRULO+++yY+nxdRELn++puJjolBFAQMBjUlpSW8+MJbBAIyDoeD6JgYbr/9bj54/x0qKsrxeD1MmHAF3bp1P/HBCQLeJC3eWA3abDfqA170HpAFgaN/eYIgIAPxVgFHZw1R0VpcLj/79trZl23H7QqQtcdO1h47MbFaUtONREVrmvzCJIoihpTOdEzpjLmkkB37tjW6jSyq8arAunsDYV0H1FgnCAKRPc0U7HWSUAYdVGq2LD7Ed0XLuPofF6FSBcXW5k3rmf/jXAQEklNSueaa6wC4667JpKWmAXDV1RNJTm6+mdjjwRvfEwcEhVZ+0L0lFIRWSoyBMls5ewsUkXWstO7zL3SeveHhEQwbdjo//jgXWZYZNux0wsNrTjxmZe3F7XZz992311ju9XpruRXWRbduPRpcv3PnTrp27VotsE6EKktZfffOq6+eyH/+8zQ//TSfwYOHcOaZZ5OcnNJgnzt2bOfDD99n164dVFRUEAgEJ+8KCwvo0KFjdbuMjC7V/68SaqWlJcTHJ7Bz584asVNH9y/LMldcMb7Gco/H2+g5mTjxOsaMGVv999HXrqkcyzVu7HoqtAyKyGpjKCKrfpKi9IQZ1ZTbvWQdsNMlWTF514U3vieOnhdj3PI9+r2LkHVheJL6nbT9q9Rq7rzzPr799ksAJEnkhhtuIiIiii1bNrPg15+4+eab0GrUuNxetFoT9z/wfwDMn/c9kZFBi85NN9+KSqWiuLiIGTM+bh6RVYVawN1Zh98sot/prvf1SgAEj4xUEcAfJqHTSXTtYaFzNzMF+S6y99o5VOym6GDwYzBIpKQZSEoxoFY3XQyo1ZomtRPkYDyi115ebxttRz0524pJdRrpaTYiczqLft3F6PO6I4oC8QnJPPDAI6hUKqZNe5fsrL2kd+hIXFw8Dz70SJPHfDIICi0Bw+YqoSXj6HdlmxZaabEGNmWVk60UJT5mWsuTQxAELr3+tCa5C+7PKWPu7I2Ntht7VR+SUsMbbHO87oIAY8eO4+WXXwDgoYf+r9b6KlHxyitvVFtaqtBoGr/f6PUNJ5440rXwRMnOzgIgMTGpzvWTJk3mvPMuYMmSv1i2bCnTpr3H008/x6hRZ9bZ3ul0cs89tzN48FCeeOIZwsMjKCws4J577sDrrRlXe2QCiKprUZUlsqFjDAQCSJLE9Omf1/reHmkpq4vw8PDjtvodPQZo2jXW6/UnvD+FY0cRWW0MxV2wfgRBoEeqhWXbDrEtp0IRWQ3gSR+G6CxDv3cR+m3zCGhN+KIzTsq+VSoVFsvhGXy1WkNERBQAer0KvV6DKIpUVDhrlXZav2E99937UHU/AC6Xk6Sk5JYZbBMnNcQKP36LWO16KYoCicl6EpP1WCu8ZO2xk5frwOHws2OblV07rCQk6klNN2IJa9xdL8wUjkatxeN1191AliHgRfAGX9zVxoZnSrdU7MKpiqOrkEAvs46ANZplCw/Sf1gU0dGH3WpUKgmh8p5TXHyQl176D4kJSVx+xVVoNM33EnUieON74BCqLFrrK10HrwSxbcY7pcYGX7Byix34AzKSMnHWZKQmxDi2FIIgoG5CDF1qx0hMZm2tpBdHYrJoSe0Y2aKTppmZw/D5goJhyJChtdZ36NARjUZDYeGBGm5jR6JWB+9NgaMLsTeBjIzO/PDDHMrLy0/YmvXll7MwGk0MGjSk3japqWmkpqZx9dX/YOrUR5g37wdGjToTtVpdLTaq2Lcvi7KyMu644y7i4oIZF7dt21pXtw2SkdGZVatWctFF42qt69q1G36/n9LSEvr163/MfR8rdV2rplxjhdZFeaNvYyiWrIbplR68me/cbyUQohnUThaubufjTuiLIAcwbvwGyVrQamNRSSJ6vcT33//AiBFnYbd7agmswsIDWCwmDMbDs4CvvPw8r732Er169m6RcR1da6s+tHlejCsd6LY5Ue/3INoOFzg2W9T0OS2ccy+Mp3e/cExmFYEA7M9zsuzvYpYvKSY/z0HAX//3VRAEOiZXiuCjv9eVf6vsBQiyjNoHUT37N+jd5HQ5KDI4cCQGhWofs554l8BfCwopKnACkJ2Vjc1mrY6HeOaZF3jooUcJCw9j0aKF9XXdKnjjeuDofSmyIKI9sAHj+tlwHC+GJ4PoMC06tYjXJ5N/yNnawwkpQuH5J4oCZ5zXucE2Z5zbucWPRZIkZs/+ltmzv0WSaotDo9HINddcy2uvvcr8+XPJy8tlx47tfPPNl8yfPxeA+PgEBEHg77//orS0FIfD0eT9n3vu+URFRfHPf97Phg3r2b8/j4ULf2fTpg0Nbme1Wjl0qJgDB/JZsWI5jzzyEAsW/MzDDz9SZ0IGl8vFyy8/z5o1qzlwIJ8NG9azbduW6vishIREHA4Hq1atoKysFJfLSVxcAmq1mq++ms3+/XksXryITz75sMnHVsXNN9/Kr7/+wrRp75KVtZfdu3cxc+Z0ICj6zjvvAp588jH++ON38vP3s3XrFmbMmM7SpX8f874ao65r1ZRrrNC6KJasNogoCi1e1DBU6ZhgRKcWsbv87C92khLTsFn+lEYQcfS9AtFtRV2yF+PaWVgH34ysP3Ef+qYiigJGowaVJPHmW28yfPgIoqLqriGzevVKBgwYXGPZAw/+H8XFxbzzzhv07NWn2cfnD5MIaAQEj1ynZpEhKGZEEPygKgugKgsAXmQJ/GYJf5iIP0xCZRBJ72gkrYOBkkMesvbYKaiRKMNKcoq+3kQZ0eExdOvQk91ZW6hRpCDgRWUvQHIHXQRTk/qgUWvQ6UTcbi/eOlycDHoDbqcLV3c15WUVJDgM9LPoCZTDikXFJHdUsWDh50w+IjjbZAq+4AwYMIiffpp3vKe0xfDGdcfBpRg2fYvmQNBdy97vqjZn0RIFgeQYPbvz7ewtsCn3qGMgVDw5MrrFcMFlvWrXybJoOePclq2TdSRGY8P1EG+77XYiIiKZMeMT9u/Pw2w207VrN66//iYAYmNjmTRpMu+88ybPPPMEF1xwEY899mST9q1Wq3n99bd5443/cv/9d+P3++jQoSMPPljbdfFInnnmCSDoihcTE0OfPqfx0Ucz6nUHlySJ8vJynnrqMUpKDhEeHs7IkWcyadJkAPr06csll1zGv//9COXlZdx8861MmjSZqVOf5N133+Lrr2fTtWs37rrrXh566L4mHVsVAwYM5NlnX+CTTz5kxozpGI3GGlarqVOf4JNPPuSNN/5LUdFBwsLC6dWrN8OGHX/B5vqo71o1do0VWhdBris3p0KrUlpqx+c7ObVh9uzZxdChAzCbLaxc2fAMVFvhs9+z2bC3nGE9ojh3QMsUX2xPCF4n5qXvINkO4jdGYxt0I7K6Zf2zBQE+/fRDxo8fR1xcAt988y2yLHPRRePr3eY//3mSe+55EKPRWKNgot1u45133uChhx5tkbGqir3otrqC4z5iedWN0dVDhy9KhWgPIJX6UJX5kSr8CEcZUmQJ/JYq0aUioBdwuQLsyzqcKKOKhhJlyLJM7obFFJbuIyD4Ebx2BEDtg5TEPtXp2yVJRKdTAzIupw//ES4z+/fvZ+nSv7j88qv4Y9FvDLB0JV0OugmuKnew2+HBFC4zdGQSWp2Ey+VCrVYjSRJ//rkQm62iwWvVmqgKt2Pc9A2CHMAT3xv7aVe3OaG1eFMRC9cfpFe6hevP6dDawzlmpk//iBdeeIZx4yYwbdr0k7bfsDA9Gk3Lz/26XC727NlLdHT8CbnFBgIy+TllOGweDCYNianhIWGNU1BQOH48HjfFxQV06tSx0aLZiiWrDRKczQudApwnm55pYWzYW872XKsispqArNZjHXwzliVvIdmLMa7/EtuAf4DYMj9/jUbitddeZl/2Pg4cyKd3737MmzuHTp26sH3bNjp2ymDChMv58cd5DBo4hJjYGAoLCzCZTBiNwWKufr+f1/77EoIgEJADXHLJpS0yVgBftBpXD9DudiN4Ds85yVoBdyctvuhKX3iTRMAk4U0BZBnRFkBV6kMq9yOVB0WXqtSPqtQPeAmoQGuR6Bmho2uakfwSN9lZdg4VexpMlCEIAqn9RpLs92HdvQGvvRy1MQxzRt8aadv9/gB2uxu1WkRv0OD3+3C6fCBDUlISJpOJDz98D0tYGIbhI9n09w56WzoxKMyAL+Anu8zPj9/upkN3gchoLTNmfIRWq8NgMHDjDbe22Pk+UXxx3bALl2Pc+DWagk2wTsZ+2jVtSmhVxWXtK3Qgy/JxJzc41Qg1gSKKAsnpSjkRBQWFulEsWW0Qq9WFy+VtvGEzEIqWLJfHzxMzt+APyNx5cQbRYW0jQL+tI1UcwLz0XQS/G09ljEtz1tBSSSI6vRpREHA4vfh8bTNmpl5kGVWFH4OkxuH34rNITT8/gaNEV4Uf4ah5koBawG8RsWtg7yEXu/c78PuCt19R4nCiDMtx1LUSgrWyNGo1bo8Hjydw2BR3xPEZ8rzoivzIwFqnk51lbgQBuvUJo2NXc0iJAdXBHRg3foMg+/HE92pTQsvrC/Dcl9sIBOCRK7sRaQmte1RrWbKiokwnRWg1lyVLQUHh1ONYLFmh4QB9iiEp9Z8aRKeR6JgQtHhsy22e4pGnAn5LArYB1yILIprCreh2/dYs/QoCGAxqjEYtHo+PCqsr9AQWgCDgD1chJuvxh6uOTYCKAgGLhCdNi7OPAdswE46+etypGnxhErIAoldGfchP+AE//T1qLksM4/z0MLpH6NAjsj/XybK/KhNl7HccW1ymDG6XH7vdjUqUMBq0qFRH3UcEAUeyGle0hAD01+vpnWBAlmHbhnJWLzmE1xM6FnRfbFfsfS9HFiQ0BZsxrv28zSTDUKtE4iOCD9+9Sir3JiEIoWfJUlBQUGgI5W2+DaKIrMbplRZM3rA919rKIwktfDGdcfS5DADdvmVoclaeUH9arUSYJRjfVWF14vG0jZfcVkcU8Iep8KRrcfY1YBtuwtFHjztVjc8iVoouiHAL9NPpuDjWwvgEC0PC9ES4Yc/GCv78/SA7t1fgdDb9nAYCMg6nF7fbi1arxmDQ1HxxFQQcKWpcUUGh1RMNQ7qYEQQo3O/krwUFlJd6mv98tBC+mC6HhVbhFoxrP4OAr/ENTwJVLoPZhYrIagrKc09BQaG9odzV2iC1ZqAVatGzMpX7/mInNmfbeKkKFTzJA3B2ORcA/Y6fURduO+Y+1GoJi1mHWq3CanXhcHhrZR5XOAIxaCXzpOtw9jMGLV299bhT1PjNQdGlR6SjQcvQcCPj4sI4L8xIdHGAfUtL2bK6hEPFbprq3e3zBeO1fD4fRqMWnU51OKuHIOBIVeOOFBGADjaJUadFotOLOOx+lvxWyL49tibvq7UJCq0rKoXW1kqLVuvfE9Jig9Z2pShx01BEloKCQntDuau1QRSXicYJM6pJig5aUHYoLoPHjCvjTNwpgxAAw+b/IZXlNWk7SRQwmbTodWqcLi82mxu/Um7g2JEE/BEqPB10OE6rFF299LiT1fhNIjJgVklkGLQMizByhqgnbq+XihUVlO2w42uidcvjCWC1BTMnmk06NJrKW74gYE/T4I4QEWSIKwgwsn8U0XFaAgHYtLqU9StK8J+kLKcnii+mc02htab1LVpVqdsPlrlxuFtf9LV1FJGloKDQ3lDuam0QQRCUB04T6JVmARSXweNCEHD0ugRPTFeEgA/j+i8QbUWoSrJRH9iMqiQb5MCRzdHr1ZjNOrzeYNyV16u4BjYbkoA/UoWnow5H/0rR1VOPJ0mNRycgI2NRSXTQaOhoF4nd5kG71o5qtwt1qR/B14DQlcHl8mG3e1CpVBiN2uD9RRCwp2vwhAeFVkSWl8HdLWR0D9bL2r/PwV+/FmKrODlJeE4UX0xn7P2uRBYlNAe3tbrQMulVRJjUyASzDCo0jPLMU1BQaG8od7U2iiQp1qzG6FXpMri3wI5beeE/dkQJe/+J+CxJiF4n5mXvYVozA+Pm7zCtmYHlrzdQF25Do5GwmPUIApRXOHG7lXPd4qgE/FEq3J10uAebsA01Y+uqpdggU+EPnn8jIpYKGXOWh/CNTixbXRhyPajL6hZdgUAAh8OD2+1Fr1dj0KsRRBFbugaPJSi0LLu8dEkwMHB4FBqtiK3Cx1+/FrJ/X2i4vPmiM7D3vRJZVFUKrZngbz2hVRWXlaW4DDaKIrIUFBTaG8pdrY2iPHAaJy5CR6RZgz8gs+eA8hJzXKi0uNOHIgPCUTm/BXcFho1foy3egd3uVuKuWhO1gBynQTvQAqPC2JehYrPoZafdTbnXj4CAyiWjK/Jj3ushfKMLyzYX+jwP6nI/+A9fOJ8vgM3uxhfwYzJp0RpU2Dpp8JhFhABYdriJ1akYOjqG8CgNfp/MuuUlbFpTgt/f9r8ANYXWdoxrZrSa0EqNUZJfNBUlFllBQaG9odzV2iiKyGocQRDoUeUymKPEZR0XcgD9zl/rXFWdJ2H9PHw+JaakrSAIApGJetJOjyRiVAS7YmF+mZUlpXZ22d1U+PwIgMopoz/ox7zHQ8QGF5btlaKrwg8+GY87GK8lCgImsx53Nx1eU1BomXe4Mfhg4LBI+nQwkaZT48xxs/T3Qhz2tv9d8EV3wt7vqqDQKtqBac2n4D/5bo+pccHkF3lFDnz+0Ihvaw1EUQipGm1tnWnT3uPaa69q7WG0KCfzGMePH8Ps2Z+flH21FY4+v0899TgPP3x/K44oNFG19gAU6kYRWU2jd3oYf28uZud+K/6AjKQkDTkmVCVZiK7yetcLBC1aqtIcfJHpJ21cCk1Dp5fo2juczj3DKMhzsHeXjdVFTvSiQKxGRZJRTbxOjTYgoHLIqBx+OBgsRuwzCvhMIl6zH4/Fj86oJtBHhW+jDZUtgGWbG0SI8akgIviosPsDbPijmJjTLMQnGVr34BvBF9URe7+rMK6fjbpoJ6Y1M7ANuA6k4yj2fJxEWTToNRJOj5/8Q05SKzMOKtQkVJ93gUCAorzdOG0V6E0WYpIzEMWWO5YpUybRpUsX7rvvoRrLFy36g3/+8wGWL19b53ZPPfU4NpuVF198tcXG1hzUd3x1MXHidVxxxfGLrGnT3uOjjz4AQJIkTCYzHTp0YNSoM5kw4XI0Gk11208++Qy9vuGis1WMHz+Gq666hquumnjcYztZzJv3A88880St5Y88MrXR83ss1+pURhFZbZRQfeicbNLijBi0Eg63n5yDDjrEKy8xx4LgalrSEMFta+GRKJwIoiiQmGokMdVIRZmH7N028vY52HcoaL0xq0U6x+lJMmrQu0DyyKjtMmq7H32hH1nw4DMIBMIk5DQDgd12RLd8ZO4TAAyiwFCzgb9XV1Ba7KFr77A2nQ01KLSuxrj+i6DQWv0ptoHXnzShJQoCyTF6du23sbfAroisegjF513OzvWs+f0bHNay6mUGczgDzrqM1C79Wm1cJ4LP50WlOnmTEMeDLMv4/X4MBgNwYhM9HTt24s033yUQkCkvL2Pt2jV88smH/PTTfN55ZxpGY/D3GhER0Qwjb5sYjSa++uq7Wst0Oh0nen6bgtfrRa1u29+5E0ERWW0USRIRBJQYmEaQRIFuqRbW7iple26FIrKOEdEY1qR2stbUwiNRaC4s4Rr6DIyke99w8rLsZO+2YbX6WJtnZy12wiM1dEwxkKhXobHKqK1+RC+o7TLYfZB/WFAfLZ8EIZjpsL9Fz9ztFZQe8tB/aBQ6vXRyD/IY8EV1wH7aNRjXfYG6eNdJF1qpsQZ27bcF62X1OSm7DDlCTWTl7FzPX3M+rLXcYS3jrzkfcsb4W9qM0Jo27T1+/HEuAJmZ/QF4++0PSEhIZMKEi3jmmef59tuv2bJlEw8//AhnnDGSl19+gfXr11FRUUFycjLXX38T5557fnWfU6ZMolOnDCRJ5Mcf56FSqbnttimcd96FvPzy8/zxx+9ERETywAP/ZNiw4dXbZWXt5Y03/sv69WvR6fQMGZLJvfc+QHh4BE899Tjr1q1h3bo1fPnlFwB89908DhzI5447buW1197ivffeZvfuXbz++tusXbuGxYv/ZObM2dX9z507h1mzPiMvLxeLJYzRo8/kwQf/r95zI0kSUVHRAMTExJCR0ZnBg4dw7bVXMXPmdCZPvgOobZ2aNu095s37gZKSQ4SFhTF69Nk88MDDTJkyiYKCA7z22iu89torACxfvpby8rImndOMjM5oNBrmzp2DSqXmkksuZdKkydVtrFYrb731GosXL8Jut5GcnMLtt9/F6aePAGDjxg28884bbNu2lbCwcEaOHM3tt9+FXq+v9xwIAtXn4OjvzdHnt4r6rlViYmKD1/jwd6cTKpWan36aT8eOHXn33dq/pfaCIrLaMCqVpKTJbgK908NYu6uUHblWzh8Yr/j2NwFBAKNRg8rSncDaMARnea0X6ipkAI+SgjrUUKtFOnQxk97ZxKEiN9k7bRTmOykr8bC2xMNmrUhSmoGUbgYMgoi6wo+6IoC6zI/YQPiQgIBREojTqSgocvPXggL6D40iKrZp7jStgS8yHdtpV2OqFlrTsQ284aQIraoMg9mFdmRZVu5PddAWkl7Isozf62m0XSAQYPVvXzfYZvVv3xCf2rVR10FJrWnx78PEideRnZ2F3W5n6tQnALBYwigqKgLg7bff4O6776Nr1ydQqzW43R66devOtdfegNFoZMmSv3nyyakkJibRq1fv6n5//HEe//jH9Xz00Ux++20BL774HIsW/cnIkaO5/vqbmT37c558cirffz8fnU5PcXERU6bcwrhxl3DPPffjdrt5++03+Ne//snbb3/A/fc/SG7uPjp27MStt04BIDw8ggMH8gF4663Xueuu+0hKSsJsNrN27Zoax/ntt1/zxhuvcvvtdzF06HBsNhsbN64/5vOVnt6BoUOH8+efC6tF1pEsXPgbs2fP4umnn6Njx44cOnSIXbt2AvD88y9z7bVXMX78BMaNu6R6m2M5p1dfPZEPP5zB5s0befrpx+nTpx9DhmQSCAS47747cTgcPPHEMyQnJ5OVtRdRDE5w7d69i3vvvYNbb53Co48+TllZKS+//AIvv/w8U6c+ecznoSHqu1aNXeMjj/OSSy7jgw8+Dpmi98eLIrLaMCqVqIisJtAlyYRKEiizezlY5iYuou2+7LU2ggA6nQqdToPb7aXc7kLV/WKMa2dWZhg8TNWtTwCMm77B5T4Xd+qQYCcKIYMgCETH6oiO1eF0+MjZYyNnrx23K0DWThvZu2xEx+tI7WgkMkOD9pAP857Gk0T07hWGdUc5dquPZX8U0bW3hYzuljYrIvyR6dj6X4Np3SzUxbsxrZqObdANLS60EqP0SKKA3eXnUIWH6DBti+4vFFGpWtcSKssyC2b9l+L9e5ulP6etjK/faDxWJSapI+dcc1+L/mYMBgNarQ6v11unxeKqq65h9OizaiybOPG66v9fccVVLF++lIULf6shCDp37sxNN90CwPXX38jMmZ8QHh7O+PETALj55kl8993X7N69i169+vDdd9/QtWs3pky5q7qPf//7cS6++AJycvaRmpqGSqVGp9PVOc5bb53CkCGZ9R7n9OkfcvXV/+DKK6+pXtajR8/GTk+dpKWls2LF8jrXFRQUEBUVxeDBg1Gp1MTHJ9CzZy8AwsLCEEURg8FQ4xhiY2ObdE4zMjK45ZbbAEhNTeWbb75k9eqVDBmSyapVK9i6dQuzZ39LamoaAElJydXbfv75DM499/xqa1tqair33/8Qt98+iYcffhSttu77js1mY/Tow9ZGvd7Ajz/WnQyrCpPJXOe1aso1BkhOTuGuu+5tcB/tBUVktWGCD57QKATammjUEp0TTWzLtbItp0IRWfWg1Uro9Rr8vgDl5U4CgaCM8ib0wt7/Wgxbf0A4IgmGrAvD0X0M6uLdaHNXot+5ANF+CGe3C6AFg7sVWg69QVWdKONAnoPsXTZKiz0UHXBRdMCFwaSie5IBcxMSz6otKoaMjGbb+nIO5DnZsamCkiIPp2VGotG2TfdBf0QattMqhdah3ZhWfVIptDSNbnu8qCWRhEgdecVOsgpsisg6CkkS2kRcX+uPoHXo1q1Hjb/9fj8zZnzCb78toKioCK/Xg8fjreVylpHRufr/kiQRFhZGp04Z1csiI6MAKCkpBWD79m2sWbO6xgt9FXl5edUv4E0d55GUlJRQVFTEoEGDG+yjqQQtznWvO+uss/nyy1lMmHAxmZnDGDZsOKefPgKVqv7X6eM5pxB04ystLQFg584dxMbG1nuetm/fRl5eLr/88lON4wgEAuTn76dDh451bmcwGPn008OZE08kcUtTr3FD17K9oYisNkxrz+6FEj3Tw9iWa2V7npVRfWNbezhtCkkSMRg0iKKA3e6p0zrqTehFeXwPVCVZCC4rss6ML7IDCCLehD74jdHot/+Idv8aRFcZ9j6XgUp5WQxVRFEgKdVI0hGJMvZnO3DYfKzdUUFyrAW9JCDU8eopA2hFxCg1Km+AXgPCCY/WsGNjOUUFLv5aUMiAYVGER7XN70dQaE2sFFp7KoXWjS0qtFJiDOQVO8kudDCoa1SL7ScUaQvPOUEQOOea+5rkLngwdzd/fPtuo+1GXzqF2JSMBtscq7ug0WjEZqudhMhqtWI0Hl/c7NEv+rNmzWT27Fnce+8DZGR0RqfT8dprL+P11pzwrS0qhBrLqo5LrsyeEwgEOP30Edxxx921xhAdHXPM4zyS+qw0x0t2dhaJiUl1rouLi+fLL79j5coVrFq1gpdeep7PP5/Bu+9OqzdpyPGeU0EQqidDtdqGJ48DgQDjx19aZ0bA+PiEercTRYGUlNQG+24qTb3GTc3U2B5QRFYbRpIEJflFE+mZZuHbv6CgxEW53UuYsf1mq2kqggAGgwaNRoXT6cHlaqS+kSDii+pUZ0fuTiMJGCKD6bAP7cG86hNsp12DrLO0zOAVThp1JcpYU+Hk9HADMjVjiKpuRfY0NWqNGo1WwOXykpJuJCxcw4aVJTgdfpb8fpAe/cJJ72xqk+6D/ojUoOvg2lmoD+3FtLJSaKlaRmilxRlYtu0QWQVKUeKjaQsiC4IvtCpN4y/r8R26YzCH18gqeDQGczjxHbo3ezr3tLR0li9fWmv5tm1bSEur3xKkVqvw+5sWerB+/TpGjBjJBReMAYIvzrm5uaSndzi+QVfStWs3/vxzIQkJifVafdRqNf7jqCdnNBpJSEhk1aqVDBgw6ITGmZ2dxfLlS7n++hvrbaPT6RgxYiQjRozkssuu4MorJ7B79266dete5zE0xznNyOjMwYMHa7jdHUnXrt3JytrTbIKpMeo6zqZc41MNxeenDSMIQpt5ALV1THp1dYD5jlylMLFOpyI8PHg+ysocjQusJuBN6I116GQCGhOS7SDmFR8iVRw44X4V2gZViTJGXRBPcmY4m0UfzkDNGR6PIFOSpsIdIWG3u3G5vOh0aoxGLeGRGjJHxxATr0WWYcu6MtYuO4TP2zaL8PrDU7H1n4gsaVCX7MW06mPwNW7JOB5SYoK/xaJyN45m+C22J9pC0otjQRRFBpx1WYNtBpx1WYvUy7r00ivIy8vjpZeeY9euneTk7OObb75k7tzva8T8HE1CQiJ79uxi375syspK8fnqD0NISUlh5coVbNy4gaysvTz//LMcOnTohMd+2WVXUlFRzmOPPcqWLZvZvz+PFSuW8cwzT1QLwISEBLZu3Ux+fj5lZaUEAk2/d9xyy2188cVnfPnlF+Tk5LB9+za++qp2Zrwj8fv9HDpUTFFREbt37+Krr2ZX1n/qysSJ19e5zbx5P/DDD3PYs2c3+/fn8dNP89FqdSQkJFQeQyLr16/l4MGDlJUFXSWb45z27z+Afv3688gjD7FixXLy8/ezdOkSli1bAsC1117Ppk2beOml59i5cwc5OTksXryIl19+4Zj201TqulZNucanGorUbOMoyS+aTs90C/sOOtiWa2Vwt1PTJUejCcZdBQIyFRVO/P7mNYP6w1OwDr8T06qPkWwHMa2ajr33BHyxXZt1PwqthyAIRMfpiI7TYbN7ydlup7zQjc0doMjjgwMQU5koIyJag8/nR6ORMJl0aLU++mVGsm+XjV1brRzIdVJRWsiA4VFYwlvOHe948YenYOs/EdPaz1GXZGFa9TG2QTc1u0XLqFMRadZQYvWQXeigR5piAa4iFCcSU7v044zxt5z0OlmJiYm8//6HvPfe29x99+14PB5SU1OZOvVJzjrrnHq3GzduAmvXruHGG/+Bw+GoTuFeFzfeOIn8/HzuvfcOtFod48dPYOTIUXW6KR4LMTExvP/+J7z99uvce+8deDxe4uPjGTp0WLUgnTjxOp566jGuvvoy3G4X3303r8n9jxkzFo/HzezZs3jzzf8SHh7O6NFnN7jN3r17GDPmXCRJwmg00aFDB66//sZaxYiPxGw2M2PGJ7z++qsEAn46dcrg5Zf/S1hYOAC33jqZ559/lssuuxiPx8Py5Wub7Zw+99xLvPnmf3nssUdxuZzVKdwBOnfuwrvvTuO9995m8uSbkWWZpKRkzj773GPaR1Op61oFv58NX+NTDUFu7/kTQxyXy4vV6mqx/vfs2cXQoQMwmy2sXLmhxfZzMigqc/Pi19sRRXj48m7oNKH38D5eJEmojLsScTo9eDwtLMy9TkxrP0NdvBsZcHY5F087yDwoCBAWZqC83KG46R5BwC8HE2XsDibKqMJoUpHSwUBiqgGVRkSvU6NSqXC5PBQVONmwqgS3K4AoCfQeEE5Kh7ZZb00qy8O09jMEvwdvRDq2wTc1e8zhnKX7Wb+njFF9YhgzpO4X3LbC9Okf8cILzzBu3ASmTZveYvuRJIHIyJP/nXC5XOzZs5fo6Hg0TXARrI9AIEBR3m6ctgr0JgsxyRmn7MukgsKpgsfjpri4gE6dOlYWba4f5W7Qxgk1V4rWJCZcS0yYlkAAdu23tvZwTgrBuCs1Foser9dPebmz5QUWgFqPbdBNuFMGIQCGnQvQb/8JjsG9QyF0ECWBpDQjw8+KY8R5caR2NCJJAnabj+2bKlj0cyFb15VRVOjAYXej0ahITrMw/Ox4ImM0BPwyG1aWsmFlSbNbV5sDf3gytgH/CLoOlmZjWvkx+NzNuo/UmGDgflahEpdVRShasY5EFEXiUruQ3mMgcaldFIGloKBQA8VdsI0jSaKS/OIY6Jlm4c+NRWzLsdK7Q3hrD+eY2btnDzNmfowoilgsYdx557089NA9REREAjB+/KX06dMPAK1WhV6vwefzsWrVOh577FE++ugz9Ho9r776QrUrQk7OPj78cEbzD1aUcPS+tDLz4E9o81YjOkvbRebBr7/+gr179xIZGcUNN9xcnTXK5/Mxc+YnFBUdJDU1nauumojVauXdd15DFFUIgsDNt9xKeHhkKx9By2EJ19BnUDBRRm62nX27bditPvKyHeRlOwiP0pDSwUBymomICB0jzkpg0/oS9my3kptlp6zUw8Dh0RhNjT9+vv76C7Kyal+H7du38ckn04iJjkGURO6//58nfFz+sGRsA64NWmhLszGt/Ajb4Jub7bucGmsEYH+RE58/gEpSXshDXWQpKCgoNIQisto4VckvlLisptErPYw/Nxax54AtJF9kIqMieOSRqWi1OmbP/pxVq1ai1xt47LGnq9uo1SJ6vRaQsdlc+HwBfvxxPunph+tgVL10bt++lT///L3lBiwIuDuNImCIajeZB7Oysigvr+Dhh//F/Pnfs2bNaoYMGQrAxo0biAiP4MYbJzFjxsfs2bOT9PROPPDgo0iSxLKlf7Hk778Yc9G4Vj6KlketEenYxUyHziYOHXSTtcvGwXwnZYc8lB3ysGNTBcnpBjp1tXDa4Fhi4nSsWVaMtczLX78U0GdwJIkphnr737cvm4qKuq8DwMCBg7j88qub9Zj8YUnY+v+jUmjtw7ziI6xDmkdoRVk06LUSTrefvGIn6XHGZhhxaKN4aigoKLRnlDtcCKBWK7N9TSUl1oBJr8LtDZBd6Gjt4Rwz4eGR1fUwVCoJSZJwu5089dRU3nrrv4Abo1GL2+2loiIosLZv30pqalqdvsErViwjM3NoreXNzeHMg8aQzzy4c+cOevYIFkvs2aMve/bsql63d+8uevTsFVzXsze7d+9BkoLXCcDpcpKQmHzyB92KVCXKGHR6NGdelEBGdzMarYjHHWDvDhu/zc1n8W/7kVQiZ1+USniUBp9PZu3SQ2xZV1pdB+Zo9u7dTY/udV8HgHXr1vDii8/y+28LmvV4gkLrWgIqLaqyfZhXfAjeE4+LFQSBlCqXQSWVO6A82xQUFNo3isgKAZQHUdMRBYEeqUELyvac0E3lXlRUxOZNG+jffwBPPvkfnnvueYYOHcJnn31OebkTt/twGuiff57PeeddUKsPWZbZvHkjvXr1PSljrso86DfFInpsmFZPR3Vwx0nZd3PicDjQ6YMWFoNRj91uP2KdE50u+KKs0+lxOILr8vJy+M9/nuSPP34j9STVKWmL6A0quvUJ5+yxiZyWGUlElAZZhoP5Lpb8XsjiX/eTkm4iPSOY7CBrp42lCw/idNROa+501n8d0tPSeeqp57j//ofZvGUT2VnZzXoc/rBE7AOuJaDSoSrLwbzyo2YRWqmVqdyzFZGFWi21yRpqCgoKCs2FIrJCAEVkHRu90sMA2JFnJRSTZzocdt599w1um3wnRqOO5OQ4VJJI374D2bNnb434vK1bt5CWmoZeX9vtaufObXTsmFFvFfqWIGCIpGLY7XijMhD8XowbvkKzb8VJ239zYDQacTmDVlCH3YHReNity2Aw4HI5gaAIMBiC65KTU3n00ccZO/ZSfv55/skfdBujOlHG2cFEGSlViTKsPjatKSE3247eELyvlR3ysPiXQg4eCJ5XOSBTfNCFWojHWhpADsi1roNOr0elUqNSqenbtx95+3Oa/Rj8lqOE1ooPwes8oT6r4rL2HbSH5L2pOVGeawoKCu0dRWSFAIIgKA+kYyAj0YRGJWJ1+sgvabn09y2B3+/n7bdf5/LLr6Rr106IIpSV2bDa3GzZsoW4uLga7XNysti8ZTPPPfcUubn7eP/9t6vXrVix/KS4CtZCrcc2uCrzoIxh5y/BzINyaGQe7Ny5C1u2bgVgy9aNZGR0rl7XsWMGW7dsBmDr1s107pxRo7Cn0WBAo2179aBaE0u4hr6DIjn74kR69AvDaFLh98k4HYfjTL2eACsXF7NmSRG/zzvA8j+KcFckUFEUz+/zDrB5Y06N6+B0HHYF3rVrJ7GxsS0ydr8l4bDQKs/FvOKjExJaiVE6JFHA7vJTXN4yhY9DBeWZpqCg0N5REl+ECGq1kvyiqahVIl2STWzOrmB7TgVJUfrWHlKTWbFiKbt27eB///ua7777itGjz2XevDlotTpUKhW33XYHAHPmfMfQocM5//yLOP/8iwB46qmp1etlWWbTpg1cc821rXMgR2QeNGz/CW3uKkRHVebBti1COnToQFiYhRdffJbIyCjOO+9CZs78hGuvvZE+ffqyYUMwFig1NY2OHTuTnZXN19/MQhRENFo11113U2sfQptErRHp2NVChy7mYKKMnVYK82tOghzIqz0pEnQl7EBiXET1dVi9ZhV//fUnkiTSqVNnunTp1mLj9lsSsA+8DuPqGZVC60NsQ25BVh/7fUUliSRG6cgtcpJVaCMmPLSzcJ4IishSUFBo7yjFiEMEj8dHefmJuarURXsqRnwka3aWMHtRLrFhWm6/OKO1h9MoggA6nQqdToPb7cXp9LabtP3q/I0YN3yJEPDhM8VhP+3qNpt5UClGfHJxOnzs221j3x4bXk/DJ1ynlzjrogQEsXXieCRrAcbVMxB9LnxhSdiGTDouobVgTQFLtx5iYJcIrhzZNuP3WroYsVotER5ef2bJlqa5ihErKCiceijFiNshyqzfsdE91YIowMFyNyXWtu2Wo9FIWCx6VJJERYUTh6P9CCwAb2IfrJm3EdAYUdkKMa/8CMla0NrDUmgDVCXK6J8Z1Whbl9PPoeLmLRB8LPjN8dgGXkdArUdVvh/T8mkI3mPPYJpWGZcVitlPmwvledYyrFmzmszM/lit1tYeSpth3rwfOPvsESd9P9Omvce1117VYvvLzOzPokV/AJCfn09mZn927mw7iaZC6bt45LlsbhR3wRChKi5LcRlsGgadivQ4I3sL7GzPrWBYj+jWHlItJEnAYNAiigJOpwePp/1eW39EKtbhd2Ja9QmS7SCmVZ9g7zUBX2zX1h6aQhvA42lavJ7b2bq/kYA5HtuA6zCtmYGqIii0bJmTkNVNt8qkxAatX8XlbuwuH0bdqfcYbi8iSw7IeAttyA4vgkGNOs7UopbWp556nB9/nAuAJKmIi4tj1KgzmTRpMnp923eLz8/PZ8KEi5Akif/9b36NWMri4iLGjbsQv9/Pd9/NIzExsVn2efbZ5zJs2OnN0tfJZvz4MRQU1CyFEhMTy9y5PzN//gLM5ro9QtasWc0dd9zKr78uwmw2n4yhHjc7dmxnxoxPWL9+HRUV5URFRdGpUwbjx1/K6aePCPkMpKfe3T2EUUTWsdErPaxSZFnblMgSBDAYNGg0KpxODy5X7fTV7ZGAIRLrsNsxrpmJ+tAejBu+wtnlXDxpQ1p7aAqtjFbftJfuprZrSQLmuCOEVn5QaA2ZhKxpmtAyaFVEWTQcqvCQXWinZ1pYC4+47dEeRJY7uwz78jwC9sOJb0SjGmNmMtr08Bbbb2bmMKZOfQKfz8f69ev4z3+exul08s9/Ptpi+zxW/H4/giAginU7S0VHx/DTT/O4/vrD8as//jiPmJgYCgqa18tBp9M16tLVlrn11imMG3dJ9d+iGPztREW1/DuNLMv4/X5UqpaRCosX/8m//vVPBg0awmOPPUlSUjLl5eXs3r2L999/h379+tcpElt6XM2J4i4YQrSHB9PJpCqVe26RA4e7bQgZnU5VHYtQVuY4ZQRWFbJaj23wzbiTB4Zk5kGFliEqWouuEQFlMKpITTcjtVJM1pEEzHHYBl5PQG0ICq0VHyB4mu7+V1Uva++BU69eVnuoj+XOLsP6e1YNgQUQsHux/p6FO7usxfat0WiIioomLi6e8867gPPOu4DFi/+ss215eRlTpz7C2LHnM3LkMCZOvIIFC36u0WbKlEm88sqLvPnma5x77iguvPAcpk17r0abWbM+Y+LEKxg1ahgXX3wBL774HI4jMnxWucr9/fdirrrqUkaMyKxlgTmSCy+8iHnzfqixbP78uVx44dgay/x+P88++ySXXHIRI0cO5YorLuHLL2dVr3e73Vx99WU899zT1cvy8/dz1lkjmDPnuxpjq6LKjW/u3DmMG3cho0cP54UX/oPf72fmzOlceOE5XHDBWXzyyYfHdA4aYt26NQwfPphDh4prLH/99VeZPPnmBrc1GAxERUVXfyIiIoD6Xdzy8/O5445bATjnnJFkZvbnqaceB4LiZObM6UyYMJaRI4fyj39cycKFv1VvW+Xit3z5Um64YSJnnDGEDRvWNbodwNKlf3P55eMZOXIot99+KwcO5Dd4XE6nk2effYphw07n1VffYMiQoSQnp9CzZy/GjbuEzz77EpPJ1OC48vJyeeih+7jggrMZPXo4N974D1aurFkyZvz4MXz88TQee+xRRo8ezkUXnctXX82uNZ6ysjL++c8HGDlyGJddNo7Fixc1OP6mooisECL4cGrtUYQOEWYNCZE6ZBl25LauX7BaLREWpketVlFR4cJu97SruKtjQpRw9LkMR9fzAdDmrsK4fjb42nbsnELLIYgCPfuHN9ime78w/P4AZrMOvV7V6vfCgCm2MkbLgKriAKblHyB4miaaUmMrixIXnnoiS6Npm5OFsiwje/2NfgJuH/ZleQ32ZV+WR8Dta7y/ZngIaLVafL66J+vcbg/dunXnlVdeZ9asrxg3bgJPPjmVzZs31Wj344/z0Ov1fPjhDO688x4+/ngaK1Ysr14vigL33/8Qs2Z9zWOPPcmaNat4663Xa/Thcrn49NNPePTRx5g162siIiLrHfMZZ4zEaq1g/fp1ANWuYqefXjN2SpYDxMbG8uyzL/DFF99w002TePfdt/jttwXVx/7kk8/y44/zWLToD/x+P088MZUBAwYyfvyEeve/f38ey5Yt5bXX3uKpp/7DvHnf88ADd3Pw4EHefXcad9xxN++//w6bN288pnNQH6edNoCkpCR++ulwDUWfz8fPP//IRRdd3KQ+mkpcXBzPPfcSAF999T/mz1/A/fc/CMB7773NvHk/8PDDjzBr1tdcddVEnnji36xdu6ZGH2+99TpTptzF7NnfkpHRudHtCgsL+L//e5Bhw4YzY8YXXHzxeN55580Gx7lixTLKy8u49trr621z9GTM0eNyOp0MGzacN998l08//YIhQ4by0EP31hL4n302g4yMznz66Syuu+4mXn/9lRrfb4CPPvqAs846h88+m82wYafzxBP/ory8vMFjaApt39amUI0gCGg0KtxtxCoTCvRIs3CgxMX2XCunZUSc9P2LooDRoEFSiTgc7Tvu6pgQBNwZowkYojBu+BJ18e5gnFYbzjyo0LIkJBsYMBy2rC3DdUTslU4v0bN/OAnJBtxuPx6PE4NBjcWsx+lq3d9UUGhdj2n1p6isBw7HaGmMDW5XJbL2Fzvx+gKoVafOfKdG0/ZeO2RZpnzeLnwHm0f0BhxeSj7b1Gg7VZyRsDGdj9uyt2XLZhYs+JmBAwfVuT42NpaJE6+r/vuKK65i+fKlLFz4G7169a5enpGRwS233AZAamoq33zzJatXr2TIkEwArrpqYnXbxMQkbr11Ci+++BwPP/xI9XKfz8fDDz9C585dGh23SqXi/PMvZN687+nX7zTmzfue8867sJb7l0qlZtKkKTX2vWnTBn7//VfOPvtcALp06cptt93Oc889zTnnnM/+/Xm8+OIrDe4/EAjwr389jtFopEOHjgwYMJB9+/bx6qtvIooiaWnpzJz5KWvXrqFXrz5NPgcNMXbsOObN+4F//CMoKpYu/Ru328VZZ53b4HZvv/0G77//TvXfkyffyZVXXl1ve0mSsFiCXjwREZHV7nZOp5PZsz/nrbfeo3fvvgAkJSWzYcN65sz5lv79B1T3ceutU6qvfVO2++67r0lMTOLeex9EEATS0tLZs2c3M2dOr3ecOTnBAvKpqenVy7Zu3VJthQN4+unnagjvI8cFEBYWXuP7NnnyHSxa9Ad//bWIyy8/nHSkT5++XHfdjZX7S2PjxvXMnv15jb7GjBnLuecGJ36nTLmTr7+ezdatmxk6dHi9x9AU2t7dTqFBFJF1bPROD+P3dQfZe8B2Ul9mBAH0ejVarRqXy4PN7j51LVcN4E3sg1UfFnxJrcw8aDvtagLm+NYemkIrkJBsID5Rz6FiN26nH61eIipaWyOZgCyD3e5FJfnRG9TotGocTg8+X+u4nAZMMUGhtWZGpdD6AFvmrQ0KrUizBoNWwuH2k1fspEN8w6KsvSBJAipV27RkESJeIkuW/MXo0cPx+/34fD7OOGMkDzzwzzrb+v1+Zsz4hN9+W0BRURFerwePx1srScaRhb4hGO9TWlpS/feaNauYPv1jsrP3Yrfb8fv9uN1unE5ndV9qtbpWPw0xdux4Jk26gSlT7mThwt+YNm06fn/tCZPvvvuGH374HwUFB3C73Xi9Xrp0qZkw6ZprrmXx4kV8/fVs/vvfNwkPb3hCNSEhEaPx8G8uMjIKUZRqxJBFRkZSUnJs56Ahxoy5uNo61qtXH+bO/Z6zzjqn0W0nTryOMWMOu1E2dmz1kZW1F7fbzd13315jefB81qwz2K1bj2PaLjs7m169eteYLOjdu88xjzEjozMzZnwBwOWXj6/1fThyXBAUgB9++D5LlvxFcXFR9TU5Oq7v6LH07t2H2bNn1Vh25HdXr9djMBgpLS095mM4GkVkhRhtcRawLZMYpSfcqKbM7mXvATtdU1o+045Wq0Kv1+Dz+SgrU+otNYY/Ii2YeXDlx0j2IsyrpmPvPQFfTOMzogrtD0EUiI5tPFDd5w9gtbrRaCSMBg1+fwCHw0ugFX5wAVPM4WQY1oJGhZYgCKTEGNiRZyWrwHbKiKy2+vwSBIGwMZ2hCULdW2CjYsHeRttZzu2IOt7UcCOVeMxWrP79B/Lww4+gUqmIiYlBpVLX23bWrJnMnj2Le+99gIyMzuh0Ol577WW83pqxZEdbkARBIBAI/o4OHMjn/vvv5pJLLuW226ZgsYSxYcM6nn32qRpuilqt9piOpVOnDNLS0pk69VHS0zvQqVNGrRTkv/22gNdff4W77rqP3r37YDAY+PzzGWzZsrlGu9LSEnJyspEkidzcXIYObXjftRMmCHUukytjhZt6DhoiMjKS008fwbx5P5CYmMzSpUt4550PGt0uPDyclJQTr6cXCASP5ZVX3iAmJqbGOo1GU+PvI4VfU7Y7HrfXlJQUAHJysquthRqNpsFjPVqQvvnma6xYsYy77rqX5OQUtFotjz76MD6ft54eDnP0d7X2b+DwsZ8Ip46PQjtBFAUlAcYxIAgC3dOC7mfbcitadF9qtYjFokOrVWGzubDZTuG4q2MkYIjEOvwOvFEdEfwejOu/RJOzsrWHpRACeDx+KqwufP4AFkvrxWtVWbQCGmNQaC17H8Ftq7d9dVxWwakTl9VWRRYEnxWCWmr0o06yIBrrFzYQzDKoTrI03t9xfFH1ej0pKakkJCQ2KLAgGOs0YsRILrhgDJ07dyEpKZnc3Nxj2t+2bdvw+fzcfff99OrVh9TUNIqKihvfsAlcdNE41q5dzUUXjatz/fr16+jduw+XXXYFXbt2IyUllby82vFwzzzzJB07ZvDYY0/x9tuvk5XVuAg+FprrHFx88SX8+usC5sz5luTkZPr27des46xCrQ5+LwKBw5agDh06otFoKCw8QEpKao1PXFz9niNN2a5Dhw614vyO/vtohgwZisUSxsyZnx7vYbJhwzrGjBnLqFFnkpHRmaio6DoTbtQ1trS09OPe77GgiKwQpC0/qNoivSuzDO7Ms1bPzjUnoggmkxajUYfb7aOiwtVqrkuhzOHMgwOCmQd3/Ix++89K5kGFRpFlcLmCvz1RFLGY9a2SYCFgjK4UWqag++vyD+oVWmmVImvfQUezJEBo6whC+8iQK4gCxszkBtsYM5NbtF5WU0lJSWHlyhVs3LiBrKy9PP/8sxw6dOiY+khOTsbv9/H117PZvz+Pn36ax//+902zjG/cuEv4+effufji8XWuT0lJYdu2bSxfvpScnH28//47bNu2tUabb775ks2bN/L4409x3nkXMHr0WTz++L9qWetOhOY6B5mZQzGZTHzyyYeMGdO8CS+OJD4+AUEQ+PvvvygtLcXhcGA0Grnmmmt57bVXmT9/Lnl5uezYsZ1vvvmS+fPn1ttXU7a75JLL2L8/j9dee4V9+7L55ZefGuwTglkTH310KkuW/MX999/N8uVL2b8/j127dlbHctVXAqCK5OQU/vxzITt37mDXrp089tijdb7jbdy4gZkzp5OTs49vvvmShQt/azCurTlRRFYIooisY6NjggmdRqyOf2guquKuwsIMBAIByssdSrzciSKqcPS5HEfX8wDQ5q7EuP5LJfOgQpMIyDJ2uwe7w41Wq8Js1qKSTu5j7kihJdkKMS+v26IVH6lDJQk43H6Kyt0ndYytgUajCvnU7VVo08Mxn9WhlkVLNKoxn9WhRetkHQs33jiJrl27ce+9d3D77bcSFRXFyJGjjqmPLl26cs899zNz5nSuueYKfvnlJ26//c5mGZ9KpSI8PKLeekeXXHIZo0aN5t///j9uvvk6ysvLufTSy6vXZ2dn8eabr/PQQ49UW1Ueeuj/sFqtNZJFnCjNdQ5EUWTMmLEEAgEuvHBMs43vaGJjY5k0aTLvvPMmF154Ni+//AIAt912OzfdNIkZMz7hqqsu5d577+Dvvxc3Wvi5se3i4xN47rmX+PvvxVx77VX873/fMGXKHY2Oc9SoM5k2bTo6nY4nn3yMK66YwJ13TmbNmlW1kl7UxT33PIDZbGbSpBt58MF7ycwcSteu3Wq1u+aaf7B9+zauu+5qPv74Q+6++z4yM4c1Or7mQJBPhSm0dkhJiQ2//8Qv3Z49uxg6dABms4WVKzc0w8jaJp/9ns2GveUM7R7FeQNPPKlCMO5Kjd8XwO7wtIiF7FRHnb8B44YvEQJ+fOZ47P2uRta1bEydIEBYmIHyciWWrj2g0UjodRp8fh8Oh/ekXlPRfgjT6k8RPTb8plismbcia2t+fz/+JYucgw4uPT2JzO5tp2D69Okf8cILzzBu3ASmTZveLH2azTp0uobd204WLpeLPXv2Eh0dj0ajPe5+5ICMt9CG7PAiGNSo40xtwoKl0Hb5z3+epqTkEC+//FprD+WUYPz4MVx11TU1skOeKB6Pm+LiAjp16thooWvFkhWiKNasY6OqMPGOvBOrl6VSBeOudDo1drsbq82tCKwWwpvYF2vmbdUxLuaVHyJaCxrfUEGhkmC8lpNAQCbMokenO3m1BgPGqKBFS2tGsh3EvOx9BFfN+09VUeLswqYXMg5V2uMzSxAFNAlmtJ0i0SSYFYGlUC82m5WVK1fwyy8/1UgvrtC+UURWiNIeH1gtSbcUC5IoUGL1HJdrjiCAyaTBZArGXZWXO/F6lVihliaYefAO/MYYRLcV86rpqIp2tfawFEIIWQanMxivpZIkzCbdSYsNqiG07EVB18EjhFZq3KlRlFitlhAVAaJwCvPQQ/fz0EP3ccklE2rUZ1Jo3yhv6iGKujIzkeLt2TR0GolOCUZ27rexPbeCmLCYxjeq2lYXTMnudnsVN7JWIGCIwjr8doxrZqI+tBfj+tk4u56PJ7XuApwKCnURkGVsdg8qlYRBr0arVeF0ePC3sCU6YIisLFg8o1poWTNvRdZZSIkOiqxDFR5sTi8mfdtwp2tutFrlVUPh1Obdd6e19hBOSebMmd+q+1csWSGKIAjKg+sY6VnpMrg9p2kugxqNRFiYHrVaRUWF86THdCgcRlYbgpkHk6oyD/6EbscvSuZBhWPG5wumfPd6fZjNOgwGdYu7EFYJrYDWcoRFqwK9ViImLBgTlFXQfl0GlWeVgoLCqYgiskKYthJEHCr0TAuKrP2HnGzdV86mrHKyCuy1YqokScBs1qHXa3A6PVitrmZJMqJwgogqHH0vx9klmHlQl7MimHnQr2QeVDh23G4/5RXBbKNhFj1abcu6EAYMEUcIreLKGK0KUirjsrIK6q+pFcoEXQWVVw0FBYVTD+XOF8Iofu7HRphRTZQ5WKH8q8V5fPt3Hp/+ms1r/9vJ1pwKBAGMRg0Wix6vNxh35fH4G+lV4aQiCLg6n4mt39XIooS6eBemVdNrJRRQUGgKsgwOhxer1YVarcJibtl4rYAhAtug6wnowpAcxZiXvUdGRLDsQ3uNy1ImAxUUFE5VFJEV4igPsKazKauMQ9baVo8Kh4+vFuWSXeQCoKzMgcul1Ltqy3iT+mEdcisBtaEy8+BHiNbC1h6WQojiD8jYbG6cLi96nRqTUYPUQhNYAX2lRUsXhuQ4xKD9XxAm2Mk/5MLbDouYK66CCgoKpyqKyApxtFpFZDWFQEDm+2X5Dbb5bnEOVqtbibsKEfyR6ViH34nfGI3orsC86hMl86DCCeH1+rHaXPj8/kqXYVWLxGsF9OFYB16PXxeGxlXCPWELMMk2covaV1yWVtt+ChArKCgoHCvKFFOIo1KJqFQivnY4A3qs7Nu3l7feeg1JUqHT6fjnP//N77//wu+//4pgSERKH9vg9uV2L/sOOugQbzxJI1Y4UQLGKKzD78C4eibqksrMg93Ox5OiZB5UOD5kGVwuP263E4NBjcWsx+nyHJfr8Ndff0FW1l4iI6O44YabUamCk2IbNqzh1wULCFfL3NAxQLTeyl2WBTzz1l9I/qBFdvLkO0lP79isx3ayUSYBFRQUTmUUS1Y7QHmQBUlKSuWll97g+edfpUuXbixb9jfz58/lpZfe4MqJNzepD5tTcRMMNWS1AduQm3En9Q9mHtyuZB5UOHFkGex2L3a7G61WhdmsQ6Vq+iNz375sKioqePjhf5GQkMCaNaur1/XtO4AHH3qEW+59lE/36bGJZmIkK1N7V/D8Y1N5/vlXQ15gCYKARnNy6pEpNMyUKZP4739fau1hNBtPPfU4Dz98/zFtk5nZn0WL/mihEYUG48ePYfbsz5ulr+O5BqciiiWrHaDTqbDbj73AbntDpTr8dXa5XCQnp5KQkIjX60YtNm0W2qRXfhIhiajC0fcKAsZo9DsXoMtZgeQoxd5nAkia1h6dQgjj8wewWt1oNBJGgwa/P4DD4SXQiF/x3r276dG9BwA9e/Rl6bLFDBkytEYbq9VKscPD/h43EbVhJtFqG4fmPM3/yhO56ua70Gi0LXZcLY1O1/5dBQOBAIWFB3A4HBgMBuLiElo0k+JTTz3Ojz/OBUCSVMTFxTFq1JlMmjQZvV5f73bPP/9yjedjW2fNmtXcccet/PrrIsxmc63199//YLtz69+4cQOTJ9/M4MFDeO21t1t7OI3SHq9BSxA6vzqFehFFEbVawutVMuGtW7eaTz6ZhiRJXH75VQwYMIgpU25BlmU6nPkI9nqyfcuyjE4tkhxd/4NKoY0jCLg6n4XfEIVx41eoi3diWjUd+2lXI2trP6gVFI4Fj8eP1+tHq1Vhsehwub243b56XzScTgfh4REAGIx67Pba2QPXrl1Nv34DiI6L5h37+Uw2/kKM1spVMcX8Me9rzpvwj5Y8pBalvXtYZGfvZfnyJTgch6+rwWAkM3N4i1ohMzOHMXXqE/h8PtavX8d//vM0TqeTf/7z0VptfT4vKpWasLCwFhtPQ3i9XtTq5v8emEzt734+d+73XH75lfzwwxwKCg4QH5/Q2kNqkPZ4DVoCxV2wnaBkGQxy2mkDeeON9xk+fATz589hwYIf+frrr/n4408p2/1L3RvJMoIg4PbJfLIgi6JyxSoYytTKPLhCyTyo0DwE47V8VFS4UEkiFrOuXpc4g8GIyxlMZOGwOzAaa8d6rl27mv6nDUISBYwREbxZcS4OdTgmwcsZ3g1gL2nR42kpJElo0VT4rU129l4WLlxQQ2ABOBx2Fi5cQHb23hbbt0ajISoqmri4eM477wLOO+8CFi/+E4Bp097j2muvYu7cOUyYMJYzzshEluVa7oLjx4/h448/5MknpzJ69HDGj7+QxYv/pLS0lIceuo/Ro4czceIVbNu2tXqb8vIypk59hLFjz2fkyGFMnHgFCxb8XGNsU6ZM4uWXn+e1117hvPPO5O67p/DMM0/wwAN312jn8/m48MJzmDt3znGdg6Nd1aZMmcQrr7zIm2++xrnnjuLCC89h2rT3Guzjo48+4IILzmbnzh0AvPXW61x++XhGjhzGhAljef/9d/D5vDW2+fjjD7nggrM488zTefbZp3j77Te49tqrarSZN+97rrxyAiNGZHLllRP45puvGj0ep9PJ77//yoQJlzN8+BnMnz+3xvo1a1aTmdmfVatWcMMNExk5chiTJt3Avn3Z1W3y8nJ56KH7uOCCsxk9ejg33vgPVq5cUe8+m3JdFi78jYkTr2DkyKGce+5o7rxzMk5nsLbg0degobanMorIaicEszi19ihaF683aKYSBIiICCMmJgqNRovd7kOWJbwlO7n2rFTCjDUFqU4VYFiPKHRqkfxDLt6bt4e/NxfVKlKsEDrUmXmweHdrD0uhnRCQZWx2D3aHB61WjdmsRSXVfJx26NCJrZUvqVu2biQjo3ON9VarFbfbSUxsDABJESrKZSPz9RdjF3SEqwKoF70dkkIrFCf9ZFnG6/U2+nG73SxfvqTBvpYvX4Lb7W60L7kZ/K20Wi0+3+FY4ry8XH7//Veee+4lZsz4ot7tZs/+nD59+vLpp18wbNgZPPHEVJ58cirnn38hn346i+TkFJ58cmr1GN1uD926deeVV15n1qyvGDduAk8+OZXNmzfV6PfHH+chSRIffPAx//znv7j44ktYvnwZxcVF1W2WLl2C0+ngrLPOPeHjP3K/er2eDz+cwZ133sPHH09jxYrltdrJssyrr77E3LlzeP/9j+nSpSsQnBSZOvVJvvjiG+6770G+//5/fPHF4filn3/+kU8//Yg77rib6dM/Jz4+nu+++6ZG33PmfMd7773N5Ml3MHv2t0yefAcffPBuLdF0NL/99gtpaWmkpaVz/vkXMm/eD3V+N957723uvvt+pk//DEmSeOaZJ6vXOZ1Ohg0bzptvvsunn37BkCFDeeiheykoOFDnPhu7LsXFRUyd+igXXXQxX3zxLe+88wGjRp1Z57iOpe2phuIu2E4QBAGdTo3T6W28cTtl3bo1zJnzDZIkEhYWzr33PkhZmZ3777+TQCDAmDEX06djBNtW/UzHocM4WFLBrJnvkxylZcVOmf6DR1Ku68XO/TZ+W3eQ7blWxg9LIjosdOMiTmUCxiisw+7AuGYG6pIsjOu+wNntAjwpA1t7aArtBJ8vgNXqCsZrGbX4/D4cDi+yDGlp6VgsFl588VkiI6M477wLmTnzE6699kYgeL/q129AdV9mMWgVWbLLSoENbu8VgeQsRb3obbwjbwdjVKsc4/EQaiJLlmXmz5/DwYPNY/F2OOx8/vknjbaLjY1nzJhxxx27tmXLZhYs+JmBAw9nU/V6vTz++DNEREQ0uO2wYcO55JLLALj55kl8993X9OjRk7POOgeAa6+9nltuuYGSkkNERUUTGxvLxInXVW9/xRVXsXz5UhYu/I1evXpXL09OTuGuu+6tsa/U1DR++mk+1157AwDz5//AmWeejcFgOK7jrouMjAxuueW2yv2l8s03X7J69UqGDMmsbuP3+3nyyals27aVDz74hNjYuOp1N910S/X/ExMT2bcvm99+W1A95q+/ns3YseO46KJxANx8862sWLEcp/Nw2YVPPvmQu+++n9Gjz6rsJ4msrCzmzPmWMWPqz278ww/fc/75FwJBd1Cn08GqVSsZPHhIjXaTJ99B//7Be8Z1193I/fffjdvtRqvV0rlzFzp37lKj7aJFf/DXX4u4/PKa1jaAPn36NnhdcnL24ff7GDXqTBISEivPceda/QAUFxc3ue2phiKy2hGnsshSq0XOOedMzjvvLOx2d3W65UsvvYJLL72iRtsrr7y6+v9jRrxVY50sy6zaUcIPy/PJK3by3vw9jO4by9DuUYgtVJxUoeWQNQZsQ27BsPFbtPvXYtj+I6KjBFeXczjlTb8KzUYwXsuJTqcizBJM+e52+7n88qtrtKsSWAAjRoyqsa5/91R+2Z6DrDZz9a0P4RcciMs+QbCXBIXWiDvA1PaFllaratHkDy1HaNwPliz5i9Gjh+P3+/H5fJxxxkgeeOCf1evj4xMaFVhQ8yU4MjL4verUKaPWspKSEqKiovH7/cyY8Qm//baAoqIivF4PHo+3VsKNbt161NrXxRePZ86c77j22hsoKSlhyZK/eOutht35jpWjX+qjoqIpLa1pBX7ttVfQaNR8+OGn1fGSVSxc+BuzZ88iLy8Xp9OB3++v4eKbk7Ov1rtEjx49WbNmFQClpaUUFhbw7LNP8dxzT1e3CfZjqnfc+/Zls3XrFp5//mUgmMDr7LPPZd6872uJrIyMwyIqKiq6cr8lxMcn4HQ6+fDD91my5C+Ki4vw+/243W4KCgrq3XdD16Vz5y4MHDiYiROvJDNzKIMHZ3LmmWdjsVhq9XMsbU81FJHVjlCpJFQqCZ/v1EmAIYpgMGjRaFQ4HB5crhMTmYIgMLhbFF2SzXy1OJdd+238uraQbbkVXDIsiSiLYtUKOaozD0ah3/krupzliM5SHL0ngBRaM+4KbRdZBqfTh8ftR29Qo9Wocbq8TU5IpNOIxIapOVjuJfugiz5pFrxDb0K97BME+yHUi9/GO+J2MEW38JGcGKFmxYLgfX/MmHE13O7qo6DgAL/++mOj7c4558JGkxeoVMeegbF//4E8/PAjqFQqYmJiqmuvVdFQlsGj911F1RhqZiAMLqty+Zo1ayazZ8/i3nsfICOjMzqdjtdeexmvt+YzV6/X1drXhRdexDvvvMmmTRvYtGkTCQmJ9OvXv0njbCpHZ08UBKGWy//gwUP49ddfWL58WbXlCGDz5o1MnfoIt9xyG5mZwzAaTfz22y/MmjXzqD6P3uvh/gOBYMmQRx75Nz179qrRSpLqj0/84Yc5+P0+Lr74/MO9yjIqlYqKiooaQqWua1Z1jG+++RorVizjrrvuJTk5Ba1Wy6OPPlwrruxIGroukiTx5pvvsnHjBlauXMbXX8/m/fff5qOPZpCYmFTr+Jra9lQjFKebFBpArw+9B9zxoteriYgIzjSVldlPWGAdSbhJw6QLOnLp6Ulo1SJ5RU7enbeHpVuLG03drNAGEQRcnc/G1u8qZEFCU7QD06rpCG5ba49MoZ3hD8jYbB6cLi96nRqTSYvURCt4anRwEier0BVcoDPjHXojsjEKwVmOetE7YCtuqaGfMJIkotGE5tytIAio1epGP0lJyRgMDResNxqNJCUlN9rX8bgJ6vV6UlKC5UmOFlgtyfr16xgxYiQXXDCGzp27kJSUTG5ubpO2DQsLZ8SIUcyb9wPz5//ARRdd3MKjrZszzhjJk08+y3PPPc2vvx5OhLVhwwbi4xO48cZb6N69B6mpqRw4UDOWKTU1jS1bttRYdmRikKioKGJiYsnP309KSmqNT31Cw+fz8dNP87n77vuZMeOL6s/MmbOJj0/gl18aF/OHj2EdY8aMZdSoM8nI6ExUVDQHDuQ3uE1j10UQBPr27cekSVOYMeMLVCo1f/5Zd62xY2l7KhGad0OFetFqVdhsQrsOONRqJQwGLYGATHm5A5+vZY5VEAQyu0fTNdnCl4ty2HPAzoI1hWzLqWC8YtUKSbxJp2HVh2NaPQOV9QDmFR9i638NAVMsyAGk0hwo9yD5NfjCU0FQ5qEUjg+vtyrlu4TZrMPj9eF0ehusLZMarWX1HhvZB12HF1YKLfWy6Qj24soYrTvapEUrFK1Yx4ooimRmDmfhwgX1thkyZHiIukzWT0pKCn/8sZCNGzdgNpv54ovPOXToEOnpHZq0/cUXX8KDD95DIBDgwgvrj086kj17dtUStFWJKo6XUaPO5PHHn+bJJ6ciSRJnnnk2KSkpFBQU8Ouvv9C9ew+WLPm7VuHiyy+/iueee4bu3XvQu3dffvttAbt37yYp6bCAuuWW23j11ZcwGo0MHTocj8fD9u1bqaiwcs01tcsxLFnyF1ZrBRdfPK5WSvTRo8+qTOteO56qLpKTU/jzz4WcfvoIBEHg/fffaVLyrvquy+bNmypj2oYSERHBli2bKSsrrfN6H0vbUw1FZLUzBEFAr1fjcNRTECqEUakEjEYtoijicLhxu0+OW2SEWcNtYzqxbNsh5q84QG6lVevs0+IY3C0SUYntCSn8kR2wDr8D08pPkBzFmFd+jCt1CNr8DYjuCgBMQEBrwdn1PLxx3Vt3wAohjdvtx+NxotersZj1uNyeeu9dqTFBV6v8UjceXwCNqvJFXWfGO+xGVMs+QbRVCq0Rt4M55mQdRpM4FUQWQHp6R84889xadbKMRiNDhrRsnazW4sYbJ5Gfn8+9996BVqtj/PgJjBw5Cputad4AgwcPISoqmo4dOxET07Tv7eTJt9Ratnz52mMad12ceebZBAIBnnxyKoIgMHr0WVx11TW8/PILeL0ehg07nZtuuoUPP3y/epvzz7+Q/Pz9vPnmf/F4PJx11jmMGTOWrVs3V7cZN+4SdDodn38+g7feeh29Xk+nThlceeU1dY7jhx/mMGjQkDprTo0efRaffvox27dva9Ix3XPPAzz77BNMmnQj4eHhXHvt9XXW5jua+q6L0Whk/fq1fPnlLOx2O/HxCdx9930MGza8Vh/H0vZUQ5Dbs8njFMXvD1BS0viPC4IzRUOHDsBstrBy5YYWHtnxIQjBuCudLhh31ZrJPUoq3Hy5OJe9B4LnNzXWwPhhSUSaNa02JoXjQ/A4MK7+FHVpdrVn/ZFyuWqZo8/litBSaBYkUURvUCMKAg6nt1b8rCzLvPJDHlaXn8nnJtIp/qj4GrcN1bLpiLYiZJ2lxYTW9Okf8cILzzBu3ASmTZvepG10OjVmc+14nLaIy+Viz569REfHo9Ecv0dCIBCgsPAADocDg8FAXFxCu7NgNRcul5OLLjqPf/3r8erse6HOXXdNISoqiieeeKa1h3LctMfr0tJ4PG6Kiwvo1KkjOl3D9zzlbtAOCWW/+KPR6YJxV6IIpaX2Vs+eGGnRctuYTowflohaJZBz0MG783azYvshJVYrxJA1BmyDb0YW1QjUzi1W9bd+xy8gB07y6BTaI/5AAJvNjdPlxWhQYzJqaljCBUEgOSo4YbN0ezl7Cpw1XX60JnxDbyBgikFwVQTraFkPnuzDqJNTKR64ClEUSUhIolOnziQkJCkCqw4CgQBFRUW8//67mEwmzjhjZGsP6bhwuZzMmvUZe/fuITs7i2nT3mXVqhVNdn1sa7SX69LWaR9v4gq10OvVeDyNZ0pqq2g0IkajDlmWsVqdeL1t5yVXFASG94yhW4qFLxflklVg56dVBWytjNWKMClWrVBBVZ6LEKhfuAuA4K5At+NXfFHpyFoLAa0ZWWNUUsArHDder58KXzBey2LR4fZ4cbl8bMm1s7cyHmtjjp2NOXbCDBLjBkXTO60yDbTWhG9oletgEepF7+AdMQUscQ3ssWVRq4OZbRUUjqagoIAJEy4iNjaOqVOfqJUFMHQQWLr0b6ZP/xCPx0NqajrPPfdSrTTroUL7uS5tG+WstlM0GhUqlYjP13bESVOQpGDclUolVqZkb7tCMcqiZfJFnViypZifVh1gX6GDd+fu4ez+sQzqEnncBSYVTh6Cy9qkdrrcFZC7ovpvWRCRNSYCWlNQdGktBHQWAjozstZMQBv8P5IiuBXqRpbB5fLjcTvRG9RkFXv5cklRrXblDj8zFhVy3UiOEFrGoNBaPh3RehD14ndbVWjp9cr3XKFuEhMTmyWOqrXR6XTNXturNWkv16Wto4isdoxer8FqdTXesA0QjLvSVBdUtlpdDWbhaiuIgsAZvWLonmrhyz9zyC508OPKArblWBk3NJFwxarVppF1tQOO68IbnoIQ8CO6rQhuG4IcQHBXVCfKqLd/SXtYiOmCVrCa/7cga41KFsNTmIAMVquHb5fWXzQU4IdVxfRMMR4uiq414ht6QzBGy3oQ9eJ3gjFaJ1loBd3TFSuWgoKCwtEoIqsdo9WqcDgE/P62rVZ0OhUGgxav109ZmaPNj7cuoi1apozN4O/Nxfy86gBZBXbembuHcwfEMaBzhGLVaqP4IjsQ0IUhuMprxWRBMPmFrAvDNuz2w0Io4EdwWxFdQZElOssRXOWIrvLDy1xWBL8bwe9GcriRHIfqHYOMgKwxBkWXzoysCf4b0FpqCDNUWsVFsZ2yr9hFhaPhbKllDj9ZB101k2FoqoTWp4jWwsMFiy3xLTziwxgMGuX+pqCgoFAHishqxwTTuWuw2dytPZQ6UatFjMZgZiebzYnHE1qujUcjCgIjeh+2au076GDeigNs3VfBuGFJhBlPvcDwNo8g4uhxMca1M5GpJ7tgj4trWppECVkfjl8fToOvxT73YeHlqkBwldX4W3RXHLaKeWyIHhtYD9TbnSypg4JLY0bWmQ9bwnSWSmuZBVlrAlGxKoQah6xNS+hT4azDfVpzpEWrEPXid/CNuB35JAgtURTQakP5NSL0JvQUFBRal2NJyh7Kd0eFJqDTBWtmNaUo3clCFMFo1KJWq3A43G067up4iAnTcvvYDBZvLuKX1QXsLbDzztzdnDsgjv4ZilWrreFN6IW9/7UYtv6A4CqvXi7rwnD0uBhvQq/j61ilJWCKDRY6rg85gOC2VVq/KhCcVRaxw1YxwVWB6HMh+L1IjhIkR0n93UG1VUyudFMMii9LpXUs6Kooq3SKVawNUGLzsmxHBWv2Ni020KKv55GtMQSF1vJPESsKUC16B9+IKchhCc042tqEqhVLrVYjigIVFeVYLFA7t6iCgoJCbXw+LxUVZZVu0o2Hgygiq51TZc2y21vfmiUIwayHer0Gl8tLaak9JOKujgdRFBjVJ5YeqRZm/5lDbpGTucuDVq2LhypWrbaGN6EX5fE9UJdkYVJ5sPk0eCM7tHyslCAi6yz4dRb8YQ2083uOsIhVijBn+WFx5qoIxovJfgSPHdFjhwbe22VRRUBrqumaqDUHk3doD1vKEJVHREuQd8jN39vL2Z7nqLaliEIwPqs+Ikxq+mZE4HZ76s62qjHgy7z+sNBa/G6LCi1BEEK2+LAkSaSkpJCbm0txcWFrD0dBQSGEMJmMJCQ0rSae8gQ9BdDrg9as1qw7rdVKGAxa/P5AyMZdHQ+x4TruvLgzizYVsWB1AXsOBK1a5w2M57RO4SE5C9xuEUR80Z0QIoz4Su1ty5NI0hAwRhMwRtffRg4geBw1hdiR7oqVgkz0OhACPiRnGTjLoLz+LgNqfWW2xEor2BGZE6vixWS1QbGKNYFAQGZ7voOl2yvIPXR40qtzgp5RPcNxeQPMXFT/C//YAZF4vX5MJj0ejw+n003gaK1VLbRmIFYcQFXlOtgCQstgUIf0/ctkMtGlSxe83tatvaigoBA6SJKESqVq8r1PEVmnAEFrVlBonWxUKgGjUYcoCtjtbjyehoO72yOiKDC672GrVl6xkx+W5bN1XzkXD03CYgjN2WCFNoYgImtN+LUmCEusv53fG7R6VQuww2KsepnbihDwIXqd4HUi2eoveCtX7jdQVUOsSpRVW8WC/yKdmt9zjy/A+iwby3ZWUGILukZLIvRLNzOyZxgJEdrqtteNhO9XFVN+RBKMcIPExZV1stxuL16vF51OS1i4EafDg8t1lEioElorPkUsrxJaU5Ab+k4cI4IAOl3oZ06VJAlJUmIYFRQUWgZFZJ0i6PUanE7PSXPPE0UwGLSVGQ49OJ3KbGFchI47x3Vm0caDLFhTyO58O+/8sJvzB8XTt6Ni1VI4SUhqAoZIMETWn7hDlhG8zvqFWFUGRY89mLij0lrWEAGVtrZVTGepTN5hPqLIc/tIZ29z+Vmxq4JVu604K5P66NQiQ7tYGN49jDBD7cdv7zQTPVOMZB10UeH0YdGr6BCrO5y2HQgEwOFw4/F4MBh0lXG3R01gafSHLVrl+UHXwTOmIIc3j9DS6zU1xqSgoKCgUBtFZJ0iiKJQXYOqpdHr1RgMGtxuH6Wl9touLacwkihwZr84eqSGMXtRDvuLncxZms+WfRVcnJmIWbFqKbQFBAFZY0DWGAhYGnA1C/gPuyG6KhBdZYjOCgT3kVkUrQh+D6LPDT43kr243u5kQags8mwOxoxVFXmuzJxYZR1Dpa23j9amqMLD0u0VbNhnw19574swqjijexiDO1vQqhsWkaIo1EzTXg8+n0xFhRONJuiKrdPJOBwufL7KmTS1Hl/mdUcIrUqLVnjSiR4ier1yn1JQUFBoDEVknUIErVktJ7Kq4q4CAZnycsfhh71CLeIjddw1rjN/bDjIb2sL2bXfxttzd3PBoAT6dAhTrFoKoYEoIesj8OsjGrSK4XPVqCsmusqPcE2sihmzIchysAaZu+Fse7KkqSnEKq1isvaIRB4aU9CkfhKQZZl9RW7+3l7GrgOHC8AnR2kZ1TOcXqlGpBay/Hg8fjweBzqdGrPFgMd9RLyW+kiL1v7KZBiTkcOTj3t/er26SQHfCgoKCqc6isg6hZAksdptsDlRqQQMBi2SJOJwuHG7T724q+NBEgXOPi2OXmkWZv+Zy/5DTv63ZD9b9lUwNjMBszJbrNAeEARQ6wmo9QTMcfW3C/iD9cKqLGDO8mBtsSMtZe4KBJ8bwe9BchxqpMjzkenszUcJsar4MQvyCRR59gdktubaWbKjggOlwfuqAHRPNjCqZzjpsbqTNmHicnnxeLzo9VrCwow4HB7cbi+odUGL1ooZiGX7US1+D98Zk5Ejjl1oCULQDVxBQUFBoXEUkXWKYTBocLmaJzYr+MDVVLoherBaXe02JXtLEh+p567xnVm4vpDf1x1kZ56Vt3+wc+GgBHorVi2FUwVRQtaF4deFNaHIc0V1rJhwVBbFYJFna2WR56p09gX1dieL6kqL2BHxYjpLtRCrEmlHFnl2ewOs2Wtl+c6K6iQVKklgQMdgMosYS+skhQgEqEwwFBRbwYRHbjzo8A25DtWKmYhleaj+eg/fGbchR6QcU/9KLJaCgoJC01FE1imGKAatTnXVzSosLOC++24nNTUdgP/7v8fYuHEd33//HVqthvvue5iYmOBMtE6nwmDQ8uqrr7Jt23bMZgv33/8QBoMJAKfTwc03/4N7732IwYOHnrTjC1UkUeCc/vH0TAtj9p85HChx8d2S/WzNqeCiIYmY6itCqtAifPbZdHbt2kV0dDSTJ9+JShW0Kvp8PqZNe5fCwgI6dOjI9dffTFFREe+++wYAdrud2Ng4Hnjgn605/PaNSkvAFEPAFFN/myqBVSXEqmuKHU7kIbitiF4nQsCL5CwFZ2mDuw2oDfjUJoq9enLtGgSfge6yAbfBSHpqLH27JWI0m9pEOnuvN4DX60SrVWE0atFqAzgcAr4h1x4ltCY3KrQcDjv33HM72dl7+fLLL+natWv1uv9v777jqqzfP46/zmRvEBUtV+4dbs2RljkyV9+WlpXl6pfmQnArOEtLLRtm2zT3amg5ci/Mcm8FFQXZcPb9++Moapo4Dhw4XM/Hg4d6zuHc143Aud/n+gyLxcLIkSM5d+4cVatWZeTIkXl9akIIUWjIlVsR5OFh7zzZ7rDzZY0aNRkxYixgfwFdtmwx06bN5NixIyxY8D1DhgzB09MdUNizZz9JSVeZMmUGmzdvZM2aVXTv/iIAq1Yto3z5ivl4Vq6hZJAH73auyO+xCfwem8CR8+mcTThB+wbFqV7G39nlFQknTpwgJSWFsWOjWbbsJ3bu3E6TJk8AsG/fXgIDA+nb9x0+++xjjh07TMWKVRg9egIAy5YuIij4LntZifyhUqO4+WB188Hqd5eFHqzmmzpit66iaA9i11ZRVKyozVnozVmUBErqgZubVZftH4paA9c2c1bcfex/9/AFd79rt/mCe/4tZ280WjCZLLi76/H188TopiO7UU/Y8S3q5PP2oNX0bZTAR/7zOfR6N6ZOnclnn826rau+YcMGQkNDmTx5MiNHjmTfvn3UrVs3r09LCCEKBQlZRZBKZe9mZWQYbrvv0KGDDBs2kGrVatCiRSseffRRtFodNWrU5KuvvsDb252sLBMGg4W4uDjKlq0AQIUKj7FhwzoAsrIyOH36NJUrV8nX83IVGrWKpx4vTrUyfvy44RyXkg0s/tM+V6tDg5J4ucuPbV46fPgQNWvWBKBWzbps2vx7Tsg6fvwIdeuG2++rVYejR49RseKN7/M9e/cQGTkm/4sWD0ajw+YVhM0r6La7FEXh5MVMtv5zhcuXr+KnzsJfnUU5fyvViymE6O2LeWBIRZWdZl/O3maF7BRU2Sl3Payi87gRwtx9wN0Xxd33WiC7Fsb0ng5Zzl5RIDvbhMlkwsPDHf/gQDKb9cL25/xrQevTa0MHS6FKPIXKkEYJTSbXRwVqtVqCggLRaG6vJTY2lpYtWwLQrFkzYmNjJWQJIcQ1crVWRLm7a8nOVmO12ucTmM1mTp48zty58/H09GLWrPfZuXMbnp7eeHrq8fDQYbVaSU7Oypl3Vbr0I2zY8DudO3dj//69ZGRkALBy5TI6duxEbOw+Z52eSwgL8uDdzo+xPjaBDfsvc/jcta5W/RJUK+Pn7PJcVmZmJoGB9mGxnl6eOd/X9vuy8PDwBMDDw5PMzBv3XbwYj5+fL15eXvlbsHAoi9XG36dT2X4oicup9mHVKpU75R8JpUWtYpQOsf//26595LBawJCGKjv12p8pqLJScm5TGdLsf7ea7XuQmbMh/e6bPOPmfS2E2YOXvRN2LZBdC2do723+l9UKGRkGdDo1nj7eKG16k73+C1RXz6HdNAd07qiM9u/njp4QPqQt3x9JZOvWP3nqqSfvODc0PT0db2/7EHEfHx9SU1PvqRYhhCgKJGQVUSqVitTURLp06QCAwZDNG2/0pHjx4owYMYbGjZvx+++/4evrjVarJiUlC1DdsrBF2bLlqVKlGiNGDKZixUoEBgaQmZnB6dOneOGFHhKyHECrUdM2vATVy/ixcON5LiUb+OnPOA6eS6N9/RLS1coD3t7eZGdnApCVmZlzEQng5eVFdnaW/b6sTLy8bty3Y8c2GjRonL/FCofJNlrZfewqu45cJcNgAUCvVVOvUiBP1Agh0CeXMKPRglcgilcgYF/d8DaKAubsG0EsK+VaJ8zeDbveFcOYgUqx2R+TyybPitbt1iGKt3TFroUxN++crpjZbCM19dp8rafeJmvNTFTpV1CMGbc8b6ivB+/V9+C9SUPo2PHvOx7b19c3502ItLQ0/PzkzR8hhLhOrtCKsLJlH73ttoSEBAYO7Ef37t15+ulnWLp0CVevpnPs2BHKlCl72+Off/5Fnn/+Rdav/5WyZcsRF3eeK1euMGpUBBcvxrNr13bKlStPcHCx/Dgll1Uq2JN3Oz/Gur0JbDxwmUNn0zhzKZMODUpQ9VG5sHGkypWrsGDBQpo1a8VfB2KpVKlyzn2PPVaJAwf2U6VKNQ4c2E/Llq1y7tu7dzcREaOdUbJ4CMnpJrYfTiL2ZDLma3v7+XhqaVotmEZVgvFw0+TyDPdBpYJrmzzjV+LOQQzAZr0RsLJTr3XFUm/timWnorKaUF3b5Fl1t02eUYGbV86cMMXdF7O7D2Z3X7RG+xsK/+5TqVUqbIpCn7feRqO589egdu3abNmyhXr16rFlyxa6du16/18TIYRwUSpFkUW3i7LVq9fQsWOH22738vJm69Y97NixlZUrl6HX63nvPfvqgosWLeCJJ1pQvHgJIiLeQ6PRULZsOV5//e1bNqn8/vuveeyxirK6oIOdv5LFjxvPcTnFPpSp2qO+tG9QAk83ec/kYalUEBDgxaxZc25ZXXD+/C/o3bvvtdUFPyYhIYGyZcvy6qtvAnDx4gW++WYew4ePcvIZiHsVl5jF1oOJHDmfntOhLx7gTvOaIdQu74/2DnOQChyzwR62DKnXQtj1rtiNQJbTFXsAhxIy6PDRr/Tu3ZvDhw8TFhbG//73P/bv38/48eOxWCxERUVx/vx5WV1QCCH+RUKWoESJEly6dPs+Ml9/vYD69Rs6oSKRG4vVxm97L7HxwBUUBbzcNXRoUJIqj/g6u7RC7XrISk7OlD3fXJBNUTh6Pp1thxI5fyU75/bHwrxpUbMYj4V5u96+dIoNDBmoDKn2QJaVcqMTlhyH+j/2ELNYbZyr0oXW3Xvkc8FCCOEa5K1vwU8/LaZZs6a33X7lyn9PyhbOpdWoaVe/JNXL+PPjxnNcSTWycNN5apTx45n6xaWrJcRNzBYb+08ms/3wVa6mmwD7Kp61yvvTvEYIJYM8nFxhHlKpwePaHK2A0rcMUVRdOYF68yd3/LSfT6Tw7mgJWEII8aDkSkzQtGkT2rR5inXrfrvl9pAQmUdV0D1SzJNBXSry295LbPr7Cn+fSeX0pUw6NixBpdLS1RJFW0a2hV1Hk9h9LJlso30lVXe9moaVg2haPQQ/r/zZr6qgUoLLoXj42btaN91+Jd3Ac6M/dVpdQgjhCiRkCQBWrlxByZIlSU5Ozrltx45t1KhRCw8PF36X1wXotGraNyhJ9TJ+/LjpPImpRhZsPE/Nsn48U6+EYyfuC1EIJKYa2XYokb9OpWK9tul6gLeOZtVDqF85EDed/EwAoFJz0q8W5bM2YcO+2AXAOZ9KNKggm8kLIcTDkDlZIsfChT/xwgvP33Jb8eLFGTo0kmee6eB6cxVckNli45c9F/nz70QUwNtDy7MNS1CxlHS17oXMySq8FEXh7GX7YhbH428sR14q2IPmNUOoUdYfjVp+h113+XIC06ZNYvXqFTxVtSRjOtSmuK87lzPNPD5uCTpd0e7yCSHEw5KQJW7x0kuv0KZNWywWC+PGjSQ+Ph6AOnUeJypqLNWqVXdyheJenEnI5MeN50hKs88/qVXOn7b1iuOhl3fw70ZCVuFjtSkcOpvKtkNJXLxqAOzLkVd+xIcWNYtRtriXvEF0E6PRyPz5n/PZZx+TnW1f/OP5519k1MgxBNnS0AaHEhL2iJOrFEKIwk9ClriFxWIlOfn6ZqtZzJnzIbNmzcBgMKBSqejSpTsDBw4hODjEyZWK3JgsNn7edZGtB+1dLR8PLc82KsljYT7OLq3AkpBVeBjNVvadSGbH4aukZpoB0GpUPP5YAE/UCKGYv7uTKyxYFEXht99+ZurUGC5csL959vjj4cTETKNOnccB8PDQ4e1d8L9uc+fO5dixY3zwwQf39PhKlSqxfPlyqlSpkseVOd6ePXt477332Lx5s7NLEULcpwcKWSNGjGDp0qWsXbuW8uXL50Vd+W7nzp307NkTT09PVCoV7u7uVK1alRdeeIHWrVs7u7x8lZlpJCvLlPPv+Pg4xo8fzbJliwHw8vKib9936NGjF3q93lllint0+lIGCzeeJ+naqmq1y/vTNrw47tLVuo2ErIIvLcvMjsNJ7D2ejNFs3//J001D46rBNKkWjLeHTDX+t6NHDzNx4lj27NkFQPHiJRg9egJdu3bP6fKpVCoCA71Q58GQynnz5vHbb7+xcOHCnNsGDx7MunXr2L17N25ubgB8++23LFq0iFWrVjn0+HcLWXFxcTz55JPs3r0bX987D6u+/hhPT89bbt+8eTM+Po570+peahFCFB73vdtiZmYmv/zyC/7+/ixevDgvasJqteKMBpuPjw+xsbHs27eP3377jU6dOhEVFcWnn+bNKkvOOs/ceHrq0WhuvNCGhZXi00+/ZNWq36hRoxaZmZlMnz6Zjh2fYsOG9QXyHMQNZYt78163SjSpFgzA/pMpfLzqBCcupDu5MiHu3aVkA0u3xDFz2TG2HUrCaLYR7KunS5MwRr5UlafDi0vA+perV5MYMyaSLl06sGfPLtzc3Bg0aCjbt++jW7fnbxlG6e3tlicBC6BBgwb8888/ZGTcmCu3e/duSpUqxf79+3Nu27VrFw0aNMiTGhxh06ZNxMbG5nz8O2AV1Nd0IYRz3HfIWrt2LR4eHgwZMoTly5djNtuHafTp04fZs2ff8tgxY8YwevRoAMxmMx9++CGtW7emQYMG9OnTh4SEhJzHVqpUie+++44OHTpQq5b9Qn7+/Pk89dRT1KlTh9atW/Pdd9/d8vy7d++mY8eO1KlThwEDBhAZGUlERETO/efOnaNPnz40bNiQli1b8vHHH2Oz2e7pPL29venYsSOjR49mzpw5pKSk3NN5HD9+nOeff546derQo0cPpk6dSo8eN/YaudN55lbntm3b6NatG+Hh4bRv357ff//9ns7hQalUqjsOGWnQoCHr1m1i5sw5BAeHcO7cWfr1682bb/bk5MkTeVqTeDh6rZrnGofRp0N5An30pGVZ+O73c6zcHo/RbHV2eULckaIonLiQwdfrzjB39UkOnE7FZoMyoV682uZRhj5fmUZVg9Fp7/ulzKWZzWa+/noebdu2YtGiBdhsNjp2fI5t2/YyYsQovLy8bnm8TqfBLQ/31qtatSqenp7s3bsXgDNnzuDm5kb79u3ZuXMnYP+/3r17Nw0bNgTg4MGD9OjRg/r169OmTRsWLVqU83yzZs2iX79+Of/O7XUXYP/+/XTo0IG6devSp08f0tPtbzJ1794dgObNm1OnTh1Wrlx5X+f2INcuZ86cyXnNr1+/PgMGDPjPWnbu3El4eHjO52ZkZDBq1CiaNm1K06ZNGT16NFlZ9iH+cXFxOV27Nm3aEB4eTkRERM51mhAif933K9PixYvp2LEj7dq1w2AwsGHDBgCee+65W345mUwmfvnlFzp16gTAjBkz2LdvHz/88AN//vknZcuW5b333rvluVevXs28efPYt28fnp6elCxZkq+//pp9+/YxceJEpk6dmvNLOjU1lb59+/Lqq6+ye/duunfvfssQA4PBwGuvvUbDhg3ZvHkz33//PWvXrmXJkiX3db5t2rTBbDbz119/5XoeZrOZvn378sQTT7Bz506GDBlyx+PdfJ5qtfqudR45coR3332XwYMHs2vXLsaNG8ewYcM4derUfZ3H/dLrtbi73766lFqt5qWXerBzZywDBryLTqdn27YtdOrUlokTx5CampqndYmHU76EN4O7VqRR1SAA9p1I4eNVJzl1MSOXzxQi/1isNmJPJPPJqpN89/tZTl/KRKWCGmX9eKfTY/R/tgLVy/jnLDkubti8eSOdOrVl8uSJpKenUa1adVas+Jl5876hdOk7L2jh4+Oep4uDqNVqwsPD2bXLPlxx165d1K9fn/r16+fcduzYMVJTU6lXrx5Xrlzh9ddf58UXX2T79u3MmTOHjz76iO3bt9/23Pf6urt27Vq++uorNm7cSEJCAl999RUAP/30E3CjS/Xss8/e9/ndz7VLVlYWvXr1omLFivzxxx9s2bKFV1555Z5riY6O5uzZs6xatYqVK1dy+vRpJk2adMtjNm3axLJly1izZg3btm1z+PBLIcS9ua+QdeLECfbv30/nzp3x8vKidevWOUMGW7VqRUpKSk7rf9OmTfj6+vL444+jKAoLFixgxIgRFCtWDL1ez8CBA9m3bx8XL17Mef4333yT0NBQ9Ho9arWap59+mhIlSqBSqWjYsCFNmzbN+YW8YcMGihcvTrdu3dBqtTRv3pxGjRrlPNeGDRvw9fXltddeQ6/XU7JkSXr27Mnq1avv6wuk1+sJCAggNTU11/P466+/SElJoU+fPuj1emrVqkW7du1ue86bz/P61+m/6ly4cCGdO3emUaNGOS9ULVq04Oeff76v83gQXl7/PXzEx8eX0aMn8OefO3n66WewWq18//03PP10C3744VssFkue1ycejF6noUuTUrzdvjwB3jpSM818s/4sq3ZckK6WcKpso5U//7nCzGXHWbH9ApdTjei1appUCybi+cr0bF2GR4p55v5ERdDp06d4661evP12L06fPkVQUBDTp3/I+vV/0qhRk//8PG9vNzSavO8ENmjQIKdrtXPnTurVq0etWrU4fPgwBoOBXbt2UaVKFfz8/FixYgXh4eG0a9cOjUZDxYoV6dq16x3Dwr2+7vbu3Zvg4GB8fX156qmnOHjw4H2fQ8uWLQkPDyc8PJzhw4fn3H4/1y4bN25Eq9UyaNAgPD090ev1Od273NhsNlavXs3gwYMJCAggMDCQQYMGsXz58ltGvwwYMABvb29CQ0N54oknHuhchRAP777GByxevJjKlStTuXJlADp37sybb75JQkICoaGhtG3bluXLl1O7dm2WL1+e08VKTk4mKyuLl19++ZZ3y3Q6HRcvXqREiRIAOX9et3LlSubPn09cXByKomAwGChVqhQAly9fpnjx4rc8vkSJEhiNRgDi4+M5fvz4LW12m8122zFyYzKZSE5Oxs/PL9fzuHz5MiEhIWi1N76sJUqU4MSJW4fS3VxDbnXGx8ezY8cOli5dmnO/1WrF29v7vs7jQajVKnx83ElNzf7Px5QrV55vv13Ipk0biIoaxrFjR5kwYTQ//vgdkZFjaNiwcZ7XKR5MhZLeDO5WidU7L+YsJHDiQgbPNQ6jbHGv3J9ACAdJzjCx/VASsSeTMVvsc1p8PLQ0rR5MwypBeObhULbCLj09jTlzPuK7777GarWg1Wp5880+DBkyHF9fv7t+rk6nueOIhbzQsGFDpk6dSkZGBrt372bIkCHo9XqqVq1KbGzsLfOx4uPj2bRp0y2vi1ar9ZZ/X3evr7shITdWxPXw8CAzM/O+z+H6m7f/dj/XLvHx8TzyyCMP1Dm8evUqJpOJsLCwnNtKly6dc51y3b/P9frQSCFE/rrnVy6z2cyKFSvIysqiSRP7u2KKomC1Wlm6dCl9+/alU6dO9OvXj/79+7N58+acd3r8/f3x8PBg0aJFd12NUK2+8W7ahQsXiIiI4IsvvqB+/fpotVr69euXM6m0WLFiXLp06ZbPv3jxIoGBgYD9l161atVuGcf9INatW4dOp6N27dr4+Pjc9Tz27NlDYmIiFosl5xf+zZ26O51nbnUWL16cnj17MmTIkIc6jwd1fdigwXD3Md3Nm7dk48btfPXVPKZMieb48WP06vUyrVq1ISJi5H8OUxHO5abT0LVpKWqV9WPh5vOkZJj5et0ZwisG0KZuKG46WYFQ5J24xCy2HUzk8Pn0nNUciwe480SNYOpUCECbDx2WwspqtbJkySJmzpxOcvJVAJ58sg0TJkymQoXH7uk58nqY4M0qVaqEj48PixcvRqfT5QSTevXqsWPHDnbv3k23bt0A++timzZtmDFjRq7PW6xYsXt63f0vN78eP6j7uXYJCwvj3LlzKIpy29c+t1oCAwPR6XTEx8cTHGxfyCguLi5nxM31fc+EEAXDPf92+eOPP8jIyGDp0qUsX76c5cuXs2LFCvr168eSJUtQFIXHH38cX19fIiIiqF69Oo88Yr+wVqvVvPDCC0yZMiXnl19ycjJr1679z+NlZWWhKAqBgYGo1Wo2bdrE1q1bc+5v0aIFFy9eZOnSpVgsFjZv3syOHTtuuT8xMZHvv/8eo9GI1Wrl1KlTOcMVcpOZmcnatWuZMGEC/fr1w8/PL9fzqFWrFr6+vnz66aeYzWYOHDiQ67C+3Op84YUXWLp0KTt27MBqtWIymYiNjeXkyZP3dB6OcLdhgzezv4P6Njt3xtKrV280Gg1//LGO9u1b8/77U8jMlHk/BVWFMB8Gd61Eg8r2Nyn2HLPPhzmTcP/v9gpxNzZF4ci5NOb9coovfj7NoXP2gPVYmDdvPlOO97pWpF6lIAlYd7F79066du3ImDGRJCdfpXz5Cvzww2IWLFhyzwErv4YJXqdSqahfv35O+LiuXr16LFmyhLS0NB5/3L5fV6dOndixYwe//vorZrMZs9nM4cOHOXDgwG3P+yCvuze7fo1x7ty5hz9Jcr92ad68OSaTiQ8//JCsrCxMJlPOtUtutajVajp27MiMGTNISUkhOTmZGTNm0KlTJ4eERSGEY93zT+XixYvp0KED5cuXJyQkJOejR48eXL58OeeXRKdOndiyZQvPPffcLZ//3nvvUbt2bV599VXq1KlD165d2bJly38er0KFCvTp04dXX32VBg0asHbtWlq1apVzv7+/P3PmzOHLL7+kXr16LFq0iLZt2+bs2+Tl5cVXX33Fjh07aNWqFQ0aNGDIkCEkJib+5zHT09OpU6cOdevWpU2bNixZsoSJEyfSp0+fezoPnU7HnDlz2LhxI/Xr12fatGk8++yzd91LKrc6q1atyvvvv8/MmTNp1KgRzZo148MPP8RkMv3nczra9WGD9yowMIgpU97njz+20qxZc8xmM198MZe2bVuxbNnie17hUeQvd72Gbs1K82bbsvh56UjJNPPVb2dYu+siJrP8n4mHY7bY2H30KrNXnODHTec5fyUbjVpF3QoBDOpSkbfaladSKZ9866wURvHxcbz7bj969nyBo0cP4+Pjy/jxMWzevJPWrZ+65+fJz2GCN2vQoAFXrly5JWTVqVOHlJQUqlevnjMMPjQ0lHnz5rFw4UKaNm1KkyZNGDdu3B2H+D3I6+7N3N3d6d+/P7179yY8PPyhF4nI7drFy8uL+fPnc/DgQVq2bEmzZs344Ycf7rmWqKgowsLCaN++PR06dODRRx+9ZVVlIUTB8UCbERdUr7/+OuHh4bcs7epso0aNwmazER0d7exSHlp6uiHXYYP/pigKv/yyltGjR3D27BkAqlWrwciR46hdu04eVCkcwWCysnL7BXYfsw9DCvDW8VzjMB4Nde25WrIZseNlGizsPJLE7mPJZBvtC6u469Q0rBJE0+oh+Hnl/8V+YZOVlcXnn3/C/PmfYzQaUavVvPLKq0REjMoZNnY/AgO98rWLld9c6XVXCFF4Ferfslu2bOHq1atYLBbWrFnDzp07eeqpe383Ly/s2bOHixcvYrPZ2L59O6tXr6Zt27ZOrclRHmSzSpVKxTPPtGfLlt2MHDkOLy8vDh78mxdf7MLQoe+SkHAp9ycR+c5dr+H55qV5o21Z/Dy1JGeYmf/bGX7efRGTRbpaIneJqUZWbr/AjKXH2Px3ItlGK/7eOjo2LEnUS1Vp36CkBKxcKIrCqlXLeeaZVsydOxuj0UijRk1Yv/5Ppk//8IECVn4PE8wPrvy6K4QovAp1J+vTTz9l/vz5GAwGwsLC6N+//x2Xbs1Py5Yt44MPPiAtLY3Q0FBeeeUVevbs6dSaHMlkstx1tcHcJCQkEB09loULf0BRFNzdPejduw+vv/4W7u73PiRR5J9sk5WV2+PZc8y+elWgj57nGoe55FLa0sl6OIqicO5yFlsPJnIs/sYczLBgD1rUDKFGWX809/lGTVH1999/ER09jr/+igWgVKnSjB8fQ/v2zz7wkEqdToOfn4fLDcl09dddIUThVKhDlnCOzEwjWVkPNyds//59REYOZc+e3QCUKFGSYcMiefrpdi53AeAqDp1LZfGfcaRn2fdAa1glkCdrh6LTus674hKyHozVpnD4XCpbDyZx8aoh5/YqpX1oUasYZYt7yc/1Pbp8+TIffDCFFSvs23Z4enry7ruD6dv3nYd6I0qlUhEQ4OlyXSwhhCioJGSJ+6YoCqmp2ZgfcuNaRVFYunQx48eP4uLFCwCEh9cjMnIsVapUdUSpwsGyjBZWbL/AvuP2rlaQj57nmoRROsQ1uloSsu6P0Wxl34lkdhy+Smqmfb6mVq2i7mMBNK8ZQjF/6U7fK5PJyFdffcmnn84mKysLgG7d/sfo0eMpXvz+9ne8Ez8/D/R62W9MCCHyi4Qs8UCsVhvJyVk44tsnMzOT2bNnMnv2zJxJ3V26dGfQoKEEBgY5oFrhaAfPprLkzzjSsy2oVNCoShAtaxdDV8jfJZeQdW/SsszsOJzEvuPJGK6tPOnppqFx1SCaVAvG20PmWt0rRVFYv/43pk6NJi7uPAC1a9dl0qRpPP54PYccw8NDj7e3m0OeSwghxL2RkCUemNFoIS3NcZsfnj9/jnHjRrFy5TIAvL196Nfv/3j55Z73vByvyD9ZRgvLt8UTeyIFgGBfe1erVHDh7WpJyLq7hGQDWw8l8s+ZVK7vxBDkq6d5jRDCKwa61NDR/HDs2FFiYsaxc+d2AIoVC2X06PF06/Y/h+17pNWq8ff3lOGaQgiRzyRkiYeSkWEgO/v+lnXPzY4d24iMHMo///wNQJkyZYmIGEXz5i0dehzhGP+cSWHJlngyrnW1Gl/rahXGzWQlZN1OURROXcxk68FETl26sU9RmVBPmtcMoeqjfqjlAv6+JCcn89FHH7Bo0Q/YbDb0ejf69h3Au+8OztkryhGufz/LPCwhhMh/ErLEQ1EUhZSULCwOXtbbarWyYMF3REePIynJvjFz06ZPMGLEaMqVK+/QY4mHl2mwd7X2n0wB7F2tzk1KERbs4dzC7pOErBssVhv/nEll26EkLqcYAfvXp3oZP1rULOaSq0vmNbPZzI8/fsfs2TNJS0sDoF27jowbF82jj5Zx+PF8fT1wc5N5WEII4QwSssRDs8/PypuL0rS0VN5/fwpffPEpZrMZjUbLyy/3oH//gfj6+jr+gOKh/H06hSVb4sg0WFGpoEnVYFrUCik0XS0JWfYl+/ccu8rOI1fJyLavJKnXqgmvGEDzGiEE+srcngexdeufxMSM49SpkwBUqVKV6OipNG36RJ4cz8NDh7e3LDwihBDOIiFLOITRaCYtzZD7Ax/QyZPHGTVqBOvX/waAv38AAwcOoVu3/6HRaPLsuOL+ZRosLNsax1+nUgEI8XOjc5MwSgYV/K5WUQ5ZyRkmdhxOIvZESs6G0z4eWppUD6ZRlSA8pSPyQM6ePcPkyRPYuPEPAAICAoiIGEWPHq+h1ebN11TmYQkhhPNJyBIOkxfzs/7tjz/WM3JkBCdOHAOgYsXKREWNoX79hnl6XHH/DpxKYenWG12tptWCaV6zYHe1imLIik/MZuvBRA6fT8s551B/N5rXDKFOhYAC/f9VkGVkpPPxx7P49tv5WCwWtFotvXq9ydChI/D3D8iz48o8LCGEKBgkZAmHcdT+Wbkxm83Mn/85U6dOIi3N3i1p06Ytw4dHERZWKk+PLe5PRraFpVvj+Pu0/f+pmL+9q1UisGB2tYpKyLIpCsfi0tl2KIlzl7Nybq9Q0psWNUOoWMpHuiAPyGazsXTpT8yYMY2rV5MAaN68FdHRU6hYsVKeH1/2wxJCiIJBQpZwKJtNITk5E5st77+tkpKSmDx5At9++9W1Fbr0vPbam7z1Vj+8vLzy/Pji3u0/mcyyrfFkGa2oVdCseghP1AxBoy5YF/KuHrLMFht/nUph+6EkktJNAKhVULu8ffPgwjCksyDbt28P0dFjOXToIADlypVn/PhJtGnzdL6EVi8vNzw9ZbsLIYQoCCRkCYezWKykpGTl20XqoUMHiYwcyrZtWwAICSnG4MERdOzYyWF7zYiHl55lZsnWOA6esa+qFhrgRufGpSgeWHAm57tqyMo0WNh15Cq7j10ly2jvNLvr1DSoHETT6sH4e8uF+cO4cCGeadMm8csvawD7Hn9DhgznzTf75Nsef+7uOnx8Cs7PkhBCFHUSskSecPRGxblRFIW1a1cxenQk58+fA6BmzVpERY2lZs3a+VaHuDtFUdh/MoVl2+LJNlpRq+GJ6iE0q1EwulquFrIS04xsO5jEgdMpWKz2E/L30tG0RjANKgXhrpdFYx5GdnY2X3wxl3nzPsNoNKBSqXjppR5ERo4hJCQk3+rQajX4+3vIEE8hhChAJGSJPJOVZSQz05SvxzQYDMydO5uZM6eTlWWfa/Lss50ZPHg4xYqF5mst4r+lZZlZsiWOQ2ftXa3iAe50bhJGaIBz34l3hZClKArnLmex9VAix+Iycm4PC/ageY0QapbzLxCBtjC7/qbO9OmTuHTpEgANGjQiJmYqNWrUytda1GoVAQGe0rUXQogCRkKWyFNpadkYjZZ8P+6lSxeZMGEMP/30IwAeHh68/XZ/XnvtTdzcZJ+fgkBRFGJPJLN82wWyTfauVvMaITSt7ryuVmEOWVabwuFzaWw7lMiFpBvbKVQp7UOLWsUoW9xLOh0OcPDg30ycOJb9+/cBEBYWxtix0Tz7bGenfH0DAjzRaqUjKYQQBY2ELJGnFEUhJSULy7V9d/Lbvn17iIwcyr59ewEICyvF8OFRtG6dPxPRRe7Sssws3nyew+fTASgRaO9qFfPP/65WYQxZRrOVfSeS2XH4KqmZ9i0UtGoVdR+zL2bhjK+jK0pMvMKMGdNYtmwxiqLg4eHBgAGDGDDgXTw8nLNgiK+vO25uOqccWwghxN1JyBJ5zmq1kZKSlS8rDt6JzWZjyZKfGD9+FAkJ9qE99es3JCpqDBUrVnZKTeJWiqKw93gyK7bHYzDZ0KhVNK8ZQpNqwfna1SpMISsty8zOw0nsPZ6MwWx/E8PTTUOjqkE0rRaMt4dcfDuCyWTkm2/mM3fubDIzMwHo0qUbo0dPoGTJMKfV5empx8tLuvJCCFFQScgS+cJstpKamn8rDt5JRkYGH330AR9/PAuTyYharaZ79xd4993BBAQEOq8wkSM108xPf57n6LWuVskgdzo3KUWIX/5cTBaGkJWQbGDroUT+OZOK7VqDOMhXzxM1QgivGIheK3NzHEFRFDZs+J3JkyfctJhObWJiplG/fgOn1ubmpsXHx1268UIIUYBJyBL5xmSykJqafysO/pezZ88wduxI1qxZCYCPjy8DBrzLiy/2QKeTd/+dTVEU9hy7ysrtFzCY7V2tlrVCaFw1GHUed7UKashSFIVTlzLZejCRUxczc25/NNSTFjVDqPqoH2q54HaYEyeOExMzju3btwL2bSFGjhzL//73ktMXmNDrNfj6ykqCQghR0EnIEvnKYDCTnm7I/YH5YNu2LURGDs3ZOLRs2fJERo6iadPmTq5MAKRkmPhp83mOxdtXyAsL8qBzkzCC87CrVdBClsVq458zqWw7lMTlFCNgr7H6o360qBXCI8Vk021HSklJYdasD1i48AesVis6nZ633+7He+8Nxdvbx9nlodWq8ff3lIAlhBCFgIQske+ys01kZBidXQYAVquV7777mkmTxnP16lUAnniiJRERIylbtpyTqxOKorD76FVW7riA0WxDq1HRslYxGlUJypOuVkEJWdkmK3uOXWXnkatkZNtX59Rr1YRXDOCJGiEE+cpcHEeyWCwsXPgDs2Z9QGpqKgBPP92O8eNjCszvAY3GHrDyupsrhBDCMSRkCafIzDSSlZW/e2jdTWpqCtOmTebLLz/DYrGg1Wp55ZXX6NfvHXx8fJ1dXpGXkmFi0ebzHL/W1SoV7MFzTcIIdnDYcHbISskwsf1wErEnUjBdW5HTx0NLk2rBNKoShKe7Nv+LcnHbt28lJmYcJ04cB6BixUpER0+lefOWTq7sBrVahb+/JxqNzLcTQojCQkKWcJr0dAMGg9nZZdzi+PFjjBwZwYYN6wEIDAxi4MAhdOnSHY1G9qJxJkVR2HkkidU7L+Z0tVrVLkbDyo7rajkrZMUnZbPtYCKHzqXlHLeYvxstaoZQp0IAWrm4drjz588xefJE/vhjHQD+/gEMHx7Fq6++jlZbcMKsSgX+/rIXlhBCFDYSsoTTKIpCWpoBkyn/NyvOzbp1vzJ69AhOnjwBQOXKVYmKGkN4eH0nVyaSM0ws2nSeExfsXa3SIR481zjMIUPo8jNk2RSF43EZbD2UyLnLWTm3VyjpTYuaIVQs5SNzb/JAZmYGn3wym2+++RKz2YxGo+HVV99g+PDIArnKqL+/BzpdwQl9Qggh7o2ELOFU9s2Ks7FYrM4u5TYmk4l58z5l+vQppKenAdC2bTuGDo106v44wv59s/1wEmt2XsRksXe1nqxTjAaVgx5qlb38CFlmq42/Tqaw/VASSen2IbNqFdQq70/zmsUIC3LOxrauzmazsWLFUt5/fwpJSYkANGvWgujoKVSuXMXJ1d2Zr68Hbm4SsIQQojCSkCWczmZTSE3NwnJtDkpBk5iYyKRJ4/nuu69RFAU3Nzd69epN79598fT0dHZ5RdrVdBOLNp3j5LVlzR8p5slzjcMI9NE/0PPlZcjKNFjYdfQqu49eJctof1PBTaemYeUgmlYPxt/7wWoWuYuN3Ud09FgOHvwbgDJlyjJuXAxt27YrsN1CHx933N1lSwkhhCisJGSJAqGgBy2Av/8+QFTUMHbs2AZAaGhxhgyJoH37ZwvshVpRYFMUth9KZO2uS5gsNnQaFa3rhlKvUuB9d7XyImQlphnZfiiJv06lYLHan9TfS0fT6sE0qByEu17m2uSVS5cuMn365Jw98by9vRk0aBhvvdUXN7eCu0KjBCwhhCj8JGSJAsNmU0hJycJqLbhBS1EUVq1azpgxUcTHxwFQu3ZdoqLGUL16TSdXV7QlpRlZuOk8py/Zu1qPXutqBdxHV8tRIUtRFM5dyWLbwUSOxmXk3B4W5EHzmiHULOePRpbizjMGg4Evv/yMzz+fi8GQjUql4n//e4moqLGEhoY6u7y78vZ2w8NDuppCCFHYScgSBYrNZiMlJbtABy2A7OxsPv74Iz766AOys+0XcZ06deG994YTEhLi7PKKLJuisO1gImt3X8RsUdBpVbSpG0p4xXvraj1syLLaFA6fS2PboUQuJN3YdLtyaR9a1CpGueJe0vXMQ4qi8Msva5k2LYaLFy8AUK9efWJiplGrVh0nV5c7CVhCCOE6JGSJAqewBC2AixcvMG7cKJYu/QkALy8v3n67P6+++jp6fcEdjuTqEtOMLNx4jjMJ9lX7yoTau1q5zXt60JBlNFuJPZHCjsNJpGTatyXQqlXUfcy+eXBogPsDn4u4N4cPHyI6egx79+4BoESJkowZM4HOnbsVimArAUsIIVyLhCxRIBWmoAWwe/dOIiOH8ddfsQCUKlWa4cNH8uSTbQrFBZ4rsikKW/5J5JfdFzFbFfRaNW0eDyX8sYD//D+5HrJmzZrD8ePHCQ4Opk+fAWi19vkxCQmXmDlzGvHxcXz66VdYFC07jiSx93gyBpP9e9XTTUOjKkE0qRaMj6fMq8lrV68mMWPGNJYsWYSiKLi7u9O//7u8886gQrMwjQQsIYRwPRKyRIFVGBbDuJnNZuOnn35k/PjRXLlyGYCGDRsTGTmGxx6r6OTqiq4rqfau1tlre1GVLe5Fp8Yl8fe6/aJWpYKkpIssWLCQ/v0HsmzZTxQrFkqTJk8AYDQasFisTP/oE6o27s7huAxs1749g3z0PFEjhPBKgei1snlwXjOZTHz33dd88sksMjLSAejUqQtjxkygVKnSTq7u3nl7u+PhIWFcCCFcjYQsUaAVtqAFkJGRzowZ05k7dw5mswmNRsPzz7/E//3fe/j7+zu7vCLJZlPY/M8Vft1zCcu1rtbTj4dS96auls1mX6xiz/796FU2OrRuypnTp9i0+Xd69XoLRVE4dSmTrQcTOXVtyXiwL7DRvGYI1R71Qy2LWeSLjRv/YPLkCZw9ewaA6tVrEBMzjYYNGzu3sPskqwgKIYTrkpAlCjybTSEtLRuzueBtWHw3Z86cZvToSH75ZQ0Afn5+DBgwiBdeeBmtVjYYdYbLKQYWbjrPuWtdrXIlvOjUKIz4pGx+2X2RtCxLzmN9PbU0rODOns1Lad7uNbYeSuJyitF+p2KjyiM+PFmnBI+GejnjVIqkU6dOMmnSeLZs2QxAUFAwUVFjePHFV9BoCtdS+L6+7ri5ScASQghXJSFLFAqKopCebsBotOT+4ALmzz83ERk5lKNHjwBQvnwFIiPH0LhxUydXVjTZbAqb/r7Cb3suYbEpaDWqnP2r7kStmLGp7BfDOq2KehUD2fHzZ4yNisDDo3DM+Sns0tLSmD17Bj/88B1WqwWdTkfv3n0YPHg4Pj6+zi7vvqhU4OvrgV4vb7QIIYQrk5AlCg1FUcjIMGIwmJ1dyn2zWCx88818pkyZSHJyMgAtWz7J8OEjefTRMs4troi6nGJgwYazxCUacn2sl7uGptVDaFwlCE93LRER7zFmzEQJWXnMarXy008/8uGH75OSYv+5adPmaSZMmES5chWcXN39U6tV+Pl5oNUWrq6bEEKI+ychSxQ6mZlGsrJMzi7jgSQnX2Xq1Bi++moeVqsVnU5Hz5696Nv3Hby8vJ1dXpFzLD6dz9eeyvVxIaZ9DOvfi/T0dCZPHs+JE8cpV648Xbs+T3h4g3yotOjZtWsH0dHjOHbM3gGuUKEi0dFTaNnySSdX9mA0GhV+fp5oNLIoihBCFAUSskShlJ1tIiPD6OwyHtjRo0cYOXI4mzZtACAoKIhBg4bRuXM31Gq5CMsvsSeS+WHDuVwf91LLR6hTISAfKhJxceeZMiWa9et/BcDX149hwyLp1etNdLrCOYdJq1Xj5+chP9tCCFGEyG98USh5eOjx9S28G7xWqlSZRYuW8+23CylTpixJSUmMHDmc7t2fJTZ2r7PLKzJ873Efq3t9nHhwmZmZzJgxjfbtW7N+/a+o1WpeffUNdu7cz1tv9S20AUun0+Dv7ykBSwghihjpZIlCzWSykJaWTWH+LjaZTHz22Sd88MEUMjIyAGjXriNDh46gePESTq7OtdlsCjE/HiY187/n+fl76RjxQhVZnj2P2Gw2Vq1awfvvT87ZX65Jk2ZER0+latVqTq7u4bi5afHxcZcNyYUQogiSkCUKPYvFSmpqNjZb4f5Wvnz5MjEx41iw4DsURcHd3YM33niLN954Gw8PD2eX57L+Pp3CN+vP/uf9PVs/So2y/vlXUBFy4MB+oqPHcuDAXwA88sijjBsXQ7t2HQp9MPHw0OHl5Vboz0MIIcSDkZAlXILNZiMtzVDo9tK6kwMH9jNixFB2794JQPHiJRg6NJJnnmkvF2x55O/TKazYfuGWjpa/l45nG5WUgJUHLl9OYPr0yaxatRwAT09PBg0ayttv98fdvfAOA75ONhkWQgghIUu4jMK8xPu/KYrC8uVLGDduFBcuxANQt244UVFjC/0QqoLKZlM4nZCJotagslkpG+olQwQdzGg08tVXX/Dpp3PIzs4GoHv3Fxg1apxLDI1Vq1X4+nqg08kS7UIIUdRJyBIup7CvPHizrKwsZs+eyezZMzEYDKhUKrp06c6gQUMJCgp2dnkuR6WCoCBvkpIyCvU8v4JGURTWrfuFqVNjiI+PA6Bu3ceJiZlG3brhTq7OMbRaNb6+HrJEuxBCCEBClnBRrrAgxs3i4+MYN24Uy5cvAcDLy5t+/d7hlVdeQ6/XO7k61yEhy/GOHj1MdPS4nOGvoaHFGT16At26Pe8yw19lgQshhBD/JiFLuCyr1UZqajZWq83ZpTjMjh3biYoaxt9/31goICJiJC1aPCkXeA4gIctxkpOv8uGH7/PTTz9is9lwc3Ojb993+L//ew9vb9fZeNvLS4+np5uzyxBCCFHASMgSLs1mU0hPz8ZkKvwLYlxns9n48cfvmThxLImJVwBo3LgpkZFjKF++gpOrK9wkZD08s9nMDz98w5w5H5GengZAhw6dGDt2Io888qiTq3MclQp8fDxwc9M6uxQhhBAFkIQs4fIURSEry0RWlsnZpThUenoaH3wwlc8++wSz2YxGo+HFF19hwIBB+Pn5Obu8QklC1sPZsmUTMTHjOX36FABVq1YjJmYajRs3dXJljqXRqPH1dUerlQUuhBBC3JmELFFkmEwW0tMNhX4/rX87deokY8ZE8uuvPwPg5+fP//3fezz//ItotfIu+/2QkPVgTp8+xeTJE9m8eQMAgYGBREaO4eWXe6LRuFYQcXfX4u0t86+EEELcnYQsUaS40n5a/7Zx4x9ERQ3n+PGjADz2WEUiI8fQsGFjJ1dWeEjIuj/p6WnMmfMR33//NRaLBa1WyxtvvM2QIcPx8/N3dnkOpVKBt7fsfyWEEOLeSMgSRY6rDh8EsFgszJ//BVOnxpCamgLAk08+xfDhUZQu/YhziysEJGTdG6vVytKlPzFjxjSSk68C0KpVayZOnEKFCo85uTrHsw8P9ECrleXZhRBC3BsJWaLIMpstpKW53vBBgKtXk5gyJYZvvvkSq9WKXq/n1Vff4O23++Pl5eXs8gosCVm527NnF9HR4zhy5BAA5ctXYMKEybRu/ZSTK8sb7u46vL3dZHigEEKI+yIhSxRprrj64M0OHz5EVNQwtmzZDEBwcAiDBw/n2Wc7o1bLu/L/JiHrv8XHxzFtWkzO3D8fH1+GDo3gjTfeRqdzvSF09tUD3XFzc71zE0IIkfckZAkBZGWZyMw0OruMPKEoCj//vIbRo0dw7txZAKpXr0lU1Fhq167j5OoKFglZt8vKyuLzzz9h/vzPMRqNqNVqXn65JyNGjCY4ONjZ5eUJrdY+PFCjkTcihBBCPBgJWUJcY7FYSU83YLG4zubFNzMajcydO4eZM6eRmZkJQIcOzzJkyAhCQ4s7ubqCQULWDYqisHr1Ct5/fwoJCZcAaNiwMTEx06hevYaTq8s7np56PD31MjxQCCHEQ5GQJcRNXHlRjOsSEi4xceJYFi78AQB3dw/eeqsvvXr1xt3d3cnVOZeELLt//jlAdPRY9u+PBaBUqdKMGxdNhw6dXDZ8aLVqfHxk7yshhBCOISFLiDuwWKykpRmwWl2zqwUQG7uXyMhh7N27G4CSJcMYNiySp556xmUvpHNT1EPWlStX+OCDKaxYsRRFUfDw8ODddwfTt+87eHh4OLu8PCPdKyGEEI4mIUuI/1AUulqKorBkyU9MmDCaixcvABAeXo+oqLFUrlzVydXlv6IaskwmI19//SVz584mKysLgK5dn2f06PGUKFHSydXlHfvS7NK9EkII4XgSsoTIRVHoamVmZjJr1gzmzPkwZ3GDrl2fZ+DAIQQGBjm7vHxT1EKWoij8/vs6pkyZSFzceQBq165LTMxUwsPrO7m6vCXdKyGEEHlJQpYQ96AodLUAzp8/x9ixI1m1ajkA3t4+9Ov3f7z8ck/0er1zi8sHRSlkHTt2lEmTxrNjxzYAihULZdSocXTv/oJLL+8v3SshhBD5QUKWEPfBYrGSkWHEbHbNfbWu2759K1FRw/jnn78BKFOmLBERo2jevKWTK8tbRSFkpaSk8NFHH7Bo0Q/XNqp2o0+f/gwcOARvb29nl5dnVCp798rDQ7pXQggh8p6ELCEegMFgJjPTiM3muj8+VquVH374lpiYcSQlJQHQrFlzRowYRdmy5Z1cXd5w5ZBlsVhYsOA7Zs+eQVpaGgDPPNOBceOiKVOmrJOry1tublq8vNxk3yshhBD5RkKWEA/IZlPIyjKSnW12dil5Ki0tlenTpzBv3qeYzWY0Gi0vv9yD/v0H4uvr6+zyHMpVQ9a2bVuIiRnHyZMnAKhcuQoxMdNo2vQJJ1eWtzQaNd7ebuj1WmeXIoQQooiRkCXEQyoqQwhPnjzOqFEjWL/+NwD8/QMYOHAI3br9D43GNea3uFrIOnv2DJMnT2Djxj8ACAgIICJiFD16vIZW67rBwz400A0PD50MDRRCCOEUErKEcJCiMIQQ4I8/1hEVFcHJk8cBqFixMlFRY6hfv6GTK3t4rhKyMjLS+eST2XzzzZdYLBY0Gg29er3JsGGR+PsHOLu8PCVDA4UQQhQEErKEcKCiMoTQbDbz5ZefMW3aZNLSUgF46qlnGDYskrCwUk6u7sEV9pBls9lYtmwxM2ZMzZlH17x5KyZOnEylSpWdXF3ekqGBQgghChIJWULkAavVRmamEaPR4uxS8lRSUhKTJ0/g22+/wmazodfr6dWrN2+91Q9PT09nl3ffCnPI2rdvD9HRYzl06CAAZcuWY8KEybRp87RLD5lTq1V4ebnh5qZ16fMUQghRuEjIEiIPmc1WMjNdf77WwYP/EBU1jG3btgD2PZcGDx5Ox47PFaoL38IYsi5evMC0aZP4+efVgH1vs8GDh9G7d1+X3ttMpVJdW5Jd5l0JIYQoeCRkCZEPTCYLmZlGLBabs0vJM4qisGbNSkaPjiQu7jwANWvWZuTIsdSoUcvJ1d2bwhSysrOzmTfvU7744lOMRgMqlYqXXupBZOQYQkJCnF1enrq+35VaLeFKCCFEwSQhS4h8ZDSaycw0YbW6btgyGAzMnTubmTOnk5WVBcCzz3Zm8OAIihUr5uTq7q4whCxFUfj559VMmxbDpUuXAKhfvyGTJk0rNGH2Qbm76/Dy0qNWy6IWQgghCjYJWULkM0VRMBjMZGWZXHolwkuXLjJ+/GgWL14IgKenJ2+91Z/XXnsDNzc3J1d3ZwU9ZB08+A/R0WOJjd0LQFhYGGPGTKRTpy4uPWROVgwUQghR2EjIEsJJikrY2rt3N5GRw3KCQalSpRk2LJLWrQveggwFNWQlJl5h5szpLF36E4qi4O7uzjvvDKJ//3cL5QIj98rNTYunpx6t1jX2YRNCCFF0SMgSwskURcFotJCV5brDCG02G4sXL2TChDEkJNwY4hYVNYaKFQvO0uIFLWSZTCa+/XY+n3wym8zMDAA6d+7G6NHjC/VS+blxd9fh6amXzpUQQohCS0KWEAXI9bBlsbjmaoQZGRl8+OH7fPLJbEwmI2q1mu7dX+TddwcTEOD8TXILSshSFIWNG39n8uSJnDt3FoAaNWoREzONBg0K/6bPd6JSgbu7Hk9Pncy5EkIIUehJyBKiADKZ7GHLVZd+P3v2DGPGRLF27SoAfH196d//XV58sQc6nc5pdRWEkHXy5AliYsblLIcfHBzCyJFjeeGFl10yfNiXYtfh7i6rBQohhHAdErKEKMAsFitZWSaX3dR469Y/iYwcyuHDhwAoW7Y8UVGjadLkCafU48yQlZqayuzZM1iw4DusVis6nZ633+7LoEFD8fHxzd9i8oFabd/nyt1d9rkSQgjheiRkCVEIWK02DAYz2dlmXO1H1mq18t13XxETM57k5GQAmjdvSUTEKMqUKZuvtTgjZFksFhYtWsBHH31AamoKAE8//QzjxsVQrlz5/CkiH+l0Gjw89Oj1GglXQgghXJaELCEKkeuLZGRnm1xuY+OUlGSmTZvM/PmfY7FY0Gq1vPLKa/Tr906+dXLyO2Tt2LGNmJhxHD9+DICKFSsRHT2V5s1b5v3B85F9vpV9SKBW63pDHoUQQoh/k5AlRCFlsVjJzjZjNJoLxEp4jnL8+DGiooazcePvAAQGBjFo0BA6d+6ORpO3S3nnV8g6f/4ckydP5I8/1gHg5+fP8OFRvPbaG2i12rw7cD7TatXXwpUMCRRCCFG0SMgSopC7vt+WwWB2qe7WunW/MmpUBKdOnQSgSpWqREWN5fHH6+XZMfM6ZGVmZjB37hy+/noeZrMZjUZDz56vM3x4JIGBQY4/oBOoVODmZg9WOp3sbyWEEKJokpAlhAuxWKwYDBaMRrNLbHBsMpn44ou5TJ8+hYyMdADatm3H0KGRlCwZ5vDj5VXIstlsrFy5jPffn0Ji4hUAmjVrzsSJU6hSparjDuREer0GNzcdbm5a6VoJIYQo8iRkCeGCFEXBbLZiNFpcYjjhlStXmDRpPN9//w2KouDm5s7rr/emd+++eHh4OOw4eRGy9u+PJTp6LP/8cwCARx8tw/jxk2jbtl2hDyPXhwO6uWldcnl5IYQQ4kFJyBLCxSmKgslkwWCwYDIV7qXg//77LyIjh7Fz53YAQkOLM3ToCNq16+iQwOLIkJWQcInp0yexevVKALy8vBg0aBhvv90PNze3h67VWTQa1bWOlU4WsRBCCCH+g4QsIYoQm03BaDRjNFoK7UbHiqKwatVyxoyJIj4+DoDatesycuRYqlWr8VDP7YiQZTAY+PLLz/j887kYDNmoVCr+97+XiIoaS2ho6EPV5yxqtQo3Ny1ubjLPSgghhLgXErKEKKJsNnuH6/pHYftNkJ2dzccff8RHH31AdrY9zDz3XFcGDRpGSEjIAz3nw4QsRVH49de1TJ0aw8WLFwAID69HTMw0ateu+0D1OJNWq0av16LXayVYCSGEEPdJQpYQImcOl8lkwWi0FKpFMy5ciGf8+FEsXboYsA/L69NnAD179kKvv79heQ8aso4cOUR09Fj27NkNQIkSJRk9egJdunQrVPOu9HpNTrDSaGQooBBCCPGgJGQJIW5jsdwIXIVlWfhdu3YSGTmUAwf2A1CqVGkiIkbRqlXrew469xuyrl5NYubM6SxZsgibzYabmxsDBgxkwICBeHl5PcTZ5A+VSoWb241gVZgCoRBCCFGQScgSQtyVzWbvctk/CnbostlsLFq0gAkTxnDlymUAGjZsTGTkGB57rGKun389ZE2dOp0jR44QElKMQYOGotXqALh48QKTJo3j3LmztGv3LJ9/PjdnaflSpUpTu3Ydpk6dQXDwgw1XzGsqlQq9XoNOZ//QamUYoBBCCJEXZDyIEOKuri964O3tRkCAF0FB3vj6euDhoS9wq8up1WpeeOFldu6MZcCAgeh0enbs2Ebnzu0YP340KSkpuT7H0aNHuXo1malTZ/LII4+wZcvmnPsCAwNp374TcXHxzJgxjYyMdKpVq86yZWvYt+8g3bu/wOrVK/LwDO+PvVN1/f/Ok+Dgm//vJGAJIYQQeaVgXSEJIQq8u4UunU5DQRhx5u3tw+jR49myZRdPP90Oq9XKggXf0rZtC7777msslv9eyv7vv/+mbl37QhV169bn8OGDAJw+fZJ33unDwIH9yczMICgoiPff/4j16/+kSZNmAGRmZlC2bPm8P8H/oNGoJVQJIYQQBYAMFxRCOJzVasNisWI22/+0WKxOXb1w8+aNREUN4+jRIwCUL1+BqKixNGrUJOcxVquVvXt38+uvqyhdugw9erxOQsIl5s37FK1Wy/fff4vVakGn01G2bDkWL15F8eLFATh58gSTJ08gIyOdDz6YTYkSJfP8nDQaNVqtOmfYn1arljlVQgghRAEhIUsIkS9uDl5WqxWLxZavqxhaLBa+/vpLpkyJJiUlGYCWLVsTETGSI0cOM2nSOC5dupTz+NDQ4tSuXYdNmzZgMBgAaN36KSZMmMSMGdOYOnUmnp6etxzj99/XsW/fboYOjXRY3SqVPVBpNBKohBBCiMJC6+wChBBFw/Wg4HbTquqKomC12q593Px3xwcwrVbLG2+8RZcu3ZgyJYavv57Hhg3r2bx5A1br7RszJyRc4tdffwagQoWKTJw4mVatWt/2OLPZjE5nXxjD29sbd3ePB6rv+tfneodKo1Gh0ahRq2VUtxBCCFHYSCdLCFEg2WzKtbBlu/Z3Jefv1z8e5tfX0aNHiIwcyp9/brrr43x9/ejV6w2iosaSlpbGqFERHD16mMceq8hLL/UkICCQWbM+QK1W4+7uTkTEKIKCgm95DrVade1DnfN3e4C68ad0poQQQgjXISFLCFFoKYpyU+iyXQte9tvtH/zrz1v/vn37Nrp06YjFYr7tuXU6HTqdDpvNxuLFK2nYsBEqlerah33lPrWa226z335rqBJCCCFE0SIhSwghhBBCCCEcSAb7CyGEEEIIIYQDScgSQgghhBBCCAeSkCWEEEIIIYQQDiQhSwghhBBCCCEcSEKWEEIIIYQQQjiQhCwhhBBCCCGEcCAJWUIIIYQQQgjhQBKyhBBCCCGEEMKBJGQJIYQQQgghhANJyBJCCCGEEEIIB5KQJYQQQgghhBAOJCFLCCGEEEIIIRxIQpYQQgghhBBCOJCELCGEEEIIIYRwIAlZQgghhBBCCOFAErKEEOIeXbhwgTp16pCenu7sUoQQQghRgKkURVGcXYQQQtyPHj16EBsbi06nQ61WU6JECZo2bcpbb71FYGBgvtURERGBj48PUVFR+XZMIYQQQhR80skSQhRKQ4YMITY2lj179jBz5kwSEhLo0qULiYmJzi5NCCGEEEWchCwhRKGmUqmoUKEC06ZNw8fHh/nz5wNw8OBBevToQf369WnTpg2LFi3K+ZxZs2bRp08fxo8fT3h4OC1atGDt2rU592/dupWOHTtSp04dGjduzJgxYwCIi4ujUqVKpKWl8c0337Bq1SoWLFhAnTp1aN++PevXr+fJJ5/k5gECsbGx1KtXD6PRmE9fESGEEEI4m4QsIYRL0Gq1tGrVil27dnHlyhVef/11XnzxRbZv386cOXP46KOP2L59e87jt2zZQt26ddm5cycDBw4kKiqKjIwMAIYPH84bb7xBbGws69evp1OnTrcdr2fPnnTs2JEXX3yR2NhY1qxZQ4sWLTAajezatSvnccuWLaNDhw64ubnl/RdBCCGEEAWChCwhhMsIDQ0lNTWVFStWEB4eTrt27dBoNFSsWJGuXbuyatWqnMdWrVqVDh06oNFo6NSpE2azmTNnzgCg0+k4d+4cV69exdPTk7p1697T8bVaLZ06dWLZsmUAGI1Gfv75Z7p06eLwcxVCCCFEwSUhSwjhMhISEvDz8yM+Pp5NmzYRHh6e8/HNN99w5cqVnMcGBwfn/F2lUuHu7k5mZiYAs2fP5vjx47Rt25bnnnvulqGEuenatSu//vormZmZrFu3juLFi1OjRg3HnaQQQgghCjytswsQQghHsFgs/PHHHzzxxBP4+fnRpk0bZsyY8UDPVa1aNWbNmoXNZmP9+vUMHDiQ+vXr3/Y4lUp1223lypWjcuXK/Prrr6xZs4auXbs+UA1CCCGEKLykkyWEKPROnjzJ8OHDSU9Pp1evXnTq1IkdO3bw66+/YjabMZvNHD58mAMHDuT6XCaTieXLl5OamoparcbHxwcAjUZz22ODg4M5f/78bbd369aN+fPns3v3bp599tmHP0EhhBBCFCoSsoQQhdL06dOpU6cOjz/+OO+88w4hISEsWbKE4OBgQkNDmTdvHgsXLqRp06Y0adKEcePG5QwHzM3q1at56qmnqFOnDhMnTmT69OkEBATc9rju3btz+fJl6tWrR8eOHXNuf+aZZ4iPj6dZs2b5um+XEEIIIQoG2YxYCCHyQOvWrRkxYgRPPvmks0sRQgghRD6TTpYQQjjYmjVrsFqttGjRwtmlCCGEEMIJZOELIYRwoGeeeYbU1FQmT558x3lcQgghhHB9MlxQCCGEEEIIIRxIhgsKIYQQQgghhANJyBJCCCGEEEIIB5KQJYQQQgghhBAOJCFLCCGEEEIIIRxIQpYQQgghhBBCOJCELCGEEEIIIYRwIAlZQgghhBBCCOFAErKEEEIIIYQQwoH+H1GGd//hJd4nAAAAAElFTkSuQmCC"
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "from netbone.visualize import plot_radar\n",
+    "plot_radar(results, 'US Airports')"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-03T09:24:49.066271100Z",
+     "start_time": "2023-07-03T09:24:48.263466300Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "# Experiment 2"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "The Previous experiment focuses on the structural methods for backbone extraction. Some of these methods can be adjusted using a threshold on scores or selecting the top fraction of scores. In this experiment, our objective is to sparsify the network while preserving all the nodes, which is crucial in the context of a transportation network. To achieve this, we use *netbone*'s comparison framework to help us determine the appropriate fraction. We start by initiating an instance of the Compare class from the compare module. Then we add the original network to *netbone*'s comparison framework using the *set_network()* function."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "outputs": [],
+   "source": [
+    "from netbone.compare import Compare\n",
+    "import pandas as pd\n",
+    "\n",
+    "framework = Compare()\n",
+    "\n",
+    "edge_list = pd.read_csv('./data/data.csv')\n",
+    "framework.set_network(edge_list)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:10:39.639775800Z",
+     "start_time": "2023-07-02T17:10:39.639775800Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "The next step is to set up the filter in the comparison framework. In this experiment, we choose to use the *fraction_filter()* to evaluate the backbones at the fractions from 0.01 till 0.5. Thus, we pass an array of these values while setting the filter."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "outputs": [],
+   "source": [
+    "from netbone.filters import fraction_filter\n",
+    "\n",
+    "fractions = [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]\n",
+    "framework.set_filter(fraction_filter, fractions)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:10:39.656600300Z",
+     "start_time": "2023-07-02T17:10:39.655401900Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "Once the original network and filter are set, the following step is to add the backbone extraction methods in the comparison framework."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "outputs": [],
+   "source": [
+    "import netbone as nb\n",
+    "\n",
+    "gt =nb.global_threshold(edge_list)\n",
+    "hss = nb.high_salience_skeleton(edge_list)\n",
+    "ds = nb.doubly_stochastic(edge_list)\n",
+    "gspar = nb.gspar(edge_list)\n",
+    "bet = nb.betweenness(edge_list, weighted=True)\n",
+    "\n",
+    "framework.add_backbone(gt)\n",
+    "framework.add_backbone(hss)\n",
+    "framework.add_backbone(ds)\n",
+    "framework.add_backbone(gspar)\n",
+    "framework.add_backbone(bet)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:10:51.372998400Z",
+     "start_time": "2023-07-02T17:10:39.659605500Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "The last step is incorporating the properties to assess the backbones under varying fractions. In this case, we use one property function, the *node_fraction()* from the *measures* module."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "outputs": [],
+   "source": [
+    "from netbone.measures import node_fraction\n",
+    "\n",
+    "framework.add_property('Node Fraction', node_fraction)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:10:51.372998400Z",
+     "start_time": "2023-07-02T17:10:51.372998400Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "After configuring everything and adding it to the framework, the next step is to call the *properties_progression()* function to compute the properties for the backbone at each fraction. The output of this function is a *dictionary* of *DataFrame*s. One can use it to inspect the computed properties of the backbones with respect to the fractions."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "outputs": [
+    {
+     "data": {
+      "text/plain": "                   Global Threshold Filter  High Salience Skeleton Filter  \\\nFraction of Edges                                                           \n0.01                              0.092105                            0.3   \n0.05                              0.226316                            1.0   \n0.10                              0.378947                            1.0   \n0.15                              0.526316                            1.0   \n0.20                              0.657895                            1.0   \n0.25                              0.773684                            1.0   \n0.30                              0.863158                            1.0   \n0.35                              0.915789                            1.0   \n0.40                              0.950000                            1.0   \n0.45                              0.971053                            1.0   \n0.50                              0.973684                            1.0   \n\n                   Doubly Stochastic Filter  Global Sparsification  \\\nFraction of Edges                                                    \n0.01                               0.310526               0.155263   \n0.05                               0.784211               0.239474   \n0.10                               0.836842               0.294737   \n0.15                               0.850000               0.350000   \n0.20                               0.855263               0.381579   \n0.25                               0.863158               0.450000   \n0.30                               0.868421               0.500000   \n0.35                               0.871053               0.552632   \n0.40                               0.878947               0.626316   \n0.45                               0.886842               0.671053   \n0.50                               0.886842               0.705263   \n\n                   Weighted Betweenness  \nFraction of Edges                        \n0.01                           0.402632  \n0.05                           0.771053  \n0.10                           0.960526  \n0.15                           0.994737  \n0.20                           1.000000  \n0.25                           1.000000  \n0.30                           1.000000  \n0.35                           1.000000  \n0.40                           1.000000  \n0.45                           1.000000  \n0.50                           1.000000  ",
+      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>Global Threshold Filter</th>\n      <th>High Salience Skeleton Filter</th>\n      <th>Doubly Stochastic Filter</th>\n      <th>Global Sparsification</th>\n      <th>Weighted Betweenness</th>\n    </tr>\n    <tr>\n      <th>Fraction of Edges</th>\n      <th></th>\n      <th></th>\n      <th></th>\n      <th></th>\n      <th></th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0.01</th>\n      <td>0.092105</td>\n      <td>0.3</td>\n      <td>0.310526</td>\n      <td>0.155263</td>\n      <td>0.402632</td>\n    </tr>\n    <tr>\n      <th>0.05</th>\n      <td>0.226316</td>\n      <td>1.0</td>\n      <td>0.784211</td>\n      <td>0.239474</td>\n      <td>0.771053</td>\n    </tr>\n    <tr>\n      <th>0.10</th>\n      <td>0.378947</td>\n      <td>1.0</td>\n      <td>0.836842</td>\n      <td>0.294737</td>\n      <td>0.960526</td>\n    </tr>\n    <tr>\n      <th>0.15</th>\n      <td>0.526316</td>\n      <td>1.0</td>\n      <td>0.850000</td>\n      <td>0.350000</td>\n      <td>0.994737</td>\n    </tr>\n    <tr>\n      <th>0.20</th>\n      <td>0.657895</td>\n      <td>1.0</td>\n      <td>0.855263</td>\n      <td>0.381579</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>0.25</th>\n      <td>0.773684</td>\n      <td>1.0</td>\n      <td>0.863158</td>\n      <td>0.450000</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>0.30</th>\n      <td>0.863158</td>\n      <td>1.0</td>\n      <td>0.868421</td>\n      <td>0.500000</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>0.35</th>\n      <td>0.915789</td>\n      <td>1.0</td>\n      <td>0.871053</td>\n      <td>0.552632</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>0.40</th>\n      <td>0.950000</td>\n      <td>1.0</td>\n      <td>0.878947</td>\n      <td>0.626316</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>0.45</th>\n      <td>0.971053</td>\n      <td>1.0</td>\n      <td>0.886842</td>\n      <td>0.671053</td>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>0.50</th>\n      <td>0.973684</td>\n      <td>1.0</td>\n      <td>0.886842</td>\n      <td>0.705263</td>\n      <td>1.000000</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
+     },
+     "execution_count": 17,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "results= framework.properties_progression()\n",
+    "results['Node Fraction']"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:10:52.506038300Z",
+     "start_time": "2023-07-02T17:10:51.372998400Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "To visualize the evolution of the properties versus the fraction values, we use the *plot_progression()* function from the *visualize* module. This function requires two arguments: the results *dictionary* and a *String* that represents the title of the figure and the name of the saved figure file."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "outputs": [
+    {
+     "data": {
+      "text/plain": "<Figure size 500x500 with 1 Axes>",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvsAAAH3CAYAAAAlq5CoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADsu0lEQVR4nOzdd1xT5/cH8M/NDoGwwYkyFLd1oIhb6x51tWrVWm1t3dVqq7W7P/utXdq6rVpr7bDuXVtH3XsPnIAT2QRIyL739wcSuCTskQTO+/XypXnuTXJyQTh5cp7zMBzHcSCEEEIIIYRUOgJ7B0AIIYQQQggpH5TsE0IIIYQQUklRsk8IIYQQQkglRck+IYQQQgghlRQl+4QQQgghhFRSlOwTQgghhBBSSVGyTwghhBBCSCVFyT4hhBBCCCGVFCX7hBBCCCGEVFKU7BNSiY0ZMwahoaH2DoMQQgghdkLJPiEFOHv2LEJDQzFmzJh8z3ny5AlCQ0PRrVs3q2Px8fH43//+h759+6J58+Zo1qwZunTpgtGjR2PRokV49OhRieIaN24cQkND0blzZ5jN5hI9hqNbsmQJQkNDcfbsWXuHQgghhDgtkb0DIKSyunPnDl577TWoVCrUr18fgwYNgpubG549e4bbt29j5cqVqFWrFgICAor1uI8fP8bp06fBMAzi4uJw/PhxdOnSxea5X3/9NbRabRm8GkIIIYQ4I0r2CSknX331FVQqFaZNm4apU6daHb9z5w5EouL/F9y0aRM4jsPEiROxcuVK/PXXX/km+zVq1Cj24xNCCCGk8qBkn5BycunSJQDAa6+9ZvN4SWrpTSYTtm/fDnd3d0yZMgXHjh3D0aNHER8fD39/f6vzx4wZg3PnzuHOnTuWsbNnz+K1117D1KlT0bFjRyxduhRXr15Feno6Dh06hFq1allKknbu3IlFixbhwIEDUKlUqF27NkaMGIExY8aAYRir59u3bx9+++033LlzB0ajEQEBAejfvz/GjRsHqVTKOzf3c/z44484dOgQEhISMHHiRGzfvh1Pnz61ef2yX0tiYiLWrFmDI0eOID4+HgKBAN7e3mjRogWmTp1a7E9MCCGEkMqIkn1CyomXlxeePXuGBw8eoFmzZmXymIcPH0ZiYiJGjhwJiUSCwYMH48svv8TWrVsxefLkYj3W5cuXsWrVKrRq1QrDhg1DcnIyxGKx5bjBYMDrr7+OjIwM9OvXD0ajEf/88w++/PJLxMTE4NNPP+U93rfffos1a9bAy8sLAwYMgFwux7Fjx7Bo0SIcP34c69atg0Qi4d3HYDBg7NixSEtLQ4cOHeDi4oKaNWvitddew6FDh3Du3DkMHjwYNWvW5N1Pq9VixIgRePLkCdq3b49u3bqB4zjExsbiv//+Q58+fSjZJ4QQQkDJPiHlpl+/flizZg0mTpyIkSNHIiwsDI0bN4abm1uJH/Ovv/4CAAwePBgAMGDAAHzzzTfYsmULJk2aZHO2PT8nT57E559/jhEjRtg8npiYiNq1a2PPnj2WJH3atGkYNmwY/vjjD/Tt2xdhYWEAgIsXL2LNmjWoWbMmNm/eDG9vbwDArFmzMHnyZBw9ehRr167FpEmTrJ4jJCQEv/32G1xcXHjHMjIyLMl+27ZtecdOnTqFJ0+e4LXXXsOHH37IO2YwGGAwGIp8HQghhJDKjLrxEFJO3nnnHQwfPhxpaWlYunQpxo4di7CwMPTp0wcLFiywlKkU1dOnT3Hq1CkEBwejefPmAABPT0907doVT58+xcmTJ4v1eA0aNMg30c82a9Ys3my8h4eH5ROEbdu2Wcaz/z1p0iRLog8AIpEIc+fOhUAgwJYtW2w+x5w5c6wS/cJkv6mRy+VWxyQSCVxdXYv1eIQQQkhlRck+IeVEIpHgiy++wNGjR7FgwQKMHDkSzZo1w8OHD7Fu3Tr069cPR48eLfLjbd68GSzLYtCgQbzx7Fn+TZs2FSu+7DcM+RGJRGjRooXVeJs2bQAAkZGRlrFbt24BgNUMPAAEBQWhWrVqePLkCdLT03nHJBIJGjRoUKy4s2Pw9/fHTz/9hDfffBMbNmzAjRs3Km0bUkIIIaSkKNknpAACQdZ/EZZl8z2H4zgAyLeExsfHB4MHD8Znn32GTZs24dSpU3j55Zeh1WrxwQcfFKnkxGw2Y9u2bRAIBHjppZd4xzp16gQfHx8cPnwYycnJRX1p8PHxKfC4p6cnhEKh1bivry+ArDKbbNn/zu8xbd0n+/zilB5lc3V1xaZNmzBkyBDcuHED8+fPx9ChQ9GhQwcsXboUJpOp2I9JCCGEVEZUs09IAbLr61UqVb7npKamAgCUSmWRHtPDwwNffPEFTp48idjYWNy7dw+NGzcu8D7//fcf4uPjAWQl9/nZunUr3nrrrSLFUViSnZqaCrPZbJXwJyYmAgBv7UH2v5OSkmwujLV1n6LEUJBq1arhf//7HziOw/3793HmzBn8/vvvWLJkCViWxfTp00v82IQQQkhlQck+IQUIDAyERCLBgwcPkJqaCk9PT6tzLl++DKB4rTQFAoGl3jz7k4GCbN68GQDQtWtXXk18NpPJhB07dmDLli2YMGFCqZLo3I95+fJltG7dmjd+7tw5AECjRo0sYw0bNsTNmzdx9uxZq2T/4cOHiIuLQ61atYr8hggo2qcqQNYbhnr16qFevXp48cUX0aVLFxw4cICSfUIIIQSU7BNSIKlUij59+mDnzp345ptv8L///Y+XSMfFxWHt2rUAYFVLv3TpUgwaNAi1atWyetz9+/cjOjoa7u7uqF+/foExZO+S6+7ujh9//NGqX322Bw8e4MqVKzhz5gzatWtXzFdq2/fff4/169dbFumqVCqsWLECADBkyBDLeUOHDsWWLVuwYsUKdO/eHV5eXgCyyo++/vprsCyLYcOGFeu5PTw8AADPnj2zOnb37l24uLhYXdukpCQAyPcaEUIIIVUNJfuEFGLu3Lm4du0atm3bhitXrqB9+/ZQKBSIjY3FoUOHoNFoMH78eISHh/Pu98svv2DJkiVo1KgRmjRpAi8vL2RkZCAyMhKXL1+GSCTCZ599ZtV7Pq/NmzfDbDZj4MCBBSaxw4YNw5UrV7B58+YySfZ9fX1hNBrRv39/dOvWDSaTCfv370diYiJeffVVS9tNAGjZsiXefPNNrFmzBv3790evXr0gl8tx/Phx3L17F61atcIbb7xRrOcPDw+HQCDAwoULcffuXcunApMnT8apU6ewYMECtGjRAkFBQfD29kZcXBwOHToEhmGK/VyEEEJIZcVwRakhIKSKU6vV2LBhAw4cOIAHDx5Ar9fD3d0dTZs2xfDhwy27weZ24cIFHD9+HOfOncOzZ8+QlJQEkUgEf39/hIWFYcyYMYWW/rAsi27duuHZs2fYuXNngZ1rMjMz0aFDBxiNRhw9ehReXl6F7qA7bdo0m4+Ve3fbhQsX4uDBg0hNTUXt2rUxcuTIfHfQ3bt3L3777Tfcvn0bJpPJsoPu+PHj891B9/Dhw/m+pp07d+Lnn39GTEwM9Ho9gKwddKOiorBp0yacP38esbGxUKvV8PPzQ5MmTfD666+jZcuW+T4mIYQQUpVQsk8IsVKURJwQQgghjo9abxJCCCGEEFJJUbJPCCGEEEJIJUXJPiGEEEIIIZUU1ewTQgghhBBSSdHMPiGEEEIIIZUUJfuEEEIIIYRUUpTsE0IIIYQQUklRsk8IIYQQQkglRck+IYQQQgghlRQl+4QQQgghhFRSlOwTQgghhBBSSVGyTwghhBBCSCVFyT4hhBBCCCGVFCX7hBBCCCGEVFKU7BNCCCGEEFJJUbJPCCGEEEJIJUXJPiGEEEIIIZUUJfuEEEIIIYRUUpTsE0IIIYQQUklRsk8IIYQQQkglRck+IYQQQgghlRQl+4QQQgghhFRSlOwTQgghhBBSSVGyTwghhBBCSCVFyT4hhBBCCCGVFCX7hBBCCCGEVFKU7BNCCCGEEFJJUbJPCCGEEEJIJUXJPiGEEEIIIZUUJfuEEEIIIYRUUpTsE0IIIYQQUklRsk8IIYQQQkglJbJ3AI5kxIgRMBqN8PLysncohBBC7CglJQVisRgbN260dyiEEFIqlOznYjQaYTabYTazhZ7LMIBAIADLsuC4CgjOidC1KRhdn4LR9SkYXZ+CldX1MZvNZRcUIYTYESX7uXh5ecFsZvH11z8Ueq5IJICnpwKpqRqYTIW/OahK6NoUjK5Pwej6FIyuT8HK6vrMmTMDQiFVuhJCnB/9JCOEEEIIIaSSomSfEEIIIYSQSoqSfUIIIYQQQiopSvYJIYQQQgippCjZJ4QQQgghpJKiZJ8QQgghhJBKipJ9QgghhBBCKilK9gkhhBBCCKmkKNknhBBCCCGkkqJknxBCCCGEkEqKkn1CKphAwMBoMEMgYOwdCgBAKBTA1VUKodAxfhzQ9SkYXZ+COdr1IYQQe7P7T+eHDx/ik08+wUsvvYRGjRqhf//+Rb7v9u3b0bt3bzRt2hT9+/fH33//XY6RElI2JBIREuMzIJGI7B0KAEAuEyM1KRNymdjeoQCg61MYuj4Fc7TrQwgh9mb3ZP/evXs4evQo6tSpg+Dg4CLfb//+/Zg7dy569OiB1atXIzw8HDNnzsSJEyfKMVrHxDCAm4sQjINMZDEMwJoMDhOPSCSAu5sMIpHdv90hk4mQlqrDz0tOIi1VB5nMvgmJTCZCmkqbFY9K6xjx0PUpOB66PgXH40DXhxBCHIHdfxJ269YNL774IgBg7ty5uHHjRpHu9+OPP6J3796YNWsWACA8PBwxMTFYvHgxOnToUG7xOiKxwASZwg3auEhok57ZOxxI/GpA4NEQTGoUjAmxdo6GgWvjtkhK1MDTU4zUu+cq9NlZloPRBBiMHBiJAnXDwvDrhjNgzRy2bbiEN99pj7unLkGboanQuABA7qZA085tcsVz2cHioetTcDx0fQqO5xImzOwIo5GF2cxWeDyEEOIo7J7sCwTFn219/PgxoqOj8e677/LG+/fvjw8++AApKSnw8vIqqxAdGqt6BrFQB636GaTQI/XwqqwDHAdwFfgLjhEgeyrf45UPoH0UCTGrh87O8SjbvoT0NCN+XnISE95pD4kmDulndxYaD8cBJohg5CQwcGIYOQmMrBhGSGDkxDCwWX8bOf7fBsvtrDETxM/DYTB+amsc/fcekhOyEqGkBDWOHbyPBk0bYd2Sk+C4CrkyueJphKMHKB6KpxLHc+AuIroGQ63RV1wwhBDiYOye7JdEdHQ0ACAoKIg3HhwcDI7jEB0dnW+y371793wfVy6Xw9/fv0jlHtmL0ey1KM3DwwUMwwC+bjBnpuPpurmoOW4Bgj7YBADgTEbEfD2iwuIJnPMHGGFWYutI8ZiMZqxaeAysmcPW367gzRnDESNrD1WiGoln/8knYc/6N1B2dUjtOgeBA3DmaDRv/PSRKDRoWg3tugTj1H9RZfZ8FA/FQ/EAp/6LQpMWNeHj74r0dG2xHpNxlDpEQggpJadM9tPS0gAASqWSN+7u7s47XhICgQCenooin69Uykv8XKXFmowAa8bDHycArAkPf5yAurN+gfrmCahObK3QWB4vnwaPDkPh2riDQ8QTtWwWfEd+gXNnYvPM9N1Dg6bVsH/bDXBcaIXFE94pELs3XbOa7eQ44PiBexjwSrMKTY4oHoqnqsRzeN9tvDy2VbF+rgOgbj6EkErDKZP9bHlnXrjnP+kLmpE5dOhQvscmTJgAlmWRmlp4valQKIBSKUd6utau9aBZv8Cyf8NxEEjkSDm7FxBKIPCsWWFxsABSzu6FskUPu8XDcgyeab0QlVEDNYMiIMvkHGbm8cyxGHTsUQ/3byfwEhJGwKBTz3q4fOI23MXqCovn8onb6NgjhOKheCp9PN36NoDeYEKGWlesx2RZjhJ+Qkil4JTJfu4ZfB8fH8t4eno6AOsZ/+LgOMBkKnrybjazxTq/PPj0ngBFg3bQ3D4NAFAM/T/7xtN3ElwbtoP6VsXEk5ygxp0b8bh3MwGZGgMAYEin4DKdeRSJBZBIRVl/JMLn/xZaboulIkil2X+LILZxjpeXAu26BuPU4ZznjegSBC8fBSRhwWgQVvRuVGXBVSGleCieSh+P0kNWopr9rMkjSvYJIc7PKZP97Fr96OhoXrvOqKgoMAxjVctfWXGsGbqnd8GZTYj78wu4NusKQ4YKgNBuMRm0mZCEtIVAIoMkpC0M2sxyeR6NWo97NxNw90Y8khOtP4kpaCa9c6/6uH8nAU1a1uAn5LYSeakQYomoTGb4tDojOvesj7s34pGUoIaPnys69ayPjIzizTiWFYqH4qF4CCGk8rN/4/ESqF27NoKCgrBv3z7e+J49e9CsWbMq04mHy0xD7C8fIPmfNdA/i0LyP2uKVIJUntLUZmgNWdm11sAhTW0us8c2Gs24F5mAPZuuYcOyMzj9X7TNRB8ATh+NBsMA4Z35b/wiugTB09sFNet6omPPemjbORAtwgPQuEUN1Gvkhzoh3qhe2x3efq5wc5dBKhOX2Uf5ZjMLnc6AIWNaQigUYOiYltDpDHYrA8uJp4WDxUPXp+B46PoUHI9jXB9CCHEUdp/Z12q1OHr0KADg6dOnUKvV2L9/PwCgTZs28PLywrx587Bjxw5ERkZa7jd9+nTMnDkTAQEBiIiIwKFDh3Dy5EmsWbPGLq/DHrjMVP6AQARG5mafYMoJx3F49jgNd27EI+p2IoyGwt88+FV3Q/0m/mCEDLr0CsW9yIScmb4e9Ytdu1uWdDoT3D1lGDctAkpPGdRq+7YE1OlMcPeQZ8VTwnKHMo+Hrk/B8dD1KTAeDwe6PoQQ4gjsnuwnJyfjnXfe4Y1l3/7111/Rtm1bsCwLs5mf5PXp0wc6nQ4rV67E2rVrUadOHSxatKhKbajFavjJPqPwqDTt4lQpmbh7Ix53b8QjI73wX9gKNynqN/FDaGN/ePrkdN3Q6bNmHtf+cDJrpk9v/5k+g8EEX383ZGodIxHR6ozw9HGBVmu0dygA6PoUxtGuj05vhJePAlqdwa5xCIUCiCUiCMVCePkqIBQJIJVLYDKY7P5/nhBC7MnuyX6tWrVw586dAs9ZsGABFixYYDU+ePBgDB48uLxCc3hcnmRfoHDu8iWd1oj7txJx90Yc4mMzCj1fLBEiKNQH9Rv7o2Yd2290HG3mEcjq8iGWCMFqKnDXoQKYzaxDzYDS9SmYo1yf7ORaJhNBrTXC1U0Grc5UYck1y3EwmVgYzSwYhoG/rxu2/ncPu0/EQKM1QiEXY2DHIAztGgKNWk8JPyGkyrJ7sk9KLm+yz7h42CeQUjCbWTyKSsGdG/F4eD8ZLFtwAsMwQK26nqjfxB+B9XwglhS+GNnRZmYJcXZCoQAKVym2HL6P3SeiLcn1gA6BGNIlBJdvxUOl1luScZOZhdGU+2/O8u/s4yZTrnNyHc/vvuZcPys+HNcGx6/H4a+Ddy1jGq0Rf/6bNZHUv30gzFr7fvJACCH2Qsm+E7Mu4/G0UyR8AgEDo8Gc78JWjuOQ8CwDd2/E4/6tBOi0pkIf09PHBaFNq6FeIz+4ukmLFY+jzcwS4qzMLIsnCRr4+iiw7+wjq+R644G74DggpLYHVuy4USExKRUSvFDPFz9svGzz+K7j0Xi5ez0YdEbLXiyEEFKVULLvxBy1jEciESExPgOePi4w5FpQm5Gmw92bWXX4qpTCt66Xu4hRr5Ef6jfxh4+/a6VZj0CIs1BrjYh6mob7T9MQ9TQN0c/SIZOIsPbDHthzMsbmffacjMEvH/eEUiFBuqb8Z9M93aRIU+uhyeeTO43WCI3WBIGAgdlMyT4hpOqhZN+JsZmON7Mvk4mQlqrDz0tO4s0ZHSGTC3H9Uizu3IhH7CNVofcXChnUreeD0Cb+qBXoCaHQKbvDEuJ0WI7Ds+TMrOT+SVaCH5divU9Gde/Ck+s0jQGebtIKSfZTM/Rwd5VCIRfbjEkhF0MhFyFNT2V8hJCqiZJ9J8VxHDi1YyX7QqEAMqkEvy4/A9bMYduGSxg/vT2uX3iKpAR1gfetVkuJ0CbVENzAF1IZfVsSUt60ehNinqXj/vOZ++in6cjUF15SV5Tk2t1VAolYgAA/V4hEAoiEAoiFDMQiIURCJteYAOLn/xYJGYhFWWO5j4ssY0zW38//iEU5x7Q6IwZ0DMLGf62bPQzsGAStzkQlPISQKouyKmdlyATM/FkzgcLDPrE8J5eJcfTfu0hOyNroKilBjROH7mPgiOZYt+Qk8v6uVXrIENrEH/Wb+EPpIbdDxIRUDRzHITFNh6jnM/b3n6bhSaLa6v9kUaRrDLj1IAUD2gdiY66a/WwDOwbBYDDjg1GtyiDyouHMLIZ1DQGDrBp9W914CCGkqqJk30nlXZwLAIyL/Wb2ZTIR0lRanD4SxRs/fSQKDZpWQ7suwTj1XxQkUhFCGvoitIk//GsqqQ6fkGLK/i9T0H8do8mMB3EZWYn9k6x6+/TMkpWxSEQCBFZXIqSWO4JruiO4hhIebjI0CvQCI2AcIrk2m1lo1Hr0bx+Il7vXQ6bOBBeZCFqdidpuEkKqPEr2nRSnSeHdZuRKMEL7fTmlUjH2/HXdaqaQ44DjB+7hpZEvwNVdijoh3hCJqA6fkOLK3ddepdZD4ZrT1z5JpbUspL3/NA0P4zJ4rSmLw1spRXBNd4TUzErua/u5QpRn7Uze5FqjNUEht29ybTazMGsNYE0meHgooFJpYDRSkk8IIZTsOymrtpt2nNUHAL3eiM496+P+7QRews8IGHTtGwoza0ZwA1/7BUiIE8u3r337QAzoFIRFm6/iSSHrYmw+roBBnWpuCK7hnjVzX0MJL6WsSPfNTq4NOiMEAgZpesdobZkdggOEQgghDoGSfSfFaVS82/ZenBsXmw4XmQThnYNw+ki0ZTyiSxDcPeQOsXMtIc5KJBFiy+F72HggT1/7g3fBARjbrxG+XHeu0MdRuoh5s/Z1q7lBIi58Y7qCcBxHLS0JIcSBUbLvpKx77Ns32b90+hGS4zUYP7097kUmIClBDR8/V3TqUR8Zap1dYyPEWSWkZuLS3US83LMBdp8oXl97BkBNX1eE1HJHSE0lQmq6w9dDTutkCCGkiqFk30mxeWv27Zjsp6u0uHsjHhwHS/ed9ctOY+iYltDpDbQ4jpBi0OiMOH8rAaduxuH+kzTUqeaGnu0CC+1rX83bBQF+rlmz9rXcEVRdCbmUfsQTQkhVR78JnBSX6Tgz+5dOP7LUx54+Go2Gzaph3LQIKD1lUFPLO0IKZTKzuBGdglM3nuHK/SSYcpXFFKWvvaebFHNebQmasyeEEJIXJftOylFq9jPSdLhzPd5ym2M53I2MR4du9ZCppUSfkPxwHIeH8Rk4dT0OZ2/FIyOf1pjpGgOu3EtE//aB+CufvvY6vYkSfUIIITZRsu+EOJMBnC6DN2avZP/SmUdgc7X4E4oEqNfYD2KJEKyGFu0RkldKug5nIuNx6kYcYpM0hZ7vKhfjzoMUvNIjFAIH6WtPCCHEeVCy74S4TJXVmD3KeNTpOty+Gscba/RCdShcpRUeCyGOTGcw4dLdRJy6EYdbD1JR2NtgkZBB8xAfRDSphqZB3hAJBdBqaNMoQgghxUfJvhOy2j1XLAPE8gqP4/KZx/xZfSGDFm1rV3gchDgiluVw61EqTl2Pw6W7idAbzYXeJ6SmOyKaVENYQz8oZGLeMdo0ihBCSElQsu+ErNpuunhUeDs9TYYet64+4401bF4dCjea1SdV29MkDU7deIYzN+ORmlF4eY2PuwwRTaqhXeNq8PdyKfR82jSKEEJIcVCy74TyJvv2qNe/cvYxbyMdgYBBi3Ca1SdVU3qmAWef1+E/jMso9Hy5VIiwBn6IaFIdIbXcIaDe94QQQsoJJftOKG8ZT0Un+5lqA25e4c/qN2hWDa5KWYXGQUhFYBgGAgEDluXA5ZpON5rMuHo/GaduxOF6dDLMbMFT7QKGQZMgL0Q0qYYXQnxKvXMtIYQQUhSU7Dsh6x77XhX6/FfOPYbZlFMrnDWrH1ChMRBS3oRCAcQSEWQyEdRaI9zlYmh1RkQ9SsXhi09w7lYCMvWmQh8nwN8VEY2roW0jf7jT4nVCCCEVjJJ9J2Q9s+9RYc+tzTTg5uVY3lj9Jv5QetCsPqk8hEIBFK5SbDl8H7tP5LS67N8+EAM6BuGn3ZEFJvrurhK0a1wNEY2roZafawVGTgghhPBRsu+E7Fmzf/XcE5hydQBhGKBlO5rVJ5WLWCLClsP3sfHAHcuYRmu0bGo1tl8jfLnuHO8+EpEALUN9EdGkGhrV8YJAQHX4hBBC7I+SfSfDcazV7rkVVcaj0xpx41KeWf3G/nD3rPi2n4SUF4ZhIJOJsPtEtM3je07G4JePe0KpkCBDY0BogAcimlRHq1BfyKX0I5UQQohjod9MTobTZgAcv193Rc3sXzv/BEZDznMzDNAygmb1SeWRqTPi1M04dAurA43WaPMcjdaI9EwDXu4ajAa1PeHtTiVshBBCHBcl+04mbwkPGAEYmbLcn1evM+H6xae8sZBGfvAoQl9wQhydmWVx5HIsdp6IgUDAYHDX+lDIxTYTfoVcDE83KTo0rcHrzkMIIYQ4Ikr2nYxVvb6LBxiBoNyf9/qFJzDo+Z8otKJafeLkOI7D9ehk/HX4Pp4lZ1rGr9xLRP/2gZYa/dwGdgyCVmeiRJ8QQohToGTfybCZFb8416A34er5PLP6DX3h6aMo9+cmpLw8SVTjr0P3cPNBqtWx9XsjsWBKBzAMsPtEjKUbz8COQRjaNQQadeE74xJCCCGOgJJ9J8OpU3i3BRWQ7F+/+BSGPG0GW0bUKffnJaQ8pGkM2Hk8GkevxiK/yXl/DzkSkjIwoEMQXnmxPjRaExRyEbQ6EzRqPcxm1vYdCSGEEAdDyb6TqeiZfYPehKvnnvDGgkJ94O1Ls/rEuRhNZvx7/jH2nn4IncFs85w6/m4Y0T0EoQFZ/6/0WgMMOiMEAgZpeiOV7hBCCHE6lOw7mbxtNxmX8k32b16OhV7Hn9VvRbP6xIlwHIfztxOw5UgUktJ0Ns/xcJVgaOdgtGtSDQKGsbq/2UxJPiGEEOdEyb6TybtAV+Bafsm+0WDGlTyz+nXrecPHn3YEJc4hOjYdGw/dw/2naTaPS0QC9G4bgD5t60AqEVZwdM5NLBZC6iKAPpOF0Wi2um2veEzPl1OIRELIFEK7xUMIIY6i/Nu4kDLFavg1++U5sx95JRa6TH7rwdbtaVafOL7kNB1+2nUT83+9kG+i375JNXz1djsM6hhEiX4xicVCyF1F2HXnX8hdRXBxkfBui8UVez1zxyORZ/1ak8gFdouHEEIcCc3sOxHOoAWM/DKE8lqgazKacfnsY95YnWAv+FZzK5fnI6Qs6Awm7DvzEP+cewyjyfYi2vq13DHixXqoW63896eoDFiOhcaYCbVRgwyDGhkGNcKDm2HHrYPYGvk37iU/wJutRmDNiY24Fn8LANAtqD2WXdhQYTFOaTcG/9w6aYlnQutXsfrCH5Z4Bob2hDGNZvcJIVUTJftOJO/iXKD8FuhGXn0GrYY/q9+KZvWJg2JZDieuP8P2Y9FI0xhsnuPrIcMrXUPQsr4vmDx1+c6grMpUOI6D1qRFxvPkXW1QI8Ooef63GmrD86T++b/VRg048NcsXEi6hBkRb+Je8gNci7+F6fs+BQA082+IfqEv4odTaxCZfKfMXnthVp3/nRfPtL0fW+IZ1LA3tGpTIY9ACCGVFyX7TiTv4lxIFWBEkjJ/HpOJxZUz/Fn92oGe8K9BM6HE8dx6kIKNh+/jcYLa5nG5VIQBEXXRvVUtiEXOWbmYXaay49Z+DGrYG0BWmUr2bUOaAckalWXm3TILn0/ybuZKN8t9Lf4W9t45iPGthmPGvs8s4+NbDcfeOwctM+oVJb94JoaNhknPUc0+IaRKo2TfiXCaiumxf/vaM2jU/NlRqtUnjiYuJRObDt/HlftJNo8LGAZdWtTAwA6BULqU/Zvi8mQwG6E25iTuLeo04JfNtB6JNRf+tCTVHeu2xacHv66w+HLP4Of288W/eDPs9o5n5fnf8F6HiRAbhZTwE0KqLEr2nQirKf8e+2YTi0un+bP6Net4oFot9zJ/LkJKQq01YtfJGPx36SnMrO2WmM2CvfFy1xDULMUuz2XZbcbMmpFhVCPDoMlJ4gson9Gb+W+2m8U15JfN7P0kazyfJLe8yEVyuEkUeKv1KMsMfjP/hrwa+b13DmJKm7H4O/JYhcQEAH0adeLF83bYKKw6/zuuxd/Cjlv7qWafEFKlUbLvRKzabpZDsn/nRhw0GXreGM3qk4pQWE26yczi8KWn2H0yBhqd7Rrsmj4KDO8egiaB3qWOJXfZjFgvhEjKWG5zag6pmvTnM+/q50n688Q9TxKfYdBAa9KWKp7yKpuRCiVwE7vCVeIKN4ki599ixfO/c465ihUQCbJ+ZYhNQks50aCGvWHSc3ivw0TL9dGqTehRp0upXnNxMAZ+PFKRxCoeQgipqijZdyJ5k/2ybrtpNrO4dOoRb6xGbXfUCPAo0+chJK/CatKj7qRhxfbriE+1nTS7uYgxuGMQIpr6gWM4aIyZMLJGmFgzTKwJJtYE4/O/Tdzzv1kz/xzOBJPZBCNnwsAm3fJ0mxmJNSf4ZTNzT3xRYdenqGUzIoEIbuLnybklWVc8H3OFq1gBN0n2v10hEYpLFI/RaAbUWV1utGpT1icfRiHvdkXKHY9By0LqBhi0rN3iIYQQR0LJvhMp7zKeuzfikZHOn9WnDjykrLAcC51JB61JD51ZB61JB93zP+1CXuAl1xNaj8Tq3DXpAe2QWu0IpNVZQMACDAsIzGAEHMRigBGw2JJqwuZjZbPT7ZPMJ3m6zdinbEbACOAmdsWE1q8WWDYzs92bSEnRQCqUVlinIaPRzCuNyXu7omU/v+j5ImyTyQydznb7VUIIqUoo2Xci1mU8XmX22CzL4dJp/qx+tVpK1KzjUWbPQRxLUWvSOY6D3qyHzqx/nqzroDPpoTXrct3WPb+d6xyznnfMYLbdEhMALiZfydM60Tq5FrpZt54FABMAlHFOV15lMwwYuIoV/Nl2W+Uzz/8tF8nBMIxV2YytMhWZSFYWL50QQkglQ8m+k+BYEzhtOm+sLGf2792MR7qKv2FX6/Z1nLIfObEte5Go2qCBSMwgxCMAu27/i4ENeuLW09toXqMhdt35F/1De+DPSztwJS4SuucJfN4+62XN0Vo5FqfbjELkAleJAq55knfrshkFFGIXCJjit/+kMhVCCCElRcm+k+Ay04A8CVdZLdBlWQ4X89Tq+9VwQ6265dPak5SN7J1N81skmrfXemauRaI/9P0Mu27/aymbGd9qOBaeWm1JYF9q3BP/PTxVYa+lvFs5ChgBRIwQIoEIYoEIorx/mOxxIUQCMd4KG1Fg2cyMdm8iLjEVrmIFhAJhaV9+kVCZCiGEkJKgZN9J5C3hgVAESEveVjC3+7cSkJZn4SPN6pe9wrrNcByHTJPW0pKRl8TnatmYndBrjJklnnHPm0Rnz6ZXVE06AwYykRQyoQxykQxvhfFbOY5vOQI/X9poSa6nhr+OA5GnIRWKcyXpQogFYsu/cxL2nD/Zt4s7my4yFt5txl1Km8wRQghxfJTsOwnrxbleZZKMsyxn1YHHt5orAoLKbj1AVcJxHAysEVqTNquu3aSDzqyDQipDo5rBlrKZS7E30MAnGLvuHED/0Bex7vxGnH16BSxXMTO1pSmbkQjEkItkkD3/Ixdm/1uaNf48gc+6LYdMKM06TySDTJh1jkQosSTgRjMLCStFv3o9AQD96vXEjv9iMKPrW9h779+scVaA7nU7wGyumOvjaN1mCCGEkJKiZN9JlNfuudF3EpGanMkba1VJZvWLuymSkTXxFpzmdIzJWYyalcBr+YtPny9G1T3/21bCXljZzPBmA3H6yaVyvyZA1qx6m5ovoH/oi1hko2xmVvu3EOgaCI1Oa5WkS4XSMi1bUWuNWLXrJj6b0A4L/7yEsQM645v1l3D5biLuPkrF28M6Y/HGa3hvdCvoMvNf4FseHK3bDCGEEFISlOw7CauZ/TLosc9x1rX63n4K1A0p3YZEjkAkFkDmKsTOW/9gYIOeiIqLRkOPrJn1AaE9sP3aftyIvw1tdpJu0sHElV8iV95lMy4iuaV3emE91hViFyg9pNh1519L2czEsNFYef43XIu/lfXpQ2hPqNOMZfDK85emMeD7jZfxJFGDK/cSEeDvhon/O2I5fvluIib+7whG9gyFVmcCx5XvImFCCCGkMqJk30lwGhXvdll04om5m4SURA1vrFWE88zqm1kzUnQqJGqTkKhNzvo7MxmJ2mTM6zIZ/946y59JP5kzk94rtBP+jjpcYbEWt2xGJpTa2Mn0eWeXPMl7SRaJ6jPZQmvSy1NKug7fbbyCuJSsT5XW743EgikdAAB7TsZAozVCIRdjYMcgDO0aAo1aX9DDEUIIISQflOw7CS4zb4/90iX7HMfhwsmHvDFPHxcEhfqU6nHLmok1IVmXisTM7IQ+K6lPykxGki4l3xr3tXZegJpNLBBDJpKiRfXGBZbNNHAPhcnIWpJ3cQl3Ni0qe9akJ6q0+PbPy0hKy2n1+iRBja/Wn8PsV1theI/6yNSZ4CITQaszQaPWV1itPiGEEFLZULLvJFg1v2a/tDP7D+4nIzmBP6tvrw48RrMRybqUrEQ+V1KfkJmEFF1qiTrOlLZvu4AR2Fhsmvt29sJU/uJTmUgO+fMxmVAKkSDrv5iru5hXNjOpzRisOLehQstm8rJHTXpcSia+/fMyUjP4M/W+HjKM7RkKzmSGRq2Dh4cCKpUGRiMl+YQQQkhpULLvBDiOK9OZfY7jcDHPrL6HtwuCQn1L/JhAwa0lNTotkrQpOSU3z5P6hMwkqPRpZb5pU0F922e1fwvVZNWRplXzFp/mJO0yiAWiMn3jk7dsxtYOqJXdk0Q1vtt4Beka/kLb6t4umD2iBTzdpACA7NJ8KtEnhBBCSo+SfWeg1wBmfjJYmpn9R9EpSIxT88ZaRQRAICh5cisWCyF3FWHHrf14qWEv3Eq8hzoetbDr9vPWkld+L7ddUOUiGXzlPvCVe8PXxQd+ch90rh/G69tujwWouVX1HVAfxmXgu42XodHxv49r+bpi9ogXoFRI7BQZIYQQUrlRsu8E2DxtNwEGjIt7iR7LVq2+u6ccIQ39ShhdFqmLADtu7c93QWzecpriUohdnif0PvB18c5K7J//WyFysZqFN+sYuy5AtaWq7oB6/2kaFm26Cq2ef80Dq7th5isvwFVevusTCCGEkKqMkn0nkHf3XEauBCMo2ZfuyYNUJMRm8MZalnJWX2fS4WLUZfQLfbFUC2LdJK45M/S8pN4bLmKXYsVEmyI5hlsPU7F4yzXo81zverXcMePl5pBL6UcQIYQQUp7oN60TsN49t2QlPBzH4cIJ/qy+0kOGeo1KNqvPcixOPzuP3dH/IMOgRppJVeiCWHeJ8nkSn1N24yv3ho/cG3KRrERx5Ic2RbKv69HJWLrtOowm/qcXDet4YvrQZpBKym5zLkIIIYTYRsm+E8g7s1/SxblPH6oQ9zSdN9ayXQCEQkGxH+t2yj1svbcbsZo4AAUviJ3d/m209m0JKeSQCqk2uyq4eCcRK3fegJnlr7JtFuyNKYObQCyiRJ8QQgipCJTsOwGrMp4SJvt5O/C4KaWo38S/WI8Rp0nA9vt7cSOZv9g29wx+3gWxO2//Y5fWksQ+zkTGYc3uW2DztNNpHeqLtwY2hqgEby4JIYQQUjKU7DsBNrP0yX7sIxViH6fxxloUY1ZfbdRgX8xBHH962uZGVj9f/AvvRkwAUHVbSxLg+NVY/PL3batGqu0aV8P4fg0gFFCiTwghhFQkSvadgHUZj1exHyNvBx6FmxQNmlYr9H4m1oRjT05h34ND0Jq0Ns+p6Vodnat3gCGTq7KtJQlw6OIT/H7grtV45xdqYEyvUAjssGEbIYQQUtVRsu8ESrtA99mTNDx9qOKNtQyvDaEo/1lWjuNwLekmtt/fi0Rtss1z3CSuGBDUC+2qh0HACKpsa0kC/H3mITYfibIaf7F1LYzsXs8uOzMTQgghhJJ9h8eZDFmbauXCKDyK9Rh5a/VdXCVo0Lx6vuc/zniKrfd2454q2uZxkUCE7rU7oWedLpCVcQcd4lw4jsPOEzHYdfKB1bF+7epgSKcgSvQJIYQQO6Jk38HlLeEBAIFL0Wf242PT8TiG/xgt2ta2zL7nptKnYXfUPzgbdxGcVdV1llZ+zfFScF94y0u+gy+pHDiOw+YjUdh/9pHVscGdgjAgom7FB0UIIYQQHkr2HVzeEh6I5WAk8iLfP++svlwhRsMX+LP6BrMBhx4dw7+PjsBgNth8nEBlAIbUG4Ag9zpFfm5SebEchz8O3MXhS0+tjo3oXg89w2rbISpCCCGE5OUQyX5MTAzmz5+PixcvQi6Xo1+/fpg9ezZksoJLRDIzM7F8+XLs378fiYmJ8Pf3x4ABA/D2229DIqkc/dw5TQrvdnF67CfGZeBhFP/+L7SpDbE4q8c5y7G4EH8FO6P+hkqfZush4Cn1wKCQvmjl15zKMQgAgGU5/PL3bZy4/szq2Gu9QtGlRU07REUIIYQQW+ye7Kenp2Ps2LGoUaMGFi9ejJSUFHz11VdQqVT47rvvCrzvZ599hoMHD2LmzJmoV68erl27hsWLFyMtLQ0fffRRBb2C8sVqVLzbxVmcm7cDj0wuRuMWNQAA91Ux2HZvDx5mPLZ5X6lQgl51uqFr7Y6QCMXFC5pUWiYzizV7InHuVgJvnGGA8X0bon3T/NeCEEIIIaTi2T3Z37hxI9LT07Fjxw54eWW1lBQKhZg9ezYmTZqE4OBgm/czmUzYv38/3nzzTYwZMwYAEB4ejtjYWOzbt6/SJPtcCXvsJ8Wr8eAev4vOC21rIc2swo7r+3A58brN+zFgEFEjDP2DekEpcStZ0KRSMppYrNx5A5fvJfHGhQIGbw1sjLAGfnaKjBBCCCH5sXuyf+zYMbRr186S6ANAr169MG/ePBw9ejTfZJ/jOJjNZri58RNSpVIJjrO9uNQZWffYL1qyf/EUf1ZfKhMi2v06fjlzAibOds/7UM8QDK03ADVdaXaW8OmNZizbfh03ovllYSIhg8mDmuKFej52iowQQgghBbF7sh8VFYWhQ4fyxiQSCQICAhAVZd23O5tYLMaQIUOwYcMGtGzZEiEhIbh+/To2bdqE0aNH53u/7t2753tMLpfD39/fZqeavLJ3ni3qDrQllXdmX+TmVWh8yQlqRN/hz77G+d3DxWe3bJ7v7+KLYaED0NSnYZnU5VfUtXFWznZ9tHoTFm+5hlsP+d+LEpEAM15pjiZB3mX6fM52fSoaXZ+CldX1oTVKhJDKwu7Jfnp6OpRKpdW4UqlEWprtRaPZPvvsM3z66ad45ZVXLGNjxozB1KlTSxyPQCCAp6eiyOcrlUXvjFMS6Zkq3m03/+pQFBLf4T13eLfNQiOe+dyzOs9VosDLjfuhR0gniATCUseaV3lfG2fnDNdHrTXiyw0XcSdPoi+XCvHJG+FoElx+M/rOcH3sia5PwUp7fQQCSvYJIZWD3ZP9/HAcV+jMynfffYcjR47g//7v/xAYGIibN29i8eLFUCqVmD59us37HDp0KN/HmzBhAliWRWqqJt9zsgmFAiiVcqSna2E2l88usRzLwqzmJ1mZcIGhgPhSkjS4eSWWN5ZULQasyGS5LWSE6BLQHv2CXoRC7IKMNF2Zxl0R18aZOcv1ycg04Js/LuNhXAZv3EUmwnsjW6Cml7xI/1eKy1muj73Q9SlYWV0fluUo4SeEVAp2T/aVSiXS09OtxjMyMvKt1weAu3fv4ueff8by5cstpTlhYWFgGAbffPMNRo0aBW/v4pcXcBxgMhX9F4TZzBbr/OJgNakAx39sVupueT6xWAipiwD6TBZGoxkmxoDzp2L48QmNSPbPGWvu2wSDgvvAz8UXQPFea3GV57WpDBz5+qSp9fhu4xU8TeIn865yMWaPeAEB/m7lHrsjXx9HQNenYKW9PllrvyjZJ4Q4P7sXfQYHB1vV5hsMBjx69KjAZP/+/fsAgIYNG/LGGzZsCJPJhKdPrTf7cTZWu+cKhGDkWQuSxWIh5K4i7LrzL+SuIjwzPIVJz+HudX5LxGT/B2BFJtR2rYF3WryNt5q+Zkn0CbElJV2HBb9fskr03V0lmDuqJQL8qUsTIYQQ4izsnux36tQJZ86cQWpqTmJ74MABGAwGdO7cOd/71ayZtXHPzZs3eeM3btwAANSqVascoq1YbN62my4eYJisL5nURYAdt/Zja+Tf+PbESvgoPbFu0wGAy5mJMgtMMNZOxOiGr+D9sOmo75n/mydCACBBpcVXv11CfKqWN+6tlGLuqJao4VP09SyEEEIIsT+7l/GMGDECv/32GyZPnozJkycjOTkZCxYswIABA3gz+/PmzcOOHTsQGRkJAGjSpAmaNWuGTz/9FElJSQgMDMT169exfPly9O3bl9fK01nlndnP3WNfn8liUMPeuJf8AMmZqdBlGuBt8EcyMi3neNQH3uz4LmQiaYXFTJwPwzAQCBg8S1ZjwW+XoFIbeMf9POSYPfIF+LjTglBCCCHE2dg92VcqlVi/fj3mz5+PadOmQSaToX///pg9ezbvPJZlYTbn9IcXCoVYuXIlfvzxR6xevRpJSUmoXr06Ro8ejYkTJ1b0yygXBfXYNxrNEOuFeLPVCGh0Oki1rnhpRAusW3ISHAcIRQIM7dkRMpGkosMmTkIoFEAsEUEmEyEj04jgOt6Y8vILWL83Ek8S1ACA6t4umD2iBTzd6A0jIYQQ4ozsnuwDQGBgINauXVvgOQsWLMCCBQt4Y97e3vjiiy/KMzS7YvPO7LvkJPtisRAiKYMbD+6ivqQB1i09hdenRKBdl2Cc+i8KzcNqQe5CiT6xTSgUQOEqxZbD97H7RDQ0WiMUcjH6tw/EgikdMHfZCQgAvDviBSjp+4gQQghxWg6R7BPbrGb2XXOSfamLAIeiT6BLQATW/XgarJnDro1XMX56e9y7HYfwrnXyNvIhxEIsEWHL4fvYeCBnTwaN1oi/Dt4FAEwc3AzuciEUMrG9QiSEEEJIGbD7Al2Sv4Jm9vWZLLrX6YiTB6ORnJDVNSUpQY0Th+7jlbFhEAkpSSO2MQwDmUyE3SeibR7fczIGjYK84CqnGX1CCCHE2VGy76A4jitwga5QyCAlSYMzR/gJ2+kjUTAazBAKqT80sU0gYKDWGqHRGm0e12iN0GhNtKEQIYQQUglQsu+ojFrApOcN5V6gK5WKceTvu+A4/t04Dvjv7zuQSmlmn9hmNrNwkYqhkNv+HlHIxVDIRWBZzuZxQgghhDgPSvYdVN4SHiCrz342vd6Ijr1DwOSZfGUEDLr1bQC93vasLSGHLz3B5bsJ6N8+0ObxgR2DoNWZnu8gSgghhBBnRsm+g7Iq4ZG5gcnVRlOnM4GVGhDeOYh3XkSXICg9ZNDpTBUSJ3Eudx6l4s+D97B+byQGdAzC8BfrW2b4FXIxRvYMxdCuITAZ6PuHEEIIqQyoG4+Dsq7X9+DdZjkWPx/agbmD3sC9yAQkJajh4+eKTj3qI0Otq8BIibNISddh+Y4bMLMcniSoMXfZCYzt1wi/ftoLmToTFHIRtDoTNGo9zGZq5UQIIYRUBjSz76CsOvEo+DsCp+rSkPxEjxOH7mPgiOYQCgV46dUXoNMbKFEjVgxGM5Zsu46MzJzyricJaly5HY/0NC1YowlpKi30Wvr+IYQQQioTSvYdFKdJ4d0W5Gq7CQBxmQmQazxw+mg0GACvT42ATCai8h1iheM4rN9/Gw/jMnjjzYK9MbhjEDiOg9nMUo0+IYQQUglRsu+grGf28yT7mnjIM5XgWA47N14FOA5Pn6gqMELiLA5ceILTN+N5Y/6ecrw1oBG11ySEEEIqOUr2HRSnUfFu563Zf5aQDKE5a2FlUoIaaxefhNJdVkHREWcR+SAFmw7f543JJEJMG9oMLrQ7LiGEEFLpUbLvoLhM/sy+IE/NfnJ8Ju+2UMZB4SYt97iI80hUabFixw2wecpzJvRvhBo+CjtFRQghhJCKRMm+A+LMRnDadN5Y3jIeXTL/PkpfCQjJpjeYsWTrdWjyrOF4qUMgWtT3tVNUhBBCCKlolOw7IC5TZTWWe/dcjTETwgw573i16u7lHRZxEhzH4ed9t/AkUc0bb1HPBwPa17VPUIQQQgixC0r2HRCbp14fIgkgcbHcjFMnQKbhJ/d1avtVQGTEGfx99hHO307gjdXwUeDN/o0gyLvlMiGEEEIqNUr2HVDetpuMwhNMriTt4bN4CFn+fmj+NLNPAFyPTsbWI1G8MblUhGlDmkIupT30CCGEkKqGkn0HlHf3XKse+89U/DvITHBxpZr9qi4+JROrdt5E7uW4DIC3BzaGv5dLfncjhBBCSCVGyb4DKqzHflqinndbxm/UQ6ogrd6EJduuI1PPX5A7pHMQmgV72ykqQgghhNgbJfsOyGpmP0+yb0jhf9k8/WjWtipjOQ5r9kQiNknDG2/dwA99w+vYKSpCCCGEOAJK9h1Q3mQ/98y+3mSESM1P7mvW4r8ZIFXLnpMPcPleEm+slq8r3ujbkLfWgxBCCCFVDyX7DojNzD/Zj3kSCwEr5B0PCahZIXERx3P5XiJ2nIjhjSlkIkwb2hRSiTCfexFCCCGkqqBk38FwHAcuT+vN3LvnPnzKb6lokurgqXSriNCIg4lN0mD17kjeGMMAkwY1ga+HPJ97EUIIIaQqoWTfwXC6DIDlL7LMPbOf+Iy/UZLAw1ghcRHHkqkzYsnWa9AZzLzx4V1D0KgurdgmhBBCSBZK9h1M3np9MAwYudJyU53EfyOg8Kbe6VUNy3L4aXck4lO1vPF2jf3RI6y2naIihBBCiCOiZN/BWC3OlbuDEWTVXpvNLNh0fnLvU11RYbERx7D9eDSuRSXzxur4u2Fs7wa0IJdUeQzDwKw30P8FQgh5jpJ9B2PdYz+nJCM5UQ2G5X/J6tT0q5C4iGM4fzsBe08/5I25uYgxdUhTSMS0IJcQqQgAawZtGE0IIVko2XcwnCaFdzt3j/1HTxJ5xwxSDWp7V6uQuIj9PU5QY+1e/oJcoYDB5EFN4O0us1NUhDgGzmSC9k4kJCIBbn72f5BIRBAIaHafEEIo2XcwbJ5OPIzCw/Lvp0/5bwT0rhlwlyhBKj+1NmtBrsHI8sZHvlgPoQG0zwKpmjiOg+7RQyRs/APR770LcXoKEg7/h4zbd5Bw6DBkEkr2CSGEPuh0MJxVj/2cMp6U+EzeMbEnS3WpVYCZZbFq5w0kpel44x2bVUfXFrTHAql6jKmpyDhzGulnTsHw9AkAQOLjDd8unXF52gwAwJMt29CyezfoDAawLGfHaAkhxL4o2XcweRfoZpfxmE0sdKkcgJzk3t1XWpGhETvZeiQaNx/wvy+CaygxumcovdkjVQar10N96SLST59E5q1IgOMn8LWGDkbikaMwJGUtXjckJSPxyDG4tWuHTB0l+4SQqouSfQfD5qnZz+6xn5KkATh+Yudf3aOiwiJ2cuZmHPafe8Qbc1dIMHlwU4hFVIVHKjeOZaG9cxvpp08i4+IFcHq9zfPyzupne/zXJrTs0smhZ/fNZjOMRtovhRBSdGKxGEJh0ZtyULLvQDijHjDwe6cLXLKS/YRnGbxxvVSNmh4BFRYbqXgP4zKw7u/bvDGhgMGUIU3h6Uaf6pDKSx8bi4wzp5B+5hRMKSmFnl/71RFIOnEKxlQVmFy/AI2pKiQdPwHXNm0dbnaf4zg8e/YMKpUq74cUhBBSIIYBPDw8UL169SJ9wk/JvgOx2lALOTP7z2JVvHGtIg3VFNR2s7JK1xiwZNs1GE38BbljeoUipKa7naIipPyYMzKQfv4s0k+dhP5BTKHnC2QyuLYOg7Jde3i+0BhSVxdU6/mizXP16kyb4/b07NkzpKaq4ObmAalUitwlmoQQkj8Oer0eqakqAECNGjUKvQcl+w4kbwkPJC5gxFkzuPHP0niHdK7p8JF7V1RopAKZzCxW7LiBlHR+yULXljXRqXnh/6kJcRas0QjNtStIP30KmuvXALO54DswDFwaN4UyIgKuzVtAIM36+ZiuNQParE8/RSIBPD0VSE3VwJTnzbKjMJvNUKmyEn03N3rzTggpHokkq922SqWCv79/oSU9lOw7kPwW55pMLNKTDbxjUi8OIgF9+Sqjvw7fx53HKt5Y/VruGNm9nn0CIqQMcRwHXXQU0k+dRMb5c2AzNYXeR1q7NpTt2sOtTThEHh7lH2Q5MxqN4Dg8n9EnhJDik0qlyMjI+nlSLsn+hQsXsGfPHsTGxkKn47cDZBgG69evL8nDVnmsVdvNrGQ/OUEN5Krp5MDB09elIkMjFeT4tVgcuviEN+bpJsWkwU0hEtKCXOK8jImJSD9zCumnT8GYEF/o+UJ3dyjbtoOyXQSktSvr+iQq3SGElFTRf34UO9nfunUrPvzwQ7i7uyMwMBBisZh3nKOVRiWW38x+YlyexbkyDQLdfSssLlIxomLTsOGfO7wxkVCAqUOawl0hsVNUhJScOTMT6ovnkX76FLR37xR6PiMWw7VFKygjIuDSsDFvsS0hhJCSKXayv2bNGvTp0wdff/01JBJKQMpS3mQ/e2Y/8ZmaN65TqOCvCK2wuEj5S1PrsWzbdZjM/DfLY3uHIrA67ZJMnAdnNkNz8wYyzpyC+vIlcEVoKymvHwplRHu4tgqDUC6vgCgJIaTqKHayHxsbi48//pgS/XLA5k32s9tuxqXzxrWKNFRzoZn9ysJoYrFs+w2o1Px1GT1a10b7ptXtFBUhRSMQMFBIBUiJfozUY0eRcfY0zOnphd5P7O8PZbv2UIa3g9iHfp45u1OnTmLz5o24desmMjLUUCqVaNSoMYYMGYaIiA6W9oBffPEpbt+OxB9/bC7W44eHt8S0aTMwatRrpY510qQJcHGR4/vvF+f7XIX56KPPUL16DUyZ8hbWrfsNDRs2KnVcJREbG4shQ/rjf//7Bt262e5GVRxFuc63bkVi3LjRWLbsJ7Rq1brAx7Ll//7vK+j1esyf/xn27z8EDw9Pm8+9Z88uiMVi9OrVpxSviAAlSPaDg4ORlJRUHrFUeVZlPK6eMBrNSE3it43TKtLg70JtNyuLPw7exf2n/G5LDet44pVuwXaKiJCiMWdqIMxMg6hObTBPoqE68E+B5wtcFHBr2xbKdu0hCwyiHaDLCMtyuPMoFSq1AR6uEoQGeEIgqLhru2LFEqxfvw6dO3fFrFlz4OPjg5SUFBw9egTvvTcT3367CO3bd6yweEprzZpfeLfffPN1vPzyCPTq1dsyVrNmbURHR1VwZM4n73UDgNq1A8CyHNas+QWurm753nfv3t1wcZFTsl8Gip3sz5w5E9988w3atm0Lf3//8oipSuJYMzgtP+FjXDyRlKDmbbjCgYPYg4WLmD7qrgyOXH6Ko1dieWM+7jJMfKkxhAJakEsckykjHaoD/yLz2mU0/3YBIj+fj0affoQnW7fDkJTMP1kohKJZcyjbtYeiaTMI8qzzIqVz/nYCfv/nDlIyclr1erlJMapXKMIalP+k0MmTx7F+/Tq88cZbmDBhIu9Y9+49MGLEqxX6xqMsNGnSzGqsWrVqNsdLguM4GI3GKlEhUdB18/T0rNBYdDodZDJZhT6noyh2sv/7778jIyMDvXr1QoMGDeCRpw0awzBYsWJFWcVXZXCZaci7jSKj8ETigzyLc+Vq+LlRf/3K4M4jFX4/cJc3JhFlLch1c6n8vwSI8zGmpCD137+RduwoOIMBQW+/icQjR5Fx+w4SjxxDraGDEb1qDQBAFhgEZbsIuIW1hdAt/9k7UnLnbydgyZZrVuMpGXos2XIN04Y1K/eE/88/f4OPjw/GjXvT5vFGjRoX+hhRUfexZMkiXL16BQwjQKtWrTF9+kzUztOFyWw2Y8mSH7B37y4YDAZ06dIds2a9D4VCAQDQarVYtuxHnDt3FvHx8fD09ES7dhGYMmV6gTPIpZWenoZPPpmHEyeOQalUYujQVzBmzOuW49mlS1OnvoPly5fgwYMYfP75l+jevQeuX7+KlSuX4ebNGxAKRWjfvgNmzJgNLy8vy/1//XUddu3ajoSEBCgUCgQH18O8eR+jRo2alnP0ej2++24B/vnnb0gkUvTq1QeTJ0+DSJST5l25cgnLly/FnTu3IJXKEBHRHtOmzYS3d8E5xc8/r8GWLX9Bq81EmzbheOmlwaW+Znv27LIq48lt0qQJuHz5IoCccqDcbyhPnjyOtWtXIyrqHuRyObp2fRHTp8+E/Pman4sXL2DKlLfw/fc/Ys+eXTh79gxatGiRb+lWZVfsZP/u3bsQCATw8vJCQkICEhISeMfpY9mS4fK03YRABEbmhoQ4/qyvVqFCkII+UXFmDAOkpuuw/u/bMLP8N3jj+zVEgD8lRsSxGBISkLp/L9JOnrBsfCXx8YZvl864PG0GAODJ1m1oseRHqFMy4NKsOSTVaQO44uI4DgZj0TYCY1kOv/1TcIej3/65gyZ1vYo0sy4RC4r9+9tkMuHatavo2rU7L6ksjvj4OEyc+AaqV6+Bjz/+AixrxurVKzFx4pv47be/eLO/mzdvRP36DfDJJ18gNvYpli9fAoNBj/nzFwDImrk1m1lMnDgFHh6eiI+Pwy+/rMWcObOwbNlPJYqvKL755iv07t0XCxZ8jyNHDmPZssUICamHdu3aW85JSkrEwoXfYty4N+Hv7w8/v2q4fv0qJk9+CxERHTB//gJotVqsWrUc7703A2vX/goA2LdvD1atWoG33pqIJk2aQaNR48qVy9Bo+PtTrFq1DB07dsH8+V/j2rUrWLv2J9SqVRtDhgwDANy+HYlp0yahefMWmD9/AdLT07F8+RJMnfo2fvnl93z3fNi8eSN++mk5Ro0ag7Cwtjh79gy++mp+ka8Ny7IwmUyW2wzDFNoTHgDef/8DfPrpR5DJZJg+fQYAwM8vK/c5fPggPvpoLvr1G4gJE95GcnISli1bgoyMdMv3QrYFC75E7959MWTIMAiq8Kflxf7fefjw4fKIo8qzWpyr8ATDMFZtN7Pq9etWYGSkrAiFAoglIshkIqRm6LFoZmdcuZeI9Xsj8SRBjT7hAWjTkN7IEcehf/oEKfv2IOPcWatPHmsNHYzEI0ctZTuGpGQknTiJGi/1Q6bOMXeudWQcx2H++gu49ySt8JOLKDVDj7e/O1Kkc+vVcsdHY1sXK+FPS0uDwWCAv3813jjHcTDn2g1ZIBDkm2j9+efvMBqN+PHH5ZbEvnHjJnj55UHYsuUvXmmQWCzBN98stCSLEokUX331f3jzzbdRt24gPD09MWfOPMv5JpMJNWrUxNtvj8ejRw8REFCnyK+tOLp06WaJs3XrMJw8eRyHDx/iJfvp6elYtGgpGjduYhmbNOkLNGjQCAsWfGe57sHBIRg16hWcOnUCEREdEBl5AyEhIRg7drzlfp06dbGKoXHjppg1630AQNu24Th//hwOHz5oSfbXrVsLT08vLFq0xNIyPSAgABMmjMOBA/+gf/+BVo9pNpvx66/r0KdPP0ybNhMAEB4egeTkJPz77/4iXZtlyxZj2bKc2fRatWphy5Zdhd4vMDAICoUCLi5yXhkQx3FYvHgRXnyxJz788BPLuJeXN2bNegfjx09AUFDOerdOnTpjypTpRYq1MqMtWB2ErR77RoPtxbnVaHGu0xEKBVC4SrHl8H3sPhENjdYIhVyM/u0DsWBKB6zddR1DO9GCXOIYdA9ikLx3NzSXL9k8nndWP9vjvzahZZdO0BkMYFnac6Xyy/oa531/8N9/hzBv3vuW28OGvYLZs+fafISrVy+jVasw3gx+9eo10LRpc1y9epl3bocOnXizwl26dMP//vcFIiNvom7dQADA33/vwZ9//o7Hjx9Bq9Vazi3PZL9t23aWfwsEAtSpUxeJifyN4zw8PHiJvk6nxbVrVzFt2gzeG6OAgDrw8fFBZORNRER0QGhoA2zduhk//PA9unTphiZNmkAksl730qZNOO92YGAgrlzJuX5Xr17Giy/24u2N1LRpc1SrVh1Xr162mewnJMQjMTERnTt35Y137dq9yMn+8OEj0bt3P8vt0q5TePToIeLinmHmzNm8TwxatGgFhmFw61YkL9mPiOhQquerLEqU7BuNRuzYsQNnzpyBSqWCh4cHIiIiMHDgQKtNtkjRWPXYd/FAUjy/vz4HFjqXdFRTULLvbMQSEbYcvo+NB3I+dtdojfjrYFbN/rj+jWHSm/K7OyHljuM4aO/eQcq+Pci8eSPf8xiRCEFTpyD51GkYU1W8ja+MqSokHT8B1zZtkamjZL84GIbBR2NbF7mM586jVHy38Uqh580e8QJCAwpfCFmSMh53dw9IJBKrct7Wrdtg3brfAADvvTejwMfIyEhHvXrW+8Z4e3vj0aOHvLG8CzqVSiVEIpGlQ+CRI4fx+eefYNCgIZg4cQqUSnckJydhzpxZMBj4rY3LklueNSlisQiZmVremKenF+92enoGzGYzfvjhe/zww/dWjxkfn/VmoV+/gcjMzMSOHduwcePvcHV1Rd++AzB58jTeYlPrGMTQ63MWbWdkZNiszff29kZ6Pq1yk5OTbMbu5VX0dYN+fv5l2pZUpVIBAObMmWXzePZ1y5Y39qqq2Ml+RkYGxo4di8jISMjlcvj6+uLSpUvYu3cv/vjjD6xfvx6urq7lEWulZlXG4+qFhDwlPDq5GmKxCO5S2mTJmTAMA5lMhN0nom0e33MyBsN71EeawUw7UJMKx3EcMm9cR/Le3dDdv5fveYxUCo8uXeHZozdca3hDqmgO/xe72zxXr860OU4KxjAMpJKi7RrcJMgbXm5SXheevLyUUjQJ8i63bjgikQjNmjXHhQvnYDabLbPuSqUSSmWj5+cUPAGoVLojJSXZajw5ORlKJf93XWoq//dkeno6TCYTfHx8AGTVctevH4q5cz+ynHPp0sXiv7BykPeNlJubGxiGwdix461mzoGsN1JA1icFw4e/iuHDX0VCQgIOHPgHy5cvgYeHB8aPn1Dk51cqlUhJSbEaT05O5s2E5+btnXVdU1P597P19aoo2d8Ts2fPQePGTa2O++TZs4PWkWYp9mqFRYsWISYmBosWLcLly5fx77//4vLly/jhhx8s46T4OA3/P5PAxdOqXl+nSIO/iy8ETNVdZOKMBAIGaq0RGq3tnUQ1WiM0WpPTtacjzo1jWWRcPI9H//cZnv64MN9EX+CigNeAlxD09ffwfXkERB4eSM80IzExI98/6VqzzcciZUcgYDCqV8E7qY/qGVruP1dGjhyNxMRErF//c4nu36zZC7hw4RzS0lSWsfj4OFy/fhXNm7fgnXvixDFeycuRI4fBMIxl5liv11u9ufjnn30liqu8yeVZtegPHsSgYcNGVn9q1LBe4O7n54dRo8YgJCQEDx7EFOv5mjV7AceOHYHJlPN76MaN64iLe2Z1nXOezx8+Pj44evQ/3vh//x0q1nOXVNanE/xPZOrWDYSfnz+ePn1q87r5+tIGfbYUe2b/4MGDeOedd9CnD3+Tg969e+PZs2dYt24dPv744zILsKpgNSrebUbhicRneRfnqhBM9fpOh2U5uMnEUMjFNhN+hVwMhVyENL3tNwOElCXOZELGubNI2bcHhrhn+Z4nVCrh2aM3PLp2hUBG+3o4orAGfpg2rJl1n32lFKN6Vkyf/fbtO+K118bhp59W4O7dO3jxxZ7w8fGBWp3VNSYlJRkuLop87z9y5Cjs3bsL06dPxuuvvwGWZbF69Uoole4YNmw471yj0YD3338XQ4e+8rwbz2J06/YiAgODAABhYW3x3XcLsHbtT2jatDlOnz6JCxfOl+vrL41p02Zg6tS38eGHc9CjRy+4uSmRkBCP8+fPol+/gWjVqjUWLJgPNzclmjRpCjc3Ja5du4L79+9h6NBXivVc48a9gQkTxmHmzOkYPnwk0tPTsWLFEgQGBqFHj1427yMUCjFmzDgsWvQtvLy80KZNOM6cOY3L+azlKWt16wZi377dOH78KHx8fOHj4wtfX1+88867+OSTD6HTaRER0QFyuRxxcc9w8uQJTJo0tdzWZjizYif7KSkpCA21PZvQoEEDq4/ZSOE4jrOq2TeK3aFKieONZXXiaViRoZEycDMmGVK5BP3bB1pq9HMb2DEIWp2JSnhIuWKNBqSfPIGU/ftgKmAXdJGXFzx794V7h04QVIFNf5xdWAM/tKrva9cddCdPnobmzV/Ali2b8O23C6BWq6FUKtGgQUN8+OGn+SaTAODvXw0rVqzBkiWL8PnnH0MgEKBly9aYPv1dqxr9l18egdTUVHz22UcwmYzo3LkrZs+eYzk+ePBQxMY+xZYtf+H33zcgPLwdPv/8S7z55thye+2l0axZc6xa9TNWr16J+fM/g9Fogp+fH1q3boPatWsDyFpEu3PnduzcuR16vQ41atTEO+/MwsCBg4r1XA0aNMLixcuxfPlSzJv3PmQyGdq1a4/p02fm23YTAF55ZQTU6gxs2bIJW7duRlhYW8yd+yFmzXqnNC+9SEaPHosnTx7jiy8+QUZGhqXPfvfuPeDq6oZfflmL/fuzPrmpXr0GwsMjePsTkBwMV8wMo3v37hg8eDCmTp1qdWzp0qXYvn07Dh2qmI94ytqECRNgNrP4+usfCj1XJBLA01OB1FQNTKbStZnj9Bqo10/hjaV1+hy7dzyw3GYZFrda/YPxzV5FS7+y2cWvvJTltXF2aq0Rn/58Dgq5GAumdMDu49HYczLG0o1nYMcgDO0aAo1aD7O5al+rbPT9U7DiXh9Wp0PasSNI+Wc/zLlKJfIS+/vDq09/KMPbgSlhz3RHUFbfP3PmzIBQKMDq1avLMLosOp0OUVHR8PGpBokk/0SLEELyYzDokZQUh+DgoEJ3Bi72T/S+ffti5cqVUCgUGDRoEDw9PZGamopdu3Zh1apVGDduXIkDr6pYjfWimSQV/7ZengFOwFLbTSfCcRzW77+N1Aw9UjP0mLvsBMb2a4RfP+0Frd4EF5kIWp2JEn1SLsyZGqgOHUTqoQNg1ep8z5PUqg3vvv3h2joMTBXedIYQQiqrYif706ZNQ2RkJL7++mt88803EAqFMJuzuoh06NDB5ow/KZhV2025Eonx/N3xtIo0MGDg6+JTkaGRUjhx/Rku3km03H6SoMaO/+6hfk03eHm6QqXSwFjENnuEFJUpPR2pB/5B2n+HwOp0+Z4nCwqCV98BUDR/gTpWEEJIJVbsZF8ikWDt2rU4fvw4zp49a+mz365dO7Rv377wByBWbO2emxjHn4nTKlTwkXtBLHDej9erkvjUTPxxkN/dxFUuxvh+jcAgK7GiEn1SlowpyUjd/zfSjh8FZ8x/sbe8QUN49xsAeYOGlOQTQkgVUOLMsWPHjujYsWNZxlJlcXk68RgkPkhL5W/IoVWkoZ6iZgVGRUrKZGaxenck9AZ++8HX+zSApxvV55KyZYiPR8rfe5F++iRgzr/lpaJZc3j1GwB5cEgFRkcIIcTeaJrYAeTtsZ/K8evyWcYMvTwD/lSv7xT2nHqA6Fj+joSdmtdAy/rU/5eUHsMwMOsNMMTHIX7rNmScP5v/x0QMA7fWYfDq2x/S2gEVGyghhBCHUKRkv3v37li2bBkaNGiAbt26FfjRL8MwOHjwYJkFWBXkLeNJNrjzbutcMsAJOEr2ncD9J2nYfeoBb8zfU46R3evZJyBS6Qi1GeAkbmCj7yLj3Jl8ThJCGR4Brz79IKlWrWIDJIQQ4lCKlOy3adMGCoXC8m+q8yxbXGaeZD+Tv4GNVpEGAKimoJlhR6bVm/DT7pu8SVahgMFbAxtDKhHaLzBSKXAmE1L37UbwyGGI/Hw+Gn36EZ5s3Q5DUs7W9YxIBGXHzvDq3Qdib1rMTwghpIjJ/ldffWX594IFC8otmKqKU/OT/aQ0AYCcLi2658k+zew7tt8P3EVSGr/7yUsdAhFYXWmniEhlYVKp8GzVclTv1gmJR44i4/YdJB45hlpDByN61RowUhk8unaDZ4+eELl72DtcQgghDqTYNfs7duxA586drXa2AwCVSoUjR45g0KBBZRFblcCZDOD0OZ139KwUGWp+O0atQgU3sSsUYpeKDo8U0blb8Th1g7/jcf1a7ugbTtt2k9LR3r+H2BXLIBQL4dulMy5PmwEAeLJ1G1os+QGa9Ey4to2A0NXVvoESQghxSMXeQeWDDz7A48ePbR578uQJPvjgg1IHVZVwmSre7WSzN+82y5ihk6nhTyU8Dis5TYdf99/hjcmlQrw5oFGFbllPKheO46D67xAef7sA5jQVag0djMQjRy1lO4akZCSdOIXq/XpTok/sZvXqleja1XbbbVvHwsNb4vfffy3285T0fgBw6tRJTJr0Jnr16oYuXSIwbNhAfPrph3j06GGxHufixQsID2+JW7ciLWODBvXDd985Z8XD/v37MH78GHTv3gndunXE8OFD8OWXXyAlJadpSFm9vpI8TkZGBlavXomYmOhSP39xxMbGIjy8pc0/N25cs/q+zj7/8OGc9aobN/6OU6dOVGjcBSn2zD5XQHNwvV4PoZBqk4sj7+LcFI6/mE7nkg4IONo510GxLIc1eyKRqTfxxsf0DIWPuzyfexFSMNZgQMJvvyL9+S8LiY83b1Y/2+O/NqFll07QGQxgWdq4gTi+NWt+QbVq1Svs+Q4c+Acff/wB+vYdgNGjx0IkEuPBgxgcOnQADx7EICCgdJ++fv3193Bzc75SzV9/XYcVK5ZixIhRmDBhIjgOiI6+j3/++RtJSYnw8vKyd4jIyMjA2rU/ITg4BIGBQRX+/JMmTUWrVq15Y0FBIfDz80f79gW3nt+48Q906NAREREdyjPEIitSsh8bG4unT59abkdGRkKv1/PO0el02LRpE6pXr7j/xJVB3t1zU1h/3u3sxbn+Ckr2HdH+c49w57GKNxbeyB/hjakDCikZY3ISYpcvhf7hA8tYraGDkXTsBIypKjC5JlSMqSokHT8B1zZtkamjZL8qMyVEQ3v6L8jbDYfIr+ITo6Jq0qRZhT7fpk0b0apVa3zyyeeWsbZtwzF8+EiwbOl3MA8NbVDqx7CHzZs3ol+/AXjnnXctYxER7TF69NgyuS6VQe3aATa/X11cXODn52/jHuVHp9NBJpOV+P5FSva3bduGpUuXgmEYMAyDzz//3Oqc7Bn/Dz/8sMTBVEV5k/1kI38thFahAkCLcx3Rg7h0bD/G/3jRWynD6J717RQRcXaayJt49tMKsGr+DtquIcFwq18f1Xr3tHk/vTqzIsIjDsxw5yRMT2/BcOeUQyf74eEtMW3aDIwa9RqArNzh559XY+vWzdBqM9GmTTheemkw3n13OpYt+4k3s8qyLFavXoFt27aCZVl06NARs2fPhVye/6eoanUG6tULtXlMIMipZD558jg2bvwD9+/fhV5vQN26gZgw4W20a2e7RCnboEH9LHFku379KlauXIabN29AKBShffsOmDFjtmW2PDY2FkOG9Menn/4fbt68jn/++RsSiRS9evXB5MnTIBLlpGYxMdFYuXIZLl++CL3egNq1a+O118ahZ8/eluv3xx8bsGPHNsTFPYOvrx9efnk4Ro4cXWDcGRkZ8M6nY1fu65JXeno6ZsyYCpPJiB9/XA5PT0/ExERj+fIluHTpIsxmE1q2bI13330PtWrVLjCGgq5T9jUCgHnz3rfcZ9u2PahRowbS0tKwdOmPOH78CLRaLYKDQ/D225PRtm07y7mTJk2Ai4scffsOwKpVy5GYmIBGjRrjgw8+LjS2gqxevRJ//LEB//130ubxQYP6IS7uGbZs2YQtWzYBAD766DP07z8QALBnzy78+edvePz4Edzd3dG37wBMmDDR8nXfs2cX5s//DKtXr8NPP63E9etX0a/fALz3XsnL5IuU7Pfp0wf16tUDx3GYMWMG3n33XdSpw//oSyKRoF69eqhVq1axg4iJicH8+fNx8eJFyOVy9OvXD7Nnzy7SuxiVSoUffvgBBw8eRFpaGmrUqIFx48ZhxIgRxY7DHnKX8ehYGTRG/g6rlrablOw7FL3RjJ92RcKcq3SCYYAJAxrBRSa2Y2TEGXEch9T9fyNp22arDbIYqQyJ0U+g88z61FQkEsDTU4HUVA1MJpqBq0w4jgNMhiKfz2Ykg9WpAQYw3Mvac8Fw7zTEIW0ADhDIXCFw8y7kUZ4TSUrVVttkMlmNFVT2m23Tpo1Ys2YVRo8ei9atw3D+/Dl8/fX/bJ67ZcsmNG/eAp988jkePXqIpUt/hJeXN6ZMmZ7v4zdo0BCHDh3AH380RJcu3VCjRg2b58XGPkWHDp0watQYMIwAp0+fxLvvTsfSpausSjkKcv36VUye/BYiIjpg/vwF0Gq1WLVqOd57bwbWruWvOVi1ahk6duyC+fO/xrVrV7B27U+oVas2hgwZBgB49OgRJkx4Hf7+1TBz5nvw9vZBdPR9xMXlNINYuPBb7Nq1A6+/Ph6NGzfF9etXsWzZYkilMsvj5Hddtm/fiho1aqJDh475Jv65JScnY/r0SXBxccGPP/4ENzc3PH36BG+9NQ5BQcH4+OPPIBAI8MsvazF16kRs2rQdEomkRNfJx8cHCxZ8h7lzZ/PKaXx8fGA2mzFz5jQ8efIYkydPhZ+fP7Zu3Yx3352OxYuXo1WrMMvz3L17F6mpGzB58jSwLItFi77DZ599hDVr1hf6elmW5X1fCwSCAt8IZfv66+/x7rvT0bz5C3j11aw3XTVrZr25+OOP37Bs2Y8YMeJVTJ/+Lh48iMGqVcvAsqzV9/Gnn36EQYOG4PXXx0MqlVo9T3EUKdkPDg5GcHAwgKw2nF26dLHZjack0tPTMXbsWNSoUQOLFy9GSkoKvvrqK6hUKnz33XcF3lej0WDMmDGQSqWYN28evL298fDhQxiNxjKJrSLk3j032ZRnca7ABL1cA7FADE+Ze967Ejv66/B9xKXwZ1P7tauD+rU97BMQcVqsTou4dWuhvnjB6pjYvxpqTJkGaY2adoiMVCSO45CxfT7McfdK9zi6DKi3zy/2/YTV6sFt8EclSvi1Wi06dGhj81hBs+5msxkbNqxD//4DLYlO27btkJKSgn37dlud7+3tjS+++BIA0K5de0RG3sR//x0sMNmfNGkaYmKisXjxQixevBA+Pj6IiOiIl18ejnr1cj6FffnlnAlClmXRqlVrxMREYefObcVK9pcvX4IGDRphwYLvLNcyODgEo0a9glOnTvBquBs3bopZs95//rrDcf78ORw+fNCSpK9ZswpisRg//fQzFIqsRfht2rS13P/Jk8fYsuUvzJkzD4MGDbUcz8zMxNq1P2HQoCH5JqfvvfcB5syZha+++j8AeJ70d8KIEaNsviGKi3uGadMmwd+/Gr79dpHl67p27U9wc1Ni8eIVloS0adPmGDKkP3bt2oFhw14p8XWqXz+rRCpvOc2xY0cRGXkDCxcutlzP8PAIvPrqy1iz5idesq9WZ+DXX/+05KwZGRn46qv/Q0JCfKGlOB99NJd3u3XrNli6dGWB9wGySrvEYjG8vLx4cWs0GqxZsxKjR7+GSZOmAcj6uguFQixZ8gNGj34N7rlaJw8ZMgyjR48t9PmKotgLdPv3759vMp2ZmQmxWAyxuOgzmxs3bkR6ejp27Nhh+YhLKBRi9uzZmDRpkuVNhi2rVq2CTqfD5s2bLZ8CtG3bNt/zHRGbqxtPspn/zlrrkg4wHPxdfCFgit04iZSTy/cSceTyU95YYHU3DGwfaKeIiLMyxMUhdvliGGJjrY4pXmiBauMnQOhCLXeJY5NKZVi5co3V+I4dW/Hvv/vzvV9CQjySkpLQsWNn3ninTp1tJvtt2oTzbgcGBuG//w4VGJufnx9+/nkDLl++hDNnTuHKlUvYs2cn/v57D77+eiEiItpbYlm5chnOnz+LpKQky6cSDRo0LPDxc9PptLh27SqmTZsBs9lsGQ8IqAMfHx9ERt7kJfvWrycQV65ctty+cOEcunZ90ZLo53X+/FkAQNeu3Xkz0GFhbfD7778iPj4O1avb/iQjODgEf/65BefPn8XZs6dx+fIlbNr0J/bs2YWVK9egfv2c0qcnT55g4sQ3UK9eKL788mvebP3Zs2fQo0dPCIVCSwxubm4ICamPW7dulsl1yuvq1UtwcVHwzhEIBOjevQfWr/8ZZrPZ0iymXr1Q3uR09kLfoiT7U6ZMR+vWOW9iszeXLanr168iMzMT3br14H29WrcOg16vQ1RUFFq2bGUZL8vFvcVO9j/++GMYDAYsXLjQ5jGZTIYvv/yyyI937NgxtGvXjrfyu1evXpg3bx6OHj1aYLK/detWvPbaa6VatGBvuWv2U0x5kn3LzrlUwuMo0tR6rNt3mzcmEQswYUBjiIT0howUnfrKZcSt/QmsVss/wDDwfmkwvPr2B1OEj4xJ5cAwDNwGf1SsMh4AMCU9tDmT7zr4I4h8itFpphRlPAIBg4YNG1mNnzhxrMD7JScnAQA8PPiVAp6etjvBuLm58W6LxWIYDIVfL4FAgFatWltm6O/cuY1JkyZg5cpliIhoD5ZlMXv2TGg0akyYMAm1atWGXC7HTz+tQHx8XCGPniM9PQNmsxk//PA9fvjhe6vj8fHxhb6e3M1P0tLS4OOTf9ttlUoFjuPQq1c3m8fj4+PzTfazny8iooMlqTxz5hRmzXoHa9f+hK+/zok/MvIm0tPT8O6771uV5ahUKmzc+Ac2bvzD6vHzKz0p7nWydX9b3YK8vX1gMpmg1WbC1TXr2rq58d8oZU9G6/WFf9/UrFnL5vd1SalUKgDA2LGv2jye93stv/8HJVHsZP/s2bOYNWuWzWPdunXD999bf+EKEhUVhaFDh/LGJBIJAgICEBUVle/9Hj9+jKSkJCiVSrz99ts4efIkFAoF+vbtizlz5uT7BqB79+75PqZcLoe/vz9EosJ/wQqfJ3bCUiR4HMfy+uznLePJTvaru/oVKSZHURbXxhFxHId1f9+GWsv/ZGt0z1DU8it6n/PKen3KSmW/PhzLInHHdiTt2ml1TODigpoTJ8GtWfN871/Zr09pldX1KU39eqmeU1y82lxGlJ18MQA4y9+MSAKmmI9V0bLrxFUqfqOK1NQUW6eXmdDQBmjTpi1On85aYPnkyWPcvXsb33yzEJ06dbGcl7frYGHc3NzAMAzGjh2Pzp27Wh13L+bu1u7u7khKSsz3uFLpDoZhsGrVzzYrKorbVjQ8PAIhIfXw4EEMb7xnz14QCoX4+OMP8N13PyAsLKeCQqlUon37Dhg61LpcxyWfTyVLe52USiVvL4BsyclJEIlEkMsd89NQpTKrHHvBgu/g72/dsS9v+VRZ/ggqdrKflJQEX1/b7zR9fHyQlJRUrMdLT0+HUmndo1apVCItLa3AOADgm2++Qe/evbF69Wrcv38fCxcuhNFoxPz5xa9ZBLJmADw9i/5RjVJZ8l7qJnUqVGzWR1iZrBxajv+82Z14gv0CihWToyjNtXFEu49H41pUMm8svEk1DOpar0SJQWW7PmWtMl4fk1qNuwt/ROrFy1bHXOrWQYO570NevWhtWyvj9SlLpb0+zrIhnkCuBOPiDoHCC9JGnaGPPApWkwKB3PF7v/v5+cPb2wfHjh3hJdnHjh0ps+dITk6Gt3ee9XAsiydPHsPLK2s8O6kXiXIS5mfPYnHt2pViJcxyuRxNmjTDgwcxmDhxSqljDwtrY1mTYKuEJCwsq8QkLU1lVQpVGFvXRafTISEhHoGB1hUVM2e+B4PBgPfem4kffliKF15o+TyGtoiOjkL9+qFF3mepqNcpZxae/6arefMW+P33X3H69ElLtySWZXH48EE0bdrcIfZ7yvqUhv/pQbNmzSCTyZCQkIAuXWx/GlNeip3sK5VKPHr0yGZt/KNHj0pd05SN47gCE6jsPrDBwcH46quvAADt2rWDyWTCN998g3feecfmm5JDh/Kv75swYQJYlkVqqqbQ+IRCAZRKOdLTtTCbS9YRw5SQU/edkmdW3ywwwSDLikMJ9yLF5CjK4to4mieJaqzbza8/9HCVYEzP+lCpitf2sDJen7JUWa+P7vEjPF68GMbEBKtjyvB2qDFuPHRSKXSF/F+vrNenrJTV9WFZzikSfoGrF9zHLAQEIjAMA0mjrgBrAiN0/K5gQqEQr702Dj/88B28vLzRqlVrXLhwHhefL1Yvi+s/c+ZU1K4dgA4dOqF69epQqVTYs2cX7t+/h5kzZwMA6tSpCz8/fyxfvhgsa4ZWq8WaNavg61v8Etpp02Zg6tS38eGHc9CjRy+4uSmRkBCP8+fPol+/gcVa7PvGG2/j5MnjePvt8Rg9eix8fHwQExMNnU6HMWNeR0BAHQwd+go+//xjjBr1Gho3bgqTyYTHjx/i4sUL+OYb63LrbKNHv4IOHTqhbdt28PHxQWJiIjZv/gsqlQrDh4+0eZ/3358Hvd6Ad999B4sXL0eTJk0xYcLbGD9+DN55ZwoGDRoCLy9vJCcn4fLlS3jhhRaWFqEluU7e3t5wc3PDgQP/oEaNmpBIJAgJqYf27TugUaMm+PzzjzFxYlY3nu3bt+DRo4e8Fqj2VLduIC5ePI+zZ89AqVSiRo0acHf3wIQJk7Bs2Y9ISIhHq1atIRAI8PTpUxw7dgQLFnwLmax8JnGKney3bdsWq1atQo8ePeDh4WEZV6lU+OmnnxAeHp7/nW1QKpVIT0+3Gs/IyCiwXj/7ufM+X3h4OFiWRVRUVL6fQBSE41CsdnZmM1vi9nem9NydePj1+jpFGsAADBh4SbycssVeaa6NIzGaWCzfdgPGPInDG/0aQS4Rlfg1VpbrU14q0/VJP3sa8evXgctbXywQwPeVEfDo3gMsw4CtoJ89VUFpr0/WAk3HT/YB8BJ7hmEAJ0j0s73yyghkZKRj69bN2LTpT4SFtcWUKdPxySfzLHXXpTFmzOs4ePBfrFq1HCkpyVAoXFG3bl189dW36No1q6xXIpFgwYLv8N13C/Dhh3Pg5+ePcePexIUL53H7dmSxnq9Zs+ZYtepnrF69EvPnfwaj0QQ/Pz+0bt0GtWsXr7d7QEAAVq/+BcuXL8G33y6A2WxCQEAdjBnzuuWcWbPeR506dbBjxzb8/PNqyOVyBATUQffuPQp87DfeeBsnThzDjz8uhEqVCg8PDwQH18PSpSt53WxyYxgGH374CQwGPWbOnIqlS1chNLQB1q7dgFWrluHbbxdAq82Et7cPWrRoiZCQeqW6TgKBAB9++ClWrlyGadMmwmAwWPrsL1q0BEuX/oAVK5ZCq81ESEg9fP/9j8V6M1WeJk2aim+++R8++OA9ZGZqLH32R40aAz8/P/z552/YvPkviEQi1KxZCx06dOR9slTWGK4ojXBziY6OxrBhwyAWi9GnTx/4+/sjLi4O+/fvh8lkwubNmxEUVPQNPUaPHg03NzesWLHCMmYwGNCqVSvMnDkT48ePt3k/g8GAli1b4vXXX8fs2bMt45GRkRg8eDA2bNiANm1stwLLz4QJE2A2s/j66x8KPbcsel0bbh6C/uQGAMB/GS/iqTHnB0FStWjEBdyCj8wLn0c4xjvVoqpsfcA3HrqHf88/5o31aF0bI1/M/wdZQSrb9Slrlen6cCYTErdsgurgv1bHhG5KVJ84GS7F3IGzMl2f8lBW12fOnBkQCgVYvXp1GUaXRafTISoqGj4+1SCROHZdvT2sXLkMf/75O/7557BTN+AgpDwZDHokJcUhODio0P8nxZ7ZDwoKwh9//IGvvvoKmzdvtrQ4CgsLw9y5c4uV6ANAp06dsGLFCqSmplraIx04cAAGgwGdO+dfgyaRSNC+fXucPn2aN3769GmIRCKEhIQU96VVuOxOPByX/+Jc6sRjXzdjUqwS/Vq+Cgzr4rg7VBLHYEpLw7NVy6G9e8fqmCwoCNUnToXYRkcJQqqSmJho7N+/D82aNYdIJMalSxfwxx8bMGTIMEr0CSkjxU72AaBBgwZYv349dDod0tLS4OHhUeLdvUaMGIHffvsNkydPxuTJk5GcnIwFCxZgwIABvDKeefPmYceOHYiMzPlIbcqUKXj11Vfx/vvvY+DAgbh//z6WLFmCUaNG2WzL5GjYzKxkP5NzgY7jrx7PXpzrTzvn2o1aa8TavfyPcEVCAd4a2Bhikf0XABHHpY2OwrMVS2FKTbU65t65C3xHjIKgGPuREFJZyWQy3Lx5Hdu3b4VGo4Gvry9GjXoNb775tr1DI6TSKFGyn00mk5X6nbdSqcT69esxf/58TJs2DTKZDP379+eV5gBZC3Jzb74AZK1sXrVqFb7//ntMnDgRHh4eGD16NN55551SxVRROI0KgHV/fbPQCIM0a9Gnv6L46w5I6XEch1/+vg2Vml9j/XKXYNTyLXqbTVL1qI4eQeKfv4HLtWkKADAiEfxGjYF7MbtmEFKZVa9eA0uXrrJ3GIRUaiVK9s1mM44dO4aoqCjodDreMYZhMGVK8VpOBQYGYu3atQWes2DBAixYsMBqvH379mjfvn2xns9RcJqsBbpWJTwuaZZ1YTSzbx/Hrz3Dpbv8/sZNAr3QvXUtO0VEHB1rNCLhjw1IP269kZDI0ws1Jk+FLJDKvwghhFSsYif7qampGDVqFKKjo8EwjGVL6dxtMoub7FdV7POa/RSz7Z1zAarZt4f4lEz8efAeb8xVLsb4fg0hsMNGO8TxGVOS8WzFMuhioq2OyRs0RPW3JkFkYz8RQgghpLwVe4vBRYsWQSqV4r///gPHcdi0aRP+/fdfvP7666hbty6OHDlSDmFWPpxBCxh1zxfn2k72XcUKuIqdbzMtZ2Yys/hp903ojfySsXF9GsDDlbpmEGuZt2/h0f99ZjPR9+zVG7VmzqZEnxBCiN0UO9k/c+YMXn/9dfj5Zc04CwQCBAQEYM6cOYiIiMDXX39d5kFWRtmz+hpWAT3HX/eQsziX6vUr2q6TDxDzLIM31vmFGmhRn74WhI/jOKT+ux9PFn4Lcwb/e4aRSFD9rUnwfXkEGAfYzZEQQkjVVewynri4ONSsWRNCoRACgQBardZyrGvXrpg1a1aZBlhZcfmU8JiEBhilWdeUSngq1t3HKuw9/YA35u/lghHdStZPn1RerF6P+PU/I+PcWatjYj9/1JgyDdKatL6DEEKI/RU72ff09IRarQYA+Pn54e7duwgLy9ptLS0tzapjDrGNe952M+/i3OydcwFanFuRMnUmrN4didxbzAkFDN4a0AhSCc3MkhyG+HjELl8Cw9MnVscUzZqj2ptvQehC5XeEEEIcQ7GT/caNG+PevXvo0qULOnXqhOXLl8PV1RVisRgLFy5E8+bNyyPOSseyODefen2Ayngq0u8H7iA5nd9ZalDHQARWp1prkkN97QriVq8Cm+sTzWzeAwfBq/9AMIJiV0cSQggh5abYv5VGjx4NNzc3AMCMGTPg4+ODOXPm4N1334VQKMSHH35Y5kFWRpwmNWtxboGdePwrOqwq6UxkHE7fjOeN1a/tgT5t69gpIuJIBAIGbnIh0g4fQOySH60SfYFcjhrTZsB74CBK9EmVs3r1SoSHt0R4eEu0a9cK3bt3wqhRr+C77xYgxsai9bI0aFA/fPeddUvuvMLDW+L3338t9fPpdFqsXfsTRowYis6dI9CrVzeMGzcaK1YstZyTkZGB1atXlttrv3jxAsLDW+LWrcjCTy6l2NhYrF69EomJiVbj4eEtcfjwwVI9/p49uyzfO7n/dOoUDgCYNGkCZs2abnW+SpU1WVre17oyKfbMfkREBCIiIgAAXl5e2LFjB+7evQuGYRAUFASRqFT7dFUZnCYVatYVBo7f4SU72RcLRPCSedghsqolKU2LDf/c5Y3JpSJM6N8IAgG12SSAlDFDJBBA4SYHr84LgKRmLdSYPA0Sf3pjTqouqVSGZctWAgA0mkxERd3Hzp3bsHPndsyb9wn69Oln5wjLxty5sxEZGYmxY8cjNDQU6ekZuHXrJo4dO4JJk6YCyEpA1679CcHBIQh08n01nj2Lxdq1P6FDh07w9c2pNPDx8cGaNb+gdu2ymRD74YelcHXN2aySYbImTd5//wMICphAqUzXurwVKzPX6XR4/fXXMX36dEvCzzAMQkNDyyW4yozVpFqV8JhEehglWbOGfi6+EDA0S1ieWJbDmt2R0Or5O52O6VUf3u6l2xmaVA76B9HwbFwfkZ//Hxp9+hGebN0OQ1IyAMAtrA38x46HoJS7iBNSGnujDmBX1D8YGNIb/YJezLkd3Av9gntUSAwCAYMmTZpZbrdtG46hQ1/GrFnT8b//fYFmzZqjppMvWH/06BHOnDmNTz75An379reMd+vW3ZLoVxUSiYT39S6tBg0awsPD02q8ohN4juNgNBohkUgq9HkrQrGySZlMhrt370JIreRKjdOk2i7heT6ZXI0W55a7v88+xN0nabyxdo39Ed6omp0iIo7CkJCA2BVLIUyMReKRI8i4fQeJR46h1tDBgEAA31dGoNpbkyjRJ3aVndgDwK77+7Howqqc21H/YG/UAbvFJpVKMWvWHBiNRuzatd0yzrIsfvllLQYP7o+OHdti2LCXsHHj77z7fvHFp3j11Zd5YypVKsLDW2LPnl1Wz/Xbb+sxYEAvdO4cgffem4mkpESrc7L99def6NIlAhqNmjf+6NFDhIe3xLFjR23eT63Oaq/r7e1jdSx79jk2NhZDhmS9EZg3731LWUpsbCyArCYmX375BXr37obOndth/PgxOHv2tNXjnTx5HBMmjEPnzhHo0aMzJk2agDt3bvPOSU9PwyefzEO3bh0waFBfbNjwC+/49etXMXv2DPTv3xNdukRgzJgR+PvvPbxzTCYjlixZhEGD+qJjx7bo168nZs16B2p1Bi5evIApU94CAIwbN9ryWrJfp60ynn379uC110aiU6dw9OrVDTNnTsOzZ7E2r2dR5C3jya2wa20wGLBixRLLaxs+fAj++edv3mNkf5+dOnUCo0cPR8eObXH8uO2vv7Mrds1NixYtcO3aNbRt27Y84qkSONYETpue72ZaAC3OLW8xz9Kx43gMb8xbKcOoHvQpVVVmztQgZe9uqA4dhNjDHb6z38HlaTMAAE+2bkOLJT/A7F0d0qBg+wZKKiWO42AwG4p8fnZin+12yj2r4y/W6VSkx5IIJWDKeIfwwMAg+Pr64fr165axJUt+wF9//YGxY8fjhRda4Ny5M/jhh++RmZmJ8eMnFPs5jh79D9WqVcd7781DRkY6li9fgrlzZ2PNmvU2z+/Tpx+WL1+Mf//dj8GDh1nGd+/eCW9vH0REtLd5vzp16sDFxQWLFy/EpElT0bJla7i4uPDO8fHxwYIF32Hu3NmYNGkqWrVqbRk3m82YOXManjx5jMmTp8LPzx9bt27Gu+9Ox+LFy9GqVVZXwwMH/sEnn8xDp05d8MUXX0IsFuPq1StITExAaGgDy3N9881X6N27LxYs+B5HjhzGsmWLERJSD+3aZcUfFxeHZs1ewJAhwyCRSHDt2lV8+eUX4DhYPplYv34dtm/fismTpyMoKBgqlQrnzp2GwWBEgwYNMHv2XHz33QJ89NFnqFu3boFfh99+W4+lS3/EgAGDMHHiFJhMJly4cB4qlQrVq9co8L5mMwuTKecTdqFQWOj3YkHXGgA+/HAOrl69gjfeeAt16wbi9OkT+Oyzj+DmpuR9jZOSErFw4bcYN+5N+Pv7w8+vck72FTvZnzNnDiZPngxfX1/06NEDCgW1mCsuLjMNHMchxezFG+cl+9Rjv9zoDWb8tDsSZjan/pphgAkDGsFFRmtOqiLObEbasSNI3rkD5uczeLWGDkbikaOWsh1DUjKSTpyEZ7sIZOpYe4ZLKiGO4/Dt+WWIUj0o08edfrhoTTOCPerivbApZZ7w+/v7Izk5CUDW7PzmzRsxcuRovP32ZABA27btoNFosGHDLxgxYpRVAl0YjSYTCxcusTQO8fPzw7Rpk3D27Gm0bdvO6nylUomuXbtj9+5dlmTfbDbj77/3oG/f/vmuO1QoXDFv3if43//+D7Nnz4BQKERISD106dINI0aMglwuh0QiQf36WQl57doBvFKXY8eOIjLyBhYuXIyIiA4AgPDwCLz66stYs+YntGoVBo7jsGTJD2jbNhxff/295b7Z5+fWpUs3TJgwEQDQunUYTp48jsOHD1mS/R49elnO5TgOL7zQEgkJ8di+fYsl2Y+MvIE2bcIxbNgrlnO7detu+Xd2GU1wcAgaNmxk+wuArE891qxZhUGDhmDu3I8s4506dcn3Prn168cvN3vrrckYP/7NAu9T0LW+ePE8jh8/ih9/XGb5HmjbNhyJiYlYs2YlL9lPT0/HokVL0bhxkyLF6qyKndkMHz4cRqMRH3zwAT744APIZDLeDweGYXDx4sUyDbKy4TSpyGCVMOazOBegMp7ytPHwPcSnZPLG+rWri/q1PewTELErzfVrSNy0EYZcHzdLfLzh26WzZVY/2+O/NqNll87QGQxgWQ6EkIJxHGfJEW7evAGTyYQePXryzunRozd27NiGu3dv44UXWhbr8Vu1am1J9AEgLKwtFApX3Lhx3WayDwAvvTQYkyZNQHR0FIKCgnH69EkkJSVhwICXCnyuF1/siTZtwnHy5DFcvHgBFy6cw6pVy7F//z788svvkMvl+d736tVLcHFR8BJ3gUCA7t17YP36n2E2m/H48SMkJMRj+vSZhb7u3K9NIBCgTp26SEzM6SqXnp6O1atX4vjxI0hMTLTsgeTu7mE5JzS0IX7//VesXr0S7dt3RIMGDQtcEJuf69evQafTYcCAQcW+LwAsWbICrq45X8Pci4FL4uzZM1Aq3dGqVRjvE4PWrcPw3XffwGw2W8rRPTw8Kn2iD5Qg2e/Vq1eZv/OvalhNitVmWkaxDiZxVp93Bgz8XKzrAknpXbqbiKNX+DWEgdWVGNi+rn0CInajf/oEiZs2IvPmDatjtYYORtKxEzCmqsDkWqNkTFUh6fgJuLZpi0wdJfuk7DAMg/fCphSrjGd/zGHsizmU7/F+gS+iV2DXIj1WeZTxAEBCQgICAgIAZCWgAODlxf/95u3tzTteHJ6eXjbGPJGUlJTvfVq0aIU6depi164dmDFjFnbv3okXXmiBgIDCu8solUr06dMfffr0B8dxWL16JX7+eTV27dqB4cNH5nu/9PQMeHlZx+rt7QOTyQStNhNpaVkTfj4+hSe7ud/gAIBYLEJmZk5b4P/7v09x/fpVjB//FoKCgqBQuGLbts04ePBfyzmvv/4GGIbBvn17sHbtT/D09MTQoa/gjTfeKtb3QnbcJU3S69Wrb3OBbkmpVCqkp6ehQ4c2No8nJyfBzy+rg5qt75/KqEjJ/v379xEQEACJRIIFCwrvaUsKxmlSkZJ3ca5LzuJcL5kHJMLKtxrc3lRqPX75m7/ISSoW4q0BjSASUuejqsKUno7knduQduyoVSvNbMomTaAIqI1qvXvaPK5XZ9ocJ6Q0GIaBVCQt/MTnCkr0AWBvzEEMrNe7tGGVWHR0FBITE9Cv3wAAgLu7OwAgJSUZfn45n14nJ2eVyimVWZsYSqUSGI1G3mPl90YgNTXFxliqpXY7PwMHDsJvv63Hq6+OwcmTx/HBBx8X8VXlYBgGo0a9hp9/Xo0HD2IKPFepVCIlxTrW5OQkiEQiyOUulutT0ALjotDr9Th16gSmT5+JV14ZYRlnWX75oUQiwYQJEzFhwkQ8fvwIe/bsxJo1q1CzZk306dM/78PmKzvuxMRESxJtT0qlEp6enli4cInN47kT/KoyeV2kDGfAgAG4fTsnSeI4Du+//z6ePn1aboFVZqwm1Wpxro7q9csNwzAQCBhsPHQfai3/F8jIF+vB36t4NaLEObFGA1L+3osH895H2tEjNhN9aUAd1Hr/A2TKPZCYmJHvn3StueJfACF5DAzuxbvd0Ktegccrkl6vx/fffw2JRIKBAwcDABo1agyRSIRDh/hdgg4e/BdyuRyhoQ0BAL6+/khISEBmZs6b6nPnzth8nosXL1g65QDA+fNnodGoCy3N6Nt3ANRqNT79dB6kUhm6d3+xwPM1Gg10Op3V+OPHDwHkfDohFostrz+35s1bIDNTg9OnT1rGWJbF4cMH0bRpcwiFQtSpUxd+fv42Ow4Vh9FogNlshkgk5sV//PixfO9Tu3YAJk2aBqXS3fLGJb/XklfTps0gk8lKHXdx5RdfWFhbpKamQiQSoWHDRlZ/su9XlRRpZp/L80uRZVns2rULY8eORc2aNcslsMqMVauQYgrhjVG9ftkTCgUQS0SQyURIUxvw3pjWuHIvEev3RuJJghqt6vuiY7Pq9g6TlDOO46C+cB6JWzfBlM9H+0IPD/gOeRlu4e1oF1ziNLL76Nu7zz7Lcrhx4xoAIDNTi6ioe9ixYxtiY5/i448/R40aWd1YPDw88corI/HHHxsgkYjRrNkLOH/+HHbs2IoJEyZaat67du2G1atX4MsvP8fAgYMRExOFnTu323xuhcIFM2dOw5gx46BWZ2DZssVo1KgJwsMjCozZ09MTnTp1waFDBzBo0BDIZPnX2wNZrTlnz56Bfv0GoHnzFyCXu+DBgxj8+uvPcHV1tXx64e3tDTc3Nxw48A9q1KgJiUSCkJB6aN++Axo1aoLPP/8YEydmdePZvn3L88edCyBrYmratBn45JN5mDt3Nvr27Q+xWIwbN66hYcPG6NChaJ2VXF3d0KhRY2zYsA6enp4QCoX49dd1cHV15X0S8v7776JBg4aoXz8Ucrkcx48fQ3p6Glq1yip/CQgIgFAoxJ49OyEUCiASiW0u1HV1dcMbb7yFZcsWg2XN6Ny5K1iWxcWLF9CzZ+8CF/eWRn7Xum3bcHTo0AkzZ07F6NFjERJSD1qtFjEx0Xj8+DE+/PCTconHkVHrETtIS9XCBP47S2q7WbaEQgEUrlJsOXwfu09EQ6M1QiEXo3/7QCyY0gH/W3cWY/s0qDIf4VVV2uhoJP71B3RR920eZyQSePbqA6/efSGQFr18ghBH0S+4By+pz3u7Iuj1Orz55utgGAZyuQuqV6+OsLA2GDZsOOrWDeSdO3XqO3Bzc8POnduxfv06VKtWDdOnz8TIkaMt5wQGBuGTTz7H2rWr8f7776J58xfw6adf4PXXR+d9anTu3BV+fv745psvkZGRgdat2/A6whSkc+euOHToQJEWltaqVRuDBg3BuXNnsGvXdmRmZsLX1w+tWoXh9dffsLSXFAgE+PDDT7Fy5TJMmzYRBoMB27btQY0aNbBo0RIsXfoDVqxYCq02EyEh9fD99z9a2kYCWV10ZDIZfvllLT7++ANIJBKEhjZA587divSasn3++ZdYsGA+vvjiE7i7e+CVV0YgMzMTf/yxwXJOs2bNcejQAfzxxwaYzWYEBNTBF1/8D23aZLVW9/DwxOzZc/Dbb7/i77/3wWw24cyZSzafb8yY1+Hp6Yk///wd+/btgYuLAk2aNIWnZ9nV4udV0LX+6qtv8euv67B162bExT2Dq6srgoKC0b//wHKLx5ExXN5pexsaNGiATZs2oVmzrNZGZrMZjRs3xtatW9G4ceNyD7KiTJgwAWYzi6+//qHQc0UiATw9FUhN1cBkKl4bvmurf8DJ5BaW20axDnda5NRezmgxEfU8nXfr59Jcm7Iik0uw60QMNh64Y3Vs+Iv10b11bYhgnwWWjnB9HFlZXB9jSjKStm5Bho0Na7IpI9rDe/AwiMvxl1F5oO+fgpXV9ZkzZwaEQgFWr15dhtFl0el0iIqKho9PNUgk9CbTXj7//GPcvXsHv/++yd6hEFJsBoMeSUlxCA4OgqyQDR5LNbNPs6LFx3EckjP5XxStQsW7XY1q9kuFYRjIZCLsPhFt8/iekzEY3qM+0lRaqxI14txYnQ4p+/ci9Z/94PIs8Msmr1cfvsNfhayQTWIIIZXT/fv3cO/eHRw48A/ee+8De4dDSLkrcrI/e/ZsSPN8zD1z5kxIJPyuMQzDYNeuil2k4Uw4vRrJxvw301KIXOAqpo3KSkMgYKDWGqHR2k72NFojNFoTBAIGZjMl+5UBx7JIP3UCSdu3wpyWZvMcsa8vfIYNh2vLVjRRQUgVNnv2DKhUqejbd0ChvfUJqQyKlOyHhYUVaYwUzpyRghRTQTvn+lIiUkosy8FdLoZCLraZ8CvkYijkIqTpbb8ZIM4l8/YtJP71J/SPH9k8LpDL4dV/IDy6vQhBFezCQAjh27Fjr71DIKRCFSnZ37BhQ+EnkSJJfZYMcwGLc6kTT+lxHIenCWr0bx+Ivw7etTo+sGMQtDoTlfA4OUNcHBK3/AXNlcu2TxAI4N65K7wHvgSRm7JigyOEEEIcBHXjqWCJz9Jh2T0LACvWwizO2TGReuyXXnKaDit23sQXb2dtJ77nZIylG8/AjkEY2jUEGnXBfYOJ4zKr1UjesxOq/w4DZtv97hVNm8Hn5eGQ1qDWwIQQQqo2SvYrWGKiHkDOAt1MBb++mNpulg7Hcdjw7x1Ex6Zh7rITGNuvEX75uCcy9Sa4uYih1ZmgUethNlMXE2fDmUxQHTmM5F07wWZqbJ4jqVETvsNHQlHIhjqEEEJIVUHJfgVLUvFva1z5A9Vc7L/VtDO7cCcR16Kytl5/kqDGl+vOoVebALzaoz7SVFS644w4joPm6hUkbv4Lxvg4m+cI3ZTwHjQE7h06ghEKKzhCQgghxHFRsl+BzGYWKRp+96Lc9foiRghvuXP1/HYkGp0Rvx/g1+grFRL0j6hDM/lOSvfoIRI3bYT29i2bxxmRCB49esGrb38I5QXvgEkIIYRURZTsV6DUpEyYOQFvTOuSk+z7ufhCwAjy3o0U0ZYjUUjXGHhjr75YDwoZdWBxJgzDwKTJRMLmv5C0bx+Qz6cxbmFt4DPkZYh9qfSNEEIIyQ8l+xUoMS6Dd1sgVsMszmn/SItzS+7uYxWOXonljTUL9kZYA7qmzoTV68ElJAGBAVDWqo4kG4m+LDAIvsNHQh5Szw4REkIIIc6lxNPIUVFR2LhxI1asWIHExEQAQHx8PHQ6XZkFV9kkxPIX45rkKt7tarQ4t0SMJhbr99/mjUnFQozuWZ/2LHASnMkE1dH/8PS7BXALDEDk5/Ph26UzJD7elnNEXl6oNuFt1P7gI0r0CXEwp06dxMyZ09C7dze0b98Gffq8iFmz3sHJk8d5a6W++OJTvPrqy8V+/PDwlvj991/LJNZJkyZg1qzphZ63f/8+jB8/Bt27d0K3bh0xfPgQfPnlF0hJSSmTOMrKxYsXEB7eErduRVrG0tLSMGfOLPTo0Rnh4S1x9Oh/WL16Jbp2bV/mz3/37h2sXr0SOp220LiIfRR7Zt9sNuPjjz/G9u3bwXEcGIZBp06d4Ovri08//RQNGzbEO++8Ux6xOr3EZ/xkP8M1nXf7/9u787CoqjcO4N9ZGPYBZHPBDRTcQFAR3Lfccs9MK83MtLS0UsvSFi1Ly1LT3FJzX3P7qbnkvqaW+74guSs7wwDDbPf3Bzl6YUCWgYHh+3ken+Lcc+9954jwzpn3nuPLNfYLZPvx23gYnyZq69XSH15urOEu6QRBgPrUP4jbtAG6x4/g/87biD1wEClXryH2wCH49e6F6CXLUa5zF3h06ARplh27icj65s6dhaVLF6NVqzYYPXosvLy8kJCQgIMHD+Djjz/C1KnT0axZC2uHmS/Lli3G3Lm/oF+/1zFkyLsQBODWrZvYtWsH4uJiUa5cuedfpJjUqlULCxcuQbVq1U1tK1cuw6lTf+PLL79BuXIeqFKlGmrXrlMkfw/Xr1/DokW/ok+fvnBwePp711xcZB35Tvbnzp2Lbdu24ZNPPkGLFi3QtWtX07EWLVpg06ZNTPbNMBiMiI8Tf+qR6CpO/suzjCffHsSl4o+//hW1VSvvihca+lknIMqztCuXEbvhd2T8Gw0AUHh5wrt1K5wZ8SEA4N6GjWjwy0xIa9eH1MXVipESlXzqSxfxaMUKlO/fHy7FuPTs0aOHsXTpYgwePBRDhrwrOtauXXv06/capNLS9wnr77+vQZcu3fDBB6NMbU2bNkP//gNhNBbPgg8GgwGCYIRcnvtzZ87OLqhXL0TU9u+/0ahRoyZatmxlalMqlfDxKb4V/8zFRdaR72R/06ZNGD58OAYNGgRDlg1t/Pz8cO/ePYsFZ0sSYlOR9edDmrN4Zt+HZTz5YhQELNt5FXrD04+IpRIJBnaqVSp/uZQVmju3Ebfhd6Rduihq9+vdC7EHDkIbl7l0qjYuHrGHj8C1SROkabiaElFOBEFAzPrfoX34ADHrf4dznbrFVsK4evUKeHl5YdCgt80er1On7nOvERV1E7NmTce5c2chkUjRsGEjjBz5ESpXriLqZzAYMGvWDPzxxxZotVq0bt0Oo0d/AmdnZwBAeno6Zs/+GSdPnsDjx4/h4eGBJk2a4r33RsIlnxMGKSkp8PT0MntMKn1aAd2zZxc0b94C5ctXwNq1q6BSpaBx4wiMHTsOXl5Pf6fPnj0Tx44dwYMH9+Hi4oLQ0Ab44INRoj7Dhg2Bk5Mj2rZtj6VLf8P9+/ewYMESVK5cBbNmzcBffx1BcnIy3N09EBJSH5MmTQGQWS7z3ntDsXjxCtSuXQeRkQ1M13zy/8ePn8aCBfOwatVy7N9/VPQ658+fg4MH9yMpKRFeXt5o374jhg8fASDzzdyaNatw8+Z1ZGRoUa1adQwZ8g6aNMksB9q2bQsmTZoAAOjUqR0AoHz5Cti8+Y9scQFARkYG5s2bjT17diEpKQlVqlTFG28MQseOnU0xff31V7h69TJGjx6Ln3/+CXfu3Ia/fwA++eQz1KpVJ19/j5Qp38n+48ePERoaavaYvb09UlPNb3ZT1mV9OFchT4FRrjd97WHvDnsZSxTy4/C5B7h+T/zpSIfGlVG1PGeBSyJtTAziN29Eysnj2Y5lndV/4u7adWjQuiU0Wi2MRu6RQLZNEAQIWu3zO2ahvnQRmujMT8g00dFIOXM637P7EoUi328Q9Ho9zp8/hzZt2kEuL9h6H48fP8K77w5GhQoV8cUXX8NoNGDBgnl49923sWLFWnh4PF2O+vff1yAwsBa+/PJrPHhwH3PmzIJWm2FKejUaDQwGI9599z24u3vg8eNHWLJkEcaOHY3Zs3/NV1y1atXGpk0bULFiJTRv3iLHxB8ADh7cj/LlK+Djj8chJUWFOXNm4dNPx2DhwqWmPomJCRg48C14eXkjKSkRq1Ytx7BhQ7B69XrR2F25cgWPHj3C0KHD4OrqCl9fX/z880/4669jGD58BCpUqIj4+Dj89ddRc6EAABYuXIKZM2dAo9Hgk08+zbGfVqvFe++9g0ePHmDw4KEICKiBx48f49y5s6Y+Dx7cR/PmLfH66wMgkUjx119HMWrUSPzyy3w0bNgIzZq1wKBBb2Px4oWYMeMXuLi4wM4u51zmq6/G46+/jmLo0OEICAjA7t278NVX42E0GtC589NKkfj4eEyb9gPeeGMQnJ2dMWfOLIwdOwYbNvzvuZ90UHb5/tfp6emJu3fvIjIyMtux6OholC9f3iKB2ZqYh2rR1xKHRNHXLOHJnyR1BtbtjxK1ebk5oEcz1gaWNPrkZCT8sQVJBw8AWT4NfKLK668j7ugx6BKTRJti6RKTEHf4CFwaRyBNw2SfbJcgCPj320lIv3mj0Ne6N/PnfJ/jWLMmqo37PF8Jf3JyMrRaLXx9xb/3BUEQffIvlUpFs+HPWr16JXQ6HX7+eY4psa9btx769OmJ9evXikqD7OwU+OGHaZD99zNCobDH5Mnf4O2330G1atXh4eGBsWPHmfrr9XpUrFgJ77zzFu7cuY0qVarm+bV9/PFnGDt2NCZP/gYA/kv6W6Jfv9dRsWJFUd/U1DRMmzYLrq6ZE00+Pj4YMWIYTpz4CxERTQAAn38+wdTfYDCgXr0QdO/eCadO/W3qAwApKSosWbJCVG5z+fIldOjQCV26dDO1tW/fMcfY69ULgaurC2QyWa5lNNu3b8P161exYMFiBAfXN7U/e58+ffqZ/t9oNKJhw0aIjo7C//63EQ0bNoKHhwcqVcosm61Vqzbc3XPeK+jGjes4cGAfxoz5FC+//AoAIDKyKeLiYjF//lxRsq9SJWPu3AXw9w8AkPl3PXLkMFy8eBGhoWE53oPMy3ey36pVK8ybNw8tW7aEl1fmO12JRIKUlBQsX74cbdq0sXiQtiDrzL7WKUn0dXk+nJsvq/fcQHqGXtT2Rscg2Cu4e2pJYUhPR+KfO5H4504IGRlm+8jc3OHZvSfcGzeCvYszyrd/wWy/DHWa2XYim1Lqqg8z34BnfX+wf/9ejBv3ienrl19+BWPGmJ9hPnfuDBo2DBfN4FeoUBHBwfVx7twZUd/mzVuaEn0AaN26Lb777mtcvnzJ9BDojh3bsHr1Sty9ewfp6U9Xh8lvsh8QUAOrV6/H33+fwIkTf+HMmdNYt241tm3bgnnzFiIwMMjUt2HDRqZEHwDCwyPg7OyCixcvmBL5Y8eOYvHiBbh16xZSU59O/t25c1uU7NeoUTNbXX1QUC388cdWeHl5ITKyKQICauT5deTmn39Oolq16qJEP6uYmMeYN282/v77BOLi4kwrK9WqVTvf93vy99m+fQdRe/v2nTBp0gQ8fvzI9MbRy8vblOgDQPXq/gCA2NiYfN+XCpDsjxw5EocOHcKLL76IiIgISCQSTJs2DTdu3IBcLsfw4cOLIs5STa83IiFWXN6U5JplJR5n1uvn1dmbcfj7qvgffGRdX9Tz98zhDCpORp0OyQcPIGHbFhjUKWb7SB0dUa5zF7i3aw+pvT1U6UYgPbOvXC6Fh4czEhNTodezVp/KBolEgmrjPs9XGY8gCLg9+Tto7twWbz4nkcChSlVU/WxcnmfqC1LG4+bmDoVCgZgY8c/jRo0aY/HiFQCAjz/+MNdrpKSoULNmULZ2T09P3LlzW9T27BsCIPOBU7lcjri4OADAgQP7MHHil+jZ8yW8++57UCrdEB8fh7FjR0NbgPIoOzs7NG3aHE2bNgcAHD9+DKNHf4BFi37F99//9Exc2Vfm8fDwMMV1+fIlfPzxR2jZshUGDBiEcuU8AEjw9tsDs8Vl7lqjR38CpVKJVatWYNasGfD1LY833hiE3r3zv4Tps5KTk0XPDGRlNBoxZsxHSE1VY8iQYfDzqwxHR0f8+utcPH78KN/3U6lSIJPJ4ebmLmr39PT877jKlOw/++YJAOzsMtPVjBwmjih3+U72vby8sH79esycORMHDx6ETCbD1atX0aZNG4wcORLu7u5FEGbplhCrzlZv/FgpLuvhspt5o9HqseLPa6I2Zwc5+rXluuvWJhiNSDlxHHH/2wj9f7/kspLI5XBv9wLKde4KmYtLMUdIVLJJJBJI7O3z3F994Tw0t//NfkAQoLn9L9JvXIdLcNGthiKXyxESUh///HMSBoPBNOuuVCqhVNb5r0/u9dVKpRsSEuKztcfHx0OpVIraEhPF5a8qlQp6vd5UZbBv3x4EBgbh008/N/U5ffpU/l9YDiIjm6JGjZr4978VxJ7GlX3d/cTERFNcBw/ug4uLC7799ntTOdPDhw+ynQNk/5QEAFxcXPHRRx/jo48+xs2bN7B27WpMnToZ/v7+CAtrWODX4+bmhpu5lI3du3cX169fxQ8/TEPLlq1N7QVNuJVKJQwGPZKTk+Hm5mZqj4+PNx2nolGgTbW8vLzw9ddf4+DBg7h48SKOHDmCb775Bt7ctt6srPX6zrJkaO3Etcus2c+bTYeikaAS/6Dp27YmlM58uNlaBEFA6oXzuP31V3i06Ffzib5EAmWzFqj27ffw7tOPiT5RIQmCgJiNG8xnhwAgkSBm4wbRhlZF4dVX+yM2NhZLl/5WoPNDQkLxzz8nkZycZGp7/PgRLlw4h/r1xbXZR44cEj0LcODAPkgkEtFKL1nfXOzatb1AcT1JQJ+l0WgQE/M428O6p079A/Uzn2L+/fcJpKaqUfe/h6Qz45KLPjnZtWtHgeKqUaMmPvxwNADgtrk3evkQHh6Bf/+NxsWL580ef5LUPzumDx8+wPnzZ0X97Owyjz/v05P69UMBAHv37ha179nzJ8qXr5Dt2Q+ynII9Pk/5krVe395ePAvgKHeEqx2Tn+eJfqjCnlN3RW21qrijWTB/QFhLetRNxG34HenXr+XYxzk0DF69XoZ9pUrFGBmRbRP0euji48XlO6IOAnQJCRD0ekjsim71kmbNWuCNNwbh11/n4vr1a3jhhQ7w8vKCWq3G2bNnkJAQDycn5xzPf/XV1/HHH1swcuRwvPnmYBiNRixYMA9KpRtefrmvqK9Op8Unn4xC796v/Lcaz0y0bfuCqZ47PDwCP/44BYsW/Yrg4Pr466+j+Oefvwv0uvr3fwXNm7dEREQTeHl5ITY2Fr//vhZJSUno2/dVUV9nZyd89NEIDBgwCGp1CmbPnok6deohMrIpAKBx40isWbMKP/30PVq1aoMLFy5g584/8hzLkCGD0Lp1G/j7B0AqlWHHjm2ws7PL9mYovzp37oING37H6NEf/rcaTwBiYmJw9uxpfPbZF6hatRp8fHwxZ85MGI0GpKenY+HC+fD2Fk9OPnleYv36dWjZsjUcHBxQw8wu5zVrBqJNm3b4+edp0Gg08Pf3x969u3H8+DF89dXXhXotlLs8JfufffZZni8okUjw3XffFTggWxT7UJzsC45ZVuJx8i62NZFLK73BiCU7rop+r8llUgzsVItjZwXahw8Qt3ED1Gdy/ojcsWYgvF7qA8eaLLEisjSpnR38v5oIfYr552IAQK5UQlqEif4Tw4ePQP36oVi/fh2mTp0CtVoNpVKJWrVqY/z4r3JdOcbXtzzmzl2IWbOmY+LELyCVStGgQSOMHDkqW41+nz79kJiYiAkTPoder0OrVm0wZsxY0/FevXrjwYP7WL9+LVauXI7IyCaYOPFbvP32wHy/psGD38GRI4fw88/TkJSUCHd3dwQE1MQvv8xDw4bhor6tWrWBj48vfvjhW6SkpKBRo8aiUqKmTZvjvfdG4vff12Lbti0ICQnFjz/+jFde6ZmnWEJC6mP79m14+PABJBIpAgJq4McfZ5je5BSUQqHAL7/Mw7x5s7F06W9QqZLh4+Nr+vtSKBSYMuVH/PjjFIwfPxY+Pr4YNOht/PPP37h69bLpOkFBtfD22+9gy5bNWLFiKXx8fLF5s/k3MxMmTMK8ebOxatUy0zr7EyZMQqdOLxbqtVDuJEIePuNr27at6OuUlBSkpKRALpfD3d0dSUlJ0Ov1cHV1hVKpxN69e4ss4KI0ZMgQGAxGfP/9jOf2zetDhHqdAQunHRElqfaVD+BUhacP7EZWaIQBtV8pTOglSlE8YLnjxG38nmWpzZda+qNr02oWuX5xKs0PoOoSExG/ZRNURw7nOKOoqFgJXi+9DOf6oQV6I1aax6c4cHxyZ6nxGTv2Q8hkUixYsMCC0WXSaDSIiroFL6/yUCjyXqNPJc+TTbVyWm2IqKhotRmIi3uEgAB/ODg45No3TzP7+/btM/3/+fPnMWLECHz11Vfo3LkzZDIZDAYDtm/fjqlTp2L69OmFi97GxMWkZsmJBMS7qgA8XT6My27mLiYpHf87LH4gqpK3MzpFVMnhDLI0Q2oqEnb8gaS9uyHodGb7yMt5wrNHLyibNIUkhzW1iYiIqHjlu2b/+++/x1tvvYWuXZ9ufiCTydCtWzfEx8fju+++w5o1aywaZGmWtV7fTZaEaEfxbKevEx9szokgCFi+6xq0z8zQSQAM7FQLchkTyqJm1GqRtHcPEnZsgzHN/Fr3UmdneHbpBrc2bSHNZedEIiIiKn75TvYvXbqE999/3+yxwMBAzJgxo7Ax2ZSs9fpKeTxSsySpXIknZ8cvP8alaPEDzW0aVEKNSm45nEGWIBgMUB09gvitm6HPstzdExKFAh7tO8KjY2fInJyKOUIiIuvLqTadqCTJd7Lv4uKCY8eOoUmTJtmOHTt2DC5cUk8kJsvMvp29OHGSSWTwdMi+iQYB6nQdVu8RrwHs4WqP3q0CcjiDCksQBKjPnEb8xvXQPnpovpNUCrcWreDZrQfk3FeDiIioRMt3st+9e3csWrQIer0e3bp1g5eXF+Li4rB161YsXboUb775ZhGEWTrptAYkxYtLH3RO4mTf28kLMqkMlN3afTegThfXh7/ePhCO9lwx1pKkUglcHKSIvXQDj1evhOZWVI59XRo1hlevl6DgeshERESlQr6zplGjRiEhIQGLFy/GkiVLTO2CIKB79+4YNWqUJeMr1eJi1OIdzGFEirMawNPVF/hwrnlX/k3A0Qvi7bgbBHqjQSCfb7A0hTYNMkcXyOIe5JjoO9aqDe+XX4HDf+spExERUemQ72RfLpdjypQpGDp0KI4fP47k5GS4u7ujcePGCAhgecWzstbru8mSEJdldaTyfDg3G63OgKW7xJs0OShkeL19oJUisk2CwYDk/XtQvceLuDxxEup89TnubdgEbdzTnSPtq1SFV+8+cKpTl/sZEBERlUIFrofw9/eHv3/hNnSwdVlX4vGUxeGyQjzkvnw4N5utx/5FTGK6qO3l1gHwcOV61JaiS4jHowXzUaFtS8QeOIiUq9cQe+AQ/Hr3wq35C2Hn7QPPXi/BtVFjLqNJRERUihUo2dfpdNi8eTOOHz+OpKQkuLu7o2nTpujevTvsimG3vtIi5pFa9LWbXTwS5VlW4mEZj8i9GDV2nrgjaguopETrsEpWisj2qM+ewaPFCyF3dIB361Y4M+JDAMC9DRsRNmsGNHoJnMMjIJHz2QgiIqLSLt9TdikpKejbty+++OIL7Nu3D3fv3sW+ffswfvx49OvXD2q1+vkXKQO0GfpsD+fK7BMgZCmF8GEZj4nRKGDJzqswGJ8+6CCTSjCwUy1IWUJSaEadFjGrVuDBLz/DmJoKv969EHvgoKlsRxsXj7gjx+DTpgUTfaJS5sblGCyafhQ3LscU2z3/+GMrIiMb4M4d8QTN+vXrEBnZAHPn/iJqT0tLQ7Nm4fjtt7zvSjxs2BCMHj0y37Hl5byUlBQsWDAP0dG38n39nCQlJSIysgG2bduSa7+ePbsgMrKB6U/Hjm0xcuRwXLx4oUD3XbBgHs6fP1egc8n25TvZnz59OqKjozF9+nScOXMGf/75J86cOYMZM2aY2gmIeyx+0yOBEenO4rIed3s3OMhZmvLE/jP3ceuBStTWObIK/Ly5nGthaR89xN3vJiFp3x4AgMLLE96tW+Hehk2ifnfXroODvR2kUr65Iiot0lK12PfHNaSlarF/e+Z/i0P9+qEAgPPnz4raL1w4BwcHh2zJ58WLF2AwGBASUj/P9/jkk88wcmTRLPyRkpKCRYt+tWiynx9t276AhQuXYOHCJRg37gukp6fjww/fQ0xM/t+wLVr0Ky5cYLJP5uU72d+zZw8++OADdO7cWdTeqVMnjBgxArt377ZYcKVZ1np9d1ki4hTiBIolPE8lqDTYcFC8EoyvhyO6Na1mnYBsiOrYUdz+ZgIy7j6dffPr3Qtxh45Al5gEiUxm+qNLTELc4SNwUDDZJyoNBEHA/u3XoNPqAWR+qnxgx7XnnGUZfn6V4enplS2pP3/+HLp06YbLly9Br9c9034WMpkcdesG5/ke1av7o2rVapYKuUQpV64c6tULQb16IWjVqg2++eY7qNVq/PPPSWuHRjYm35/VJyQkICgoyOyxWrVqITGH3TbLmqz1+p7yOETz4dwcrdx9HRqtQdT2RqdasJNzD4KCMmrS8XjFMqQc/yvbMZcaNeAaWBPlO3Uwe26GOs1sOxGVLDcux+DWtTjT14IARF2Nw43LMahZp+h/xwQHh4hm9mNjY/Hw4QO88sqr2LJlM65du4a6desByHwTEBQUBEdHRwBATMxjzJ49E8eP/wWNJh21a9fBhx+ORq1adUzXGzZsCJycHPHTTzNNbQcO7MOcObPw6NFD1KhREx9//BmGDx+C114bgCFD3hXFt3fvbsyfPwexsTGoU6cuPvvsC/j5VcaDBw/w0ktdAQDjxn1i6r9x4zZUrFgRWq0WixbNx65dOxAfH4+KFSvhrbeGoGNH8UTn5s0bsWTJIiQmJiI4OBjvvvtegcfSyckZAKDX60Xt0dG3MGfOLJw+fQoGgx4NGjTCqFEfw8+vMgAgMrIBAGDWrBmYNWsGAGD27F+xc+cfuHv3DubNWwQAUKlU6NixDWrWDMKyZasAABqNBu3bt8K4cV+ic+cuebofkPkmc9Wq5di8eSMePXoIb28f9OnTF6++2t/UZ8GCeVi1ajl+/XUxpk6dgmvXrqJSpUoYOfIjREY2NfXr2bMLmjdvgapVq2HlymVISVGjYcNG+OyzL+Dh4WHql5KSgrlzf8HBg/uhUiXD3z8Aw4ePQETE001ez507i7lzZ+HGjRsQBCMqVKiI114bgC5duuXpuK3Kd7Lv6+uLU6dOmd1B99SpU/DxYQILZF92s5wsHicU4sSVy25mOnUtFmduxInamgdXQO2qHjmcQc+juf0vHs6fC13M42zHFBUqIjlVB01sipkzichaBEGAXmfMc//0/8p2zNn3xzX4VnCFo7MiT9eS20kLtLxu/fqhOHhwP5KTk+Hm5obz58/C29sbVatWQ1BQLZw/fxZ169aD0WjExYsX0L17DwCZiefQoW/ByckJo0d/AhcXF6xbtwbvvfcufv99M8qVM7+z/LVrVzF+/Fg0b94SH344Gg8fPsQXX3yaLUEGgOvXryMxcTmGDx8Bo9GI6dN/xIQJn2PhwqXw8vLClCk/4tNPx2DYsPfRsGEjAICXlxcAYPz4sTh37iwGDx6KatWq46+/jmDChM/h6qpE06bNAABHjhzClCmT0KVLN7Rv3xFXrlzG559/luexEwTBFHdCQgJ+/XUOnJycRInw/fv3MHToIPj7B+CLLyZAKpViyZJFeP/9d7Fu3SYoFAosXLgEb7/9Jvr06YeOHTsByPxE5NGjh9i1awcyMjJgb2+Ps2fPQKFQ4ObN60hJSYGrqysuXjwPnU6HsLAGeb4fAEybNhVbtmzGm2++hbp1g3HhwjnMnj0T9vYOeOmll03x6/V6TJjwOV555VW89dbbWLp0MT777GNs3vwH3NzcTf0OHz6Eu3fvYMyYT5GUlIQZM37ETz99j0mTpgDIXBhm5MhhSEhIwLvvDoe3tw927tyOUaM+wNKlK1GjRk2kpqoxevRI1K8fim+++Q52dnaIjo6GWp35u+55x21ZvpP9F198EfPmzYOzszN69uwJDw8PJCYmYsuWLZg/fz4GDRpUFHGWKhkaPZKzLB1ZTh6HODvxcJfnzD7SNHqs3C3+ZeXqZIdX2tawUkSlmyAISNq7G3Hr10Ew88vPrWUrePd9DVJ7PitCVJIIgoANS0/j4T3V8zvngTZDj6Wzj+e5fwU/N/QeGJbvhD8kJBSCIOD8+bNo0aIVLlw4h+DgzJr84OD6OHfuLF59tT+iom4iLS0VISFhAIC1a1dCrU7Bb78tNyX2jRo1xssv98DKlcsw4r9VwrJatmwxKlSoiMmTp0L637LA9vb2mDRpQra+anUKli1bbZodTklJweTJ3yAm5jF8fHwRGFgLAFC5chXUqxdiOu/Uqb9x+PBB/PzzbNOscUREJGJjY7Fw4TxTsr948UKEhobhiy8mAgAiI5tCo0nH0qWL8zR2Gzb8jg0bfjd97eTkhIkTvxVNmi5a9CtcXZWYOXMu7P/7uR0cXB8vvdQVW7Zsxssvv2KKvXz58qLXERbWAFqtFhcvXkDDho1w9uxpNG/eEqdPn8K5c2fQvHlLnDlzGuXLV0D58hXyfL979+5i/fq1GDt2HHr27A0AaNw4AmlpaVi06Ff07PmS6e9Gp9PhvfdGomnT5gCASpX80KdPTxw7dtT0SQKQ+f0/deoM05uJe/fuYsWKpTAajZBKpdi1azuuX7+OFSvWoHp1f9N437lzB4sXL8S3336PO3fuQK1WY9iwEahRoyYAIDw8wnSP5x23Zfmu2R8xYgQiIiLw/fffo2nTpqhXrx6aNm2KyZMnIyIiAu+//35RxFmqZK3Xl8IA2CdDl+WhR1/W7GPjoSgkqcUPk73ariZcHLmEa34ZUlLw4JefEbtmVbZEX+roiApDh8H3jUFM9IlKrNL3rExQUJDoYdzz58+ZHsANDq5vaj937iwAoH79zGMnThxHw4bhUCqV0Ov10Ov1kEqlCA0Nw5Url3O83+XLl9C8eQtTMgkALVu2Ntu3Zs0gURnIkyQxxswnns86ceI4lEo3NGwYbopNr9ejUaNwXLt2DQaDAQaDAVevXkWrVm1E57Zp80Ku135Wu3btsXjxCixevAI//zwbrVu3w+effyqq2T9x4jhatmwFmUxmisPV1RU1agTiypVLuV6/YsVK8PUtjzNnTgEAzp49jbCwhggLa5ClrUG+7vf33yf+e63tROMTHt4Y8fFxePz4kel6UqlUlFBXrlwFdnZ2iI0VP4QcFtbAlOgDmX9Xer0eiYkJprgCAmqgcuUqWe4ZjsuXM+OqVMkPzs4u+OGHydiz589sZeXPO27L8j2zr1AosGjRIhw+fBgnTpwwrbPfpEkTNGvWrChiLHWyP5ybgHh78fsqB5kDlArX4gyrxLl5Pxn7T98XtdWrXg4RdXytFFHplXbtKh4tnA+9mR9eDtX9UX7ou1B4880lUUklkUjQe2BYnst4BEHAn5sv49+b8RCE7MclEqBaTU907Fk3T9craBmPXG6HOnXq4fz5s9Bo0nH9+jWMHj0WABASEoKEhHjcu3cX58+fg5+fHzw9M8tkkpKScPHiBTRv3jjbNf38/HK8X3x8HNzdxSWeSqUScjPLBbu6ildye7IPUEZG7qsVJSUlQaVKNhvbkxhkMhkMBj08PMTlRuXKeeZ67Wd5eHigdu2nzyc0bhyJ69evYvbsmVi8eIUpljVrVmHNmlXZzrfPw8RNaGgYzp49jbS0NFy7dg3jx38Fo9GInTu3Q6/X4eLFixg9+kVT/7zcLykpCYIgoGPHtmbv+fjxY1SoUNF0Ttb9l+RyOTIyMkRtrq7ifCjr31VSUhKuX79q9u9EJssskVYqlZg5cw4WLJiHiRO/gMFgQP36YRg9+hPUqFHzucdtWYEX027RogVatGhhyVhsRmy2h3PjEWsnrtf3dfYu0A9WW6E3GLF051U8+ztKIZdiQMegMj0u+SUYjYjf+j8kbNsCc7/xPTp2hlev3lw3n6gUkEgksFPkfVGCtl1rYfmcE9BmZC/ZU9jL0bZLrXxdr6BCQupj9eoVOHcuc7WdJ4t4eHl5o0KFijh//hzOnz+LBg0amc5RKt0QGVkZ77wzPNv1ctuc09PTC0lJ4kkNlUpltma/oJRKJTw8PDBt2iyzxz08ykEqlUImk5tmnp9ISIgv8H0lEgmqVq2GI0cOiWJp1qw5evd+JVt/Jyen514zLKwBpk//CadP/wMXFxf4+wfAaDTi55+n4dSpf5CRoUFo6NOZ/bzcT6l0g0Qiwfz5v5n9u6pSpWqeXm9+KJVK1KhRE+PHf5Vrv7p162HGjF+g0Whw+vQ/mDlzOsaOHY0NG7bk6bitYgZQBLLO7JeTxeFilpV4yvqymztP3MH92FRRW88W/vB2d7RSRKWPLiEBjxbOR/r17A/oyVxdUX7wUDjXy/sSd0RUujg5K9DmxUDs2pS97KXNi0FwyuPDuYUVEhKKJUsWYd261ahTpw7k8qcJYHBwfezduxuPHj00rcsPAOHhjbFr13ZUq1bdtDpPXtSpUxdHjhzGyJGjTKU8hw7tL1DcT2ePxbPM4eERWLFiKeRyOWrWDMzx/KCgWjh4cL9oBZr9+/cUKBYg89Oaf/+NFj24Gh4egVu3ohAYGGSawTYnc7Y8+ycWoaENkJGhwcqVyxEamvlMRo0aNeHs7IQlS36Dp6cXqlSpkq/7hYdnzq4nJyehRYtWBXy1+RMeHoG//joKLy9veHs/f3ETBwcHNG3aHPfu3cP06VNNDynn9bityVOy361b3pckkkgk2LLFtt8h5UaTroMqSSNq85THIybbSjxlN9l/nJCGLUf/FbVV8XFB+/CcP7olMfXZM3i0eCGMqanZjjnVroPyg4dC7u5e/IERUbGqWccHNy7HIPp6HAQhs3zHP8irWJbdfCIkJARSqRTHjh3FgAFvZjv2008//Pf/TzfTeu21/ti1aweGDXsbffu+Cl/fCkhKSsSlSxfg5eUtSqCf9cYbg/DWWwPw2Wcfo0ePl/Dw4QOsXr0cdnZ2ojr+vPD09ISrqyt2796FihUrQaFQoEaNmoiIiETz5i3x0Ufvo3//gahRoybS09MRHX0Ld+/exfjxXwIA3nxzMD755CN8881XptV4du3amef7JyQk4OLF8wAAlSoFf/65A1FRN0XLdw4Z8g7eemsAPvjgPfTs+RLKlfNEfHwczpw5jdDQMHTokLn6TrVq1XH48AGEhobB0dERVapUhbOzM6pVqw4Pj3I4c+YUPvggc3MyiUSCkJBQHDlyCO3atRfFlJf7ValSFb17v4KJE7/A66+/gbp1g6HX63H37m2cOvUPfvhhWr7+HvLixRe7YvPmDRg+fAhef30AKleuCrU6BdevX4VOp8fw4SNw9OhhbNmyGa1bt4GvbwXEx8fh99/XICSkPuzt7Z973JblKdl3z0PSkJaWhkuXLpX5EozYRynw8nFBj3718b8155AYmwJ3WSJi7cR1fL7OZXPZTUEQsHTnVegNT+tSJRJgYOdakOXzB3VZZNTpELdhHZL2mNm8TiqFV8+X4NHpRUg4lkRlgkQiQZsXg3Dv3yRoM/RQ2MvRurP5vXCKiouLK6pX90dU1E0EB4eIjgUH14cgCHBzc0e1atVN7W5u7li0aCnmzZuD2bNnIjk5GR4e5VCvXjBatTJfCw5kzqZPmjQFc+f+gk8/HQ1//wB8/vlEvPfeULi45G+3dalUivHjv8K8ebMxYsS70Gq1pnX2J0+eimXLFmPDht/x6NFDUwlM167dTee3bNkKY8eOw5Ilv2HPnj9Rp049fPPNdxgyJG+rEu7btwf7/tvV3MnJGX5+lTF+/Jfo2rWHqU/lylWwaNFyzJ8/G1OnTkF6eho8Pb0QFtZAVGc+ZsynmD59Kj76aAQyMjSYPftX03KiYWENsG/fHtGDuGFhDXHkyCFRW37uN3r0J6hatSo2b96I335bYHqDkfXNg6UoFArMnj0fCxbMx5IlixAXFwd3d3cEBtZC7959AGRu8iaVSjFv3hwkJMTD3d0djRtHYvjwEXk6bsskgmDu0Z680+v1WLt2LebMmYOEhAR07doVU6dOtVR8xWrIkCEwGIz4/vsZz+0rl0vh4eGMxMRU6PVPE9czx++gbkhFQCKBIAjY+tsetHBYi6/9xcn9lxFjbHZTrZzGBgCOnH+I37ZfEbV1CK+Mfu1s++GYZ+U2PrnRPn6Eh/PnIuPO7ezXLOeJCkPfhaMNPGRU0PEpKzg+ubPU+Iwd+yFkMikWLFhgwegyaTQaREXdgpdXeSgUlplRvHE5Bod23UDLjjWLdVa/JDh58gRGjhyGOXMWoEGDhtYOh6hYaLUZiIt7hIAAfzg4OOTat1A1+zt27MCMGTNw584dNG3aFGPGjEHt2rXzfZ3o6GhMmjQJp06dgqOjI7p06YIxY8Y8N/hn7d69G++//z5q1qyJbdu25TsGS/H0doEAYMkvR/Hme03RpEUVxJ4Tl/BIJVJ4Oeb9iX1boUrVYu2+G6I2T6U9eraonsMZ9ITqr2N4vGIZhAxNtmMuDRrCd+BbkDk7WyEyIioJatbxKTNJ/g8/TEajRo3h5uaG6Ogo/PbbQgQG1kJoaJi1QyMqkQqU7J84cQI//vgjLly4gDp16uC3334zu6NuXqhUKgwcOBAVK1bEzJkzkZCQgMmTJyMpKQk//vhjnq6h0WgwefJk08531iKTSVG3fkUsmnkERoOALWvOYfDIJtj7sAqApyv0eDt6QSYt+hUSSpo1+24gVSNeMWFAxyA4KPiceE6MGg1iVi6H6q+j2Y5J5HJ4930Nbq3blPnyOSIqO9TqFEyb9j2SkpLg4uKCyMimGDHio3zX7BOVFfnKsq5du4Yff/wRR44cgZ+fH3766Sd06dLl+SfmYs2aNVCpVNi8+en22DKZDGPGjMGwYcMQEBDw3GvMnz8fFStWhJ+fHy5evFioeArDXiHH4T03EB+T+dBkXIwah/dGIeyF97D08A94UjFVFnfOvXgrHscviTcyaVzbByEB1n2DVpJp7tzGw/lzoXtmg5InFBUqosLQYbCvXNkKkRERWc/XX39n7RCISpU8vQ1++PAhxo4di5deegmXLl3CuHHjsH379kIn+gBw6NAhNGnSxJToA0DHjh2hUChw8ODB556fuVXyYnz++eeFjqUwHBzkUCVpcPzgLVH7XwduwaBzRrfApw+t+DqVrYdzM7QGLNslXh7SyV6OV8tQnX5+CIKAxL27cfe7b8wm+srmLVHl86+Y6BMREdFz5Wlmv2PHjtDpdGjRogXefvttODs74/r16zn2r1s3bzv2AUBUVBR69+4talMoFKhSpQqioqKee/63336LHj16oFatWnm6X7t27XI85ujoCF9fX8jlz38PJJNJRf+1t7fDtp0Xsu1rJAjA4T+j0e219thy7U8AQEXXvN2jtMo6NusPRiEuWVxr3u+FmvAso2vqZx2fZ+nVKXi4aCHUZ85kOyZ1cECFN9+CW2RkkcdoTbmND3F8nsdS48PSOCKyFXlK9rXazI0aDh06hMOHD+fYTxAESCQSXLlyJcc+WalUKiiVymztSqUSycnJuZ67b98+nDlzBjt35n1d2+eRSjNXcsgrpTIzYTUajWj7Yi3cvBojSvglUgmad/TH1utPl0oMLF81X/corZRKR0TdS8LOE3dE7XX9PdGjdU1IpWX7l+mT750nki9dwr8//QxtfPYdGF1q1kDg6I/gWKF8cYVndVnHh8Q4Prkr7PgUz8+nQi2GR0RlWt5/fuQp2Z88eXKBQymoJ28ccpKRkYHvvvsOI0aMEJUAPc/evXtzPDZkyBAYjUYkJmbfqCgrmUwKpdIRKlU6DP+tGa/0cECT1gE4tv/pJxJNWlVDhn2qKNl3Mrrm6R6l1ZOxSUpKw4w1p2E0Pv2GlMskGNAhEMnJaVaM0Lqyfu8IRiPitm5B7OZNyPbREADPTp3h83IfaORyaGz4++YJc/+26CmOT+4sNT5Go1BkCb+dnR0kkszfYwpF3ledIyJ6IiMjAxLJ052gc5OnZL9Xr16FDionSqUSKpUqW3tKSkquD+cuXboUUqkUXbp0MZ2v0+lgNBqhUqng4OAAhSL/W4ULAvK1NrPBYDT1T0/XoVWHQFy/9BhxMWp4+bigxQsB+HTf96aHc90USthBUSbWx95x/Db+fZgiauvapBp83B3LxOt/HoPBiPTYeDxaOB/p165mOy5zcUX5wUPgHBwCAwCUsTF79t8WZcfxyV1hxyfzZ3bRJPsymQzu7u5ITEwCgP927yzbn3QSUV4JyMjIQEpKEjw83CGTPX91R6uveRgQEJCtNl+r1eLOnTvZavmfdevWLdy+fdvskp/h4eGYMGECXn31VYvHmxuDwQhNhhYvDQjDohlH8dJrITh7ejPupzx9yLIsrMQjkQDxyenY/fddUXsFTyd0jqxqpahKDolEAkOGFmlXLuPO7F9gVKuz9XGsVRsV3h4KubuHFSIkoqJWoUIFAEBSUhJSUp7TmYjoGRIJ4OHhbvo58jxWT/ZbtmyJuXPnIjExER4emYnN7t27odVq0apVqxzPGzJkSLZPHH799VdER0dj8uTJqFatWlGGnSONRg83d0cMGtEUropU7LvyJ+DydIdEXyfbTfZlMinsFHI4OMiRlJKBOZ+0xdkbsVj6x2Xci1FjYKdasLPhB5PzSiEVIBgMkCbFZU/0pVJ4du+Jci92hYRrRhPZLIlEgooVK8LX1xc6nc7a4RBRKWJnZ5enGf0nrJ7s9+vXDytWrMDw4cMxfPhwxMfHY8qUKejWrZuojGfcuHHYvHkzLl++DCDzE4GsZT6bNm3C48ePERERUayvIat0jQ4eXk5I2PwLYrIkt77OtrnspkwmhbOLPdbvu4mtR24hNV0HZ0c7dG1WHVPea46Ne68jsLK7tcO0Kn1SEtKvXIRH+9a4POEb1Pnqc9zbsAnauMwHcuXlyqHCkGFwrMklSYnKCplMlq9f2kRE+WX1ZF+pVGLp0qWYNGkSRowYAQcHB3Tt2hVjxowR9TMajTAYDFaKMn8MBiPU6gyk37uKGD8X0bHyNjqzb6eQY/2+m1iz++l6+qnpOqzdk7lEa682NaDL0Od0us3Sq1RQn/oHKX+fQPqN6/AfOhix+w8g5eo1xB44BL/evXBr/kK4hDWE78BBkLm4PP+iRERERHlk9WQfAKpXr45Fixbl2mfKlCmYMmXKc/uUFIJOA5UxAzqpq6jdFmv2JRIJHBzk2Hrkltnj245Go2/7QCRrDaYHlW2ZISUFKWdOQf33SaRdvWJaYUfh5Qnv1q1wZsSHAIB7GzYibNYMaAxSOEc04breREREZHElItm3RUJqImLsxMNrL1PATZF9T4HSTiqVQJ2uQ2q6+brT1HQdUtP1kEolMBhsM9k3pKZCfeY0Uv4+gbQrlwFj9lVA/Hr3QuyBg6ayHW1cPOIOH4VP6+ZI03BVFSIiIrI8JvtFxJiaiFiFuA7T18nHJmdvjUYBbo52cHa0M5vwOzvawdlRjuQM23oIzZCejtSzp5Hy90mkXroI5FJmlnVW/4m7635HgzatoNFqRfsREBEREVkCk/0iIphJ9m2xhAfIXI/6fowaXZtVN9XoP6t7C3+ka/Q2UcJj1GigPnc2cwb/4gUI+uc/hyCxt0f1d99B3NFj0CUmQfLMw3i6xCTEHT4Cl8YRSNOU/vEhIiKikoXJfhExpmUv47HVZTeT1BmYs/kiJgzJ3PNg29Fo02o83Vv4o3ebGkhVZ1g5yoIzZmQg9cK5zBn88+cg5GGZPIlCAefgELiGN4ZzcH24ejjB3tkJ5du/YLZ/hrrs7ihMRERERYfJfhER1GZm9p1sc9nNtftu4ua9ZHw6+wgGdqmDJV90QLpWDxdHO6Rr9EhVZxRq23prMOq0SL1wAep/TkJ97iyEjOe/WZHI5XCqFwzX8Ai41A+F1MHBdEyVZgDSMnfOkcul8PBwRmJiKndAJSIioiLFZL+IpKXFI0Vu+2U8l/9NwInLjwEA92LU+HbxSbQPr4yR/RogKSkVOl3pSWaNOh3SLl1Eyj8nkXr2DIwazfNPksngXLde5gx+/TDInJyKPlAiIiKiPGKyX0QeaRKAZ5ZMl0ICL0dP6wVUBHR6I5b/Ka7Rd3aQo0fz6gBMK06WaIJej7Qrl5Hy90moz5yCMT39+SdJpXCqXSdzBj+sAWTOzkUfKBEREVEBMNkvIjE6NZ4dXi87F8iltjXcO0/eweMEca1571YBUDorrBSReVKpBC4OUqg1RhiNAgSDAWlXryDln5NQnz4FY2rq8y8ikcCpVm24hDeGa1hDyFxdn38OERERkZXZVvZZQghGA2KgxbPD6+voZb2AikBsUjq2HftX1Fa9ghIt61e0TkC5cFBIIJdKYJemwp3fN0J9+h8YUlKef6JEAseagZkz+A0bQa60vT0SiIiIyLYx2S8CQloyYu2yrLHvUsFK0VieIAhYufs6dM88XCqRAG90DIJUWrL2ERAy0uHgqsSlr75Gna8+R/ql889N9B1q1IRreGO4NmwEubtHMUVKREREZHlM9ouAkJaImKwr8SgrWSkayztzIw7no+JFbW0b+KFq+ZJT2iIYjVAdOwIXF3vE6HRIuXoNsQcOwa93L9yavzBbfwd/f7g2ioBLo0awK2dbz1YQERFR2cVkvwhoU+KQYJd1JR5fK0VjWRqtHquybJzl5qxArxb+VoooO030LcSsWgFjSjKqzZph2rX23oaNCJs1A/c2bII2Lh72VavBtVFjuIaHw87LNpdFJSIiorKNyX4RiEt5AKNEXM7iayNr7G89+i8SVOI15/u2qwEnB+t/K+lTVIjbuB6qI4cBQYD/O28j9sBBaOMyP4XQxsUj9uAhBIz6COmCHRS+tvEGjIiIiCgnUmsHYIsepcaIvnYVZHCyc7RSNJZzP1aNP/++K2qrXdUDEbWtmzQLBgOS9u3Bv+M/herwIUAQoPDyhHfrVri3YZOo7731G+FWMwAOFcpbKVoiIiKi4mP96Vgb9DgjQfS1r6z0J/qCIGD5n9dhMD5dPF8mlaB/h0BIJNZ7KDft+jXErFoB7T3xmxC/3r0Qd+gIdIlJkMiellTpEpMQd/gIXBpHIE1TCjYCICIiIioEJvtF4LEuFbB7+rWvws16wVjIsYuPcP1ukqitc2QVVPC0zoZS+qRExP6+Dikn/jJ73KVmTbjWrIHynTqYPZ6hTjPbTkRERGRLmOwXgcw19p/yKeVr7KvTdVi3/6aozcvNAV2aVCv2WAS9Hol7/kT81i0QMjRm+7g2jkSKoIAmNg9r6RMRERHZMCb7FmY0GhEjEwA8LW2p4FryNprKj42HbiElTSdqe619IOyzrDhU1FIvXUTM6hXQPXpk9riikh98XusPp6BaxRoXERERUUnFZN/CklMeQZtlY6ny7lWtFE3h3XqgwsEz90VtYTW9EFqj+D6t0MXFInbtGqjPnDJ7XOroCM+eL8G9dVtRfT4RERFRWcdk38IeJkWLvlYYjXB397NSNIVjNApYvusann2MVWEnxWsvBBbP/bVaJO7agYTt2yDodGb7KJu3hNdLL0OuVBZLTERERESlCZN9C3ukeiD62lsPyOQKK0VTOPvP3Mftx+K69x7NqsPTzaFI7ysIAlLPnkHM2lXQx8WZ7WNfrTp8XhsAR/+Ss5kXERERUUnDZN/CHmdZY9/n2WV5SpEkdQY2HooStVX0ckb78MpFel/to0eIWbMSaRcvmD0uc3GFV++XoWzWAhIpt4kgIiIiyg2TfQt7nJEk+tpH6mSdQApp3b6bSM8wiNoGdAiEXFY0CbZRo0H8ti1I3L0LMBiyd5BI4N6mLTx7vASZs3WW+yQiIiIqbZjsW5CdnQwjOn6EhafW4vzjKwjxrY2XG74GwSCDTmcmgS2hrvybgOOXH4vamtYrj6AqHha/lyAISPn7BOJ+Xwt9YqLZPo41A+HzWn/YV65i8fsTERER2TIm+xZiZyeDo4scu66cwIdN38Yf1/agS9AL+OPaHvSs3QlQo1Qk/Dq9Ecv/vC5qc7KX45U2NSx+r4x7dxGzagXSr18ze1zm7g7vPn3h2jjSqrv0EhEREZVWTPYtxN5Jis1XdmLD5R24Ef8v3mrYFzOOLcT5x1cAAN2DOkCXXPKT/V0n7+BRgnh32d6tA6B0ttxDxoa0VMT/bzOS9u8FjMbsHWQyeLTvCM+u3SB1cLTYfYmIiIjKGib7FpKRZkSPWh1xI/5fnH98BR9unwAACPGtjZ61OyFdrbdugHkQm5SOrcf+FbVVr+CKVvUtsymYYDRCdewo4jasgyHF/O62TnXrwaffa1BUKN0bkRERERGVBEz2LUSnM8CYqsXgBn3xwY4JpvZ3G70OfYZQ4kt4BEHAqt3XodM/nWmXSIABHYMglRa+hEbzbzRiVi2H5tYts8flnp7w6fcanEMbsGSHiIiIyEKY7FuInZ0Mjs4KzDm6TNQ+75+V+Lj5u7DTleyHdM/eiMO5qHhRW9swP1QrX7jNqgwpKYjbtB7Jhw8BgpDtuMTODh6dXkS5zl0gVZTO/QiIiIiISiom+xZi7yTF5qu7TKvwvBv+Oub9vRLnH1/B5is7S3TNfobWgFV7xA/lKp0V6NWyeoGuJ5FIYMjIQPLRI3i4ciWMaalm+zmHNYDPK6/Cztu7QPchIiIiotwx2bcQBzt79KrTCQDQq3YnpJ3ahU+av4tNV3aiV51OsJPaQQ2dlaM0b8uxaMSrMkRt/drWgJNDwTYEk6UmQ1C4wV5qNJvo2/mWh8+rr8O5XnCBrk9EREREecMtSC0kISEVRo0OPWt3RPz6qUjYswTx66eiZ+2OELRGJCSYn922tvtxqfjz5F1RW60q7oio45vva+mTEhG3ZhUcPdxweeIkeLduBYWXp+m4xN4eXr1fQbWJk5joExERERUDJvsWYjQKSEkzwl5uj/TocwCA9OhzsJfbQ6XWwWjMXq9ubYIgYMWuazA8E5tMKsGAjkH5ekhW0OuRsGsHosd/BveAKog9cBApV68h9sAh+PXuBQBwbRyJapOmoFznFyGR8wMlIiIiouLArKsIeL34LlxqN4X6yjFrh5Krvy49wrW7SaK2ThFVUMHTOc/XSL10EbGrV0L76CEUXp7wbt0KZ0Z8CAC4t2Ejwn75GQavirCv7m/ByImIiIgoL5jsW5g2PQ3ygAgkpxpgHxABbXra80+yglSNDmv33RS1ebk5oGvTank6Xxcfh9i1q6E+fcrU5te7F2IPHIQ2LnNVH21cPOIOH4VHkyZI05jZPIuIiIiIihSTfQtLVj9dcUdfgvfR2njwFlLSxA8Mv9Y+EPZ2slzPM2q1SNy1Awnbt0HQPT0/66z+E3fXrkOD1i2h0WpLZCkTERERkS1jsl8GRT9U4cCZ+6K2sJpeCK3hleM5giAg9dxZxK5ZBV1cbLbjfr17Ie7wUegSkyCRPX3DoEtMQtzhI3BpHIE0DZN9IiIiouLEZL+MMRoFLNt1Dc+m3Qo7KV59oWaO52gfPULMmpVIu3jB7HGZiyvcGzWCo483yndsb7ZPhrpkljMRERER2TIm+2XM/jP3cftRiqite7Pq8HJzzNbXqNEg/o+tSPxzJ2AwsyGYRAL3Nm3h2eMlqCUOUMdmXlcul8LDwxmJianQ61mrT0RERGQtTPbLkGR1BjYeihK1VfRyRofwyqI2QRCQ8vcJxP2+FvrERLPXcqwZCJ/X+sO+cpUii5eIiIiICofJfhmydv9NpGeIZ+gHdAiEXPZ0u4WMe3cRs2oF0q9fM3sNmZs7vF/pC9fGkflai5+IiIiIih+T/TLiyu1EHL/0WNTWpG55BFXxAAAY0lIR/7/NSNq/FzCaKb2RyeDxQgd4dusOqUP2kh8iIiIiKnmY7JcBeoMRK/4Uz9Q72cvxStsaEIxGqI4dRdyGdTCkpJg936lOXfi8+joUFSoWR7hEREREZCFM9suAXSfv4GG8eDWc3q38YR97H3dXLYfm1i2z58k9PeHd9zW4hDVgyQ4RERFRKcRk38bFJqVj69F/RW2BnnLUvrAbd44cAoTsa99L5HJ4dO6Ccp1ehNTevpgiJSIiIiJLY7Jv41bvuQHtf8tfSgQjwpKvo8P9i1Clm1/33jk0DN59X4XC26c4wyQiIiKiIsBk34aduRGLszfjAAB+6Y/RPvYkfLXml9K08/WFz6uvw7leSHGGSERERERFiMm+jcrQGrBq93W46NPQOu4U6qmjzfaT2NvDs2t3uL/QAVI7u2KOkoiIiIiKEpN9G7XtcBQCbp9Gs4RzsBf0Zvu4No6EV5++sPPwKOboiIiIiKg4MNm3QXf++gcVNyxHsDbZ7HFFJT/4vNYfTkG1ijkyIiIiIipOTPZtgFQqgYuDFIkP4/Bo5QpoTp+Cp7l+jo7w7PkS3Fu3hUQmK/Y4iYiIiKh4Mdm3AQ4yATKJBMKNK0g9fcpsH2XzFvB6qQ/kSmUxR0dERERE1iK1dgBUOIbkJNgr5Lg88Rt4t2oBhZd4Tj/WyRvlPxmP8m8OZqJPREREVMYw2S/FDKmpkNy9hdgDB5By9RpiDxyCX+9eAIA0qT22ezeB8/sfQxlY08qREhEREZE1MNkvpYw6LWKXL4FnRDjubdgEALi3YSO8W7fCteqNMb9qT0gbNkFoIDfHIiIiIiqrmOyXQoLRiEeLFsCrYX3EHjgIbVw8AEAbF4/Yw0dRs38/CPaOeO0FzugTERERlWVM9kuh2HVroP33FrxbtzLN6j9xb93vaBpSEUO614WXu6OVIiQiIiKikoDJfimT+OdOJO35E369eyHu0BHoEpMgkclMf3SJSYg5dBitQytaO1QiIiIisjIuvVmKpJw8gdh1awAALjUC4BoYiPKdOpjtq0/XQCKRQBCE4gyRiIiIiEoQJvulRNq1q3j02wLT1+fHjodEIsFW32a44lI9W/8lX3aEVCqBwcBkn4iIiKisYhlPKZBx/z4ezJ4JQa9/2mg04oh3GC46VYPBKIj+ONjL4ewoh9HIRJ+IiIioLGOyX8LpEhNxf8ZPMKalidqVbdqhYo8eZs/p3sIf6Ro9S3iIiIiIyjgm+yWYIS0N92f8BH1igqjdObQBNjqFoFvLAPR9IRDOjnaZ7Y52eLVDEHq3qQG9Vm/ukkRERERUhrBmv4QS9Ho8mDML2vv3RO0OATUQ1aQH/tkdhU9nH8HALnWw5IsOSNXooHRWIF2jR6o6AwaD0UqRExEREVFJUSJm9qOjozF48GCEhoaiSZMmmDRpEjQaTa7nqNVqzJo1C3369EGjRo0QGRmJwYMH49KlS8UUddERjEY8WrwI6VeviNrtfMvD8533semvuwCAezFqfLv4JL6YdwzQG5CclI6MdC0TfSIiIiICUAKSfZVKhYEDByI1NRUzZ87E2LFjsXXrVnz++ee5nvfgwQOsXbsWTZs2xfTp0zF58mQYjUb069ev1Cf8cRvXI+XEX6I2masSfh+Oxp7LiUhWa0XHujSpCqNRYI0+EREREYlYvYxnzZo1UKlU2Lx5M8qVKwcAkMlkGDNmDIYNG4aAgACz5/n5+WH37t1wdHy6S2zTpk3Rrl07rFixApMnTy6W+C0tad8eJO7cLmqT2Nuj0gejoHZQYscJ8RuZev7lULd6ueIMkYiIiIhKCavP7B86dAhNmjQxJfoA0LFjRygUChw8eDDH85ycnESJPgDY29sjICAAMTExRRZvUUo5fQoxq1eKG6VSVHz3PThUq4bNh29Bq3taoiORAK+0qVHMURIRERFRaWH1mf2oqCj07t1b1KZQKFClShVERUXl61ppaWm4cuUKeuSwJCUAtGvXLsdjjo6O8PX1hVz+/PdAMplU9N/CSrtxA48WzAOylOJUHPQW3MJCcedxCo6cfyg61iq0EqpVUFrk/pZk6bGxNRyf3HF8csfxyZ2lxkcikVgiHCIiq7N6sq9SqaBUZk9YlUolkpOT83WtGTNmID09Hf379y9wPFKpFB4eznnur1Q6Pr/Tc6Tdu4/rM6dD0OlE7ZVf7Ysq3TsDAGb8fh7Pvg1wUMgwqHs9eCgdCn3/omKJsbFlHJ/ccXxyx/HJXWHHRyplsk9EtsHqyX5OBEHI18zK1q1bsXTpUnz55ZeoWrVqjv327t2b47EhQ4bAaDQiMTH1ufeTyaRQKh2hUqUXavUbfVISoid9DX2KWtTu3rIVXDq8iMTEVJyPisfpa+LSpBcjq0JiMOQp1uJmqbGxVRyf3HF8csfxyZ2lxsdoFJjwE5FNsHqyr1QqoVKpsrWnpKTk+HBuVkePHsVnn32GwYMH4/XXXy9UPIIA6PV5/wVhMBjz1f9ZRk067k77Cbq4OFG7c3AIvF9/AwaDAKPRiNV7rouOu7so0L5R5QLft7gUZmzKAo5P7jg+ueP45K6w45O5uhmTfSIq/axe9BkQEJCtNl+r1eLOnTt5SvbPnz+P999/H506dcLHH39cVGFanKDX48Hc2ci4c1vUbl+tOiq8MxwSmQwAcOTCQ9yPFc/e92rpD3uFrNhiJSIiIqLSyerJfsuWLXH8+HEkJiaa2nbv3g2tVotWrVrlem5UVBSGDBmCBg0aYPLkyaXmgSpBEPB4+VKkXbooarfz9kalER9C6pBZh6/R6rHp0C1RHz9vFzSrV6HYYiUiIiKi0svqyX6/fv3g6uqK4cOH4/Dhw9i8eTO++eYbdOvWTTSzP27cONSpU8f0dXx8PAYPHgw7Ozu8/fbbuHTpEs6ePYuzZ8/i8uXL1ngpeRa/ZTNURw+L2qQuLqj0wWjI3dxMbTtP3EFyqngDrb5ta7COlIiIiIjypETU7C9duhSTJk3CiBEj4ODggK5du2LMmDGifkajEQaDwfT1zZs38fBh5lKUb775pqhvpUqVsG/fviKPvSCSDh1Awtb/idokCgUqjfgQivLlTW2JKRnYefKOqF+wvyc30CIiIiKiPLN6sg8A1atXx6JFi3LtM2XKFEyZMsX0dUREBK5du1bUoVmU+vxZxKxYJm6USFBh6DA4Bog3xzK3gVafNnl7YJmIiIiICCgBZTxlhSb6Fh7OmwMYxatD+Lw+AC6hYaK2uzHqbBtotQipCD9vlyKPk4iIiIhsB5P9YqCNicH9mdMhaMX19+Ve7Ar31m2z9V+3/6ZoAy17Oxl6tahexFESERERka1hsl/E9Ckq3J/xEwwpKaJ21yZN4dmrd7b+F2/F41J0gqitc2QVuLnYF2mcRERERGR7mOwXIWNGBh7MmgFdzGNRu1Ptuig/8K1sS4UajQLW7r8panN3UaBjeJUij5WIiIiIbA+T/SIiGAx4+OtcaG6J18m3r1wFFYa/D4k8+7PR3ECLiIiIiCypRKzGY2skEsAhPQm6+3dF7fJynqj0wUeQOTpmO8fcBlqVfbiBFhEREREVHGf2i4D08T04+vrAr3evp21OTqj04SjI3T3MnmNuA61XuIEWERERERUCk30LSz19CsrqVXF54iR4t24FhZcnJHI5Kr7/AewrVjJ7To4baFXjBlpEREREVHAs47Egg1oNeyEDsQcOIuXqNcQeOAS/3r2QLrGHU2BQjudtMrOB1ivcQIuIiIiICokz+xakj3kE75YtcG/DJgDAvQ0b4dO2DdwaN87xnLsxahzNsoFWy/oVUYkbaBERERFRITHZtyD3wADEHjgEbVw8AEAbF4/YQ0fgoDBfdy8IAtbtu5FtA62ezbmBFhEREREVHpN9C5FKJXB0dsC9DRtF7XfXroODvZ3ZB20vRifg0r+JojZuoEVERERElsJk30IcFBLEHToCXWISJDKZ6Y8uMQlxh7PP7huMRqzbZ2YDrcbcQIuIiIiILIMP6FqIXCqB7wtt4ftCW7PHM9Rpoq+PXniE+3HiDbReahkAeztuoEVERERElsFk30JUaQYgLSVPfXPaQKtpvfJFERoRERERlVEs47ECcxto9eUGWkRERERkYUz2i1liSgZ2nhBvoBUS4Ik63ECLiIiIiCyMyX4x23ToFrR68QZafVpzAy0iIiIisjwm+8XozuMUHL3ADbSIiIiIqHgw2S8mgiBg3f6b4g20FNxAi4iIiIiKDpP9YnIxOgGXs2yg9WIEN9AiIiIioqLDZL8YmNtAy8PVHh24gRYRERERFSEm+8XgyPmHZjbQ8ucGWkRERERUpJjsFzGNVo9Nh6NFbVV8XNCkLjfQIiIiIqKixWS/iO08cQeqLBtovcINtIiIiIioGDDZL0LcQIuIiIiIrInJfhEyu4FWmxpWjIiIiIiIyhIm+0XE3AZarepXRCUvZytFRERERERlDZP9IpDTBlo9WvhbLSYiIiIiKnuY7BeBq3eSkKrRQ+msMLW9GFkVbs98TURERERU1OTWDsCWyGRSyO1kaBxSEUHVPeHmYo+zN2Kx+cBNdAivbO3wiIiIiKiMYbJvITKZFM4u9li/7wa2HolGaroOzo526NqsOr58OxKaNC0MBuPzL0REREREZCFM9i3ETiHH+n03sGb3dVNbaroOa/dch1QqQddm1WFI1+ZyBSIiIiIiy2LNvgVIJBI4OMix9Ui02eNbDt+Co4McEgk30iIiIiKi4sNk3wKkUgnU6TqkpuvMHk9N1yE1Xc9dc4mIiIioWDHZtwCjUYCLox2cHe3MHnd2tIOzoxxGo2D2OBERERFRUWCybwGCIECj0aN7Duvod2/hj3SNHoLAZJ+IiIiIig8f0LUQnVaP3m1qAMis0X+yGk/3Fv7o3aYGUtUZVo6QiIiIiMoaJvsWYjAYkarOQNdm1dGnXU2kpuvh7ChHukaPVHUGl90kIiIiomLHZN+CDAYjDOlaaDU6SKUSJGfoWLpDRERERFbDZL8ICIIAg4FJPhERERFZFx/QJSIiIiKyUUz2iYiIiIhsFJN9IiIiIiIbxWSfiIiIiMhGMdknIiIiIrJRTPaJiIiIiGwUk30iIiIiIhvFZJ+IiIiIyEYx2SciIiIislHcQfcZCQkJMBgMGDv2w+f2lUgkkEolMBoFCAJ3y30WxyZ3HJ/ccXxyx/HJnaXGJyEhHjKZzIKRERFZB5P9Z9jZ2QEAZLLnf+Dx8OFDAECFChUASIoyrFKHY5M7jk/uOD654/jkzlLjI5PJTL8TiIhKM4nAqaECadeuHQBg7969Vo6k5OHY5I7jkzuOT+44Prnj+BARibFmn4iIiIjIRjHZJyIiIiKyUUz2iYiIiIhsFJN9IiIiIiIbxWSfiIiIiMhGMdknIiIiIrJRXHqTiIiIiMhGcWafiIiIiMhGMdknIiIiIrJRTPaJiIiIiGwUk30iIiIiIhvFZJ+IiIiIyEYx2c8iOjoagwcPRmhoKJo0aYJJkyZBo9Hk6dxNmzahU6dOCA4ORteuXbFjx44ijrb4FXR8tm/fjhEjRqBFixYICgrCokWLiiHa4leQ8VGr1Zg1axb69OmDRo0aITIyEoMHD8alS5eKKeriU9Dvn6lTp6JLly4ICwtDgwYN0Lt3b/zxxx/FEHHxKszPnyd2796NoKAgdO3atYiitJ6Cjs+AAQMQFBSU7U9UVFQxRE1EZF1yawdQkqhUKgwcOBAVK1bEzJkzkZCQgMmTJyMpKQk//vhjrufu3LkTn376KYYOHYpmzZphz549+Oijj+Dq6ormzZsX0ysoWoUdn7t376JNmzZYu3ZtMUVcvAo6Pg8ePMDatWvRu3dvjBw5Enq9HsuWLUO/fv2wZs0a1K1btxhfRdEpzPdPeno6+vXrh+rVq0MQBOzatQujRo2C0WhEt27diukVFK3CjM8TGo0GkydPhpeXVxFHW/wKOz4NGjTA2LFjRW1+fn5FFS4RUckhkMn8+fOF+vXrC/Hx8aa2LVu2CIGBgcLNmzdzPbdTp07CyJEjRW1vvfWW0KdPnyKJ1RoKMz4Gg8H0/4GBgcLChQuLLE5rKej4pKamCmlpaaI2jUYjNGvWTPj000+LLN7iVpjvH3P69u0rDBo0yJIhWpUlxmfGjBnC66+/LowdO1bo0qVLUYVqFYUZn/79+wtDhw4t6hCJiEoklvE849ChQ2jSpAnKlStnauvYsSMUCgUOHjyY43l3797FrVu3sn1s3rVrV5w/fx4JCQlFFnNxKuj4AIBUavvfagUdHycnJzg6Oora7O3tERAQgJiYmCKLt7gV5vvHHHd3d+h0OkuGaFWFHZ87d+5g8eLF+Pzzz4syTKux9PcPEVFZYfsZWD5ERUUhICBA1KZQKFClSpVcaztv3boFAPD39xe1BwQEQBAE0/HSrqDjU1ZYcnzS0tJw5cqVbN9TpVlhx0cQBOj1eqhUKmzevBlHjx7F66+/XlThFrvCjs+3336LHj16oFatWkUVolUVdnxOnjyJ0NBQBAcHo3///vj777+LKlQiohKFNfvPUKlUUCqV2dqVSiWSk5NzPO/Jsaznurm5iY6XdgUdn7LCkuMzY8YMpKeno3///pYKz+oKOz5//fUXBg0aBACQy+X44osv0KlTJ4vHaS2FGZ99+/bhzJkz2LlzZ1GFZ3WFGZ/w8HD06NED1apVQ0xMDBYtWoRBgwZh+fLlCAsLK6qQiYhKBCb7eSAIAiQSyXP7Ze0jCILZdluT1/Epq/I7Plu3bsXSpUvx5ZdfomrVqkUYWcmQ1/EJCQnB+vXroVarcejQIXzzzTeQyWTo06dPMURpPc8bn4yMDHz33XcYMWKEqMSlrMjL98/IkSNFX7du3Rpdu3bFnDlzsGDBgqIMj4jI6ljG8wylUgmVSpWtPSUlxeyM0hM5zeA/uVZu55YmBR2fssIS43P06FF89tlnGDx4sE2VqACFHx8XFxcEBwejSZMmGDt2LPr164cpU6bAYDAURbjFrqDjs3TpUkilUnTp0gUqlQoqlQo6nQ5GoxEqlQparbYowy42lvz54+TkhFatWtnk8rZERFkx2X9GQEBAttpPrVaLO3fuZKsVfdaTuuqstflRUVGQSCQ2U3dd0PEpKwo7PufPn8f777+PTp064eOPPy6qMK3G0t8/devWhVqttpkH4As6Prdu3cLt27fRpEkThIeHIzw8HNu2bUNUVBTCw8OxYcOGog69WFj6++fJJ69ERLaOyf4zWrZsiePHjyMxMdHUtnv3bmi1WrRq1SrH8ypXrgx/f39s375d1L5t2zaEhITYzEfrBR2fsqIw4xMVFYUhQ4agQYMGmDx5sk2WRVn6++fUqVNwcXGBh4eHJcO0moKOz5AhQ7Bs2TLRn+bNm6NSpUpYtmwZ2rZtWxzhFzlLfv+kpaXh4MGDCA4OtnSYREQljkTg9IaJSqVC165dUalSJQwfPhzx8fGYMmUKmjdvLtq0Zdy4cdi8eTMuX75satuxYwc++ugjvPPOO2jatCn27t2LZcuWYeHChTa1qVZBx+fmzZu4efMmAOCDDz5Az5490aZNGzg6OtrMG4WCjk98fDx69+4NvV6PqVOnipbhVCgUqFOnTrG/lqJQ0PG5evUqfvzxR3Tq1AmVKlVCWloa9u/fj99//x2jR4/G0KFDrfWSLKow/76y+vTTT3Hx4kVs27atOEIvFgUdn3/++QeLFi1C+/btUbFiRcTExGDx4sW4ceMGVq1ahZCQEGu9JCKiYsEHdJ+hVCqxdOlSTJo0CSNGjICDgwO6du2KMWPGiPoZjcZsdcKdO3eGRqPBvHnzsGjRIlStWhXTp0+3mUQfKNz47NixA7/88ovp682bN2Pz5s2oVKkS9u3bVyzxF7WCjs/Nmzfx8OFDAMCbb74p6svxAby8vKBUKjFnzhzExsbC1dUV/v7+mD17Nl544YXifhlFpjD/vsqCgo6Pt7c3tFotpk2bhqSkJDg6OiIsLAwTJ05kok9EZQJn9omIiIiIbBRr9omIiIiIbBSTfSIiIiIiG8Vkn4iIiIjIRjHZJyIiIiKyUUz2iYiIiIhsFJN9IiIiIiIbxWSfiIiIiMhGMdknIiIiIrJRTPapzNq4cSOCgoLM/vn++++LNZZ58+Zhz5492dpPnDiBoKAgnDhxoljjya/ly5ejffv2qFevHoKCgqBSqcz2y23M8/o6g4KCMGvWLEu/BCIiIpskt3YARNY2efJk+Pv7i9p8fHyKNYb58+ejY8eOeOGFF0TtdevWxdq1a1GjRo1ijSc/rly5gkmTJqFPnz7o2bMn5HI5nJ2dcz3H3JgDKNGvk4iIqDRisk9lXs2aNREcHJynvjqdDhKJBHJ58fzTcXFxQWhoaLHcq6Bu3LgBAHjllVcQEhKSp3PyM+ZERERUcCzjIcrBkxKazZs3Y8qUKWjRogWCg4Nx+/ZtJCQkYMKECXjxxRcRFhaGJk2a4I033sA///yT7TparRa//PILOnfujODgYERERGDAgAE4ffo0gMyylLS0NGzatMlUzjJgwABRDFnLW/bu3Yu+ffuifv36CAsLw6BBg3DmzBlRn1mzZiEoKAg3btzAqFGj0LBhQzRt2hSfffYZUlJS8jQG69evR/fu3REcHIzGjRvjvffeQ1RUlOn4gAED8PHHHwMA+vTpg6CgIHz66ad5H+RcqNVqfP7554iIiEBYWBgGDx6M6Ohos3337NmDbt26oV69emjXrh2WLl1qev3PEgQBK1euRI8ePRASEoLw8HCMHDkSd+/eFfW7fPky3nnnHTRp0gT16tVD8+bNMXToUDx69Mgir42IiKi4cGafyjyj0Qi9Xi9qe3bmftq0aQgNDcXEiRMhlUrh6emJhIQEAMD7778PLy8vpKWlYffu3RgwYACWLFmCiIgIAIBer8fbb7+NU6dO4Y033kBkZCQMBgPOnTuHhw8fAgDWrl2LgQMHIiIiAsOHDweQOaOfk61bt2LMmDFo3rw5fvrpJ2i1WixcuNB070aNGon6jxgxAi+++CJefvllXL9+HT/99BOAzFKa3MyfPx/Tpk1D165dMXr0aCQmJuKXX35B3759sX79elSrVg1fffUVtm3bhrlz55pKc8qVK1egMZdIJJDJZAAyk/Lhw4fjzJkzeO+99xAcHIzTp09jyJAh2a516NAhjBgxAo0aNcKMGTOg1+vx22+/IS4uLlvfL7/8Eps2bcKAAQMwZswYJCcnY/bs2ejXrx/+97//mf4uBw0aBD8/P3z55Zfw8vJCbGwsTpw4gdTU1Oe+NiIiohJFICqjNmzYIAQGBpr9o9PphOPHjwuBgYHC66+//txr6fV6QafTCQMHDhTee+89U/umTZuEwMBAYd26dbmeHxoaKowdOzZb+5MYjh8/LgiCIBgMBqF58+ZC165dBYPBYOqnVquFJk2aCH379jW1zZw5UwgMDBQWLFgguuaECROE4OBgwWg05hhPcnKyEBISIgwZMkTU/uDBA6FevXrCqFGjTG1PxvH8+fO5vsZn+5r7U7t2bVO/gwcPCoGBgcLSpUtF58+dO1cIDAwUZs6caWrr3bu30KpVKyEjI0M0Ho0bNxYCAwNNbWfOnBECAwOF3377TXTNhw8fCiEhIcIPP/wgCIIgXLhwQQgMDBR279793NdDRERU0nFmn8q877//HgEBAaK2Z2f2O3ToYPa81atXY926dbh58ya0Wq2p/dkHTw8fPgx7e3v07t3bIrFGR0cjJiYGAwcOhFT6tArP2dkZHTp0wNq1a5Geng5HR0fTsbZt24quERQUhIyMDMTHx8PLy8vsfc6cOQONRoNevXqJ2itUqIDIyEgcP368UK/D3JhLJBLT/z8pW+rWrZuoT9euXTF9+nTT12lpabh48SL69+8PhUJhand2dkbbtm2xceNGU9v+/fshkUjQvXt30acKXl5eqFWrFk6ePAkAqFq1Ktzc3PDjjz8iNjYW4eHhfHCYiIhKLSb7VOYFBATk+rCot7d3trbFixdjypQp6NevHz744AN4eHhAKpXi559/xq1bt0z9EhIS4OPjI0rMCyMxMTHHmHx8fGA0GqFSqUTJvru7u6jfk6RYo9HkeJ+kpKRc73Ps2LH8hi7yvDFPSkqCXC6Hh4eHqD1rPCqVCoIgwNPTM9s1srbFx8dDEAQ0bdrU7D0rV64MAHB1dcXy5csxb948TJ8+HcnJyfD29sYrr7yCYcOGwc7OLk+vkYiIqCRgsk/0HM/OOD+xZcsWNG7cGBMnThS1Z63pLleuHE6dOgWj0WiRhP9J8hsbG5vtWExMDKRSKZRKZaHv8+QNQk73yZqEW5q7uzv0ej0SExNF98oaj1KphEQiQXx8fLZrZK3Z9/DwgEQiwcqVK0WfAjzxbFtQUBCmT58OQRBw7do1bNy4EbNnz4aDgwOGDh1a2JdHRERUbLgaD1EBSCSSbAnj1atXcfbsWVFbixYtkJGRISonMUehUOQ60/5E9erV4evri23btkEQBFN7Wloa/vzzT4SGhopm9QsqLCwMDg4O2LJli6j90aNHOH78OCIjIwt9j9w8ecB569atovZt27aJvnZyckK9evWwZ88eUSlVamoq9u/fL+rbunVrCIKAx48fIzg4ONufrCv3AJl/z7Vq1cK4ceOgVCpx6dIlS71EIiKiYsGZfaICaN26NebMmYOZM2ciPDwc0dHRmDNnDvz8/GAwGEz9unbtio0bN2LChAmIjo5GREQEBEHAuXPnEBAQgC5dugAAAgMDcfLkSezbtw/e3t5wdnY2u+mUVCrFxx9/jDFjxuCdd95B3759odVqsWjRIqhUKowePdoir0+pVGL48OGYNm0aPvnkE3Tp0gVJSUmYPXs27O3t8f777xfq+jdu3BCN0xNVqlRBuXLl0Lx5c4SHh2Pq1KlIT09HvXr1cPr0afzvf//Lds7IkSPxzjvvYPDgwRg4cCAMBgMWLVoEZ2dnJCcnm/o1bNgQffv2xbhx43Dx4kWEh4fD0dERsbGxOHXqFAIDA/Haa69h//79WLVqFV544QVUrlwZgiDgzz//hEqlQrNmzQr1uomIiIobk32iAnj33XeRnp6O9evXY+HChahRowYmTJiAPXv2mB70BDIf9F2wYAHmz5+PP/74A0uXLoWzszNq1aqFFi1amPqNHz8eEydOxKhRo5Ceno7GjRtj+fLlZu/drVs3ODo64tdff8VHH30EmUyG+vXrY9myZWjQoIHFXuM777yDcuXKYfny5di+fTscHBzQuHFjjBo1CtWqVSvUtT/77DOz7U924pVKpablPBcuXAidTocGDRrg119/RefOnUXntGzZErNmzcLPP/+MDz/8EN7e3nj11VcRExOT7ZOJr7/+GvXr18fatWuxevVqGI1G+Pj4oEGDBqYNwapWrQqlUomFCxciJiYGdnZ2qF69OqZMmZLtgWUiIqKSTiI8WwtARGQDdDodevbsCV9fX/z222/WDoeIiMhqOLNPRKXeuHHj0KxZM3h7eyMuLg6rV69GVFQUxo8fb+3QiIiIrIrJPhGVeqmpqfj++++RkJAAOzs71KlTB7/++muOy2wSERGVFSzjISIiIiKyUVx6k4iIiIjIRjHZJyIiIiKyUUz2iYiIiIhsFJN9IiIiIiIbxWSfiIiIiMhGMdknIiIiIrJRTPaJiIiIiGwUk30iIiIiIhv1f3woTHsX6N3GAAAAAElFTkSuQmCC"
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "from netbone.visualize import plot_progression\n",
+    "plot_progression(results, 'US Airports')"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:10:52.893306Z",
+     "start_time": "2023-07-02T17:10:52.506038300Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "# Experiment 3"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "In this experiment, we use *netbone*'s comparison framework to assess the global threshold and statistical methods to capture the weight and degree distributions. We start by initiating an instance of the Compare class from the compare module. Then we add the original network to *netbone*'s comparison framework using the *set_network()* function."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "outputs": [],
+   "source": [
+    "from netbone.compare import Compare\n",
+    "import pandas as pd\n",
+    "\n",
+    "framework = Compare()\n",
+    "\n",
+    "edge_list = pd.read_csv('./data/data.csv')\n",
+    "framework.set_network(edge_list)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:10:52.922741800Z",
+     "start_time": "2023-07-02T17:10:52.905313500Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "Then we add the backbone extraction methods to the comparison framework. Here, the order is important because we are going to use the order of the added backbones in the next step."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)\n"
+     ]
+    }
+   ],
+   "source": [
+    "import netbone as nb\n",
+    "gt = nb.global_threshold(edge_list)\n",
+    "df = nb.disparity(edge_list)\n",
+    "mlf = nb.marginal_likelihood(edge_list)\n",
+    "nc = nb.noise_corrected(edge_list)\n",
+    "ecm = nb.ecm(edge_list)\n",
+    "lans = nb.lans(edge_list)\n",
+    "\n",
+    "framework.add_backbone(gt)\n",
+    "framework.add_backbone(nc)\n",
+    "framework.add_backbone(df)\n",
+    "framework.add_backbone(ecm)\n",
+    "framework.add_backbone(lans)\n",
+    "framework.add_backbone(mlf)\n"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:16.755864500Z",
+     "start_time": "2023-07-02T17:10:52.931252900Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "The next step is to set up the filter in the comparison framework. In this experiment, we choose to use the *threshold_filter()* to evaluate the backbones. For the global threshold method, we set the threshold value to the average weight of 7000. For the statistical methods, we use a significance level of 0.05. Thus, we pass an array of these values while setting the filter taking into consideration the order when we added the backbones."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "outputs": [],
+   "source": [
+    "from netbone.filters import threshold_filter\n",
+    "\n",
+    "values = [7000] + [0.05]*5\n",
+    "framework.set_filter(threshold_filter, values)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:16.755864500Z",
+     "start_time": "2023-07-02T17:11:16.755864500Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "The last step is incorporating the property functions that will extract the values to assess the distribution of the properties in the backbones. In this case, we use two property functions, the *weights()* and *degrees()* from the *measures* module."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "outputs": [],
+   "source": [
+    "from netbone.measures import weights, degrees\n",
+    "\n",
+    "framework.add_property('Weight', weights)\n",
+    "framework.add_property('Degree', degrees)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:16.771491700Z",
+     "start_time": "2023-07-02T17:11:16.755864500Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "After configuring everything and adding it to the framework, the next step is to call the *distribution_ks_statistic()* function to compute the KS statistic between the original and backbone property distributions. The output of this function is a *DataFrame* and a *dictionary*. One can use the *DataFrame* to inspect the computed KS statistic for each property, and the *dictionary* is used later for visualization."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "outputs": [
+    {
+     "data": {
+      "text/plain": "                                                  Weight    Degree\nGlobal Threshold Filter                         0.805125  0.406337\nNoise Corrected Filter                          0.517305  0.542105\nDisparity Filter                                0.700747  0.494889\nEnhanced Configuration Model Filter             0.325893  0.555263\nLocally Adaptive Network Sparsification Filter  0.662704  0.665789\nMarginal Likelihood Filter                      0.553501  0.415789",
+      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>Weight</th>\n      <th>Degree</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>Global Threshold Filter</th>\n      <td>0.805125</td>\n      <td>0.406337</td>\n    </tr>\n    <tr>\n      <th>Noise Corrected Filter</th>\n      <td>0.517305</td>\n      <td>0.542105</td>\n    </tr>\n    <tr>\n      <th>Disparity Filter</th>\n      <td>0.700747</td>\n      <td>0.494889</td>\n    </tr>\n    <tr>\n      <th>Enhanced Configuration Model Filter</th>\n      <td>0.325893</td>\n      <td>0.555263</td>\n    </tr>\n    <tr>\n      <th>Locally Adaptive Network Sparsification Filter</th>\n      <td>0.662704</td>\n      <td>0.665789</td>\n    </tr>\n    <tr>\n      <th>Marginal Likelihood Filter</th>\n      <td>0.553501</td>\n      <td>0.415789</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
+     },
+     "execution_count": 23,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "results, dist = framework.distribution_ks_statistic()\n",
+    "results"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:18.518923200Z",
+     "start_time": "2023-07-02T17:11:16.772248900Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "To visualize the cumulative distribution of the properties, we use the *plot_distribution()* function from the visualize module. This function requires two arguments: the results dictionary and a *String* that represents the title of the figure and the name of the saved figure file."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "outputs": [
+    {
+     "data": {
+      "text/plain": "<Figure size 500x500 with 1 Axes>",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4cAAAH7CAYAAAB/kuoFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADxQUlEQVR4nOzdd3hT5dvA8W9G070Xs1DKBtkbZArIUBFRQBEVRQTFASqun+tFBRyooKCAA0EFEUURQQVFBAGZStl7lO49M855/wgNTZO0aSm0lPtzXblonnWek5Y2d56lUVVVRQghhBBCCCHENU1b2R0QQgghhBBCCFH5JDgUQgghhBBCCCHBoRBCCCGEEEIICQ6FEEIIIYQQQiDBoRBCCCGEEEIIJDgUQgghhBBCCIEEh0IIIYQQQgghkOBQCCGEEEIIIQQSHAohhBBCCCGEQIJDIUQRd999N02aNKnsbgghhBBCiEogwaEQFWjbtm00adKEu+++22WZs2fP0qRJE/r27euQl5CQwOuvv87gwYNp3bo1rVq1onfv3owZM4bZs2dz+vTpcvXrvvvuo0mTJvTq1QuLxVKuNqq6OXPm0KRJE7Zt21bZXRFCCCGEuCrpK7sDQgirQ4cOMXbsWNLT02ncuDHDhg3D39+f8+fPc/DgQebPn0+dOnWIiooqU7tnzpzh77//RqPREB8fz6ZNm+jdu7fTsjNnziQvL68C7kYIIYQQQlxtJDgUoop44403SE9PZ/LkyTzyyCMO+YcOHUKvL/t/2eXLl6OqKg899BDz589n2bJlLoPDWrVqlbl9IYQQQghRPUhwKEQVsWvXLgDGjh3rNL88awHNZjPfffcdgYGBPPzww/z5559s3LiRhIQEIiMjHcrffffdbN++nUOHDtnStm3bxtixY3nkkUe4/vrrmTt3Lnv37iUzM5P169dTp04d2xTZVatWMXv2bH799VfS09OpW7cuo0aN4u6770aj0Thcb82aNSxZsoRDhw5hMpmIiopi6NCh3HfffXh6etqVLXqN9957j/Xr15OYmMhDDz3Ed999x7lz55y+foX3kpSUxMKFC/njjz9ISEhAq9USGhpK27ZteeSRR8o8IiuEEEIIUd1IcChEFRESEsL58+c5efIkrVq1qpA2N2zYQFJSEqNHj8ZgMHDrrbfy2muv8e233zJp0qQytbV7924++ugj2rdvz4gRI0hJScHDw8OWbzQauffee8nKymLIkCGYTCbWrVvHa6+9xokTJ3jppZfs2nvzzTdZuHAhISEh3HTTTXh7e/Pnn38ye/ZsNm3axKefforBYLCrYzQaueeee8jIyKBHjx74+PhQu3Ztxo4dy/r169m+fTu33nortWvXtquXl5fHqFGjOHv2LN27d6dv376oqkpcXBy///47gwYNkuBQCCGEENc8CQ6FqCKGDBnCwoULeeihhxg9ejQdO3akRYsW+Pv7l7vNZcuWAXDrrbcCcNNNNzFr1ixWrFjBxIkTnY7mubJ582ZeeeUVRo0a5TQ/KSmJunXrsnr1altQN3nyZEaMGMGXX37J4MGD6dixIwA7d+5k4cKF1K5dm2+++YbQ0FAApk6dyqRJk9i4cSOLFi1i4sSJDtdo2LAhS5YswcfHxy4vKyvLFhx27tzZLm/Lli2cPXuWsWPH8vzzz9vlGY1GjEaj26+DEEIIIUR1JbuVClFFPPbYY4wcOZKMjAzmzp3LPffcQ8eOHRk0aBAzZsywTZt017lz59iyZQsxMTG0bt0agODgYPr06cO5c+fYvHlzmdpr2rSpy8Cw0NSpU+1G+4KCgmwjlCtXrrSlF349ceJEW2AIoNfreeaZZ9BqtaxYscLpNaZNm+YQGJamMAj29vZ2yDMYDPj5+ZWpPSGEEEKI6kiCQyGqCIPBwKuvvsrGjRuZMWMGo0ePplWrVpw6dYpPP/2UIUOGsHHjRrfb++abb1AUhWHDhtmlF44iLl++vEz9KwwwXdHr9bRt29YhvVOnTgDs37/flnbgwAEAhxE+gAYNGlCjRg3Onj1LZmamXZ7BYKBp06Zl6ndhHyIjI/n444954IEH+OKLL9i3b1+1PdZDCCGEEKI8JDgUogJptdb/UoqiuCyjqiqAyymdYWFh3Hrrrbz88sssX76cLVu2cPvtt5OXl8ezzz7r1hRIi8XCypUr0Wq13HLLLXZ5PXv2JCwsjA0bNpCSkuLurREWFlZifnBwMDqdziE9PDwcsE77LFT4tas2ndUpLF+WqbCF/Pz8WL58OcOHD2ffvn1Mnz6d2267jR49ejB37lzMZnOZ2xRCCCGEqG5kzaEQFahwfWB6errLMmlpaQAEBAS41WZQUBCvvvoqmzdvJi4ujiNHjtCiRYsS6/z+++8kJCQA1mDQlW+//ZYHH3zQrX6UFpSlpaVhsVgcAsSkpCQAu7WThV8nJyc73QjGWR13+lCSGjVq8Prrr6OqKkePHmXr1q0sXbqUOXPmoCgKjz76aLnbFkIIIYSoDiQ4FKICRUdHYzAYOHnyJGlpaQQHBzuU2b17N1C2oym0Wq1tvVzhyGNJvvnmGwD69Oljt6avkNls5vvvv2fFihWMHz/+koKuom3u3r2bDh062KVv374dgObNm9vSmjVrRmxsLNu2bXMIDk+dOkV8fDx16tRxO4AG90ZtwRpgNmrUiEaNGnHDDTfQu3dvfv31VwkOhRBCCHHNk+BQiArk6enJoEGDWLVqFbNmzeL111+3C7zi4+NZtGgRgMNawLlz5zJs2DDq1Knj0O7atWs5fvw4gYGBNG7cuMQ+xMfHs2nTJgIDA3nvvfcczgssdPLkSfbs2cPWrVvp2rVrGe/UubfffpvPP//ctilNeno68+bNA2D48OG2crfddhsrVqxg3rx59OvXj5CQEMA6HXbmzJkoisKIESPKdO2goCAAzp8/75B3+PBhfHx8HF7b5ORkAJevkRBCCCHEtUSCQyEq2DPPPMO///7LypUr2bNnD927d8fX15e4uDjWr19PTk4O48aNo0uXLnb1PvvsM+bMmUPz5s1p2bIlISEhZGVlsX//fnbv3o1er+fll192OPuvuG+++QaLxcLNN99cYtAzYsQI9uzZwzfffFMhwWF4eDgmk4mhQ4fSt29fzGYza9euJSkpiTvvvNN2jAVAu3bteOCBB1i4cCFDhw5l4MCBeHt7s2nTJg4fPkz79u25//77y3T9Ll26oNVqeeeddzh8+LBt1HHSpEls2bKFGTNm0LZtWxo0aEBoaCjx8fGsX78ejUZT5msJIYQQQlRHGtWdOWpCiDLJzs7miy++4Ndff+XkyZMUFBQQGBjIddddx8iRI+nbt69DnR07drBp0ya2b9/O+fPnSU5ORq/XExkZSceOHbn77rtLnYqqKAp9+/bl/PnzrFq1qsSdPXNzc+nRowcmk4mNGzcSEhLC3Xffzfbt2zl06JCt3LZt2xg7diyPPPIIkydPdtpW4f2sWrWKd955h99++420tDTq1q3L6NGjufvuu51OXf3pp59YsmQJBw8exGw2ExUVxdChQxk3bpxDYFt4jQ0bNri8p1WrVvHJJ59w4sQJCgoKADh06BDHjh1j+fLl/PPPP8TFxZGdnU1ERAQtW7bk3nvvpV27di7bFEIIIYS4VkhwKIS4ZO4EbkIIIYQQomqToyyEEEIIIYQQQkhwKIQQQgghhBBCgkMhhBBCCCGEEMiaQyGEEEIIIYQQyMihEEIIIYQQQggkOBRCCCGEEEIIgQSHQgghhBBCCCGQ4FAIIYQQQgghBBIcCiGEEEIIIYRAgkMhhBBCCCGEEEhwKIQQQgghhBACCQ6FEEIIIYQQQiDBoRBCCCGEEEIIJDgUQgghhBBCCIEEh0IIIYQQQgghkOBQCCGEEEIIIQQSHAohhBBCCCGEQIJDIYQQQgghhBBIcCiEEEIIIYQQAgkOhRBCCCGEEEIgwaEQQgghhBBCCCQ4FEIIIYQQQgiBBIdCCCGEEEIIIZDgUAghhBBCCCEEEhwKIYQQQgghhECCQyGEEEIIIYQQSHAohBBCCCGEEAIJDoUQQgghhBBCIMGhEEIIIYQQQggkOBRCCCGEEEIIgQSHQgghhBBCCCGQ4FAIIYQQQgghBBIcCiGEEEIIIYQA9JXdgavZqFGjMJlMhISEVHZXhBBCVKLU1FQ8PDz4+uuvK7srQgghRLlJcHgJTCYTFosFi0W5pHY0GtBqtSiKgqpWUOeuInL/cv9y/9fm/Vene7dYLJXdBSGEEOKSSXB4CUJCQrBYFGbOfPeS2tHrtQQH+5KWloPZfGmB5tVI7l/uX+7/2rz/6nTv06Y9jk4nKzWEEEJc3eQvmRBCCCGEEEIICQ6FEEIIIYQQQkhwKIQQQgghhBACCQ6FEEIIIYQQQiDBoRBCCCGEEEIIJDgUQgghhBBCCIEEh0IIIYQQQgghkOBQCCGEEEIIIQTXaHB47NgxbrvtNgYOHMjYsWNJTEys7C4JIYQQQgghRKW6JoPDl156iQcffJB169bRu3dv3n777crukhBCCCGEEEJUqqsmODx16hQvvvgit9xyC82bN2fo0KFOy504cYL777+fNm3a0LVrV6ZPn05+fr4tPzk5mWPHjjFgwAAA7rjjDn755Zcrcg9CCCGEEEIIUVXpK7sD7jpy5AgbN26kdevWKIqCqqoOZTIzM7nnnnuoVasW77//Pqmpqbzxxhukp6fz1ltvARAfH0/NmjXRaDQA+Pn54eHhQVpaGsHBwVf0noQQQgghhBCiqrhqgsO+fftyww03APDMM8+wb98+hzJff/01mZmZfP/994SEhACg0+l48sknmThxIjExMU6DSsAWLF5py2Y/DmbTxQS9ByOfeLdcba14/yks5gLbc53ekxGPvumy/PFDSaQm59qeh4T50KBJuO15VkY++XkX++bl7YF/oBfxZzPIzLg4GhsQ6IWvv6ddWYtZQafXOtR1dt3wSD86dPV12U9X/RBCCCGEEEJUnKsmONRqS58B++eff9K1a1dbYAgwcOBAnnvuOTZu3EhMTAw1a9YkPj4eVVXRaDRkZ2djMpkICgq6jL137pelM0GxgE53MVGx8OuXs+h/59NlauuPlQsxmwooGuOaTQVs/P4Teg0b51D++KEktnz/Olqt5eKlFR0Me44GTcLJyshn1cfT0ZJ3MR9vut38GFu+fxuttqBIPU/AiFZrLpIGRb9lChASXhOzSSEzPR+L4keu2sWW7+vnRY06/g79zMrI56uP/8FiUWxpOp2W0Q92BHAaNGZl5JOSlIOxwNqf3KwCtDotXj4egDWYrVEn0O4a/8Yd5JfDm+gR0Y3G4fXx8TM4tJeRlsfptDhizxwlwjucBNN5WtZsSot60bagurDskaST/B23nevrd6FZZAPy881kpOVhMlrIzzVyLPMEJ7JPEhNSn87RrYiIDCAxIZNTWefYemo3UR5RnMmKw6TLp3FYNP2u64Kvvyc7j8by58ntdK3Vicbh9QkJ93UaKO9N2seXB7/lzqYjaB3eAoBVR9fwy+k/GFCvD7fEDGJv0j4W718OqIxtPspWrrBut1od+fPsVkClZ52utq+LlhWujZuxwfZ1kK+Bdyb3qMTeCCGEEEKU7qoJDt1RuAtpUQaDgaioKI4dOwZAWFgY0dHR/Pbbb/Tv358VK1bQv39/l23269fPZZ63tzeRkZHo9eVbulkQ+weENgRVBY3G+i+Qv+939PpnytSWIbgGnPjXMT3Qef/2bf4avd5iF0xqtRZityyncYvJHNz5K3ptpn2+amLvH5+g1+cWq2cdBbRPK/ZchazU8wB46ECvzUCv/IAGCyoqf367HjCi0+nQ6j0wFeRhMRtRVfDDArb4WQsorFm0AovF+nopqg5VE4qWdDy9tBgvrDFV0QJeWBRfctSedvc/4t521KwTaBd81qAVRw9kcxTrqLROp+XWu9vw3Re7bdcCCKQ2BUAQ9Th7Po+zu/YzeERLImr689XH221lw2nOwSOZHGSPw+sPnkTShOzzsD72kF1OGI3IBUKJBiDzHHy3dw9oANXa7tEj1n5qtDDk9usIi/CzBYkZ6bms2bsJc56On/f+ScMuMWRl5vHP7qMEqjXZFX+SuiknWX96N355tVB0Zn7O3kLDXjEArNm7CTJ82HXmFD5EoDV5sP9gGiGaRig6C7/G7SGgQwT/JOxiT9x+dFo9/Rv2oFmNhuw5cZi/j+0Gkwad4oHFYMTiXcD1tbvQpEY0vn6eAHj7XBz91emsP5//Jsey/Pf1BJnCyMrMx0v1JU+XidE/h6gaEfxr2kWbiOs4mHoEFWgW0pA9iftoE3EdsckHMSomXInwCSfPnMeY5iNoE9HSZbmKMnb6b3bP03OMjJuxgcUv3OBQtvD+C/+9llSne6+s2SdCCCFERapWwWFmZiYBAQEO6QEBAWRkZNiev/zyy0ybNo233nqLiIgI23rE8tBqtQQHu54SWZKgRA25wcrFkUONBiwWghI1ZW6zdvwhTjtJrxV/kODgUY7XDm5GbtqR4nEpgUFNCA72Jea6Dhzb/atDflC960mI/dohHRxiXKdliqbrdRffzJsK0q3/OrmHogOr1jFIANWWrsMCWI8jsZiKlleAXHTaXPTKt3ZtbvjyWzRaHWg0+GEuEnza+33Zd/iiotFZrwkaVDQoqj8FaiNMal0A8rJNeOj1dkFkhXPStKrA6mX/oddrefiZPgAsmbeNIEtzgi6U+WLXNlRFpTatbfW2nT6FH1H4FWnri9htAAQpF+u6svbUfsCLurQDIPZoJrHsAiCcRg7ljxzN5gj/2Z4X9jcw2BsARVVYvXkLEYdaokGD54VyfkRAIpiPqYTVaMSp85l4a6wB67ljRoI9o6xpuggC833wzQxBY9Gj0ahYUDF5Z2MxGNFa9PhoLfy0Zx+/mI6gAIrOTL5vJqm1TmDyvDhNuqZ/BO8NfqWUV6B8xk7/jZqhPnz8nOMHUgEB3pflmleD6nDvWq0Eh0IIIa5+1So4dKVwCmmhRo0asXLlSrfqrl+/3mXe+PHjURSFtLSccvXLgkr0oRxONPO3RVHRh3LIRS1zm2qn0RhXzsVTl21LMyp+qJ1GO23LYDKhOMalGEwm0tJyKDgci6Jo0emUIvlaDHEnUBQNOp1aJN06pFW8rZKeFw8crd+ewujnwhAZF79nRcsX/YDeeTv25TSa4gHmhTKKdUqtszxbGYsZvdP8NDzU7SjKdgD2/uHB3g1mAnXFI7jCyiqgRUUPmNCgYB/taQAtCp6ANxbVC4sahoIfCl5Y1CDXnQTMZoX48xmoqoJisc9TlcL2S6YqpRapMIX9VVDQ6bQcyDxITqoJfxf91KAhMr5x2S+UH1Jitn9uGGFJ0WT5JqEze6CzeIBG5bk/v0ZFQdEqaNBg1heQF5hKy2b1GdV1UNn7UcT5lFxumrrKNoqo02kJCPAmMzPPbvr0taA63buiqBIgCiGEuOpVq+AwICCAzMxMh/SsrCxiYmIuyzVV1fpGtzx0aKwjNIUL9BSFIKAATZnb9Nr5BXmW3hi0q23BUp6lN147v8AcM82hfECNYDKO9ydY+6utfIalPwE1gjGbFQyNO5G1qYBA7TpbfpalP0FtW/LvuhCCtT8XqXcjYCRYu75IWheCtVuL1O1BkG4ToHEI3C7SuPjaVfnS0wsVDyrLyll9u6DzwpRGx0CzaKSmAObiBQqvAFjQkQvkYl0dec52bbOiQ4MeDSoKOkCHiicqXmiwoKg69m89i0kx461NQqMBDXloMaOiRUMBGkyA9kIbFjRo0WC50EcNha+5tTwX+qpFxQMVT4xKHQrUpmV63UpisSiYzQqKqrDsvx8Bnwpruyw0aAjIiSi5UAEE5ESQGKfyzvp1WEeQLShalaAAHzp1bkiLtrVsxfu1q8n6XedLbHLs9N/45Jm+tueFr8e1qDrcu3WzMwkOhRBCXN2qVXAYExNjW1tYyGg0cvr0aYe1iGWVmJhIUlKSQ9saTfnXysz7+S9eHnQrbQ8VHdlTmffzX1xfxrZ8bxjBLcve4d8CPWmKSohOQ2+fVfjeMMVp+Siv8/T03cW+C/M4NRro6budKC/rNEG/+K3cEriGP/N01jEvDdwSuAbf8wcZ6B/PPwUX6w3034CPNpeNeboiabvtytwSuJF/8iFX1eKh0bgIkZyNHLp6w3Vhiqdt5NC6FtHZyGFhHy6Fu/XdDULLEqxqNOChKwziis6AzbYrd+6INZj0duN/teNgaNFRTEuxry1APnptBgblFGBBi7FYOXfoUBQ/8mmJwsVNdHJNeSRkJxNI3TK2d+Vp0OCB4cIzD1AgP11l47rDrF+3Hw88CAr1pmvPaMwWhY17E0psb9yMDQT5GfjilUsbjRRCCCGEqAjVKjjs2bMn8+bNszuz8Ndff8VoNNKrV69LanvZsmXMnTvXLi06Ohp/f8c1ju7KMTmfJpnjel8Nl/xDYmDkFOo//X/Uv5DmO+t/1nQn9K36ELVnFVGeRVMz0beaav2ycRd8//6SQX7FKna/nfCzLzLYw7HNwcXKFi/Tu8gyyt+yfTGixRMFFWxfB+kUEix6tCgoFzafoYR/C6cL19KDUbWQoliD9craHKIsAd+lcj7VtnjQ7HyqbWltuuqzhy7beaZbLOh0GXiwGVWFDV9enLLdFYD9WHT7S6ivQcGARQmz2+m2KrAGjdYf+PSUPNZ+F4sGDV0Mes4azSQCRhd107ONdtNMhRBCCCEqy1UTHObl5bFx40YAzp07R3Z2NmvXrgWgU6dOhISEMGrUKJYsWcKkSZOYNGkSKSkpzJgxg5tuuumSp5WOHDmSvn372qXNmjXrkkYOXU2iKu/kqsy1fzs897/T+X17eQXB2Hdh/yZo3h/2/wrNr7emA56eAXDP+3B4KzTuBYc3QuMueHoGkO+knqKYYc8v0GYYll3fwn5XazWto4E3+JVvnWZZ7MzzJsFi/RH30SjkquX/XtnXL31Es3SXPgWtpKm5zvLcCUivVEzt6jolrf8EFR0F6LXn8Ci2wVBxCgbMSh3y1Lbl7uOl0Fz4PliMKjXRUQMVMwpm4AyQ4aRO8WmmQgghhBBXmkZ1dSp8FXP27FmXx0osXryYzp07A3DixAmmT5/Ozp078fLyYujQoTz55JN4eVX8oenjx4/HYlGYOfPdctUfGhHA2zfdajfKpaoqU3/8jtWJjmsnS3P4gXsd0hov/KzEOmfeeZO8/bF4t2hJ3SeeLPM1XbFYjJB8BsLqQ/JJLMGR6NISIKw+pviDkJOJLroDxmN/o7WYqdFtEEnb1mHxjUQXWR+O/4M56jp0x/7B3KADukObUZv1Qh93kPzw2mj++x318HYwlf11uhTxZj378r1QUDHjLNgsHNl0TYuK1mV9a75SZA2ga45TbzWoqC6n5boTkFbvdVOqJpS0gt6V2wdUClDIAKc7DF9LAaJeb93tOS0t56pfczht2uPodFoWLFhQ2V0RQgghyu2qGTmsU6cOhw4dKrVcdHQ0ixYtugI9unTnyphekrgdO1ym1+rQwWmeKSWFvP2xAOTF7sOUkoJHaGg5ru5IpzNA5IVRy8gY6xq3SOu8U13tiweoezTtiV6vxWAw4NOy78U3iE17Wld2XTfAeqxBu5us6TGdrJP3uo9B6ToKMpMhIAIl4zyqqqD1CsSUk4ySeBJNeAM0KadQQ+ug1xtQ9AZIPIEaWBM17Rz4hKDx9ERNO4/Z0wfij4LOE3a5HpWqoTdTw+9Spla6Z3OuDxnKxWG0wjCvkBaVcJ2FBIueSJ2ZFIseUInyMHHW5EHwhbxArYUMRYcWFS+Nahv9LJyYW1zJI6xlCTKrJo2aQoih6PdXhy54DAZPHXl5JvLzzGi1F6bXAiazQn6eyTYSWCF9QIMXOjxRCUQhGSi6dc24GRuICPJmxkNdK+yaQgghhBDuuGqCw8p2OTakOUfhDnfWNXKqqqKqarmCw+z4uDKlA5x49qliz5+m8cf2gXXR0ciio5CHx99nW6DWeMGnZe9wBdBq9RBUw/p1cG1bus4nAMIbWJ9E1LevFBBp/Te83sW0cOth89RrA4C5TX+UuEOoPiGQHocSEIbGZLQeiZKbgcnTB03icbQNu0DcARRPfzy8A1FUM+Smo4mMQZN0EjUwAp3FgtnLG/OPsyDP2WRC57r75JblpbDTNDwIMhNA52E9+NHZYZNldLDAk+Mm60YskToziRa9s2MXS6Hg8kDJSmPBkvY5eUBIjfr0v99xA6edW05x5ngaqck5mIxmFAVMmNCjv6SgsTBIrI1KGAomIBXriZ2J6XmMm7HhmhpFFEIIIUTlk+DQTZdjQxqAaZs3MatHT7vn5aH38sFU7DxHVVXx8HJ+PIA5P996hEZRigVzfj76C1Nwk9ettctOXreWsIE3kvnPdruT7jP/2U5Ax04OgeThhydAQQF4edF47vxy3Vdl0Ou9IOrCgfFhjjtoegHUu5AfXNN5I4GRti89AOWut1Ezk8DgizE7Cc4fgcY9UGJ/RVOjMaHB/qSfPwdBtdBoNCj5OWg0WjQaHaqqgMEDrdYD0IAxD9U3EG1OBoRFQcpp8Au1Bsuo4OmDxpiP4uEJyadRQmqTv/w5yEkt92vS1LOApp4F5a4P1im5u/O9yxFUFrq8o5Wp8SdZ9s6j1idaHV1uHEO9pu1p360e7bvVcygffzaD9asPkpKedUmBYmGQ6AX4oRKBwr4LeRIgCiGEEOJKumrWHFY2ZyOHhRvSvPnm++VqMyLCGlj+MeQWdFotFkWh90+rLlyvbGvpIiIC+HPoMDQajd0oZM/V3ztt68jPa1C/Xe6QrrntDhoNGgy4XsPoLD3ygQkkLPzI9jxg0FAyf15te17nqWc598F7qLm5aHx9Uc1mW+CoUVXUggI0Xl40uoqCyIpyJdZdKYoZNTMJ1cMbNSsZi06LJjcTxTsAJfEEGu8gtF5+KAVZaD39wOCFmnQCTXg0GpM1KNQFRoIxF0UxYTTmo/74xmXpqzNFRy5LV/FBZMM2PWnfd4TL/C0bjnHySDLJaVkAlxQsqkU2r0m88KiuAaKsORRCCCGqFgkOL8GlbkhTGBw6U57g8OFGTRjVtLktOPz64H4+OHLIaVvm/HyOP/KQQ3qDufPRe3mRcvgwKbNed8g3jLkX45LPytS3MgmPgKRE8PAAk8m6faXFAl5ekJ+Pd4uWWNLSMKYk24JLQ0go4SNHk7l9K1mb/0Lj7U2thx7Gt0XLy9fPCnS1vkG2WIyoyadRfUNRU89g8fLFnJkISafBokB2CviHgzEXmvRAk3IS9e8v4RLGDkvzS7avi41+Ki5gHDDmaYIj6pRYJv5sBp/+tAbftPBLDhQLUPgP8PLQ8uHU3uVqp6q6Wn/2nZHgUAghRHUg00qrkQ+OHOKOxk3RarUoisIHR1xv4KN3sXtrYXpo48akOMkPa9oU16sYK0BSovVf04XDHi0XDlrPzwesG+fYyc/HGHeOhM8/xZxq7bGal8e52W9dLGMwoPfzJ7B3H9LWrkHJzQWDAa2np+0aSn4+Gg8P1IKLUye1/v7UfGDCVRNkXmnWTYcaWp/4Wc8VJSIGGrrYSKVWIyzNe6Emn0bxCUZNOIoSEI4uPwNfXy9yco2YVC2arCSUGg1RD28Bn1DY9jVgcatPA5wckVL0SJOLyh8s/rJkFgAGbz9unej4AQpAjTqBPDthNABvfLwU39QI9HiUOUjUoMETLdehEGdSZJqpEEIIIS4rGTl00+WYVgrORw/LOmroqp3S2jOlpHD86Sm2kcYGs96x2600ed1aUr/52vY85PZRhA280em00qtCOTdm0fj54de6LVlb/rLV1wYGoWSkg8FA6NCbydr6N+EjrcFA/KKPsWRZpxdqvLzQefsQ2LsPGRt/RzEa0XoY8KhZg7zYWPy7X0/d8eOrzehJeZQ2eqQoZkypZzAlnUbNzbIOPGq1oPdAE14f9fReUMzw31rHxp0ovhOs1aWNLHYZfA/1mrYvsczLy+YRdCoag+JVrpHEwlHE48CcahIgysihEEIIUbVIcOimOXPmuNyQ5sMPL+3ojKKBXXkCw+JtFOeqzYiIAN7q3I3OEZFsTYznqW1/O5R1tltp1q6dnP9wji295qTJKEaj3ZrDa5E+NAxVUbCkOdn4pYTAVBsUjIeHHq+mTcnYsgWtjw/B/QeS/tsvWLKz0fr6UvOBCQAkLP7UFmAG9u5D1ta/8e/S1RacFo5y5sTuI2nZV3ZpKWtWk/LD94TePAyvevVtbWGxoOTlAeDfrQe5/+3Fkp2Nf9fu5B3cDyq2axVtr8JetwoKEPLyUjHvXgt6Hzj7LyQfd6vemmxf7M+mLH+gqPf05raHZ5ZYZsrPr1DjSAu8coPKNeVURSUVhReqQYAowaEQQghRtUhw6KbLNXIIFfMGqazBobvlXQWuhx8cZ93tVKul8cefWNOKBJJ1n/0fZ974P9vz8LH3kbS4co68qA60wSFoNGBJLRJ4FgacWi0oCvqwcOr/n3Wa48kXnsWckmxLU00mjj3+iO17pg0MRElLK0dHtNR6+FH8WrfhzDtv2s7JDB0+gtDBQ60B6MoVTqt6t2iJKf68LbiNvOc+AJKXf0XDB+9HrdewQgMERTFTkHwS89mDgBbiDkDcfyXWqahAMSC0JoPuedZl/if/LWVn0l4ijzcjKLlumYPEwlHEJ67yAFGCQyGEEKJqkeDwElzqhjSFqmpweKlTXo88Osm2O2mj9z6we27brdTTCwry3W7TFX1IqG3N4bVLQ+itw0FVSfn+OwoPqw+9dTi5Bw+Qd2B/xVzF24d6L7zEyeen2aVHz3zbenZm8SNSXNCFWKcwW1JTrAGrjy9aw8Upt7apuy4Y6tXDeOoU/t2vp+Z997t1TZMpl/z962Hbt6WWXZvti3KJgWJJ6xIB1p38nR+O/0z4qUaEJNRDj8HtILE6BIgSHAohhBBViwSHl6AqBYczZrzGO+84TmebMmUazzzzvEN6acFhWfLLOxW2UP7BWJKXf03YHaOJX74M4+lT5dqtNOOvTWT/s831hSrgMPiqTuvri6ooqBemiQJofXxRch03arkkej2YzfbX9vGxbvZTxRjq1af+/162S7NYjJjij2BKOwdH/4HEIyW2YT+iWLFBol6v5dHfnqNAMRJ+qhERCY3KHCC2bV2b3oOalLlflU2CQyGEEKJqkeDwElSl4BAgOroWOTnZtue+vn6cOOF8b9FLCQ7dqVOWgLEi3yCe/3Sh9TgLH1/UwoConLuVllV51xxWnCszclhdFB1xzM9Px7TrR9i3vsQ6f+T4kqte2mjiyCn209CL/vxP+OVJPAq8qPdfZzwV3zIFiXq9hhtuak6DJuFl7lNlkeBQCCGEqFokOHRTVV9zWGjGjNdYs+YHBg++2emIYaGKDg5LU1KwWBXfIKasWU3K9ytBVdH6+eHbqk0F7lbqgTkzC8wmt/tTZdYcFl7awwPVZN//qjpyWCovLxrPnQ9Y1ynmJByC/9bDyV0lVruU0cSiAWLxn/+HNzwNgH9qBLWOtinzesSeAxvRom2tMvWnslTF//vlJcGhEEKI6kCCQzddzt1KK+sNUklrCis6OHR1HahebxDdVbibqH+XrmRu/AOtVlOFdytVseTl2aaq6kLDqDvlqQpZc6jk5dpNga0q/LtfT+Q995Bzagf8Or/EsuUOEjVaRj7xrtOf/2l/vky22Rpo19vbBb+CkGoZIFan//sSHAohhKgOJDh009UyclhWrqaC1q0bTsElTLEsC71ej9lsRq/XExfnZEpmNXc1vEHOid1HwuJPQYXIe+7Dt0XLCtmtVDWbiftwjnVdaRWl8fWlxrSH4OcPweI6kC1vkHjX03Odfv/PZMUx4593AQg9F02Nc83KFCAGBHly8+g2+Ad6uV3nSrsafvbdJcGhEEKI6kCCw0tQ1dYcVrTLPXrojpCQUA4ePFHZ3bisqur3/0rJPxhLwuefYc4vQOPhUebdSq8kfc0IwusmllimPEFiw1ad6Xzj3U6//4XTTMsTIAI0bBZO/1ual6nOlVKdfvYlOBRCCFEd6Cu7A6LqSkzMtI0genp6cuaMdeT0SgaNqakpdtfz8PDg3Llr/ciK6sWv5XXUXTi/3AGCbX2om9NZL4X5fCLnz1u/DulYC0+N44ZPg/2sGyHtzPMmwVL4K7bkgO7ov9swGi10HTzWIe+DvrN4eMPTpNQ+gdE7h4jTTfAy+rsdJB49kMS505u5d3J3t8oLIYQQ4tolwaEoUWFAWJSznUmvVMBoMpkcrtWhQyduumkYEyc+ckX6IKqW0MFDCR081Gne0amPoWRkXJbrpv5jDQxrdnKe397bOgX152xfVDdGEk8f3MHpgzscdjOFiwFiVkgiWSGJBCXUIfJUc7c3q8nLMbPwnT95YErPUssKIYQQ4tol00rdVF3XHFakqjANtVDPnr1ZseKHyu6GW6rL97+8rvT9H3/2acxJJU8NLQ9DAIQ2dZ1/cbpp6cHcgDFPExxRxyH9qY0vkVtk3WPD7f3wxNPtUcTgMG9GPeAimq0E1elnX6aVCiGEqA4kOHRTddyt9HKrSsHikiXLGTDgxsruhlPV9fvvrsq8/8JzMStKQDT4lnDMYFkCRJ3BixGPzHKaV7gOESBm5/V4WdyfZtqsdQ16D2riVtnLrTr97EtwKIQQojqQ4NBNMnJ46bp378DRo0do2LARR44crtS+TJkyrcRzIK+ka+X770pVuv+Tr76E8fSlb3JTc3grOPuv07zNuT5kKLoLz0oP6LoMvod6Tds7pD+24VnMWHd5tU4zbYoeg1tBYr2GIQwecV2p5S63qvS9v1QSHAohhKgOJDi8BNV9t9IrpSqMMPr5+XH8uOPmIlfCtf79r6r3nxO7j3Nz3wOTqXwNaDTU7Oj612tZRhGjmnZwullN0RFEgKj/OuGfF+ZWgFi7XiA3j25TarnLqap+78tDgkMhhBDVgbb0IkJcXqmp2aiqSmpqNomJmXbnLV4p2dnZREQE2D3Etc23RUsaz1tA44Wf4d28RdkbUFXOb4fz2yHloGO2dVdTBSj987nTB3ew/mvnG9Voi/waP33ddlKDT6O60ea5Uxn88NWeUssJIYQQ4tohwaGokgqDxMKHp6fnFe9D8WBx/Ph7r3gfRNVQd8pTNF74GY0Xfgbasv/aNGZag8TiBvvlEKkzYw0QSw7okuOOsuydxx3S5/SdQW3fmrbn5xvtI9cjw+0AceUXu0otJ4QQQohrgwSH4qpw5kySQ8B4pUcYV61aaRcsdu3anl9+WXtF+yAqX+OPP7EGieX4wMJZgNjeO4/Bflm4N4qosOydRx1Sn+v8BPe1uNP2/ETbzRSQ61aAmHAui8/mbC61nBBCCCGqPwkOxVWtMoPFY8eOMGbMHTIV9RrV+IOPrEFiGZ3fDgl7HdMH++WgtwWIJQd1zgLEDpFteLj1/bbnRzv9Qb4uy60AMS/HzPxZG4k/e3nOhBRCCCHE1UGCQ1GtFA8W9Xr9Fb1+0UCxRo1gZsx47YpeX1x5jRd+Bh4eZaqjFMB5J5uZDvDLcXsUcdk7jzmkNQ9tQrPgxrbnx9pvIk+f6VaAqCrw3ZI9bNlwrNSyQgghhKieJDh0U2JiIrGxsXYPo9GIolzdO+xVd3FxqXbBoo+PzxW7tqJYeOedmQ5rFx977OEr1gdxZTSet4DQ4SPKVikfzv/jPMu9zWpUpyOIj7R9gGBDkO358XZ/ub0GEWDv9rMsnb9VRhGFEEKIa5AEh25atmwZw4cPt3skJCSQk5NT2V0TZXDyZLxdsPjee/PQ68s26nOpvvrqC7tgMSTED29vb157bfoV7YeoWKGDh17ctMbd9Yiq83WI4P5ups4CxOk9nkOHzvb8RNvNZHumuh0gZqYX8N2SPRw/lFR6YSGEEEJUG3LOoZsSExNJSrJ/ozRr1iw0Gi1vvum4xXxZVKezvsqjKt3/V18tZcqUR7BYLJXaD7CevTh//icMGHBjZXflsqpK3/+KdvTxR1Cys90qq/WEyNaO6e6ehzhyiuPvocd/fw6TarY9jzzejLDkaLfOQSw0ZmJn/AO93C5fFtXpey/nHAohhKgOZOTQTREREbRo0cLuYTAY0JZjW3tRdY0efRfnz6fZjS7WqFGz9IqXQXZ2tsOGN3KkxtWl4btz0fq7t1GRq3WIlzKC+G6f1+3CwIQGBzjcegMF5Lk9ivj1QhdDm0IIIYSodiSyEaIU//57yGGjGy+vyzOS4o7iR2pc3AAnSNYzVkENZ7+Pf/ce7hXOh4R9jsmXEiDOuP4lu+cmz3yOdNrg9k6mZpMqR10IIYQQ1wgJDoUoh9OnE+2CRY8y7lZ5OSiK4rCeseijYcM6PPXUE8TFnavsrl5zat73gNvHXii5ztchuhsg/rjwVbvnfh6+PNPxcYdyx9pvIj3wnNtHXcgIohBCCFH9SXAoRAU4dy7FLli85Zbhld0lB5mZmXz++SLatGnmYuQxWKasXmaNF34Gbk5FL2+AmJuZzLZ1S+3S6vrX4sUuTzmUPddkL8ebbSZfm1NqkJiWnMfKL3a503UhhBBCXKUkOBTiMliw4DOHqajjx0+s0mtUFcViN2W1Zs1g27+1a4cSERFA3brhdOzYioEDe/HVV0tLb1Q4aPzxJ+hCQtwq6ypA1FLy5i0nY7fx+zcf2KVF+oQzNHqAQ9k8/wyOdviDAvJK7U/CuSy++XRHqeWEEEIIcXWquu9UhahmXnttJvHx6Q5BY0RERGV3zanCHVstFgsmkwmAgoICTp06ye7du3nssYlORyBr1w6VtY+liJn1Doaoem6VdRYg3uiXA5S8o27imUP88e2HdmmDom+gfbiTLVGBU63/dmuKaXJCDl9+tLXUckIIIYS4+khwKEQlO3jwOKqqkpqabQsYGzVqXNndKjeTyeR07WOdOmE0bFiXqKhIevbswi+/rK3srlaq+i++Yp1mqin9WAnXU0xLDhATTh3kx4/tN6QZd91d1PAOdyhr8szndMMdbgWIGWkFLJn3d6nlhBBCCHF1keBQiCpo8+YdDiOM69b9TnBwcGV3rdyMRiOZmRnk5+dx8OB+2zEdISF+6HQ6QkL8iIwMpFatUBo0qMXzz0+r7C5fEc0//dytcud3O6a5EyDmZqexf/t6u7T/dX0KH523Q9mskESSw064FSBmZRhlBFEIIYSoZiQ4dFNiYiKxsbF2D6PRiKJc3Qc3i6tH27btOXTolEPQmJiYyejRd6PT6Sq7i+VW+P9IVVXMZhPZ2dksWDDvwqhjoN0IZK1aIcybN7eSe1yxuq/6Fm1gYMmFTGDKdUx2J0D8769VDmlv9nqFSCcjiAkNDpAafNrtEcQ/fj5UajkhhBBCXB00qqq6dxLyNW7OnDnMnWv/hjQ6Ohp//wA+/HDRJbWt12sJDvYlLS0Hs/naCzbl/q/M/ffu3ZX9+2MvW/uVzcPDQP/+N/L66zOpVat2ZXfHbUW//wk//EDKyhUllq/ZyXn6muyAUq81csr7DmmfxX7FPwmOw5LhpxoRkdAIDSVPe9VqYcLTvUq9tjPV6f/+tGmPo9NpWbBgQWV3RQghhCg3GTl008iRI1m5cqXdIzIyEl9f38rumhBu+eOPv52OOiYmZrJkyXJuuGEgXl5etvKFI5E6na5KnONYGpPJyJo1Pzgc1VGrVshVM0U1dPBQome+XWIZZ+sPAQb7ZZba/p/ff+yQdm+L0fSP6u2QnlTvCOfq/VvqCKKiIDuYCiGEENWEBIduioiIoEWLFnYPg8FQpY8mEMJdAwbcyJdffsPp04m2gPH8+TTbv0XPcXzlldevqrWPZrO5yBRV62PMmDsqu1sueYSG4lmvfollzrs4brC0APH88X0U5OU4pA9rOJjrQps5pKdHnuV4s82lBojJCTn8ump/iWWEEEIIUfVJZCOEKJOJEx9xufZx3brfiYqKclrPYDBc4Z669ssva21nOFZF9f73MpQ0Wmt2vv4QYHBYyW1/P+9Zp+kPtb6PGt4RFI8D8/wz3NrF9OiBJLZsOFbyxYUQQghRpUlwKISoMG3btmfHjn1OA8ezZ5NJTMxk/PiJeHp62dWrrBF4i8Vidz7j7t07K6UfzjSeV/LateR9LjLyM7nhtntKrLvsnUedpv+v65NoNFqKr0TPCkkkxzO9xDYB9m4/S+zuuFLLCSGEEKJqkuBQCHFFvfbaTM6cuTh9NTU1G4vFYjvn8b335tGyZasi6x9LPwewIphMJgYO7ENERADdu3e4ItcsTYO33ysx/7yL/YUM6+ag93Q8qqKobeu+cpp+Z5PhTl/xhAaxbu1g+s/mk6WWEUIIIUTVJMGhEKJKGT36LjZs+KvI+scMWyDZs2fvK9KHI0cO20YUR4y4+Ypc0xl9YCA+rdu4LpDj/PxDgAEeCSW2fTL2b9ISzzqkd6vdiXCvcIfRQ3enl+Zlm9i55VSJZYQQQghRNUlwKIS4aqxY8YPLHVcHDLgRjabiRxn//PMPW6A4Y8ZrFd5+aepMfhytr5/rAiYwZjvPKm2Dml+WzHK6Qc3L3Z8iWB/qdHppctiJUgPE7X+elOmlQgghxFVIgkMhRLWwZMlyEhIyHALGivTOOzOJiAigXbsWFdpuaRq+Nxc8XG/ok1LCRqE3GEoOEL+f94LT9Nd6TcNH4+8QICY0OEB64LlSA8Q/1x0h/mxGiWWEEEIIUbVIcCiEqLaWLFluFyzecsvwCmn37Nkztt1Ov/pqaYW0WZrG8xzPKCzK1fmHBgPoS6xp4ZcvnZ+t+Fbf/6ExO25Qc67JXgp0LoYri/j1BzneQgghhLiaSHAohLhmLFjwGYmJmezZcwC9vuSQyR0Wi4XHHpt4xUYTaz/xVIn5CUecp/f3LXn0MC3+FPGnDjnNe7zFM5jNOASIyXWOlzp6mJ1pZM2K/0osI4QQQoiqQ4JDIcQ1p1at2sTFpdpGFD09PS+5zcLRxDFj7qiAHjrn26IFlBDUKmmgmB3TNRpo5+XiYMQLNn77gdP0RnWCaO93vUN6euRZt6aXnjqaKhvUCCGEEFcJCQ6FENe8M2eSKmza6S+/rCUiIoABA3pVQM8cNZ6/EHx8XOYn7HKeXkNv5oabRpXY9vfzn3eaPqH7TWiMeqfTSzP84ktsE6wb1Mj6QyGEEKLqk+BQCCEuKJx2mpiYyZQp09Bqy/8rcs+e3UREBDB+/L0V18ELGpZ2/uG/ztMNvy/A4O3rsl5BbhZ/fPuh07yuNbs5TT/bfBcZviUfmwGwef3RUssIIYQQonJJcOimxMREYmNj7R5GoxFFUSq7a0KIy+CZZ54nPj6dxMRM6tSpW+52Vq1aWeEjiVoPD2o/8aTrAvmQsM9ZhsoNQ0dY55m6kHDqIOu/ft8hfUyboZidjB4CnGmxg3xdVol9TjyfLaOHQgghRBUnwaGbli1bxvDhw+0eCQkJ5OQ4nhEmhKhedu2KJTExkyVLlpf7LMXCkcSK4tuiJTUen+oyX8l1ESD+PIdbJr5SYtvJcUedjiCOrf0wZrPGaYCYEH2wtC7L6KEQQghRxUlw6KaRI0eycuVKu0dkZCS+vq6naAkhqpcBA260naUYHh5RrjYiIgJ47LGHK6Q/AS2vKzFfyQVzvmO66fuZ3Dzx5RLrJpw66LCDaY9WtamZ39Jp+ayQRDLCzpbYZuL5bNmcRgghhKjCJDh0U0REBC1atLB7GAyGS1qTJIS4esXGHiUxMZMaNWqWue5XX31RYaOI9V55rcT8JGfrDzPPY85JRav3KLGusx1Mn+h3B2ajzvn00gZ78fIt+YgQ2ZxGCCGEqLokshFCiEvw77+HSEzMJCgoqMx1KyJA9KxdG11ISIll8pwdc7hyOkPHP19qgLjsPfu1jUF+ntQzdnFaVlUhrKWuxPYA/vzFxYGMQgghhKhUEhwKIUQFOHz4dLk2rwkJ8bvka8fMegePGrVc5qe7WA5o/mIKt056reQA0WLk380/2yU93O9GzNleDqOHGg2sVVcSEFTyuZEpiTnE7o4rsYwQQgghrjwJDoUQogIVbl7Ts2dvt+toNBoeeWTSJV03evrr6IJdjyAaC5yn553cye2Pvo1W73o66IFt9sFhkJ8nrUKcrz0EaHt97ZI7C+zbda7UMkIIIYS4siQ4FEKIy2DFih9ITHQ2n9O5L79cfMnTTGPefMdlXoqrjUI3LMBiMXL7o67rAg6jhy3quV5r+UHCHFp3qlNie6lJuWRlONktRwghhBCVRoJDIYS4jMo6inipAWLtF10cU5GD001kAHLP7AHgtkdnuWy3+Ohhn6jrMecbnLepQuMuodSNDiqxrzv/lp1LhRBCiKpEgkMhhLjMyjqKGBERwPPPTyvXtXyj6rnMy3V1Tv0vH2Iy5aLXe+ETFO6y/prFM+yet/Pu67ygBl7a+jq9bmxSYl9PHEouMV8IIYQQV5YEh0IIcYWUJUBcsGBeuUcRIx9/0ml6Zgnn1Ocf3AjAkHufdVkmKzmOvZt+tD2/t0dPzJn+TkcPVRXe2jWbiFr+LtvLzjJy5mSa604JIYQQ4oqS4FAIIa6gsgSIUL5ppr4NG7rMy3N1xODfyygoyESr1VO/lfOjKgAO/vMrWWlJAHgZ9NzXdCw4CQ41GkhW02jZsUaJfd29VaaWCiGEEFWFBIdCCHGFJSZmMnr03W6XL2uAqPfyskZnTqQfcl3P+N+vAHS+4c4S2//1q4ub13RtVg+v9AYu1zO+f/5dPAyu/9ScOZFa4rWEEEIIceVIcCiEEJXgvfc+KPM6xLKo/4brzWVSzrjI2PUjRmM2ALc+8rrL+qb8HLb+vMT2/PHr78Jc4OFyc5qw2r4u28pIlx1LhRBCiKpCgkMhhKhEqanZbpctS4BoCAtHExjoNM94HlTFeb2ClW9gNudjMPhh8PZz2f6pA9tt00ujIv2JTLveeUENbNVtcNmO2azImYdCCCFEFSHBoRBCVDJVVbnzzrFulS1LgBgz4y2XefE7XWRkniPv00ewWIzcOvF1wPn0VIBNPy6yfT3+hu6YUkOdjh5mBSei1bnu5+9rDsuZh0IIIUQVIMGhEEJUAXPnfuj2NNOIiAB++WVtqeW0Hh6EjLjDeaYK5gIXFVUzuWf/BeD2x9922X5Wchzxp6yLGKMi/Xmo7V1ON6dBAwVeJY+QHjuYWGK+EEIIIS4/CQ6FEKIKcTdAHDPmDlq2bFRqubAbB7vMS9pbQsV1czGZctFq9cS06eayWOK5k7av2zesg1d6jNPRw1T/uBL7eeJISon5QgghhLj8JDgUQogqxt0AMTExwa1ppnWef9FlXma863r5x7YC0KHvKJdlDvzzq93zW9p0dlouLeIMqtNhRauUxBzXHRFCCCHEFSHBoRBCVEGJiZkEBDjfUKa40gJEn+gGLvNyTrvenIY/F2M2W9cC3nD3NOdlLEa7nUt7NWyDOS3IYfTQ7JXPuXr/uuyHyWghdnfJo4tCCCGEuLwkOBRCiCrq6NEzGAwGt8qWFiDWf32my7z4/1zXy/v5PVRVISSspssyRXcuBWgf2cZpufTIs+Trcl22c/xQkss8IYQQQlx+12Rw+Nxzz3H99dfTpEkTzGZzZXdHCCFcOns2mWbNWrhVtqQA0RARCZ6ezjMLwGJyUfH8AfIyzqHRaGndZ4TL9vds+tH29T2dB2DO9nG69jDfL81lG8kJ7h/rIYQQQoiKd00Gh8OGDeO7776r7G4IIYRbNm78m3XrfnerbP36NVzmxbw522Ve4m7XbVqW/w+zOZ8mbXq4LBN3dI9t9NDLoKexua/TchnhcTjf0hTy88wyeiiEEEJUoioRHJ46dYoXX3yRW265hebNmzN06FCn5U6cOMH9999PmzZt6Nq1K9OnTyc/v+xnY3Xq1ImwsLBL7bYQQlwxbdu2d2ujmtzcXMaMcX58hc7Hh8AbBrism13CaRKmM/vQaLR0GOjiaAzgz1ULbV/f3acDxvN1HEYPs0ISydfkuWxjz/YzrjshhBBCiMuqSgSHR44cYePGjdSrV4+YmBinZTIzM7nnnnvIycnh/fffZ9q0afz444+88MILV7i3QghRedwJEH/5ZS3du3dwmhc56k6X9bJOQtox53nmnFQAYlq4Hj3MTj3PmSPW8zEiQ3y4tZ3zPuT7ub6HhHNZMnoohBBCVJIqERz27duXjRs38v7779OihfO1NV9//TWZmZl8+OGH9OzZk2HDhvHCCy/w448/cuzYxXczo0ePpm/fvg6P8ePHX6nbEUKIy8qdAPHIkcO0a9fSaV5Jm9Pkp0BuspOMLV9iNFrXBA57eLrL+rk5F9cNDmneDXOmv8PoYW5gyWcaHjtYwhCmEEIIIS4bfWV3AECrLT1G/fPPP+natSshISG2tIEDB/Lcc8+xceNG24jjV199ddn6KYQQVUViYmapO5SePXuaqKgITp+2D7Zsm9MUFDitl3EcvENAU+xXc8Gad/G45Tk8PQPQaHWoisWhrqnAfqp/Y+82HGeTXVpWaDzq2eZo0Di9fkqSnHkohBBCVIYqERy649ixY9x22212aQaDgaioKLuRw4rWr18/l3ne3t5ERkai11/aAKxOp7X791oj9y/3X/Tfa82l3H9qajYhIX4llsnPz2fmzNd5/nn7KfiNZ7/H4UkPuayXdgJCis/yTzyKJTcRr8BaXHf9zfy70XFjryN7/qRN9/62531bN+D4fvvg0OSZz9mof6l7urXzayfnkZdjxD/Qq8R7q0o0GueBrhBCCHE1uWqCw8zMTAICHD8lDwgIICMjo0xtPfXUU2zbtg2wTmnt0KED77zzTrn6pdVqCQ72LVfd4gICvCuknauV3L/c/7WsvPevqmqpgcnbb8/grbfesE8M9iV7+DDiVn7vtE5BCqgNoHjTeUufI+KZpXTp2ddpcGjMSSP+xB6atesOwMDgLszf/AP64DS7tjJqnKVufHMweji9/q6/TzNsdNsS76sq0WolOBRCCHH1u2qCQ1fceWNU3Jtvvul22fXr17vMGz9+PIqikJZ2aVOgdDotAQHeZGbmYbEol9TW1UjuX+5f7v/S7t+dEUSNRkNqqv05gkE3Dydt/yHyDh5wWicvE3wCi6cqnN/3D75RbVxe66+fV1Ij+mJ+8+BWHGajQ7kMzxQCjc6P3vh3xznq1A8mpmm4y+tUJYqiSoAohBDiqnfVBIcBAQFkZjpuwpCVleVyh9MrQVXBbK6YN7QWi1JhbV2N5P7l/uX+y3//7qxBbNiwHgcPnrBLq/vkNBK+/pKM335xKJ9xCHw6ObZjXP0OunHzGfLgC/z0sePmNAXZqfy+cgHX33w/AP2aN+HwfsfgMM8vncAs1+cyxu6Jo17D0BLvqapQVRVcrKEUQgghrhZXzSKfmJgYh7WFRqOR06dPX5HgMDExkdjYWLuH0WhEUa7dN7NCiKrlvffmlZifmprC7t07HdJLOt4iL8t5uunMPvz8IlzWizu6l5T40wBcV7MhpqQIh11LswOTAdWx8gWnjqYSf7ZsywaEEEIIUX5XTXDYs2dPtm7dSlpami3t119/xWg00qtXr8t+/WXLljF8+HC7R0JCAjk5squeEKJqGD36Ljw9PUssM3BgH6fpUf/3utP0dOczTjHvXouqKtw88WWX19q//Tfb1z3rOp55mB+QwfnaLi5wwZnjqSXmCyGEEKLiVIlppXl5eWzcaJ1ydO7cObKzs1m7di0AnTp1IiQkhFGjRrFkyRImTZrEpEmTSElJYcaMGdx0001XZORw5MiR9O3b1y5t1qxZaIrv9S6EEJXozJmkUqeXRkQEOJyV6FWzlsvy+dngVXxJY/JRTNnJePtHWM+8UB1nUcQd3UNK/GlCa0TRskE4f+93bDul9glijM3JdXHufXKifABXlMViwWQyVXY3hBBCXEU8PDzQ6XRula0SwWFKSgqPPfaYXVrh88WLF9O5c2cCAgL4/PPPmT59OpMnT8bLy4uhQ4fy5JNPXpE+RkREEBFhP4XKYDBckxtoCCGqNnfWH7Zo0ZDY2KN2aVH/9zqn//ecQ9m0/VDTydrDgg2L8Lh5GsMfeZ2Vc55xep1t675i8D3TaBRW3zqD1MmyvEO+e6ib1MZp/eSkbKfp1xpVVTl//jzp6ekO03OFEEKIkmg0EBQURM2aNUvdyLNKBId16tTh0KFDpZaLjo5m0aJFV6BHjhITE0lKsv9o22g0ysihEKJK2rPnAG3aNHOZn5SUyP33j2XRosW2tJJGDwtywdOnWGLCIcw5qXj4heHtH0xeVppDvayUc5w5spe6jVpTI68D8T47HI7HyA1IcXnd7IwC4s9mUKOOw7ap15Tz58+TlpaOv3/QhanDsvmNEEIId6gUFBSQlpYOQK1arv/WQxUJDq8Gy5YtY+7cuXZp0dHR+PuX/Om8EEJUhlq1atOpUxe2b9/qssyPP37P7t07adu2vS3N1ehh6j7no4fmpFN4+IUx9P7/8c27U5xe578t66jbqDUTug/lf7+eQh+WZBcgGj3z8QvXkZ1kcVr/zPHUazo4tFgspKdbA0N//2v3dRBCCFE+BoMXAOnp6URGRpY4xVSGvdw0cuRIVq5cafeIjIzE19e3srsmhBBOrV7teDxFccU3qPGMdH20hDHPMa1wYxqtVk9Mm25O62WlnOXMkb1EhvjQKry1Q75GA/Gcdnnds6fTXeZdC0wmE6pKqZsNCSGEEK54enqiqpS6bl2CQzdFRETQokULu4fBYECrlZdQCFF1Fd94xpmi6xM1Wi3+fW9wWi7lPyeJyUew5KYD0KHvKJfXiN1q3bm0cyPn01lSAuJc1o0/mylHWgAylVQIIUT5ufc3RCIbIYSo5soaIEbePtJluawExzRzerzta1dHW2QkneLMkb10rNsSc2qYw6YqmSGJ+Ia6/pMkR1oIIYQQl58Eh25KTEwkNjbW7mE0GlEU2a1UCFH1vfKK83MMixo//l4AtB4ehN9zn9My2accT60w/fM96oVEb+8QXH06mXDmGADtQh0XL2o0oA3Pd9m3+LjSA1xxdfn113U89ND99O17Pb17d+Pee+9i5coVbv9d7dKlHUuXLi69YDHDhg3hrbdmlLmeOxYsmE+fPt0vS9tCCHElSHDopmXLljF8+HC7R0JCAjk5cgaXEKLqmzjxETw9vUoss2rVSuLizgEQfH0vHLYVvSDtVLGExMO2qaUAPW6d6LTesT1/kJWWRJtGwU7z92i2u+zb2ZPpZGW4Dh7F1eXdd9/mf/97lho1ajJ9+hvMmjWbVq3a8PbbM/nf/55FdeO8joULP2PgwEFlvvbMmW9z551jy9NtIYSo9mS3UjeNHDmSvn372qXNmjVLjrIQQlw1zpxJLPX8wzZtmjF79lzuumss9V+bwcnnpjmUKUgCtb597GhOj0fvGwJAjagGLtvft3UtDXrd6DQvzy+DwDADGclGp/nnTqbRtHXNEvsvqr6//vqTr79eyt1338vDDz9qS+/UqTP16tXnzTffoH37jgwfPsJp/YKCAjw9PWnZslW5rt+kSdNy1RNCiGuBRDZukg1phBDVgTvrD5944hHi4s5hiIgEL2+nZUwFxZ7vuDi1VKczEFo7xmm90wf+QZ+Zh+VsA8fD3DWQ4ZXktB5A/DmZWlpRzp07x6ZNGzl37twVv/bXXy/Fz8+Pe+8d55A3bNhw6tSpw5dffgFcnKYZG7uPBx64h549u/DNN18DjtNKVVVl0aKPGTy4P336dGfatKls2fIXXbq0Y+fOHUWuYT+t9NVXX+LOO29n584djB07mt69uzFu3N0cPLjfrm9Ll37BffeNoV+/ngwa1I+pUx/l9Oniw+hCCHF1k8hGCCGuMe4EiG3aNAMg+rU3nOY77FyacBhzzsVNY3rfNsFl28lxJxjcsoPTvDP6Ey7rpac6OUtDlNkXX3xO69bNuOWWIbRu3Ywvvvj8il3bbDbz7797ad++I76+fg75Op2OHj16cvbsGRITEwHrtusvvfQ8N944hNmz59K5c1enbS9f/jULF37EkCE3MWPGW9StG8XMmaWvtQVISUnhnXdmcdddY5k+fQb5+flMm/YkZvPFLd+TkhIYMWIks2a9w7PPvoiiqIwffx8ZGbKTrhCi+pBppUIIcQ3as+eALQB0JSIigIT4dOeZKpjywaPIMsb8719Dd+ebaLV69HovfIPCyUl3HAnc88e3dLzrCdY5aTonIMVlf4xGc4n9FaU7d+4cTzwx2bbpi6IoTJnyKH373kDt2rUv+/UzMtIxGo3UrOl6enCNGta8xETr1rhms5mJEx+hX7/+LutYLBa++OJThg692TZVtXPnrqSmprJmzY+l9iszM4N58xbQoIF1xNtg8OTRRyeyb98+2rRpC8Djjz9pd71OnTozePAN/P77bwwbdlup1xBCiKuBjBy6SXYrFUJUJ7Vq1Wb27LmlluveoxOB/Qc4zUuOLZaQm4Yl/bzt6Y1jn3LZrndeAeH51zlMLTV55qP3dxEElr5HiSjF8eNHHf5uWSwWTpw4Vkk9ck1TZFFrt249SiybmJhAcnIy11/fyy69Z89eLmrYCwsLtwWGANHR1nWzSUmJtrR9+/5l8uSJDBjQh+7dO9K7dzdyc3M5ffq0W9cQQoirgYwcumnZsmXMnWv/Rio6Ohp//5I3dxBCiKrqrrvGEh4ewZgxd7gsc/ToYeJiGuL76y+OmRawWECnK5KUl43Hha/1ei+8/EPIz3I8ozAjJZ5bWndi4SH7+akaDaSbMvEjpDy3JErRoEFDtFqtXYCo0+mIjna+RrSiBQYGYTAYOH/+vMsy8fHWvPDwCAC8vLzw9na+9rVQSkoyAEFB9jvhBge793Pk7+9v99zDw/r2qKCgwNanRx99mGbNmvHMM88TFhaOh4cHU6Y8itFY4NCeEEJcrWTk0E0jR45k5cqVdo/IyEh8fX0ru2tCCFFuAwbcaBslcWXQ0AFE3j/eaZ7DmYc7vrNtTAPQ/ab7ndbbu3ElNfxcvOHXOp+RYVEsJfZTlK527drMnj0H3YWIXqfT8c4771+RKaUAer2eVq1as3v3TqdHQSmKwubNf1GnTl0iIqzBocbFkSpFhYaGAZCenmaXnpbm+MFEeWzduoW8vFxmzHibvn1voFWr1jRq1JjMTNkkSQhRvUhw6CbZrVQIUV1t27anxHxFUdhW7E13odTDxRISDqPkXXzDHBLhem2ZKS3d6VRRs975tNL0lHziz8rmH5fq7rvvYc+e/fzwwxr27NnP3Xffc0WvP2rUXWRmZrJ48ScOeT/88B1nzpzmzjvvLlObERGRhIaG8eeff9ilF39eXgUFBWg0GvT6ixOu1q//FYtF1sEKIaoXmVYqhBCCxMTMEs9AvPeeO/nj5uEO6ZYcsJhA53ExzZybjs4nCACtVk/NBq04f/xfh7rxR2Lp4DeYHXlr7M9MNLjelfTM8VRq1Aks/YZEiWrXrn3FRguL69GjJ6NG3cXnn39KUlIyN9wwAL1ez5Ytm/jmm+X069efW28t2wYvOp2OsWPv49133yIkJJT27TuwY8c/tiMstNrSRx9L0r59RwCmT3+ZYcOGc+LECb78crHDdFQhhLjaybCXEEIIAHr27O0yzwwcdzFKknzI/rlxzTsoysWyXYfc6bTeyX1/c1vTxhjP2J95mOfnenRwx5bTZGXku8wXV4fHH5/K//3fG5w7d4YXXpjGU089we7du5g69Wn+7//ecGsqaXF33DGK++9/kB9/XMW0aVM5efKEbedSP79LC+IaNmzECy+8zMGDB3jyycf55Zefef31N50exyGEEFczjao6HEMs3DR+/HgsFoWZM9+9pHb0ei3Bwb6kpeVgNl97u5/K/cv9y/1XnfsvafTQR6/nl8E3O82L7ABFZ9l73/4a+uCLI1Pfffgcxvxsh3pD753CP+cLWB6/yDZ66FHgReO9fdC4+Pxy0IiW1G8Y6sbdXDnTpj2OTqdlwYIFFd52fn4+x44dJyysBgaDZ4W3X53Nn/8BX321lHXrNuDl5VV6BSGEqKaMxgKSk+OJiWlQ4u9DGTl0kxxlIYS4FowfP9FlXq7ZzBeHDjjNK75XTPG1WJ0HO1/Xlp2ZTtuGtezWHpo880mOOO6yH2dPVswmI6J6OXHiOPPmzWXz5k1s27aVefPmsnTpYoYNu1UCQyGEcJMEh25atmwZw4cPt3skJCQ43W1NCCGuVq+9NrPEKX2LDh3A2YST4hvTGLd8ZbdrqY+f8xHJP1Z+gp9WT0vtDXZTS3MCXQeA/+2Ik6mlwoGXlxexsf/xyisvMmXKo6xb9zN33TWWyZOfqOyuCSHEVUM2pHHTyJEj6du3r13arFmz0GgkvhZCVC8JCRklTi9VgeLho8PGNPEHUfIybRvTBISEu2zv7LFYujWtx74ig5IFPlmoKC6nlqYk5eAfKKNB4qKaNWsxd+5Hld0NIYS4qklk4yY5ykIIcS1Zt+53p+lmYE9Solujh+bcdNvXWq2euk06OG1z65rFhHrar6UzeeaTWKv4ORkXJcXJ+XJCCCFERZPIRgghhIO2bdtTt26U07xndmxzdjwh5hwougzbuOYdLBaj7XmngXe4vmBuvsOZh9mByahOrwTJiTKlXwghhKhoEhwKIYRwaufOfU7Tc81mPnex9tBOfia56+fb1h7q9V74BjmfXmrMSKdBQW/7Iy38M8j0T3Ba/uTRFFl3KIQQQlQwCQ6FEEK45Gp66eeHD7rXwMldWIpML+09wvluqDt++ZL+zRo4pBf4ZLlsOiVJRg+FEEKIiiTBoRBCCJdKml7qjOrkdJ+8v5bYRg99/UNc1g3xwGFqaYG36wBQ1h0KIYQQFUuCQyGEECVyNb3Umew4J4mndqHmZwOg0Whp1vlGp3U9tZ600fW3m1qaG5jict1herpMKxVCCCEqkgSHbkpMTCQ2NtbuYTQaURQnH5MLIUQ1U79+tN1zBTA7+f2XGw/OliKazQW2r+s2buP0Gvk5GfRu2cwuzeSZT6Z/oovyRqfpQgghhCgfCQ7dtGzZMoYPH273SEhIICdH1rwIIaq/jz76xO65Aiw9etjppjSKxbF+warXURQzAF4+vk6v8ffqTwjz8nSYWmrxKHBa/uypdNmU5iq1ZctmnnhiMjfe2Jfu3TsxaNANTJ36GJs3b7L7mXr11Ze4887by9x+ly7tWLp0cYX0deLE8Uyd+miJ1yrtsXr1D+zcuYMuXdpx4MD+CulXecTFxdGlSzs2bPitQtpz53U+cGA/Xbq0Y+fOHaW25ezx66/rWL36B7p0aUd6eprLa69e/QPr1v18aTckhEBf2R24WowcOZK+ffvapc2aNQuNRuJrIUT117Zte5o3b8n+/RenmC49coh7Gjd1KJt+HEIbF0vMTUPNTIKgmnj5+KPReaBaTA514/btRHO8I2rMP2g01jSTV67LfqUk5eAf6FWuexKVY968OXz++af06tWHqVOnERYWRmpqKhs3/sFTTz3Bm2/Opnv36yu7m25buPAzu+cPPHAvt98+ioEDL06frl27LsePH7vCPbv6FH/dAOrWjUJRVBYu/Aw/P3+XdX/66Ud8fLwZOHDQ5e6mENWaBIduioiIICIiwi7NYDBgsci0UiHEteGPP7YQERFge16gKFgUBb1OZ1fOmG4dPdTaJ2PW6tBhXXfYacAotv38hcM1Yv9ew03dR/ND9j+2tDxf1xvPZKTlleteROXYvHkTn3/+Kfff/yDjxz9kl9evX39GjboTrVZTSb0rn5YtWzmk1ahRw2l6eaiqislkwmAwVEh7VVlJr1twcPAV7Ut+fj5eXvLBk7j2yLCXEEIIt02ZMs32tQIscTG1NO24Y13j9/+HxWJdJ1ivaXuXMy/qRthPOy3wyULF+Qdx2ZnOp5yKqumrr5YQFhbGffc94DS/efMWNG3avMQ2jh07yuOPP0yfPt3p2/d6nnrqCc6cOe1QzmKxMGfOu9x4Y1/69u3Bq6++ZLcUJC8vj7femsEdd9xKr17dGDZsCDNnvkZ2tuvjUypCZmYGL774HH379mDYsMF88cVndvmFU2m3bPmLMWNGcv31ndm0aSMA//23l4cffpDevbvRr19PXnzxOVJTU+3qL178KSNG3EzPnl0YNKgfjzzyEHFx5+zKFBQU8NZbM+jfvxdDhgzg/fdnYzab7crs2bOLBx8cR69eXRkwoA8vv/wCKSkppd7fJ58sZPDg/vTp051p06aSlpZaap3SOJtWWtTEiePZvXsnmzf/ZZuOumDBfFv+5s2bGDduLL16deXGG/syc+br5OVd/GCpcMrv5s2bePbZp+jb93qef/7pS+63EFcjCQ6FEEK47Zlnnrd7/sWRQ07LGdOcrD3MzyJvw0eoqoJGo6VlN+fTvwpS7Q++N3nmkxZ0zmnZ3CwJDstj3/EUxk7/jX3HS3+zX1HMZjP//ruX9u07oteXb+JSQkI8Dz10P6mpqfzvf6/y3HP/4/TpUzz00AOkpdkHDt988zUnT57gxRdfZdKkyfzxx3reeOP/bPn5+flYLAoPPfQws2fPYcKESezatZNp06Ze0n2WZtasN6hbN4oZM96mW7fr+eCD9/n77812ZZKTk3jnnTcZPXoM7747l0aNmvDff3uZNOlB/Pz8mT59Bs888zz798fy1FOP2+qtWbOajz6ax003DWP27Lk8++z/aNy4icP+CB999AEajZbp02cybNhwvvzyC3744Xtb/sGD+5k8eSIGg4Hp02fw2GNT+Oef7TzyyAQKClz/n/vmm6/5+OMPGTRoMG+88Sa1atXmjTemu/3aKIqC2Wy2PSwWJwuYnXj66Wdp3LgprVq1YeHCz1i48DNuueVWADZs+I2nnnqCmJiGzJjxFo888hh//LGB1157xaGdGTNeo06dusyc+RZ33nm32/0WojqRaaVCCCHKZMmS5YwZcwdgnVr6y9kzDKhTF43Gfjpg+gkIaWhfVz2xEyUvE51PEA1bd+a/zT85tH9k44/oW3hi8bjYnsngfOOZoweT6JKRL+sOy2DOin/556B1B9hZX+6mY9MIJo+omCmQJcnIyMBoNBIZWcMuXVVVuyBAq9Wi1Tr/7Pqrr5ZiMpl4770PbdMMW7Roye23D2PFimV2U1U9PAzMmvUOugvTng0GT9544/944IEJ1K8fTXBwMNOmPWcrbzabqVWrNhMmjOP06VNERdWrsHsvqnfvvrZ+dujQkc2bN7Fhw3q6du1uK5OZmcns2XNp0aKlLW3ixFdp2rQ5M2a8Zfu/FhPTkLvuuoMtW/6iW7ce7N+/j4YNG3LPPeNs9Xr27O3QhxYtrmPqVOvIWOfOXfjnn+1s2PAbw4ePAODTTxcRHBzC7Nlz8PDwACAqKorx4+/j11/XMXTozQ5tWiwWFi/+lEGDhjB58hMAdOnSjZSUZH75Za1br80HH7zPBx+8b3tep04dVqz4odR60dEN8PX1xcfH225aqqqqvP/+bG64YQDPP/+iLT0kJJSpUx9j3LjxNGgQY0vv2bMXDz/sevMhIa4FMnIohBCiTAYMsN8wYtbeXU5PIixIhTwnM8rUAusGM96+QWh1zj+j9M+2n+Jm8XK9K2lKkuwaXRanE7NLfH75WH9Kin2GwO+/r6dHj062xzvvzHLZwt69u2nfvqPd+rOaNWtx3XWt2bt3t13ZHj162gJDsAZlqqqyf3+sLe3nn1czduxo+vTpTo8enZgwwRpUnT59qtx3WZrOnbvavtZqtdSrV5+kJPvR8qCgILvAMD8/j3//3Uu/fjdgsVhsI2tRUfUICwuz3VOTJk05fPgQ7777Nnv27MZsdtz0CaBTpy52z6Ojo0lKunhkzN69u+nZs7ctMAS47rrW1KhR0+F1LpSYmEBSUhK9evWxS+/Tp19JL4edkSNH8+mnS2yPmTPfcbuuM6dPnyI+/jz9+vW3G5Fs27Y9Go3GYefYbt16XNL1hKgOZORQCCFEmUVERJCYaH0zWaAo/HLmNAPrRjmOHh4DryAourzQYjGhx7oxTY+hd/LnKset8FuesrDVX49Zb23P6Ol64xnZlKZs7h/SjNe/2Gn3/EoIDAzCYDDYfm4KdejQiU8/XQJgN0XSmaysTBo1auKQHhoa6hDQFd/AJCAgAL1eT3JyMgB//LGBV155kWHDhvPQQw8TEBBISkoy06ZNxWi8fGdo+vvb77jp4aEnN9f+Zzg4OMTueWZmFhaLhXfffZt3333boc2EBGtwOWTIzeTm5vL99yv5+uul+Pn5MXjwTUyaNNlucxXHPnjYTRfNysoiNDTU4TqhoaFkZjrfIColJdlp30NCHNtxJSIikmbNSl5zWhbp6ekALqcKF75uhYr3XYhrkQSHQgghyuz551/hsccm2p6/+e9uBtSNwmGfSRWy4iCgzsUk48+z8bjrLcBAyw7XOw0ONYDOqGDWW0d+Cjel0TiZ8CKb0pRN/Zr+dGgSTsdmkfxzIIH6NV0fD1CR9Ho9rVq1ZseO7VgsFtuoXkBAAAEBzS+U8SipCQICAklNdVwnmZKSQkBAgF1a8TWImZmZmM1mwsLCAOtatMaNm/DMMy/YyuzatZOqoPiHLP7+/mg0Gu65Z5zDyBxYA2+wjkSOHHknI0feSWJiIr/+uo4PP5xDUFAQ48aNd/v6AQEBDhvdgPV1LjoNs6jQUOvrWnwDGmffryul8GfiySen0aLFdQ75YWHhds+Lv+5CXItkWqkQQogyGz36Lrut9QtHD53tXJoTB3bJeenWMw8BrV5P/RadHepoAO/8i+vQTJ75pIRdvql+1xIvg55Hb29N15Y1ePT21ngZrtznxKNHjyEpKYnPP/+kXPVbtWrDjh3bychIt6UlJMTz3397ad26rV3Zv/76024t4x9/bECj0dhGpgoKChyC0XXr1pSrX5ebt7d1Ld3Jkydo1qy5w6NWrVoOdSIiIrjrrrtp2LAhJ0+eKNP1WrVqw59//mE3LXXfvv+Ijz/v8DpfvF4kYWFhbNz4u13677+vL9O1y8s6+mk/4lu/fjQREZGcO3fO6esWHh7uojUhrl0ycuimxMREkpKS7NKMRqPLrdiFEKK6+/HHdQwceHEUY+a/u+lZsxY+Ho6jP6oCmiLnHlp0F8u07TWEk7HbHOq0PK2wNUC1TS21eDif6qcqct7s1aJ79+sZO/Y+Pv54HocPH+KGGwYQFhZGdnY2e/bsJjU1BR8fX5f1R4++i59++oFHH53Evffej6IoLFgwn4CAQEaMGGlX1mQy8vTTU7jttjuIizvHhx++T9++NxAd3QCAjh0789ZbM1i06GOuu641f/+9mR07/nF22Sph8uTHeeSRCTz//DT69x+Iv38AiYkJ/PPPNoYMuZn27TswY8Z0/P0DaNnyOvz9A/j33z0cPXqE2267o0zXuu+++xk//j6eeOJRRo4cTWZmJvPmzSE6ugH9+w90Wken03H33fcxe/abhISE0KlTF7Zu/Zvdu3dVxO2Xqn79aNas+ZFNmzYSFhZOWFg44eHhPPbYFF588Xny8/Po1q0H3t7exMefZ/Pmv5g48ZHLtvGQEFcrCQ7dtGzZMubOnWuXFh0djb9/gIsaQghRvbVt255GjZpw5MJxFiZF4eWd25nZuZvD9Kzs8/ZTSwtWvYbXWOvaKW/fILRaPYpivwlN8amlroLD/3bG0bpTXdmx9CoxadJkWrduw4oVy3nzzRlkZ2cTEBBA06bNeP75l1wGHwCRkTWYN28hc+bM5pVX/odWq6Vduw48+ugUhzWGt98+irS0NF5++QXMZhO9evXhyScvntN56623ERd3jhUrlrF06Rd06dKVV155jQceuOey3fulaNWqNR999AkLFsxn+vSXMZnMRERE0KFDJ+rWrQtYN41Zteo7Vq36joKCfGrVqs1jj03l5puHlelaTZs25/33P+TDD+fy3HNP4+XlRdeu3Xn00Sfw9PR0We+OO0aRnZ3FihXL+fbbb+jYsTPPPPM8U6c+dim37pYxY+7h7NkzvPrqi2RlZXH//Q8yfvxD9OvXHz8/fz77bBFr11pHhmvWrEWXLt0ICZE1hkIUp1GdzQESDpyNHM6aNQuNRsubb77vopZ79HotwcG+pKXlYDZfe5+Ay/3L/cv9X933HxFx8UMyLfDbkFswFNklslCNjvY7VfqNnkFEg0akpeVwYOef7Fq/3KHO7mgdWYHWUUa/tHDqH+nktA+DRrSkfkP3N76oaNOmPY5Op2XBggUV3nZ+fj7Hjh0nLKwGBoPrN+ZCCCGEK0ZjAcnJ8cTENLDboKo4mRPppoiICFq0aGH3MBgMLs9iEkKIa8WUKRdHYxTgiyOHnK49dGDwsX1Zp6HjZhEArU9Y0JutbZkNrjeekR1LhRBCiEsnkY0QQohL8swzz9t9UPb10cNOyxWPF5WMi0caePn4o/dwHBUrnFoKYNEbUXE+umoyWpymCyGEEMJ9EhwKIYS4ZD//fHFHwgJFQXE2clgsKXf3T6iqNdjTaLS07jXMoYoGMF+YoWryzCc5wvmui4psSiOEEEJcMgkOhRBCXLLCzWkKmZwEa6nFBxRP7caYct4WIIbXdn5+WnjaxY1qFJ3ZaRljvvN0IYQQQrhPgkMhhBAVYvNm6zEACrD06GGHdYemLLCY7Ouc++hRcv74BFVV8A8Oc9puo3gVz7wLU0tL2LE0KyP/0m5ACCGEuMZJcCiEEKLCXHddGwC+PHq4+CxSANKOOqaZDvyJmp+NVqunwXXdHPI1gFlrbc2iNznkF8rPc50nhBBCiNJJcCiEEKLCTJv2HGBdd/jLmdNORw+dLQ9UFOuGMo3a9nLarv7CfjMWF9NKAXKynY8qCiGEEMI9EhwKIYSoMAMG3IherwfgzX93Oy/kZEgxf/MSVFXB09vHMRMwmKwRZYFPlssdS+U4CyGEEOLSSHAohBCiQv3vf68C1k1pim9Mo6oq2ecd66gnd6LmZ1uPtDA4Hs5beN6hyTOfs/X/dXrdLRuOybpDIYQQ4hJIcCiEEKJCTZz4CHq9HgX44sghu6mlGo2GnPOOZx6CdWqpRqOlRddBDnkaQF84euib5fzCKqQk5VTAHYjLZcGC+XTp0o6HHrrfaV6fPt3L3Oarr77EnXfeXhHdc0teXh6ffrqQMWNG0qtXN3r16sY999zJihXLyM+/Oj6cWL36B9at+7lC25w69VEmThxfYpnC73/xx8iRwwEYNmwIb701w6580Z+JuLg4FiyYT1JSUoX2XQhxkb6yOyCEEKL6+emnXxk4sA9fHj3MuCbN7PIUVcHZZ5P5m5fg2/9hopq0Ye/G7+zyNIDpQhWL3oiqUdCojm0YC+RIi6vBnj272bFjOx06dLrktsaNe4C8vCszpTgjI51HHnmIc+fOMWrUnbRu3RatVkNs7D4+//wT0tPTeeCBCVekL5fip59+xMfHm4EDHT+Iudw8Pb344IP5DmkAM2e+jb9/gMu658/HsWjRx/To0ZPw8PDL2k8hrlUSHAohhKhwbdu2x8/Pj9zsbBRVRafR2PJcnVdfOLVUq3Xxp+lCGybPfBJrHCHyfBOHInm5smNpVeft7U2DBjEsWvRxhQSHderUrYBeuefNN2dw+vRpFi78jEaNGtvSO3bszO23j+LgwQOX1L7JZEKn06HV2n/wYbFYUFUFvd7jktqvCrRaDS1btnKa16RJ0yval+r0ugpRUSQ4dFNiYqLDNAaj0YhGIzNzhRDCmddee5MnHpvosP+MxmlpK0WxYCxwvuuo3qxiMVi/dnXeYUG+BIdXg/vvf5ApUx5l584dtG/fwWW5jIwM5s59j02b/iAvL4+YmIZMmDCJzp272sq8+upLHDy4ny+//AaArKws5sx5l7///ouMjAyCgoJp1ao106dfnK6YmJjABx+8z9atf5Ofn0ezZs15/PGpNG3a3GVf4uPPs2HDb9xxx2i7wLCQr6+v3b3Ex5/n/fdns337VkwmMy1btuSRRx6nWbOL1xg2bAg9elxPjRo1WbFiGYmJifz0068899zT+Ph407dvfz7//BPOnTvLggWf0bx5CzZv3sSiRQs4duwI3t7e9OlzA48++gTe3t62drOysvjoow/ZuPF30tPTCAsLp3//gUyaNJmJE8eze/dOALp0aWf7fowf/xCAW+2fOHGcWbNeJzZ2H+HhEdx//4MuX7eyKHw9nnzyGYe8nTt38PDD1uvcd98YW/rWrbts9zxv3lw2bvydzMwMGjSIYdKkyXY/KxMnjnf5ugohrCQ4dNOyZcuYO3euXVp0dHSJ0x+EEOJaNnr0XUx5fJJDcKjVaFiz9wxD2jiO+ORvXoK+2xiHdACz9mJYafR0Po1w55bTNGtVE/9Ax01thJWqKqgFOWg8/VALstF4+l7xDzq7detB8+YtWLjwI5fBocVi4YknJnP27BkmTXqEiIhIvv32G6ZMeZT33/+Q9u07Oq333ntv8/ffW5g0aTI1a9YiJSWZv//ebMvPzMzkwQfH4ePjw9SpT+Pn58fy5V/z8MMP8c033xMSEuK03d27d6EoCt269Sj1/nJycpg4cTyqqvLkk8/g4+PDF198zqRJ4/n00yXUrx9tK/v77xuIioriiSeeQqvV4uVl/dk9cOAA8fHxPPjgRPz9/YmMjGTDht944YVnGDLkZsaPn0BKSjIffDCHrKxMW/BrNBp5+OEJxMfHcf/9DxIT05CEhAT27t0DwNNPP8tLL72Al5cXjz76OAAREZEAbrVfUFDAY489jLe3Ny+99H8AfPTRh+Tm5lC3br1SXxsAs9l++rdOp0OjKeljI2jatClPPvkMb701gxdeeJn69evb8kwmE48+OpHU1FQeemgS4eERrF27hilTHuPzz5fSsGEjW1lnr6sQ4iIJDt00cuRI+vbta5c2a9YsGTkUQogSNGzUCIui4FFsmtzB/bkMaeNYXj25EzqMcNqWx9mOmBvsRKMFs6HA+QUvbEojwaFzqqqQ+8enGA9sRBfZEEvCUQzNeuHT+74r/vds3LjxPPnk4+zatZN27do75G/e/Bf79+/jnXfetwVkXbp04847b2fhwo9dBof798cyYMCNDBlyky2tf/+Btq+XLVtKdnYWn3zyhS0Q7NChEyNG3MLSpYuZPPlxp+0Wzh5yJ5hYvfoH4uPPs3Tpcho0iLFdY9iwISxe/BkvvviKrazFYmb27Dl4eXnbtZGVlclnny2xBW6qqvL++7O54YYBPP/8i7ZyISGhTJ36GOPGjadBgxjWrFnN4cMHWbDgU667rrWtXOHrER3dAF9fX3x8vO2md7rb/k8//UhychJff72SqKgoABo2bMSoUbe5FRzm5eXRo4f9dOKXXvo/Bg0aUmI9X18/oqMbABAT09BuBHbdujUcPnyYJUu+tpXp0qUbp0+f5tNPF/LaazNdvq5CCHsS2bgpIiKCFi1a2D0MBoPDugAhhBAXTXr4CZYePeywY+lt0Q2d7lgK2JUt6q7uXVDN1nmlhZvSOCPnHbqmFuRgPLARAEviMQCMBzaiFlz5XV579OhJkyZNWbToI6f5e/fuwsfH126kTqvV0q9ff/77by8Wi8VpvSZNmvLTTz+ydOlijh076pC/bdtW2rfvSEBAAGazGbPZjFarpU2bthw4sL+EHlt/Lksb4bL2fTcNGsTYAkMAHx8fevToyd699ud/tmvXwSEwBGvAVTSAOX36FPHx5+nXr7+t32azmbZt26PRaGx937FjO/XrR9sFhu5wt/3Y2P9o0CDGFhgC1KtX3+5eS+Lp6cWnny6xe7gzGluSbdu2EhPTkLp1o+z63rFjR/bvj7UrW/x1FULYk5FDIYQQl83o0XcxbcojDjuWaoHvdp9ieDvHkYaCrcudtqXJOYLmwlpDk2c+5+vGUuv0dQ7l/t5wjAaNw2T00AmNp591xDDxmPU8EY0GXUQMGk+/SunP/fc/yNNPT2HPnl0OeZmZWU6neIaGhmE2m8nLy8XPz98hf+rUpwkICODLL5cwZ867REbWYOzY+7jtNutxF+np6ezb95/D6BVAnTp1XPY1PDwCgPj4eKKiSh4hy8zMJCQk1EnfQ8nMzLBLCw4OdtpGcLD9vaenpwMwbdpUp+UTEhIA6zrNsLCy7+TpbvspKckOfQPrCGPx6aLOaLUau1G/ipCens7hwwedfk91Op3dc2d9F0JcJMGhEEKIy6plm/aYFAVDkTdpKjDz5/+cBof6s3vw0AVjKjYydPivH/BqYqDA2zpjw9W6Q1WF/DyTBIdOqAXZWBIujKZpNKCqWBKOWtceejkGWpdbz569ady4CQsXfkzr1m3s8gICAkhNTXWok5KSjF6vx9vbx2mbfn7+PPHEUzzxxFMcPXqEZcu+4s0336BBgwa0bduegIBAunSpy4QJkxzqeni43rWyXbv2aLVa/v57M506dS7xvgIDAzl58oSTvqcQEBBol+ZqJLJ4ckCAdY+DJ5+cRosWjh+KFAaEgYGBHD16pMT+OeNu+6GhYRw6dNAhPzXV8d6ulICAABo2bMTzz79Ualk3Bn6FuKbJnEghhBCX1eNPPMm/KckO00UzjWZ+OpjsUF6jgcbabKdteRovBowFPlkouDgXQzil8fTF0KwXALoI6zRAQ7NeaDx9K61P48aNZ8eO7bYNUwq1bt2W3Nwcu81kFEVhw4bfuO661g4jQs40bNiIxx+3joSdOnUSgI4dO3Hy5HHq14+mWbPmdo+iG5cUFxlZg759b+C771Y4Db5yc3PZtcu6C2irVm04fvwYJ04ct+Xn5eWxefMmWrduW2q/nalfP5qIiEjOnTvn0O9mzZrbzv3r2LEzJ0+eYN++f1225eHhQUGxXYHdbb9585YcP36M06dP2+qeOnWS48ePleu+yqIweC8osF9z3LFjZ+LizhEWFu6070II98nIoRBCiMuq/w0D2Llksd0IiYdWy10xjXnp260MeX6oQ526HiZiTY7rsFqdsLC1pR6zXoPJM59z9f+l7sk2DuVyso3IEdmONBotPr3vw7vrHZW6W2lRvXr1oWHDRuzYsd3uuITu3XvQvHlLXnnlfzz0kHW30u++W8Hp06ecHnVQaPz4++jduw8NGsSg1er4+efVeHh42IKyO+8cw7p1PzNx4gOMHDmayMiapKenERv7H2Fh4Ywe7Xy3XICnnnqGkydP8NBD9zNy5GjatLEeBXHw4AG++WYZN988jHbt2jN06M18/fVSpk59jAkTJuHt7cOSJZ9TUJDP2LH3lut10mg0PPbYFF588Xny8/Po1q0H3t7exMefZ/Pmv5g48RGiouoxaNAQvv32G6ZOffzCbqUxJCYmsmfPLp599n+ANRBcs+ZHNm3aSFhYOGFh4YSHh7vV/pAhN/HZZwt56qnHmTBhEqqq8vHH8wgNdZxGW9GioqLQ6XSsXr0KnU6LXu9Bs2bNGTx4KN9//y2TJo3nrrvupm7demRnZ3H48EFMJjOTJk2+7H0TorqQ4FAIIcRlpdFq+S0jjVvDImwBokaj4a5GjVl85CC707W0DbIfAdRqISo4kNNp9uuzNICqqBSelujqvEOZOeaaRqO1TSGtjKmkxWk0GsaNe5DnnnvKLl2n0zF79hzmzn2XefPmkpeXS8OGjXj77fdKPBuxVavWrFmzmvPn49BotMTENOStt9617WIZGBjEokWfM3/+h3zwwftkZGQQHBxCy5bX0atXX5ftFtZdsOAzvvpqKevX/8KSJV8AUL9+fW6/fSQjRowErGcezpu3gPffn82sWW9gNptp0aIlH364wO4Yi7Lq168/fn7+fPbZItauXQNAzZq16NKlm219psFgYO7c+cyf/wGff/4JmZkZRERE2u3YOmbMPZw9e4ZXX32RrKws2zmH7rTv5eXFe+99yKxZr/PSS88THh7BuHEP8Pvv68nNvbybQQUFBfPkk9NYsmQxP/+8BovFzNatuzAYDHzwwUcsWPARn322iOTkZIKCgmjcuKltrakQwj0a1dW2cKJU48ePx2JRmDnz3UtqR6/XEhzsS1paDmbztTdFSu5f7l/uv/rf//SXXuD2s2fsRg9NFgv9flpFkLeBf5yMHuZbNGzIcwxedkfryQq0frbplxZO/SOOm1AMGtGS+g0v/0hGoWnTHken07JgwYIKbzs/P59jx44TFlYDg8GzwtsXQghR/RmNBSQnxxMT08B2nqozsuZQCCHEZXff+AmYFPvgt/CTybR8I/tzHaeQempV9AbHP2CtT5jRm621dRbnE2CMBaXvmiiEEEIIexIcCiGEuOxq16lLsqen3aY0eo2GjhGRqCrMWOt4vpxGA6263uiYDtgOSVSc/xmzWKrvKKwQQghxuUhwKIQQ4rJTFYXaHh5200q1Wi0vteuIh1ZL/GnHw8oBatRwfu6cT96F4E/rPAjU6eTPmxBCCFFW8tdTCCHEZafRagkZcKPDcRb+Hh6MjmlEak6B03pegaEOU0s1wHXHL0wtlZFDIYQQosJIcCiEEOKKCL5xMJZih4xrNBpGxTRyubuocds3dOg/0i5NBYweGsw6ZORQCCGEqEDy11MIIcQVofXwIGriIyhFRg9VVeVQRjquts1Wjm0lPLyWXZoG8DSpBGQrWHTON57x9JSTmoQQQoiykuBQCCHEFeN7XSssRYJDjUZD65BQMvONrNx9ymkdg6cXXj4BdmlaoNUxEzqLxWkdOaNJCCGEKDsJDoUQQlxZWvs/PXqtFr1Gy+tr/nNavGDbMlp2H+yQrgGHNYxF84QQQghRNhIcCiGEuGI0Wi1qx052QZ0GuCOmkcs6ytGt1KzdwGmexWB0mi4jh0IIIUTZSXAohBDiimp27/12wZtGo2F0TCMy8418veOEYwUvfzwDQ9EbPO2SjVqwuNh4Zt3KWLIy8iuw10IIIUT1J8GhEEKIK0rn6UmawWAbPVRVlYPpaVhUWPDnYccK+VkYk85gNpnskj0U8DHmomgcdyxVFJX8PJNDuqhcCxbMp0uXdnTp0o6uXdvTr19P7rrrDt56awYnThx3KD9x4nimTn20EnpasmHDhvDWWzNszzdu/J0VK5ZXWPuvvvqS7XUq+nj88YcB6NKlHUuXLrYrf+edt9ueHz58iAUL5pOfn1dhfRJCXBuuue3c0tLSeOqppzh79iweHh60atWKl156CYPBUNldE0KIa4KqKIRqtaCxrgzUaDQ0DQpGC5xOz6HArOCpL/LZpc4Dj7Da+AWGkp2eZEvWAs1P5/Bf9DbqHu/qcJ2cbCPhl/leRNl5enrxwQfzAcjJyeXYsaOsWrWSVau+47nnXmTQoCG2sk8//SxabdX7HHvmzLfx97+4SdLGjX9w8OB+Roy4o8KuUbt2HV55Zbpdmp+fPwALF35GjRo1XdY9fPgQixZ9zO23j8TLy7vC+iSEqP6q3m/cy0yj0TBhwgTWrl3LqlWryMvLY/HixaVXFEIIUSE0Wi3e0Q3sRg4PZaSjAHWDfO0DQwCLCU12Ks069XdsCzDpC5xeR6aWVk1arYaWLVvRsmUrOnfuwp13jmHx4q9o3boNr7/+KufOnbWVjY5uQL169Suvs8Xk51t/npo0aUqtWrVKKX1pPD09ba9T4aN+/WgAWrZsRVjYlfvow2QyoSjOzxQVQlQvVSI4PHXqFC+++CK33HILzZs3Z+jQoU7LnThxgvvvv582bdrQtWtXpk+fbvtF7a6goCA6duwIgFarpWXLlsTFxV3yPQghhHCPqijkHT2CpsjIYeuQUOvIYVoOydmOv9fz9/xEvWbt0Gjs/2wZ9WDyMsvU0qucp6cnU6dOw2Qy8cMP39nSi08rTUxM4PnnpzFo0A307NmFW28dyrvvvmXLX7BgPn36dGf//ljGjbubnj27MHLkcP7660+7623evInJkycyaFA/+va9nnHjxvL335vtyqxe/QNdurTjv//2MnnyRHr37sacObMB+2mlr776EmvW/Mjx48ds0z9fffUl/vxzI126tOP06dN27WZnZ9GrVzeWLfuq3K9X8Wmlxfs9ffrLANx4Yz+6dGnHsGEXR2MTExN46aXnGTiwL716deWhh+7n4MH9dm0U3t+SJZ8zbNhgevXqSkZGRrn7K4S4elSJaaVHjhxh48aNtG7dGkVRnG5NnpmZyT333EOtWrV4//33SU1N5Y033iA9PZ233nrLSaulKygo4LvvvuOpp5661FsQQghRBhqNxm5TGr1Wi4dWi7ennjA/L4fyyuG/MLW52eHvg4cZvEy5nG64g/pHOl3mXlcfexL3sWT/CsY0H0GbiJaV3R3AOkoYHh7Bf/85P9IE4JVX/kdycjJTpjxFSEgoCQnxHDhgH9iYzWZeeOEZ7rxzDLVq1ebbb79h2rQnWbz4S2JiGgIQF3eOHj16ctddd6PRaPn7781MmfIoc+d+RPv2Hezae+mlFxg2bDj33jsOT0/7TZEAxo17gPT0NE6dOmmbBhoUFEzNmrUID49g9epVTJo02Vb+l1/WoaoKN97oeDxLcWaz2e65Xl/627bu3a/nvvse4NNPF/Luu3Px8/PDw8O6dCYzM5MHHxyHj48PU6c+jZ+fH8uXf83DDz/EN998T0hIiK2d33/fQFRUFE888RRarRYvL8f/l0KI6qfMwWF+fj6//fYbcXFxBAcH069fP7tfJuXRt29fbrjhBgCeeeYZ9u3b51Dm66+/JjMzk++/v/jLS6fT8eSTTzJx4kRiYmIAGD16NAkJCQ71Y2JiWLBgge25oihMmzaNLl260LNnz0vqvxBCCPdptFqCbxxM6o+rLqZhPc5iydFDfL3jBKM6RNtX8vLHwz8Yv6Awh3WHrY6Z2FfH4vRasu7QkaIqfH/kZ7KM2aw68jOtwpuj1VSJiURERkaSkpLsMn///lgmTpxM//4DbWmDB9vPNjKZTNx33/3cdNMwADp37sqIEbfw+eef8OqrrwNw++2jbOUVRaF9+w6cOHGMVatWOgSHw4ePYMyYe1z2qU6dugQFBRMff56WLVvZ5Q0dejOrV69iwoRJ6HQ6AFavXkXPnr0JDAws4ZWA48eP0aOH/Qce8+cvok2btiXWCw4OpnbtOgA0bdqMoKBgW96yZUvJzs7ik0++sL2X6tChEyNG3MLSpYuZPPlxW1mLxczs2XNkzaIQ15gyBYcJCQmMGTOGs2fP2j69nTVrFgsWLKBNmzbl7oQ7i83//PNPunbtaheIDhw4kOeee46NGzfagsOvvnJvmsYrr7yCXq/nueeeK1+nhRBClJtDcHjhOIulRw6x4M/DjsFhfhaarBRa9RjKltWf2mUZPbSYXfwd0VR4z69+exJjOZ9j/RA1LieBvYmxtI28rpJ7ZaWqqm26sTNNmjTlyy8Xo9Pp6NSpM3XrRjkt16tXX9vXOp2O66/vZTe1NDExgfnzP+Cff7aRnJxse0/TtGkzh7a6detR3tvhppuG8dlni9i6dQvdu1/PsWNH2b8/lgkTHi61bp06dfi//5thl3ap6y+3bdtK+/YdCQgIsI1KarVa2rRp6zAC265dBwkMhbgGlSk4fPfdd0lISGDixIm0bt2aU6dOMX/+fF5++WW+//77y9RFq2PHjnHbbbfZpRkMBqKiojh27FiZ2po1axYJCQnMnTu3xD9CAP369XOZ5+3tTWRkJPrimyeUke7COV06F+d1VXdy/3L/Rf+91lyr96/Xe+NZrx4Fp04BF4+zUIBTF9Yd2k0v9fJHHxJJTR8/h7Y8TQrona8/9w/0uuTf0e4o7W9JVaGoCj8cXYsGDSoqGjT8cHQtrSNaVInRw8TERKKinAd8ANOnz2D+/A/46KMPePPNN6hXrz4PPfQwffpc/Fut1+sJCAiwqxccHGwbkVQUhSeffIKcnGzGj59InTp18fb25uOP55GQEO9wzeDg8s+OqlWrFp06deaHH76ne/fr+fHH76lRoyYdO5Y+Bdpg8KRZs+blvrYz6enp7Nv3n8OIJFiD0aKCg4Mdygghqr8yBYdbtmxhwoQJPPzwxU+8oqKimDhxIsnJyYSFhVV4BwtlZmY6/LIHCAgIKNMi6SNHjrBo0SIaNGhgCza7devGtGnTytUvrVZLcLBvueoWFxBwbX9CJ/cv938tu9buX7VYMCVfnB6q0WhocuE4i0Bvgy0wVNULJ17kZxHopWL0dPx9qwFUxXGtOoAWTYX9ji6JVnt1BIe5pjyS81JQL6z4VFFJykshz5yPr4dPpfbt+PFjJCUlMmTITS7LhIWF88ILL6MoCgcPHuDTTxfywgvPsnz5SttUSrPZ7PCeIS0tjdBQ63uUs2fPcPjwQWbNeoeePXvbyhQUON/19lLj/ltuGc6LLz5HYmIi69b9zG233VFpx3MEBATSpUtdJkyY5JDn4eFh9/xq+cBDCFGxyhQcJicn23b6LNSpUydUVb3swaErpU1BKa5Ro0YcOnTI7fLr1693mTd+/HgURSEtLcft9pzR6bQEBHiTmZmHxXLtbRUt9y/3L/d/bd5/2IAbSfxuJWD9Xf7N8aMogN1ONagUTg5Nz8hB6+WPj18QudnpthImHXiQj6KxoFV1dtdY9ukOxj7cBf/Ay7uZhqKoV0WA6GfwZVqnyWQas21pAQa/Sg8MCwoKePvtmRgMBm6++dZSy2u1Wpo3b8GECZPYtGkjZ8+esQWHABs3brCtObRYLGzatJGWLa+zXQtAr78YDJ0/H8e//+4hKqpeufrv4aHHaHQeXPbs2Qt//wBeeuk5MjIyGDr05nJdo2z9sd6b0Wi0S+/YsRPr1q2hfv1ovL2vrQ+khBDuKVNwaLFYHHarKty5y2JxvhlARQkICCAzM9MhPSsry7besDKoKpjNFfOGzmJRKqytq5Hcv9y/3P+1df9KsdG+Wj7WACU932ibVmr78M/LH4vOB9UCLboN5p9fvrTVM1ig5akc9kVvp+7xrg7XyM4qwNvXcFnvxbpmreoHhwB1A2pX6vUVRWXfvn8ByM3N49ixI3z//Uri4s7xv/+94vL8wOzsLB577GEGDRpCVFR9zGYzy5d/hb+/P02aNLWV8/Dw4NNPF1FQYLywW+lyEhMTGTv2PsC6bi8iIpIPP3wfRbGQl5fHwoUfER4eUe57ql8/mtWrf+CXX9ZSt24UgYFBtvvQ6z0YPHgoS5cupnPnLiUeXl9RCs9DXLFiOT179sbLy4uGDRtx551jWLfuZyZOfICRI0cTGVmT9PQ0YmP/IywsnNGjx1z2vgkhqrYy71Z6/Phx245bcDEoPH78uEPZFi1aXELX7MXExDisLTQajZw+fdphLeLlkJiYSFJSkl2a0Wh0OHNLCCFE6VRFIfXXX2zPNRoNN9atx9v/7qFGkHeRaaUXZofkZ0FmEgTVoH7zDvzz69egWoNpFTB6QIGXnGl4NSgoyOeBB+5Fo9Hg7e1DzZrWNXgjRoy0BTXOGAyexMQ04ptvlhEfH4+npyfNmjXjvfc+tNuRU6/X8+qrr/PWWzM4duwotWrV5o033qRRo8YX2jEwY8ZbvPXWDJ5/fhoREZHcd98D7Njxj8N5f+66+eZh7N8fy9tvzyIjI53Bg2/ixRdfseX37t2HpUsX20YzL7cmTZrywAMT+OGH71my5HMiIiL5/vufCAwMYtGiz5k//0M++OB9MjIyCA4OoWXL6+w28RFCXLs0qrNDBV1o2rSp0ymcxad2Fj4/cOBAmTtUeJTF6tWr7dI//vhj5s2bx4YNG2yLpH/66SemTJnCmjVrLvvo4Zw5c5g7d65dWnR0NP7+AXz44aJLaluvt65bTEvLueZGDkDuX+5f7v9avf+0NatJWrnC9lxVVX46c4qZe3exddpghw1pfMe8i1aroyAvh+/nP28LDgEswJ4GYUQf7OVwnRH3tiO8hv/lvBWmTXscnU5rd2RSRcnPz+fYseOEhdXAYHA8Z09ctGDBfL788gt+/31z6YWvoI8/nse3337Djz+uxWC4vKPYQgjhjNFYQHJyPDExDUo8t7RMI4dvvPHGJXfMmby8PDZu3AjAuXPnyM7OZu3atYB1TWNISAijRo1iyZIlTJo0iUmTJpGSksKMGTO46aabrsi00pEjR9K3r/2narNmzZKRQyGEKKeQgQNJ+u5b6/x8rKOHg+vW49Mj+52PHBbkgHcABi9v/IPDyUq1HsegAiY9eBZYbDtwFmW5xoJuUXWcOnWSU6dO8c03X3PbbXdIYCiEqPLKFBzeemvpi8TLIyUlhccee8wurfD54sWL6dy5MwEBAXz++edMnz6dyZMn4+XlxdChQ3nyyScvS5+Ki4iIICLCfj2CwWC45jaQEEKIiqLz9CS8Ty+SNvxhl35LVAOn5dULI4UajZZmHW9g+7ql1ueAlxmax6WRgQkV+zfguitwlIUQzsyY8Rqxsf/RpUs37rlnXGV3RwghSlXmNYeXQ506ddzaQTQ6OppFiy5tCmd5yZpDIYSoeDETxpP0+0bb6KFWo+GumMbsO5xJi0b+aDQa2+hhwT/f4t3zPjQaLfWateefX79GVazr3lXAqNeiFniUcDVR3Y0f/xDjxz9U2d2wmTev4qcZCyHE5VQlgsOrwbJly1yuORRCCFE+Oi8vArt1J2PzX4B1GqlOqyUiL8B2ikXhmnbLoU3QeSR4+WEqKKDoknkNYDAp5DkZOczJNhJ+pW5ICCGEuIpJcOgmWXMohBCXR8177yPn4EHMKcm2E8fNBSo58Rp8a1pHDRVVRQ2OAk/rgfYGL298/IPIzUwFrHFkgV6DxaRFW2ybtXUrY7lzQqfLftahEEIIcbWTyMZNERERtGjRwu5hMBjQauUlFEKIS6H18CBizFjQXNxKRoOG7PPWryyKilajQZd+BjU/CwBjfh552Rm2NjSAwaxyLvofh/YVRSU/T465EEIIIUojkY0QQohK53ddK0JuusX2XFVVjltS0WhAp724+2j+9m9QVQWDlzd+QWEXy2PdsVSnyb2S3RZCCCGqFQkO3ZSYmEhsbKzdw2g0oiiyW6kQQlSIYsfubj56cRMwi2LNsxzaBAW5th1LC9l2LD2bjgbjFemuEEIIUd3ImkM3yYY0Qghx+aiKQvr6X23PNRoNN0VFs+tUCq3rhqDTalBU0EfG2NYdOtuxtECvxWK0X3eo02nx8pZdTIUQQvx/e/cen3Pdx3H8dV3XNpsdbDbDHGdOORtjTlsmpxxSCd060uQU5ZCKKKkkFBHC7VCS0p2kcupAJOWQSA6hFLbZ7MiO13Xdf8wuLtsYNtvs/Xw89uD6/k7fz2+/bdfn+p7kWpQc5pEmpBERKTgGoxHPuzpxbu0aILNb6RcnTzC2bR3ba6PBgCXqGNaURAwuHrnOWHqg/neYUstwl18Y1TwqU6qU/tSJiIjkhTKbPNKENCIiBeyKbqXX4uTsgrvXpUUqrEBKKcgwGqj6ZzP+3JLEN18c4qvVB1j53i8kxqfkc4Xlei1cOJ/g4MAcv/7730XXda5169YSHBxIXFxsAdX21vrjj4MEBweye/eua+4bHx/HnDmz6NPnXkJCggkLa8egQQP4+usvycjIKJD67dz5E/3796Fdu5bcdVcIAL16dWP69KkFcr2btXv3LpYuzb429q1+bk6fPm17xnfs2J5t++bNG23b86NOcXGxBAcHsm7d2us6bvfuXQQHB/LHHwevul9uP7+bNm3I8d4GBweyYsVy2+t169ayYcPX1xeU3FL6OFVERApdTt1K761W44pupVZMvgGAAavVgsFgpFGb7mz/IvMNoAGI9jThfsGI0WqyO7/ZbCElOV3LWRQBpUo5M3fu/Gzlvr4VCqE2xc+pU/8ybNgg0tLSefDB/tSrV5/09HT27t3NzJnTsFgsdOvWI9+vO3nyRGrXrsPYsc9RqlTmz9Ebb8wossNr9uzZxYcfvs9jjw20K2/Tph2LFi3Fzc39ltandOnSbNy4nlat2tiVb9y4ntKlS3PhQvGZTOuBB/rRuXMXu7IqVapisViveW+//PILSpd2oXPnrgVdTblBSg5FRKTQGYxGvDp1IWbN/2xlFquVplW8MRgvdSu1nj3O+fefwqFuCM7tHsOnUg2781SLNGMxxBJPGlacbnUYkgdGo4EGDRoVdjWKrUmTxpOamsbSpR9QvvylhDo4uDUPPNCPs2fPXuXoG5OYmEhMTDRhYUNp0iTQVl6nTt18v9bVpKSk4Ox8cx/weHl54eXllU81yrt27ULZsuV7uxgSExPZsWM7HTp0ZP36r255nW5UhQoVcv0ZvtX3Nj+eCbGnPpF5pNlKRUQKllfnrhhLl7a9dnV0ZMeuzEXuDYbM5SyyOp5mHNoKqRco5eJKqdKXPqW2AmkORqxoApqrSTqwn2PjnyfpwIHCrkqOgoMDef/9pSxcOI+uXe+ic+cwXnllEsnJydn2jYiI4Omnh3Pnna3p3fsevvpqnd327dt/4KmnhtC1awfCwtoxYMAj2br3ZXWHO3Toj6ueK+t84eGPExramo4dQxkyJJzDhw/ZticmJjJt2ut069aJdu1a8uij/2Hnzh3ZzvPf/y7i7rs70r59G8aNG01s7Llr3pdff93LgQP7eeyxgXaJYRYfn3LccUc92+tjx/7k6aeH0b59G8LC2jF27DP8889Ju2Ouda/XrVtLx46hALz66mSCgwOZPHkSkHO30s8+W02vXncTGtqa4cOf5MCB/dm6OV7Z1RBgxYrlBAdfSjyzujlu3/4Dzz8/lrCwdowf/ywAX321jkGDBtCp052278Hvv196lhcunM/ixe+RnJxs6/Y4ZEi4LZ4ruz7Gx8fz6quT6dIljNDQVgwY8HC279mQIeGMHj2Cb77ZRJ8+99K+fRuGDRvEv//+k+P36kqtW7fFZDKyffsPtrJvv91MmTJlaNasebb9U1NTmTVrJj16dKZdu5b0798nx+6Ya9b8j169utnud271WbduLf379yEkJJgePTozb96cfO+CfK0uu0OGhLN37262b99m+74sXHipF8H27T8wYMAjhIa2okuXMN544zW7n/mrPROSf9RymEearVREpGAZTCasZrPttdFgoGyaG0GvrmPBw61oXDmzeykGA0bfzFlL01IukJZyqTuWAXBMt2A1pGCwulw6l8nAhaQ0zkYk4uziWKK7l1rS0zmzdAnp0dGcWbaEgNemYnS8tcl0Tm9KTSaT7UMAgNWrP6Zx46ZMnPgyJ0/+zZw5syhb1pthw0bYHffSSxO45557efDBh1iz5lNeeWUSd9xRD3//zFbl06dP0bZtCP37P4zBYGTHju2MGjWCOXMWZHtTfq1zbdq0gYkTXyAk5E4mT34VR0dH9u37lbNno6hTpy7p6emMGDGEc+fOMXjwUMqV82X9+q8YNWoky5atoGbNWgB88slHvPfeu/Tv/zBBQS3ZufMnXn99yjXv2549uwFo3brNNfaEyMgIBg8eSMWKfrz44mQsFjMLF85n8OAn+OCDVXYtPFe7123atOPtt+fw9NPDefzxJ2jTpi2enjm3Dm3duoU33niNnj3vJSysA0eOHGbSpPHXrOvVTJ36Kl263M199/W2zfNw5sxp7r67G5UqVSY9PYONG79myJDMuKpWrcY999xLVFQUGzeut3VhdnV1y/H8ZrOZZ555in///YehQ4fj61ueTz/9hFGjRjB79rs0axZk2/fIkSPExr7P0KFPYbFYeOut6bz00gQWLVp2zTgcHR25884ObNy4ng4dOgKwcePX3HVXpxwnN5w0aTw7dmxn0KChBAQEsGnTBiZNGo/FYqZr1+4AbNu2lalTp9CtWw86duzMH38cZMKE57Od68MPP2Du3Fn06/cfRowYxV9/nWDBgrlYLJZsP095YbFY7H6GDQYDJpPpKkdkevbZ55k0aQLOzs6MGPE0AL6+5YHMRHnChOfo1q0n4eFPEhMTzdy575CYmMCUKfYfQOT0TEj+UXKYR5qtVESkYBmMRsp27WbrWmq1Wvno2FEsQGBVbyBzvUOTESyRf2JNScTJ2Q03Tx8Sz0VmHkPmpDRH6m7HlFGK8NqPs2XtMSxmK1+tzmxZMJmMPDgoqMQmiDFff016TAwA6dHRxKz/mnI9et6y6ycnJ9O2bYts5XPnvmeXrHl7ezN58qsAtGrVhoMHf+e77zZnezPbu3dfevfuA0CDBg358cdtfPfdt7aE7oEH+tn2tVgsNGvWnBMnjvH55//Llhxe7VxWq5V33nmbli2DeeONGbZjWrdua/v/hg1fceTIET744CPb9YODW3Py5EmWLFnEq6++gdlsZvnyJXTt2o2nnnrGtk9MTDQbN66/6r07ezYKIMdWwyutXLmC9PR0Zs1615YI1q/fgAce6MXq1asIDx9s2/dq99rLy4u6de8AoFKlylftErx06SKaNw/ihRdetMWVmprK4sXvXbO+uQkJCc32PR84cJDt/xaLhRYtWvLHHwf58su1DBnyFL6+5fH19c1TF+bt27dx8OABZs6cbfteBge35j//eYBFi96zSw6TkhJZvnyl7X4mJiby+uuvEBUVaUtyrqZz5y6MGjWCxMREUlJS2Lt3D8OGjeT48WN2+x09eoTvv/+WMWOesz2PwcGtiY4+y4IF82zJ4ZIli2jSpCkvvviybZ+UlGSWLVtiO9f58+dZtGg+Dz30CEOGPAVAy5bBmEwm3nnnbR566BHKlPG8Zt0vN3fubObOnW17XblyZVavvvYEOP7+NXB1daV0aRe774vVamX27Le4665OjB8/0VZetqw3o0ePZMCAcGrUCLCV5/RMSP5RcphHvr6++Pr62pU5OTlhNqtbqYhIfvEMu4uYtWvAYsFstfLpiWMkmzP4aNcJ+jX3z2w5vCjl509wCXmcGg1asW/rGiCz5TCirAPpzqmkk0q09SwWi/0sqCV5chqrxULM+q8vzQxrtXJu/df4dOuO4RZ9Al+qlDPz52efmbRq1Wp2r1u0CLZ77e9fg++++ybbcS1bXtrP1dUVX9/ynD0baSuLiopk/vy5/PLLTqKjo23Ln2QlPHk9199//0VUVCQjRjyTa2w7d/5EQEBNqlSpateyEhQUxMaNG2z1OXv2LKGh7e2Obd++wzWTw6yO1Ze3sOZm3769NGsWZNdCWLGiHw0bNmbfvr12++b1Xl+N2Wzm8OHDthahLCEhd95Ucnh58p3lxInjzJ8/l99+22fXHffkyZPZ9r2Wffv2ULq0q911jEYjHTp0ZNmy/2I2m22tYrVq1bG7n1kfAOQ1OQwMbE6ZMp589903JCYmUqlSZerVq58tOcz6/nTs2MmuvGPHLkyZ8hKRkRH4+JTj0KFDDB9unyS1b3+XXXK4f/8+Lly4QFhYR7tnsnnzIFJTUzh27BiBgc2uWffL9e37IF26dLO9dnK6ufHdJ0/+TUTEGZ55ZoxdHZs2bYbBYOCPPw7aJYc5PROSf5QciohIkRH37Wa4OJbbZDBwv38A7x89zPQNv9OvuT+Q1XpowHz4B1Ib9+C3bfbjwqqfySDS20SGg5EfTu3Ak3rZrlNSGYxGvLt05exnn2YmiAYDZbt0vWWJIWROSHP5uLjcuLvbz3jo6OhIWlpanvZLTc3cz2KxMGbMM5w/n0R4+BAqV66Ci4sL7703j8jIiOs6V3x8PJA5ri83cXFxHDlyKMeW0awEIyYmGgAvr7J228uW9c71vFnKlctMQCIizlClStWr7puYmECtWnWylXt7e3Py5N92ZXm911cTFxeL2ZyRrcvplXFeryuPP3/+PCNHDsPT04uRI0dRoUJFSpUqxWuvTSYtLfW6z5+QkEjZstnr6O3tQ0ZGBsnJF2yzb7q723dNdbzYHTvrGbkWo9HIXXd1YuPG9SQmJtCpU5cc90tISMRkcsjWouft7X1xewIODg6YzRnXfI7i4uIAePTR/+R4rZx+Dq7F17d8nn6G8yqrjuPGjc5xe2RkpN3rm32m5OqUHIqISJFgtViIvazlxGAw0C+gFiuOHiY2OY09J2Ns4w6tgKl8TZw8vHH38iEhJvMNjhVIcTaQYcp8FXMhDs9CiKUo8+7albit35MeHY2jjw/eXW7fKeX//fcfjhw5xLRpMwkJudNWnpp6/UlEmTJlAIiOzn02UA8PD2rWrMX48ZNy3cfb2wcg2wQ0587FXLMOWd1gd+z48ZrJoYdHmRzPGRMTg4dH/s+X4OnphcnkkG0ykpwm2nFyciI9Pd2uLCEhPsfzXtlKeuDAb0RFRTJjxixq1aptK09KSsrWwysvPDw8OHcuex1jYqJxcHDAxaV0DkfduM6du7Bq1YdYLBZeeeX1XOtkNmcQHx9ve+4y6xRj2551v6/1HHl4ZB4/der0HLsj+/n53VQ8+SHreRwzZhz16zfMtv3KD2Ty0nIuN04D5kREpEjIWs4is3Noph8iTmMBPF2cCKzqndliaLFiIHPcoSEtGf/6l7rEGYAz7qXAYMCS4oxDVBNMJvs/dSaTEWeXkjubqdHRkYqPPU6pSpWo+Ojjt3wymlspKwl0cLgU45kzp/ntt1+v+1zVqlXH17f8VRcXDwpqyenTp2yzhl75BZmtLj4+PmzZ8p3dsXnpxtm4cRMaNGjIsmX/JSoqKtv2mJgY2yLmjRo1Ydeun4mPj7Ntj4yMYP/+fTRu3DQvIV8Xk8lEnTp12Lr1e7vyrVu/y7avr68vf/11wq7sl19+ztN1Ln1PL7Vv/PbbPs6cOW23X2brp30CmpPGjZty4cJ5uxlsLRYL3367mYYNG+dpopXrUbduPe6+uzv33fdAtq7Ul+rUBIBvLlv7FWDz5o1UqFCR8uUrXLzfdXN4jjbbvW7UqBHOzs5ERUXl+Exe73jDm3V5a3yW6tX98fUtz6lTp3KsY7lyubfWS/5Ty2EeRUVFZVs7KC0tTRPSiIjkI6/OXYn/YQsZFz8hb1OlGo6//Up8Shof/XKCfkH+7Pv3HIFVvXGoE0JKclK2bqX+Z1OIKl+KDOcUQlp70a5SE1KSL71JLOmzlQK4NWiI26s5t1oUNIvFyoEDv2Ur9/T0onLlKvl6rayE7t13Z2OxmElOTmbRogWUK3f9LUwGg4GnnnqaiRNf4LnnxnD33d1xdHTkwIHfuOOO+rRtG8Ldd3dnzZpPGTo0nP79H6ZKlWokJSVy5Mgh0tMzGDr0KUwmEw8//DhvvfUmZcuWpUWLYH76aQd79+7JUz1efvlVhg0bxOOPP8SDD/bnjjvqkZGRwb59v7J69ceMHDmKO+6ox4MP9ufLL9cyYsRQHntsIBaLhYUL5+PhUYbevfted/x58dhjT/Dss8/w2muv0KHDXRw+fJivv85cv+/yWSXbt7+LVas+pF69BlStWpWvvvrS1ip2LfXrN6R06dJMnz6VRx55nLNno3L8nlav7o/ZnMGqVR/SsGFjXF1dqVaterbztWnTlnr1GvDyyy8yeHDmbKWffbaakyf/ZsyY5278ZlzFhAkvXXV7rVq1ad++A7NmzSQlJYUaNWrwzTeb+OmnH5k0abJtv8ceG8izzz7DK69Mss1WumGD/bhVNzd3wsOHMHfuLKKiImnWrDlGo5FTp06xdev3TJ36Js7OLldWocBUr+7PV199wQ8/bMHHpxw+PuUoV64cI0eOYuLE8aSkJNO6dVtcXFyIiDjD9u3bGDJkeK6JtOQ/JYd5pKUsREQKntHREZc6dUn8MfNTfM+LXUvfP3qYCWv38ubG34lLTsOrtBM/vtsMx4+fw9XkRZLFChjsu5VaYXfCNrrckTn+KytBzPq3pCeIhSU1NYUnnngsW/ndd/dg4sSX8/VaTk5OTJ06nenTpzJ+/Dh8fcvz+ONPsGvXLxw6dPC6z9exY2ecnZ1ZunQxL774PE5OTtSpU5fQ0DDb9ebOXcDChQtYunQx0dHReHp6Urt2Xe6//wHbefr06UdSUiKrV3/Mp59+QlBQS557bjyjR4+8Zh0qVarM0qUreP/9ZXz++We89948HBwcqFmzNoMHD6Nz58xxbOXLV2DevEW8885bvPzyixiNRgIDmzNixKgCW6g8JCSUZ599gWXL/suGDV9Rr14Dxo59jmeeeQo3t0vj9QYMCCc29hyLFi3AZDJyzz33UatWLbsZMHPj7e3Nq6++wTvvvM2zz46iSpWqPPvseN5/f6ndfm3bhnD//Q+wbNkSYmPP0aRJIPPmLcx2PpPJxFtvvcOcOW8zb94ckpMvULNmLWbMmJXj+oO3yksvTWH+/Ll8+OFy4uLiqFq1Gi+9NIUuXe627RMSEsq4cS+wdOl/2bx5I/XqNeCVV14jPPxxu3P17/8wvr6+rFz5AZ98sgoHBwcqVapM27bt7FrVb4WHHnqUf//9h8mTJ5KYmMjAgYMIDx9Mhw4dcXNzZ+nSxaxfn/mBQsWKfgQHt85xTKgUHIM1a9ouuaqcWg6zlrJ4881r/zK7GgcHI15ersTGnicjo+TNfqr4Fb/iL5nx5xS71WLh2NPDsVy4tHZhfFoaPdav4/K74+nixO7xmdO5R2Q4sifl0iffv1d3JMYzsyuYwWrixSbP8vl/D9jNLp3fy1mMG/c0JpORhQuzv/m8WSkpKRw7dhwfnwo4OZXK9/OLFKTPP/+M119/hf/9b12RGN8mUlKlpaUSHR1BQEANnJ1z/9unlsM80lIWIiIFL2vcYcyaz8iatv+P9DSu/E0bl5xGjMEdb5Iob0rHzehEksVEqtGZ1FP+uJ27gKVcFObkOzCmO2T7XV2Sl7MQKSjx8fEsXvwezZsHUbp0aQ4ePMjSpYsJCblTiaFIMaHkUEREipQrxx028SqLo9FIuuVSgufp4oS3NREAg9FADcc0fkt1ppQlhUDLH5AO5kQ40vQ0FnWQEbklHBwcOHXqHzZtWk9CQiJeXp507Xo3w4Zdu7usiBQNSg5FRKRIuXLcYam0NNu4wyzxKWn8HG2ghY8VY7kaVIo8xnGDF0kpqYA1c+xhKQNnzTEcjTteOIGIlDCurq7MmHFzQ21EpHBpqk0RESlSrBYL53/da3ttAPoF1Mr2B+v4icykzwoYDFDV24usrqgGIMLLhBUDa49vxmSyXxerpC9nISIikhO1HIqISJFy5bhDK/DRsaN24w7LODvRL8gfAOvZ46RZDfxx6jSXr5FY/UwGkd4mzpeK5p4BDTGmX/qTp+UsREREslPLoYiIFDlenbti8nAHwOjmxkfHjtptj0tOY8/JmMx2QqsVRwO4Ol5K/qxAsqkU6VYH2pZrT3lvL8pVcLd9KTEUERHJTi2HeZTTUhZpaWkYDMqvRUQKQtY8MgajiXt73c/H//vEts3TxYnAqt4XdzBgsFqpbUpkT3rpzCLgbHVXDI4X+DN5PxZrR4z6fS0iInJVSg7zaNWqVcyZM8euzN/fH3d3j0KqkYjI7St2w9dYEjNnI7UkJHBP1ap8fNn2+JQ0PvrlBP2C/DH6BmCJ/JNK9Vtx+M9/OR8fg4OrG0mWBFwvGIkgil/+2k8Nlxq249WtVEREJDslh3nUt29fwsLC7MqmTZumlkMRkXxmtViI3bierMllwEqlM6cxgm3codUKE9buZfqm3/nuux+pUKEiqSnnubB3KgAZ55NoeALMBthd04NdH59jjzXOdg2TyciDg4KUIIqIiFxGmU0e+fr6Ur9+fbsvJycnjEbdQhGR/JQ1Ic2lyWUMlA65E0sO+47pWB/3Ta+RvHEW6R8/h6uTk+24rOUssJbCaLX/XW02W0hJTi/AKCQnCxfOp337NoVdDZvg4EBWrFhuez158iT+858H8vUa48aNJjg4kHXr1ub5mNGjRzBkSHi+1iPLkSOHWbhwPikpyXblu3fvIjg4kD/+OFgg173SwoXzCQ4OZPDggTluu5HnZMuW71i9+uNr71jA1q1bS3BwIHFxsdd97Pr1XzFgwMN06BBCWFg7+va9j1dfncy5c+cKoKY3LqfnJT4+nnHjRtOxYyjBwYFs2fJdgf3MF5XnGDJ/j+T0tWnThhyfhSt/76xbt5YNG76+ZfW9FrUciohIkePVuSvxP2wlIyYaBx8fqvbuwyO7f2b58iW2fS6fsdQSdQyDAWpzjj1cGnd41FKHtJPlCyMEEZKSEtmxI3O9zg0bvqZ7956FXKPMN9WLF7/HAw/0xdnZxVZet25dFi1aSvXq/re0Pr/+upddu36mefMWN32uLVu+59Chg/Tu3ScfanbrLV++hHnz5tCvX3/CwwdjtcLx43+yYcPXREefpWzZsoVdRZucnpcVK5aze/cvTJz4CmXLelG1anXuuKMebdq0y/frF7Xn+IEH+tG5cxe7sipVqmKxWFm0aClubu65Hvvll19QurQLnTt3Lehq5omSQxERKXKMjo6Uf+QxIpcvAYuF5COH6d//EbvkMGvG0qZVfTBYrWAwUNGvGh5xJhLORZDh6EXP9veye98ZSEosxGikpPr2229IS0sjOLgVP/+8k5iYaLy9fQq7WjlydXWjQYNGt/SaLi4u1KgRwOLF7+VLcljYzGYzVmtOfRzy5pNPPqJbtx6MHDnKVta6dRseeuhRLJYbP+/1yIrBweHq68Dm9Lz89dcJatasRUhIqK3Mw8MDX99b9wFdYTzHABUqVMj1ul5eXre0LikpKTg73/iQCfWJFBGRIsmldh3AQMa5GCLfX8Y/Fxe9z5I1Y6mBzMQQqxVr1DH87wjEsZQLjZq1pLprHPcEe2A12r+xMpmMOLtc/c3P7SoxPoWoM4m2r8T4lMKukp1jx/7k6aeH0b59G8LC2jF27DP8889Ju30sFgsffvgBffveR7t2Lbn77o688MKzJF38EOCvv04wYcJz9OzZldDQ1vTrdz8rVrx/XW+w4+JiadeuJZ9//lm2beHhjzFu3OhrnmPDhq+oUqUqI0eOxmKxsGnThmz7nDhxnCFDniAkJJj77+/JV1+ty7ZPXuI5ffo0wcGBfPnlF7z66st06BBCp0538vbbM8jIyAAyu69NmfISAF26dCA4OJBevboB2bvjDRkSzujRI7PV5eOPP6Jdu5YkJCQAYLVaWbFiOQ880It27Vpy3309WLnyg2vemywDBw5i79497N6966r7paWlMW/eO/TqdTft2rWkb9/77LriTZ48ia+++oLjx4/ZuvVNnjyJX3/dQ3BwIKdO/Wvb99lnRxEcHMjRo0dsZZMmjWf48MG21/Hx8bz66mS6dAkjNLQVAwY8zM6dO+zqlHmPRvDll1/Qp8+9hIQEc+TIEXLy1VfraNu2BWvWfJprjImJibl+eHD5MKZevboxffpUPvhgGT16dCY0tDVjxz5DdLT9rPpz586mf/8+tG/fhh49OvPii89n2ye3GBITE3nttVfo0aMzISHB9OzZlQkTnrMdd+XzEhwcyNat3/Prr3tt9x9y7iKcmJjI9Olv0KNHF9q1a8m993bn3XffsW3fvv0HnnpqCF27diAsrB0DBjxia4GH63uOAVJTU5k1ayY9enSmXbuW9O/fJ1s3zqwu5bt37+KRRx7kzjtbM2DAwxw6dHPdU6/VxXjIkHD27t3N9u3bbPdt4cL5dvdiwIBHCA1tRZcuYbzxxmskJ1/qSpsV7/btP/D882MJC2vH+PHP3lSd1XIoIiJFUuyGr8mIiQEgIzoalwMH7LbnNGOppWZr9v+0EYs5g4M/rQfAYDJxvJ4rVmvmJ6n31uxOY7+6JXIymsT4FN5/dydm86WkwmQy8vDQlkXifkRGRjB48EAqVvTjxRcnY7GYWbhwPoMHP8EHH6yyfQI/Y8YbrFnzP/r1+w8tWgRz/vwFfvzxBy5cSMbNzZ2zZ6OoVq0anTt3pXRpV44ePczChQtISUlm4MBBeaqLp6cXoaHt+eKLNdxzz7228r///ov9+39jxoxZVz3+7Nmz7N27h8cfH4i/fw1q1arNhg1f069ff9s+qampjBw5DBcXFyZNegWABQve5cKF81SpUu2yc+U9nvnz59CiRTCvvjqVw4cP8d5783F0dGTYsBG0adOOxx9/giVLFvH223Nwc3PD0dEpx/p37tyF6dPfID4+njJlytjKN23aQHBwazw8MmdrnznzTdauXcNjjw2gfv2G7N+/j7lzZ1OqlDP33df7mve5deu21KtXn0WLFtCsWfNc9xs/fhz79v3KwIGDqF7dnx07tvHSSxNwd/egdes2DBjwBHFxsfz991+8/PIUIPN76OtbnlKlSrF3724qVaqM1Wpl375fL5btoVat2gDs27eXHj16AZmtZ8888xT//vsPQ4cOx9e3PJ9++gmjRo1g9ux3adYsyFavP/74g4iICAYNGoK7uzvly5fn+PFjdnVfvXoVb789gwkTXqJLl7tzjbFu3Tv47LNP8fOrRNu27a7ayrxly3dUqFCRsWNfIDExgXfffYfnnhvDokXLbPvExp7j0UcH4ONTjri4WD788H2GDAln5crVODhcSgFyimHWrBns2PEjQ4c+RcWKfsTERNslaFdatGgps2e/TUpKCs8++1yu+6WlpTFs2JNERJxm4MBBBATUJDIykn37frXtc/r0Kdq2DaF//4cxGIzs2LGdUaNGMGdO5jNyPc8xZCb+O3ZsZ9CgoQQEBLBp0wYmTRqPxWKma9futv1iYmKYOXMajzzyOK6urrz77juMGzeGTz/9/JotqRaLxfYhDIDBYMBkMl31GIBnn32eSZMm4OzszIgRTwPYWlq//XYzEyY8R7duPQkPf5KYmGjmzn2HxMQEpkyZaneeqVNfpUuXu7nvvt43PR+KkkMRESlyrmfG0jc3/s73P/5KRW9PrE7OuP0zjYSYyMxjDQbOO8AF51QMxjSsVvjfv1/Suu6t73ZUFCRfSLdLDCFzcp7kC+lFIjlcuXIF6enpzJr1ri0RrF+/AQ880IvVq1cRHj6Ykyf/5n//W83gwcN49NEBtmPDwjrY/h8U1JKgoJZAZstW48ZNSElJYfXqVXlODgHuuedennpqCCdOHMffP3MplLVr11CuXDmCg1tf9diNG9djsVjo1ClzHFHnzl2ZM2cWJ0/+TdWqmYnfl19+QXT0WT766H9UrVoVgJo1a9Gv3/12yeH1xFOpUmVefPFlAIKDW5OSksLKlR/w8MOP4eXlRaVKlYHMRMTTM/fubu3b38X06W/w3Xff0KvXfQBERJzhwIHfmDz5NQD+/fcfVq9exbhxL9Cr1/0AtGjRkgsXLrB48Xv06nVfnt6oDhgQzpgxT7Nnz24CA5tl27579y/88MMWZs2aS8uWrQBo2TKYs2fPsmjRfFq3bkPlylXw9PQiIuJMtu599erVZ8+ePXTvfg/Hjx8jKSmRnj3vZe/e3fTp04/Tp08TERFBkyaZrV3bt2/j4MEDzJw5m9at29ru5X/+8wCLFr1nlxwmJiawdOkHuXadXL58CYsWLeC116YREnLnVe/D2LHPM27caF5/PfODgswkMYR+/frj5+dnt+/58xeYOfMd3N0zx7L5+vry1FND2Llzh+0eTZjwkm1/s9lMgwaN6NmzC7t3/2LbJ7cYDh78nU6dutCtWw9bWceOnXOte4MGjXB3d8NkMl21W+dXX63jyJFDLFy4hIYNG9vKL7/OAw/0s/3fYrHQrFlzTpw4xuef/49mzZpf13N89OgRvv/+W8aMec42FjU4uDXR0WdZsGCeXXKYkBDPvHkLqVEjAAAnp1KMGDGEAwcO0KRJ01yvAZmttHPnzra9rly5MqtXX3sSKn//Gri6ulK6tIvdfbNarcye/RZ33dWJ8eMn2srLlvVm9OiRDBgQbqsnQEhIKMOGjbjm9fJC3UpFRKTIyeuMpVZrZgvi3p+3QylXDGkpNGjVFVtSabVyooIJgzHzPAYDpBoSSc4oWl0pJdO+fXtp1izIboxOxYp+NGzYmH379gKwa9cvWK1WWytPTlJTU1m4cB69e/ekXbuWtG3bgvnz5xIdHc2FCxfyXJ/mzVtQqVJl1q37HICMjAzWr/+Ku+/ucc1WgQ0bvqZOnbpUq1YdgE6dumAwGOy6s/3++35q1AiwJYYA1apVt3vTd73xhIa2t3t9551hpKSkcOzY0TzHDVCmTBlatgxm8+ZLXWE3bdqAs7Mz7dqFAPDLLzsBaN++AxkZGbavoKAWxMREExkZkadrtW0bQp06dVm8eEGO23fu/AkPjzI0axZkd53mzYM4fPgwZrP5qudv0iSQvXt3A7B37x7q1KlL27bt+PXXPQD8+useHB0dadCgIQD79u2hdGlXW2IImd06O3ToyP79++yuV7NmrVwTwwUL3mXJkkVMnz7rmokhQEBATVauXM3MmbPp2/dB3Nzc+PjjlTz0UF+OHDlst2+zZs1tiSFkfoDg6urGgQP7bWU//rid8PDH6NAhhDZtgujZM3PClJMn/7Y7V04x1KlTly+//IIVK5Zz7Nif16x7Xu3a9TPVq/vbJYZXioqKZPLkifTo0Zk2bYJo27YFO3f+lK3eeZH1e6Njx0525R07diEi4ozdM+rjU87uZy/rA6GzZ6OueZ2+fR9kyZIPbF9vvDHzuut6uZMn/yYi4gwdOnS0e+abNm2GwWDINhvr5c/qzVLLoYiIFEl5mbHUYIApPZsScvZrLqw9iiXyT7zrtMOjbAUSzkXg4V2Bjg3vZdk3v9mOeeyuxrg6li6MkOQaEhMTqFWrTrZyb29v2xvD+Pg4TCaHq87cOHfubD7//DMGDhxE3bp34O7uztat37NkySLS0lIpXTpv33+DwUDPnr346KMPGTLkKX78cRvnzsXQo8c9Vz3ur79OcOTIIcLDB5OYmDkO0sWlNA0aNGTDhq8JD88c2xYTE42XV/Y4ypb1tuuidj3xXHm+rNfR0dF5ivlynTp15eWXX7RNpLNp0wbatbvTNjtkXFwcVquVzp3Dcjw+MjKSihX9ctx2pYEDB/Hss6NsCdvl4uLiSEiIp23bnCetiYmJvuqkJ02bNmPJkkVERkbw6697aNIkkMaNmxAfH8+JE8fZu3cP9erVp1SpUgAkJCTm+Hx5e/uQkZFBcvIF2+yTOX3/snzzzWYCAmrSuHGTq4Vux9HRkdat29re7P/004+MHj2SxYvf4403Ztj2y+m6Xl5etu/zwYO/M3bsM4SEhPLww49TtqwXYOCJJx4lLS3tiuOyn2v06Gfx8PDgww8/4J133qZ8+Qo88sjj3H//zS31Eh8fj49PuVy3WywWxox5hvPnkwgPH0LlylVwcXHhvffm5fnDhsslJCRiMjlQpoynXbm3t/fF7QmUL18BwC7ZBnB0zEyTUlNTr3kdX9/y3HFHveuuX27i4uIAch3bHBkZaff6as/h9VJymEdRUVGcPWs/iDctLQ2DQY2vIiIFIWvG0rOrVlKu74MYHR2zzVh65XIWAObDP+DfuB8Hd31H5VpNKGMw08zTl6aN72DXoSiaV6tZKPEUBS6lHTGZjNnGHLqULhqT83h4lOHcuZhs5TExMbYxbmXKeGI2Z3Du3LlcE8Rvv93EvffexyOPPGYr2779hxuqU/fuPXnvvfls3/4D69atpWnTZlSuXOWqx2S1Di5cON9ucoksv/9+gPr1G+Dt7cPhw4eybT93LgYPj0vj/K4nntjYczm+9vG5/llSQ0LuxMnJic2bNxEc3IojRw4zaNAQ23YPjzIYDAYWLPgvjo7Zn6Gs7rN5vVbt2nVYtOi9bMmUh4cHXl5ezJz5To7HXuuNcaNGjXBwcGDPnt3s27eXsWNfwM3NnZo1a7F37x5+/XUPYWF32V0vp3UFY2KicXBwwMXlUjJuMGTbzebNN9/i+efH8vzzY3njjRk53qNrCQ5uTc2atfjrrxN25Vd+nzPLYm3f5y1bvsXNzY1XX33D1rX3zJnTOV4jpxjc3Nx55pmxPPPMWP788yirVq3kzTdfp0aNGjRtmr3rb16VKVOGP//MvRX733//4ciRQ0ybNtOutTUvCVpOPDw8MJszso2djbk4nj3r90pRk1WvMWPGUb9+w2zbr0ywDVd7EK+TksM8WrVqFXPmzLEr8/f3x929aD5UIiK3A9f6DaDvg5xdtRL6PpitW9Gl5Sy8bctZZHj7s/+nTVjM6bZJacqZHHHycOefcl/y2ynwd7m0Bpazi2ORGG93K7iXcebhoS1JvpBuK3MpXXTib9SoCWvWfEp8fJztk/7IyAj2799nG1/YvHkQBoOBdevW2iVLl0tNTbWbQMJsNuc4U2heeHv70LZtOz74YDkHD/7OhAmTrnnMxo3radCgIUOGPGVXnpGRwdixT7Nx49fUr9+AevUa8PXXX3Ly5Elb19K///6L48eP2ca/XW88W7Z8x4MPPmR7/f333+Ls7ExAQC0AW4JyZetRTlxcXGjbNoRNm9aTkBCPh0cZgoMvjVULCspsyYuPj6Ndu9DcTpNnAwaE89xzY7KVBwW15IMPluHg4GCbQCYnjo4OpKVlTyKcnV2oU6cua9euITo62jZ+rGnTzIXK//nnJE2bXrrfjRs3ZcWK5ezYsZ1WrTJn2rRYLHz77WYaNmycp4lGAKpVq8bs2e8ybNiTTJjwHK+++obdRDBXiomJsbVoZUlJSSEqKhJ/f/uuxrt37yIpKdHWgvnLLzs5fz6J+vUbAFnPjINd0nCjC63XrFmLp58ezRdfrOHvv/+6qeQwKKglmzdv5MCB33Icm5iVBF7+vJ85c5rffvvV7sOGvD7HWR80fPPNJrsJkjZv3kiFChVtrYaFydHRkdRU+ziqV/fH17c8p06donfvvre0PkoO86hv376Ehdl3m5g2bZpaDkVECpAlPZ3I5UvJiIkm8v1lxNaqZbc9azkLwLachenscdw8apIQe5asSWlcPb358p/vSU0ys+uTGHZbLk0rbjIZeXBQUJFJkAqaexnnQo016032le64ox4PPtifL79cy4gRQ3nssYFYLBYWLpyPh0cZ2xukqlWrce+9vVmw4F0SEuIJCmpBSkoK27dv44knnsTX15cWLYJZu/Yz/P1r4OXlxerVH5Oenp7tmnl1zz33MmrUCNzc3GjfvsNV9z1w4DdOnfqXxx8fmOPsm+3ahbJp00ZGjBhFt249WLp0EWPHPs2TTw7FarXy3nvzsiUI1xPPqVP/8sork+jYsTOHDx/i/feX0rfvf2wtEVmLg69e/TEhIXfi7OxMzZq1cjwXZHYtffbZZ4iIOENYWAe7N+1Vq1bj/vv78PLLL9K//yPUr9+QjIwM/vnnb3bv3sW0adc37io0tD01a9Zi166fcXG5tLB5y5bBtG0bwjPPDOehhx6lZs1aJCcnc+LEcf755x/bhB3Vq/uzbt1aNm5cT5UqVSlTxtM2kUuTJoGsWLGcmjVr2e5FkyaBrFq1EpPJZDcGrk2bttSr14CXX36RwYMzZyv97LPVnDz5N2PG5D4TZ05q1qzFrFlzGT78SSZPnshLL03JdZKehx7qQ9u2IbRs2QofHx/Onj3LJ5+sIi4ujr59H7Tb19W1NM888xQPP/w4SUmJzJ07m3r1GtgmSmrRIpiPPvqQGTPeIDS0Pfv372f9+i/zXO/w8Me588721KgRgNFo4uuv1+Ho6EjjxlefmOVaunbtxqeffsLo0U9fnK00gKioKH79dQ/PP/8i1apVx9e3PO++OxuLxUxycjKLFi2gXDlfu/Pk9TmuVas27dt3YNasmaSkpFCjRg2++WYTP/30I5MmTb6pWPJL9er+fPXVF/zwwxZ8fMrh41OOcuXKMXLkKCZOHE9KSjKtW7fFxcWFiIgzbN++jSFDhl9Xy/z1UHKYR76+vvj62j+YTk5O2WZ9ExGR/HPlchY1r3jTnNNyFo53hNCgQlN+XHex+6nVilv9BkQkbMM5wwODxf6NmdlsISW5aMzWWRKkpqbywgvZ1+GaMOElunfvybx5i3jnnbd4+eUXMRqNBAY2Z8SIUXaT1IwZMw4/Pz8+//wzPvpoBWXKeNK0aSCurpnd/UaNepZp015jxoxpODs7061bD0JD29tmgbxeLVu2wtnZmU6dul5zcen167/G2dmZ9u3vynH73Xd355tvNrFr18+0bNmKWbPeZdq015g0aTzlyvkyYMATfPfdN1y4cGkts+uJ58knh7Fnz25eeGEcJpOR++9/gCFDhtm216lTlyeeeJK1a9fwwQfL8PUtz5o1uScNrVplLlsRHR1Nx45dsm0fPfpZqlWrxpo1/+O//12Ii4sLVatWo0OHjle9TzkxGAwMGDCIF14Ym23b66+/yfLlS/j000+IiDiDm5sbNWoE0L17T9s+PXv24uDB35kxYxrx8XHcfXcPJk7MnLk1MLAZK1Yst2uRbdo0EIPBQO3adXB1dbWVm0wm3nrrHebMeZt58+aQnHyBmjVrMWPGrKsut5GbunXv4O235zBixFBee20y48dPyrEb4MCBT7Jt21ZmzZpJXFwsnp6eBATUYs6c+XYzpEJmIu3rW55p014lMTGR5s1b8NxzE2zbW7duy7BhI/jkk1WsW7eWRo2aMH36LPr06ZWnOjdq1JivvlrHmTOnMRiMBATUZPr0t22TtNwoJycn5syZz/z5c1m27L8kJMTj61veNhOqk5MTU6dOZ/r0qYwfPw5f3/I8/vgT7Nr1i92ag9fzHL/00hTmz5/Lhx8uJy4ujqpVq/HSS1OuuqzIrfTQQ4/y77//MHnyRBITExk4cBDh4YPp0KEjbm7uLF26mPXrvwIyJ+gKDm591THXN8tgtVqt195NchIeHo7ZbOGNN96+qfM4OBjx8nIlNvY8GRklL9lU/Ipf8ZfM+K8Vu9Vi4djTw7FcPhujiwuhH3+I+bI/XQYDlHEuxfc/7qWityeUykwQ1i+fSkJM5qQ0GytaSDUl4HLBg5q/t8t2rd6PBVKugnu28rwaN+5pTCYjCxcuvOFz5CZzpsnj+PhUwMmpVL6fX65t166fGT58MEuXfkDduvk36UR+On36NPfd153XXptmN35Obj+9enWjbdt2192KKSVbWloq0dERBATUuOqHXOoTKSIiRVJOy1l4d7mb/g8/Zref1Qpxyan8susXDM5uGAxGDAYjDdt0p5SLG7WCO5JmTLrqxBEiOclcyH4377zzNo0aNSmyiaGISH5RcigiIkWWV+euOFzsSurg44NXpy60bWs/8YXBkDn2cNu277CmJGG1ZrZCVq7ZiF5DXsPbqyL3uoThdrAGpf7yxWCItTveZDLi7FI0ZuuUomXNmk8ZNuxJAF544cVCro2ISMHTmEMRESmyclrOokWLlhgMBqxWq22dw35B/uw5eYKk5cNxqBuCc7vHMBiMpCafZ/PKt7CY08kaaWR1NNHynrG4uWZ2Iy1Js5XK9QkPH2xbk7Co8/Pz46efsq8RKLefq40RFblZajkUEZEizbV+A6pPfjVzWQvAz68SD1/sWnr5OoeNK2cO0M84tBVSM8cpOjm74Obpja1rqsFAGe9yVK9RgXIV3ClXwV2JoYiIyEVKDkVEpNjJ6lqatc6h2WLFZDRgBYzla0KpzJkHDQYjDVt3Ay5OYGO14t6gkZYhEhERyYH+OoqISJF2/vcD/DVxPOd/P2Arq1Ytc32nrHUOTUYDZosVA2CJ/BNSz9v2rVSzIR5lMxc6Pu9s4Pv0Q1isJWtmWBERkbxQcigiIkWWJT2dyOVLSTt9isj3l2G5uPD3+fOZyV/WOocA+/49B4BD3RDbchaQ2Xro1rAhaQ7wV0UHzlyI4rfog4iIiIg9TUgjIiJFVuyGr8mIiQEgIzqa2I3r8e7Wgxo1AjAajVgsFias3cubG38nLjmNsq6l+HbbK/hd1m3UYrXwffoRIhq4kNm91MC64xto5FMPo7qXioiI2OivooiIFElWi4XYjeuxjRfESuzG9VgtFvz8KjF48PDMUmvm2EOAc+dTOfHXX3bnuZCRTFJ0JF4JGXglmPFKyCDxbCTJGSm3LhgREZFiQMmhiIgUSQajEa9OXbDNNIoBr05dMBgz/3Tdc8+9OR5XunRpu9eOGdDkSBoNj6fbvpocScMhw5rj8SIiIiWVksM8ioqK4vfff7f7SktLw2LRpAYiIgXFq3NXHLy9AXDw8bmYLGbKGnd4pbVrP7N77eTsQmkPb6yXJiyltIcPTs4uBVNpydXChfMJDg6kR4/OOf79fOaZpwgODmT06BG3vG7BwYGsWLG8QM49efIk/vOfB666z7p1awkODiQuLjbXfXr16sb06VOv67w3Ur/du3cRHBzIH39cGptbkPcnr+LiYgkODmTdurVX3a9Xr24EBwdm+1q+fEmOsV15X7ds+Y7Vqz8usDhEijKNOcyjVatWMWfOHLsyf39/3N09CqlGIiK3P6OjI+UfeYyzq1ZSru+DGB0dbdsuH3d4uXnz5hAePgQ/v0rAxeUs2nTjl6+XXnwN1RuEER2ZmVw6uzhqrcNbyMHBgbi4OPbs2UXz5i1s5XFxsfz8885sLb+3yqJFS6lQoWKhXDuv3nhjxi1531G3bl0WLVpK9er+BX6tghIWdhf/+c9DdmXly1ekdGmXa8a2Zcv3HDp0kN69+xR0NUWKHCWHedS3b1/CwsLsyqZNm6a1skRECphr/Qa4Tn41W3nWuMN3351tV26xWDhx4rgtOQTwr9uEwz9XICEmArPVgx+/TwP2AGAyGXhwUAsliLeIo6MjQUEt2bBhvV1yuHnzJsqV86FiRb98uU5KSgrOznn/njZo0ChfrluQ6tSpe0uu4+rqVizux9WULVs21xhudWzX+yyKFCZlNnnk6+tL/fr17b6cnJwwGnULRUQKS17HHWa2HnbHsZQrFzLqc2kcI5jNVpIvpBVkNYuUc5H/cvrEQdvXuch/b3kdOnXqwvfff0P6xaVJADZuXM9dd3Xm8u8NQHT0WaZMeYn77utBaGgreve+h3nz3iEtzf57ltVtcM6cWdx9d0e6du0AQHp6OjNmTKNTpzvp0CGEV199mS+//ILg4EBOnz5td/zl3SaHDAln9OgRfPPNJvr0uZf27dswbNgg/v33H7vrzp07m/79+9C+fRt69OjMiy8+T3T02fy6VXau7P54JYvFwtSpU+jU6U5+v7guaGJiItOmvU63bp1o164ljz76H3bu3HHV6+TU9TLr/AsXzqNr17vo3DmMV16ZRHJyst0+x479ydNPD6N9+zaEhbVj7Nhn+Oefk3b7pKamMmvWTHr06Ey7di3p378PGzZ8na0ea9b8j169uhEa2prhw5/Mdu9vRG6xZZk8eRJfffUFx48fs3VHnTx5km37/v37GDZsEHfe2ZoOHUKYOPEFzp07Z9t++vRpW9fX1157hU6d2jNgwMM3XW+RW0UthyIiUmzlNu7wwoUL2coq12yEk1MFPv3wj+wHpKcAt/8wgdTkJDaumIE541JSZnJw5N4hUyjl4nrL6tG2bQivvfYKO3ZsJyTkTs6cOc3+/fsYO/Y5W1KTJS4uDg+PMowcOQp3dw9OnvybxYsXEBMTw4QJL9ntu2rVSho2bMSECZNsiefcubNZs+ZTwsOHULt2bb75ZhMLFrybp3oeOXKE2Nj3GTr0KSwWC2+9NZ2XXprAokXLbPvExp7j0UcH4ONTjri4WD788H2GDAln5crVODjcurdZGRkZTJ48iV27fubddxdSs2Yt0tPTGTFiCOfOnWPw4KGUK+fL+vVfMWrUSJYtW0HNmrWu6xqrV39M48ZNmTjxZU6e/Js5c2ZRtqw3w4ZljhGNjIxg8OCBVKzox4svTsZiMbNw4XwGD36CDz5YhZeXFwCTJo1nx47tDBo0lICAADZt2sCkSeOxWMx07dodgG3btjJ16hS6detBx46d+eOPg0yY8Hye62q1WsnIyLC9NhgMmEymax43YMATxMXF8vfff/Hyy1MA8PTMrPf+/fsYOnQQrVu3ZcqUqSQnJ7NgwbuMHfs0ixfbj8ecN28Obdu245VXXsNs1vwUUnwoORQRkWLL1TXnhCbXcWuOuXTtyq38NuPkXBq3Mt7En4vMnJnHYMDN89ZPzuPs7Exo6J1s2PA1ISF3snHjeqpX96dWrdrZ9q1ZsxYjRjxje92oUWNcXFyYPHkSY8aMw/myupcpU4bXX38TgyGz9TE+Pp7PPlvN448/wSOPPAZAcHBrhgwJJyoq8pr1TEpKZPnylbakJjExkddff4WoqEh8fcsD2CWoZrOZBg0a0bNnF3bv/oWWLVtd9725EWlpaUyY8ByHDx9i/vzFVK1aFYANG77iyJEjfPDBR/j71wAy4z958iRLlizi1VffuK7reHt7M/liF+9Wrdpw8ODvfPfdZltyuHLlCtLT05k1613bPatfvwEPPNCL1atXER4+mKNHj/D9998yZsxztjF9wcGtiY4+y4IF82zJ4ZIli2jSpCkvvviybZ+UlGSWLVuSp7p++uknfPrpJ7bXJpOJ7dt/ueZxlStXwdPTi4iIM9m6n7777jvUrVuPqVOn256xgICa9O/fhx9/3Ebr1m1t+9apU5fnn38xT3UVKUrUJ1JERIqN878f4K+J4zl/sXUpry2HsVH/cuavP0iMPIST4TQmQ5xtm5EMnE0ZlAQGg5FG7bpz+dStjdt2L5Tx8507d2Xbth+4cOECGzeup3PnrjnuZ7Va+eijFfTrdz+hoa1o27YFkyaNx2zO4NSpU3b7tmrV2vamHTK7OKamptKuXajdfiEh9q9zU6tWHVuSA9gSrMsTyx9/3E54+GN06BBCmzZB9OyZOaPuyZN/5+kaNys1NZXRo0dy/PgxFiy4lBgC7Nz5EwEBNalSpSoZGRm2r6CgIA4e/P26r9WiRbDda3//GkRFRdle79u3l2bNguzuWcWKfjRs2Jh9+/ba9gHo2LGT3bk6duxCRMQZIiMjMJvNHDp0iNDQ9nb7tG9/V57r2qFDR5Ys+cD2tXjxsmsfdBUpKcn89ts+OnS4C7PZbLuXVatWw8fHJ9v9bN26zU1dT6SwqOVQRESKBUt6OpHLl5IRE03k+8uo/spreWo5TE0+z+aVb2ExZ3YzdHMEiwH2+vtgNhm516ks7uXa53ie21GVWo0o412B+JgIyvhUpHKthoVSj6CglpQuXZr//nchx479yZtvvpXjfh99tIJ33nmbhx56lGbNmuPu7sHBg78zffrUbOMOvbzK2r2OiYkGLnULzG2/3Li7u9m9drw4W25qauZ1Dx78nbFjnyEkJJSHH36csmW9AANPPPFotroVlNjYWCIjI+jdu0+22Vbj4uI4cuQQbdu2yHZcXrpYXsnd3d3utaOjo12ciYkJ1KpVJ9tx3t7etmQ5ISERk8mBMmU8s+2TuT0BBwcHzOaMbN+nsmW981xXLy8v7rijXp73v5aEhETMZjNvvz2Dt9+ekW17ZKR9S3RenzGRokbJoYiIFAuxG74mIyYGgIzoaGI3rud8mTI57nt5y6GTswtunt4kxEQCVqxAcikD590TMRiMfO/qQmuunAbl9mUwGGkc0oOdG1bSuF2PQpt122Qy0aFDRz788H0aNmxkN7vs5b79djPt2oUydOhTtrITJ47nuO/lrYYA3t4+QOYyGeXKlbOVx8aeIz9s2fItbm5uvPrqG7YJ6s6cOX2No/JXhQoVeOKJJ3nxxecpU8aTxx9/wrbNw8ODmjVrMX78pKucIf94eJTh3LmYbOUxMTF4eHjY6mQ2ZxAfH0+Zy35+Yy7+bHt4eODp6YXJ5JDt+5TTuW8Vd3d3DAYDjz46IFuLJpAt2b3yWRQpLpQciohIkWe1WIjduB6wZpUQu3E9/mOfw2AwYM3qJklm8pPV/S/rdcPW3dj+xeLM18BfFRzAYMCKlYikaJIzUnB1LJz19QpDlVqNqVKrcWFXg549exEVFUmXLnfnuk9qamq2iV1ymtkyJwEBNSlVqhRbt35vN55x69bvb6i+udXt8kQgr3XLT2Fhd5GWlsbkyRMpVcrZtr5fUFBLduzYjo9PObvkuKA0atSENWs+JT4+zpYsRUZGsH//Ph59dAAAjRs3AeCbbzZx3329bcdu3ryRChUqUr58BSBzzN6WLd/x4IOX1ir87rvNBR4DgKOjA2lpqXZlLi4uNGjQiL/+OsHgwcNuST1ECoOSQxERKfIMRiNenboQs+YzMhNEA16dupCa43JC1mwllWo2xMM7c53DZKMbpyMaQWTmG/qyzh4lKjEsSmrXrsO0aTOvuk9QUEs+/ngln3zyEVWrVmPDhq/zvKRBmTJluPfe3ixduhgnJydq167D5s0bbWMVjcaba91p0SKYjz76kBkz3iA0tD379+9n/fovb+qc27ZtpXRp++7S/v417D7wyEmXLneTlpbG66+/gpOTE7179+Huu7uzZs2nDB0aTv/+D1OlSjWSkhI5cuQQ6ekZdq2x+eHBB/vz5ZdrGTFiKI89NvDi0hfz8fAoQ+/efQGoVas27dt3YNasmaSkpFCjRg2++WYTP/30I5MmTbad67HHBvLss8/wyiuTbLOVbtiwPl/rm5vq1f1Zt24tGzeup0qVqpQp44mfnx9PPfU0w4c/yfjx4+jYsTPu7h5ERUXyyy876datJ82aNb8l9RMpSEoORUSkWPDq3JX4H7aSERONg48PXp268OPOHXathpA5gcmJE8ftuilmrXO4a9NH+DftwdbvL63NNrBb01sWg1y/gQMHERcXy8KF8wFo374Do0aNZcyYp/N0/LBhI8jIyGD58iVYLFZCQ9vTv/8jvPXWm7i5uV37BFfRunVbhg0bwSefrGLdurU0atSE6dNn0adPrxs+55QpL2crGzhwEOHhg695bM+evUhNTWHGjDdwdi5F9+73MHfuAhYuXMDSpYuJjo7G09OT2rXrcv/9D9xwHXNTvnwF5s1bxDvvvMXLL7+I0WgkMLA5I0aMspuk5qWXpjB//lw+/HA5cXFxVK1ajZdemmLXghwSEsq4cS+wdOl/2bx5I/XqNeCVV14jPPzxfK/3lXr27MXBg78zY8Y04uPjuPvuHkyc+DKNGjVmwYL/snDhfKZMeYn09Ax8fX1p3rwFVapUKfB6idwKBuuVf1Ulz8LDwzGbLbzxxts3dR4HByNeXq7Exp4nI6PkrYWj+BW/4i+Z8d9I7Od/P8DZVSsp1/dBXOs3YO/e3XTunH38z4YN39G0abMcz5GSlsGidQdpXteXXYeieKJ7PZydbu6z0nHjnsZkMrJw4cKbOk9OUlJSOHbsOD4+FXByKpXv5y+JJk0az2+/7eOzz9YVdlVERG6JtLRUoqMjCAiogbNz7ss3qeVQRESKDdf6DXC9uM4a5H0pi8s5Ozkw/L7M9cuC61XI3wpKkbNnz25+++1X6ta9A4vFyvbtW9m4cT0jR44q7KqJiBQ5Sg5FRKTYqlEjAKPRiMVi3/L46697aNOmXSHVSoqS0qVd2L79Bz74YBkpKSn4+VVi5MhR9OvXv7CrJiJS5Cg5FBGRYsvPrxIvvvgyL7/8ol35lCkvce+9vXNdHkFKjrp167Fw4dLCroaISLFQOIsbiYiI5JPGjbNPKGM2m3NdC09ERERyppZDEREp1q63a2ls1L+kXEi0vXYu7Y6Xb+UCr6eIiEhRp+RQRESKtevpWpqafJ7NK2diMWfYyowmB3oOeoVSLvZryxU9mlxcRERuVN7+hqhbqYiIFHt57VrqWKoUpR0duPRH0oqrowOOpYruEhGOjo4YDJCamlrYVRERkWIqNTUVgyHzb8rVqOVQRESKvZy6lppMJvz9a9jtZ0hLoTbn2EPprBJqcQ5DWgo439yC6AXFZDLh6elJbGwcAKVKlQIMhVonEREpLqykpqaSmBiHl5cnJpPpqnuXyOTwySef5MyZMxgMBnx8fJgyZQoVK1Ys7GqJiMgNKhMby2c97uWVH39g19koAHr37pt9ttJSrlT0q4bj35Gkm404mixU9KsGpYp2l9Ksv1FxcXEkJl5jZxERkcsYDODl5ZmnfKdEJofTp0/H3d0dgOXLlzN9+nRmzJhRyLUSEZEbYUlP5/SSRXhbrTzbqCn9v9tEusXC6tWreP75F+0TxNTzmKOOcaKiJ74RFk5VcMAcdQxSzxfZlkMAg8GAn58f5cuXJz09vbCrIyIixYijo+M1WwyzFInk8O+//2bx4sXs27ePo0ePUqNGDdatW5dtvxMnTjBlyhR2796Ni4sL3bp1Y8yYMTg7O1/X9bISQ4CkpKSbrr+IiBSe2A1fY4mLwwBUKF2afgG1eP/oYduYQ7vksFRpDtduynHLKY77ZBYd9m1KUKnSOZ67qDGZTHn+Ay8iInK9ikRyePToUbZs2ULjxo2xWCxYrdln00lISODRRx/Fz8+P2bNnc+7cOV5//XXi4uKYPn36dV9z9OjR7Ny5kzJlyrBkyZL8CENERG4xq8VC7Mb1thF4RoOBfgG1WHH0MBayL2dhBVamJ2VOx2bILPgoPYnmaBSfiIhIkUgOw8LCuOuuuwB47rnnOHDgQLZ9PvroIxISElizZg1ly5YFMj9BHTNmDEOGDCEgIACABx98kMjIyGzHBwQEsHDhQtvrGTNmYLVaWbRoEe+++y4vvfRSAUQmIiIFyWA04tWpCzFrPgOsWKxWPjp2lKxpaa5czuJCRjJphsRLmaABUg2JJGek4OpYPFoPRURECkqRSA6NxmuvqLF161ZatWplSwwBOnfuzAsvvMCWLVtsyeHKlSvzfF2DwUDfvn0JDQ3NNTns0KFDrse7uLhQvnx5HBxubkUQk8lo929Jo/gV/+X/ljQlOf78ir1ct24kbNtKenQ0ERcu8NGxo7ZtZrOZkydPULVqFQA8Hdzp7/84/934q22fAZ2aUMbl5sYbGgxqdxQRkeKvSCSHeXHs2DHuv/9+uzInJyeqVq3KsWPH8nye8+fPk5iYSIUKFQBYv349tWrVuuF6GY1GvLzyZ5Y7Dw+XfDlPcaX4FX9JVpLjz4/YjcOHcHTBQqZ/9inpVyxn0bRpQ7vf052aNuH3QxbaNPJj+2+n6dS0CS6lbu7PodGo5FBERIq/YpMcJiQk4OHhka3cw8OD+Pj4PJ8nOTmZ4cOH2xYTrlixIm+++Wau+3/zzTe5bgsPD8disRAbez7P18+JyWTEw8OFhIRkzGbLtQ+4zSh+xa/4S2b8+Rp79VrUen0aNeLj+fmjFbbiBx7oh6urV7bf00PuqU9ifAoVWlTl5LFoAFxKO+Je5vomOMtisViVIIqISLFXbJLD3Fit1uvqzuPj48Pq1avz8fqQkZE/b+jMZku+nas4UvyKX/GXzPjzK/bTp0/x8cf2Qws++eQjnntuQrb1DhPjU1j53i92SanJZOTBQUE3lCBmTqSm5FBERIq3YjPIxcPDg4SEhGzliYmJObYoiohIyXL8+DEsFvskM2s5iyulJKdna600my2kJGsNQRERKbmKTcthQEBAtrGFaWlpnDx5MttYxIIQFRXF2bNns13fYCg2+bWIyG2tRo0AjEajXYJoMpnw969RiLUSEREpPopNchgSEsK8efOIjY3Fy8sLgE2bNpGWlkZoaGiBX3/VqlXMmTPHrszf3x93d7VaiogUBX5+lZgxYzZjxozEbDZjNBqZMOGlbF1KRUREJGdFIjlMTk5my5YtAJw6dYqkpCTWr18PQIsWLShbtiz9+vXjgw8+YOjQoQwdOpSYmBimTp1Kjx49bMtYFKS+ffsSFhZmVzZt2jS1HIqIFCH9+z9CXFwskydPxGKx8Mork/D09KJ//0ds+8RG/UtiTAylTFFYLBYsOGO2emIyGXF2cSzE2ouIiBSuIpEcxsTEMHLkSLuyrNfLly+nZcuWeHh4sGzZMqZMmcJTTz2Fs7Mz3bt3Z8yYMbekjr6+vvj6+tqVOTk5lbjZBUVEirLTp0/xyiuTLk4QAxaLhTFjRtK+fQf8/CqRmnyezSvfwmJOx9UEmMBocqBNr3G4e5a54dlKRUREbgdFIjmsXLkyhw8fvuZ+/v7+LF68+BbUKDuNORQRKfquNimNn18lnJxdcPP0JiEmErCCwYCbpw8Vq5bT73MRESnxikRyWBxozKGISNF3rUlpDAYjDVt3Y/sXFz9otFpp2LqbEkMRERGUHOaZxhyKiBR9eZmUplLNhnh4VyAhJgIP7wpUqtmwEGssIiJSdCg5zCONORQRKR6uNSmNwWCkYZvu7Nr0EY3adNeHfCIiIhcpORQRkdvKtSalAahcsxGVazYqzGqKiIgUOUoO80gT0oiIFA/XmpRGREREcqbkMI80IY2ISPFwrUlpREREJGdKDvNIE9KIiBQPV05KYzKZmD59lloNRURErkHJYR5pQhoRkeKjf/9HaN++AydOHLe1GG7btpUaNQKUJIqIiORCzV4iInJb8vOrRJs27fjuu28IDKzPffd1JzCwPitWLAfAarVgTUnCarVe/Fcf9omISMmmlkMREbltnT59itGjR9jGH9pmLr2zPV7HNpFxaCvG8jWxRP6JQ90QnNs9puECIiJSYik5zCPNVioiUvzkNnPpyT8P4X54KwCWqGMAZBzaCi36gLPbLa+niIhIUaDkMI80W6mISPGT28ylVWvegTGuJvuT/uF/5dy572wiDd2qQCnXQqytiIhI4VJymEearVREpPjJbebSit6eJET+yT4nd3ptiGVfw9LcEfknpJ5Xy6GIiJRYSg7zSLOViogUT1fOXOrnVwmr1cLhgMYErt1PmfMWAvee53DPxgSVKl3Y1RURESk0avYSEZHbnp9fJfz9a3D8+DFOnz6FFTh55Awe5zM/4PM4b+GfoxFYC7eaIiIihUothyIicttbsWK5bdZSo9HI1BkzCNx/FsPF7Qag5m9RXEi7gFspdSsVEZGSSS2HIiJyW8tpOYvnx4zht/L1bC2FVuBAhQZKDEVEpERTy2EeaSkLEZHiKbflLFyaNiP+zF94Zpwn3sGN5g89Ukg1FBERKRqUHOaRlrIQESmeclvOIrBxLX4605nGx7fzZ4223FfZqxBrKSIiUviUHOaRlrIQESmeclvOwr9aFfyfrAL0pF5hV1JERKQIUHKYR1rKQkSk+MppOQsRERGxp+RQRERKBD+/SkoKRURErkJ9IkVEpEQ4ffoU27Zt5fTpU4VdFRERkSJJLYciInLbu3KdwxkzZnN3xzBSLiTa9nEu7Y6Xb+VCrKWIiEjhUnIoIiK3tZzWOZw4YSxO0f2xmDNs+5lMjvQYNJlSLq6FVVUREZFCpeQwj7TOoYhI8ZTTOodJ55MxOpXGkpwIWMFgwNXTGydnl8KppIiISBGg5DCPtM6hiEjxlNM6h0aTiVqBYfyxfU1mgdVKw9bd9IGfiIiUaEoO80jrHIqIFE+5rXPYsMWdnDr0EwkxEXh4V6BSzYaFXVUREZFCpeQwj7TOoYhI8ZXbOocN23Rn16aPaNSmuz7sExGREk/JoYiIlAg5rXNYuWYjKtdsVEg1EhERKVr0MamIiIiIiIgoORQRERERERElhyIiIiIiIoKSQxERKYFOnz7Ftm1bOX36VGFXRUREpMhQcigiIiXKihXLCQysz333dScwsD4rViwv7CqJiIgUCUoORUSkxDh9+hSjR4/AYslchshisTBmzEi1IIqIiKClLPIsKiqKs2fP2pWlpaVpXSwRkWLk+PFjtsQwi9ls5sSJ49mWuRARESlplBzm0apVq5gzZ45dmb+/P+7uHoVUIxERuV41agRgNBrtEkSTyYS/f41CrJWIiEjRoOQwj/r27UtYWJhd2bRp09RyKCJSjPj5VWLGjNmMGTMSs9mMyWRi+vRZajUUERFByWGe+fr64uvra1fm5OSE2WzJ5QgRESmK+vd/hPbtO3DixHH8/WsoMRQREblIyaGIiJQ4fn6VlBSKiIhcQX0iRURERERERMmhiIiIiIiIKDkUERERERERlByKiIiIiIgISg5FREREREQEJYciIiIiIiKCkkMRERERERFByaGIiIiIiIig5FBEREqg06dPsW3bVk6fPlXYVRERESkylByKiEiJsmLFcgID63Pffd0JDKzPihXLC7tKIiIiRYKSQxERKTFOnz7F6NEjsFgsAFgsFsaMGakWRBEREcChsCtQXERFRXH27Fm7srS0NAwG5dciIsXF8ePHbIlhFrPZzIkTx/Hzq1RItRIRESkalBzm0apVq5gzZ45dmb+/P+7uHoVUIxERuV41agRgNBrtEkSTyYS/f41CrJWIiEjRoOQwj/r27UtYWJhd2bRp09RyKCJSjPj5VWLGjNmMGTMSs9mMyWRi+vRZajUUERFByWGe+fr64uvra1fm5OSE2WzJ5QgRESmK+vd/hPbtO3DixHH8/WsoMRQREblIyaGIiJQ4fn6VlBSKiIhcQX0iRURERERERMmhiIiIiIiIKDkUERERERERlByKiIiIiIgISg5FREREREQEJYciIiIiIiKCkkMRERERERFByaGIiIiIiIig5FBERERERERQcigiIiIiIiIoORQRERERERGUHIqIiIiIiAhKDkVERERERAQlhyIiIiIiIoKSQxEREREREUHJoYiIiIiIiFDCk8Px48dTp04dMjIyCrsqIiIiIiIiharEJoc7duzAbDYXdjVERERERESKhCKRHP79999MnDiRe+65h3r16tG9e/cc9ztx4gQDBw6kSZMmtGrViilTppCSknLd17tw4QIzZ85k3LhxN1t1EREpxk6fPsW2bVs5ffpUYVdFRESk0BWJ5PDo0aNs2bKFatWqERAQkOM+CQkJPProo5w/f57Zs2czbtw4vvjiCyZMmHDd15s5cyaPPPIIXl5eN1t1EREpplasWE5gYH3uu687gYH1WbFieWFXSUREpFA5FHYFAMLCwrjrrrsAeO655zhw4EC2fT766CMSEhJYs2YNZcuWBcBkMjFmzBiGDBliSyoffPBBIiMjsx0fEBDAwoUL2bNnDydPnryhpFJERG4Pp0+fYvToEVgsFgAsFgtjxoykffsO+PlVKuTaiYiIFI4ikRwajdduwNy6dSutWrWyJYYAnTt35oUXXmDLli225HDlypVXPc+uXbs4ePAgYWFhtrJOnTrx4YcfUqFChWz7d+jQIddzubi4UL58eRwcbq4B1mQy2v1b0ih+xX/5vyVNSY6/MGP/++/jtsQwi9ls5uTJE1StWuW6z2cwGPKraiIiIoWmSCSHeXHs2DHuv/9+uzInJyeqVq3KsWPH8nyeQYMGMWjQINvrOnXqsHHjRhwcbuxWGI1GvLxcb+jYK3l4uOTLeYorxa/4S7KSHH9hxB4Y2Aij0WiXIJpMJpo2bXhDv9ONRiWHIiJS/BWb5DAhIQEPD49s5R4eHsTHxxfYdb/55ptct4WHh2OxWIiNPX9T1zCZjHh4uJCQkIzZbLn2AbcZxa/4FX/JjL8wY3d19eKtt95h1KgRmM1mTCYTM2fOxtXV64Z+p1ssViWIIiJS7BWb5DA3Vqv1prrzHD58+CavDxkZ+fOmxmy25Nu5iiPFr/gVf8mMv7Bif/DBhwkNDePEieP4+9fAz6/SDdfDarUCSg5FRKR4KzbJoYeHBwkJCdnKExMTc53hND9FRUVx9uxZu7K0tDQMhpI3TkhE5Hbh51dJE9CIiIhcVGySw4CAgGxjC9PS0jh58mS2sYgFYdWqVcyZM8euzN/fH3f37F1dRUREREREiptikxyGhIQwb948YmNjbesTbtq0ibS0NEJDQwv8+n379rWb4RRg2rRpajkUEREREZHbQpFIDpOTk9myZQsAp06dIikpifXr1wPQokULypYtS79+/fjggw8YOnQoQ4cOJSYmhqlTp9KjR49b0q3U19cXX19fuzInJ6cSN4GEiIiIiIjcnopEchgTE8PIkSPtyrJeL1++nJYtW+Lh4cGyZcuYMmUKTz31FM7OznTv3p0xY8YURpVFRERERERuK0UiOaxcuXKeZg319/dn8eLFt6BG2WlCGhERERERuZ0VieSwONCENCIiIiIicjtTcphHmpBGRERERERuZ0oO80gT0oiIiIiIyO1MzV4iIiIiIiKilsO80oQ0IiIiIiJyO1NymEeakEZERERERG5nSg7zSBPSiIiIiIjI7UzJYR7lNCFNUlISZrOZceOevqlzGwwGjEYDFosVq9V6U+cqjhS/4lf8JTP+2yn2c+diMJlMhV0NERGRm6Jmr5vg6OiIyWTCZDJiMhkBK+fPJwHWa76+/P+RkRGcOXMGo9FgO9eNfl15zZvdP7ftOZUXt/hvNPaSHn9ey0tS/Ncqu9q9KMnx52fshR0/gIODPm8VEZFizir55sCBA9batWtbDxw4cM3Xl/8/LCzMGhYWViB1uNn9c9ueU3lxi/9GY89tW0mJP6/lJSn+a5Vd7V6U5Pjbtm2bb7HnJabr2fdm4xcRESmO1HIoIiIiIiIi6lYqIiIiIiIiSg5FREREREQEJYciIiIiIiKClrLIV+XKlWP48OGUK1cuT68v/39B1eFm989te07lxS3+G409t20lJf68lpek+PNSdrV7kV+KW/yffvrpdcd4MzFdz743G7+IiEhxZLBai/niUreBDh06APDNN98Uck0Kh+JX/KD4S2L8JTl2ERGRokjJoYiIiIiIiGjMoYiIiIiIiCg5FBEREREREZQcioiIiIiICEoORUREREREBCWHIiIiIiIigtY5LBaOHTvGs88+S1JSEuXLl2f69On4+voWdrVumRdeeIEffviBqKgofv/9dxwcSs5jGxsby9ixY/n3339xdHSkUaNGTJo0CScnp8Ku2i3z5JNPcubMGQwGAz4+PkyZMoWKFSsWdrVuufHjx7N69eoS9zMQFhaGs7Mzjo6OAEybNo06deoUcq1ERERuT2o5LAYmTZrEoEGD2LBhA3feeSczZswo7CrdUr169eKzzz4r7GoUCoPBwJNPPsn69ev5/PPPSU5OZvny5YVdrVtq+vTprF27ls8//5zQ0FCmT59e2FW65Xbs2IHZbC7sahSaefPm8fnnn/P5558rMRQRESlASg4LyN9//83EiRO55557qFevHt27d89xvxMnTjBw4ECaNGlCq1atmDJlCikpKbbt0dHRHDt2jE6dOgHQp08fNm7ceEtiuBn5FT9AixYt8PHxuRXVzjf5Fb+npydBQUEAGI1GGjRowOnTp29JDDcjP7//7u7utv8nJSUVaL3zS37Gf+HCBWbOnMm4ceNuRdXzRX7GLyIiIrdOyembdIsdPXqULVu20LhxYywWC1arNds+CQkJPProo/j5+TF79mzOnTvH66+/TlxcnK11JCIigooVK2IwGABwc3PD0dGR2NhYvLy8bmlM1yO/4i+uCiL+1NRUPvvsM8aOHXsrQrgp+R3/6NGj2blzJ2XKlGHJkiW3Kowblp/xz5w5k0ceeaRI/7xfKb+//yNGjMBqtRIaGsqIESNsXUxFREQkn1mlQJjNZtv/x40bZ+3WrVu2fRYsWGBt3LixNSYmxla2du1aa+3ata1//vmn1Wq1Wn/77Tfrvffea3dcUFCQNTY2tmAqnk/yK/7L1a5d25qenl4wFc5n+R2/2Wy2jhw50jplypSCq3Q+Kojvv8Visb733nvWSZMmFUid81N+xb97925reHi4bXtx+RnIz+//mTNnrFar1ZqYmGgdPHiwdc6cOQVYcxERkZJN3UoLiNF47Vu7detWWrVqRdmyZW1lnTt3xsnJiS1btgBQsWJFIiIibJ+8JyUlkZ6ejqenZ4HUO7/kV/zFVX7H//LLL+Pg4MALL7yQ73UtCAXx/TcYDPTt25fPP/88X+taEPIr/l27dnHw4EHCwsIICwsDoFOnTkRERBRMxfNJfn7/K1SoAGT2mujTpw979+7N/wqLiIgIoDGHherYsWMEBATYlTk5OVG1alWOHTsGgI+PD/7+/mzevBmA1atX07Fjx1te14KQl/hvZ3mNf9q0aURGRjJ16lRb9+LbQV7iP3/+vF0itH79emrVqnVL61lQ8hL/oEGD2LZtG99++y3ffvstABs3brQlTMVZXuK/cOGCbZxpRkYGGzdu1IQ0IiIiBUhjDgtRQkICHh4e2co9PDyIj4+3vX7ppZcYN26cbQmL4j4eL0te4x87diw7d+4EMqe1b968OTNnzrxl9SwoeYn/6NGjLF68mBo1anD//fcD0Lp162I1OUlu8hJ/cnIyw4cPJzU1FchsSX/zzTdvaT0LSl6f/9tVXuKPiYlh+PDhWCwWzGYzjRs3ZujQobe6qiIiIiWGksMiyGq12rUQ1apVi//973+FWKNb68r4b5dkIK8uj79WrVocPny4kGt0a10ev4+PD6tXry7kGt1aVz7/lysJz8Ll8VepUqVYdCMWERG5XahbaSHy8PAgISEhW3liYmKOn6jfbhS/4lf8iv9KJSV+ERGRokjJYSEKCAjINrYuLS2NkydPZhuLcztS/Ipf8Sv+y5Wk+EVERIoiJYeFKCQkhJ9++onY2Fhb2aZNm0hLSyM0NLQQa3ZrKH7Fr/gVf0mNX0REpCjSmMMCkpycbJuO/dSpUyQlJbF+/XoAWrRoQdmyZenXrx8ffPABQ4cOZejQocTExDB16lR69OhR7D85V/yKX/ErfiiZ8YuIiBRXBmvWAnqSr/799186dOiQ47bly5fTsmVLAE6cOMGUKVPYvXs3zs7OdO/enTFjxuDs7Hwrq5vvFL/iV/yKPyclIX4REZHiSsmhiIiIiIiIaMyhiIiIiIiIKDkUERERERERlByKiIiIiIgISg5FREREREQEJYciIiIiIiKCkkMRERERERFByaGIiIiIiIig5FBERERERERQcihyW1q/fj116tThq6++yratZ8+e1KlThx9++CHbtrvuuot77703z9d57rnnCAsLu6E6vvPOO9SpU4dz585dc9/58+ezefPmG7qOiIiIiOSNkkOR21CLFi0wGAz89NNPduVxcXEcOXKE0qVLs3PnTrttERER/PPPP7Rs2TLP1xk6dChz5szJlzpfzYIFC5QcioiIiBQwh8KugIjkv7Jly1KrVi1+/vlnu/JffvkFBwcH7r///mzJYVYieT3JYdWqVW++siIiIiJSJKjlUOQ21bJlS06cOEFUVJStbOfOnTRo0IDQ0FB+//13kpKSbNt+/vlnTCYTzZs3x2q1smLFCu655x4aNWpEUFAQI0aM4J9//rG7Rk7dShMSEnjhhRdo0aIFTZs2ZdCgQfzzzz/UqVOHd955J1s9Y2JiGDVqFM2aNaN169Y8//zzJCYm2rbXqVOHCxcu8Nlnn1GnTh3q1KnDww8/nF+3SUREREQuUnIocpsKDg4GsGs93LlzJy1atCAwMBCDwcDu3bvtttWrVw93d3cmTpzI66+/TuvWrZk7dy6TJk3i6NGj9OvXj+jo6FyvabFYGDx4MOvWreOJJ55gzpw5NGrUiCeeeCLXY5566imqV6/OO++8w6BBg1i3bh2vvfaabfuqVatwdnYmNDSUVatWsWrVKiZNmnQzt0ZEREREcqDkUOQ2FRQUhNFotCWHsbGxHD16lKCgIFxdXalXr56tK+mZM2f4999/admyJb/++isff/wxo0ePZty4cbRr147u3buzZMkSkpKSWLJkSa7X/OGHH9i9ezfPP/88gwYNok2bNgwfPpz7778/12N69+7NiBEjaN26NY899hi9e/fmyy+/xGq1AtCkSROMRiNly5alSZMmNGnShJo1a+bjnRIRERERUHIoctsqU6YMdevWtY0t/OWXXzCZTAQGBgKZyWPWtqx/W7ZsyXfffYfBYKBnz55kZGTYvnx8fKhbt262cYyXy9rWtWtXu/Ju3brlesyV3VLr1KlDamoqMTEx1xmxiIiIiNwMTUgjchtr2bIlS5YsITIykp07d1K/fn1cXV2BzBlNlyxZQmJiIjt37sTBwYFmzZqxceNGrFYrrVu3zvGcVapUyfV6cXFxODg44OnpaVfu4+OT6zFX7uvk5ARASkpKHiIUERERkfyi5FDkNpaVHP7888/8/PPPhISE2LY1a9YMyGxR3LlzJw0bNsTV1RUvLy8MBgMrVqywJWqXy6ksi6enJxkZGcTFxdklfWfPns2/oERERESkQKhbqchtLCgoCJPJxIYNGzh69CgtWrSwbXN3d+eOO+5gzZo1nDp1yraExZ133onVaiUyMpKGDRtm+6pTp06u18s6/1dffWVXfuXr6+Xk5KSWRBEREZECppZDkduYm5sb9erVY/PmzRiNRltrYZagoCCWLVsGXFrfsFmzZvTt25cXXniBAwcOEBQUhIuLC2fPnmX37t3Url2b//znPzler127dgQGBvLGG2+QlJREgwYN2Lt3L59//jkABoPhhuKoXbs2P//8M99++y3lypXD1dWVGjVq3NC5RERERCRnSg5FbnMtW7Zk//793HHHHbi5udltCwoKYunSpTg6OtK0aVNb+eTJk2ncuDGrVq1i5cqVWCwWfH19CQwMpFGjRrley2g0Mn/+fKZOncrChQtJT08nMDCQN998kz59+uDh4XFDMYwfP56XX36ZUaNGkZycTIsWLXj//fdv6FwiIiIikjODNWu+eBGRAvLFF18wZswYVq5caZstVURERESKFrUciki+WrduHZGRkdSuXRuj0civv/7K4sWLCQoKUmIoIiIiUoQpORSRfOXq6sqXX37JvHnzSE5Oply5ctx33308/fTThV01EREREbkKdSsVERERERERLWUhIiIiIiIiSg5FREREREQEJYciIiIiIiKCkkMRERERERFByaGIiIiIiIig5FBERERERERQcigiIiIiIiIoORQRERERERGUHIqIiIiIiAjwf2YZEyu56Ts9AAAAAElFTkSuQmCC"
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": "<Figure size 500x500 with 1 Axes>",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4cAAAH7CAYAAAB/kuoFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT5fcH8M+9GU3apnvRllHKHmUUStlSQGSogGjZCsgoU4bi+skXRAVkKENAQEAZFhBkKRsBGbL3Lnt07zZNmtz7+yMk7W1u2rRNB+W8X6++JOfe3PsktNiT53nOYXie50EIIYQQQggh5JXGlvUACCGEEEIIIYSUPUoOCSGEEEIIIYRQckgIIYQQQgghhJJDQgghhBBCCCGg5JAQQgghhBBCCCg5JIQQQgghhBACSg4JIYQQQgghhICSQ0IIIYQQQgghoOSQEEIIIYQQQggoOSSE5DJo0CDUrl27rIdBCCGEEELKACWHhNjQf//9h9q1a2PQoEEWz3ny5Alq166NsLAws2MxMTH49ttv0a1bNzRq1AhBQUF47bXXMHDgQCxYsACPHj0q0riGDBmC2rVro3379tDr9UW6Rnm3aNEi1K5dG//9919ZD4UQQggh5KUkLesBEEIMbt26hcGDByM5ORm1atVCz549oVKp8Pz5c9y8eRPLli2Dv78/qlSpUqjrPn78GCdPngTDMIiOjsaxY8fw2muviZ47e/ZsqNVqG7waQgghhBDysqHkkJBy4rvvvkNycjLGjRuHsWPHmh2/desWpNLC/8hu2rQJPM9j1KhRWLZsGSIjIy0mh76+voW+PiGEEEIIqRgoOSSknDh//jwAYPDgwaLHi7IXUKfTYdu2bXB2dsaYMWNw9OhRHDlyBDExMfD29jY7f9CgQTh9+jRu3bpliv33338YPHgwxo4di7Zt22Lx4sW4dOkSUlNTcfDgQfj7+5uWyG7fvh0LFizA/v37kZycjMqVK6Nv374YNGgQGIYxu99ff/2FdevW4datW8jOzkaVKlXQo0cPDBkyBHZ2doJzc9/jxx9/xMGDBxEbG4tRo0Zh27ZtePr0qej7Z3wtcXFxWLlyJf755x/ExMSAZVm4u7ujSZMmGDt2bKFnZAkhhBBCKhpKDgkpJ9zc3PD8+XM8ePAAQUFBNrnmoUOHEBcXh379+kEul6NXr1745ptv8Mcff2D06NGFutaFCxewfPlyBAcHo0+fPkhISIBMJjMd12q1+OCDD5CWlobu3bsjOzsbe/fuxTfffIP79+9j2rRpgut9//33WLlyJdzc3PDmm29CqVTi6NGjWLBgAY4dO4bVq1dDLpcLnqPVavH+++8jJSUFbdq0gb29Pfz8/DB48GAcPHgQp0+fRq9eveDn5yd4nlqtRt++ffHkyRO0bt0aYWFh4Hkez549w+HDh9G1a1dKDgkhhBDyyqPkkJByonv37li5ciVGjRqFfv36oXnz5qhfvz5UKlWRrxkZGQkA6NWrFwDgzTffxJw5c7BlyxZERESIzuZZcvz4cUyfPh19+/YVPR4XF4fKlStj165dpqRu3Lhx6NOnDzZs2IBu3bqhefPmAIBz585h5cqV8PPzw+bNm+Hu7g4AmDx5MkaPHo0jR45g1apViIiIMLtHjRo1sG7dOtjb2wuOpaWlmZLDFi1aCI6dOHECT548weDBg/HFF18Ijmm1Wmi1WqvfB0IIIYSQioqqlRJSTkyYMAHh4eFISUnB4sWL8f7776N58+bo2rUrZs2aZVo2aa2nT5/ixIkTCAwMRKNGjQAArq6u6NChA54+fYrjx48X6np16tSxmBgaTZ48WTDb5+LiYpqh3Lp1qylu/HNERIQpMQQAqVSKTz/9FCzLYsuWLaL3mDp1qlliWBBjEqxUKs2OyeVyODo6Fup6hBBCCCEVESWHhJQTcrkcM2bMwJEjRzBr1iz069cPQUFBePjwIVavXo3u3bvjyJEjVl9v8+bN4DgOPXv2FMSNs4ibNm0q1PiMCaYlUqkUTZo0MYuHhIQAAK5fv26K3bhxAwDMZvgAoHr16vDx8cGTJ0+QmpoqOCaXy1GnTp1Cjds4Bm9vb/z888/48MMP8dtvv+Hq1asVtq0HIYQQQkhRUHJIiA2xrOFHiuM4i+fwPA8AFpd0enh4oFevXvjf//6HTZs24cSJE3j33XehVqvx2WefWbUEUq/XY+vWrWBZFm+//bbgWLt27eDh4YFDhw4hISHB2pcGDw+PfI+7urpCIpGYxT09PQEYln0aGf9s6ZpizzGeX5ilsEaOjo7YtGkTevfujatXr2LmzJl455130KZNGyxevBg6na7Q1ySEEEIIqWhozyEhNmTcH5icnGzxnKSkJACAk5OTVdd0cXHBjBkzcPz4cTx79gx37txB/fr1833O4cOHERMTA8CQDFryxx9/YMSIEVaNo6CkLCkpCXq93ixBjIuLAwDB3knjn+Pj40ULwYg9x5ox5MfHxwfffvsteJ7H3bt3cerUKaxfvx6LFi0Cx3EYP358ka9NCCGEEFIRUHJIiA0FBARALpfjwYMHSEpKgqurq9k5Fy5cAFC41hQsy5r2yxlnHvOzefNmAECHDh0Ee/qMdDod/vzzT2zZsgXDhw8vVtKV+5oXLlxAs2bNBPHTp08DAOrVq2eK1a1bF9euXcN///1nlhw+fPgQ0dHR8Pf3tzqBBqybtQUMCWbNmjVRs2ZNdOrUCa+99hr2799PySEhhBBCXnmUHBJiQ3Z2dujatSu2b9+OOXPm4NtvvxUkXtHR0Vi1ahUAmO0FXLx4MXr27Al/f3+z6+7Zswf37t2Ds7MzatWqle8YoqOjcezYMTg7O+PHH3806xdo9ODBA1y8eBGnTp1Cy5YtC/lKxc2bNw9r1641FaVJTk7G0qVLAQC9e/c2nffOO+9gy5YtWLp0KTp27Ag3NzcAhuWws2fPBsdx6NOnT6Hu7eLiAgB4/vy52bHbt2/D3t7e7L2Nj48HAIvvESGEEELIq4SSQ0Js7NNPP8Xly5exdetWXLx4Ea1bt4aDgwOePXuGgwcPIiMjA0OHDkVoaKjgeWvWrMGiRYtQr149NGjQAG5ubkhLS8P169dx4cIFSKVS/O9//zPr/ZfX5s2bodfr8dZbb+Wb9PTp0wcXL17E5s2bbZIcenp6Ijs7Gz169EBYWBh0Oh327NmDuLg49O/f39TGAgCaNm2KDz/8ECtXrkSPHj3QpUsXKJVKHDt2DLdv30ZwcDCGDRtWqPuHhoaCZVnMnz8ft2/fNs06jh49GidOnMCsWbPQpEkTVK9eHe7u7oiOjsbBgwfBMEyh70UIIYQQUhExvDVr1AghhZKeno7ffvsN+/fvx4MHD6DRaODs7IyGDRsiPDwcYWFhZs85e/Ysjh07htOnT+P58+eIj4+HVCqFt7c3mjdvjkGDBhW4FJXjOISFheH58+fYvn17vpU9MzMz0aZNG2RnZ+PIkSNwc3PDoEGDcPr0ady6dct03n///YfBgwdj7NixGDdunOi1jK9n+/btmD9/Pg4cOICkpCRUrlwZ/fr1w6BBg0SXru7evRvr1q3DzZs3odPpUKVKFfTo0QNDhw41S2yN9zh06JDF17R9+3b88ssvuH//PjQaDQDg1q1biIqKwqZNm3DmzBk8e/YM6enp8PLyQoMGDfDBBx+gadOmFq9JCCGEEPKqoOSQEFJs1iRuhBBCCCGkfKNWFoQQQgghhBBCKDkkhBBCCCGEEELJISGEEEIIIYQQ0J5DQgghhBBCCCGgmUNCCCGEEEIIIaDkkBBCCCGEEEIIKDkkhBBCCCGEEAJKDgkhhBBCCCGEgJJDQgghhBBCCCGg5JAQQgghhBBCCCg5JIQQQgghhBACSg4JIYQQQgghhICSQ0IIIYQQQgghoOSQEEIIIYQQQggoOSSEEEIIIYQQAkoOCSGEEEIIIYSAkkNCCCGEEEIIIaDkkBBCCCGEEEIIKDkkhBBCCCGEEAJKDgkhhBBCCCGEgJJDQgghhBBCCCGg5JAQQgghhBBCCCg5JIQQQgghhBACSg4JIYQQQgghhICSQ0IIIYQQQgghoOSQEEIIIYQQQggoOSSEEEIIIYQQAkoOCSGEEEIIIYSAkkNCCCGEEEIIIaDkkBBCCCGEEEIIKDkkhBBCCCGEEAJKDgkhhBBCCCGEgJJDQgghhBBCCCEApGU9gJdZ3759kZ2dDTc3t7IeCiGEkDKUmJgImUyG33//vayHQgghhBQZJYfFkJ2dDb1eD72eK9Z1GAZgWRYcx4HnbTQ4QkDfW6Tk0PeWkF6vL+shEEIIIcVGyWExuLm5Qa/nMHv2D8W6jlTKwtXVAUlJGdDpipdoEpIbfW+RkkLfW0JTp34EiYR2ahBCCHm50f/JCCGEEEIIIYRQckgIIYQQQgghhJJDQgghhBBCCCGg5JAQQgghhBBCCCg5JIQQQgghhBACSg4JIYQQQgghhICSQ0IIIYQQQgghoOSQEEIIIYQQQgheweQwKioK77zzDrp06YLBgwcjNja2rIdECCGEEEIIIWXulUsOp02bhhEjRmDv3r147bXXMG/evLIeEiGEEEIIIYSUuZciOXz48CG++uorvP3226hXrx569Oghet79+/cxbNgwNG7cGC1btsTMmTORlZVlOh4fH4+oqCi8/vrrAID33nsP+/btK5XXQAghhBBCCCHlmbSsB2CNO3fu4MiRI2jUqBE4jgPP82bnpKam4v3334evry8WLlyIxMREfPfdd0hOTsbcuXMBANHR0ahUqRIYhgEAODo6QiaTISkpCa6urqX6mgghhBBCCCGkPHkpksOwsDB06tQJAPDpp5/i6tWrZuf8/vvvSE1NxZ9//gk3NzcAgEQiwZQpUxAREYHAwEDRpBKAKVksC8d2bUXMtYtgtdng5DJ412+Mtj16l9l4CCGEEEIIIa+ml2JZKcsWPMyjR4+iZcuWpsQQALp06QK5XI4jR44AACpVqoTo6GhTkpieno7s7Gy4uLiUyLgLcvHkWTy99Q/0smRkO2RAL0vG01v/4OLJ82UyHkIIIYQQQsir66WYObSGsQppbnK5HFWqVEFUVBQAwMPDAwEBAThw4AA6d+6MLVu2oHPnzvlet2PHjhaPKZVKeHt7QyotWo594eRJKEXjx9GsbbMiXZOQ3CQSVvBfQmyFvreEynIFCiGEEGIrFSY5TE1NhZOTk1ncyckJKSkppsf/+9//MHXqVMydOxdeXl6m/YhFxbIsXF0divRcTQagtBeLM0W+ZmnZ/f5QOCclI9nVFT3Wrirr4ZACODmJfQxBSPHR95YBy1JySAgh5OVXYZJDS3ieF3yiW7NmTWzdutXq5x88eNDiseHDh4PjOCQlZRRxdJbefmkxrlnymtetgTUhLcEwDFySklDDpxLO3Lhb1sMiIiQSFk5OSqSmqqHXc2U9HFKB0PeWEMfxlCASQgh56VWY5NDJyQmpqalm8bS0NAQGBpbYfXke0OmK9ouRpV8jGBT9miVt6dLFWNxEuOR1UZNmWLRoISIixpbIPfft24MDB/aiU6cueP31N0rkHhWdXs+V2+8p8nKj7y0Dw152Sg4JIYS83CrMZpHAwEDT3kIjrVaLR48elWhyWBwSmXictRAvD1YtW4wkf0fcrWKPO5WVuFvFHsn+jli1fHGJ3K97985QL/8JwxISkbl8Cbp3z3+PKCGEEEIIIaRoKkxy2K5dO5w6dQpJSUmm2P79+6HVatG+ffsyHJlleriLxjm4icbLAz8nBRLc7ZCukpm+EtztUEllZ/N77du3B4+uXEEdF1cwDIO6Lm54dOUK9u3bU6xrfvLJxGJdgxBCCCGEkIropVhWqlarTe0onj59ivT0dOzZY/jlPiQkBG5ubujbty/WrVuH0aNHY/To0UhISMCsWbPw5ptv2mTmMDY2FnFxcYKYVqsFwxQ9v+bgUqh4eVA7sIpovG5gVZvfa86cb7EhrJMgtj6sEyZ//12Rlpd2794ZZ878BwBYs2YVmjdvgd2799tkrIQQQgghhLzsXorkMCEhARMmTBDEjI9//fVXtGjRAk5OTli7di1mzpyJcePGQaFQoEePHpgyZYpNxhAZGYnFi4VLJwMCAqBSmVdItR6LLH01KKUPTJEsfTWU5wndjiFBSFanmMU7hTSy+b0SHj+CvGqAqaAQwzCwk0gQ//hRoa+1b98enDnzH1a0fQ11XFxxIzkRI44dwb59e6xKNJcuXYydO//Em2/2LLG9lYQQQgghhJSllyI59Pf3x61btwo8LyAgAKtWlUxbhfDwcISFhQlic+bMKdbMIQCouSZQ8A/AMIbiNmquCQB9sa5Zkrx9vJF83zw59K7kbfN7+fiLz1L6Vq5c6Gv98MNceCvsBUtUvRX2+PHHeQUmh3XrVkdCQjwA4OzZ01i4cD5u3LhX6DEQQgghhBBSnpXfKapyxsvLC/Xr1xd8yeVysGxx3kIZDLOHtcDzQJa+Ngx/JeW3Io0kPd68IB/zIm5jEydOFo1PmCAez09cXKzoEtW4uNh8n7d06WJTYmiUkBCPpUvzL8Aza9Y3aNMmBLNmfVPosRJCCCGEEFIWKDksB9RcQyRlvwM116Csh1IgPS9eqt1SvDg6d3vzRXn4HDzPo3O3Nwt/rdbtIJdIzJaodmrVLt/nrVixVDS+cuUyi88JCPDF/Pmzcfv2TcyfPxsBAb6FHi8hhBBCCCGljZJDUigSXice58TjxcGwLFw6vw5jesgDcHm9C5gizNaOHDvBQnx8vs8zJqcDa9TCwe5vo3+NWoJ4XrNmfYOMjHRBLCMj3eIM4saN6zFoUDg2blyf7zgIIYQQQggpaZQckkJhpOItKyzFi8urTzgYVmK4h0QCr3feK9J1KvlUApg8s5sMY4jnY8SI0bCXSjGybn3YSSSIqFsf9lIphg+PED3/119/EY3/9ttqs1hISCNMmBCBvXv/xoQJEQgpgaI+hBBCCCGEWOulKEhTHpREK4uXEseJx/mSKaLDymTwmzARcZEb4RneD6ysaPsxGZYV2ypZ4CxkRMRY+Bw8IIjNb9UOvS1ULM2bf1qyceN6PHhwXxB78OA+Nm5cj379Bgji+/btwYEDe9GpUxfR4jkXLpzDqVMnERraEk2aBFs3AEIIIYQQQvKg5NBKJdPK4iVkKZliJCV2S4f6DeAwo3iFXVip+Le6pbgRp9OhvouL6THDMGjg4gJOpxN9brdub2HtWvOKud26vSV4vGTJj6L3++mnhYLksKDejOPGjUJk5AbT4/Dw/li0yPJ+SEIIIYQQQiyh5NBKJdXK4qVjaWrM9vVoAABnDkYi7fk9wM4R0KRDVak6mncML/R1JHI54OICJCfnBF1cDfF86LVai3Gx5HDixCmiyWHeyqsaTZbodXPHjb0Zcztz5j9Tb8YLF84JEkMAiIzcgKFDh9MMIiGEEEIIKbRXLLMpupJpZfHy8XB2EY27W4gXx5OoS7h36V/ExT5H3OM7iIt9jnuX/sXTe1eKdL3q/zc9z+P/2WCUQr6+fliwQDjDvGDBYvj6+gliQ4eOEH3+kCHDTX8+cGCv6DmHDhlmDufPnyN6fP78701/Xr9+Hd5++22sX7+u4METQgghhJBX2quV2ZBis/etCSDvvkPuRdy20h/eEI8/ul6k60mdnaFq3QYAoGrdFlJn5yKPLT8DBgzGxYs3sG3bbly8eAMDBgw2OyciYizc3T0EMXd3D0Tk2svYqVMX0euHhXUGAJw/f070+IULhnhISCOMGzcKO3bswLhxo6jgDSGEEEIIyRclh6RQJPaOaCjRCGINJRpI7B1tfzNL7TH0RW+bUWnIh6i1cg0qDRlW5GtYw9fXD61btzWbMcztxo17mD79W4SEhGL69G9x48Y9wfHXX38DzZu3EMSaN29hKkojkYj/+LIsm2/BG4BaaBBCCCGEEHOUHJJCkfnVhL9CBwaG6qQM9PBX6CDzs/3MoT4tXjyeKh4vT56vXonbH36A56vN9x/mFhExFrt27RPMGOa2e/d+rFu3CUOHDse6dZsExWi6dOku+pwuXbrj559/Ej22YsXSfFtoUNJICCGEEPLqouSQFIrM0QMnNVXRRKGBBEBThQYnNVUhc/Qo8LmFJdGKF22RZIvHS4KlVhf5tcDQpaQg7fi/AIC048egS0kp1hhef/0NzJo1z6yNxcSJU0TPnzhxMrKzxQvpxMXFWpxRtJQ0XrhwDkuXLjYtVyWEEEIIIRUTVSu1EvU5NGAYFpsy20HJaJDJ2+GfbA3UvB26lMD7oJeI9zTUs0XrdVgUvIW+jpbiAPDom+l5Hs9A9TnzbDouIKf4zcSJObOOxuI3nTt3xe3bt8yeo1QqRK+1YsVS0aSxe/fXcebMKVOMWmUQQgghhFRclBxaifoc5uDBIJM3JBnG/5YEiT5bPM6Jxwty9mAk0qIfAXIloFVD5VMFzQpoiyFViL8+S3G9VgtdYqIgpktMgF6rLbBtRlEMGDAYHTp0xP379xAQUN20x3H48JFYsuQHs/OHDBmBadM+N4unWJjdzJ0YAjmtMuLi4nDgwF506tTFbEaTEEIIIYS8nCg5tBL1ORSSBZ6HxC0W+kQvZEc1LZF7uLp7A0+fmsVd3L0Kfa2nUVcQdelf5G7IGBvzCL7VG8A3oL7F5zEsC6eOnZB68IAp5tSps8VlpZxOvFgOp9OVSHIIGGYQ8xa+sTSrOGDAYKxevUIwS1itWgB8ff3x+PFDq+7Xt29vJCUlAQDWrFmF5s1bCPZCEkIIIYSQlxMlh1by8vKCl5cwKZHL5dDrLS8vrLj0kLjFgmEAiVsssqP0JXIXpZM7DG0zJLmiHJQq90JfSxP3yHI8n+QQALz6hCP18GGA0wMSCbzeec/iuUXZo1hSBgwYjE6dOiM+/hk8PHzh7V0JAHD69CVs3Lgee/bswhtv9EC/fgOwb98enDhxzKrrGhNDozNn/sPSpYZZ9dDQlmjSJNi2L4QQQgghhJQKSg5JoclqXATzYgKOYQyPgc42v4/E3Q9BUg0u6+xNsSCpBhJ3y+0hLNFbKGKj12QW+FxWJoPfhImIi9wIz/B+YGWW9zwWZY9iSfLz80ODBrWQlJQBnS5nDP36DUC/fgNMj41tM86c+c8Uc3V1Q1KScImsJbmXqtK+REIIIYSQlxMlh6RQtHotJK7CwjwS1zho9VrIJbZdNilzdoefnQ5XdXpwkICFHn52OsicCz9zyKWLJzlcepJoPC+H+g3gMOObAs8rTzOHhbV7937s27cHhw7tR1hYZ3h6eqJLlw6Fvg7tSySEEEIIeTlRckgK5UHKo1y79gwYAA9THqOmW6BN7yV180eMXonGCg2uZCkQpNAgRq9EoJt/4S9moS0GSrEtxsvg9dffECRy4eH9ERm5wfS4cuUqePxYfIlubmL7EmfOnIVTp07S0lNCCCGEkHKKkkNSKGpdFsSywyyd7ZMslpViduo7cGPTEM+pcEqXhkROhZVsEb5teUtxSwcIACxatAxDhw7H6dOnEBISCgBWzSaK7UvM/TxaekoIIYQQUv5QckjKNQ4s4jlnADD9t7QlxjyCJiUekCmA7CzYOXvAzbuKTa79fPVKpB3/F6rWbVFpyDCbXNPWmjQJFsz05Z1NLIrIyA1IT09Hv34DackpIYQQQkg5QcmhlWJjYxEXJ9xrp9VqX7lWFgzDQKZRQKLL2V+ol5b/90EmE/9Wl+VTXAYAsjLTcGD9XMHEIwPgrYhvoFCqijUmXUoK0o7/CwBIO34Mnr37QOpcNglwYeSeTQwICMTAgZart+Zn9+4d2L17h9mSU29vH9y7F4Xq1QPNWnQQQgghhJCSQ8mhlSIjI7F48WJBLCAgACqVUxmNqIyoJah1qQMY5CSDPDjw9ct3cujm7gPgulnc1c073+clP78HHjxyr6XlwSPl+X0oqgcVa0yPvp2R5/HXqD57brGuWVpyzybm7ac4ceIULFhg/evIu+TUiGVZzJu3EPXq1afEkRBCCCGkFFByaKXw8HCEhYUJYnPmzCnWjJlUzkCnNd/zJpXn3dRXfjy4miJIDAGAAYv7V5PR0DYrLUuEzLMq3KBDInJmCt2hg8yzar7PU8c/EY1nxj8FRJJDS43u88b1Wi10CQmCmC4hHnqt1uI1yqsBAwajQ4eOuH//HgICqsPX1w/Pnj0r9tJTjuMESWduDMNg/vxFGDBgcLHuQQghhBBCclByaCUvLy94eXkJYnK5HHp90fvX2TvYIVWkiqa9g12Rr1nSEp9oReNJT7JL7J6ywPOQuMVCn+iF7KimRbqGVOGA5ko19qqlMMwC8mimVEOqcMj3edkZqaJxXUaKaJxhWTh3fh0p+/eZYs6vd3kpWlkUh6+vn2Amz1ZLTy3heR4TJ44Fy0oE/RoJIYQQQkjRVezfWMu5Sv7iS1ItxcuD7EzxZFhrIV58ekjcYsEwgMQtFoC+SFeR+gRAyzLwlugA8PCR6KBlGUh9AvJ/nl68Cqs0n+qsnr3fBaQvZihlMnj26mN2Ds+Jv1+W4i+jJk2CMXLkGLz++htYsGBxwU8oggkTItC5czv8++9RPHv2FM+ePTX9mRBCCCGEFA7NHJaheo18cetKrGi8vNJbmCDUZ5dMSwjvpjeQ+mKVLcMYHgOdC30diUSOL5L6w1eSiMd6N1SWJGKd2g0rJPkv4dRpxV+wLtvyTOnjqMvI6NYWmVcuw75hEB5HXUbVOq92X7+8S0+vXr2CQ4f2IyysM3bu/LNYS1AvXbqI3r17gGEM3yg8z4NlWUyYMAkuLm7UV5EQQgghxEqUHJYhH39n9BrYGOlpGjg6KJCekQVHlR18/MtvxUrewsSdpXhxaPVapEqFe/5SpU+g1WshLyCpE6OHBI/1ngBg+m9BnBXi93FSiFc5TUuKxam/1hoeKAHcPQvcPQs37ypQuebc09Iy04q8/DT30lNfXz9TC4vXX3/DtAQ1MTEBP/44HxzHgWVZBAc3x5kz/1l1fT5Xz0qO4wRFcQIDa2D69G+pbQYhhBBCSD4oOSxjPv7OkEpZuLo6ICkpAzpd+V5WyLAALzLEkuhk8TD1sWj8UepT1HDNfzmorShdPAFwACS5ohyUzuLJZWpSnGg8LTlekBy+CstKCyN39dP33x8mKG5z4cI5nD59CkuWLER09PMiXT8q6i4GDnwPnp5eWLBgMSWJhBBCCCEiKu40BXnp5Z4JEsZLL4FitBkIkmoEsSCpBow2Q/R8qUy8mJAkT7wwM4fPV6/E7Q8/wPPVq6wZ8kvP19cPrVu3Nc0yGvcuXr58C5MmTS3WtePiYjFw4Hvo3t2wNNm4R/HChXO0V5EQQgghrzyaOSSFwjCAWMrGlED3jSy9RjSu0YtXTC0RShf42elwVacHBwlY6OFnpwOULqKnc5weyNMXEeDB8zrBedbOHOpSUpB2/F8AQNrxY/Ds3QdS5/K77LikffrpF3j69HGx22ScOfMfPv/8Y/zyywpwud5zhmHQsmVrjB49nmYXCSGEEPLKoZlDUiiWksCSSA6VUoVoXGEhXhIkTp5gGKCxQgM5ODRRaAyVU53El5Xqk56JxrlEYZxhWTz2kuNOZaXp67GX3Gzm8NG3M/I8/roYr6ZiWLRoGfbuPYyvv/4Oe/cexsWLN7Bt225Mm/Y12ELs2Vy5crkgMQQMs9UnTvyLgQPfQ/36NbBv3x5bD58QQgghpNyimUMrxcbGIi5OuJ9Mq9WCKYnNdqTckNjZQw/AR6qDj2O6IC7G2cVNNK5ydhU8jn0WhXh3hWCCMd1Rhrjn9+FTtTYAQK/VQpeQIHieLiEeeq0WEnnhC/JUJLn3KAI5S1F79eqD+/fv4eLF85gx4yuLS5OtYVyCWrt2XURGbhX0cSSEEEIIqYgoObRSZGQkFi8W9moLCAiASlV+exKS4pP6BEDLyAA+GxwPsAwARma5P2LiY7hDhwTkVDP1gA5IfAxUa2SKsRKZcOUpADAAIxGvgkqsY6yImjtRvHz5EqZN+9zsXIZhrEoeb926gcaN6+Ktt3pjzJhx1BaDEEIIIRUWJYdWCg8PR1hYmCA2Z84cmjl8ybAuMZAHXIP2fn1wyd4Fni+RyDFdMxAO6mhTf8QMpQ/mWmqlwUrRTKnGXrUUhuyPR7BSDbDCHzXGwjrc3HGqaFo8uRNFJycnTJw41nRswQLDBz1TpkyAXm9dH5YdO7Zix46teO21jvjhh8U0k0gIIYSQCoeSQyt5eXnBy8tLEJPL5dDr6Rf1l8Xbratir3o/GKke8uqX0UX5oVXPS0zXIxG5+iOm55NMZGshkQDeEh1i9FL4SHSQSAzxwmJYFtFuMmjsctpo2Gn0CKzAvRBLyoABg9GhQ0dBiwwAplhGRgYGDnzPqmv9889BNG5cF9OmfY1GjZqgevVAShQJIYQQUiFQckgKxVLdmRKoR2NzLpUTwdwzJHaMVA+Xykm2v4nUMKMYrFSLxo3cK1UWfbq7T06SkRD9CM+9FcJqPzyPxJjH8KwcaJvxvkKMM4mWYgsWLBbMLhZk+vT/AwCwLItRo8bi7bd7ISMjg5JFQgghhLy0aAqCFIo1yyFtRcJIINMooMhwMn3JNApIWUnBT86D4zlsf7hdENv+8E9wtu6ZaGU5V4lEDu+qdQUx72r1IMm1XNXSckdrl0GSwhkwYDAuXryBDh06Fup5HMfhp58WokuXDujduweaNKmH9et/LaFREkIIIYSUHJo5JIXDGPbRicdty0HvhJqXO4Dlcz7D4BgOyhBVoa+Vokk164+o0WuRokmFq8KluEPNYWkPap44z3MIdpXgr4fGnog8gl1Y8DxH+1jLkK+vHyIjt+HChXNYunQR/vxza6GvwfM8Jk4cCwcHR4SEtKBZREIIIYS8NOi3UFIoMrn4rJ2leHEkPdEIEkMAYHkWSU+yCn2teHWCaDxBXfDSUns7Nt/HubFy8RYXeeOcOhW4ewLeEh0AHj4SHXD3hCH+gtxOKXotS3FiO02aBOPnn9cUaSbRaMSID2gWkRBCCCEvFUoOSaE4Ook3oLcUL47HDxILFc8Pa+FbnbVixnNIt7r5Ps5N4uRhVVz/IgkMVqrRzTENTV/sUdTnSg6zteJJsKU4sT3jTOLevYfRuHHTQj/fOIu4ceP6EhgdIYQQQoht0bJSUijevirEPksTjdtaQlxGoeL5UUjtRON2EvF4bvUD3FGzvhrxjqfhkRaC+gHuFs+VKJTIfvFnns9ZbStRCGf79Knxos/Xp8YD7lUMD6yo/vPw5jmkp+Rcy9HZA1XrUB8+W2vSJBj79v2DCxfO4fTpU0hMTMCPP84HZ2VbkQkTIrB8+WL888/JEh4pIYQQQkjRUXJICqVGHS9cOftMNG5rGrV44RVL8fxk6tSicbWu4Fk4uYxFkvMZZOnUSHI9C7msq8VzJa6+iNbZw0eaCQ3PQMHwiNbZI9DVV3AepxEfT+64m5ev6DmunpUAAGlJsTj111qz427eVaBy9SzwdZHCa9IkGE2aGJLv998fhvv378He3h6jR3+IqKiofJ97/fo1hIQ0xvLlq0zXIIQQQggpTyg5JIXi4++MXgMbIzUlJ6lyclbAx9/Z5veyZbXO4iwrvRB7GRm6TABARnYGLsReQbB3I/HrsVLMTu0NNzYN8ZwKHmwaEjkVVrLCHzWOE38NueMSiRwOaTpkOMlMMcc0namiaVZmuug1stQZlByWgtxtME6evIDPP/8YK1cuz/c5Dx7cQ5cuHdC5cxesX7+5NIZJCCGEEGI12nNICs3H3xm16nubvkoiMQQM+7UKE8+PvUy8iItSmn9xF47n8PutPwWxyFvb8m2BwYFFPOcMvPgvJ/Zjlm1hxjJXnGFZBD5RG9anAgDPo/oTNRiWffHQdu8PKb5vv/0eFy/eQO3alvekGu3fvxc9eryOf/89imfPnpbC6AghhBBCCkbJoZViY2Nx7do1wZdWq7V6zxEpPMbCt6eleH5YC70RC+qZmKZNR+aLWUOjDF0m0rTis3ZWs5Cs5o7zHAcJAOc0HcDzcE7VQfIiDgByhb15VxGeqpmWJV9fPxw79h/WrdsEBwfHfM89ffqUqS/id9/NKKUREkIIIYRYRstKrRQZGYnFixcLYgEBAVCpnMpoRK8AxsIMmKV4PrztPTGkfn/EZ+a0tPCwd4envXh1UaPM7EwLcTWc7cT/7nu2qYY//30geGzO0mvIibNSw49n9SfC/YnGuCYz/cX5uZfG8tCqi5m4kmJ7/fU3cPz4GTRuXPAsIs/zWLBgLs6ePYM//thZCqMjhBBCCBFHyaGVwsPDERYWJojNmTOHGpaXJN7CfkBL8QI0825c6OdYWj6a37LSdo398M/FZ2hayxPnb8ehXWORJug6jfiTc8UZlsXd6s0ReO8MGBjSwKjqIaj1YlmpTC4+QyiTG9qKJMU+QbYmHalxCqSnZ0Fm5whXL3+L4ya25evrhwULFmPixLFWnX/s2BG0bRuC7t3fRpcub1DRGkIIIYSUOkoOreTl5QUvL2FFTrlcDr2elpWWGEsrPvNfCWpTWRaSOI3eQnIHwMXRDu+Hu2DDzd/xfngfuDiKtMtQWtinmSf+l6wuRuI87KCHFhL8JauDbsaDlvYW8oBGnYH9G+aBz1XghmEleHvkTNgpHSyOndjWgAGD0aFDR6xYsRRLliws8Pxbt27i1q2bmD9/NsLD++Ozz/4P9+5FoXr1QFPxG0IIIYSQkkLTXqTcYizMEFqKl4SiFLLheA7rb2xBenYG1t/cIjrLyGSlijzTPK7RczjkF4I4uTMO+YVAk+vDCCd3T9E9hyo3D2jU6YLEEAB4Tg+NuvA9Iknx+Pr6Ydq0mbh48Qb69HnP6udFRm5A48Z1TfsSp0yZQMVrCCGEEFKiKDkk5RZr4bvTUrwkFGVZqVjri7xYezfR5+aOc5wOU522Y6jfSdQKysBQv5OY6rQdHKcDYCjM456oFTzfPVELBixVMi2HfH398NNPK3Hx4g2MGTO+UM/leR6//roajRvXxeeff1JCIySEEELIq46SQ1Ju2XjLYZFo9FrReDaXLRq3tvWFRCleyTJ3XJ/8HN7SNACAHWNICL2ladAnPwdg2JPoF6sBON54c/jFasCwLLRZ4oV0tBq1aJyUntwziU2bNi/081euXIbWrZuVwMgIIYQQ8qqj5JCUWzYsVlpkXg6eYCHMRlkwFqucWtv6grVTiD4/d5zLleAxuYaQO84C8ErUAjwPrwSt6QdaZqGdhbFYDSl7vr5+2LPnIPbuPYwuXboW6rl37tzG66+3L6GREUIIIeRVRQVpSLnFsuJThJbiBYl+koLUlJwm807OCvj4WygM84KjzAGfNJ+ANG2aKaaSq+Agsxc939rWFxJXX8DRE0iPA1gZwGUDjp6G+AucRvxaxrix36FfrMYwgwjDFkSe48AwFvZrMgySYp8gKzPn9SjsVVTFtAw1aRKM336LxJIlP2L69P8DYPh76tHjbezc+afF5128eAH9+7+LDRs2l9JICSGEEFLRUXJIyi2JTHxi21I8P9FPUrBt3UWzeK+BjQtMECurfPM9XhQsK4VD3++A1HjAyQtIjQWcPMCyOT+SnEa8eIwxzljYfMmwLOQKywVzqIpp+TRmzAT06tUH9+/fQ0BAdfj6+gkSRjEHDuzFF19MRZ8+71HrC0IIIYQUGy0rJeWWykl8CaSleH4e30ssVLw0sKwUrIsPWJZ98d88n9XILLxOS/FcFPYqSPMsITU85qmKaTnm6+uH1q3bmtpWjBkzARcv3oCfn+WZ3RUrlqJLlw4YNmxwaQ2TEEIIIRUUJYek3PLxcypUPD/xseLJj6V4abkUdxVTj03HpbhrZsfyWxpaEIZhcV3XWBDL+zg3qmJafvn6+uHChevw8cl/Bnvnzj/x+ecfl9KoCCGEEFIRUXJIyq3KAeLtHizF85OSLL5/z1K8NBTUD5FhLCwbfRHnOB3yponMizgAxGU6Q5JtmCWUZOsRl+kMbVamWGtEaDVqJMU+wfMHN0xfSbFPivkKiS2tXbu+wHNWrlyO776bUQqjIYQQQkhFRHsOSbnl4++MXgMbF7qIjJhsjb5Q8dIg1g8x2LuR6ThrJ74H0BjnUmJEj3MpMYBnVYyM3Y90RoMnlRSo/FyDkcx+ODi3MmSDubNK3lDFdN+62bQXsRxr0iQY4eH9ERm5Id/zFiyYi7S0NHTr9iaqVw80LVElhBBCCCkIzRyScs3H3xm16nubvoqSGJYmS0s+2TyzgNb0Q2QV4hVRTXGWhTRPu0SpoyGu12ohS0+Ga5oODW+nwyVdB1laMuQyJXR5GkXqeAYMA9qL+BJYtGgZ9u49jClTPs33vJUrl6N37x5o2rQ+1q//tZRGRwghhJCXHSWHhNiQo9wRkjw/VhKwcJQLZ9+s6YfIKgyZ3zUHOb6u5oFrDnJBnEuLh3st4f3daxniliqZshIp7rLCBurGx2LLTWkvYvnTpEkwPvnkc0ycOKXAczmOw6RJ4/Ds2dNSGBkhhBBCXna0rJS8EliJhRk9C/GicpQ54OPm4wvsi2hNP0RW6QTUbI0d2pvIkLLY4aFCfd86hjgAngdYKaDyB9KeAio/w+OC8rke3Trj5q7zkLF6ZHMS9OjR2dD6QmS5qVyhwO6TD/HHkSi80z4Q3VtWLfR7QkrGZ599hStXruDAgb35nsfzPCZNGofff99aSiMjhBBCyMuKkkMrxcbGIi4uThDTarUWi4aQ8kUmkwLQWIjblq36IjIMizv1miPl2h0AQIpMgjv1QtDU+D33oqWFo6/hy6SAVhcNqnvgvHcHuKacQKZLazSo7gFtegLEqttMX3kcsWrD9f44EoWD5x5j/tg2tnh5xAY2bNiM776bgQUL5uZ73qFDB/DOO2/ijz92ltLICCGEEPIyouTQSpGRkVi8eLEgFhAQAJWq8G0VCLFmbyLHc/jj7m7B8T/u7kJjr4aG87LV4hfPVltcVsqwLBRSFiMGvQXgLVNcw/OilU/T1FoAOclmcrrW0ksiZeSzz77C++8Pw4IF32Pt2l8snnfs2BF06RKG1at/oyI1hBBCCBFF015WCg8Px9atWwVf3t7ecHCgSo6k8KzZm5iRnYFkTYrgnGRNCjKMS1JlSvGLy5TgOU70kKW4JV5sNALYW6avSiy1tyiPfH398P33P+DixRto2bK1xfMuXDiLxo3rUpEaQgghhIiimUMreXl5wcvLSxCTy+XQ6wv3yzYpGxwnvhHPUjy3tJQsZKmzTY8VShlUzvkv3SyINXsTOQubB00VTV/MHP7t5oAjrvZ4LSkDbyRmWp5RzIfK1UM0XltyHbknOXkeSEvqCpWrZ6HvQUqer68ftm//GxMmRGDjRst9ESdOHAutVosuXbrSLCIhhBBCTGjmkLwSeLNanPnHjdJSsrDh59PYsua86WvDz6eRlqv3YlFVVvminntt01fevYr5Fa0BDIVGdACOutoDDIMjrg7QoWgVRllWilpNOwhiVeuGiJ7LcRx2n3yIobMOYffJh4W+Fyl5P/64FA0aBOV7ztSpk9CkST2aRSSEEEKICSWH5JWgfNEGwtq4UUJcBji9MNni9DwS4kq+/19B+xIZhsUedwfwL87jGQZ73RyKXCSpUbs3YZomZBg0bNNVtEjNzHWX8ceRKACGIjWTFv9bpPuRkrVuXWSB5/A8j4kTx1KrC0IIIYQAoOSQvCKcXcT351mKG8U9Sy1U3JYK2peok8hx3EXYIuNfV3voJPknvJawrBR1mnUEANRt1gn6bJ1okZpMtXBGk4rUlE++vn5YsGBxwScCGD8+ghJEQgghhNCeQ/JqqOTvhJuXo0Xj+YmPFZ8htBS3pYL2JSZkxok2rk/MjIc9aopek0f+e2QbtX0LjdoaqpimJJi/XwDAskDuy0hY8RnOa/cTMS/yIiaHN0b9ALd870tKxoABg9GhQ0dMnDgWhw8ftHje0aP/oHHjuliwYDEGDBhciiMkhBBCSHlCM4fkleBX1RV5V2kyjCGenyyNrlBxW8tvX6LUXbyQiMTdD1xyjOgxYzzj2lU8+OoLZFy7avHecoX4rKqrVAt3Jsb05WWXZnbOkm1XMC/yIgBgXuRFLNl2xeJ9SMny9fVDZOQ27N17GM2aNc/3XFpiSgghhLzaaOaQvBJUzgoMGNWi0FVHuWzxmTZL8dJkb2EI9hzA2dmJHuOkduCys/F8+U/gMjPxfPlPqD7vR7Aymdm5lvYu1scxIPfpHAuNuiPslDltOK7eSxQ8J+9jUvqaNAnGypW/onHjuvmeN358BBYuXEpVTAkhhJBXEM0ckleGylkBTx+V6cuadhSWWpWUhxYmGnsHiFWM0dg7gE8S70fIJz1B4q4d4DIN+wa5zEwk7t4peq6d0gF29sJlt3KFSF9PnoNGLVxmm7dFiDUtQ0jJs2YfonGJ6ZIlP5bSqAghhBBSXlBySEg+WKn4j4ileGmylzuKVhO1lzuAlyrNdhdyADjWDol/7xbEE//aBZ4zT3YZhkVwWB9BLKjtm6JjkeWZqczbToPneVy7n4ihsw7h2n2aRSxLAwYMxsWLN9Cu3Wv5njd9+v9hwID3cOHCudIZGCGEEELKXNn/hktIOcZYmPCyFC9NWXqNaFyr14JngPP1FaaCNTyA8/UU4HgOyJsIcpxocggA/jWDoFS5AACUKhd4+FYXPS9bIxyLo9J8xTrtQSw/fH39sHDh0gLP279/D7p06YBx40aVwqgIIYQQUtYoOSQkH7x4IU6L8dLkbe+JIfX7482ALqavIfX7w9PeA2nqZJyq74hMO8NAMxUMTjVwRIZGvAUHw4r/U8AwLJp26AM7pSOCO/SxWKQm6upJXPtvL679txcPb57DkG7572ujPYhlrzCtLiIjN9AMIiGEEPIKoII0hOTDUpsGS/HS1sy7sWg8S2EHvYTBvlZOaHs+HceaqqCXMFDLxXsg8hxnMUH0rxEE/xpBhvN4DjI7JbI1asE5t88K2yR0HPgZmtbyQLM6Xjh7MxaX7yYIjus4DkNnHaI2F2XM2OpiwYLvsXbtL/meO3/+HPz2W2QpjYwQQgghZYFmDgnJj6UksJwkh5YoNYbG9I8q2WF9d3c8qmRICu2zs0XPt5QYmp3HsGjWqW+B5zk42GNs7yCE1vPB2N5BZstM9XrDglfjElPaj1h2fH398P33P+DixRt4//2hFs/bu/dv7Nu3pxRHRgghhJDSRskhIfmxVGWznFffVNuJzxBmirSsAGBxz6GYyrUaQa6wBwDI7MQrviY8f4jnD26Yvvq1ttxP8uq9RMF+xO/WnaNEsQwYk8TZs+dbPGfgwPdo/yEhhBBSgVFySEh+XtKZQwet+Ayho06HvGktD+tnDgHD7GHz1/vDTumI5q/3Fz3n+I5VOLp1qenr/tFVCA50xIi36qGWv7PgXHs7ieDxnScpAKhwTVnp0qVrvscjIzdgwYK5ePr0aSmNiBBCCCGlhZJDQvJThJnDtJQsxEWnmb7SUrJKaHD5sHcWDevk9uJxnbZQl/evEYSeEd+ics3GqB0cJjhWrX4LIE8KynN6DOpYDaH1fPDRe43QtJYHRrxVD01reeCDrnUs3ocK15Q+X18/TJv2db7nfPfdDAQF1cGqVatKaVSEEEIIKQ1UkIaQfMjyzGoVFE9LycKGn0+D0+ckR6yEQf8RIVA5iy/BLAlSvQ4SHtDnmuCU8IBGnWyYKcx1Lg8gIzMRLnLfIt0rqG0P3L7wj6moTYNWb+DBtf/MzjP2QlTIpRjb21DgJrSeD7K0OlPxmhU7rgvSSq6cL9+tqMaMmQDA0OvQEp7n8eGHH6JFi7bw9q5UWkMjhBBCSAmimUNC8uHgaFeoeEJchiAxBABOzyMhLsPmY8uPo6sfxjxJwtBnyaavMU+SoHRwR94FsQwATq8HAFyKu4qpx6bjUtw1q+/FslLT7GGd4I6QSMT3OzKM+D83xmQxtJ6PWRVYnqfksKyMGTMBe/ceLvC8Tz/9uBRGQwghhJDSQMkhIflw93QoVDzumXgfQUvxksKyEvhqdaiVqTV9+Wp14HUa0T2HnCYDHM9h8+3tSM/OwObb28Hx1hepadT2LYRPWoigtm9Cm5Upeo42Sy0azy1vVVNHpZQqmZahJk2CC+yFuHv3DvTv/24pjYgQQgghJYmSQ0Ly4VVJVah4crL4/kJL8ZLCKBwhqd0WACD3rQUAkNRuiyxOvFCNOisFF+OuIkljKAaTpEnGpbirRbq3pQqmibGPTdVLk2KfiJ4zpFtdwWMPF6WgkikVqCl9AwYMLrDNxYEDe/H55zSDSAghhLzsaM8hIfnw8XdGr4GNkZqrqIyTswI+/uIFX7Kz9YWKlxSGYaFsNwSS1n3h5uONxOgY6CVKOD67ibxpKgNAKVfhjzvb0OxaOlpcycSphg7YYrcTjTwb4Er8dWy4+Qf61+mDRp71C7y3wl4FmZ0S2RrhTOF/f63NuScrwdsjZ8JOKZyBrVnZxbT/8OzNWLOCNJejEjB01iFMDm+M+gFuhXpPSNEZ21y4ublhwYK5ouesXLkcfn7+pv2KpGTo9XpkW+hXSgghhOQlk8kgkYjXyhBDyaGVYmNjERcXJ4hptVqL+6hIxeHj72wxGcxLrxVPAi3FSxLDsGAVKjAMA1ahAqfj4MAziBc5l9dlISMtCS0vZ4LlgVaXM3C5ZhLStOmCpaYNPeqCLeB7nmFYNOvUFyd3r7Z4Ds/poVFnmCWHeYvVTF78L7TpOZVUs3WGpa7zIi8iuLYnxvRqaPEe1+4b+idSImk7n332FdLS0rBy5XLR49On/x969eoDX1+/Uh5ZxcfzPJ4/f47k5GTQVlxCCCHWYhjAxcUFlSpVAsMU3IqNkkMrRUZGYvFi4d6bgIAAqFROZTQiUh7xFn7mLMVLHyNekIYHehxLAfPil07mxeOrDW+YLTVt4hVU4F0q12qEcwftoc3KhMzOHtka832Ixuql+fmgax0s2HxZ9NiT2HSLz1uy7QrO3TJ8mGNNIkms9+233+PBgwc4cGCv6PGZM6fhp59WlvKoKr7nz58jKSkZKpUL7OzsALOfZEIIISQvHhqNBklJyQAAX9+CK9NTcmil8PBwhIUJ+7nNmTOHZg6JgFQmPm1vKV7aWKUDHPyAjFz9yx39AC0LVI7JNv26ycDweO3tvwXP/+OOYampNbOHzV/vj7P7f0ejdm/j9N71ZufEPomC3E4Jhb0Krl7+otfJvcz0n/NPcftJiulYYfojUr9E29qwYTPeeut1nDp1yuzYli2b8OWX02n20Ib0ej2Skw2JoUpl3SoGQgghBADkckMtiOTkZHh7exe4xJSSQyt5eXnBy8tLEJPL5dDrra/oSEiZ02ZBVQlQxwCcDmBlgGMlwE7qgAcMhL3rGSBVnwHkai+RpElBRnYmVHLHAm/lXyMI/jWCwPMcLh3bCU2msGLrqd1rAACsRIq3RnxttsQUEC4zbVzDAyt3XTftR6zqI14UCADs7STQ5NrnaW+hLyUpuq+/no3OnduLHqPZQ9vKzs4Gz+PFjCEhhBBSOHZ2dkhLM/z/pKDkkKa9CLEhqUT8R8pSvNTJ7cCwgEsgIFUCLtUBhn0Rz7OPKe/j3ArTD5FhWASH9bF4nNPrwFvRNiN3P8SxvYOgkFv+bMvdWWH2mFpi2FZwcDDatxdPDrds2YTvvptRyiN6FdBSUkIIIUVh/f8/aOaQEBuy9KNX3n6ls3MGPPNuwWMYCCpdWNi0nLcfojVFavxrBkGpcoE6LVn0+JOoq3BQuQBAvstMrZWSoRU8fhSTLmiJUdPfGXeepFCxmmJat24dKleuLHpswYK5cHJypuqlhBBCyEuknExnEFIxZFtYZmwpXtoYrUb8gFYDsxKIFkoiXou/Weh+iAzDommHPrBTii9HPbd/I45uXYqjW5fiwIZ5eHT7Qr79EAsyNE+/RAeF8HOwOy/2LlLvxOLx9/fH9OkzLR6fPv3/8OzZU4vHyatr//69GDVqGMLC2uK111rhgw8GYOvWLeA46/6tDA1tivXrfy30fXv27I65c2cV+nnWWLFiGTp0aF0i1yaEkNJCM4eEvEIYJ0/ROC+Vi8ZlHAstm5MkShkJdt4XVqncYmWRGuMexItH/sStc4dy7mGnRLYmC8YNjxynx8ldhjYY+e1HzE9VH5WgX2L7Rr5FqnpKCjZu3Ee4fPky/vhjk+jxM2dO4+23e5XyqEh59sMP8/D77+vxxhvdMHjwEEilMvz771HMmzcb586dwcyZswost75y5Rr4+FQq9L1nz55HVcYJISQflBwSUkbSUrKQpc5pZq1QyqDKs1fO1hiteUsJAGB0WtH4hEYfIFOak/RJGBYLL64QnJOsScHp5+exLWo3+tfpg0ae9fMdQ1DbHrh94R/wHAeGzb8norX7EfPK2y8xS6szJYsb9t9GulpnOtfZUTwxJtb7v/+bbjE53Lv3L0oOicm//x7F77+vx6BBH2DMmPGmeEhIC1StWg3ff/8dgoObo3dv8X3KGo0GdnZ2aNCg4JY6YmrXtlzlmBBCCC0rJcSmlEqZVfG0lCxs+Pk0tqw5b/ra8PNppKVklej4GGcvwMnb8ED6ovKhkzcgF6+C6CdVoZ57bdOXj4O36Hl/3v3LtAeRKyCZY1kpagcb2sLUCe6IyrUawcndp2gvyEq5i9los4Xje/A8jYrVFJOvrx8GDx4iemzLlkhaWloOPX36FMeOHcHTp6X7d/P77+vh6OiIDz4YanasZ8/e8Pf3x4YNvwHIWaZ57dpVfPjh+2jXLhSbN/8OwHxZKc/zWLXqZ3Tr1hkdOrTG1KmTceLEvwgNbYpz587muodwWemMGdPQv/+7OHfuLAYP7ofXXmuFoUMH4ebN64KxrV//G4YMGYiOHduha9eOmDx5PB49emjT94YQQsoDSg4JsSF3T/Hlj3njCXEZ4PTCPX2cnkdCXEaJjQ0wJGYO730Dh/dmweGDpYb/vveNxX6deWft1Dq16HlpOsPSTGv3IDZq+xbCJy1EUNs3wTAsGrbuAXkhl44WVd79hzwPQbEa2oNYNJMmfWLx2L59e0pxJKQgv/22Fo0a1cXbb3dHo0Z18dtva0vlvjqdDpcvX0JwcHM4OJjvP5ZIJGjTph2ePHmM2NhYAIay69OmfYE33uiOBQsWo0WLlqLX3rTpd6xcuRzdu7+JWbPmonLlKpg9+1urxpWQkID58+dgwIDBmDlzFrKysjB16hTodDkrO+LiYtCnTzjmzJmPzz77ChzHY/jwIUhJScnnyoQQ8vKhZaWE2JCzq9KqeEqSeJJlKW5LLCsFXF7M1LkUbsbOUe4ICVjoYXl28A8r9yDm5l8jCB6+Adi+7AuzYzGP70BuZ3j/bFHJ9IOudQT7Dx0UEiRn5Lyec7ficO1+IlUxLSRfXz+88857ostLP/lkImQyGQYMGFwGIyO5PX36FBMnjjMVfuE4DpMmjUdYWCf4+fmV6L1TUpKh1WpRqZLlvYLGfYSxsTEADAllRMRYdOzY2eJz9Ho9fvttNXr0eMu0VLVFi5ZITEzEX3/tLHBcqakpWLp0BapXDwQAyOV2GD8+AlevXkXjxk0AAB99NEVwv5CQFujWrRMOHz6Anj3fKfAehBDysqDkkBAbcvN0AMsy4LicWUGWZeCWZ+YwPVW8aqileHnhKHPAx83HI02bBsAwk/jLtQ2Cc5I0KcjIzoRKLl6Z1BI7pQMUDs7IyhB+En9q9xrTn4taoCa3mpVdCixWMy/yIoJre2JMr7z9Pkh+unTpZnHv4aRJ49GhQ0f4+pZsAkLyd+/eXbOKoHq9HvfvR5V4clgYuQvStGrVJt9zY2NjEB8fj7ZthX0327Vrb1Vy6OHhaUoMASAgoDoAIC4u1hS7evUyli9filu3biI1NeffqEePHhV4fUIIeZlQckiIDamcFeg/MqTAQjNajS7vU/ONlyeVVb6mPxuTRFswtLt4Byd2/WLxnKIWqMnNUrGay1EJ0OVa6nv1Hu0/LKyQkBZgGAa8SBsUnueocmk5UL16DbAsK0gQJRIJAgIC83mWbTg7u0Aul+P58+cWz4mONhzz9PQCACgUCiiV4isyjBIS4gEALi6ugrirq3Wz/yqVSvBYJjP8aqTRaExjGj9+DOrWrYtPP/0CHh6ekMlkmDRpPLSW2gMRQshLivYcEmJjKmcFPH1Upq+SrkBalhiGBZvnnxEWbKGWlObmXzMISpULAEDh4Cx6TszjO8XqgZiXMVlU5SkaZG8noUI1heTr64f58xdZPL5371+lOBoixs/PDwsWLIJEIgFgSAznz19YKrOGUqkUQUGNcOHCOWRkmO+v5jgOx4//C3//yvDyMiSHBbW0AAB3dw8AQHJykiCelGSbn9tTp05Arc7ErFnzEBbWCUFBjVCzZi2kpqba5PqEEFKeUHJICMlXxrWrePDVF8i4Zl5oxl6qhL3MXhBzkNlDKS1aQmyYPewDO6Ujgjv2EU0QT+1eg6Nbl+LAxvnQqG1XwOeDrsIS9+7OCipUUwQDBgzG7NnzRY9R5dLyYdCg93Hx4nXs2PEXLl68jkGD3i+1e/ftOwCpqan49VfzFQI7dmzD48eP0L//oEJd08vLG+7uHjh69B9BPO/jotJoNGAYBlJpzmKrgwf3Q68v/ys9CCGksGhZKSHEIl6nQ/Sqn6FPTUX0qhUImD0XrCxnhi0jOwPp2cIm8mnZ6UXac2jkXyMI/jUMyz55jre4zNQWS0xzy7sXMe+yUlpmar0uXbpi6tRJosdoaWn54OfnVyZ7DNu0aYe+fQdg7drViIuLR6dOr0MqleLEiWPYvHkTOnbsjF69ClfgRSKRYPDgIfjhh7lwc3NHcHAznD17xtTCgmULnn3MT3BwcwDAzJn/Q8+evXH//n1s2PCr2XJUQgipCGjmkBBiUfLho9C/WDqlT01B4t+7rH7upbirmHpsOi7FXSvy/XMvMxUT8/iOzZeXhtbzwdjeQWYtL+ztJKY/03LT/Bkrl4qhpaXko48m4+uvv8PTp4/x5ZdT8fHHE3HhwnlMnvwJvv76O6uWkub13nt9MWzYCOzcuR1Tp07Ggwf3TZVLHR2Ll8TVqFETX375P9y8eQNTpnyEffv+xrfffi/ajoMQQl52DC9WOYBYZfjw4dDrOcye/UOxriOVsnB1dUBSUgZ0OtvNhJDy6/Bft3DzcrRZvE6QDzp0q22z+1j7vaVLeoaYHz5HRq4Vfw6+QEY0A+SqvAoJixo//QxWYkic0rRp+PTfr82u923rL/H92UVI0qTA1c4FM1p9WuR9iE/uXsbZ/b+D4zhkazLNjtuigqmYK1HxgiqmE98NQsNADyzZdgXnbsWZ4q9qVdOCvrf+/HMrRoz4QPS5Fy/eqHBVS6dO/QgSCYsVK1bY/NpZWVmIiroHDw8fyOV2Nr9+RbVs2RJs3Lgee/cegkJRcfd+E0JIQbRaDeLjoxEYWL3Afw9pWSkh5VhaSlaBlU9tgbFzgKoSoI4BOB3AygDHSkDGszyfHek58FnpgINLvte7Fn8TSRpDufckTTIuxV1FE6+gIo3NuMz08e2LoktMOb0O0Y9uQW6ntEkfRKO8y0xrVnYBADyJFS6jjXpKTbDFhIS0sHhs3749+OCDYaU4GlLR3b9/D3v2/IWgoEaQSmU4f/4sNmz4Db1796HEkBBCCoGSQ0LKgNxO/EcvdzwtJQsbfj4NLld7BVbCoP+IEJsniAzDgGEBl0Ag9RHgVAWwNNGXe7EBw7CQMhLoeL0pJmUk2Hl/r+A5f9zZiUaeDYo8ewi8WGLq6AJ1erLZMWMvRFvOIuZteWH0Qdc6mL3hgulxcroWS7ZdwZheDXHtfiLmRV7E5PDGqB9gXRn9isq4tFSs7+Enn0xERkY6xoyZUAYjIxWRQqHAtWtXsG3bH8jIyICnpycGDBiMDz8cWdZDI4SQlwolh4SUAZWT+NKw3PGEuAxBYggAnJ5HQlyG7ZNDhSMktdvC7tYxeHUMBB8bBaZKU+DMebNzuaw08FIZYOcABz2PKcFjkJadUzVUwrBYeFG4tC5Jk1KsIjXAi0qmYX1wes86ZGuzRM8pqVnE3Kr6qGAnY6HJzllK+SQ2XbDcdF7kxVd2uWluXbp0E00OAWD69P8DAEoQiU1UquSLxYuXl/UwCCHkpUfJISFlwNlVvKlz7nhKklr0HEvx4mAYFsp2Q4AW4YCdA6DJQHZ6IrDFPDnMOrsNmkcXwHrXABdzFx512sG/7QdgXswKpmnTbD4+I/8aQfAbMws7V/4P6rRkgGGAPNumjbOIEokMb46YYfO9iAq5FB+920gwe/hB1zpY8/dNwXl5l5++ikJCWoBhGFja2j59+lfo1atPhdt/SAghhLysqFopIWXAzdPBrLw6yzJw88xJZLK1+rxPyzdeXAzDglE4GpaYKhzBKixU+HtoSIq42CgAgO7mUSBXoRiGYcHm+aeFBVusJaV5x2nshVgnOMzieQpHZ8gV4kl4cVX1UaFpLQ+MeKsemtbyQFUfFZwd5YJz8j5+Ffn6+mH+/EX5VJ/kcebM6VIdEyGEEEIso5lDQsqAylmB/iND8i02w3Hi1UUtxW3N4i/0cnsgOzNnxk7hBF6uhPFse6kS9jJ7Qf9DB5k9lNKc13Yp7io23PwD/ev0QSPP+oUem7FIDc9zeHjrnGEWMY/M1EQ8vnMJMrnC5ktMxfYjJqVpBOfkffyqGjBgMDp06IhPPpmIffv2lPVwCCGEEJIPmjkkpIyonBXw9FGZvkqiCmlxsPZOkHs5CWIyT0cw2XnaSWSlgk+NNT3MyM4QJIYAkJadjowXz+N4Djui9iI9OwM77+0BV4xG9rlnERWOzoJjPM/h5K7VOLp1KQ5snA+NOsPCVWzDVWWX7+NXma+vHyZPnip67Pr1K6U8GkIIIYRYQskhIUQcD2gThYlgdlJW3i1+hlNl1ie2l+OuITozBgDwPCMGl+OvF2uY/jWC0DPiWwR36GPxHE6vA1+MJNQaBc0cXrufiKGzDuHa/cQSHUd5lZEhnpwvWDAXz549FT1GCCGEkNJFySEh5VS2VjyZsRQvEXmXsFpY0sqnJYDneUMPRBjaWeQmZSRgGRYcz2HnPWGbi1339hZr9tDIr0ZDOLn7FHxiCRnara7Fx0u2XcG8yIsADJVMl2x79WbLqlcPtLhUecGC70t5NIQQQggRQ3sOCSmntBpdoeIlIu80oYWqk1k7Zpqql0rrtDNrb6GSq+Ags0d6dgbi1AmC58ZmxuNM9AVsvburyHsQAcMS04ate+DM/o3QlvASUjHGIjXN6njh7M1YVPXJKeiTt3Lpq1jJ1NfXD4MGfYBff11tdmzt2l8wceLHVLWUEEIIKWM0c0hIOSW3E//sxlK8NGlSgLgrhv8a5a5e6i93QT332qavyipfAIZiNUqpsIKovVSJvQ8O22QPon+NIPQc9Q0UDsL9hzKFPRJjHiMp9kmRr10QY5Ga0Ho+GNs7CAp5zt8TVTI1mDTpE4vHqGrpq+XEieOYOHEc3ngjDK1bh6Br106YPHkCjh8/Jmh9MmPGNPTv/26hrx8a2hTr1/9qk7FGRAzH5Mnj871XQV+7du3AuXNnERraFDduFG8pfXE8e/YMoaFNcejQAZtcz5r3+caN6wgNbYpz584WeC2xr/3792LXrh0IDW2K5OQki/fetWsH9u79u3gviBBCM4eElFcyufhnN5biJUIiAXQ6wWOe0yE5CuB0QPI9wKsRwLCwWL00N0vFatJexIx7EBt7NijykA1Fat7BiV2/mGLZWZk4tm0ZWIkUb4342ua9DwuSd/9hTJ69nK8KX18/DB48RHT28N9//8Hbb/cqg1GR0rZ06SKsXbsa7dt3wOTJU+Hh4YHExEQcOfIPPv54Ir7/fgFat25b1sO02sqVawSPP/zwA7z7bl906fKGKebnVxn37kWV8shePnnfNwCoXLkKOI7HypVr4OhoocUSgN27d8LeXokuXbqW9DAJqdAoOSSEiGJYFm5duyNx53ZTzK1rd6gfXgCnewQA4LKB9OeAKvdqwKxUcCnRYJTOgJ0DoMkA7OwNfRQZFlJGAh1vuVfjltvbseHGFgyo+26Rl5j61wyCwsEZWRkpgjin1yH60S04uXrZtLVFQYZ2q4vZGy6YHqdkZGPJtisY06thqY2hvJg06RMLS0tXY+LET2hpaQV3/PgxrF27GsOGjcDw4aMExzp27Iy+ffub9YAt7xo0CDKL+fj4iMaLgud5ZGdnQy6v+CsO8nvfXF1dS3UsWVlZUCjKVxVxQkoDLSslhFjk1q0HWJWhnQXr5AzXN7oh7cZzwTnpz8y3Imad34H0X8cic8c3SP91LLKOrQHPc3CUOWBKs3EY02gYxjQahqENBoDN889QkiYFGbrMYi0xZRgWwWHvACLzl6d2r8HBjQtKvLVFblV9VLCTCV9n1NMUC2dXbMbZQzFUmKbi27hxHTw8PDBkyIeix+vVq486derle42oqLv46KMx6NChNcLC2uLjjyfi8eNHZufp9XosWvQD3ngjDGFhbTBjxjRB1Vy1Wo25c2fhvfd6oX37VujZsztmz/4G6elpxXuRBUhNTcFXX32OsLA26NmzG377bY3guHEp7YkT/2LgwHC0bdsCx44dAQBcuXIJY8aMwGuvtULHju3w1VefIzFRWAH5119Xo0+ft9CuXSi6du2IsWNHmVUE1mg0mDt3Fjp3bo/u3V/HwoULoNMJ97NfvHgeI0YMRfv2LfH66x3wv/99iYQE4Z5xMb/8shLdunVGhw6tMXXqZCQlFb9Cs9iy0twiIobjwoVzOH78X9Ny1BUrlpmOHz9+DEOHDkb79i3xxhthmD37W6jVatNx45Lf48eP4bPPPkZYWFt88YXlZfCEVGSUHBJSTrGs+I+npXiJjEEmQ6UPR0Du64dKw4aDlcnA6/PM+om1toj6D4BwHyI0hqWUlVW+pr2ITTwbwlXhInrv4ra58K/ZGK16iCQhDAMHF3dkpCbi+YMbpq+S3o/40buNBLHkdO0rWbUUANq0aS8a//XX1dTWopRcvZeAwTMP4Oq9gn/ZtxWdTofLly8hOLg5pNKiLVyKiYnGqFHDkJiYiP/7vxn4/PP/w6NHDzFq1IdIShImDps3/44HD+7jq69mYPTocfjnn4P47ruvTcezsrKg13MYNWoMFixYhJEjR+P8+XOYOnVysV5nQebM+Q6VK1fBrFnz0KpVWyxZshAnTx4XnBMfH4f5879Hv34D8cMPi1GzZm1cuXIJo0ePgKOjCjNnzsKnn36B69ev4eOPPzI976+/dmH58qV4882eWLBgMT777P9Qq1Zts1Yyy5cvAcOwmDlzNnr27I0NG37Djh1/mo7fvHkd48ZFQC6XY+bMWZgwYRLOnDmNsWNHQqMRLpPPbfPm3/Hzzz+ha9du+O677+Hr64fvvptp9XvDcRx0Op3pS5/3/zcWfPLJZ6hVqw6Cghpj5co1WLlyjWmZ+qFDB/DxxxMRGFgDs2bNxdixE/DPP4fwzTfTza4za9Y38PevjNmz56J//0FWj5uQioSWlRJSTnEW2kbkjqelZCFLnW16rFDKoHK27TIYh/oN4DDjGwAAz3EAy1psaWEidwC0GQXuQ8zUqZGqTbV4mV339iLIox5YpmgJsX/NIChVLlCnJecEeR51mnXCwd9/AKfPee9YiRQtug6CTG54/xT2KpsuPTXOHmqyc967J7HpuHY/EfMiL2JyeGPUD3Cz2f3Ks5CQFqJxnudx//49WlpawhZtuYwzN2MBAHM2XEDzOl4Y18c2SyDzk5KSAq1WC29vYcsZnucFSQDLshY/BNu4cT2ys7Px448/mZYZ1q/fAO++2xNbtkQKlqrKZHLMmTMfEomhtY5cbofvvvsaH344EtWqBcDV1RVTp35uOl+n08HX1w8jRw7Fo0cPUaVKVZu99txeey3MNM5mzZrj+PFjOHToIFq2bG06JzU1FQsWLEb9+jn7ryMiZqBOnXqYNWuuqS1MYGANDBjwHk6c+BetWrXB9etXUaNGDbz//lDT89q1e81sDPXrN8TkyYaZsRYtQnHmzGkcOnQAvXsb+sWuXr0Krq5uWLBgEWQyGQCgSpUqGD58CPbv34sePd4yu6Zer8evv65G167dMW7cRABAaGgrJCTEY9++PVa9N0uWLMSSJQtNj/39/bFly44CnxcQUB0ODg6wt1cKlqXyPI+FCxegU6fX8cUXX5nibm7umDx5AoYOHY7q1QNN8Xbt2mPMGMvFhwh5FbySM4eff/452rZti9q1a5stoyCkvFAoZPnG01KysPHnM9iy5rzpa+PPZ5CWklViY2JYFopc/yMFALm3ExgGYLwMcbZasCExzC0rFXxqrNn1HGUOmBw81uIS09jMeKh1RX89huI0fWCndIRS5QIAcHL3QdW6TeHo4o6cZacMOL0OJ3etxtGtS3F061KbLz0Vmz10dpS/kv0PfX39MHHiFNFj9vb2pTyaV8+jPK1U8j4uOYYPi/K2uzx8+CDatAkxfc2fP8fiFS5duoDg4OaC/WeVKvmiYcNGuHTpguDcNm3amRJDwJCU8TyP69evmWJ//70Lgwf3Q4cOrdGmTQhGjjQkVY8ePSzyqyxIixYtTX9mWRZVq1ZDXFyM4BwXFxdBYpiVpcbly5fQsWMn6PV608xalSpV4eHhYXpNtWvXwe3bt/DDD/Nw8eIF6HTZEBMSEip4HBAQgLi4nH+jL126gHbtXjMlhgDQsGEj+PhUMnufjWJjYxAXF4f27TsI4h06dMzv7RAID++H1avXmb5mz55v9XPFPHr0ENHRz9GxY2fBjGSTJsFgGMascmyrVm2KdT9CKoJXcuawZ8+emDRpElq3bl3wyYSUEWdXZb7xLHU29HrhDJ5ezyFLnW3z2UMjnuOQlafinjYhEw5fLASjVAGaDOj12VA/OCf6XJ7nBQVqAJjaXHA8h02y7YJqpvZSJe4kRWHjra1F7oHoXyMI/jWC8OTuZZzd/zuCWvcAy0rRsFV3HN+5yjg6KB1doE5PgfEXWDsHRyREP4TSwclmM4h5eyE+foX7H9arJ16R9tGjR2jSJLiUR/NqGda9Lr797ZzgcWlwdnaBXC5HbKzwg6JmzUKwevU6ABAskRSTlpaKmjVrm8Xd3d3NErq8BUycnJwglUoRHx8PAPjnn0OYPv0r9OzZG6NGjYGTkzMSEuIxdepkaLXawr48q6lUwoqbMpkUmZlqQczVVbiKIDU1DXq9Hj/8MA8//DDP7JoxMYbksnv3t5CZmYk//9yK339fD0dHR3Tr9iZGjx4nKK5iPgaZYLloWloa3N3dze7j7u6O1FTx1R4JCfGiY3dzM7+OJV5e3qhbN/89p4WRnJwMABaXChvfN6O8YyfkVVQuksOHDx9i1apVuHTpEu7cuYPq1atj165dZufdv38fM2fOxLlz56BUKtG9e3dMmTKl0NWkQkJCbDV0QkqMvYVeeMZ4Rrr4Ly8Z6Vp4ltioAIZhBNsMGYYBo3A0LHNSOIJVixdzUG/5Aqx3DXAxdyGt0Qp2rw0Do1WbEkVLbS7+vPu3qQdiQ4+6RV9i+iJJNPKr0RBO7j5ITYiGk7sPGrTsJmh/kZmaZPP2F8ZeiAAQWs8Hs9afQ1xyzszoq9T/MG8RI6O9e/+ilhYlrFolFZrV9kTzut44cyMG1SpZbg9gS1KpFEFBjXD27Gno9XrTrJ6TkxOcnOq9OEd8xYSRk5MzEhPN90kmJCTAyclJEMu7BzE1NRU6nQ4eHh4ADHvRatWqjU8//dJ0zvnz5h9slQUmz/SqSqUCwzB4//2hZjNzgCHxBgwzkeHh/REe3h+xsbHYv38vfvppEVxcXDB06HCr7+/k5GRW6AYwvM/V86weMXJ3N7yveQvQiP19lRbj98SUKVNRv755dWgPD+H/LfO+74S8isrFstI7d+7gyJEjqFq1KgIDxf/RSU1Nxfvvv4+MjAwsXLgQU6dOxc6dO/Hll1+Knk/Iy06hlEEiEf6ISiQsFErDL08pSWqxp1mM2wLDsrALqC6I2QVUByPYH2Tht37kKlBz9wQyt88UVDI1trnIjQWLuCzDp9HFLVCTF8OwaNi6B+yUjghq3QP+NYOgcvUyH7NeB76IVVMLkrf/Yd7HFVlISAvRX8S2bInEkiU/lsGIXh0KuRTj322Elg18MP7dRlDIS+9z4n79BiIuLg5r1/5S8MkigoIa4+zZ00hJSTbFYmKiceXKJTRq1ERw7r//HhXsZfznn0NgGMY0M6XRaMyS0b17/yrSuEqaUmnYS/fgwX3UrVvP7MvX19fsOV5eXhgwYBBq1KiBBw/uF+p+QUGNcfToP4JlqVevXkF09HOz9znnft7w8PDAkSOHBfHDhw8W6t5FZZj9FH5oWq1aALy8vPH06VPR983TsyQ/SiXk5VQuZg7DwsLQqVMnAMCnn36Kq1evmp3z+++/IzU1FX/++Sfc3AzT/hKJBFOmTEFERIQpqezXr5/ZMgEACAwMxIoVK0rwVRBiWypnBfqNaG6x4IylzzdL8nNPsWWlWfeiwHOcKUFkFI6Q1G4L/a1jYLwCwcdGAXaOgCZdMF3Exxl+WdHdPAo+qBscnL0xJWgYUnmdYXaS5xF5exsSsnI+/TcWqLkSfx0bbv5R5KWmRnlnE4Pa9MDxncJfWu3sVTaZNRSTt/9hhyb+GDrr0CtRnMbX1w8REePw008LzY7NmPEVevXqQ4VpKqDWrdti8OAh+Pnnpbh9+xY6dXodHh4eSE9Px8WLF5CYmAB7e8s/b/36DcDu3TswfvxofPDBMHAchxUrlsHJyRl9+oQLzs3O1uKTTybhnXfew7NnT/HTTwsRFtYJAS8+4GrevAXmzp2FVat+RsOGjXDy5HGcPXumRF9/cYwb9xHGjh2JL76Yis6du0ClckJsbAzOnPkP3bu/heDgZpg1ayZUKic0aNAQKpUTLl++iLt37+Cdd94r1L2GDBmG4cOHYOLE8QgP74fU1FQsXboIAQHV0blzF9HnSCQSDBo0BAsWfA83NzeEhITi1KmTuHDhvC1efoGqVQvAX3/txLFjR+Dh4QkPD094enpiwoRJ+OqrL5CVpUarVm2gVCoRHf0cx4//i4iIsSVWeIiQl1W5SA6tKc1/9OhRtGzZ0pQYAkCXLl3w+eef48iRI6bkcOPGjSU2TkJKm8pZYXH/oKX5OcvzdrYhtqxUeJyFst0QoEU4YOcAPiUGGZs+NR4UridkGEChQsamT8F614BLzF14vFhympGRgGSNcG9LbGY8MrIzsSNqr02Wmubl6V8TYFgg10yhJjMdj+9cgsrF06bVSwHhHsRNh+5i0+G7AAzFaYJre2JML/NlUBXJiBERoskhz/NYsOB7fP/9D6U/KFLiRo8eh0aNGmPLlk34/vtZSE9Ph5OTE+rUqYsvvphmMfkAAG9vHyxduhKLFi3A9On/B5Zl0bRpM4wfP8lsj+G77/ZFUlIS/ve/L6HTZaN9+w6YMmWq6XivXu/g2bOn2LIlEuvX/4bQ0JaYPv0bfPjh+yX22osjKKgRli//BStWLMPMmf9DdrYOXl5eaNYsBJUrVwZgKBqzffs2bN++DRpNFnx9/TBhwmS89VbPQt2rTp16WLjwJ/z002J8/vknUCgUaNmyNcaPnwg7OzuLz3vvvb5IT0/Dli2b8Mcfm9G8eQt8+ukXmDx5QnFeulUGDnwfT548xowZXyEtLQ3Dho3A8OGj0LFjZzg6qrBmzSrs2WOYGa5UyRehoa0Ev1MSQgwYnre086NsGGcO8+45bNmyJd555x1MmSKscNe9e3c0btwY33zzTaHvVbt2bVy7di3ffksdO1qusqVUKuHt7Y25c81/uSkMiYSFk5MSqalqswIjhFhy6p97OPOveUW95m2qIvQ1wyfjJfG9df+7b6G+ddP0WFm7DgI++9zi+TzPIfOf1dDeOAKJVwD0sRaWN+VKHFnPAOji7mNuDV8kIqeisKfCDb1q9cDPl381xUY1eh9NvG2TRPE8h12rvkFqovnqA4lUhl4RM0tsFvHjn04gJjHT9NhVZYekNA0+6d8EDapbX9ChtNjqe2vRoh8wbZr49oDp02di3LiPinzt0jRlygSwLFMiK1SysrIQFXUPHh4+kMst/2JOCCGEiNFqNYiPj0ZgYPUCa7WUi5lDa6SmppptNgcMm41TUlIKda2PP/4Y//1naNIdFhaGZs2aYf78opVLZlkWrq62+WXRyUm8OiUhYtzcHS3G835P2up7i9frRZeVujgpwEgkFp4FuPYaC+6NIWAU9ojfuRjpV4/Czq82NE9vgbV3BpeZIphR5OLuQ80ySOWyATZnZjJZm4Zd94X9snbd34fXaofYbPawddc++Hv9kjxRBg5OrvD28cizv9J2JvRtgs9/ymmEbdx/OGfDBbQKqoTP3i+fhbSK+7311Vdf4Nmzx1i+fLnZsenTv8LQoe/D39+2M7YlgWWpkAUhhJCX30uTHFrC83yhq0t9//33Vp978KDljdTDhw8Hx3FISipeLzSaOSRFkZkpXrwkM1Nj+p609fcWz4lfIyk504qkiQU0WZC2HQrnkHAwdo6Qp0QjbcOLZV55lpw6cDzGxGvBdYkA86JQjZSR4MfzwpmZ52mxeBaXAAeZbfrjufrWhpObF1ITc5fb55GenICY6PgSmzn0cJSZKkj+svs6NNk57/WN+4nF/nfG1mz5vTV27CTR5JDjOFy4cAUODq4izypfOI6nBJEQQshL76VJDp2cnER766SlpVmscFoaeB7Q6WyT0On1nM2uRSo+jhNfEc5xvNn3kS2/t+yqByIr17JSu8AaSL1yFXGRG+EZ3g8O9cX71wlIHQA9D97BE9I67aC7eRSsW2VwCY8Ep1VKTYED4wLWxQeAoReii52ToEiNq50zZJBDp+NwKe6qTQrVNGzdAyd2rUbuVfd2DirEPLlv076HuUlZFqNf7DF0spcJCtUkpWnw4+ZL5XIPoi2+t7y9K2HixClYsGCu2TE7O+VL8e+i4XuFkkNCCCEvt3LRysIagYGBiIrK03xbq8WjR4/KNDkkpKzI7MSXcRrjaSlZiH2ehudPUhD7PA1pKVmi5xcGz3HQ5Gk0rXn4EM9XLof22VNEr1oBLjvbwrPNMQwLRdsP4Dh4Meze/hJg83xexcrAyezA8zz4rHRkZGeYFalJ0qRArcsCx3OCQjVcMdpP+NdsjFY9hgpi6rRkHNu2DAc2zodGXbKzeFV9VLCTCf95fhKbbuHsiqFt29dE45mZmaJxQgghhNjeS5MctmvXDqdOnRI0td2/fz+0Wi3at29fhiMjpGzk7YGYO56WkoWNP59B5KqzWLHgGCJXncXGn88UO0FkWBZuXboKYoqqVcGlGRrf61NTkPj37sJdk2HBKBzBpicCnE54kMuGev1EZO74Bum/jgV7chNc7IR7j13tnKGUKnA57hqiMw2FZGzRE9GvRsNS73topJBL8dG7jQSx9o0rdlsHBwfx5br29rZZLkwIIYSQgpWL5FCtVmPPnj3Ys2cPnj59ivT0dNPjxMREAEDfvn2hUqkwevRoHDt2DH/++Se+/vprvPnmm6UycxgbG4tr164JvrRaLTgLe7AIKWl2duKrwu3spMhSZ5vtA9PrOUHPxKJy7dIVUncPAIDUwwPqu3cEx5P+3m1xb2K+nDwBhUr0EBdrWDWQdudfpGrTBMdStKnIyM7Eznt7BfFd9/YWa/aQYVgEtemBvEsF7exVSIx5jOcPbuD5gxtIin1S5Hvkp6qPCi6OctPjTYfvYsm2KyVyr/Lg0SPzyruG+CPROCGEEEJsr1zsOUxISMCECcIeOMbHv/76K1q0aAEnJyesXbsWM2fOxLhx46BQKNCjRw+z1hYlJTIyEosXLxbEAgICoFKZV1AlpDTY50oc8sYz0rWixzLStfAs5n1ZmQzegz9AXORGeLzXF8+XLLRJb0VGqway0sQPvtj752CnwqQmEUjX5Sw1VMlVYBgGceoEwVNiMuPw6bEZGFD33SLvPzQsLx2CE7t+McU06gwc27bM9FgikeHNETNsXqhGIZfCTiZcOlyRl5Zaaqr077//4O23e5XuYAghhJBXVLlIDv39/XHr1q0CzwsICMCqVatKYUTmwsPDERYWJojNmTMHjI3K5xNSWAqlDBIJK5ghlEhYKJQyJCWI79PSanRIS8kSzCAqlDKonPPveZOXQ/0GcJhh6C0qVqCmSO0e7OxzitN41wAXc9f8HHUq/HkZWPfagrChUI0zErISTTGGBzJ0mdh5bw8aetQtcqsL/5pBUKpcoE5LhlLlAqnMDmmJsQAMBUjsHByREP0QDMNAYa+yabGaD7rWERSmqchLS0NCWoBhGORtvfvbb2sxceIn8PWtuK+dEEIIKS/KRXL4MvDy8oKXl3D/kVwup9YTpMyonBXoN6K5aKKXGCdeMEWv57Dx5zNmCWW/Ec0LnSAClgvU8BxX6ATRWJwGIe8Bdg7QZyZDvfFj4T5EiQy8yrwhfKZOjVStsFCNHobXaNx/2NjTvIqqNdVNGYZF0w59cHb/7wju0Ac8z+P4TuOHVDwyU5NMM4m2nkU0Li1NfjETvOnwXUQ9SymXVUuLy9fXDxER4/DTTwsFcY7jcP/+PUoOCSGEkFJA016EvMRUzgp4+qhMX8YEz9KS07wzjUDOXsS0lCzERaeZvqwpXsOwLBTVAgQxRUBAkRvFG4vTMAwDNltjXqBGnw0mLcHseY4yB0wOHosxjYZhdNBQuNq55FwTjOj+w8JUN/WvEYSeEd/Cr0YQ/Go0hJO7obUGwwqXfSocnSFXFK8pvOB6r9jSUkvLR6koTcWxYsUyhIY2xahRw0SPdejQutDXnDFjGvr3f9cWw7OKWq3G6tUrMXBgONq3b4X27Vvh/ff7Y8uWSGRlFb8qdGnYtWsH9u7926bXnDx5PCIihud7jvHvP+9XeHhvAEDPnt0xd+4swfm5vyeePXuGFSuWIS4uzqZjJ4TkoJlDQiogS0tOLRWxyUjXYttvFws9o8hzHLIe3BfEsu7fL9LModm1Ve6ARAbocxXRsTBzCACVVb4AgPTsDKRn5yRQPHjEqxOg1mXBQZaTZIhVNxWbXcyLYVg0bN0DZ/ZvhDZLLTimTkuCNktt0/2Hr9LS0owM8RlvamdR8Vy8eAFnz55Gs2Yhxb7W0KEfQq1WF3yiDaSkJGPs2FF4+vQp+vbtj0aNmoBlGVy7dhVr1/6C5ORkfPjhyFIZS3Hs3r0T9vZKdMlTfbo02NkpsGTJMrMYAMyePS/fWg7Pnz/DqlU/o02bdvD0LO4OekKIGEoOCamAjEtOs7V6ODkpkZqqhkwusVitVKvRWZxRzC85NM4cqm/ktI0ozsyh4NppCcLEEDA8TksAr3AE7OxF9/waZxHTclU1VclVgsSQ4znR6qZBHvWs2pvoXyMIfoEN8Pfa75CWGGOK2zmobL7/8FVaWmqpnYWlpJG8nJRKJapXD8SqVT/bJDn0969sg1FZ5/vvZ+HRo0dYuXINatasZYo3b94C777bFzdv3ijW9bOzsyGRSMDm+TdUr9eD5zlIpbJiXb88YFkGDRoEiR6rXbtOqY6lIr2vhNgKJYdWio2NNVvGoNVqqSANKbdUzgpIpSxcXR2gSJJCpzMkf2Izipb2zhZU3bQkZw5NrS3yVDDNPPwzEHcP0jrtoGj7gejPoHEW0ZJMndqsumlsZrzZ7GJ+GIZFUOseufYfAuq0ZJvvP3yVlpZaSgIHDQrH/PmLMGDA4FIeESkpw4aNwKRJ43Hu3FkEBzezeF5KSgoWL/4Rx479A7VajcDAGhg5cjRatGhpOmfGjGm4efM6NmzYDABIS0vDokU/4OTJf5GSkgIXF1cEBTXCzJk5yxVjY2OwZMlCnDp1EllZatStWw8ffTQZderUsziW6OjnOHToAN57r58gMTRycHAQvJbo6OdYuHABTp8+hexsHRo0aICxYz9C3bo59+jZszvatGkLH59K2LIlErGxsdi9ez8+//wT2NsrERbWGWvX/oKnT59gxYo1qFevPo4fP4ZVq1YgKuoOlEolOnTohPHjJ0KpzFnSnpaWhuXLf8KRI4eRnJwEDw9PdO7cBaNHj0NExHBcuHAOABAa2tT09zF8+CgAsOr69+/fw5w53+Latavw9PTCsGEjLL5vhWF8P6ZM+dTs2LlzZzFmjOE+Q4YMNMVPnTpves1Lly7GkSOHkZqagurVAzF69DjB90pExHCL7yshxICSQytRKwtSEVgqYvP8SYro+VqNTjRuVKIzh5ZaW8TdAwDobh4FH9QNcPYq9Ic09lKlWXVTjtfjTtI9NPYqeGmpkXH/YWpCNFiJFJw+5/0yVjFVOjgVewbxVVlaWr16IFiWNesfy/M8pkyZgA4dOlJhGhvgeQ68JgOMnSN4TToYO4dS/6CzVas2qFevPlauXG4xOdTr9Zg4cRyePHmM0aPHwsvLG3/8sRmTJo3HwoU/ITi4uejzfvxxHk6ePIHRo8ehUiVfJCTE4+TJ46bjqampGDFiKOzt7TF58idwdHTEpk2/Y8yYUdi8+U+4ubmJXvfChfPgOA6tWrUp8PVlZGQgImL4i+/dT2Fvb4/ffluL0aOHY/XqdaiWa6/24cOHUKVKFUyc+DFYloVCYVitcePGDURHR2PEiAioVCp4e3vj0KED+PLLT9G9+1sYPnwkEhLisWTJIqSlpZqSX61WizFjRiI6+hmGDRuBwMAaiImJwaVLFwEAn3zyGaZN+xIKhQLjx38EAPDy8gYAq66v0WgwYcIYKJVKTJv2NQBg+fKfkJmZgcqVqxb43gCATif8f4tEIgHDMBbONqhTpw6mTPkUc+fOwpdf/g/VqlUzHcvOzsb48RFITEzEqFGj4enphT17/sKkSROwdu161KhR03Su2PtKCMlByaGVqJUFqShUzgqzpaJPHiaJnltQNd4SnTnM3drCKxBcbJTwuEyBjE2f5juDaIlYdVMewI57fyPI07qlpUDO/sOz+39HQINQ3DxzIOceL6qY2mIG8VVZWurr64d58xZi8uTxZgmiXq+nqqU2wPMcMv9ZDe2NI5B414A+5i7kddvD/rUhpf7/s6FDh2PKlI9w/vw5NG0abHb8+PF/cf36Vcyfv9CUkIWGtkL//u9i5cqfLSaH169fw+uvv4Hu3d80xTp37mL6c2TkeqSnp+GXX34zJYLNmoWgT5+3sX79rxg37iPR6xpXD1mTTOzatQPR0c+xfv0mVK8eaLpHz57d8euva/DVV9NN5+r1OixYsAiKPMWs0tJSsWbNOlPixvM8Fi5cgE6dXscXX3xlOs/NzR2TJ0/A0KHDUb16IP76axdu376JFStWo2HDRqbzjO9HQEB1ODg4wN5eKVjeae31d+/eifj4OPz++1ZUqVIFAFCjRk307fuOVcmhWq1GmzbC5cTTpn2Nrl275/s8BwdHBARUBwAEBtYQzMDu3fsXbt++jXXrfjedExraCo8ePcLq1SvxzTezLb6vhBAhSg6tRK0sSEUmkYj/UmgpblSiM4e5WlvwPI+M38YJT8g2VAXU3TxqaH+hcLT62rn3JUYlP8CehwcBADGZcfj46DQMrtfXYmuLvPxrBMG/RhB4nsOzqKtITYwWHLfFDOKrtLR0wIDB8PT0wsCB75kdo6qlxcdrMqC9cQQAoH/xgYv2xhEoW74HRqEq1bG0adMOtWvXwapVy9G06c9mxy9dOg97ewfBTB3LsujY0bAkUK/XQyKRmD2vdu062L17Jzw8PBAa2gqBgTUEx//77xSCg5vDycnJNIPFsiwaN26CG7n+LTNn6MFZ0AyXYewXUL16oCkxBAzfv23atMOlSxcE5zZt2swsMQQMCVfuBObRo4eIjn6OiROnCGbemjQJBsMwuHHjOqpXD8TZs6dRrVqAIDG0hrXXv3btCqpXDzQlhgBQtWo1wWvNj52dAsuWrRTEivuhz3//nUJgYA1UrlxFMPbmzZtj3z7h/vK87yshRIiSQ0KIxQ85ynTmEIYEEQpHgOdMs4hgJQCnzzlJ6QRerkTBv64JVVb5guM5/HFnFxgw4F/84pel12BH1N9o6FHX6hlE41gbtumB03vWIVubU87eVjOIYktLh846hMnhjVE/QHwZ3MvKUhJIVUuLj7FzNMwYxkYBPA8wDCRegWDsrP9wxZaGDRuBTz6ZhIsXz5sdS01NE13i6e7uAZ1OB7U6E46O5gnt5MmfwMnJCRs2rMOiRT/A29sHgwcPwTvvGNpdJCcn4+rVK2azVwDg72/5AxxPT8MHxNHR0ahSJf8ZstTUVLi5mVdWdnd3R2qqcBm/q6ur6DVcXYWvPTk5GQAwdepk0fNjYgzFsVJSUuDhUfhKntZePyEh3mxsgGGGMe9yUTEsywhm/WwhOTkZt2/fFP07zfsBgtjYCSE5KDkkhFicIdRq9IiLztn3p1DKBEtSS3LmMDfjLCJXuz0yt38tPKhOBZ8al28FU0sydWokZCWYEkOj6MzYQs8gAi+qmI6ZhT1rZ5nNIBa3B2JVHxWa1vJAszpe2HToLjYdvgsAmBd5EcG1PSvUElNLVUtp5rD4eE069DGG7x0wDMDz0MfcNew9LOWZQwBo1+411KpVGytX/oxGjRoLjjk5OSExMdHsOQkJ8ZBKpVAqxb8fHB1VmDjxY0yc+DHu3r2DyMiN+P7771C9enU0aRIMJydnhIZWxsiRo82eK5NZrlrZtGkwWJbFyZPHERLSIt/X5ezsjAd5PjgzjD0BTk7Ogpilmci8YScnQ42DKVOmon598593Y0Lo7OyMu3fv5Ds+MdZe393dA7du3TQ7npho/tpKi5OTE2rUqIkvvphW4LlWTPwS8kqjDXOEEIv9D08eisKWNedNXxt/PoO0lJxZsfxmDm2NYVgwntUMFUzzyDz8M9J/HYusY2vA59PMPi/j8tLRQUPhauciOGacQeQKcT3jOOuEdDKLG3sgFpVCLsXY3kEIredT4ZeYWqpaumPHtlIeScXD2DlAXrc9AEDiZVgGKK/bHoyd7XpzFtbQocNx9uxpU8EUo0aNmiAzM0NQTIbjOBw6dAANGzYSXVKaV40aNfHRR4aZsIcPHwAAmjcPwYMH91CtWgDq1q0n+MpduCQvb28fhIV1wrZtW0STr8zMTJw/b6gCGhTUGPfuReH+/Xum42q1GsePH0OjRk0KHLeYatUC4OXljadPn5qNu27deqa+f82bt8CDB/dx9epli9eSyWTQaLRFun69eg1w714UHj16ZHruw4cPcO9enn3hJcCYvGs0GkG8efMWePbsKTw8PEXHTgixHs0cEkJg7ygXjfPCCTXo9RwS4jIE1U75qrWBmxdNj40zhxnXriIuciM8w/vBob71FUDzY00F08LuP6ys8kW6whnp2eYJVlFnEKvVbYarJ/5CZmrOrIfC0aVYM4e5VfTqpZaqli5duhjDh0dQUZpiYBgW9q8NMewxLMNqpbm1b98BNWrUxNmzpwXtElq3boN69Rpg+vT/w6hRhmql27ZtwaNHD0VbHRgNHz4Er73W4cX3kQR//70LMpnMlJT17z8Qe/f+jYiIDxEe3g/e3pWQnJyEa9euwMPDE/36DbR47Y8//hQPHtzHqFHDEB7eD40bG1pB3Lx5A5s3R+Ktt3qiadNg9OjxFn7/fT0mT56AkSNHQ6m0x7p1a6HRZGHw4A+K9D4xDIMJEybhq6++QFaWGq1atYFSqUR09HMcP/4vIiLGokqVqujatTv++GMzJk/+6EW10kDExsbi4sXz+Oyz/wNgSAT/+msnjh07Ag8PT3h4eMLT09Oq63fv/ibWrFmJjz/+CCNHjgbP8/j556VwdzdfRmtrVapUgUQiwa5d2yGRsJBKZahbtx66deuBP//8A6NHD8eAAYNQuXJVpKen4fbtm8jO1mH06HEFX5wQAoCSQ6tRn0NSkSmUMrN+h6yEAafnzc7du/UaOC4nzvJBaCm9A4XOMNuT9eA+9BoNYn5dA11CPGJ+W4tqX38LNp/lWlYrqIJpEfcfGmcQUzWp2HhrK5I0yaZjRdmDqM1SQ50u3FeUlZ4MbZa62H0PgYpfvdTX1w+jRo3FTz8tFMQ5jqOKpTbAMKxpCWlZLCXNi2EYDB06Ap9//rEgLpFIsGDBIixe/AOWLl0MtToTNWrUxLx5P+bbGzEoqBH++msXnj9/BoZhERhYA3Pn/mCqYuns7IJVq9Zi2bKfsGTJQqSkpMDV1Q0NGjRE+/ZhFq9rfO6KFWuwceN6HDy4D+vW/QYAqFatGt59Nxx9+oQDMCyNXrp0BRYuXIA5c76DTqdD/foN8NNPKwRtLAqrY8fOcHRUYc2aVdiz5y8AQKVKvggNbWXanymXy7F48TIsW7YEa9f+gtTUFHh5eQsqtg4c+D6ePHmMGTO+QlpamqnPoTXXVygU+PHHnzBnzreYNu0LeHp6YejQD3H48EFkZhZ9dYQ1XFxcMWXKVKxb9yv+/vsv6PU6nDp1HnK5HEuWLMeKFcuxZs0qxMfHw8XFBbVq1THtNSWEWIfh+bxzA0TMokWLLPY5/OmnVRaeZR1jo/KkpAxTo3JCbKEw31tpKVmCGcHMdC3+2nLVqvs0f7wDThpDU3n3Xu8API+EP7eajrv3egfuucrKFwfPc4AmE5w6DZmbPzM77vDeLLAuPkW6dnp2Br48/g2yOfOiCsMbDkZjT+tmQHmew99rv0NaYowpplS5oFmnvmAYBgp7VbF7H362/CRiknJ+EfN2VeK7kS3zeYZtlfS/WxcunEOXLh3M4nv3HkaTJuZtD8ra1KkfQSJhsWLFCptfOysrC1FR9+Dh4QO53M7m1yeEEFKxabUaxMdHIzCwuqmXqiU07WWl8PBwbN26VfDl7e1tsXACIS8blbMCnj4q05ebp4NZoRqWFZ+T07kYyoJLPTzh0ul1JO3bIzietHePzfYhGmY9HAEnD0CSZzZSIgOvKvrSJkt7EBkw2HVvr2n/4aW4q5h6bDouxV2zOMag1j0EMXVaMo5tW4ajW5fi4MYF0KjF99VZ64OudfJ9/LKjfYeEEEJI6aNlpVaiPofkVaNyVqDfiOaC2cTnj1Nw/KB50QGHdh0hP54Cz/B+kNjZwa5qNUEFU7tq1WxfwTQtAdBnC4P6bEO8iDOHgPgeRB484tUJUOuyoJQqsCNqL9KzM7Dz3h6Ly039ajSEk7sPUhOiwUqk4PQvZiMZBg4u7sXef1jVR4Uafs64+zQFNfycUdWn7JcH2hLtOySEEEJKH80cEkIsyjub6OwqntDwbt5wGP0pMt2rIjU507yC6YMSqGDq5GleudTOEbzKA3xWeqGqluZlnEEc02iY6Wty8Fg4yOxxOe4aojMNy0WfZ8Tgcrx402yGYdGwdQ/YKR1Rq+lrOQd4Hv41GiE57lmRxwcAq3bfwN2nhn2Nd5+mYNXuG8W6Xnlj3HeYl3HfISGEEEJsj2YOCSFWs1TVNPdsokTC4o3X3kDW3znL/1w7vW77mUOxyqWadKh3fAM+7j6kddpB0faDIheNqqzyNYtxPIed9/YJYrvu7UWQRz3R2UP/GkHwrxGErMw03DxzwBS//t9e3Dp7CG+OmFHkAjV521dUtHYWADBiRIRZURqGYU2FRQghhBBiWzRzSAixmrGqaX70eg4paglS7dxNX5nZDDKuXcWDr75AxjXritwU6EXlUgBgPXOq//FxhllL3c2j4LMyij2LmFumTo2ErARBzLjcNN+hKh1gZy+c5VQ4OhdraWlF33NoZN4gnGqoEUIIISWFZg4JIVbLuw8xKSETB3feNDvv+GN78JXfMj1mb+vR+szvkMc/tVlrC4ZhoWj7ARDyHni5PTK3f21KDI0y9/4APjaq2LOIRo4yB7wZ0AVbo3abYsFejeAgs8/3edosNbRZmYKYOi2pWK0tqvqo0LSWB5rV8cLZm7HIzNJh6KxDmBzeGPUD3Ip0zfLm3r0o5C2ozfM8tbMghBBCSgjNHBJCCiX3PkRXd/GkiGckgsccI0FWmqHtgi4+3qyaaVEZK5cy2sxciWHOTBP/og+i7uZRQJMpcoXC4XgOJ56fBZPrHmdjLkIn0voiN7lCCUcXD0HMwcWjWDOHCrkUY3sHIbSeDxiGwaKtVwAA8yIvYsm2K0W+bnliqRq0vX3+yTghhBBCioZmDq0UGxuLuLg4QUyr1RZ7JoKQl5lxmWnuqr2shAGnN1/6lyFzNv1Zs+8wUk+dhFff/nCob13vwHy9WGKqu3kUrFd1cLG5K6oyYL2qG2ageK5YP7PGZaV8rqWNOl6PszGXEFrJcu89Y2uL4ztzeqJWrtkY0Q9vAUCx+x5W1P2HltpZZGYWP9EnhBBCiDlKDq0UGRmJxYsXC2IBAQFQqZzKaESElD2xdheZ6Vr8tcV8X+F1n/amP7O8Hi0f/gG+JJaY8jwyfhuX6ygPLjYKGb+NK/byUkeZAyY1HY2fr/yKJE2yKX7g0T8I8WliVpTmUtxVbLj5B/rX6YOgXK0tAENRGiOJRFas4jQfdK2D2RsuCB5XBNWrB4JhGMHSUipIQwghhJQcmvayUnh4OLZu3Sr48vb2trjsiZBXRd52F26eDgUWreEYCbQSRcksMVU4mArV5GWL5aVuSldBD0RAvCgNx3OCfog8YGptoVS5wLT81QZ9D437D7uFVgUAZGblv8z15UYFaQghhJCSQjOHVvLy8oKXl5cgJpfLBcvpCCHWF60x4JG0bw/cuna3WasL4ywi3/xdZO5ZAD7O2BPPsLwUdsX7QMfYAzFNm9NGQyVXmRWlEeuH2PhFa4sndy7lLDF90fcw+uGtIi8vVcilYBgGf516CABYtPUKgmt7YkyvhkV8leUDFaSpeFasWIZVq34GYKhEa2/vAB8fHzRp0hTvvPOe2axwRMRw2NsrMW/eQrHLlZmePbujTZu2mDLlUwDAkSOHERcXhz593rPJ9WfMmIa//tppFg8NbYkffliC0NCmGDfuIwwYMNh0/s2b17Fhw2YAwO3bt3DkyGEMGvQ+FMX44IkQ8uqh5JAQYnMqZwVUzgoAQEa6VvQcrcRw3KVjZ9v3QGRY8OBzJYaAcXkpn5UGRlm85eBiPRBzM/ZDZMCABw8GDLbc3oENN7ZgQN13EVSjIVSuXkhLigWQs8S0OMtLK+K+Q1pWWjHZ2SmwZMkyAEBGRiaiou5i+/at2L59Gz7//Ct07drddO4nn3wG1sb/PtjC7NnzBNtKjhz5BzdvXrdZcggAfn7+mD59piDm6GhoibNy5Rr4+FSy+Nzbt29h1aqf8e674ZQcEkIKhZJDQkiJytulzoi3eOTll7dwDQ/etEdx5709aOhRF0FteuDErtU5iU8xl5dW1H2H5mhZ6cuOZRk0aBBketyiRSjeeeddTJ48Ht9+OwNBQY3g52eYQS9vHwRkZWVBoVCgdu2S//mys7MTvE+5WYqXlOzsbEgkknKZqBNCbIt+ygkhJcreUS4a17FypNq54/nh4+A52y/PZhQqMF6BwphXIGDnAD4rHTzPv/iv7e9tXHo6ptEwjGk0DG9U7Wg6Zlxi6l+zMVr1GJrzpFzLS5NinxT6nhVx32F+y0pJxWJnZ4fJk6ciOzsbO3ZsM8UjIoZj8uTxpsexsTH44oup6Nq1E9q1C0WvXj3www9zTcdXrFiGDh1a4/r1axg6dBDatQtFeHhv/PvvUcH9jh8/hnHjItC1a0eEhbXF0KGDcfLkccE5u3btQGhoU1y5cgnjxkXgtddaYdGiBQAMy0rnzp0FIGcJ6L17UQgNbYrQ0KaYMWMajh49gtDQpnj06JHguunpaWjfvhUiIzcW+f0KDW2K9et/FT22a9cOzJz5PwDAG290RGhoU/TsmTMbGxsbg2nTvkCXLmFo374lRo0ahps3rwuuYXx969atRc+e3dC+fUukpKQUebyEkJcHzRwSQsqEsXopy/ColqY1LUO1GU2Gqc8hGAbgefCxUcg6shL6OyfBetcAF3O32BVMLTEuPeV4Dn/c2SU4tuveXgR51IOfDZeXVsR9h7SstORcjL2Kdde3YGC9PmjsZYN2MjYQEFAdnp5euHLFcp/O6dP/D/Hx8Zg06WO4ubkjJiYaN24IExudTocvv/wU/fsPhK+vH/74YzOmTp2CX3/dgMDAGgCAZ8+eok2bdhgwYBAYhsXJk8cxadJ4LF68HMHBzQTXmzbtS/Ts2RsffDAUdnZ2ZmMaOvRDJCcn4eHDB6ZloC4urqhUyReenl7YtWs7Ro/OqaC8b99e8DyHN97oVuB7otMJP+SRSgv+ta1167YYMuRDrF69Ej/8sBiOjo6QyQwf0qWmpmLEiKGwt7fH5MmfwNHREZs2/Y4xY0Zh8+Y/4ebmZrrO4cOHUKVKFUyc+DFYloVCYeN/owkh5VKhk8OsrCwcOHAAz549g6urKzp27Cj4x4QQQnIT64WYG8czyFJn2z45FPQ+DDQkgjVaQXfnhOG+LxJH3c2jQMh7gMLRtvd/wbjENDdjdVMHmb1Nl5dWxH2H5mhZaXFxPIc/7/yNNG06tt/5G0Ge9czasJQVb29vJCTEWzx+/fo1RESMQ+fOXUyxbt16CM7Jzs7GkCHD8OabPQEALVq0RJ8+b2Pt2l8wY8a3AIB33+1rOp/jOAQHN8P9+1HYvn2rWXLYu3cfDBz4vsUx+ftXhouLK6Kjn5st9+zR4y3s2rUdI0eOhkQiAQDs2rUd7dq9BmdnZ7HLmdy7F4U2bUIEsWXLVqFx4yb5Ps/V1dW0LLdOnbpwcXE1HYuMXI/09DT88stvpt/dmjULQZ8+b2P9+l8xbtxHpnP1eh0WLFhEexYJecUUKjmMiYnBwIED8eTJE9MvMnPmzMGKFSvQuHHjkhgfIeQll7t6aWJcBg7tvmV2TubdO3jw0x/wDO8Hh/risxhpKVmCfooKpSzfhDJ370PYORhmEuVKcKkx4GLvATwPW1UwzY+jzAFvBnTB1qjdptib1d8wVTf1r9kYQW3fxqWjfxoO8jwC6ocWaSazou07pGqlJeNi7DU8zzBU0n2WEYNLsdfQxLt8zDDzPA+GsbwfuXbtOtiw4VdIJBKEhLRA5cpVRM9r3z7M9GeJRIK2bdsLlpbGxsZg2bIlOHPmP8THx5u+z+rUqWt2rVat2hT15eDNN3tizZpVOHXqBFq3bouoqLu4fv0aRo4cU+Bz/f398fXXswSxqlWrFXksAPDff6cQHNwcTk5OpllJlmXRuHETsxnYpk2bUWJIyCuoUMnhDz/8gJiYGERERKBRo0Z4+PAhli1bhv/973/4888/S2iIhJCXXe7qpWKS/toN+9iniPltLap9/S1YmUxwPC0lCxt/PiOYfZRIWPQb0bzABNE0I6hwBK9ONc0YGtiugqklHM/hxPOzgsqlJ5+fQYfKbcAyLDTqDFz+V7js9Mq/uxBQv0Whq5Ya9x02q+OFszdjUdVHZcuXUupoWantcTyHHXf3CL4fd9zdg0Ze9cvF7GFsbCyqVBFP+ABg5sxZWLZsCZYvX4Lvv/8OVatWw6hRY9ChQ86+XqlUCicn4c+zq6uraUaS4zhMmTIRGRnpGD48Av7+laFUKvHzz0sRExNtdk9X16KvjvL19UVISAvs2PEnWrdui507/4SPTyU0bx5S4HPlcjvUrVuvyPcWk5ycjKtXr5jNSAKGZDQ3V1dXs3MIIRVfoZLDEydOYOTIkRgzJucTrypVqiAiIgLx8fHw8PCw+QDLi9jYWMTFxQliWq3W5vuUCKnIDEtMGej1Ob/sswwPNtEwi6GLj0fSvj1w7/6m4HlZ6myzZal6PVcyy1FtTKxyqXFZ6d3ke9hwYwtCVSpoU5JMz3F09SjSslKFXIoOTfwxL/IiJoc3hkJeEbeV07LS4sjMViNeLfx+jMu1zLks3bsXhbi4WHTP8/Ofm4eHJ7788n/gOA43b97A6tUr8eWXn2HTpq2mpZQ6nQ6pqamCBDEpKQnu7obfUZ48eYzbt29izpz5aNfuNdM5Go1G9J75TGRa5e23e+Orrz5HbGws9u79G++8816ZVf10cnJGaGhljBw52uyYLM+HcvnN4BJCKq5C/eYQHx+P5s2bC2IhISHgeb7CJ4eRkZFYvHixIBYQECDoc0QIyZ9hiWkIkq7eRNK+PXB5vQtSt6yHnc64N45H0r49cOva3areh0kJmQUuL82NUajAeFYX9D9kPKuDUZTcDJuxcmmaNs0UU8lVUEoV2BG1F+m6TDyopIJvrkKAAfVDEf0wZ/mtwl4FVy/hp/pilmy7gnO3DB9izYu8+NIXpKFlpbbnKHfA1JBxSNXm7Ed1kjuWeWKo0Wgwb95syOVyvPVWrwLPZ1kW9erVx8iRo3Hs2BE8efLYlBwCwJEjh0x7DvV6PY4dO4IGDRqa7gUAUmlOMvT8+TNcvnwRVapULdL4ZTIptFrx5LJdu/ZQqZwwbdrnSElJQY8ebxXpHoUbj+G1abXCPrPNm4dg796/UK1aAJRKWjJKCDFXqORQr9ebVasyVu7S6/W2G1U5FB4ejrCwMEFszpw5NHNISCGpnBVQtW6MKq0bAwASkh4j4c9tMMwIMXB9/Q2rEkMAOLjzplXLS434rDRBYgj8f3t3Hmdj+f9x/HXOmX3MZhaMdczIvmSdLCNkC6USlZKIbFEh7SIVflREFEpKUoovKksbpZWkkJYZEcNsZjNmPef8/jjmcMzOLIb38/GYB/d1rvu+r/vMPTPnc1/X9bnAGhdVpsNK4Vzm0vP9Gvs7J8/Yekz/cU2hno8fWcmJePkF8du3m7FazmUpLG720istIU39+qEYjUYsFyx18uuvv9CpU5cKalXlV9u7YgNri8XK/v2/AXDmTDqRkX+zYcPHREcf5+mnZxAcnPfnBWxLQEyaNJ6+fftRp049cnJy+OCDNXh5eTmsO+js7Mxbb60gMzPrbLbSD4iNjWXYsPsA27y9oKBqvPbaQiwWM+np6Sxf/jqBgUEXfU316oWwefNGtm3bQu3adfDx8bVfh5OTMzfe2J/Vq1fRoUN4oYvXl5Z69UIAWLfuAyIirsfNzY2wsAbcddfdbN36GWPH3s+QIXdSrVoNkpISOXDgdwICArnzzrvLvG0icnkr8ZijqKgoe8YtOBcURkXlXXeqadOml9C0y0tQUBBBQY5/OFxcXArMwCgixePXuy/J3+wkJyEep4AA/Hr1yVPHzd0Zo8GKxZp3mFNlGV56PovVwqaobefmfRmM/B1kJTjNgFeLVhj2/0ZKQgxgLVH20istIU1wcE2efnoGM2Y87VA+a9az3HLLIPUeVlKZmRncf/9wDAYD7u4e1Khhm4M3aNAQe1CTHxcXV0JDG/Dhh2s5efIkrq6uNG7cmAULXnPIyOnk5MTMmS8wb95sIiP/ITi4Ji+++H80aHDN2eO4MHv2PObNm82TT04jKKga9913P7t3/5xnvb/iuummgRw8eID58+eSnJzEjTcO4JlnZthfv/76bqxevcrem1nWGjZsxP33P8DGjRt49923CQqqxoYNn+Dj48uKFW+zdOlrLF68kOTkZPz8qtKsWXOHJD4icvUyWC8cs1OIRo0a5TsG/cLsYrnbf/zxR+m08jI1atQozGYLc+a8cknHcXIy4ufnSWJiGjk5Cjal9FSWeyvtwH7i1q4pMFup1WJh/+RHOWX1tq+PeL5Bw1sTmE/yldTkDPsQVr9effBt1hDjV/POrX+IbVipR5+HMbh5lttIgNPZaTy163myLXkXqq/hWY1hft35fvNb9rImHXoTULN+kcNLM7JyWL75oD0hzf39m5TZvMPyure+/XYnt97aP0/5+vWfXFa9h9OmPYTJZGTZsmWlfuyMjAwiI6MICKiOi0vedfbknGXLlvLee+/w1Ve7iq5cjt54YwkfffQhmzZtwcXFpaKbIyJXmaysTOLjTxIaWr/INUtL9KnhxRdfvKSGiYjkx7NpMzxnPl/g6wajkeAeEWR+tqPYx7RlOP3JlvzG/Tr4JhnTdz9zU5WTeJ4b/IA1Loq0dx7EqVEEbl2Gl0uAeOE8xMikf9ly5AsATqTFkBDihJdfEKmJsQAc/HErUPTwUjcXJybcaltnLbxJdQ4cPmVPTtM0pHKuR6uhpVKZHTnyL0eOHOHDD9/nttsGKzAUkcteiYLDW24pepK4iEhZ8Ovdl5Pf/ozRkoPFeO5Xl8lkxM3dOU99W4ZTx4ERZrOVnLrXwbHP89TPObTTtiZi7tIXZSx3HqLFauGjvzc7LC3wyeFtDOvUjx8+WXkuIUsJhpfClZOcRkNLpTKbPft5Dhz4nfDwjtx774iKbo6ISJGuxDznInIFMjo7U++eIRg/WI9nrwG4h4YCFJit1GrJf8S8c6v+eHa7mTNbXzk3vNRgwBgUCq4lW1ewNOS31MWJtBhO1LHSsf8Idm1aYatotdK8Y79i92xeSclpWra8Nk+Z2WxW1lLJY9SoMYwaNaaim2G3ZEnpDzMWESlLCg5FpNLwbNqMxjPyzknMj8GY/xpdyYmZuDs5YzgvMMRqxRLzD9bkGPAJKtcsxOcPMbVaraz582MSM5PYfvQrHm83CW//6qQknMTD2w+jkzMn/v2jWEtbXEnJafIbWmoymQgJqV+BrRIREbnyaB0GEbkiubk7YzLlDRC/2HSI99/eT0bI2cx8uWscunmR9sFjZHyzEqu1fJP31PYKpol/Q7It2SRmJgG2uYe/JxyiUbsbADiTksg365ey8+MlfLHmZTLT0wo9Zt3qXrS+JoDRNzWh9TUB1M0nYU9lERxck9tvv8OhbNCgIeo1FBERKWUKDkXkiuTl40af0GSanMybxMZstmJtNhDPwbMhPcVWmGFLDpNzaCdkninPpgKOy1sAGDCwOWordRq1xtu/OpwtL+7cw9zkNOFNqjPh1hZllrW0PERHH+fDD993KFu3bi3R0ccrqEUiIiJXJgWHInJFslosZH39GZ7Zyfm+bjAYMPhUw1gtzDa01FZo285n7qHVasGacRqr1Xr239LtXcxv7mF8egIZ5iyad+wHZ8uxWqkV1pKkuOgij3ng8ClGzP6SA4dPlWpby1tUVGSebKVms5mff/6pglokIiJyZVJwKCJXJIPRiO8Nvcgy5b+eT9rpLMhMwxLzD1itDnMPyXQcsmm1Wsj4ZiWnV03gzMbnOb1qQqkPP63i7Mkjrcfh5+oLQFVXXx5pPQ5PZw8CajrOrTv449Yih5YuXv8789f+CtiylS5e/3uptbW85c45vNDo0cNZvXpVBbRIRETkyqTgsJhiY2M5cOCAw1dWVlaep9kichmx2haHyI8BwNUDp0YRALZspWDbdvVwrJx5xjbcFLCcTWRTFsNPT2Uk2uccnspM4tTZ/7u6e+Lu5Xte44seWnolZSsNDq7J/PkL8wSIVquVKVMmaXipiIhIKam8k1DK2dq1a1m0aJFDWUhICF5e3hXUIhEpjNViIemL7bia8w+gPKq4YDAYcesy3La+oaunrcfQ1SNvtlJXT4zVwmyB4dlextJe+uL8OYe56x1ujtpKi4AmGA1GWl9/W4mWtbiSspUCDB06DE/PKowePdyhXEtaiIiIlB71HBbTkCFD+Pjjjx2+qlWrhqdn+a+LJiJFMxiN+PXqU3Q9gxGDWxXbHES3KvkHXMUcfnopCppzmJ6TAUDNsOZnE9OAt391aoYVvqD9lZStNFf79h3y9B5qSYvKZdmypYSHt8736803l5foWJs3byQ8vDVJSYll1Nry9ccfBwkPb82ePbuLrJucnMSiRQsYPPgWIiLC6d69C6NHj+Czzz4hJyenTNr3448/MHToYLp06cANN9hGXAwc2I9582aXyfku1Z49u1m5ckWe8vK+b6Kjo+33+Pff78rz+uefb7O/XhptSkpKJDy8NZs3byzRfnv27CY8vDV//HGw0HoF/fxu37413/c2PLy1w/D/zZs3snXrZyW7KClX6jkspqCgIIKCghzKXFxcMJs1rFTkcuXXuy8nv/0ZoyUHi/HcrzujEeKXvILH4FvwbGpbNzE1OYOM9Gx7HTd3Z7x8zs5XPDv8NOfQToyB9bHERuLUMMI259BqKZV1Ec9f7xAgKvlfvj62i3+SDtMysClJcdHUatCKv0/voFaDViTFRRe61mFutlKA8CbVL7l9l4Pc4aWTJ0/EYrFgNBqZN2+Beg0rGVdXNxYvXpqnPCjoyrhPy9rx48cYP340WVnZ3HnnUJo0aUp2djZ79+7hpZfmYrFY6NdvQKmfd+bMZ7jmmoZMnfoYrq62341z5sy/bEdQ/fLLbt577x2GDx/pUN6pUxeWL19JlSrl+8DMw8ODbdu2cN11nRzKt23bgoeHB2fOlH+W7It1++130Lu348PX2rXrYLFYi3xvP/lkEx4e7vTu3besmykXScGhiFyxjM7O1LtnCMYP1uPZawDuoaFYcnKIX/QSpvj/iHnnbeo99wJpZ8yseeNnh4c9JpORO0e3w8vHzT781NpuEBk/fQixkZgTj5P2zkScGkXg1mV4qQSItb2CAdsQ04/+3kx6TgaborZwjWcdPl/zMhazLXg9+MMW/vz5CwaMnomre9GjFw4cPsX8tb8yeUgrmoZUveR2VjSr1erwr1QuRqOBZs1aVHQzKq3p058kMzOLlSvfpVq1cwF1eHhHbr/9DuLi4kr9nKmpqSQkxNO9+zhatWptL2/YsHyHq2dkZODmln+SseLy8/PDz8+vlFpUfF26dGXHjq8driE1NZXvv99Fjx492bLl03Jv08WqXr16gT/D5f3elsY9IY40rFRErmieTZvReMbT1OnUisDqXjj9+g3O8ccAyImPJ3HbFjLSs/OMAjCbLQ49iQaDEYPBiPnPbwCwxkXZjlEGiWl+izvAyTMxAJxIi+HQ6X+p4utPSdc6hCsra2l09HEmT57oEBwqIc3FOb3/dyKffJzT+/dXdFPyFR7emnfeWcmyZUvo2/cGevfuznPPTSc9PT1P3ZMnT/LQQxO4/vqODBp0M59+utnh9V27vuHBB8fSt28PunfvwogRw/IM78sdDnfo0B+FHiv3eKNG3UfXrh3p2bMrY8eO4s8/D9lfT01NZe7cF+nXrxddunTg3nvv4scfv89znDffXM6NN/akW7dOTJs2mcTEopec+fXXvezf/zvDh490CAxzBQQE0rhxE/t2ZOQ/PPTQeLp160T37l2YOvVh/vvvqMM+Rb3XmzdvpGfPrgA8//xMwsNbM3PmdCD/YaXr169j4MAb6dq1IxMmPMD+/b/nGeZ44VBDgNWrVxEefi7wzB3muGvXNzz++FS6d+/Ck08+CsCnn25m9OgR9Op1vf17cODAuXt52bKlrFjxBunp6fZhj2PHjrJfz4VDH5OTk3n++Zn06dOdrl2vY8SIe/J8z8aOHcXkyRP54ovtDB58C926dWL8+NEcO/Zfvt+rC3Xs2BmTyciuXd/Yy7788nN8fHxo06ZtnvqZmZksWPASAwb0pkuXDgwdOjjf4ZgbNnzMwIH97O93Qe3ZvHkjQ4cOJiIinAEDerNkyaJSH4Jc1JDdsWNHsXfvHnbt+tb+fVm27Nwogl27vmHEiGF07Xodffp0Z86cFxx+5gu7J6T0qOdQRK4aVouFxG1bsK8ZiJXEbVvwvrZr8Q5QQYlpPjm8jWHX9eX7zW+dbXbRCWlyXUlZSwta71AJaUrGkp3NiZVvkR0fz4m33yL0hdkYnZ3LtQ35fSg1mUwYDOeyC69b9wEtW17LM8/M4OjRIyxatICqVf0ZP36iw37PPvsUN998C3feeTcbNnzEc89Np3HjJva5qNHRx+ncOYKhQ+/BYDDy/fe7eOSRiSxa9HqeD+VFHWv79q0888wTRERcz8yZz+Ps7My+fb8SFxdLw4aNyM7OZuLEsZw6dYoxY8YRGBjEli2f8sgjk3j77dWEhTUA4MMP3+eNN15j6NB7aNeuAz/++AMvvjiryPftl1/2ANCxY6ciakJMzEnGjBlJjRrBPP30TCwWM8uWLWXMmPt59921Dj08hb3XnTp14ZVXFvHQQxO477776dSpM76++fcO7dy5gzlzXuCmm26he/ce/PXXn0yf/mSRbS3M7NnP06fPjdx66yD7nOMTJ6K58cZ+1KxZi+zsHLZt+4yxY23XVadOXW6++RZiY2PZtm2LfQizp2eVfI9vNpt5+OEHOXbsP8aNm0BQUDU++uhDHnlkIgsXvkabNu3sdf/66y8SE99h3LgHsVgsvPzyPJ599imWL3+7yOtwdnbm+ut7sG3bFnr06AnAtm2fccMNvfL9XT59+pN8//0uRo8eR2hoKNu3b2X69CexWMz07dsfgG+/3cns2bPo128APXv25o8/DvLUU4/nOdZ7773L4sULuOOOu5g48RH+/fcwr7++GIvFkufnqTgsFovDz7DBYMBkMhW536OPPs706U/h5ubGxIkPARAUVA2wBcpPPfUY/frdxKhRD5CQEM/ixa+SmprCrFmODyDyuyek9Cg4FJGrRm6SmoQN67EFiAb8evUh7XBU8Q6Qm5gGHBLTWDNSwWAsPONpMRWUmKbqtQ3w9q9OSsJJvP2r4+FdlRP//kFU8r989d+39GzQiw4N8wa5V1LW0tz1Ds8PEJWQpuQSPvuM7IQEALLj40nY8hmBA24qt/Onp6fTuXP7POWLF7/hEKz5+/szc+bzAFx3XScOHjzAV199nufD7KBBQxg0aDAAzZo157vvvuWrr7603xe3336Hva7FYqFNm7YcPhzJ//73cZ7gsLBjWa1WXn31FTp0CGfOnPn2fTp27Gz//9atn/LXX3/x7rvv288fHt6Ro0eP8tZby3n++TmYzWZWrXqLvn378eCDD9vrJCTEs23blkLfu7i4WIB8ew0vtGbNarKzs1mw4DV7INi0aTNuv30g69atZdSoMfa6hb3Xfn5+NGrUGICaNWsVOiR45crltG3bjieeeNp+XZmZmaxY8UaR7S1IRETXPN/zkSNH2/9vsVho374Df/xxkE8+2cjYsQ8SFFSNoKCgYg1h3rXrWw4e3M9LLy20fy/Dwzty1123s3z5Gw7B4enTqaxatcb+fqampvLii88RGxtjD3IK07t3Hx55ZCKpqalkZGSwd+8vjB8/iaioSId6f//9F19//SVTpjxmvx/DwzsSHx/H668vsQeHb721nFatruXpp2fY62RkpPP222/Zj5WWlsby5Uu5++5hjB37IAAdOoRjMpl49dVXuPvuYfj4+BbZ9vMtXryQxYsX2rdr1arFunVFJ8AJCamPp6cnHh7uDt8Xq9XKwoUvc8MNvXjyyWfs5VWr+jN58iRGjBhF/fqh9vL87gkpPQoOReSq4te7L8nf7CQnIR6ngAB8u/Xg3+deAu/OtoDvPOacCxJOnZ+YJigUS8w/ODWMIOOnDzH/+Y2tVzHmn0uah3hhYhoALxcvqrhUoXmn/uze/j6N2/Xki/dfsc9BbABE/fMxLeu0xs3dMRFAbtbSto2C2H0otlJnLQ0Orsntt9/B2rXv2csGDRqiXsMSsFosJGz5zNbzDWC1cmrLZwT064+hnJ7Au7q6sXRp3sykderUddhu3z7cYTskpD5fffVFnv06dDhXz9PTk6CgasTFxdjLYmNjWLp0MT///CPx8fH2Ycm5AU9xj3XkyL/ExsYwceLDBV7bjz/+QGhoGLVr13HoWWnXrh3btm21tycuLo6uXbs57NutW48ig8PcUQ8GQ/7rt55v3769tGnTzqGHsEaNYJo3b8m+fXsd6hb3vS6M2Wzmzz//tPcI5YqIuP6SgsPzg+9chw9HsXTpYn77bZ/DcNyjR4/mqVuUfft+wcPD0+E8RqORHj168vbbb2I2m+29Yg0aNHR4P3MfABQ3OGzdui0+Pr589dUXpKamUrNmLZo0aZonOMz9/vTs2cuhvGfPPsya9SwxMScJCAjk0KFDTJjgGCR163aDQ3D4++/7OHPmDN2793S4J9u2bUdmZgaRkZG0bt2myLafb8iQO+nTp59928XFpUT7X+jo0SOcPHmChx+e4tDGa69tg8Fg4I8/DjoEh/ndE1J6FByKyFXF6OxMtWHDiVu7hsAhd5L05edYUxLBJ++HLZOT44fl/NZFtFotpL1j++NsibX9gc85tNNWxy3/YUxFyU1Mc6FaYS2oFdYCq9XCHz9vJyXhJGD7uJjuAn+k/su17o5LXFxJWUujo4/z4YfvO5StW7eWxx9/WgFiMRmMRvz79CVu/Uf2odFV+/Qtt8AQbAlpzp8XVxAvL8cHGc7OzmRlZRWrXmamrZ7FYmHKlIdJSzvNqFFjqVWrNu7u7rzxxhJiYk6W6FjJycmAbV5fQZKSkvjrr0P59ozmBhgJCfEA+Pk5JoeqWtW/wOPmCgy0BSAnT56gdu06hdZNTU2hQYOGecr9/f05evSIQ1lx3+vCJCUlYjbn5BlyeuF1ltSF+6elpTFp0nh8ff2YNOkRqlevgaurKy+8MJOsrMwSHz8lJZWqVfO20d8/gJycHNLTz9izb3p5Of5Odz47HDv3HimK0Wjkhht6sW3bFlJTU+hVwHJLKSmpmExOeXr0/P39z76egpOTE2ZzTpH3UVJSEgD33ntXvufK7+egKEFB1Yr1M1xcuW2cNm1yvq/HxMQ4bF/qPSWFU3AoIlcdz6bN8Jz5PFaLhROvvwYUndgll8FgPBf0uVUBq7XM5yHm14am581BNABHqjsTfXgbLQObYiyFzKmXI805LB3+ffuStPNrsuPjcQ4IwL/PlZtS/tix//jrr0PMnfsSERHX28szM0seRPj4+AAQH19wNlBvb2/Cwhrw5JPTC6zj7x8AkCcBzalTCUW2IXcY7Pfff1dkcOjt7ZPvMRMSEvD2Lv3lJ3x9/TCZnPIkI8kv0Y6LiwvZ2dkOZSkpyfke98Je0v37fyM2Nob58xfQoME19vLTp0/nWXKsOLy9vTl1Km8bExLicXJywt3do8THLEzv3n1Yu/Y9LBYLzz33YoFtMptzSE5Ott93tjYl2F/Pfb+Luo+8vW37z549L9/hyMHB+T+MLE+59+OUKdNo2jTvGr4XPpApTs+5XLwr8xOEiEgx5M5BvCS58xDPBoa58xDJTCudRhbAr14YZ9xsv8LT3AzE+xiIT08gPSej0P0OHD7FiNlfcuBw0ZkRLze5cw7PpzmHJWd0dqbG8PtwrVmTGvfeV+7JaMpTbhDo5HTuGk+ciOa3334t8bHq1q1HUFC1QhcXb9euA9HRx+1ZQy/8AluvS0BAADt2fOWwb3GGcbZs2YpmzZrz9ttvEhsbm+f1hIQE+yLmLVq0Yvfun0hOTrK/HhNzkt9/30fLltcW55JLxGQy0bBhQ3bu/NqhfOfOr/LUDQoK4t9/DzuU/fzzT8U6z7nv6bn+jd9+28eJE9EO9Wy9n44BaH5atryWM2fSHDLYWiwWvvzyc5o3b1msRCsl0ahRE268sT+33np7nqHU59rUCoAvvtjuUP7559uoXr0G1apVP/t+N8rnPvrcYbtFixa4ubkRGxub7z1Z0vmGl+r83vhc9eqFEBRUjePHj+fbxsDAgnvrpfSp51BErmp+vfty8tufMVpysBjP/Uo0WC2cOvA3bu5N8PIpZA0lVw+cGkaQ8+dOjIH1scRG4tQwAlxL92nzhbxcvLi2y0D+2fEJPnXrUC3tOO2qX0tW4ik8g/I/9+L1v7PnT1uvx/y1v9KmYSDjb8n7lPZyFRxck/nzFzJ58kQsFgtGo5F58xao1/AiVGnWnCrP599rUdYsFiv79/+Wp9zX149atWqX6rlyA7rXXluIxWImPT2d5ctfJzCw5D1MBoOBBx98iGeeeYLHHpvCjTf2x9nZmf37f6Nx46Z07hzBjTf2Z8OGjxg3bhRDh95D7dp1OX06lb/+OkR2dg7jxj2IyWTinnvu4+WX/4+qVavSvn04P/zwPXv3/lKsdsyY8Tzjx4/mvvvu5s47h9K4cRNycnLYt+9X1q37gEmTHqFx4ybceedQPvlkIxMnjmP48JFYLBaWLVuKt7cPgwYNKfH1F8fw4ffz6KMP88ILz9Gjxw38+eeffPaZbf2+8x/sdOt2A2vXvkeTJs2oU6cOn376ib1XrChNmzbHw8ODefNmM2zYfcTFxeb7Pa1XLwSzOYe1a9+jefOWeHp6UrduvTzH69SpM02aNGPGjKcZM8aWrXT9+nUcPXqEKVMeu/g3oxBPPfVsoa83aHAN3br1YMGCl8jIyKB+/fp88cV2fvjhO6ZPn2mvN3z4SB599GGee266PVvp1q2O81arVPFi1KixLF68gNjYGNq0aYvRaOT48ePs3Pk1s2f/H27FWBaptNSrF8Knn27im292EBAQSEBAIIGBgUya9AjPPPMkGRnpdOzYGXd3d06ePMGuXd8yduyEAgNpKX0KDkXkqmZ0dqbePUMwfrAeQ8SN7NhzGosFrAYjX/6ciumXn7hzdPtCA8RzmUUdt8ta47B2/P3lRsx//k1DIOWfb/j8+++5afRzuLrnHdZ6pSxrcf46h1L5ZGZmcP/9w/OU33jjAJ55ZkapnsvFxYXZs+cxb95snnxyGkFB1bjvvvvZvftnDh06WOLj9ezZGzc3N1auXMHTTz+Oi4sLDRs2omvX7vbzLV78OsuWvc7KlSuIj4/H19eXa65pxG233W4/zuDBd3D6dCrr1n3ARx99SLt2HXjssSeZPHlSkW2oWbMWK1eu5p133uZ//1vPG28swcnJibCwaxgzZjy9e9tGQ1SrVp0lS5bz6qsvM2PG0xiNRlq3bsvEiY+U2ULlERFdefTRJ3j77TfZuvVTmjRpxtSpj/Hwww9Spcq5+XojRowiMfEUy5e/jslk5Oabb6VBgwYOGTAL4u/vz/PPz+HVV1/h0UcfoXbtOjz66JO8885Kh3qdO0dw22238/bbb5GYeIpWrVqzZMmyPMczmUy8/PKrLFr0CkuWLCI9/QxhYQ2YP39BvusPlpdnn53F0qWLee+9VSQlJVGnTl2efXYWffrcaK8TEdGVadOeYOXKN/n88200adKM5557gVGj7nM41tCh9xAUFMSaNe/y4YdrcXJyombNWnTu3MWhV7083H33vRw79h8zZz5DamoqI0eOZtSoMfTo0ZMqVbxYuXIFW7bYHijUqBFMeHjHfOeEStkxWPXX9aKNGjUKs9nCnDmvXNJxnJyM+Pl5kpiYRs6F2RFFLoHurZKJO5nKupV5n94PGt6awAKyfFozTnN61QTbxtlhpQBVhi3CcJEJaYrLarWw4c1nyUxOwoAtOHX18WPgiOn5Zkr982iiw7IW0+66loZ1Lu5DYkXcW9HRx2ndummepSz27Nlf4b2H06Y9hMlkZNmyvB8+L1VGRgaRkVEEBFTHxcW11I8vUpb+97/1vPjic3z88ebLYn6byNUoKyuT+PiThIbWx82tkNFQqOdQRMTOasn/WVlB5QC4epZ7Qhp7u4B/qzsTfDaPgwH4t4bT2RUc86rsy1ooIY3I5S05OZkVK96gbdt2eHh4cPDgQVauXEFExPUKDEUqCQWHIiJnGYz5Z0ArqBw4l5AG8iakKeOewzM56RzxOIOPmwHPDCtpbgaOuJ8hPScDT+e88w4r+7IWuQlpLuw5VEIakcuDk5MTx4//x/btW0hJScXPz5e+fW9k/Piih8uKyOVBwWExxcbGEhfnmL46Kyvroha5FpHLk5u7MyaTAbP5XE+h0WjgzOksUpMz8p936OqBU6MIcg7txBhQD0vcYZzCOmJ1ccu39640VXH2ZHLbBznmu4/j339Nk+uup2dYSzydPUiMPUbGmdRz1+bhhV9QrTJuUdnKTUgzZcokzGYzRqORp556Vr2GIpcJT09P5s8vet6giFy+FBwW09q1a1m0aJFDWUhICF5epb9WkIhUDC8fN4aMaM3BuQvY5xOO1eiExWLl03X7MZmM3Dm6XZ4A0WAw4tp5GFZzNua/v8cQGELOP9+BkxNuXYaX+QOk2l7B1L42mH21avPeoY+4K6MOQU4+fL7mZSzmc2ncTSZnBoyemW+imspk6NBhJCUlMnPmM2fXCZuOr68fQ4cOq+imiYiIVHrq9iqmIUOG8PHHHzt8VatWDU/Pyv1BS0Qc5Xz/Jc6nT2E1Oj47M5stZKTnv2aWISsD89/fA2CN/9d2nEM7IfNMmbY1l8VqYWPkVk5np7EpagtOrq5U8fXHPvPQYMDT1x+Xs+nKK/Nah9HRx3nuuen2TKUWi4UpUyYRHX28glsmIiJS+annsJiCgoIICnJcQ8fFxQWzWRkgRa4UVouFxG1bgBKu+VSBSWkAfos7wMkzMQCcSIvh94RDNO/Yj12bVtgqWK0079gPg8FY6dc6VFIaERGRsqOeQxGRswxGI369+pR8x9ykNGcDQ4ekNGXMYrWwKWobhrO9hAYMbI7aSo3Qpnj725LOePtXp2aYLQCs7Gsd5ialOZ+S0oiIiJQOBYciIufx690Xdy8PjJYch3Kj1YzlvygAUpMziDuZav9KzTTi1CjCVi8oFACnRhFYXdywZpzGarWe/bf0RxqcyUknISMBK2cXhsdKfHoCGeYs6je7DmdXd2o1aMXJI3+SGHuM4X0bOex/4fblLjcpTW6AaDQamTdvgXoNRURESoGGlYqInMfo7Ey9e4Zg/GA9nr0G4Fq3LideW4Tx1EnSPvIguX4oa9/c6zCk3GQycsfoO/BqP9g2lDQzDauLG5nfrrJlMa0WhiXmH5waRZR6kpoqzp5MbjOB1KxzmUm9XLxwyrHy27ebsZizOfjDlrPtdKbXfc9U6rUOc+XOOcz9V0RERC6deg5FRC7g2bQZjWc8TZ1OrXD69Rs8YqNwy0kjJz6euK925JlrbDZbyEw3Y3CrgsFgsP2blWFLSgO2uYiUXZKa2l7BNPFvaP+q7RXMH6lRpDmf186zSWm8vLyYcGsLwptUZ8KtLXBzqVzPCKOjjzN58kSH4FAJaSqPZcuW0q1bp4puhl14eGtWr15l3545czp33XV7qZ5j2rTJhIe3ZvPmjcXeZ/LkiYwdO6pU25Hrr7/+ZNmypWRkpDuU79mzm/Dw1vzxx8EyOe+Fli1bSnh4a8aMGZnvaxdzn+zY8RXr1n1QGs27JJs3byQ8vDVJSYkl3nfLlk8ZMeIeevSIoHv3LgwZcivPPz+TU6curwRi+d0vycnJTJs2mZ49uxIe3podO74qs5/5y+U+Btvvkfy+tm/fmu+9cOHvnc2bN7J162fl1t6iVK5PBSIi5ehcgprc3ikrKd9/B4G9it65ApPU5M5DzK5upOm/ZlvheUlpKjMlpJHK5PTpVL7/fhcAW7d+Rv/+N1Vwi2wfqleseIPbbx+Cm9u55FuNGjVi+fKV1KsXUq7t+fXXveze/RNt27a/5GPt2PE1hw4dZNCgwaXQsvK3atVbLFmyiDvuGMqoUWOwWiEq6h+2bv2M+Pg4qlatWtFNtMvvflm9ehV79vzMM888R9WqftSpU4/GjZvQqVOXUj//5XYf3377HfTu7ZizoHbtOlgsVpYvX0mVKgWP0vnkk014eLjTu3ffsm5msSg4FBEpQG6CmoQN67EFiAa8r+sI/xRj59wkNZA3SY1blTJs9XnZS32MpLkZ8MywOiSlqcxyE9KcHyAqIY1crr788guysrIID7+On376kYSEePz9Ayq6Wfny9KxCs2YtyvWc7u7u1K8fyooVb5RKcFjRzGbzJc0t//DD9+nXbwCTJj1iL+vYsRN3331vnodiZSX3GpycnAutl9/98u+/hwkLa0BERFd7mbe3N0FB1cqkrcVtV3moXr16gef18/Mr17ZkZGTg5uZWdMUCVO5HyCIiZcyvd1+c/P0BcAoIILBbV0ymC7NlGnFzv+APqatHvklqcPUo0/Y6ZC81GDhS3ZkcZyPNOlX+XkM4l5DGZDIBtsBQCWlKJjU5g9gTqfav1OSMim6Sg8jIf3joofF069aJ7t27MHXqw/z331GHOhaLhffee5chQ26lS5cO3HhjT5544lFOn7bNvf3338M89dRj3HRTX7p27cgdd9zG6tXvlOgDdlJSIl26dOB//1uf57VRo4YzbdrkIo+xdeun1K5dh0mTJmOxWNi+fWueOocPRzF27P1ERIRz22038emnm/PUKc71REdHEx7emk8+2cTzz8+gR48IevW6nldemU9Oji3B1ubNG5k161kA+vTpQXh4awYO7AfkHY43duwoJk+elKctH3zwPl26dCAlJQWwDe1evXoVt98+kC5dOnDrrQNYs+bdIt+bXCNHjmbv3l/Ys2d3ofWysrJYsuRVBg68kS5dOjBkyK0OQ/FmzpzOp59uIioq0j6sb+bM6fz66y+Eh7fm+PFj9rqPPvoI4eGt+fvvv+xl06c/yYQJY+zbycnJPP/8TPr06U7XrtcxYsQ9/Pjj9w5tsr1HE/nkk00MHnwLERHh/PXXX+Tn008307lzezZs+KjAa0xNTS3w4cH5WZoHDuzHvHmzeffdtxkwoDddu3Zk6tSHiY+Pc9hn8eKFDB06mG7dOjFgQG+efvrxPHUKuobU1FReeOE5BgzoTUREODfd1JennnrMvt+F90t4eGt27vyaX3/da3//If8hwqmpqcybN4cBA/rQpUsHbrmlP6+99qr99V27vuHBB8fSt28PunfvwogRw+w98FCy+xggMzOTBQteYsCA3nTp0oGhQwfnGcaZO6R8z57dDBt2J9df35ERI+7h0KFLG55a1BDjsWNHsXfvHnbt+tb+vi1bttThvRgxYhhdu15Hnz7dmTPnBdLTzw2lzb3eXbu+4fHHp9K9exeefPLRS2qzeg5FRAphdHam2rDhxK1dQ+CQO/H0r8Kdo9uRkZ5tr+Pm7oyXj+NTOoPBiFuX4XBekhpcPco8QLswe2m8r5Hkqh4MrNugRMc5cPgU89f+yuQhrWgacvkMZQIYOnQY3br14PDhKEJC6iswLIHU5Azeee3HPAmV7hnXIc89XBFiYk4yZsxIatQI5umnZ2KxmFm2bCljxtzPu++utT+Bnz9/Dhs2fMwdd9xF+/bhpKWd4bvvvuHMmXSqVPEiLi6WunXr0rt3Xzw8PPn77z9Ztux1MjLSGTlydLHa4uvrR9eu3di0aQM333yLvfzIkX/5/fffmD9/QaH7x8XFsXfvL9x330hCQurToME1bN36GXfcMdReJzMzk0mTxuPu7s706c8B8Prrr3HmTBq1a9c971jFv56lSxfRvn04zz8/mz//PMQbbyzF2dmZ8eMn0qlTF+67737eems5r7yyiCpVquDs7JJv+3v37sO8eXNITk7Gx8fHXr59+1bCwzvi7e0NwEsv/R8bN25g+PARNG3anN9/38fixQtxdXXj1lsHFfk+d+zYmSZNmrJ8+eu0adO2wHpPPjmNfft+ZeTI0dSrF8L333/Ls88+hZeXNx07dmLEiPtJSkrkyJF/mTFjFmD7HgYFVcPV1ZW9e/dQs2YtrFYr+/b9erbsFxo0uAaAffv2MmDAQMDWe/bwww9y7Nh/jBs3gaCganz00Yc88shEFi58jTZt2tnb9ccff3Dy5ElGjx6Ll5cX1apVIyoq0qHt69at5ZVX5vPUU8/Sp8+NBV5jo0aNWb/+I4KDa9K5c5dCe5l37PiK6tVrMHXqE6SmpvDaa6/y2GNTWL78bXudxMRT3HvvCAICAklKSuS9995h7NhRrFmzDiencyFAftewYMF8vv/+O8aNe5AaNYJJSIh3CNAutHz5ShYufIWMjAweffSxAutlZWUxfvwDnDwZzciRowkNDSMmJoZ9+36114mOPk7nzhEMHXoPBoOR77/fxSOPTGTRIts9UpL7GGyB//ff72L06HGEhoayfftWpk9/EovFTN++/e31EhISeOmluQwbdh+enp689tqrTJs2hY8++l+RPakWi8X+EAbAYDDYH2IW5tFHH2f69Kdwc3Nj4sSHAOw9rV9++TlPPfUY/frdxKhRD5CQEM/ixa+SmprCrFmzHY4ze/bz9OlzI7feOijPck8lpeBQRKQInk2b4Tnzefu2l4+bwwfp1OQMju76lcRtW/Dr1Qe/Zo3w8nGzBYJnh5BaXT0g8wzWMg4Uz89emn4qjpz0dNyd3Ek5foQsDy/8gmoVeYzF639nz5+2p8vz1/5Km4aBjL/l8hqSmhsQ5n4IU4BYPOlnsvNNqJR+JvuyCA7XrFlNdnY2Cxa8Zg8EmzZtxu23D2TdurWMGjWGo0eP8PHH6xgzZjz33jvCvm/37j3s/2/XrgPt2nUAbD1bLVu2IiMjg3Xr1hY7OAS4+eZbePDBsfYHEQAbN24gMDCQ8PCOhe67bdsWLBYLvXrZ5hH17t2XRYsWcPToEerUsQV+n3yyifj4ON5//2Pq1KkDQFhYA+644zaH4LAk11OzZi2efnoGAOHhHcnIyGDNmne5557h+Pn5UbOm7XdAo0aN8fUteLhbt243MG/eHL766gsGDrwVgJMnT7B//2/MnPkCAMeO/ce6dWuZNu0JBg68DYD27Ttw5swZVqx4g4EDby3WB9URI0YxZcpD/PLLHlq3bpPn9T17fuabb3awYMFiOnS4DoAOHcKJi4tj+fKldOzYiVq1auPr68fJkyfyDO9r0qQpv/zyC/3730xUVCSnT6dy0023sHfvHgYPvoPo6GhOnjxJq1a23q5du77l4MH9vPTSQjp27Gx/L++663aWL3/DIThMTU1h5cp3Cxw6uWrVWyxf/jovvDCXiIjrC30fpk59nGnTJvPii7YHBbYgMYI77hhKcHCwQ920tDO89NKreHnZ5rIFBQXx4INj+fHH7+3v0VNPPWuvbzabadasBTfd1Ic9e3621ynoGg4ePECvXn3o12+Avaxnz94Ftr1ZsxZ4eVXBZDIVOqzz008389dfh1i27C2aN29pLz//PLfffof9/xaLhTZt2nL4cCT/+9/HtGnTtkT38d9//8XXX3/JlCmP2eeihod3JD4+jtdfX+IQHKakJLNkyTLq17eN9nFxcWXixLHs37+fVq2uLfAcYOulXbx4oX27Vq1arFtXdBKqkJD6eHp64uHh7vC+Wa1WFi58mRtu6MWTTz5jL69a1Z/JkycxYsQoezsBIiK6Mn78xCLPVxwKDkVELkFqcgZr3vgJs9kK7tfBN8mYvvuJO0e3t3/YtlotZHyzssyXtchV2yuYzPQ0Nr77BhazrYfzD2xLWQwYPRNX98KT4hyLPV3o9uVg9epVTJ48EYvFgtFoZP78hQwdOqyimyWXaN++vbRp085hjk6NGsE0b96Sffv2ArB7989YrVZ7L09+MjMzWbXqTbZu/YyTJ086PNE/c+YMHh7FG97dtm17atasxebN/+PBBx8mJyeHLVs+pX//m4rsFdi69TMaNmxE3br1AOjVqw+LFy9k69bPGDXKNnzxwIHfqV8/1B4YAtStW8/hQ19Jr6dr124O+15/fXfeems5kZF/c+21eQOvgvj4+NChQziff77VHhxu374VNzc3unSxDZn/+ecfAejWrYdDm9q1a8/q1auIiTlJjRrBeQ9+gc6dI2jYsBErVrxO69Zv5Hn9xx9/wNvbhzZt2jmcp23bdsybNxez2Vzo96NVq9Zs2fIpAHv3/kLDho3o3LmLfWjir7/+grOzM82a2R6C7dv3Cx4envbAEGzDOnv06Mnbb7/pcL6wsAYFBoavv/4aW7Z8yrx5C2jfvkOR70NoaBhr1qzj559/5Mcfv2fv3l/44IM1bN68kaVLl3PNNQ3tddu0aWsPDMH2AMHTswr79/9uD/y++24Xb721jKioKNLSzv0eP3r0iENwmN81NGzYiE8+2URAQADh4R0JDQ0rsv3FsXv3T9SrF+IQGF4oNjaGpUsX8/PPPxIfH2/PTt2oUeMSny/390bPno6J5Hr27MOsWc8SE3OSatWqAxAQEOjws5f7QCguLrbI8wwZcid9+vSzb7u4FNyTWRxHjx7h5MkTPPzwFId7/tpr22AwGPjjj4MObT3/Xr1UCg5FRC5BRnq2LTA8j9lsJSP9vJ6YzDP5L2vRfnCZJadxcXOniq8/KQkx5GZbPe1s4Y/Uw7Ryb1bovsP7NmLOe3sdti8nuctZ5M63slgsTJkyiW7deqgHsZJLTU2hQYOGecr9/f05evQIAMnJSZhMToVmbly8eCH/+996Ro4cTaNGjfHy8mLnzq95663lZGVlFjs4NBgM3HTTQN5//z3Gjn2Q7777llOnEhgw4OZC9/v338P89dchRo0aQ2qqbR6ku7sHzZo1dwgOExLi8fPLex1Vq/o7fCAsyfVceLzc7fj4+GJd8/l69erLjBlP2xPpbN++lS5drrdnh0xKSsJqtdK7d/d894+JiSlWcAi2uYePPvoIv/76S57XkpKSSElJpnPn/JPWJCTEF5r05Npr2/DWW8uJiTnJr7/+QqtWrWnZshXJyckcPhzF3r2/0KRJU1xdXQFISUnN9/7y9w8gJyeH9PQz9uyT+X3/cn3xxeeEhobRsmWrwi7dgbOzMx07drZ/2P/hh++YPHkSK1a8wZw58+318juvn5+f/ft88OABpk59mIiIrtxzz31UreoHGLj//nvJysq6YL+8x5o8+VG8vb157713efXVV6hWrTrDht3Hbbdd2lIvycnJBAQEFvi67ff5w6SlnWbUqLHUqlUbd3d33nhjCTExJ0t8vpSUVEwmJ3x8fB3K/c/mEkhJSbEHh+cH2wDOzrYwKTMzs8jzBAVVo3HjJiVuX0GSkpIACpzbHBMT47Bd2H1YUgoORUQugdWS/yLsDuUVsKyFwWCkecd+7Nq0wl4WVd3IscNbaRHYBGMhPZZ1q3vR+poA2jYKYvehWOpWLzgFd0XQchYXz93DGZPJmGfOobtH4fNpyou3tw+nTiXkKU9ISLDPcfPx8cVszuHUqVMFBohffrmdW265lWHDhtvLdu365qLa1L//TbzxxlJ27fqGzZs3cu21bahVq3ah++Qmu1i2bKlDcolcBw7sp2nTZvj7B/Dnn4fyvH7qVALe3ufm+ZXkehITT+W7HRBQ8iypERHX4+Liwuefbyc8/Dr++utPRo8ea3/d29sHg8HA66+/ibNz3nsod/hscc91zTUNWb78jTzBlLe3N35+frz00qv57lvUB+MWLVrg5OTEL7/sYd++vUyd+gRVqngRFtaAvXt/4ddff6F79xsczpffuoIJCfE4OTnh7n4uGDcYCj7v//3fyzz++FQef3wqc+bMz/c9Kkp4eEfCwhrw77+HHcov/D7byhLt3+cdO76kSpUqPP/8HPvQ3hMnovM9R37XUKWKFw8/PJWHH57KP//8zdq1a/i//3uR+vXrl6gH+kI+Pj7888/fBb5+7Nh//PXXIebOfclhGG5xArT8eHt7Yzbn5Jk7m5CQYH/9cpTbrilTptG0ad5pHRcG2IbCbsQSqvyp60REKpDBmP8vZIfy3GUtzgaGDstalKGaYc3x9rc9EU1zM5DgY+REWgy/xReefc3NxYkJt7YgvEl1JtzaAjeXy+s5Yu5yFufTchbF4+Xjxj3jOjBkZFv71+WSjAagRYtW7N79E8nJSfaymJiT/P77Plq2tM35adu2HQaDodBF5TMzMx0SSJjN5nwzhRaHv38AnTt34d13V/Hdd7uK7DUE23zDZs2as3jxGw5fCxa8houLC9u22YLHJk2aERUVydGj57KxHjnyb56EJiW5nh07vnLY/vrrL3FzcyM01JaUKjdAubD3KD/u7u507hzB9u1b2LZtC97ePoSHnxuO2K6drScvOTmJxo2b5Pny9CzZA7ARI0axe/dPDslJbOfpQGJiIk5OTvmeJ/eanJ2dyMrKG0S4ubnTsGEjNm7cQHx8vH3+2LXX2hYq/++/o1x7bWt7/ZYtr+XMmTSHBCwWi4Uvv/yc5s1bFivRCEDdunVZuPA1DhzYz1NPPebQG5yf3IDlfBkZGcTGxuRJTrNnz257dl6wDfFNSztN06a2kSG2e8bJIWi42IXWw8Ia8NBDth6sI0f+vahj5GrXrgP//nuY/ft/y/f13CDw/Pv9xIlofvvtV4d6xb2Pcx80fPHFdofyzz/fRvXqNey9hhXJ2dmZzEzH66hXL4SgoGocP34833s+MLDg3tdLdXn9xRcRqWTc3J0xmQwOQ0tNJoPj0hZnl7XIObQTY1Cofc5hWS9rYTAYadbxRnZuWcm/NZzAYMCAgc1RW2kRUHjv4eUsdzmLKVMm2ef+aDmL4rswoVJ5y/2QfaHGjZtw551D+eSTjUycOI7hw0disVhYtmwp3t4+DBo0BLD1Rt1yyyBef/01UlKSadeuPRkZGeza9S333/8AQUFBtG8fzsaN6wkJqY+fnx/r1n1AdnZ2nnMW180338Ijj0ykSpUqdOvWo9C6+/f/xvHjx7jvvpH5Zt/s0qUr27dvY+LER+jXbwArVy5n6tSHeOCBcVitVt54Y4l9yFuuklzP8ePHeO656fTs2Zs//zzEO++sZMiQu+w9EbmLg69b9wEREdfj5uZGWFjB2Yx79erLo48+zMmTJ+jevYfDh/Y6depy222DmTHjaYYOHUbTps3Jycnhv/+OsGfPbubOfanQ9+pCXbt2IyysAbt3/4S7+7mFzTt0CKdz5wgefngCd999L2FhDUhPT+fw4Sj+++8/e8KOevVC2Lx5I9u2baF27Tr4+PjaE7m0atWa1atXERbWwP5etGrVmrVr12AymRzmwHXq1JkmTZoxY8bTjBljy1a6fv06jh49wpQpBWfizE9YWAMWLFjMhAkPMHPmMzz77KwCk/TcffdgOneOoEOH6wgICCAuLo4PP1xLUlISQ4bc6VDX09ODhx9+kHvuuY/Tp1NZvHghTZo0sydKat8+nPfff4/58+fQtWs3fv/9d7Zs+aTY7R416j6uv77b2YdxJj77bDPOzs72hzQXq2/ffnz00YdMnvzQ2WylocTGxvLrr7/w+ONPU7duPYKCqvHaawuxWMykp6ezfPnrBAYGORynuPdxgwbX0K1bDxYseImMjAzq16/PF19s54cfvmP69JmXdC2lpV69ED79dBPffLODgIBAAgICCQwMZNKkR3jmmSfJyEinY8fOuLu7c/LkCXbt+paxYyeUqGe+JBQciohcAi8fN+4c3Z7E/YfyZCvNVVHLWgD41WvAz809yLbYnlhbsRKfnkB6TgaezmUbnJYlLWdReWVmZvLEE3nX4XrqqWfp3/8mlixZzquvvsyMGU9jNBpp3botEyc+4pCkZsqUaQQHB/O//63n/fdX4+Pjy7XXtsbT03ZPP/LIo8yd+wLz58/Fzc2Nfv0G0LVrN3sWyJLq0OE63Nzc6NWrb5GLS2/Z8hlubm5063ZDvq/feGN/vvhiO7t3/0SHDtexYMFrzJ37AtOnP0lgYBAjRtzPV199wZkz59YyK8n1PPDAeH75ZQ9PPDENk8nIbbfdztix4+2vN2zYiPvvf4CNGzfw7rtvExRUjQ0bCg4arrvOtmxFfHw8PXv2yfP65MmPUrduXTZs+Jg331yGu7s7derUpUePnoW+T/kxGAyMGDGaJ56Ymue1F1/8P1ateouPPvqQkydPUKVKFerXD6V//5vsdW66aSAHDx5g/vy5JCcnceONA3jmGVvm1tat27B69Sp7RlKw9RwaDAauuaahQy+nyWTi5ZdfZdGiV1iyZBHp6WcIC2vA/PkLCl1uoyCNGjXmlVcWMXHiOF54YSZPPjk932GAI0c+wLff7mTBgpdISkrE19eX0NAGLFq01CFDKtgC6aCgasyd+zypqam0bduexx57yv56x46dGT9+Ih9+uJbNmzfSokUr5s1bwODBA4vV5hYtWvLpp5s5cSIag8FIaGgY8+a9cskjNFxcXFi0aClLly7m7bffJCUlmaCgavZMqC4uLsyePY9582bz5JPTCAqqxn333c/u3T87rDlYkvv42WdnsXTpYt57bxVJSUnUqVOXZ5+dVeiyIuXp7rvv5dix/5g58xlSU1MZOXI0o0aNoUePnlSp4sXKlSvsCZVq1AgmPLxjoXOuL5XBmpsCSEps1KhRmM0W5sx55ZKO4+RkxM/Pk8TENHJyir9Ar0hRdG+Vn9TkDPvah+mRkaRt20Sdwbfg2TT/5C9WqwUyz5RLsPhfajSpWbbhR+mn4nDOhkAPW8+EWzGXt7jQ5XBvRUcfJyoqkvr1Qys8OJw27SFMJiPLli0r9WNnZGQQGRlFQEB1XFxcS/34UrTdu39iwoQxrFz5Lo0alV7SidIUHR3Nrbf254UX5jrMn5Mrz8CB/ejcuUuJezHl6pWVlUl8/ElCQ+sX+YBLPYciIpfItpzFzw5JPoyuHen87loaz2yI8YIkBBWxtAXgsLzFH2dfK+7yFpcbLWUh5SEuLo5jx47y6quv0KJFq8s2MBQRKS2Vc8KJiMhlxLachWPvmcXoRHrKGRK3bcm7Q0FLW2SeKdN25i5vAWeHMxkMePr64+LmXuh+JXHg8ClGzP6SA4fzZtIrLQUtZREdfbzMzilXpw0bPmL8+AcAeOKJpyu4NSIiZU89hyIiZShx2xaq9u2H4fwEBBWwtAXks7yF1cpev9MEx/9By8Cml3z8xet/Z8+fcQDMX/srbRoGMv6WvCm4L5WWspDyMmrUGPuahJe74OBgfvgh7xqBcuUpbI6oyKVSz6GISBny69XHMTCEClvaAhyXt8h0d+a4ZzaborZgsV76vMFjsacL3S4tWspCRESkbCg4LKbY2FgOHDjg8JWVlZXn6bWIXH1sy1k4/jo1WnJw9/bAr1fe7H65S1sAth5DKJelLeBs72Gn/phc3finOmAwFGvtw+IY3rdRodulJXcpi9y1xrSUhYiISOnQsNJiWrt2LYsWLXIoCwkJwcvLu4JaJCKXC9tyFu3yZiu9e0ieZDRQsUtbAASHNuOPNtU4dSYWsJba2od1q3vR+poA2jYKYvehWOpW9yq9Rl9AS1mIiIiUPgWHxTRkyBC6d+/uUDZ37txy+zAnIpe33IXFU5MzIDQU97EPkRAZydHpzxW6pEVFOJOTTvqpWHyzcs6VZcRe8tqHbi5OTLi1BQDhTapfcjuLkhsQRkVFOmyLiIjIxVFwWExBQUEEBQU5lLm4uOTJUCgiV6/iLmlR3ktZXMg5B679OxuL+VxwaDRZcepmhbwdnZctLWchIiJSutTtJSJSSoq9pEUFLWWRy7akRQDnL2lRxTegVJe0KGtazkJERKT0KTgUESkHidu2YM1NYHV2KYvcTKUYDLbtMl7KIlfukhZgtRVYrTTv2K9SDZMvbDkLERERuTiV55OAiEgl5rCkRQUuZZHr/CUtvP2rUzOs9NcjLEtazqJyWrZsKeHhrRkwoHe+2b4ffvhBwsNbM3nyxHJvW3h4a1avXlUmx545czp33XV7oXU2b95IeHhrkpISC6wzcGA/5s2bXaLjXkz79uzZTXh4a/7441wW47J8f4orKSmR8PDWbN68sdB6Awf2Izy8dZ6vVaveyvfaLnxfd+z4inXrPiiz6xC5nGnOoYhIKcld0sJhzmF+S1qcXcoi59BOjEGh9jmH5bGURa7cJS12b3+fFp3681v8Qd479BF3NRpEy8Cm5daOi5W7nMWUKZMwm81azqIScXJyIikpiV9+2U3btu3t5UlJifz00494eJTfz8H5li9fSfXqNSrk3MU1Z878csmS3qhRI5YvX0m9eiFlfq6y0r37Ddx1190OZdWq1cDDw73Ia9ux42sOHTrIoEGDy7qZIpcdBYciIqWkuEtaVPRSFrlqhbWgVlgLLFYLb/74Mqez09gUtYXmAY0vaUmL8qLlLConZ2dn2rXrwNatWxyCw88/305gYAA1agSXynkyMjJwc3Mrdv1mzVqUynnLUsOGZbN26IU8PatUivejMFWrVi3wGsr72kp6L4pUpMv/r7+ISCXi5eNGYHUvAqt7UadTKxrPeDrfZSwMBiMGtyoYDIaz/1bcr+Pf4g5w8kwMACfSYvgt/mARe1w+goNr0qlTFwWGJXAq5hjRhw/av07FHCv3NvTq1Yevv/6C7Oxse9m2bVu44Ybe2BMlnRUfH8esWc9y660D6Nr1OgYNupklS14lKyvLoV7usMFFixZw44096du3BwDZ2dnMnz+XXr2up0ePCJ5/fgaffLKJ8PDWREdHO+x//rDJsWNHMXnyRL74YjuDB99Ct26dGD9+NMeO/edw3sWLFzJ06GC6devEgAG9efrpx4mPjyutt8rBhcMfL2SxWJg9exa9el3PgQP7AUhNTWXu3Bfp168XXbp04N577+LHH78v9Dz5Db3MPf6yZUvo2/cGevfuznPPTSc9Pd2hTmTkPzz00Hi6detE9+5dmDr1Yf7776hDnczMTBYseIkBA3rTpUsHhg4dzNatn+Vpx4YNHzNwYD+6du3IhAkP5HnvL0ZB15Zr5szpfPrpJqKiIu3DUWfOnG5//fff9zF+/Giuv74jPXpE8MwzT3Dq1Cn769HR0fahry+88By9enVjxIh7LrndIuVFPYciIlcxi9XCpqhtGDBgxYoBA5ujttIioEml6D2UkslMP8221fMx55wLykxOztwydhau7uWTEAmgc+cIXnjhOb7/fhcREddz4kQ0v/++j6lTH7MHNbmSkpLw9vZh0qRH8PLy5ujRI6xY8ToJCQk89dSzDnXXrl1D8+YteOqp6fbAc/HihWzY8BGjRo3lmmuu4YsvtvP6668Vq51//fUXiYnvMG7cg1gsFl5+eR7PPvsUy5e/ba+TmHiKe+8dQUBAIElJibz33juMHTuKNWvW4eRUfh+zcnJymDlzOrt3/8Rrry0jLKwB2dnZTJw4llOnTjFmzDgCA4PYsuVTHnlkEm+/vZqwsAYlOse6dR/QsuW1PPPMDI4ePcKiRQuoWtWf8eNtc0RjYk4yZsxIatQI5umnZ2KxmFm2bCljxtzPu++uxc/PD4Dp05/k++93MXr0OEJDQ9m+fSvTpz+JxWKmb9/+AHz77U5mz55Fv34D6NmzN3/8cZCnnnq82G21Wq3k5JxbrsdgMGAymYrcb8SI+0lKSuTIkX+ZMWMWAL6+tnb//vs+xo0bTceOnZk1azbp6em8/vprTJ36ECtWOM7HXLJkEZ07d+G5517QsmdSqSg4FBEpY6nJGWSkZ5MeGUniti1U79+Xau1aXtIxrVaLbemLixyWmhh7jIwzqWTkZJATG4OH0UKahxErVuLTE0jPycDT+dLnfh04fIr5a39l8pBWNA2pesnHK47o6ONERUVSv36oehQv4OLmQRUff5JPxdgTIlXEMiZubm507Xo9W7d+RkTE9WzbtoV69UJo0OCaPHXDwhowceLD9u0WLVri7u7OzJnTmTJlGm7ntd3Hx4cXX/w/DAZb72NycjLr16/jvvvuZ9iw4QCEh3dk7NhRxMbGFNnO06dTWbVqjT2oSU1N5cUXnyM2NoagoGoADgGq2WymWbMW3HRTH/bs+ZkOHa4r8XtzMbKysnjqqcf4889DLF26gjp16gCwdeun/PXXX7z77vv2ZE3h4R05evQob721nOefn1Oi8/j7+zNz5vMAXHddJw4ePMBXX31uDw7XrFlNdnY2Cxa8Zn/PmjZtxu23D2TdurWMGjWGv//+i6+//pIpUx6zz+kLD+9IfHwcr7++xB4cvvXWclq1upann55hr5ORkc7bb79VrLZ+9NGHfPTRh/Ztk8nErl0/F7lfrVq18fX14+TJE3mGn7722qs0atSE2bPn2e+x0NAwhg4dzHfffUvHjp3tdRs2bMTjjz9drLaKXE4UHIqIlKHU5AzWvPHzuSfH7tdh/DyBO+qfxse/ykUd02q1kPHNSltCm2ph9oQ2bl2GFytAzExP4/M1L2Mx23pWmgAGk4lGt9+Dk6sbXi5epRIYLl7/O3v+tA2vm7/2V9o0DGT8LWWbFXX16lX29Q+NRiPz5y9k6NBhZXrOysRgMNKiS3++2bDcVmC10rJz/woZ1ty7d1+mTZvCmTNn2LZtC7179823ntVqZe3a99iw4WNOnIgmMzPT/trx48cJDQ2zb193XUf7h3awDXHMzMykS5euDseMiOjK3r17imxjgwYN7UEOYA+wzg8Ov/tuF2+9tYyoqCjS0k7b6x49eqRcgsPMzEwmT57EiRPRvP76CoekOj/++AOhoWHUrl3HoRetXbt2bNu2tcTnat8+3GE7JKQ+X331hX173769tGnTzuE9q1EjmObNW7Jv3157HYCePXs5HKtnzz7MmvUsMTEnCQgI5NChQ0yY4Ji1tlu3G4odHPbo0ZO7777Xvm0wFFK5GDIy0vntt308+OBDmM1me3mdOnUJCAjg4MEDDsFhx46dLu2EIhVEwaGISBnKSM/OM6TIYjAR99UOfAb1u7iDZp4h59BO27FiIwFs2+0Hg1vRAaeLmztVfP1JSYgBbL1HXr6BNK/RvFSDhGOxpwvdLm3R0cftgSHY5kdNmTKJbt16qAfxPLUbtMDHvzrJCSfxCahBrQYVs4xJu3Yd8PDw4M03lxEZ+Q//938v51vv/fdX8+qrr3D33ffSpk1bvLy8OXjwAPPmzc4z79DPz7F3OiEhHjg3LLCgegXx8nL8eXI+m1gqM9N23oMHDzB16sNERHTlnnvuo2pVP8DA/fffm6dtZSUxMZGYmJMMGjQ4T7bVpKQk/vrrEJ07t8+zX3GGWF7Iy8vLYdvZ2dnhOlNTU2jQoGGe/fz9/Tl69AgAKSmpmExO+Pj45qljez0FJycnzOacPN+nqlX9i91WPz8/GjduUuz6RUlJScVsNvPKK/N55ZX5eV6PiXHsiS7uPSZyuVFwKCJSAVK+/w7rrX3PrX1YEq6eth7D2Ej70EBjUKhtiGkxGAxGmnfsx65NK2wFVivNO/Yr9d6j4X0bMee9vQ7bZSkqKjLP2nlms5nDh6MUHJ7HYDDSMmIAP25dQ8suAyosGZLJZKJHj5689947NG/eosDv0Zdffk6XLl0ZN+5Be9nhw1H51jVc0D3k7x8A2JbJCAwMtJcnJp6iNOzY8SVVqlTh+efn2NfdPHEiuoi9Slf16tW5//4HePrpx/Hx8eW+++63v+bt7U1YWAOefHJ6IUcoPd7ePpw6lZCnPCEhAW9vb3ubzOYckpOT8fHxcaiT+7qvrx8mk1Oe71N+xy4vXl5eGAwG7r13BF27dsvz+oXB7oX3okhloeBQRKQCeF/X8eICQ4DMNCwx/9j+bzCA1WrbzkwrVs8hQM2w5nj7Vycl4STe/tWpGVb6vUd1q3vR+poA2jYKYvehWOpW9yp6p0tQv34oRqPRIUA0mUz2oYByTu0GLand4NLmvZaGm24aSGxsDH363FhgnczMzDyJXfLLbJmf0NAwXF1d2bnza4f5jDt3fn1R7S2obecHAsVtW2nq3v0GsrKymDnzGVxd3ezr+7Vr14Hvv99FQECgQ3BcVlq0aMWGDR+RnJxkD5ZiYk7y++/7uPfeEQC0bNkKgC++2M6ttw6y7/v559uoXr0G1apVB2xz9nbs+Io77zy3VuFXX31e5tcA4OzsRFZWpkOZu7s7zZq14N9/DzNmzPhyaYdIRVBwKCJShtzcnTGZjA5DS41WM4HduhayVxFcPXBqFGGbcxgUap9ziGvx5wkaDEaad+rP7u3v06JT2cw5c3NxYsKttoQO4U2ql/rxLxQcXJP58xcyZcokzGYzJpOJefMWqNfwMnbNNQ2ZO/elQuu0a9eBDz5Yw4cfvk+dOnXZuvWzYi9p4OPjwy23DGLlyhW4uLhwzTUN+fzzbRw/fhwAo/HSenfatw/n/fffY/78OXTt2o3ff/+dLVs+uaRjfvvtTjw8HEcBhITUL/IhR58+N5KVlcWLLz6Hi4sLgwYN5sYb+7Nhw0eMGzeKoUPvoXbtupw+ncpffx0iOzvHoTe2NNx551A++WQjEyeOY/jwkWeXvliKt7cPgwYNAaBBg2vo1q0HCxa8REZGBvXr1+eLL7bzww/fMX36TPuxhg8fyaOPPsxzz023ZyvdunVLqba3IPXqhbB580a2bdtC7dp18PHxJTg4mAcffIgJEx7gySen0bNnb7y8vImNjeHnn3+kX7+baNOmbbm0T6QsKTgUESlDXj5u3Dm6XZ5spRebjAZsgZ1bl+G2OYYXma0UoFZYC2qFVe6Fri80dOgwunXrweHDUYSE1FdgeAUYOXI0SUmJLFu2FIBu3XrwyCNTmTLloWLtP378RHJycli16i0sFitdu3Zj6NBhvPzy/1GlysX/HAJ07NiZ8eMn8uGHa9m8eSMtWrRi3rwFDB488KKPOWvWjDxlI0eOZtSoMUXue9NNA8nMzGD+/Dm4ubnSv//NLF78OsuWvc7KlSuIj4/H19eXa65pxG233X7RbSxItWrVWbJkOa+++jIzZjyN0Wikdeu2TJz4iEOSmmefncXSpYt5771VJCUlUadOXZ59dpZDD3JERFemTXuClSvf5PPPt9GkSTOee+4FRo26r9TbfaGbbhrIwYMHmD9/LsnJSdx44wCeeWYGLVq05PXX32TZsqXMmvUs2dk5BAUF0bZte2rXrl3m7RIpDwar1Wqt6EZUVqNGjcJstjBnziuXdBwnJyN+fp4kJqaRk6O1cKT06N6SslLUvbUvbj/vHfqIuxoNomVg0wpoYfmaNu0hTCYjy5YtK/VjZ2RkEBkZRUBAdVxcXEv9+Fej6dOf5Lff9rF+/eaKboqISJnLysokPv4koaH1cXNzK7Sueg5FRKRUWawWNkZu5XR2GpuittA8oDHGCkp6IvLLL3v47bdfadSoMRaLlV27drJt2xYmTXqkopsmInLZUXAoIiKl6re4A5w8Y0vrfiItht/iD9IqsFkFt0quVh4e7uza9Q3vvvs2GRkZBAfXZNKkR7jjjqEV3TQRkcuOgkMRESk1FquFTVHbMGDAihUDBjZHbaVFQBP1HkqFaNSoCcuWrazoZoiIVAoKDkVErnBWqwUyzzgkrzlz8CBxa9cQOOROLLXCyEjPttd3c3fGy6fwOQm5TsUcIy012b5tcXEiISMBK7bp7FasxKcnkJ6Tgadz8bOpXoro6ONERUVSv36oEtKIiIiUgIJDEZErmNVqIeOblbZlL6qFYYn5B1ODzsRsOUROQjz/vruWXVV7Yjafy01mMhm5c3S7IgPE9LTTbFs9H3POucDSZHJm4l3jyDDm2Mu8XLzKLTBcvXoVkydPxGKxYDQamT9/IUOHDiuXc4uIiFR2Cg5FRK5kmWfIObQTAEtsJABJO74lJ8H2cnrKGcw+jkmrzWYLGenZRQaHbu4eVPHxJzkhBrCCwYCnrz8hASFlsm5iUaKjj9sDQwCLxcKUKZPo1q3HFdKDqOTiIiJyMYr/90MTQERErmSunhirhYHBAFbbYM+0mNL51W8wGmnRpT/2PzpWK8079quQwBAgKirSHhjmMpvNHD4cVSHtKS3Ozs4YDJCZmVnRTRERkUooMzMTg8H296Qo6jkUEbmSZaZhifnH9n+DAYPVimc1C6ePlc7hazdogbd/dVISTuLtX52aYc1L58AXoX79UIxGo0OAaDKZCAmpX2FtKg0mkwlfX18SE5MAcHV1BQwV2iYREakMrGRmZpKamoSfny8mk6nIPRQciohcyVw9cGoUYZtzGBSKJeYffLt2JuPsnEN3bw9MJkOeOYdu7kU/XQQwGIw079Sf3dvfp0Wn/oX2Gh44fIr5a39l8pBWNA2pesmXdqHg4JrMn7+QKVMmYTabMZlMzJu34IoYUlqjRg0AkpKSSE2t4MaIiEilYTCAn5+v/e9IURQciohcwQwGI25dhkP7wQ7ZSqsF2bKV1hwyhDqXkK0UoFZYC2qFtSi0zuL1v7PnzzgA5q/9lTYNAxl/S+n3Mg4dOoxu3Xpw+HAUISH1r4jAEMBgMBAcHEy1atXIzs4uegcRERFsQ0mL02OYS8GhiMgVzmAwglsV28bZfz2bNsNz5vP2OiUJBi/GsdjThW6XpuDgmldMUHghk8lUoj/yIiIiJaGENCIiUuaG921U6LaIiIhUPAWHIiJS5upW96L1NQGMvqkJra8JoG51rwLr7ovbz7RvZrAv7kA5tlBEREQ0rFRERMqcm4sTE261zUsMb1K9wHoWq4WNkVs5nZ3GpqgtNA9ojLGClsYQERG52ugvroiIXDZ+izvAyTMxAJxIi+G3+IMV3CIREZGrh4JDERG5LFisFjZFbcNwdg0/AwY2R23FYrUUsaeIiIiUhqtuWGliYiJTp07l2LFjODs706JFC6ZPn46Li0tFN01EpMxZrRbIPOOwrEVhaxMW5PT+3/n3g/cJGHwnbo2a5Hk9NTmDjPRsUhOjyUpPw8XVhLunC24eXvgF1cr3mGdy0knISMCKbc1FK1bi0xNIz8nA09mjxG2Mjj5OVFQk9euHXrHZS0VERErTVRccGgwGHnjgAdq1a4fFYmHKlCmsWrWK+++/v6KbJiJSpqxWCxnfrCTn0E6M1cKwxPyDU6MI3LoML1GAaMnO5sTKt8iOj+fE229Rd+YLGJ2d7a+nJmew5o2fsZjT8XX+FIPhXM+fyeTMgNEzcXX3zHPcKs6eTG4zgdSsc6u8e7l4XVRguHr1KiZPnojFYsFoNDJ//kKGDh1W4uOIiIhcTS6LYaVHjhzhmWee4eabb6ZJkyb0798/33qHDx9m5MiRtGrViuuuu45Zs2aRkZFRonP5+vrSrl07AIxGI82aNSM6OvqSr0FE5LKXeYacQzsBsMRGAti2M8+U6DCJWz8jOyEBgOz4eBK3bXF4PSM9G7PZghUXzFZPrNbcVwx4+vrj4uZe4LFrewXTxL+h/au2V3CJ2ga2HsPcwBA4+yBwEtHRx0t8LBERkavJZREc/v333+zYsYO6desSGhqab52UlBTuvfde0tLSWLhwIdOmTWPTpk089dRTF33ezMxM1q9fz/XXX3/RxxARqTRcPTFWCwODAaxWMBhs2655e/EKYrVYbMFgbsRntZK4bQtWS37zAg2km5tiMNj3pnnHfhc1jLUkoqIi7YFhLrPZzOHDUWV6XhERkcrushhW2r17d2644QYAHnvsMfbv35+nzvvvv09KSgobNmygatWqAJhMJqZMmcLYsWPtQeWdd95JTExMnv1DQ0NZtmyZfdtisTBt2jTCw8OJiIgoi8sSEbm8ZKZhifnH9v+zAaIl5h/b3EO3KsU6hMFoxK9XHxL+t94eYPr16oPBmH/Al20NJsfihZMxFU+fIGqGNS+tqylQ/fqhGI1GhwDRZDIRElK/zM8tIiJSmV0WwaGxgA8V59u5cyfXXXedPTAE6N27N0888QQ7duywB4dr1qwp1jlnzJiBk5MTTzzxRKH1evToUeBr7u7uVKtWDSenS3sKbjIZHf4VKS26t+R8Vs8quDTuStYfOzAFhWKO+QeXxl1x8qxSot68wH79SPl2J9nx8TgHBBB4440Yz/s9WMXLFZPJiNlsIbf30NOwlybhN+LsXPZ/durUqc3LL7/KI49MxGw2YzKZeOmlhdSpU7vMzmk41z0qIiJSaV0WwWFxREZGcttttzmUubi4UKdOHSIjI0t0rLlz5xITE8OiRYsu+Q+60WjEz6/4Q7IK4+1d8DwckUuhe0ty+d0yAUuf+zC6V8GSfhqju+dFDfM0ThjLv2+uJGTkffgG+Tqew8+TCY9340xalr3Mw3MYPn7ldx9OnDiOW2+9iX/++YewsDBq1co/Q2ppMRoVHIqISOVXaYLDlJQUvL2985R7e3uTnJxc7OP8/fffrFixgvr169uDzY4dOzJt2rR863/xxRcFHmvUqFFYLBYSE9OKff78mExGvL3dSUlJP/ukXaR06N6S/BnPJqExQmb6RR3BFNqQa199hZSU9AJ/B7p5nvsTY+HSf1eWlKenHy1b2hKQlfW5LRarAkQREan0Kk1wWBCr1Vqi3r8GDRrw559/luL5ISendD50m82WUjuWyPl0b0lZ0b1lY7VaAQWHIiJSuVWaiUje3t6kpKTkKU9NTc23R1FERERERESKr9IEh6GhoXnmFmZlZXH06NECl78QERERERGR4qk0wWFERAQ//PADiYmJ9rLt27eTlZVF165dK7BlIiIiIiIild9lMecwPT2dHTt2AHD8+HFOnz7Nli1bAGjfvj1Vq1bljjvu4N1332XcuHGMGzeOhIQEZs+ezYABA8ql5zA2Npa4uDiHsqysrDJfzFlERERERKQ8XBbBYUJCApMmTXIoy91etWoVHTp0wNvbm7fffptZs2bx4IMP4ubmRv/+/ZkyZUq5tHHt2rUsWrTIoSwkJAQvL813FBEpbfvi9vPeoY+4q9EgWgY2rejmiIiIXBUui+CwVq1axcogGhISwooVK8qhRXkNGTKE7t27O5TNnTtXPYciIqXMYrWwMXIrp7PT2BS1heYBjTHqd62IiEiZuyyCw8ogKCiIoKAghzIXFxetHSciUsp+izvAyTMxAJxIi+G3+IO0CmxWwa0SERG58ulRrIiIVKgDh08xYvaXHDh8CovVwqaobRjOrhlowMDmqK1YrHoQJyIiUtbUcygichWyWi2QeQZcPSEzDVw9LnqYfNqB/cStXUPgkDvxbGrr4UtNziAjPdtex83dGS8fNwASY4+RcSYVgE27DnPgWAbgy/y1v9KykTcJvglYsdraiZX49ATSczLwdPa4hCs+Jzr6OFFRkdSvH0pwcM1SOaaIiMiVQMGhiMhVxmq1kPHNSnIO7cRYLQxLzD84NYrArcvwEgeIluxsYlatJCchnph33qbecy+QdsbMmjd+dhh2bzIZuXN0O1xczHy+5mUsZlvg6AN0cDKyI7sP2bhwMiabyT0mkJqVat/Xy8Wr1ALD1atXMXnyRCwWC0ajkfnzFzJ06LBSObaIiEhlp+CwmLSUhYhcMTLPkHNoJwCW2EgA23b7weBWpUSHSvjsM3ISEmzHiI8ncdsWLG2uzzMf22y2kJGeTRVvT6r4+pOSEANYAQNnrJ5k4wzA8L6NqO3ld2nXV4Do6OP2wBDAYrEwZcokunXroR5EERERFBwWm5ayEJErhqunrccwNhKsVjAYMAaF2oaYloDVbCZhy2dwdggoWEnctgXva7sWuI/BYKR5x37s2rTCvo+lWgdGt2nK7kOx1K3udVGXVBxRUZH2wDCX2Wzm8OEoBYciIiIoOCw2LWUhIleMzDQsMf/Y/m8wgNVq285MK1HPocFkwr9PX+I+/ojcXkC/Xn2wGA2F7lczrDne/tVJSTiJt391Bt/dH4PBSHiT6hd/TcVQv34oRqPRIUA0mUyEhNQv0/OKiIhUFopsiikoKIimTZs6fLm4uGA06i0UkUrG1QOnRhEAth5DsG27lnxen3/fvjj5+9uOERCAX68+uLk7YzI5/m40mYy4uduGjhoMRpp36o+rexVadOpfbg/ZgoNrMn/+Qkwm09k2mZg3b4F6DUVERM5Sz6GIyFXGYDDi1mW4bY7hJWYrNTo7U23YcHu2UqOzM14+ztw5ul2B2UoBaoW1oFZYi9K4nBIZOnQY3br14PDhKEJC6iswFBEROY+CQxGRq5DBYDw3hLSESWgu5Nm0GZ4zn3co8/JxcwgGLyfBwTUVFIqIiORDYyJFREREREREPYfFpaUsRERERETkSqbgsJi0lIWIiIiIiFzJFBwWk5ayEBERERGRK5mCw2IKCgoiKCjIoczFxQWz2VLAHiIiIiIiIpWHur1EREREREREwaGIiIiIiIgoOBQREREREREUHIqIiIiIiAgKDkVERERERARlKy222NhY4uLiHMqysrK0lIWIiIiIiFwRFBwW09q1a1m0aJFDWUhICF5e3hXUIhERERERkdKj4LCYhgwZQvfu3R3K5s6dq55DEZEysi9uP+8d+oi7Gg2iZWDTim6OiIjIFU/BYTEFBQURFBTkUObi4oLZbKmgFomIXLksVgsbI7dyOjuNTVFbaB7QGKMexomIiJQp/aUVEZHLzm9xBzh5JgaAE2kx/BZ/sIJbJCIicuVTcCgiIpcVi9XCpqhtGDAAYMDA5qitWKwaqSEiIlKWNKxUREQcWK0WyDwDrp6QmQauHsWaX512YD9xa9cQOOROPJs2y7dOanIGGenZ9u2sM3EYjZn2bTcPL5z9/EjISMCK1dYerMSnJ5Cek4Gns8clXp1NdPRxoqIiqV8/lODgmqVyTBERkcpOwaGIiNhZrRYyvllJzqGdGKuFYYn5B6dGEbh1GV5ogGjJziZm1UpyEuKJeedt6j33AkZnZ4c6qckZrHnjZ/tcbQOZ+Dp/isFwrkfQZHJmwOiZTG4zgdSsVHu5l4tXqQWGq1evYvLkiVgsFoxGI/PnL2To0GGlcmwREZHKTMNKRUTknMwz5BzaCYAlNhLAtp15ptDdErd+Rk5Cgq1+fDyJ27bkqZORnu2QxMuKC2arJ5wdPorBgKevPy5u7tT2CqaJf0P7V22v4FK4OFuPYW5gCGCxWJgyZRLR0cdL5fgiIiKVmYJDERE5x9UTY7UwMBjAagWDwbbt6lngLlaL5WwwaM0tIXHbFqyWouYIGkg3Nz23n9VK8479ynSJoKioSHtgmMtsNnP4cFSZnVNERKSyUHAoIiLnZKZhifnHHhhitdq2M9MK3MVgNOLXqw/2HkAM+PXqg8FY9J+YbGswHj62ZYK8/atTM6x5KVxEwerXD8V4QbtMJhMhIfXL9LwiIiKVgYLDYoqNjeXAgQMOX1lZWXmeQIuIVGquHjg1igDAGBQKYNt2LXy+n1/vvjj5+9vqBwScDRYdubk7YzLlDcwate2Dq3sVWnTqX6a9hgDBwTWZP38hJpPJfv558xYoKY2IiAhKSFNsa9euZdGiRQ5lISEheHl5V1CLRERKn8FgxK3LcGg/uETZSo3OzlQbNtyerfTCZDQAXj5u3Dm6nUO2Ujd3Z7x83GjQsm1pX0qBhg4dRrduPTh8OIqQkPoKDEVERM5ScFhMQ4YMoXv37g5lc+fOLfOn3CIi5c1gMIJbFdtG7r/F4Nm0GZ4zny+0jpePG14+bpfSvFIRHFxTQaGIiMgFFBwWU1BQEEFBQQ5lLi4uDpn3REREREREKit1e4mIiIiIiIiCQxEREREREVFwKCIiIiIiIig4FBERERERERQcioiIiIiICAoORUREREREBAWHIiIiIiIigoJDERG5TBw4fIoRs7/kwOFTFd0UERGRq5JTRTdARERk8frf2fNnHADz1/5Km4aBjL+leQW3SkRE5Oqi4LCYYmNjiYuLcyjLysrCYFDnq4jIpToWe7rQbRERESl7Cg6Lae3atSxatMihLCQkBC8v7wpqkYjIlWN430bMeW+vw7aIiIiULwWHxTRkyBC6d+/uUDZ37lz1HIqIlIK61b1ofU0AbRsFsftQLHWre1V0k0RERK46Cg6LKSgoiKCgIIcyFxcXzGZLBbVIROTK4ebixIRbWwAQ3qR6BbdGRETk6qRuLxEREREREVFwKCIiIiIiIgoORUREREREBAWHIiIiIiIigoJDERERERERQcGhiIiIiIiIoOBQREREREREUHAoIiIiIiIiKDgUERERERERFByKiIiIiIgICg5FREREREQEBYciIiIiIiKCgkMREREREREBnCq6AZVFbGwscXFxDmVZWVkYDIqvRURERESk8lNwWExr165l0aJFDmUhISF4eXlXUItERERERERKj4LDYhoyZAjdu3d3KJs7d656DkVEysm+uP28d+gj7mo0iJaBTSu6OSIiIlccBYfFFBQURFBQkEOZi4sLZrOlglokInL1sFgtbIzcyunsNDZFbaF5QGOMejgnIiJSqvSXVURELnu/xR3g5JkYAE6kxfBb/MEKbpGIiMiVR8GhiIhc1ixWC5uitmHAAIABA5ujtmKxauSGiIhIadKwUhERKRGr1YIlIw2r1QNLRipWk7vD/Ou0A/uJW7uGwCF34tm0WZHHS4w9RsaZVNLTssjKNOPi7omXXzBu7s54+bhxJiedhIwErFht58dKfHoC6TkZeDp7XNK1REcfJyoqkvr1QwkOrnlJxxIREansFByKiEixWa0WMr5ZSc6hnWTUbEjm8T9xahSBW5fhGAxGLNnZxKxaSU5CPDHvvE29517A6Oxc4PEy09P4fM3LWMzZ553DSFJ2P4wmN+4c3Q4vH08mt5lAalaqvY6Xi9clB4arV69i8uSJWCwWjEYj8+cvZOjQYZd0TBERkcpMw0pFRKT4Ms+Qc2in7b/RfwHYtjPPAJC49TNyEhJs5fHxJG7bUujhXNzcqeLrD2eHjFqtYLZWwYozZrOFjHRb0FjbK5gm/g3tX7W9gi/pMqKjj9sDQwCLxcKUKZOIjj5+SccVERGpzBQciohI8bl6YqwWBgaDLZIzGGzbrp5YLZazwaD1bGUridu2YLUUPDfQYDDSvGM/+z4GA6Sbm5AbLJaVqKhIe2CYy2w2c/hwVJmeV0RE5HKm4FBERIovMw1LzD/2wBCr1badmYbBaMSvVx/OBXYG/Hr1wWAs/E9NzbDmePjYlgrKsXiTbb20XsHiqF8/FOMF7TKZTISE1C/zc4uIiFyuFByKiEjxuXrg1CjC9t/gawBs2662+X9+vfvi5O9vKw8IOBssFs5gMNKobR8sVlfSzU3JDS5NJiNu7gXPV7wUwcE1mT9/ISaT6ey5TMybt0BJaURE5KqmhDQiIlJsBoMRty7DMXUcQtXq1Th1MgbzedlKjc7OVBs23J6ttLBkNOdr0LIt1es1s88xBOzZSsvK0KHD6NatB4cPRxESUl+BoYiIXPUUHIqISIkYDEaMbl4YDAaMbl5Ychzn7nk2bYbnzOdLfFwvH7cyDQbzExxcU0GhiIjIWRpWKiIiIiIiIgoORURERERERMGhiIiIiIiIoOBQREREREREUHAoIiIiIiIiKDgUERERERERFByKiIiIiIgICg5FREREREQEBYciIiIiIiKCgkMREREREREBnCq6AZVFbGwscXFxDmVZWVkYDIqvRURERESk8lNwWExr165l0aJFDmUhISF4eXlXUItERERERERKj8FqtVoruhGVQX49h08//TQWi4WqVf0v6dgGgwGj0YDFYkXfDilNurekrOjecnTqVAImk4mPPvqoopsiIiJy0dRzWExBQUEEBQU5lLm4uJCdnY3JZMRsNpOWloanpycmkynP/oW9fuLECQBq1KgBGMrsGkpTUdd7uZ7rYo9V0v2KW7849XRvVY5zXW73VnHq6t4qPSaTCWdn51I9poiISLmzSqnYv3+/9ZprrrHu37+/xK93797d2r1797JuYqkq6nov13Nd7LFKul9x6xennu6tynGuy+3eKk5d3VsiIiJyPmVTERERERERES1lISIiIiIiIgoORUREREREBAWHIiIiIiIigoLDUhMYGMiECRMIDAy8qNcrm/K8ntI818Ueq6T7Fbd+cerp3qoc57rc7q3i1NW9JSIiIufTOoeXgR49egDwxRdfVHBL5Eqje0vKiu4tERGRK4+CQxEREREREdGwUhEREREREVFwKCIiIiIiIig4FBERERERERQcioiIiIiICAoORUREREREBHCq6AZI0SIjI3n00Uc5ffo01apVY968eQQFBVV0s+QK8MQTT/DNN98QGxvLgQMHcHLSrwS5dImJiUydOpVjx47h7OxMixYtmD59Oi4uLhXdNBERESmEeg4rgenTpzN69Gi2bt3K9ddfz/z58yu6SXKFGDhwIOvXr6/oZsgVxmAw8MADD7Blyxb+97//kZ6ezqpVqyq6WSIiIlIEBYdl5MiRIzzzzDPcfPPNNGnShP79++db7/Dhw4wcOZJWrVpx3XXXMWvWLDIyMuyvx8fHExkZSa9evQAYPHgw27ZtK5drkMtTad1bAO3btycgIKA8mi2VQGndW76+vrRr1w4Ao9FIs2bNiI6OLpdrEBERkYunMWRl5O+//2bHjh20bNkSi8WC1WrNUyclJYV7772X4OBgFi5cyKlTp3jxxRdJSkpi3rx5AJw8eZIaNWpgMBgAqFKlCs7OziQmJuLn51eu1ySXh9K6t0QuVBb3VmZmJuvXr2fq1KnlcQkiIiJyCRQclpHu3btzww03APDYY4+xf//+PHXef/99UlJS2LBhA1WrVgXAZDIxZcoUxo4dS2hoaL4fzgB7sChXn9K6t0QuVNr3lsViYdq0aYSHhxMREVE+FyEiIiIXTcNKy4jRWPRbu3PnTq677jr7ByyA3r174+Liwo4dOwCoUaMGJ0+etAeJp0+fJjs7G19f3zJpt1z+SuveErlQad9bM2bMwMnJiSeeeKLU2yoiIiKlT8FhBYqMjMzTg+Pi4kKdOnWIjIwEICAggJCQED7//HMA1q1bR8+ePcu9rVK5FOfeErkYxb235s6dS0xMDLNnz9ZIBxERkUpCwWEFSklJwdvbO0+5t7c3ycnJ9u1nn32WJUuW0Lt3b7744gsmT55cns2USqi499bUqVPtw/26d+/OI488Um5tlMqpOPfW33//zYoVKzhy5Ai33XYbN998M3PmzCnvpoqIiEgJac7hZchqtTo8aW/QoAEff/xxBbZIrhQX3lv/93//V4GtkSvJ+fdWgwYN+PPPPyu4RSIiIlJS6jmsQN7e3qSkpOQpT01NzffJvEhx6d6SsqJ7S0RE5Mql4LAChYaG5pn/lZWVxdGjR5VNUi6J7i0pK7q3RERErlwKDitQREQEP/zwA4mJifay7du3k5WVRdeuXSuwZVLZ6d6SsqJ7S0RE5MqlOYdlJD093Z7W/fjx45w+fZotW7YA0L59e6pWrcodd9zBu+++y7hx4xg3bhwJCQnMnj2bAQMG6Am8FEj3lpQV3VsiIiJXN4O1oFXW5ZIcO3aMHj165PvaqlWr6NChAwCHDx9m1qxZ7NmzBzc3N/r378+UKVNwc3Mrz+ZKJaJ7S8qK7i0REZGrm4JDERERERER0ZxDERERERERUXAoIiIiIiIiKDgUERERERERFByKiIiIiIgICg5FREREREQEBYciIiIiIiKCgkMRERERERFBwaGIiIiIiIgAThXdABEpXR9//DGPP/64fdvFxQVvb2/q169P586dGTRoEP7+/hXYQhERERG5HCk4FLlCvfjii9SvX5+cnBwSEhLYs2cPy5Yt48033+Tll1+mY8eOFd1EEREREbmMaFipyBWqQYMGtGrVirZt29K7d2+eeOIJNm7ciLu7OxMmTCA+Pr5c25ORkVGu5xMRERGRklFwKHIVCQ4OZtq0aaSlpfH+++/by3///XfGjBlD+/btad68OQMHDuTTTz/Ns//u3bsZMmQIzZs3p0uXLrzyyit8+OGHNGzYkGPHjtnrde/enQceeIBt27YxcOBAmjdvzqJFiwCIi4vjmWeeISIigmbNmtG9e3cWLVpETk6Ow7mysrJ47bXX6NOnD82aNSM8PJzHH3+cU6dOldG7IyIiInJ107BSkatM165dMZlM7N69G4AffviB+++/n5YtW/Lss8/i5eXFp59+ysMPP0xGRga33norAIcOHWLEiBHUq1ePOXPm4Obmxvvvv8/GjRvzPc+BAweIjIxk7Nix1KpVC3d3d+Li4rj99tsxGo2MHz+eOnXqsHfvXpYsWcLx48d58cUXAbBYLIwbN449e/YwcuRIWrduzfHjx3n11Vf57bff+OijelxbQAAABFJJREFUj3BzcyufN0xERETkKqHgUOQq4+HhgZ+fH7GxsQDMmDGDBg0a8Pbbb+PkZPuV0KVLFxITE3nppZcYOHAgRqORJUuWYDKZWLlyJVWrVgXg+uuvZ8CAAfme59SpU3zyySeEhITYy5555hmSk5P55JNPCA4OBuC6667Dzc2NOXPmMHLkSMLCwvjss8/45ptvePXVV+nVq5d9/0aNGjFo0CA+/vhj7rrrrjJ5f0RERESuVhpWKnIVslqtABw5coSoqCh7gJeTk2P/ioiIIC4ujsOHDwPw888/06FDB3tgCGA0Gunbt2++52jYsKFDYAjw9ddf06FDB4KCgvKcC+Cnn34C4KuvvsLb25tu3bo51GvcuDGBgYH2eiIiIiJSetRzKHKVOXPmDElJSVxzzTX2pDRz5sxhzpw5+dZPTEwEICkpiYCAgDyvF7QsRmBgYJ6yhIQEvvrqK5o2bVrouRISEkhJSaFZs2aF1hMRERGR0qPgUOQq8/XXX2M2m2nfvj1+fn4APPDAA/Ts2TPf+rm9f76+vvlmOC0o66nBYMhT5ufnR8OGDXnooYfy3ScoKMhez9fXl+XLl+dbz9PTM99yEREREbl4Cg5FriLR0dHMnTsXLy8v7rjjDqpWrUq9evU4dOgQjzzySKH7tmvXjp07d3Lq1Cn70FKLxcKWLVuKff7rr7+eHTt2UKdOHXx8fAqt98knn2CxWGjZsmWxjy8iIiIiF0/BocgV6u+//8ZsNpOTk8OpU6fYvXs3H3/8MSaTiUWLFtkDvBkzZjBq1ChGjhzJLbfcQrVq1UhOTiYyMpIDBw6wcOFCAMaOHctXX33F8OHDGTNmjD1baXp6OmCbf1iUiRMn8t1333HHHXdwzz33EBISQlZWFseOHWPnzp3MmDGD6tWr069fPzZt2sTo0aO55557aNGiBc7Ozpw8eZIff/yRHj16FNjTKSIiIiIXx2DNzUwhIleEjz/+mMcff9y+7ezsjLe3N6GhoXTu3Jnbb7/dIakM2JapWLp0KT/99BMpKSn4+voSGhpK3759ueOOO+z1du/ezdy5c/njjz/w8fHhpptuws/Pj3nz5rF79268vLwA2zqHDRo04PXXX8/TvlOnTvHaa6/x1VdfERMTg6enJzVr1qRLly488MADeHh4ALbkOKtWreJ///sfhw8fxmQyUb16ddq1a8fIkSOpW7duWbx9IiIiIlctBYcicklGjBjB8ePH2bp1a0U3RUREREQugYaVikixvfjiizRu3JgaNWqQnJzMpk2b2LVrF88//3xFN01ERERELpGCQxEpNrPZzMKFC4mPj8dgMBAaGsrcuXO5+eabK7ppIiIiInKJNKxUREREREREKDq9oIiIiIiIiFzxFByKiIiIiIiIgkMRERERERFRcCgiIiIiIiIoOBQREREREREUHIqIiIiIiAgKDkVERERERAQFhyIiIiIiIoKCQxEREREREQH+H1W/fgXujRDIAAAAAElFTkSuQmCC"
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "from netbone.visualize import plot_distribution\n",
+    "plot_distribution(dist, title='US Airports')"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:19.972790700Z",
+     "start_time": "2023-07-02T17:11:18.518923200Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "# Experiment 4"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "In this experiment, we use *netbone*'s comparison framework to extract the consensus backbone using the statistical backbone extraction methods. We start by initiating an instance of the Compare class from the compare module. Then we add the original network to *netbone*'s comparison framework using the *set_network()* function."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "outputs": [],
+   "source": [
+    "from netbone.compare import Compare\n",
+    "import pandas as pd\n",
+    "\n",
+    "framework = Compare()\n",
+    "\n",
+    "edge_list = pd.read_csv('./data/data.csv')\n",
+    "framework.set_network(edge_list)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:19.988988900Z",
+     "start_time": "2023-07-02T17:11:19.972790700Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "Then we add the backbone extraction methods to the comparison framework. Similar to the previous experiment, the order is important because we are going to use the order of the added backbones in the next step.\n"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "outputs": [],
+   "source": [
+    "import netbone as nb\n",
+    "\n",
+    "df = nb.disparity(edge_list)\n",
+    "mlf = nb.marginal_likelihood(edge_list)\n",
+    "nc = nb.noise_corrected(edge_list)\n",
+    "ecm = nb.ecm(edge_list)\n",
+    "lans = nb.lans(edge_list)\n",
+    "\n",
+    "framework.add_backbone(nc)\n",
+    "framework.add_backbone(df)\n",
+    "framework.add_backbone(ecm)\n",
+    "framework.add_backbone(lans)\n",
+    "framework.add_backbone(mlf)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:43.755224Z",
+     "start_time": "2023-07-02T17:11:20.009627300Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "The next step is to set up the filter in the comparison framework. In this experiment, we choose to use the *threshold_filter()* to evaluate the backbones. We set the threshold value to 0.05. Thus, we pass an array of these values while setting the filter taking into consideration the order when we added the backbones."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "outputs": [],
+   "source": [
+    "from netbone.filters import threshold_filter\n",
+    "\n",
+    "values = [0.05]*5\n",
+    "framework.set_filter(threshold_filter, values)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:43.760230300Z",
+     "start_time": "2023-07-02T17:11:43.760230300Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    " Here we don't need to add any property function we simply use the method *consent()*. By taking the intersection of the extracted backbones, this method returns a *netowrkx* graph representing the consensus backbone."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "outputs": [],
+   "source": [
+    "consensual = framework.consent()"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:43.918040700Z",
+     "start_time": "2023-07-02T17:11:43.760230300Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "Next we extract the backbones similar to the toy example to prepare it for plotting later."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Marginal Likelihood Filter\n",
+      "Noise Corrected Filter\n",
+      "Disparity Filter\n",
+      "Enhanced Configuration Model Filter\n",
+      "Locally Adaptive Network Sparsification Filter\n"
+     ]
+    }
+   ],
+   "source": [
+    "mlf_backbone = threshold_filter(mlf, 0.05)\n",
+    "nc_backbone = threshold_filter(nc, 0.05)\n",
+    "df_backbone = threshold_filter(df, 0.05)\n",
+    "ecm_backbone = threshold_filter(ecm, 0.05)\n",
+    "lans_backbone = threshold_filter(lans, 0.05)\n",
+    "\n",
+    "backbones = [mlf_backbone, nc_backbone, df_backbone, ecm_backbone, lans_backbone, consensual]\n",
+    "b = [mlf.method_name, nc.method_name, df.method_name, ecm.method_name, lans.method_name, 'Consensual Backbone']"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:44.074175500Z",
+     "start_time": "2023-07-02T17:11:43.925009600Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "We extract the coordinates of the nodes and the degree of each node to plot the nodes in the right position."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 30,
+   "outputs": [],
+   "source": [
+    "import pyreadr\n",
+    "import networkx as nx\n",
+    "result = pyreadr.read_r('./data/data.RData')\n",
+    "g = nx.from_pandas_adjacency(result['airport'])\n",
+    "positions = {index: tuple(row) for index, row in result['latlong'].iterrows()}\n",
+    "deg = nx.degree(g)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:44.154292900Z",
+     "start_time": "2023-07-02T17:11:44.074175500Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "We plot the original network with the backbones using cartopy and networkx."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 31,
+   "outputs": [],
+   "source": [
+    "import cartopy.crs as ccrs\n",
+    "import cartopy.feature as cfeature\n",
+    "import matplotlib.pyplot as plt\n",
+    "import seaborn as sns\n",
+    "sns.reset_defaults()\n",
+    "crs = ccrs.PlateCarree()\n",
+    "fig = plt.figure(figsize=(18, 20))\n",
+    "rows = 5\n",
+    "columns = 2\n",
+    "\n",
+    "\n",
+    "grid = plt.GridSpec(rows, columns, wspace = .025, hspace = .1)\n",
+    "\n",
+    "sizes = [.5 * deg[iata] for iata in g.nodes()]\n",
+    "ax = plt.subplot(grid[0,:], projection=crs)\n",
+    "ax.coastlines(lw=0.2)\n",
+    "\n",
+    "ax.set_extent([-128, -62, 20, 50])\n",
+    "ax.add_feature(cfeature.BORDERS, color=\"k\", lw=0.2)\n",
+    "ax.add_feature(cfeature.STATES, lw=0.1)\n",
+    "ax.set_title('Original Network', fontsize=20)\n",
+    "ax.set_aspect('equal')\n",
+    "nx.draw_networkx(g, ax=ax,\n",
+    "                 alpha=.5,\n",
+    "                 width=.3,\n",
+    "                 node_size=sizes,\n",
+    "                 node_color='#8b0000',\n",
+    "                 pos=positions,\n",
+    "                 cmap=plt.cm.autumn,\n",
+    "                 with_labels=False,\n",
+    "                 edge_color='k')\n",
+    "ax.legend([f'N: {len(g.nodes())} \\nE: {len(g.edges())}'], handlelength=0, handleheight=0, markerscale=0)\n",
+    "\n",
+    "# b = ['Marginal Likelihood', 'Noise Corrected', 'Disparity Filter', \"ECM Filter\", \"LANS Filter\", 'Consensual Backbone', 'Global Threshold']\n",
+    "for i, ax in enumerate(backbones):\n",
+    "    ax = plt.subplot(grid[int(i/2)+1,i%2], projection=crs)\n",
+    "\n",
+    "\n",
+    "    backbone = backbones[i]\n",
+    "    sizes = [.5 * deg[iata] for iata in backbone.nodes()]\n",
+    "\n",
+    "    ax.coastlines(lw=0.2)\n",
+    "    ax.set_extent([-128, -62, 20, 50])\n",
+    "    ax.add_feature(cfeature.BORDERS, color=\"k\", lw=0.2)\n",
+    "    ax.add_feature(cfeature.STATES, lw=0.1)\n",
+    "\n",
+    "    ax.set_title(b[i], fontsize=14)\n",
+    "    ax.set_aspect('equal')\n",
+    "    nx.draw_networkx(backbone, ax=ax,\n",
+    "                     # alpha=.5,\n",
+    "                     width=.3,\n",
+    "                     node_size=sizes,\n",
+    "                     node_color='#8b0000',\n",
+    "                     pos=positions,\n",
+    "                     cmap=plt.cm.autumn,\n",
+    "                     with_labels=False,\n",
+    "                     edge_color='k')\n",
+    "    # nx.draw_networkx_nodes(backbone, pos=positions, nodelist=backbone.nodes()['ALB'], node_color='white', alpha=0.0)\n",
+    "    ax.legend([f'N: {len(backbone.nodes())} \\nE: {len(backbone.edges())}'], handlelength=0, handleheight=0, markerscale=0)\n",
+    "\n",
+    "plt.savefig('networks+consenual.png', dpi=300, bbox_inches='tight')\n"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:46.489408800Z",
+     "start_time": "2023-07-02T17:11:44.155291300Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "# Experiment 5"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "This experiment illustrates how users can integrate their custom backbone extraction method and custom evaluation properties into *netbone*'s comparison framework. To illustrate this process, we define the *new_backbone_method()* function. It generates random values and keeps them in a new edge property named *new_score*. The function should return a new instance of the *Backbone* class. To initialize an instance of the *Backbone* class, users should provide:\n",
+    "1. *networkx* graph containing the new edge scores\n",
+    "2. The name of the new method\n",
+    "3. The edge property name\n",
+    "4. The ascending parameter: It should be set to *True* if the edge property name represents a p-value. Otherwise, it should be *False*\n",
+    "5. An array of compatible filters. Here, the edge property is a numerical value then the appropriate filters to use in this case are the *threshold_filter()* and the *fraction_filter()*\n",
+    "6. The *filter\\_on* parameter: should indicate whether the filter is applied to 'Edges' or 'Nodes'."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 32,
+   "outputs": [],
+   "source": [
+    "from netbone.filters import threshold_filter, fraction_filter\n",
+    "from netbone.backbone import Backbone\n",
+    "import random\n",
+    "\n",
+    "def new_backbone_method(graph):\n",
+    "    for u,v in graph.edges():\n",
+    "        graph[u][v]['new_score'] = round(random.uniform(0, 1), 2)\n",
+    "    return Backbone(graph, method_name='New Backbone Method', property_name='new_score', ascending=False, compatible_filters=[threshold_filter, fraction_filter], filter_on='Edges')"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:46.489408800Z",
+     "start_time": "2023-07-02T17:11:46.489408800Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "*netbone* allows users to implement their new custom evaluation measure. To illustrate this, we define the *new_property_method()* method. This method will imitate the *node_fraction()* method; it returns the node fraction preserved in the backbone. The method should:\n",
+    "1. Take two inputs: (the original and backbone networks)\n",
+    "2. Return the computed property value."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 33,
+   "outputs": [],
+   "source": [
+    "def new_property(original, backbone):\n",
+    "    return len(backbone)/len(original)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:46.506039500Z",
+     "start_time": "2023-07-02T17:11:46.489408800Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "Once the new backbone extraction method and evaluation measures are defined. One can easily add integrate them into the comparison framework using the *add_backbone()* and *add_property()* methods. The following example illustrates comparing the new defined method with the Disparity filter in terms of the new defined property."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 34,
+   "outputs": [
+    {
+     "data": {
+      "text/plain": "                     New Property\nOriginal                 1.000000\nDisparity Filter         0.913158\nNew Backbone Method      0.752632",
+      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>New Property</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>Original</th>\n      <td>1.000000</td>\n    </tr>\n    <tr>\n      <th>Disparity Filter</th>\n      <td>0.913158</td>\n    </tr>\n    <tr>\n      <th>New Backbone Method</th>\n      <td>0.752632</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
+     },
+     "execution_count": 34,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "from netbone.filters import threshold_filter\n",
+    "from netbone.compare import Compare\n",
+    "from netbone.utils.utils import edge_properties\n",
+    "import pandas as pd\n",
+    "import netbone as nb\n",
+    "\n",
+    "framework = Compare()\n",
+    "\n",
+    "edge_list = pd.read_csv('./data/data.csv')\n",
+    "graph = nx.from_pandas_edgelist(edge_list, edge_attr=edge_properties(edge_list))\n",
+    "framework.set_network(edge_list)\n",
+    "\n",
+    "thresholds = [0.05, 0.9]\n",
+    "framework.set_filter(threshold_filter, thresholds)\n",
+    "\n",
+    "df = nb.disparity(graph)\n",
+    "new = new_backbone_method(graph)\n",
+    "\n",
+    "framework.add_backbone(df)\n",
+    "framework.add_backbone(new)\n",
+    "\n",
+    "framework.add_property('New Property', new_property)\n",
+    "framework.properties()"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:46.791614300Z",
+     "start_time": "2023-07-02T17:11:46.506039500Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "Users also can compare different distributions. To illustrate this, we define a new method named *distribution_property()*. It will imitate the *weights()* method; it returns all the edge weights in the backbone. The method should:\n",
+    "1. Take one inputs: the backbone network\n",
+    "2. Return and array of the computed property values"
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 35,
+   "outputs": [],
+   "source": [
+    "def distribution_property(backbone):\n",
+    "    return list(nx.get_edge_attributes(backbone, 'weight').values())"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:46.791614300Z",
+     "start_time": "2023-07-02T17:11:46.791614300Z"
+    }
+   }
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "One can easily add integrate them into the comparison framework using the add_property() method. The following example illustrates comparing the new defined method with the Disparity filter in terms of the new defined distribution property."
+   ],
+   "metadata": {
+    "collapsed": false
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 36,
+   "outputs": [
+    {
+     "data": {
+      "text/plain": "                     Distribution Property\nDisparity Filter                  0.700747\nNew Backbone Method               0.060886",
+      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>Distribution Property</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>Disparity Filter</th>\n      <td>0.700747</td>\n    </tr>\n    <tr>\n      <th>New Backbone Method</th>\n      <td>0.060886</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
+     },
+     "execution_count": 36,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "from netbone.filters import threshold_filter\n",
+    "from netbone.compare import Compare\n",
+    "import pandas as pd\n",
+    "import netbone as nb\n",
+    "from netbone.utils.utils import edge_properties\n",
+    "import networkx as nx\n",
+    "framework = Compare()\n",
+    "\n",
+    "edge_list = pd.read_csv('./data/data.csv')\n",
+    "graph = nx.from_pandas_edgelist(edge_list, edge_attr=edge_properties(edge_list))\n",
+    "\n",
+    "framework.set_network(edge_list)\n",
+    "\n",
+    "thresholds = [0.05, 0.98]\n",
+    "framework.set_filter(threshold_filter, thresholds)\n",
+    "\n",
+    "df = nb.disparity(graph)\n",
+    "new = new_backbone_method(graph)\n",
+    "\n",
+    "framework.add_backbone(df)\n",
+    "framework.add_backbone(new)\n",
+    "\n",
+    "framework.add_property('Distribution Property', distribution_property)\n",
+    "\n",
+    "results, dist = framework.distribution_ks_statistic()\n",
+    "results"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "ExecuteTime": {
+     "end_time": "2023-07-02T17:11:47.313819900Z",
+     "start_time": "2023-07-02T17:11:46.803118600Z"
+    }
+   }
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.11"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/examples/images/US Airports properties.png b/examples/images/US Airports properties.png
index fa67d1c34417f21d3297d56704c100c1a7a1c8ed..f30bb84b23f8cf5c511b026222865ceba0290bae 100644
Binary files a/examples/images/US Airports properties.png and b/examples/images/US Airports properties.png differ
diff --git a/examples/images/US Airports-Degree-dist.png b/examples/images/US Airports-Degree-dist.png
new file mode 100644
index 0000000000000000000000000000000000000000..226eedd671d57da6e24873d21818870c0c441aaf
Binary files /dev/null and b/examples/images/US Airports-Degree-dist.png differ
diff --git a/examples/images/US Airports-Node Fraction.png b/examples/images/US Airports-Node Fraction.png
new file mode 100644
index 0000000000000000000000000000000000000000..a464f8b02e42f0884860b223fe64e473cd660229
Binary files /dev/null and b/examples/images/US Airports-Node Fraction.png differ
diff --git a/examples/images/US Airports-Weight-dist.png b/examples/images/US Airports-Weight-dist.png
new file mode 100644
index 0000000000000000000000000000000000000000..c905f3d0899a6935714db819794826be270db70f
Binary files /dev/null and b/examples/images/US Airports-Weight-dist.png differ
diff --git a/examples/images/networks+consenual.png b/examples/images/networks+consenual.png
new file mode 100644
index 0000000000000000000000000000000000000000..6602ea1dffa27940da663adfb2d0f107d4359a6c
Binary files /dev/null and b/examples/images/networks+consenual.png differ
diff --git a/netbone/__init__.py b/netbone/__init__.py
index 6cdaf3f6e0d1fd041efd421cdce1bdd39755ab00..512ff1fcc3e635615778d11f090be83cea5e12aa 100644
--- a/netbone/__init__.py
+++ b/netbone/__init__.py
@@ -16,9 +16,19 @@ from netbone.statistical.marginal_likelihood import MLF
 from netbone.statistical.lans import lans
 from netbone.structural.ultrametric_distance_backbone import ultrametric_distance_backbone
 from netbone.structural.metric_distance_backbone import metric_distance_backbone
-from netbone.statistical.global_threshold import global_threshold
+from netbone.structural.global_threshold import global_threshold
 from netbone.structural.modulairy_backbone import modularity_backbone
 from netbone.structural.maximum_spanning_tree import maximum_spanning_tree
+from netbone.hybrid.glanb import glanb
+from netbone.structural.pmfg import pmfg
+from netbone.structural.plam import plam
+from netbone.structural.mlam import mlam
+from netbone.structural.gspar import gspar
+from netbone.structural.degree import degree
+from netbone.structural.betweenness import betweenness
+from netbone.structural.mad import mad
+# from netbone.statistical.correlation_and_statistic import correlation_and_statistic
+
 from netbone.filters import threshold_filter, fraction_filter
 from netbone import compare
 from netbone import filters
@@ -33,7 +43,7 @@ except ImportError:
 def marginal_likelihood(data):
     data = data.copy()
     mlf = MLF(directed=False)
-    return Backbone(mlf.fit_transform(data), name="Marginal Likelihood Filter", column="p_value", ascending=True, filters=[threshold_filter, fraction_filter])
+    return Backbone(mlf.fit_transform(data), method_name="Marginal Likelihood Filter", property_name="p_value", ascending=True, compatible_filters=[threshold_filter, fraction_filter], filter_on='Edges')
 
 
 
diff --git a/netbone/backbone.py b/netbone/backbone.py
index 598b262fded5c1fda5e7fb79945f0d12bed8d277..d868e33a6684c0c2761ea9277b5c80cf622ae649 100644
--- a/netbone/backbone.py
+++ b/netbone/backbone.py
@@ -1,64 +1,62 @@
 import networkx as nx
+import pandas as pd
 from pandas import DataFrame
 from netbone.utils.utils import edge_properties
 
+
 class Backbone:
 
-    def __init__(self, graph, name, column, ascending, filters):
+    def __init__(self, graph, method_name, property_name, ascending, compatible_filters, filter_on):
         if isinstance(graph, DataFrame):
             graph = nx.from_pandas_edgelist(graph, edge_attr=edge_properties(graph))
 
         self.graph = graph
-        self.name = name
-        self.column = column
+        self.method_name = method_name
+        self.property_name = property_name
         self.ascending = ascending
-        self.compatible_filters = filters
-
+        self.filters = compatible_filters
+        self.filter_on = filter_on
 
     def to_dataframe(self):
-        return nx.to_pandas_edgelist(self.graph)
-
+        if self.filter_on == 'Edges':
+            return nx.to_pandas_edgelist(self.graph)
+        else:
+            node_attrs = {}
+            for node in self.graph.nodes():
+                node_attrs[node] = self.graph.nodes[node]
+            # Convert the dictionary to a Pandas DataFrame
+            return pd.DataFrame.from_dict(node_attrs, orient='index')
 
     def narrate(self):
-        match self.name:
+        match self.method_name:
             case "Disparity Filter":
-                print(self.name)
+                print(self.method_name)
             case "Enhanced Configuration Model Filter":
-                print(self.name)
+                print(self.method_name)
             case "Marginal Likelihood Filter":
-                print(self.name)
+                print(self.method_name)
             case "Locally Adaptive Network Sparsification Filter":
-                print(self.name)
+                print(self.method_name)
             case "Noise Corrected Filter":
-                print(self.name)
+                print(self.method_name)
             case 'High Salience Skeleton Filter':
-                print(self.name)
+                print(self.method_name)
             case 'Modularity Filter':
-                print(self.name)
+                print(self.method_name)
             case 'Ultrametric Distance Filter':
-                print(self.name)
+                print(self.method_name)
             case 'Maximum Spanning Tree':
-                print(self.name)
+                print(self.method_name)
             case 'Metric Distance Filter':
-                print(self.name)
+                print(self.method_name)
             case 'H-Backbone Filter':
-                print(self.name)
+                print(self.method_name)
             case 'Doubly Stochastic Filter':
-                print(self.name)
+                print(self.method_name)
             case 'Global Threshold Filter':
-                print(self.name)
+                print(self.method_name)
             case _:
                 print("Citation here")
 
-
-    def filters(self):
-        return self.compatible_filters
-        # match self.name:
-        #     case "Disparity Filter" | 'Noise Corrected Filter' | "Enhanced Configuration Model Filter" | "Marginal Likelihood Filter" | 'Locally Adaptive Network Sparsification Filter' | 'Global Threshold Filter':
-        #         return [fraction_filter, threshold_filter]
-        #     case "H-Backbone Filter" | 'Metric Distance Filter' | 'Maximum Spanning Tree' | 'Ultrametric Distance Filter' | 'Modularity Filter':
-        #         return [boolean_filter]
-        #     case "Doubly Stochastic Filter" | "High Salience Skeleton Filter":
-        #         return [boolean_filter, fraction_filter, threshold_filter]
-        #     case _:
-        #         print("Error " + self.name + " does not exist")
+    def compatible_filters(self):
+        return self.filters
diff --git a/netbone/compare.py b/netbone/compare.py
index 665f63bdddfd895ea5abf84fe887ba82ec99ecef..bd631f6cc9022424ce208ff5fa59afa253a7cf2c 100644
--- a/netbone/compare.py
+++ b/netbone/compare.py
@@ -43,7 +43,7 @@ class Compare:
         if self.filter_values == []:
             raise Exception('Please enter the filter values.')
 
-        results = pd.DataFrame(index=['Original'] + [backbone.name for backbone in self.backbones])
+        results = pd.DataFrame(index=['Original'] + [backbone.method_name for backbone in self.backbones])
         props_arrays = dict()
 
         for property in self.props:
@@ -70,7 +70,7 @@ class Compare:
             raise Exception('Please enter the filter values.')
         props_res = dict()
         for property in self.props:
-            props_res[property] = pd.DataFrame(index=[backbone.name for backbone in self.backbones])
+            props_res[property] = pd.DataFrame(index=[backbone.method_name for backbone in self.backbones])
         for value in self.filter_values:
             temp_props = dict()
             for property in self.props:
@@ -90,29 +90,134 @@ class Compare:
             props_res[res].index.name = self.value_name
         return props_res
 
-    def distribution_ks_statistic(self, increasing=True):
+    def distribution_ks_statistic(self, increasing=True, consent=False):
         if self.filter == boolean_filter:
             self.filter_values = [0] * len(self.backbones)
         if self.filter_values == []:
             raise Exception('Please enter the filter values.')
+        cons = []
+        if consent == False:
+            for backbone in self.backbones:
+                cons.append(False)
+            consent = cons
 
         dist = dict()
-        ks_statistics = pd.DataFrame(index=[backbone.name for backbone in self.backbones])
-
+        if True in consent:
+            ks_statistics = pd.DataFrame(index=[backbone.method_name for backbone in self.backbones] + ['Consensual Backbone'])
+        else:
+            ks_statistics = pd.DataFrame(index=[backbone.method_name for backbone in self.backbones])
         for property in self.props:
             dist_values = dict()
             vals = []
             values0 = self.props[property](self.network)
             dist_values['Original'] = cumulative_dist(property, 'Original', values0, increasing)
 
+            if True in consent:
+                consensual_backbone = ''
+                nodes_labels = dict(zip(self.network.nodes(), nx.convert_node_labels_to_integers(self.network.copy()).nodes()))
+                inverse_nodes_labels = dict(zip(nx.convert_node_labels_to_integers(self.network.copy()).nodes(), self.network.nodes()))
+
+
             for i, backbone in enumerate(self.backbones):
                 extracted_backbone = self.filter(backbone, value=self.filter_values[i], narrate=False)
+                if consent[i]:
+                    if consensual_backbone == '':
+                        consensual_backbone = nx.relabel_nodes(extracted_backbone, nodes_labels)
+                    else:
+                        extracted_backbone = nx.relabel_nodes(extracted_backbone, nodes_labels)
+                        old_consensual = consensual_backbone.copy()
+                        consensual_backbone.remove_nodes_from(n for n in old_consensual if n not in extracted_backbone)
+                        consensual_backbone.remove_edges_from(e for e in old_consensual.edges if e not in extracted_backbone.edges)
+
                 values1 = self.props[property](extracted_backbone)
-                dist_values[backbone.name] = cumulative_dist(property, extracted_backbone.name, values1, increasing)
+                dist_values[backbone.method_name] = cumulative_dist(property, backbone.method_name, values1, increasing)
+                vals.append(kstest(values0, values1)[0])
+            if consent[i]:
+                consensual_backbone.remove_nodes_from(list(nx.isolates(consensual_backbone)))
+                consensual_backbone = nx.relabel_nodes(consensual_backbone, inverse_nodes_labels)
+                values1 = self.props[property](consensual_backbone)
+                dist_values['Consensual Backbone'] = cumulative_dist(property, 'Consensual Backbone', values1, increasing)
                 vals.append(kstest(values0, values1)[0])
 
             # ks_statistics = pd.DataFrame(index=['Original'] + [backbone.name for backbone in self.backbones])
             dist[property] = dist_values
             ks_statistics[property] = vals
 
-        return ks_statistics, dist
+        if True in consent:
+            return ks_statistics, dist, consensual_backbone
+        else:
+            return ks_statistics, dist
+
+    # def distribution_ks_statistic(self, increasing=True, consent=True):
+    #     if self.filter == boolean_filter:
+    #         self.filter_values = [0] * len(self.backbones)
+    #     if self.filter_values == []:
+    #         raise Exception('Please enter the filter values.')
+    #
+    #     dist = dict()
+    #     if consent:
+    #         ks_statistics = pd.DataFrame(index=[backbone.method_name for backbone in self.backbones] + ['Consensual Backbone'])
+    #     else:
+    #         ks_statistics = pd.DataFrame(index=[backbone.method_name for backbone in self.backbones])
+    #     for property in self.props:
+    #         dist_values = dict()
+    #         vals = []
+    #         values0 = self.props[property](self.network)
+    #         dist_values['Original'] = cumulative_dist(property, 'Original', values0, increasing)
+    #
+    #         if consent:
+    #             consensual_backbone = ''
+    #             nodes_labels = dict(zip(self.network.nodes(), nx.convert_node_labels_to_integers(self.network.copy()).nodes()))
+    #             inverse_nodes_labels = dict(zip(nx.convert_node_labels_to_integers(self.network.copy()).nodes(), self.network.nodes()))
+    #
+    #
+    #         for i, backbone in enumerate(self.backbones):
+    #             extracted_backbone = self.filter(backbone, value=self.filter_values[i], narrate=False)
+    #             if consent:
+    #                 if i==0:
+    #                     consensual_backbone = nx.relabel_nodes(extracted_backbone, nodes_labels)
+    #                 else:
+    #                     extracted_backbone = nx.relabel_nodes(extracted_backbone, nodes_labels)
+    #                     old_consensual = consensual_backbone.copy()
+    #                     consensual_backbone.remove_nodes_from(n for n in old_consensual if n not in extracted_backbone)
+    #                     consensual_backbone.remove_edges_from(e for e in old_consensual.edges if e not in extracted_backbone.edges)
+    #
+    #             values1 = self.props[property](extracted_backbone)
+    #             dist_values[backbone.method_name] = cumulative_dist(property, backbone.method_name, values1, increasing)
+    #             vals.append(kstest(values0, values1)[0])
+    #         if consent:
+    #             consensual_backbone = nx.relabel_nodes(consensual_backbone, inverse_nodes_labels)
+    #             values1 = self.props[property](consensual_backbone)
+    #             dist_values['Consensual Backbone'] = cumulative_dist(property, 'Consensual Backbone', values1, increasing)
+    #             vals.append(kstest(values0, values1)[0])
+    #
+    #         # ks_statistics = pd.DataFrame(index=['Original'] + [backbone.name for backbone in self.backbones])
+    #         dist[property] = dist_values
+    #         ks_statistics[property] = vals
+    #
+    #     if consent:
+    #         return ks_statistics, dist, consensual_backbone
+    #     else:
+    #         return ks_statistics, dist
+
+    def consent(self):
+        if self.filter == boolean_filter:
+            self.filter_values = [0] * len(self.backbones)
+        if self.filter_values == []:
+            raise Exception('Please enter the filter values.')
+
+        nodes_labels = dict(zip(self.network.nodes(), nx.convert_node_labels_to_integers(self.network.copy()).nodes()))
+        inverse_nodes_labels = dict(zip(nx.convert_node_labels_to_integers(self.network.copy()).nodes(), self.network.nodes()))
+        consensual_backbone = ''
+        for i, backbone in enumerate(self.backbones):
+            extracted_backbone = self.filter(backbone, value=self.filter_values[i], narrate=False)
+            if i==0:
+                consensual_backbone = nx.relabel_nodes(extracted_backbone, nodes_labels)
+            else:
+                extracted_backbone = nx.relabel_nodes(extracted_backbone, nodes_labels)
+                old_consensual = consensual_backbone.copy()
+                consensual_backbone.remove_nodes_from(n for n in old_consensual if n not in extracted_backbone)
+                consensual_backbone.remove_edges_from(e for e in old_consensual.edges if e not in extracted_backbone.edges)
+
+        consensual_backbone.remove_nodes_from(list(nx.isolates(consensual_backbone)))
+        return nx.relabel_nodes(consensual_backbone, inverse_nodes_labels)
diff --git a/netbone/filters.py b/netbone/filters.py
index 4c740beba01aa6b03d287ce58e5e0d990e402ebd..9823a0dbbe865142f0fc53d458c27f32871dfc28 100644
--- a/netbone/filters.py
+++ b/netbone/filters.py
@@ -2,79 +2,76 @@ import math
 
 import networkx as nx
 from netbone.utils.utils import edge_properties
+
+
 def boolean_filter(backbone, narrate=True, value=[]):
-    if boolean_filter in backbone.filters():
+    if boolean_filter in backbone.compatible_filters():
         data = backbone.graph
-        column = backbone.column
+        column = 'in_backbone'
         if isinstance(data, nx.Graph):
             data = nx.to_pandas_edgelist(data)
         if narrate:
             backbone.narrate()
-        return nx.from_pandas_edgelist(data[data[column] == True], edge_attr=edge_properties(data))
-    print("The accepted filters for " + backbone.name + " are: " + ', '.join([fun.__name__ for fun in backbone.filters()]))
+        return nx.from_pandas_edgelist(data[data[column]], edge_attr=edge_properties(data))
+    print("The accepted filters for " + backbone.method_name + " are: " + ', '.join(
+        [fun.__name__ for fun in backbone.compatible_filters()]))
 
-def threshold_filter(backbone, value, narrate=True , secondary_column = 'weight', secondary_column_ascending = False, **kwargs):
-    data = backbone.graph
-    column = backbone.column
-    ascending = backbone.ascending
 
-    if isinstance(data, nx.Graph):
-        data = nx.to_pandas_edgelist(data)
+def threshold_filter(backbone, value, narrate=True, secondary_property='weight', secondary_property_ascending=False,
+                     **kwargs):
+    data = backbone.to_dataframe()
+    property_name = backbone.property_name
+    filter_by = [property_name]
+    ascending = [backbone.ascending]
 
-    keys = kwargs.keys()
-    if "value" in keys:
-        value = kwargs["value"]
-    if "secondary_column" in keys:
-        secondary_column = kwargs['secondary_column']
+    if backbone.filter_on == 'Edges':
+        filter_by.append(secondary_property)
+        ascending.append(secondary_property_ascending)
 
-    if threshold_filter in backbone.filters():
-        if boolean_filter in backbone.filters():
-            column = 'score'
-        data = data.sort_values(by=[column, secondary_column], ascending=[ascending, secondary_column_ascending])
+    if threshold_filter in backbone.compatible_filters():
+        data = data.sort_values(by=filter_by,
+                                ascending=ascending)
 
         if narrate:
             backbone.narrate()
 
-        if column == "p_value":
-            return nx.from_pandas_edgelist(data[data[column] < value], edge_attr=edge_properties(data))
-        elif column == "score":
-            return nx.from_pandas_edgelist(data[data[column] > value], edge_attr=edge_properties(data))
+        if backbone.ascending:
+            data = data[data[property_name] < value]
+            if backbone.filter_on == 'Edges':
+                return nx.from_pandas_edgelist(data, edge_attr=edge_properties(data))
+            return backbone.graph.subgraph(list(data.index)).copy()
         else:
-            print("Column name can not be " + column)
-
-    print("The accepted filters for " + backbone.name + " are: " + ', '.join([fun.__name__ for fun in backbone.filters()]))
-
-
+            data = data[data[property_name] > value]
+            if backbone.filter_on == 'Edges':
+                return nx.from_pandas_edgelist(data, edge_attr=edge_properties(data))
+            return backbone.graph.subgraph(list(data.index)).copy()
 
+    print("The accepted filters for " + backbone.method_name + " are: " + ', '.join(
+        [fun.__name__ for fun in backbone.compatible_filters()]))
 
-def fraction_filter(backbone, value, narrate=True, secondary_column='weight', secondary_column_ascending=False, **kwargs):
-    data = backbone.graph
-    column = backbone.column
-    ascending = backbone.ascending
 
-    if isinstance(data, nx.Graph):
-        data = nx.to_pandas_edgelist(data)
+def fraction_filter(backbone, value, narrate=True, secondary_property='weight', secondary_property_ascending=False,
+                    **kwargs):
+    data = backbone.to_dataframe()
+    filter_by = [backbone.property_name]
+    ascending = [backbone.ascending]
 
-    keys = kwargs.keys()
-    if "value" in keys:
-        value = kwargs["value"]
-    if "secondary_column" in keys:
-        secondary_column = kwargs['secondary_column']
+    if backbone.filter_on == 'Edges':
+        filter_by.append(secondary_property)
+        ascending.append(secondary_property_ascending)
 
-    value = math.ceil(value * len(data))
-
-    if fraction_filter in backbone.filters():
-        if boolean_filter in backbone.filters():
-            column = 'score'
-        data = data.sort_values(by=[column, secondary_column], ascending=[ascending, secondary_column_ascending])
+    if fraction_filter in backbone.compatible_filters():
+        data = data.sort_values(by=filter_by, ascending=ascending)
 
         if narrate:
             backbone.narrate()
-        return nx.from_pandas_edgelist(data[:value], edge_attr=edge_properties(data))
-
-    print("The accepted filters for " + backbone.name + " are: " + ', '.join([fun.__name__ for fun in backbone.filters()]))
-
-    
-    
 
+        if backbone.filter_on == 'Edges':
+            value = math.ceil(value * len(data))
+            return nx.from_pandas_edgelist(data[:value], edge_attr=edge_properties(data))
+        else:
+            value = math.ceil(value * len(backbone.graph))
+            return backbone.graph.subgraph(list(data[:value].index)).copy()
 
+    print("The accepted filters for " + backbone.method_name + " are: " + ', '.join(
+        [fun.__name__ for fun in backbone.compatible_filters()]))
diff --git a/netbone/hybrid/__init__.py b/netbone/hybrid/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/netbone/hybrid/glanb.py b/netbone/hybrid/glanb.py
new file mode 100644
index 0000000000000000000000000000000000000000..862ac9a4f2361492f9dc714b9569049ee3fd8b80
--- /dev/null
+++ b/netbone/hybrid/glanb.py
@@ -0,0 +1,53 @@
+import networkx as nx
+import igraph as ig
+import pandas as pd
+from netbone.backbone import Backbone
+from netbone.filters import threshold_filter, fraction_filter
+
+
+def count_included_subarrays(arrays, target_array):
+    count = 0
+    target_len = len(target_array)
+    for array in arrays:
+        array_len = len(array)
+        for i in range(array_len - target_len + 1):
+            if array[i:i + target_len] == target_array:
+                count += 1
+    return count
+
+
+def glanb(data, c=-1):
+    if isinstance(data, pd.DataFrame):
+        graph = nx.from_pandas_edgelist(data, edge_attr='weight', create_using=nx.Graph())
+    elif isinstance(data, nx.Graph):
+        graph = data.copy()
+    else:
+        print("data should be a panads dataframe or nx graph")
+        return
+   
+    if c == -1:
+        print("Please send the c value")
+        return
+    # convert weights to distances
+    wes = nx.get_edge_attributes(graph, 'weight')
+    values = {pair: 1 / wes[pair] for pair in wes}
+    nx.set_edge_attributes(graph, values, name='distance')
+
+    node_labels = dict(zip(graph.nodes(), range(len(graph))))
+    igraph = ig.Graph.from_networkx(graph)
+    for source in graph.nodes():
+        k_i = graph.degree[source]
+        if k_i > 1:
+            ig_paths = igraph.get_all_shortest_paths(node_labels[source], weights='distance')
+            for u, v in graph.edges(source):
+                g_ij = count_included_subarrays(ig_paths, [node_labels[u], node_labels[v]])
+                g_is = len(ig_paths) - 1
+                I_ij = (g_ij / g_is)
+                S_ij = (1 - I_ij) ** ((k_i - 1) ** c)
+                if 'SI' in graph[u][v]:
+                    if S_ij < graph[u][v]['SI']:
+                        graph[u][v]['SI'] = S_ij
+                else:
+                    graph[u][v]['SI'] = S_ij
+    return Backbone(graph, method_name="Globally and Locally Adaptive Backbone Filter", property_name="SI",
+                    ascending=True, compatible_filters=[threshold_filter, fraction_filter], filter_on='Edges')
diff --git a/netbone/measures.py b/netbone/measures.py
index e97bfc1aa1fb40aaf23da761c9e6b343a209a932..55ca634137caa3f17b3704cde0bf2a57fb6f1620 100644
--- a/netbone/measures.py
+++ b/netbone/measures.py
@@ -36,7 +36,7 @@ def reachability(original, G):
     return r/(len(G)*(len(G) - 1))
 
 def number_connected_components(original, G):
-    nx.number_connected_components(G)
+    return nx.number_connected_components(G)
 
 def diameter(original, G):
     return ig.Graph.from_networkx(lcc(G)).diameter(directed=False, unconn=True)
@@ -53,8 +53,8 @@ def lcc_weight_fraction(original, G):
 def weights(G):
     return list(nx.get_edge_attributes(G, 'weight').values())
 
-def degrees(G):
-    return list(dict(G.degree()).values())
+def degrees(G, weight=None):
+    return list(dict(G.degree(weight=weight)).values())
 
 def average_clustering_coefficient(original, G):
     node_clustering = ig.Graph.from_networkx(G).transitivity_local_undirected(mode="nan")
diff --git a/netbone/statistical/disparity.py b/netbone/statistical/disparity.py
index ddfab323d914493c9bd7c7e83df04ee5ac5f3dc4..c7c11959def8999d4008cd723864df9abd060a0d 100644
--- a/netbone/statistical/disparity.py
+++ b/netbone/statistical/disparity.py
@@ -28,21 +28,4 @@ def disparity(data, weight='weight'):
                         g[node][neighbour]['p_value'] = alpha_ij
                 else:
                     g[node][neighbour]['p_value'] = alpha_ij
-    return Backbone(g, name="Disparity Filter", column="p_value", ascending=True, filters=[threshold_filter, fraction_filter])
-
-    # b = nx.Graph()
-    # for u in g:
-    #     k = len(g[u])
-    #     if k > 1:
-    #         sum_w = sum(np.absolute(g[u][v][weight]) for v in g[u])
-    #         for v in g[u]:
-    #             w = g[u][v][weight]
-    #             p_ij = float(np.absolute(w))/sum_w
-    #             alpha_ij = 1 - \
-    #                        (k-1) * integrate.quad(lambda x: (1-x)
-    #                                                         ** (k-2), 0, p_ij)[0]
-    #             # float('%.4f' % alpha_ij)
-    #             b.add_edge(u, v, weight=w, p_value=float(alpha_ij))
-    # return Backbone(b, name="Disparity Filter", column="p_value", ascending=True, filters=[threshold_filter, fraction_filter])
-
-
+    return Backbone(g, method_name="Disparity Filter", property_name="p_value", ascending=True, compatible_filters=[threshold_filter, fraction_filter], filter_on='Edges')
diff --git a/netbone/statistical/global_threshold.py b/netbone/statistical/global_threshold.py
deleted file mode 100644
index 38a609a07ff1cbe5b0d077aa91479fa4ab38a8f2..0000000000000000000000000000000000000000
--- a/netbone/statistical/global_threshold.py
+++ /dev/null
@@ -1,28 +0,0 @@
-import networkx as nx
-from pandas import DataFrame
-from networkx import Graph,to_pandas_edgelist
-from netbone.utils.utils import edge_properties
-from netbone.backbone import Backbone
-from netbone.filters import fraction_filter, threshold_filter
-def global_threshold(data):
-
-    if isinstance(data, DataFrame):
-        table = data.copy()
-    elif isinstance(data, Graph):
-        table = to_pandas_edgelist(data)
-        is_graph=True
-    else:
-        print("data should be a panads dataframe or nx graph")
-        return
-
-    table['score'] = table['weight']
-
-    g = nx.from_pandas_edgelist(table, edge_attr=edge_properties(table))
-    # average = table['weight'].mean()
-    # for u,v in g.edges():
-    #     if g[u][v]['score']>=average:
-    #         g[u][v]['global_threshold'] = True
-    #     else:
-    #         g[u][v]['global_threshold'] = False
-    # return Backbone(g, name="Global Threshold Filter", column="global_threshold", ascending=False, filters=[boolean_filter, fraction_filter, threshold_filter])
-    return Backbone(g, name="Global Threshold Filter", column="score", ascending=False, filters=[fraction_filter, threshold_filter])
\ No newline at end of file
diff --git a/netbone/statistical/lans.py b/netbone/statistical/lans.py
index 76d4f33b8bf8f860df49e70c4fa095b714856c30..6c27979bfad6a101febd675e5a10b17821e97956 100644
--- a/netbone/statistical/lans.py
+++ b/netbone/statistical/lans.py
@@ -14,8 +14,8 @@ def lans(data):
         return
     for u, v, w in g.edges(data='weight'):
         g[u][v]['p_value'] = min(compute_pvalue(g, v, w), compute_pvalue(g, u, w))
-    return Backbone(g, name="Locally Adaptive Network Sparsification Filter", column="p_value", ascending=True,
-                    filters=[threshold_filter, fraction_filter])
+    return Backbone(g, method_name="Locally Adaptive Network Sparsification Filter", property_name="p_value", ascending=True,
+                    compatible_filters=[threshold_filter, fraction_filter], filter_on='Edges')
 
 
 def compute_pvalue(G, node, w):
diff --git a/netbone/statistical/maxent_graph/ecm_main.py b/netbone/statistical/maxent_graph/ecm_main.py
index 2a14b3fe01bd5aeb27ffec4eb72a44bb3846009b..fc76c1849dd676c743f6d3cd0eadd0f741d07c90 100644
--- a/netbone/statistical/maxent_graph/ecm_main.py
+++ b/netbone/statistical/maxent_graph/ecm_main.py
@@ -37,4 +37,4 @@ def ecm(data):
 
     nx.set_edge_attributes(data, {(u,v):w for u,v,w in list(g.edges(data='p_value'))}, name='p_value')
     #subgraph = nx.subgraph_view(g)#, filter_edge=filter_edge)
-    return Backbone(data, name="Enhanced Configuration Model Filter", column="p_value", ascending=True, filters=[threshold_filter, fraction_filter])
\ No newline at end of file
+    return Backbone(data, method_name="Enhanced Configuration Model Filter", property_name="p_value", ascending=True, compatible_filters=[threshold_filter, fraction_filter], filter_on='Edges')
\ No newline at end of file
diff --git a/netbone/statistical/noise_corrected.py b/netbone/statistical/noise_corrected.py
index ea33c941e5ffa73ce823e2dc5a7d87b7e89cd6eb..018f053f6cc699d8069902e5aed0ec4224f69ea2 100644
--- a/netbone/statistical/noise_corrected.py
+++ b/netbone/statistical/noise_corrected.py
@@ -40,5 +40,5 @@ def noise_corrected(data, approximation=True):
             g[i][j]['nc_sdev'] = sdev_cij
             g[i][j]['score'] = score
 
-    return Backbone(g, name="Noise Corrected Filter", column="p_value", ascending=True, filters=[threshold_filter, fraction_filter])
+    return Backbone(g, method_name="Noise Corrected Filter", property_name="p_value", ascending=True, compatible_filters=[threshold_filter, fraction_filter], filter_on='Edges')
 
diff --git a/netbone/structural/betweenness.py b/netbone/structural/betweenness.py
new file mode 100644
index 0000000000000000000000000000000000000000..7c2d09cd6f449d2a3e0cca7fd4bef14b58d88457
--- /dev/null
+++ b/netbone/structural/betweenness.py
@@ -0,0 +1,24 @@
+import networkx as nx
+from netbone.filters import threshold_filter, fraction_filter
+from netbone.backbone import Backbone
+from pandas import DataFrame
+from netbone.utils.utils import edge_properties
+
+def betweenness(data, weighted=True, normalized=True):
+    if isinstance(data, DataFrame):
+        g = nx.from_pandas_edgelist(data, edge_attr=edge_properties(data))
+    elif isinstance(data, nx.Graph):
+        g = data.copy()
+    else:
+        print("data should be a panads dataframe or nx graph")
+        return
+
+
+    if weighted:
+        nx.set_edge_attributes(g, nx.edge_betweenness_centrality(g, normalized=normalized, weight='weight', seed=100), name='weighted-betweenness')
+        return Backbone(g, method_name="Weighted Betweenness", property_name="weighted-betweenness", ascending=False, compatible_filters=[threshold_filter, fraction_filter], filter_on='Edges')
+    else:
+        nx.set_edge_attributes(g, nx.edge_betweenness_centrality(g, normalized=normalized, seed=100), name='betweenness')
+        return Backbone(g, method_name="Betweenness", property_name="betweenness", ascending=False, compatible_filters=[threshold_filter, fraction_filter], filter_on='Edges')
+
+
diff --git a/netbone/structural/degree.py b/netbone/structural/degree.py
new file mode 100644
index 0000000000000000000000000000000000000000..a738cfc4635b8be764974ba3af07a0f39153e39b
--- /dev/null
+++ b/netbone/structural/degree.py
@@ -0,0 +1,21 @@
+import networkx as nx
+from netbone.filters import threshold_filter, fraction_filter
+from netbone.backbone import Backbone
+from pandas import DataFrame
+from netbone.utils.utils import edge_properties
+
+def degree(data, weighted=False):
+    if isinstance(data, DataFrame):
+        g = nx.from_pandas_edgelist(data, edge_attr=edge_properties(data))
+    elif isinstance(data, nx.Graph):
+        g = data.copy()
+    else:
+        print("data should be a panads dataframe or nx graph")
+        return
+
+    if weighted:
+        nx.set_node_attributes(g,dict(g.degree(weight='weight')), name='weighted-degree')
+        return Backbone(g, method_name="Weighted Degree", property_name="weighted-degree", ascending=False, compatible_filters=[threshold_filter, fraction_filter], filter_on='Nodes')
+    else:
+        nx.set_node_attributes(g,dict(g.degree()), name='degree')
+        return Backbone(g, method_name="Degree", property_name="degree", ascending=False, compatible_filters=[threshold_filter, fraction_filter], filter_on='Nodes')
\ No newline at end of file
diff --git a/netbone/structural/doubly_stochastic.py b/netbone/structural/doubly_stochastic.py
index f19879b39f0d4bed56dd86ac321401f04441dc3b..75e696ed7fe7442a35206655290df7fc8d0ef3c3 100644
--- a/netbone/structural/doubly_stochastic.py
+++ b/netbone/structural/doubly_stochastic.py
@@ -4,13 +4,14 @@ import pandas as pd
 import networkx as nx
 from netbone.backbone import Backbone
 from netbone.filters import boolean_filter, threshold_filter, fraction_filter
+
 # algo: doubly_stochastic.py
 warnings.filterwarnings('ignore')
 
+
 def doubly_stochastic(data):
-    
-    undirected=True
-    return_self_loops=False
+    undirected = True
+    return_self_loops = False
 
     if isinstance(data, pd.DataFrame):
         table = data.copy()
@@ -40,7 +41,7 @@ def doubly_stochastic(data):
     table = table[table["source"] < table["target"]]
     table = table[table["value"] > 0].sort_values(by="value", ascending=False)
     table = table.merge(table2[["source", "target", "weight"]], on=[
-                        "source", "target"])
+        "source", "target"])
     i = 0
     doubly_nodes = len(set(table["source"]) | set(table["target"]))
     edges = table.shape[0]
@@ -52,27 +53,29 @@ def doubly_stochastic(data):
             edge = table.iloc[i]
             G.add_edge(edge["source"], edge["target"], weight=edge["value"])
             table.loc[table.loc[(table['source'] == edge["source"]) & (
-                table['target'] == edge["target"])].index[0], 'ds_backbone'] = True
+                    table['target'] == edge["target"])].index[0], 'in_backbone'] = True
             i += 1
     else:
         G = nx.DiGraph()
         while nx.number_weakly_connected_components(G) != 1 or len(G) < doubly_nodes or nx.is_connected(G) == False:
-            if i== edges:
+            if i == edges:
                 break
             edge = table.iloc[i]
             G.add_edge(edge["source"], edge["target"], weight=edge["value"])
             table.loc[table.loc[(table['source'] == edge["source"]) & (
-                table['target'] == edge["target"])].index[0], 'ds_backbone'] = True
+                    table['target'] == edge["target"])].index[0], 'in_backbone'] = True
             i += 1
 
     # table = pd.melt(nx.to_pandas_adjacency(G).reset_index(), id_vars = "index")
     table = table[table["value"] >= 0]
     table.rename(columns={"index": "source",
-                 "variable": "target", "value": "score"}, inplace=True)
+                          "variable": "target", "value": "score"}, inplace=True)
     table = table.fillna(False)
     if not return_self_loops:
         table = table[table["source"] != table["target"]]
     if undirected:
         table = table[table["source"] <= table["target"]]
 
-    return Backbone(nx.from_pandas_edgelist(table, edge_attr=['weight', 'score', 'ds_backbone']), name="Doubly Stochastic Filter", column="ds_backbone", ascending=False, filters=[boolean_filter, threshold_filter, fraction_filter])
+    return Backbone(nx.from_pandas_edgelist(table, edge_attr=['weight', 'score', 'in_backbone']),
+                    method_name="Doubly Stochastic Filter", property_name="score", ascending=False,
+                    compatible_filters=[boolean_filter, threshold_filter, fraction_filter], filter_on='Edges')
diff --git a/netbone/structural/global_threshold.py b/netbone/structural/global_threshold.py
new file mode 100644
index 0000000000000000000000000000000000000000..2a4d151d9ddb8f67afa819cc8465b392b92b8193
--- /dev/null
+++ b/netbone/structural/global_threshold.py
@@ -0,0 +1,17 @@
+import networkx as nx
+from pandas import DataFrame
+from networkx import Graph,to_pandas_edgelist
+from netbone.utils.utils import edge_properties
+from netbone.backbone import Backbone
+from netbone.filters import fraction_filter, threshold_filter
+def global_threshold(data):
+
+    if isinstance(data, DataFrame):
+        g = nx.from_pandas_edgelist(data, edge_attr=edge_properties(data))
+    elif isinstance(data, Graph):
+        g = data.copy()
+    else:
+        print("data should be a panads dataframe or nx graph")
+        return
+
+    return Backbone(g, method_name="Global Threshold Filter", property_name="weight", ascending=False, compatible_filters=[fraction_filter, threshold_filter], filter_on='Edges')
\ No newline at end of file
diff --git a/netbone/structural/gspar.py b/netbone/structural/gspar.py
new file mode 100644
index 0000000000000000000000000000000000000000..597da7d0e0ed58441bf883cc00f990d5da94fcf2
--- /dev/null
+++ b/netbone/structural/gspar.py
@@ -0,0 +1,29 @@
+import networkx as nx
+from netbone.filters import threshold_filter, fraction_filter
+from netbone.backbone import Backbone
+from pandas import DataFrame
+from netbone.utils.utils import edge_properties
+
+def jaccard(a, b):
+    # convert to set
+    a = set(a)
+    b = set(b)
+    # calucate jaccard similarity
+    return float(len(a.intersection(b))) / len(a.union(b))
+
+def get_neighbours(graph, node):
+    return list(dict(graph[node]).keys()) + [node]
+
+def gspar(data):
+    if isinstance(data, DataFrame):
+        g = nx.from_pandas_edgelist(data, edge_attr=edge_properties(data))
+    elif isinstance(data, nx.Graph):
+        g = data.copy()
+    else:
+        print("data should be a panads dataframe or nx graph")
+        return
+
+    for u, v in g.edges():
+        g[u][v]['jaccard-sim'] = jaccard(get_neighbours(g, u), get_neighbours(g, v))
+
+    return Backbone(g, method_name="Global Sparsification", property_name="jaccard-sim", ascending=False, compatible_filters=[threshold_filter, fraction_filter], filter_on='Edges')
\ No newline at end of file
diff --git a/netbone/structural/h_backbone.py b/netbone/structural/h_backbone.py
index 057c557e5812e6b1b7183a1e329180a3c43fb936..3d13433fe83f442fc9879d31ff04c01fa6779266 100644
--- a/netbone/structural/h_backbone.py
+++ b/netbone/structural/h_backbone.py
@@ -2,17 +2,16 @@ import networkx as nx
 import pandas as pd
 from netbone.backbone import Backbone
 from netbone.filters import boolean_filter
+
+
 # algo: h_backbone
 # calculating H-Index
 
 def h_backbone(data):
-    is_graph=False
-
     if isinstance(data, pd.DataFrame):
         G = nx.from_pandas_edgelist(data, edge_attr='weight', create_using=nx.Graph())
     elif isinstance(data, nx.Graph):
         G = data.copy()
-        is_graph=True
     else:
         print("data should be a panads dataframe or nx graph")
         return
@@ -21,9 +20,9 @@ def h_backbone(data):
         G, weight='weight', normalized=False)
 
     nx.set_edge_attributes(G, {edge: {'h_bridge': round(
-        betweenness_values[edge]/len(G.nodes()), 3)} for edge in betweenness_values})
-#     for u, v in G.edges():
-#         G[u][v]['bridge'] = round(betweenness_values[(u,v)]/len(G.nodes()),3)
+        betweenness_values[edge] / len(G.nodes()), 3)} for edge in betweenness_values})
+    #     for u, v in G.edges():
+    #         G[u][v]['bridge'] = round(betweenness_values[(u,v)]/len(G.nodes()),3)
 
     weight_values = list(nx.get_edge_attributes(G, 'weight').values())
     bridge_values = list(nx.get_edge_attributes(G, 'h_bridge').values())
@@ -59,10 +58,9 @@ def h_backbone(data):
 
     for u, v in G.edges():
         if G[u][v]['h_bridge'] >= h_bridge or G[u][v]['weight'] >= h_weight:
-            G[u][v]['h_backbone'] = True
+            G[u][v]['in_backbone'] = True
         else:
-            G[u][v]['h_backbone'] = False
-    if is_graph:
-        return Backbone(G, name="H-Backbone Filter", column="h_backbone", ascending=False, filters=[boolean_filter]) #h_bridge, h_weight, G
-    # return nx.to_pandas_edgelist(G.to_directed()), "h_backbone"
-    return Backbone(nx.to_pandas_edgelist(G), name="H-Backbone Filter", column="h_backbone", ascending=False, filters=[boolean_filter])
+            G[u][v]['in_backbone'] = False
+
+    return Backbone(nx.to_pandas_edgelist(G), method_name="H-Backbone Filter", property_name="h_bridge",
+                    ascending=False, compatible_filters=[boolean_filter], filter_on='Edges')
diff --git a/netbone/structural/high_salience_skeleton.py b/netbone/structural/high_salience_skeleton.py
index 9309e77a4c24e41c0ee6b68877c8dc634d9f5869..ffec1ccaea0322768ea4628d21fd60f48691abd9 100644
--- a/netbone/structural/high_salience_skeleton.py
+++ b/netbone/structural/high_salience_skeleton.py
@@ -1,12 +1,9 @@
-
-from collections import defaultdict
 import networkx as nx
 import pandas as pd
-import warnings
 from netbone.backbone import Backbone
 from netbone.filters import boolean_filter, threshold_filter, fraction_filter
 
-# change distance
+
 def high_salience_skeleton(data):
     if isinstance(data, pd.DataFrame):
         graph = nx.from_pandas_edgelist(data, edge_attr='weight', create_using=nx.Graph())
@@ -16,11 +13,11 @@ def high_salience_skeleton(data):
         print("data should be a panads dataframe or nx graph")
         return
 
-    wes= nx.get_edge_attributes(graph, 'weight')
-    values = {pair:1/wes[pair] for pair in wes}
+    wes = nx.get_edge_attributes(graph, 'weight')
+    values = {pair: 1 / wes[pair] for pair in wes}
     nx.set_edge_attributes(graph, values, name='distance')
 
-    nx.set_edge_attributes(graph, 0, name='score')
+    nx.set_edge_attributes(graph, 0, name='salience')
 
     for source in graph.nodes():
         tree = nx.single_source_dijkstra(graph, source, cutoff=None, weight='distance')[1]
@@ -29,29 +26,26 @@ def high_salience_skeleton(data):
         paths = list(tree.values())[1:]
         for path in paths:
             for i in range(len(path) - 1):
-                node_tree_scores[(path[i], path[i+1])] = 1
+                node_tree_scores[(path[i], path[i + 1])] = 1
 
-        for u,v in node_tree_scores:
-            graph[u][v]['score'] +=1
+        for u, v in node_tree_scores:
+            graph[u][v]['salience'] += 1
 
-    scores= nx.get_edge_attributes(graph, 'score')
+    scores = nx.get_edge_attributes(graph, 'salience')
     N = len(graph)
     score_values = dict()
     backbone_edges = dict()
     for pair in scores:
-        score_values[pair] = scores[pair]/N
-        if scores[pair]/N > 0.8:
+        score_values[pair] = scores[pair] / N
+        if scores[pair] / N > 0.8:
             backbone_edges[pair] = True
         else:
             backbone_edges[pair] = False
 
             # score_values = {pair:scores[pair]/N for pair in scores}
-    nx.set_edge_attributes(graph, score_values, name='score')
-    nx.set_edge_attributes(graph, backbone_edges, name='high_salience_skeleton')
-
-    # for u,v in graph.edges():
-    #     if graph[u][v]['score']>=0.8:
-    #         graph[u][v]['high_salience_skeleton'] = True
-    #     else:
-    #         graph[u][v]['high_salience_skeleton'] = False
-    return Backbone(graph, name="High Salience Skeleton Filter", column="high_salience_skeleton", ascending=False, filters=[boolean_filter, threshold_filter, fraction_filter])
+    nx.set_edge_attributes(graph, score_values, name='salience')
+    nx.set_edge_attributes(graph, backbone_edges, name='in_backbone')
+
+    return Backbone(graph, method_name="High Salience Skeleton Filter", property_name="salience",
+                    ascending=False, compatible_filters=[boolean_filter, threshold_filter, fraction_filter],
+                    filter_on='Edges')
diff --git a/netbone/structural/maximum_spanning_tree.py b/netbone/structural/maximum_spanning_tree.py
index 907cd80e9b0767015d0efe87c3f43f3e7a0eba01..993e9983fce682c369111cbced966e9079f59491 100644
--- a/netbone/structural/maximum_spanning_tree.py
+++ b/netbone/structural/maximum_spanning_tree.py
@@ -2,30 +2,26 @@ import networkx as nx
 import pandas as pd
 from netbone.backbone import Backbone
 from netbone.filters import boolean_filter
+from netbone.utils.utils import edge_properties
 # algo: minimum_spanning_tree
 # calculating MSP
 
 def maximum_spanning_tree(data):
     if isinstance(data, pd.DataFrame):
-        G = nx.from_pandas_edgelist(data, edge_attr='weight', create_using=nx.Graph())
+        g = nx.from_pandas_edgelist(data, edge_attr=edge_properties(data))
     elif isinstance(data, nx.Graph):
-        G = data.copy()
+        g = data.copy()
     else:
         print("data should be a panads dataframe or nx graph")
         return
 
+    nx.set_edge_attributes(g, True, name='in_backbone')
+    msp = nx.maximum_spanning_tree(g, weight='weight')
 
-    df = nx.to_pandas_edgelist((G))
-    df['distance'] = df.apply(lambda row : 1/row['weight'], axis = 1)
+    missing_edges = {edge: {"in_backbone": False} for edge in set(g.edges()).difference(set(msp.edges()))}
+    nx.set_edge_attributes(g, missing_edges)
 
-    nx.set_edge_attributes(G, nx.get_edge_attributes(nx.from_pandas_edgelist(df, edge_attr='distance'), 'distance'), name='distance')
-    msp = nx.minimum_spanning_tree(G, weight='distance')
-    nx.set_edge_attributes(G, True, name='msp_backbone')
-
-    missing_edges = {edge: {"msp_backbone": False} for edge in set(G.edges()).difference(set(msp.edges()))}
-    nx.set_edge_attributes(G, missing_edges)
-
-    return Backbone(G, name="Maximum Spanning Tree", column="msp_backbone", ascending=False, filters=[boolean_filter])
+    return Backbone(g, method_name="Maximum Spanning Tree", property_name="weight", ascending=False, compatible_filters=[boolean_filter], filter_on='Edges')
 
 
 
diff --git a/netbone/structural/metric_distance_backbone.py b/netbone/structural/metric_distance_backbone.py
index 1a640fa1835f5c8d76e214bf2cc593cbab4ae31d..5cd16643cf84fd1927fa88aa897e3ae2b9169dfb 100644
--- a/netbone/structural/metric_distance_backbone.py
+++ b/netbone/structural/metric_distance_backbone.py
@@ -14,47 +14,9 @@ def metric_distance_backbone(data):
         G[u][v]['distance'] = 1/G[u][v]['weight']
 
     m_backbone = dc_backbone.metric_backbone(G, weight='distance')
-    nx.set_edge_attributes(G, True, name='metric_distance_backbone')
+    nx.set_edge_attributes(G, True, name='in_backbone')
 
-    missing_edges = {edge: {"metric_distance_backbone": False} for edge in set(G.edges()).difference(set(m_backbone.edges()))}
+    missing_edges = {edge: {"in_backbone": False} for edge in set(G.edges()).difference(set(m_backbone.edges()))}
     nx.set_edge_attributes(G, missing_edges)
 
-    return Backbone(G, name="Metric Distance Filter", column="metric_distance_backbone", ascending=False, filters=[boolean_filter])
-
-#
-# def metric_distance_backbone(data):
-#     # distance closure
-#
-#     if isinstance(data, pd.DataFrame):
-#         #create graph from the edge list
-#         labeled_G = nx.from_pandas_edgelist(data, edge_attr='weight', create_using=nx.Graph())
-#     else:
-#         labeled_G=data
-#
-#     #convert node labels to integers and store the labels as attributes and get the label used for mapping later
-#     G = nx.convert_node_labels_to_integers(labeled_G, label_attribute='name')
-#     mapping_lables = nx.get_node_attributes(G, name='name')
-#
-#     #create the adjacency matrix of the graph
-#     W = nx.adjacency_matrix(G).todense()
-#
-#     #calculate the proximity matrix using the weighted jaccard algorithm
-#     P = dc_distance.pairwise_proximity(W, metric='jaccard_weighted')
-#
-#     #convert the proximity matrix to a distance matrix
-#     D = np.vectorize(dc_utils.prox2dist)(P)
-#
-#     #create a distance graph from the distance matrix containing only the edges observed in the original network
-#     DG = nx.from_numpy_matrix(D)
-#     for u,v in DG.edges():
-#         edge = (u,v)
-#         if edge not in G.edges():
-#             DG.remove_edge(u, v)
-#
-#     #apply the distance closure algorithm to obtain the metric and ultrametric backbones
-#     m_backbone = dc.distance_closure(DG, kind='metric', weight='weight', only_backbone=True)
-#
-#     #relabel the graphs with the original labels
-#     m_backbone = nx.relabel_nodes(m_backbone, mapping_lables)
-#
-#     return Backbone(m_backbone, name="Metric Distance Filter", column="metric_distance_backbone")
\ No newline at end of file
+    return Backbone(G, method_name="Metric Distance Filter", property_name="distance", ascending=False, compatible_filters=[boolean_filter], filter_on='Edges')
diff --git a/netbone/structural/mlam.py b/netbone/structural/mlam.py
new file mode 100644
index 0000000000000000000000000000000000000000..051961d25f6fa069ba436f969657e2fc57e86b9d
--- /dev/null
+++ b/netbone/structural/mlam.py
@@ -0,0 +1,72 @@
+import numpy as np
+import networkx as nx
+from netbone.filters import boolean_filter
+from netbone.backbone import Backbone
+from pandas import DataFrame
+from netbone.utils.utils import edge_properties
+from math import isnan
+def get_neighbor_weights(graph, node):
+    # Get the neighbors and weights of the given node from the graph
+    neighbors = graph[node].keys()
+    weights = [graph[node][neighbor]['weight'] for neighbor in neighbors]
+
+    # Calculate the total weight
+    total_weight = sum(weights)
+
+    # Normalize the weights
+    normalized_weights = [weight / total_weight * 100 for weight in weights]
+
+    # Sort the neighbors based on the normalized weights in descending order
+    sorted_neighbors = sorted(zip(neighbors, normalized_weights), key=lambda x: x[1], reverse=True)
+
+    return dict(sorted_neighbors)
+
+def get_ideal_distribution(i, total):
+    array = [0] * total  # initialize the array with zeros
+    percentage = 100 / (i + 1)  # calculate the percentage value for the current loop
+    for j in range(i + 1):
+        array[j] = percentage # format the percentage value with two decimal places
+    return array
+
+def compute_cod(f, y):
+    corr_matrix  = np.corrcoef(f,y)
+    corr = corr_matrix[0,1]
+    return round(corr**2, 2)
+
+
+def mlam(data):
+    if isinstance(data, DataFrame):
+        g = nx.from_pandas_edgelist(data, edge_attr=edge_properties(data))
+    elif isinstance(data, nx.Graph):
+        g = data.copy()
+    else:
+        print("data should be a panads dataframe or nx graph")
+        return
+
+    nx.set_edge_attributes(g, False, name='in_backbone')
+    for node in g.nodes():
+        edge_index = 0
+        neighbors_weights =  get_neighbor_weights(g, node)
+        real_distribution = list(neighbors_weights.values())
+        neighbors_count = len(neighbors_weights)
+        old_cod = 0
+        if neighbors_count != 1:
+            for i in range(neighbors_count):
+                new_cod = compute_cod(real_distribution, get_ideal_distribution(i, neighbors_count))
+                if isnan(new_cod):
+                    break
+                if old_cod <= new_cod:
+                    old_cod = new_cod
+                    edge_index = i
+                else:
+                    break
+                if i == neighbors_count-1:
+                    edge_index = i
+
+        for j, neighbour in enumerate(neighbors_weights.keys()):
+            if j>edge_index:
+                break
+            g[node][neighbour]['in_backbone'] = True
+
+
+    return Backbone(g, method_name="Multiple Linkage Analysis", property_name="weight", ascending=False, compatible_filters=[boolean_filter], filter_on='Edges')
\ No newline at end of file
diff --git a/netbone/structural/modulairy_backbone.py b/netbone/structural/modulairy_backbone.py
index 4c2ccbdddaa7f3a499a81e492096ac730492f904..79e62bc550123cef87c9d6155ea238ebf4e98385 100644
--- a/netbone/structural/modulairy_backbone.py
+++ b/netbone/structural/modulairy_backbone.py
@@ -1,166 +1,23 @@
+from netbone.backbone import Backbone
+from netbone.filters import threshold_filter, fraction_filter
 import community.community_louvain as community
-import heapq
-import operator
-import math
-import networkx as nx
-import numpy as np
 from scipy.sparse import csr_matrix
 from scipy.sparse import diags
+import networkx as nx
 import pandas as pd
-from netbone.backbone import Backbone
-from netbone.filters import boolean_filter
-
-def orderCommunities(c):
-    i = 0
-    keys_partition = list()
-    for j in c:
-        keys_partition.append(i)
-        i = i + 1
-
-    partition = dict()
-    for i in keys_partition:
-        partition[i] = []
-
-
-    i = 0
-    for j in c:
-        for k in c[j]:
-            partition[i].append(k)
-        i = i + 1
-
-    return partition
-
-def communityInfo(c, partition):
-    print('Number of partitions: ', len(partition))
-    l = list()
-    for i in c:
-        for j in c[i]:
-            l.append(j)
-    print('Number of nodes in the communities detected: ', len(l))
-
-    s = set(l)
-    print('Number of repetitions: ', len(l) - len(s))
-    print()
-    print()
-
-def getSparseA(g):
-    return nx.to_scipy_sparse_matrix(g)
-    # return  nx.to_scipy_sparse_array(g)
-
-def getGroupIndicator(g, membership, rows=None):
-    if not rows:
-        rows = list(range(g.vcount()))
-    cols = membership
-    vals = np.ones(len(cols))
-    group_indicator_mat = csr_matrix((vals, (rows, cols)),
-                                     shape=(len(g), max(membership) + 1))
-    return group_indicator_mat
-
-
-def getDegMat(node_deg_by_group, rows, cols):
-    degrees = node_deg_by_group.sum(1)
-    degrees = np.array(degrees).flatten()
-    deg_mat = csr_matrix((degrees, (rows, cols)),
-                         shape=node_deg_by_group.shape)
-    degrees = degrees[:, np.newaxis]
-    return degrees, deg_mat
-
-
-def newMods(g, part):
-    #if g.is_weighted():
-    #    weight_key = 'weight'
-    #else:
-    weight_key = None
-    index = list(range(len(g)))
-    membership = part.membership_list # Steph: "part" is an instance of a class that has a "membership attribute"
-
-    m = sum([g.degree(node, weight=weight_key) for node in g.nodes()])/2
-
-    A = getSparseA(g)
-    self_loops = A.diagonal().sum()
-    group_indicator_mat = getGroupIndicator(g, membership, rows=index)
-    node_deg_by_group = A * group_indicator_mat
-
-    internal_edges = (node_deg_by_group[index, membership].sum() + self_loops) / 2
-
-    degrees, deg_mat = getDegMat(node_deg_by_group, index, membership)
-    node_deg_by_group += deg_mat
-
-    group_degs = (deg_mat + diags(A.diagonal()) * group_indicator_mat).sum(0)
+import numpy as np
 
-    internal_deg = node_deg_by_group[index, membership].transpose() - degrees
 
-    q1_links = (internal_edges - internal_deg) / (m - degrees)
-    # expanding out (group_degs - node_deg_by_group)^2 is slightly faster:
-    expected_impact = np.power(group_degs, 2).sum() - 2 * (node_deg_by_group * group_degs.transpose()) + \
-                      node_deg_by_group.multiply(node_deg_by_group).sum(1)
-    q1_degrees = expected_impact / (4 * (m - degrees)**2)
-    q1s = q1_links - q1_degrees
-    q1s = np.array(q1s).flatten()
-    return q1s
-
-
-def modularity_vitality(g, modularity, part):
-    q0 = modularity
-    q1s = newMods(g, part)
-    vitalities = (q0 - q1s).tolist()
-    return vitalities
-
-
-def mappingAndRelabeling(g):
-    # Mapping
-    g_nx=g.copy()
-    l_nodes = g_nx.nodes()
-    taille=len(l_nodes)
-    dict_graph = dict ()  # nodes in the key and themselves
-    for i in l_nodes:
-        dict_graph[i] = [i]
-    index = 0
-    for i in dict_graph:
-        for j in dict_graph[i]:
-            dict_graph[i] = index
-            index = index + 1
-
-    # Relabling: Construct a new graph with those mappings now
-    mapping = dict_graph
-    g_relabled = nx.relabel_nodes(g, mapping, copy=True)
-
-    return g_relabled
-
-def flip_nodes_and_communities(dict_nodes_communities):
-    # Step 1: initialize communities as keys
-    new_dict = {}
-    for k, v in dict_nodes_communities.items():
-        new_dict[v]=[]
-
-    # Step 2: Fill in nodes
-    for kk,vv in new_dict.items():
-        for k,v in dict_nodes_communities.items():
-            if dict_nodes_communities[k] == kk: # If the community number (value) in `best` is the same as new_dict key (key), append the node (key) in `best`
-                #print(k,v)
-                new_dict[kk].append(k)
-
-    return new_dict
-
-class communityInformation:
-    def __init__(self, modularity_value, communities):
-        self.modularity = modularity_value
-        self.membership = communities
-        self.membership_list = list()
-        for i in self.membership:
-            self.membership_list.append(self.membership[i])
-
-# Returns a list of the top_k nodes and their centralities, and heap (list) of top k nodes --> heap will be used for removal
-def get_top_k_best_nodes(dict_centrality, k):
-
-    # The sorted() function returns a sorted list of the specified iterable object
-    top_k = sorted(dict_centrality.items(), key=operator.itemgetter(1), reverse=True)[:k]
-    first_nodes = heapq.nlargest(k, dict_centrality, key=dict_centrality.get)
-
-    return top_k, first_nodes
-
-def modularity_backbone(data, node_fraction):
+#
+# def swap_key_value_dict(old_dict):
+#     new_dict = {}
+#     for key, value in old_dict.items():
+#         if value not in new_dict:
+#             new_dict[value] = []
+#         new_dict[value].append(key)
+#     return new_dict
 
+def modularity_backbone(data):
     if isinstance(data, pd.DataFrame):
         g = nx.from_pandas_edgelist(data, edge_attr='weight', create_using=nx.Graph())
     elif isinstance(data, nx.Graph):
@@ -168,62 +25,49 @@ def modularity_backbone(data, node_fraction):
     else:
         print("data should be a panads dataframe or nx graph")
         return
-    g1 = g.copy()
-    k = len(g1)-math.ceil(len(g1)*node_fraction)
-    communities = community.best_partition(g1, random_state=123)
-
-    modularity_value = community.modularity(communities, g1)
 
-    infomap_communities = flip_nodes_and_communities(communities)
-    infomap_communities_organized = orderCommunities(infomap_communities)
+    node_communities = community.best_partition(g, random_state=123)
+    modularity_value = community.modularity(node_communities, g)
+    # communities = swap_key_value_dict(node_communities)
 
-    communities_instance = communityInformation(modularity_value, communities)
-
-    list_modv = modularity_vitality(g1, communities_instance.modularity, communities_instance)
-
-    dict_original_modv_absolute = {}
-    for i, node in enumerate(g1.nodes()):
-        dict_original_modv_absolute[node] = abs(list_modv[i])
+    membership = list(node_communities.values())
 
+    weight_key = None
+    index = list(range(len(g)))
+    m = sum([g.degree(node, weight=weight_key) for node in g.nodes()]) / 2
 
-    #print(dict_original_modv_absolute)
+    A = nx.to_scipy_sparse_matrix(g)
 
-    top_y, top_x = get_top_k_best_nodes(dict_original_modv_absolute, len(g1))
+    vals = np.ones(len(membership))
+    group_indicator_mat = csr_matrix((vals, (index, membership)), shape=(len(g), max(membership) + 1))
 
-    nodes_removed = []
-    modularity_at_each_node_removal = []
-    modularity_at_each_node_removal.append(community.modularity(communities, g)) # Intiial modularity
-    communities_flipped_prunned = {}
+    node_deg_by_group = A * group_indicator_mat
 
-    nx.set_node_attributes(g1, dict_original_modv_absolute, name='modularity')
+    internal_edges = node_deg_by_group[index, membership].sum() / 2
 
-    for i in range(k):
-        last_element = top_x.pop() # Get the node to be removed
+    degrees = node_deg_by_group.sum(1)
+    degrees = np.array(degrees).flatten()
+    deg_mat = csr_matrix((degrees, (index, membership)),
+                         shape=node_deg_by_group.shape)
+    degrees = degrees[:, np.newaxis]
 
+    node_deg_by_group += deg_mat
 
-        # Working on Q1
-        g1.remove_node(last_element) # Remove it from the network
-        communities.pop(last_element) # Remove it from the communities
-        modularity_value_after_removal = community.modularity(communities, g1)
-        modularity_at_each_node_removal.append(modularity_value_after_removal)
+    group_degs = (deg_mat + diags(A.diagonal()) * group_indicator_mat).sum(0)
 
+    internal_deg = node_deg_by_group[index, membership].transpose() - degrees
 
-        # Working on Q3
-        nodes_removed.append(last_element)
+    q1_links = (internal_edges - internal_deg) / (m - degrees)
 
-        # Working on Q2
-    for k,v in infomap_communities_organized.items():
-        communities_flipped_prunned[k] = []
-        for node1 in v:
-            if node1 in nodes_removed:
-                continue
-            else:
-                communities_flipped_prunned[k].append(node1)
+    expected_impact = np.power(group_degs, 2).sum() - 2 * (node_deg_by_group * group_degs.transpose()) + \
+                      node_deg_by_group.multiply(node_deg_by_group).sum(1)
+    q1_degrees = expected_impact / (4 * (m - degrees) ** 2)
+    q1s = q1_links - q1_degrees
+    q1s = np.array(q1s).flatten()
 
+    vitalities = (modularity_value - q1s).tolist()
 
-    nx.set_edge_attributes(g, True, name='modularity_backbone')
+    nx.set_node_attributes(g, dict(zip(list(g.nodes()), np.absolute(vitalities))), name='vitality')
 
-    missing_edges = {edge: {"modularity_backbone": False} for edge in set(g.edges()).difference(set(g1.edges()))}
-    nx.set_edge_attributes(g, missing_edges)
-    # return g1, modularity_at_each_node_removal, communities_flipped_prunned, nodes_removed, top_x
-    return Backbone(g, name="Modularity Filter", column='modularity_backbone', ascending=False, filters=[boolean_filter])
\ No newline at end of file
+    return Backbone(g, method_name="Modularity Filter", property_name='vitality', ascending=False,
+                    compatible_filters=[threshold_filter, fraction_filter], filter_on='Nodes')
diff --git a/netbone/structural/plam.py b/netbone/structural/plam.py
new file mode 100644
index 0000000000000000000000000000000000000000..64a5297f42705266de864b3766ad785771c01914
--- /dev/null
+++ b/netbone/structural/plam.py
@@ -0,0 +1,32 @@
+import networkx as nx
+from netbone.filters import boolean_filter
+from netbone.backbone import Backbone
+from pandas import DataFrame
+from netbone.utils.utils import edge_properties
+
+def get_max_weight_edge(graph, node):
+    neighbors = graph.neighbors(node)
+    max_weight = float('-inf')
+    max_edge = None
+    for neighbor in neighbors:
+        weight = graph[node][neighbor]['weight']
+        if weight > max_weight:
+            max_weight = weight
+            max_edge = (node, neighbor)
+    return max_edge[0], max_edge[1], max_weight
+
+def plam(data):
+    if isinstance(data, DataFrame):
+        g = nx.from_pandas_edgelist(data, edge_attr=edge_properties(data))
+    elif isinstance(data, nx.Graph):
+        g = data.copy()
+    else:
+        print("data should be a panads dataframe or nx graph")
+        return
+
+    nx.set_edge_attributes(g, False, name='in_backbone')
+    for node in g.nodes():
+        source, target, weight = get_max_weight_edge(g, node)
+        g[source][target]['in_backbone'] = True
+
+    return Backbone(g, method_name="Primary Linkage Analysis", property_name="weight", ascending=False, compatible_filters=[boolean_filter], filter_on='Edges')
\ No newline at end of file
diff --git a/netbone/structural/pmfg.py b/netbone/structural/pmfg.py
new file mode 100644
index 0000000000000000000000000000000000000000..191fe4452be68b45ce322c3ad1a4aa227a9585c3
--- /dev/null
+++ b/netbone/structural/pmfg.py
@@ -0,0 +1,32 @@
+import networkx as nx
+from netbone.filters import boolean_filter
+from netbone.backbone import Backbone
+from pandas import DataFrame
+from networkx import Graph
+from netbone.utils.utils import edge_properties
+
+def pmfg(data):
+    if isinstance(data, DataFrame):
+        table = data.copy()
+    elif isinstance(data, Graph):
+        table = nx.to_pandas_edgelist(data)
+    else:
+        print("data should be a panads dataframe or nx graph")
+        return
+
+    g = nx.from_pandas_edgelist(table, edge_attr=edge_properties(table))
+    nx.set_edge_attributes(g, False, name='in_backbone')
+
+    backbone = nx.Graph()
+    table = table.sort_values(by='weight', ascending=False)
+
+    for row in table.itertuples():
+        backbone.add_edge(row.source, row.target)
+        if not nx.is_planar(backbone):
+            backbone.remove_edge(row.source, row.target)
+        else:
+            g[row.source][row.target]['in_backbone'] = True
+        if len(backbone.edges()) == 3*(len(g)-2):
+            break
+
+    return Backbone(g, method_name="Planar Maximally Filtered Graph", property_name="weight", ascending=False, compatible_filters=[boolean_filter], filter_on='Edges')
\ No newline at end of file
diff --git a/netbone/structural/ultrametric_distance_backbone.py b/netbone/structural/ultrametric_distance_backbone.py
index 69e4fb1efcc05e7b1f629fd3228b63978f0ff0f6..3907400048bcd00c76c5b0686ead9b799cd00528 100644
--- a/netbone/structural/ultrametric_distance_backbone.py
+++ b/netbone/structural/ultrametric_distance_backbone.py
@@ -14,48 +14,9 @@ def ultrametric_distance_backbone(data):
         G[u][v]['distance'] = 1/G[u][v]['weight']
 
     um_backbone = dc_backbone.ultrametric_backbone(G, weight='distance')
-    nx.set_edge_attributes(G, True, name='utlrametric_distance_backbone')
+    nx.set_edge_attributes(G, True, name='in_backbone')
 
-    missing_edges = {edge: {"utlrametric_distance_backbone": False} for edge in set(G.edges()).difference(set(um_backbone.edges()))}
+    missing_edges = {edge: {"in_backbone": False} for edge in set(G.edges()).difference(set(um_backbone.edges()))}
     nx.set_edge_attributes(G, missing_edges)
 
-    return Backbone(G, name="Ultrametric Distance Filter", column="utlrametric_distance_backbone", ascending=False, filters=[boolean_filter])
-
-
-
-# def ultrametric_distance_backbone(data):
-#     # distance closure
-#
-#     if isinstance(data, pd.DataFrame):
-#         #create graph from the edge list
-#         labeled_G = nx.from_pandas_edgelist(data, edge_attr='weight', create_using=nx.Graph())
-#     else:
-#         labeled_G=data
-#
-#     #convert node labels to integers and store the labels as attributes and get the label used for mapping later
-#     G = nx.convert_node_labels_to_integers(labeled_G, label_attribute='name')
-#     mapping_lables = nx.get_node_attributes(G, name='name')
-#
-#     #create the adjacency matrix of the graph
-#     W = nx.adjacency_matrix(G).todense()
-#
-#     #calculate the proximity matrix using the weighted jaccard algorithm
-#     P = dc_distance.pairwise_proximity(W, metric='jaccard_weighted')
-#
-#     #convert the proximity matrix to a distance matrix
-#     D = np.vectorize(dc_utils.prox2dist)(P)
-#
-#     #create a distance graph from the distance matrix containing only the edges observed in the original network
-#     DG = nx.from_numpy_matrix(D)
-#     for u,v in DG.edges():
-#         edge = (u,v)
-#         if edge not in G.edges():
-#             DG.remove_edge(u, v)
-#
-#     #apply the distance closure algorithm to obtain the metric and ultrametric backbones
-#     um_backbone = dc.distance_closure(DG, kind='ultrametric', weight='weight', only_backbone=True)
-#
-#     #relabel the graphs with the original labels
-#     um_backbone = nx.relabel_nodes(um_backbone, mapping_lables)
-#
-#     return Backbone(um_backbone, name="Ultrametric Distance Filter", column='ultrametric_distance_backbone')
\ No newline at end of file
+    return Backbone(G, method_name="Ultrametric Distance Filter", property_name="distance", ascending=False, compatible_filters=[boolean_filter], filter_on='Edges')
diff --git a/netbone/utils/utils.py b/netbone/utils/utils.py
index 0f31d2cef2682fb5e73637181578829382353704..7f573116cbe656770e67340d0c827aca2a66d112 100644
--- a/netbone/utils/utils.py
+++ b/netbone/utils/utils.py
@@ -13,7 +13,7 @@ def cumulative_dist(name, method, values, increasing=True):
     y = np.arange(1, len(x) + 1)/len(x)
 
     df = pd.DataFrame(index=x)
-    df.index.name = name
+    df.index.method_name = name
     df[method] = y
     return df
 
diff --git a/netbone/visualize.py b/netbone/visualize.py
index 58d5aa280dee931de47e9e3a8879d160fb36497c..d751ecae21f8f1bc7aa41121b7235d9a1e16ae4c 100644
--- a/netbone/visualize.py
+++ b/netbone/visualize.py
@@ -238,7 +238,7 @@ def plot_distribution(dist, title):
         axs.spines['left'].set_color('0.3')
 
 
-        axs.set_xlabel(df[method].index.name)
+        axs.set_xlabel(prop)
         axs.set_ylabel('P')
 
         axs.legend(loc='center left', bbox_to_anchor=(1.04,0.5))