Neighborhood-Preserving Graph Sparsification
Supplementary Material

Abd Errahmane KIOUCHE Julien BASTE Mohammed HADDAD
Univ Lyon, Université Lyon 1, LIRIS =~ Univ. Lille, CNRS, Centrale Lille, UMR Univ Lyon, Université Lyon 1, LIRIS
UMR CNRS 5205 9189 - CRIStAL - UMR CNRS 5205
Lyon, France Lille, France Lyon, France
abd-errahmane.kiouche@univ- julien.baste@univ-lille.fr mohammed.haddad@univ-lyon1.fr

lyon1.fr
Hamida SEBA Angela BONIFATI
Univ Lyon, Université Lyon 1, LIRIS ~ Univ Lyon, Université Lyon 1, LIRIS
UMR CNRS 5205 UMR CNRS 5205
Lyon, France Lyon, France

hamida.seba@univ-lyon1.fr angela.bonifati@univ-lyon1.fr

Abd Errahmane KIOUCHE, Julien BASTE, Mohammed HADDAD, Hamida SEBA, and Angela BONIFATI

1 LINKTO CODE AND DATA

The source code, data, and/or other artifacts have been made available at https://gitlab.liris.cnrs.fr/coregraphie/ptspar

2 PROOF OF THEOREM 2

To prove Theorem 2, we show here that a k-spanner is a particular case of (p, t)-sparsification. We first recall the definition of a k-spanner.

DEFINITION 1. A k-spanner S of a graph G, where k > 1, is a subgraph of G that has fewer edges than G and maintains the property that the
shortest-path distance between every pair of vertices in S is at most k times the shortest-path distance between those vertices in the original graph
G.

THEOREM 1. Given a graph G = (V, E) and a sparsification function ps where ps(t) = 1 for somet > 1 and p(i) > 0 foralli < t, a k-spanner
of G is a (p = ps, t = k)-sparsification of G.

Proor. This theorem asserts that a k-spanner, which ensures that the shortest path between any two nodes in the sparsified graph
is at most k times the shortest path in the input graph, is a specific instance of (p, t)-sparsification. The sparsification function p here is
defined such that full neighborhood information is preserved at the k-hop distance (since p(t) = ps(k) = 1), and some positive amount of
information is preserved at distances less than t (since p(i) > 0 for i < t). o

3 PROOF OF THEOREM 3

Let 7 : E — {1, ..., |E|} be any bijective function (i.e., permutation) that associates to each edge index i its processing rank 7 (i) by
Algorithm ptSpar. We denote by E” any permutation of the set of edges E (i.e., E* = (ez(1), ---» €x(i)> ---»€x(|E|))- Algorithm ptSpar
constructs a simpler graph Gs from the original graph G incrementally by processing all edges in a certain ordering E”. For simplicity
reasons, we will use G’ (k) = (V,E’ (k)) to refer to the constructed graph G’ at the k-th iteration containing the k first edges of E™ (i.e.,
G = (V' =V, E'(k)= {eﬂ(l), . e,r(k)}) and G; (k) = (Vs = V, Eg (k)) the sparsified graph after the k-th iteration. Note that G’ (E) at
the final iteration (i.e., G’ (|E|) is nothing else than the original graph G = (V, E) and Gs(|E|]) = Gs the output of Algorithm ptSpar. Let e, (k)
be the edge to be tested (to be inserted or dropped) at the k-th iteration, the algorithm checks whether the deletion of e, (4 will violates the
(p, t)-sparsification constraints or not (lines 8-14), if that is the case, the edge e, (r) must be inserted into Gs, otherwise it will be dropped
(lines 16-17). The (p, t)-sparsificaiton constraints verification consists in computing the proportion of preserved neighbors at each depth
i < tin Gs(k) compared to the neighborhood set of the graph constructed so far G’ (k) (lines 8-15).

To prove that the output G of Algorithm ptSpar is a (p, t)-sparsification of the original graph G, we need to prove that for each 0 < k < |E],
Gs (k) is a (p, t)-sparsification of G’ (k). To do so, we proceed by induction.

Base case: Gs(0) = (V, 0) is a (p, t)-sparsification of G’(0) = (V, 0). This statement is true, since all neighborhood set are empty
because there in no edge in the graph G’(0).

Induction step: We assume that Gs(k) is a (p, t)-sparsification of Gs(k) and let’s prove that Gs(k + 1) is a (p, t)-sparsification of G’ (k + 1).

Let us proceed by contradiction. Suppose that Gs(k + 1) is not a (p, t)-sparsification of G’ (k + 1) and let e;(x.1) = (,0) be the edge to
be processed at the (k + 1)-th iteration. Notice that G’ (k + 1) = (V/,E’(k + 1)) = (V,E’ (k) U {ex(k + 1) = (u,v)}). Knowing that the arrival
of the edge e, (k + 1) = (u,v) impacts only the neighborhood sets N(l;,(kﬂ) (v) and Ncl}/(k+1) (u), we can deduce the following statements:

L4 Né'(k+1) (u) = Né’(k) (u) U {U}

and

N vy @] = [N& o @] +161)
° Né?’(k+1) (v) = Ncl;/(k) (0) U {u}

and
N(l;/(k_H) (U) = }Nl/(k) (U) +1 (32)

o VseV—{uu}: NlG'(k+1) (s) = Né’(k) (s)
and

1 _ |z
NGy O] = [N& oy 9] 63
On the other hand, Gg(k + 1) is not a (p, t)-sparsification of G’ (k + 1) signifies that 3i <t Is € V,)Nl,(kﬂ) (s)n Nés(kﬂ) (9)| <

|Né/(k+1) (s)| p (i) (s4). We distinguish two possible cases:

1.s € V—{u,0} : by applying (s3) and (s4), we deduce 3i <t Is € V, Né'(k) (s)n Né;s(k+1) (s)‘ < |N(1;'(k) (s)|p (i), Since Nés(k) (s) C

Nég(kﬂ) (s) we deduce that:

Ji<tIseV, ‘Nl,(k) ()N o) (s)‘ <|NL o (s)|p (i) (s5).
Therefore, G;(k) is not (p, t)-sparsification of G’ (k), which odds the induction assumption.

https://gitlab.liris.cnrs.fr/coregraphie/ptspar

Neighborhood-Preserving Graph Sparsification
Supplementary Material

2.s € {u,v}: without loss of generality we suppose s = u (the proof remains correct if we consider s = v), by applying (s1) ((s2) if s = v)) and
(54), we deduce 3i < t, [NS,) (@) AN () (u)’+) 30 N) @] < (‘Nl,(k) (u)‘ + l)p (1) (s6). Since N, () € NE) (),
Né’(k) (w) N Nés(k) (u)‘ + } {v} N Nés(kﬂ) (u)} < (|N1/(k) (u)| + 1)p (i) (s7). Note that the node u does not
satisfy the (p, t)-sparsification constraints (i.e,. s = u), therefore the edge e, (k + 1) = (u, v) must be inserted into G, (k + 1) (line 11) . In this

we deduce that 3i < ¢,

i
case, NGs(k+1 s (k+1

knowing that p(i) < 1, we deduce 3i < t [N, . (u) N NE (w)| < [NL, .. (w)|p (i) (s5). Therefore, G (k)) is not (p, t)-sparsification
gthatp (k) Gs (k) G (k) WP P

) (u) must contains v since (u, v) was inserted, that indicates that) {v} N Né) (u)) = 1(s8). By applying (s7) and (s8) and

of G’ (k), which odds the induction assumption.
Therefore, we deduce that if Gs(k) is a (p, t)-sparsification of Gg(k) then Gg(k + 1) is a (p, t)-sparsification of G’ (k + 1) a.

4 PROOF OF THEOREM 4

At each iteration, Algorithm ptSpar processes an edge in the given ordering. We first prove that if at the k-th iteration the current output
Gs (k) = (Vs = V,Eg (k)) is a (p, t)-sparsification of the original graph G = (V, E), then all edge that will be processed in the following
iterations will be rejected, i.e., not included in the output subgraph Gs = Gs(|E|). This means that if Gs(k) is (p, t)-sparsification of G then
Gs(k) = Gs(k + 1) = ... = Gs(|E|) = Gs. The proof of this claim is quite straightforward; if at the k-th iteration the current output is a Gs (k)
is a (p, t)-sparsification of G then we haveVx e N—-{0}: x <t,VoeV Né (v) N N(’_f,s (U)‘ > ’NCI; (U)|p(x) (1).

Thus, let e = (u, v) be an edge of E—Es (k). When Algorithm ptSpar considers e, it will checks if vertices u and v have all their neighborhood
constraints satisfied. By property (1), all vertices already have all their neighborhood constraints satisfied, hence edge e will be rejected.

Now, let G; = (V, E}) be a (p, t)-sparsification of minimum size of the graph G. Consider a permutation function 7* such that the
processing rank of any edge of Ej is lower than the processing rank of any edge of E — E;. If Algorithm ptSpar processes the edges of E in
the order defined by 7*, by the previous claim, once all edges of E; are treated, all following iterations will reject the remaining edges 0.

5 COMPLEXITY ANALYSIS

TuEOREM 2. The average time complexity of the ptSpar algorithm is O(|E|d") where d is the average degree in the graph G. In the worst-case
scenario, whre d = |V|, this complexity rises to O(|E||V).

Proor. If we consider that Algorithm ptSpar utilizes BFS (Breath First Search) to traverse the graph up to a depth of t to compute the
set of neighbors. The average complexity depends on the average degree of the graph d. In each level of the BFS, the potential number of
nodes to explore grows exponentially based on d. Therefore, for a depth t, the traversal of nodes (and consequently the operations count) is
proportional to d’, yielding an average time complexity of O(|E|d"), where |E| denotes the number of edges in the graph.

In a complete graph scenario, every vertex is connected to every other vertex, effectively making the average degree d approximate the
total number of vertices |V|. This situation represents the worst-case complexity, as the BFS would potentially need to explore nearly all
vertices at each level up to ¢, culminating in a complexity of O(|E||V|"). o

THEOREM 3. The time complexity of computing the LP-based Edge Ordering in a graph G = (V,E) is O(poly(|E| + |V|d*~1)), where |E| is the
number of edges, |V| is the number of vertices, d is the average degree, and t is the parameter of the sparsification.

Proor. The LP-based Edge Ordering algorithm involves formulating and solving a linear programming (LP) problem. The significant
factors contributing to its complexity are the number of variables and constraints in the LP formulation.

The number of edge variables, x,, is equal to the number of edges, |E|. Moreover, the algorithm considers path variables, which are
influenced by the number of paths of length less than or equal to t — 1 from each vertex. The average number of such paths in a graph with
an average degree d is O(d’~1). As each of the |V| vertices can be the start point of these paths, the total count of path variables is on the
order of [V]d'~1.

Therefore, the LP formulation has O(|E| + |V|d*~!) variables. As solving a linear programming problem is polynomial in the number of
variables, the time complexity of the LP-based Edge Ordering algorithm is O(poly(|E| + |V |d?~1)). o

TuEOREM 4. The average time complexity of algorithm 3 is O(|E|(d" +log |E|)).

Proor. Consider the following points:

o The average number of paths of length < t between two connected nodes u and v, starting from u, is of order O(d?), where d is the
average degree of the graph.
e The number of edges in the graph is denoted by |E|.

Hence, the time complexity of computing all the scores s(e) for each edge is O(|E|d*). Furthermore, since sorting all these scores requires
O(|E|log |E]) time, the overall time complexity of the algorithm is O(|E|(d? + log |E|)). In the worst-case scenario, such as in a complete
graph, this complexity escalates to O(|E|(|V| +log |E])). O

Abd Errahmane KIOUCHE, Julien BASTE, Mohammed HADDAD, Hamida SEBA, and Angela BONIFATI

6 DISCUSSION ABOUT THE APPROXIMATION RATIO

While the presented algorithms are efficient in practice, from a theoretical point of view, these algorithms do not provide a constant factor
approximation. We argue here for the ordering based on the linear programming.

For each integer k > 2, we construct the graph Gy as follows. We start from a clique K of k + 1 vertices vy, . .., vg. For each 0 < i < j < k, we
add 2 vertices (a} j and a? j), each of them having exactly 2 neighbors, v; and v;. Finally, we add d vertices b,...,b%, each of them having
exactly k neighbors, the vertices vy, . . ., vj. Note that the vertices afj, 0<i<j<k,ze{l,2},andb? z € {1,...,d}, form an independent
set.

Let discuss about the form of an optimal (p, t)-sparsifiers of Gy where p(1) = 0% and t = 2. First for each 0 < i < j < k, with regard to the
neighbors of a% j and a? j» one can easily check that an optimal solution should contains the edge {v;,v;} together with one edge incident to

a}j and one edge incident to a?

needs strictly more edges. We obtain that all the edges in the clique K should be in any optfmal solution. Adding exactly one edge incident to
b for each i € {1,...,d} provides an optimal (p, t)-sparsifiers that contains Mopt =2 - (k;rl) +d=d+k-(k+1) edges.

Let discuss about what can append with the use of the LP ordering when applied to G. Lets assume that the LP provides a weight 1 for
each edge of the clique K, the edges {al{j, vi}, 0 < i< j <k, and the edges {b%,v1},z € {1,...,d}, corresponding to the edges of an optimal
solution and 0 to all other edges. Let assume that the edges of the set Eg = {{vo,v;} | 0 < j < k} come first in the created ordering, that is a
possibility, followed directly by the other edges, named E1, of K. Then when applying Algorithm 1, we obtain that the edges of Eq will be
added to the solution and the other edge {v;,v;},0 < i < j < k, will not as the condition of line 11 of the algorithm will already be satisfied.
Because of this, when we will deal with the edges incident to b?, z € {i,...,d}, we will have to add each of them as none of the edges of E;
has been selected. This creates a solution of size at least mpp = d - k + k. Using d = k - (k + 1), we obtain that mpp > ’% - Mops. Thus no
constant factor approximation can be obtained here.

.. This allows to satisfy the neighborhood constraint of a}j and a? - with 3 edges where any other solution

7 TABLES 5 WITH ALL DATASETS

Because of space limitation, we did not include the ENZYMES ans CA-HEPTH datasets in Table 5. In the following, we provide this table
with all the datasets.

Neighborhood-Preserving Graph Sparsification

Supplementary Material

%66'C %6L°0 %89°0 %L8°S %9T°L %S8'T %EL'T %CL 0O %8S°T %99°C %0G°T %88°0 %052 %0L'T %06°S %089 qa
%¥6'S %ET'T %921 %e6°LT %YL9 %¥8'C %9%°0 %¥y0 %0€'T %LS9 %950 %LS0 %08'% %0%°9 %0¥°61 %012 at
%ECE %66°0 %8L0 %€'8 %IL'E %ST'E %8¥'C %LV 0 %8Y'1 %LOE %L8'T %8L°0 %08°¢ %06°C %099 %0V L Jdd
%09°1 %26°0 %€9°0 %SYV'L %SY'Y %86°0 %¥9°0 %L0°0 %8L'T BLLT %80°T %€9°0 %0v'y %08°T %0L'T %0LT das
%191 %¥8°0 %09°0 %S'1 %09°T %SL°0 %LE0 %L0°0 %CL'T %SL'T %00°T %09°0 %0€°S %OL'T %02°1 %06°C 450
%€0°C %19°0 %8V°0 %L'9 %8T°1 %9S°T %60°T %Y 0 %120 %€9°0 %LL0 %L0°0 %0€'L %090 %079 %0L"L ST
%6S°C %8L°0 %29°0 %y %0L°0 %68°C %0L'T %L0°0 %V1L°0 %ev'1 LT 0 %250 %067 %0S'T %0L'E %0811 av
- OL OL %812 OL %¥6°0 LO %8%°0 %1S°0 %8C'Y WBLLO %620 %01y %0¥' v %0L'22 %0802 q71s
%S8°0 %69°0 FAYA) %8S'T %L1 %06°0 %8L0 %92°0 %0%°0 %290 %590 FAYA] %0G°T %09°0 %08°T %00°T redsid
S102 DOTVIVD HIOYISY TVNINO[J1¢ AJVNID
aferoAy -HSO YALSANANA SHNAZNA -D0Td VO JAIT WAIOI'T V0O HLJIH-VO ¥ddSdLID JdWNdnd SNIALO¥d ~ OdSW AT dvTI10D

sso] Adoxyus a3 uo wonesyrsreds 31} Jo 1997 :G d[qeL

	1 Link to code and Data
	2 Proof of Theorem 2
	3 Proof of Theorem 3
	4 Proof of Theorem 4
	5 Complexity analysis
	6 Discussion about the approximation ratio
	7 Tables 5 with all datasets

