
Neighborhood-Preserving Graph Sparsification
Supplementary Material

Abd Errahmane KIOUCHE

Univ Lyon, Université Lyon 1, LIRIS

UMR CNRS 5205

Lyon, France

abd-errahmane.kiouche@univ-

lyon1.fr

Julien BASTE

Univ. Lille, CNRS, Centrale Lille, UMR

9189 - CRIStAL -

Lille, France

julien.baste@univ-lille.fr

Mohammed HADDAD

Univ Lyon, Université Lyon 1, LIRIS

UMR CNRS 5205

Lyon, France

mohammed.haddad@univ-lyon1.fr

Hamida SEBA

Univ Lyon, Université Lyon 1, LIRIS

UMR CNRS 5205

Lyon, France

hamida.seba@univ-lyon1.fr

Angela BONIFATI

Univ Lyon, Université Lyon 1, LIRIS

UMR CNRS 5205

Lyon, France

angela.bonifati@univ-lyon1.fr

Abd Errahmane KIOUCHE, Julien BASTE, Mohammed HADDAD, Hamida SEBA, and Angela BONIFATI

1 LINK TO CODE AND DATA
The source code, data, and/or other artifacts have been made available at https://gitlab.liris.cnrs.fr/coregraphie/ptspar

2 PROOF OF THEOREM 2

To prove Theorem 2, we show here that a 𝑘-spanner is a particular case of (𝑝, 𝑡)-sparsification. We first recall the definition of a 𝑘-spanner.

Definition 1. A 𝑘-spanner 𝑆 of a graph 𝐺 , where 𝑘 > 1, is a subgraph of 𝐺 that has fewer edges than 𝐺 and maintains the property that the
shortest-path distance between every pair of vertices in 𝑆 is at most 𝑘 times the shortest-path distance between those vertices in the original graph
𝐺 .

Theorem 1. Given a graph𝐺 = (𝑉 , 𝐸) and a sparsification function 𝑝𝑠 where 𝑝𝑠 (𝑡) = 1 for some 𝑡 > 1 and 𝑝 (𝑖) > 0 for all 𝑖 < 𝑡 , a 𝑘-spanner
of 𝐺 is a (𝑝 = 𝑝𝑠 , 𝑡 = 𝑘)-sparsification of 𝐺 .

Proof. This theorem asserts that a 𝑘-spanner, which ensures that the shortest path between any two nodes in the sparsified graph

is at most 𝑘 times the shortest path in the input graph, is a specific instance of (𝑝, 𝑡)-sparsification. The sparsification function 𝑝 here is

defined such that full neighborhood information is preserved at the 𝑘-hop distance (since 𝑝 (𝑡) = 𝑝𝑠 (𝑘) = 1), and some positive amount of

information is preserved at distances less than 𝑡 (since 𝑝 (𝑖) > 0 for 𝑖 < 𝑡). □

3 PROOF OF THEOREM 3

Let 𝜋 : 𝐸 → {1, . . . , |𝐸 |} be any bijective function (i.e., permutation) that associates to each edge index 𝑖 its processing rank 𝜋 (𝑖) by
Algorithm ptSpar. We denote by 𝐸𝜋 any permutation of the set of edges 𝐸 (i.e., 𝐸𝜋 = (𝑒𝜋 (1) , . . . , 𝑒𝜋 (𝑖) , . . . , 𝑒𝜋 (|𝐸 |)). Algorithm ptSpar
constructs a simpler graph 𝐺𝑠 from the original graph 𝐺 incrementally by processing all edges in a certain ordering 𝐸𝜋 . For simplicity

reasons, we will use 𝐺 ′ (𝑘) = (𝑉 , 𝐸′ (𝑘)) to refer to the constructed graph 𝐺 ′
at the 𝑘-th iteration containing the 𝑘 first edges of 𝐸𝜋 (i.e.,

𝐺 ′ =
(
𝑉 ′ = 𝑉 , 𝐸′ (𝑘) =

{
𝑒𝜋 (1) , . . . , 𝑒𝜋 (𝑘)

})
and 𝐺𝑠 (𝑘) = (𝑉𝑠 = 𝑉 , 𝐸𝑠 (𝑘)) the sparsified graph after the 𝑘-th iteration. Note that 𝐺 ′ (𝐸) at

the final iteration (i.e.,𝐺 ′ (|𝐸 |) is nothing else than the original graph𝐺 = (𝑉 , 𝐸) and𝐺𝑠 (|𝐸 |) = 𝐺𝑠 the output of Algorithm ptSpar. Let 𝑒𝜋 (𝑘)
be the edge to be tested (to be inserted or dropped) at the 𝑘-th iteration, the algorithm checks whether the deletion of 𝑒𝜋 (𝑘) will violates the
(𝑝, 𝑡)-sparsification constraints or not (lines 8-14), if that is the case, the edge 𝑒𝜋 (𝑘) must be inserted into𝐺𝑠 , otherwise it will be dropped

(lines 16-17). The (𝑝, 𝑡)-sparsificaiton constraints verification consists in computing the proportion of preserved neighbors at each depth

𝑖 ≤ 𝑡 in 𝐺𝑠 (𝑘) compared to the neighborhood set of the graph constructed so far 𝐺 ′ (𝑘) (lines 8-15).
To prove that the output𝐺𝑠 of Algorithm ptSpar is a (𝑝, 𝑡)-sparsification of the original graph𝐺 , we need to prove that for each 0 ≤ 𝑘 ≤ |𝐸 |,

𝐺𝑠 (𝑘) is a (𝑝, 𝑡)-sparsification of 𝐺 ′ (𝑘). To do so, we proceed by induction.
Base case: 𝐺𝑠 (0) = (𝑉 , ∅) is a (𝑝, 𝑡)-sparsification of 𝐺 ′ (0) = (𝑉 , ∅). This statement is true, since all neighborhood set are empty

because there in no edge in the graph 𝐺 ′ (0).

Induction step: We assume that 𝐺𝑠 (𝑘) is a (𝑝, 𝑡)-sparsification of 𝐺𝑠 (𝑘) and let’s prove that 𝐺𝑠 (𝑘 + 1) is a (𝑝, 𝑡)-sparsification of 𝐺 ′ (𝑘 + 1).
Let us proceed by contradiction. Suppose that 𝐺𝑠 (𝑘 + 1) is not a (𝑝, 𝑡)-sparsification of 𝐺 ′ (𝑘 + 1) and let 𝑒𝜋 (𝑘+1) = (𝑢, 𝑣) be the edge to

be processed at the (𝑘 + 1)-th iteration. Notice that𝐺 ′ (𝑘 + 1) = (𝑉 ′, 𝐸′ (𝑘 + 1)) = (𝑉 , 𝐸′ (𝑘) ∪ {𝑒𝜋 (𝑘 + 1) = (𝑢, 𝑣)}). Knowing that the arrival

of the edge 𝑒𝜋 (𝑘 + 1) = (𝑢, 𝑣) impacts only the neighborhood sets 𝑁 1

𝐺′(𝑘+1) (𝑣) and 𝑁
1

𝐺′(𝑘+1) (𝑢), we can deduce the following statements:

• 𝑁 1

𝐺 ′ (𝑘+1) (𝑢) = 𝑁
1

𝐺 ′ (𝑘) (𝑢) ∪ {𝑣}
and���𝑁 1

𝐺 ′ (𝑘+1) (𝑢)
��� = ���𝑁 1

𝐺 ′ (𝑘) (𝑢)
��� + 1 (s1)

• 𝑁 1

𝐺 ′ (𝑘+1) (𝑣) = 𝑁
1

𝐺 ′ (𝑘) (𝑣) ∪ {𝑢}
and���𝑁 1

𝐺 ′ (𝑘+1) (𝑣)
��� = ���𝑁 1

𝐺 ′ (𝑘) (𝑣)
��� + 1 (s2)

• ∀ 𝑠 ∈ 𝑉 − {𝑢, 𝑣} : 𝑁 1

𝐺 ′ (𝑘+1) (𝑠) = 𝑁
1

𝐺 ′ (𝑘) (𝑠)
and���𝑁 1

𝐺 ′ (𝑘+1) (𝑠)
��� = ���𝑁 1

𝐺 ′ (𝑘) (𝑠)
��� (s3)

On the other hand, 𝐺𝑠 (𝑘 + 1) is not a (𝑝, 𝑡)-sparsification of 𝐺 ′ (𝑘 + 1) signifies that ∃ 𝑖 ≤ 𝑡 ∃ 𝑠 ∈ 𝑉 ,
���𝑁 1

𝐺 ′ (𝑘+1) (𝑠) ∩ 𝑁
𝑖
𝐺𝑠 (𝑘+1) (𝑠)

��� <���𝑁 1

𝐺 ′ (𝑘+1) (𝑠)
���𝑝 (𝑖) (s4). We distinguish two possible cases:

1. 𝑠 ∈ 𝑉 − {𝑢, 𝑣} : by applying (s3) and (s4), we deduce ∃ 𝑖 ≤ 𝑡 ∃ 𝑠 ∈ 𝑉 ,
���𝑁 1

𝐺 ′ (𝑘) (𝑠) ∩ 𝑁
𝑖
𝐺𝑠 (𝑘+1) (𝑠)

��� < ���𝑁 1

𝐺 ′ (𝑘) (𝑠)
���𝑝 (𝑖), Since 𝑁 𝑖

𝐺𝑠 (𝑘) (𝑠) ⊆
𝑁 𝑖
𝐺𝑠 (𝑘+1) (𝑠) we deduce that:

∃ 𝑖 ≤ 𝑡 ∃ 𝑠 ∈ 𝑉 ,
���𝑁 1

𝐺 ′ (𝑘) (𝑠) ∩ 𝑁
𝑖
𝐺𝑠 (𝑘) (𝑠)

��� < ���𝑁 1

𝐺 ′ (𝑘) (𝑠)
���𝑝 (𝑖) (s5).

Therefore, 𝐺𝑠 (𝑘) is not (𝑝, 𝑡)-sparsification of 𝐺 ′ (𝑘), which odds the induction assumption.

https://gitlab.liris.cnrs.fr/coregraphie/ptspar

Neighborhood-Preserving Graph Sparsification
Supplementary Material

2. 𝑠 ∈ {𝑢, 𝑣}: without loss of generality we suppose 𝑠 = 𝑢 (the proof remains correct if we consider 𝑠 = 𝑣), by applying (s1) ((s2) if 𝑠 = 𝑣)) and

(s4), we deduce ∃ 𝑖 ≤ 𝑡 ,
���𝑁 1

𝐺 ′ (𝑘) (𝑢) ∩ 𝑁
𝑖
𝐺𝑠 (𝑘+1) (𝑢)

���+ ��� {𝑣} ∩ 𝑁 𝑖
𝐺𝑠 (𝑘+1) (𝑢)

��� < (���𝑁 1

𝐺 ′ (𝑘) (𝑢)
��� + 1

)
𝑝 (𝑖) (s6). Since𝑁 𝑖

𝐺𝑠 (𝑘) (𝑢) ⊆ 𝑁 𝑖
𝐺𝑠 (𝑘+1) (𝑢),

we deduce that ∃ 𝑖 ≤ 𝑡 ,

���𝑁 1

𝐺 ′ (𝑘) (𝑢) ∩ 𝑁
𝑖
𝐺𝑠 (𝑘) (𝑢)

��� + ��� {𝑣} ∩ 𝑁 𝑖
𝐺𝑠 (𝑘+1) (𝑢)

��� < (���𝑁 1

𝐺 ′ (𝑘) (𝑢)
��� + 1

)
𝑝 (𝑖) (s7). Note that the node 𝑢 does not

satisfy the (𝑝, 𝑡)-sparsification constraints (i.e,. 𝑠 = 𝑢), therefore the edge 𝑒𝜋 (𝑘 + 1) = (𝑢, 𝑣) must be inserted into 𝐺𝑠 (𝑘 + 1) (line 11) . In this

case, 𝑁 𝑖
𝐺𝑠 (𝑘+1) (𝑢) must contains 𝑣 since (𝑢, 𝑣) was inserted, that indicates that

��� {𝑣} ∩ 𝑁 𝑖
𝐺𝑠 (𝑘+1) (𝑢)

��� = 1 (s8). By applying (s7) and (s8) and

knowing that 𝑝 (𝑖) ≤ 1, we deduce ∃ 𝑖 ≤ 𝑡
���𝑁 1

𝐺 ′ (𝑘) (𝑢) ∩ 𝑁
𝑖
𝐺𝑠 (𝑘) (𝑢)

��� < ���𝑁 1

𝐺 ′ (𝑘) (𝑢)
���𝑝 (𝑖) (s5). Therefore,𝐺𝑠 (𝑘)) is not (𝑝, 𝑡)-sparsification

of 𝐺 ′ (𝑘), which odds the induction assumption.
Therefore, we deduce that if 𝐺𝑠 (𝑘) is a (𝑝, 𝑡)-sparsification of 𝐺𝑠 (𝑘) then 𝐺𝑠 (𝑘 + 1) is a (𝑝, 𝑡)-sparsification of 𝐺 ′ (𝑘 + 1) □.

4 PROOF OF THEOREM 4

At each iteration, Algorithm ptSpar processes an edge in the given ordering. We first prove that if at the 𝑘-th iteration the current output

𝐺𝑠 (𝑘) = (𝑉𝑠 = 𝑉 , 𝐸𝑠 (𝑘)) is a (𝑝, 𝑡)-sparsification of the original graph 𝐺 = (𝑉 , 𝐸), then all edge that will be processed in the following

iterations will be rejected, i.e., not included in the output subgraph 𝐺𝑠 = 𝐺𝑠 (|𝐸 |). This means that if 𝐺𝑠 (𝑘) is (𝑝, 𝑡)-sparsification of 𝐺 then

𝐺𝑠 (𝑘) = 𝐺𝑠 (𝑘 + 1) = ... = 𝐺𝑠 (|𝐸 |) = 𝐺𝑠 . The proof of this claim is quite straightforward; if at the 𝑘-th iteration the current output is a 𝐺𝑠 (𝑘)
is a (𝑝, 𝑡)-sparsification of 𝐺 then we have ∀ 𝑥 ∈ 𝑁 − {0} : 𝑥 ≤ 𝑡 ,∀ 𝑣 ∈ 𝑉

���𝑁 1

𝐺
(𝑣) ∩ 𝑁𝑥

𝐺𝑠
(𝑣)

��� ≥ ��𝑁 1

𝐺
(𝑣)

��𝑝 (𝑥) (1).
Thus, let 𝑒 = (𝑢, 𝑣) be an edge of 𝐸−𝐸𝑠 (𝑘). When Algorithm ptSpar considers 𝑒 , it will checks if vertices𝑢 and 𝑣 have all their neighborhood

constraints satisfied. By property (1), all vertices already have all their neighborhood constraints satisfied, hence edge 𝑒 will be rejected.

Now, let 𝐺∗
𝑠 =

(
𝑉 , 𝐸∗𝑠

)
be a (𝑝, 𝑡)-sparsification of minimum size of the graph 𝐺 . Consider a permutation function 𝜋∗ such that the

processing rank of any edge of 𝐸∗𝑠 is lower than the processing rank of any edge of 𝐸 − 𝐸∗𝑠 . If Algorithm ptSpar processes the edges of 𝐸 in

the order defined by 𝜋∗, by the previous claim, once all edges of 𝐸∗𝑠 are treated, all following iterations will reject the remaining edges □.

5 COMPLEXITY ANALYSIS
Theorem 2. The average time complexity of the ptSpar algorithm is 𝑂 (|𝐸 |𝑑𝑡) where 𝑑 is the average degree in the graph 𝐺 . In the worst-case

scenario, whre 𝑑 = |𝑉 |, this complexity rises to 𝑂 (|𝐸 | |𝑉 |𝑡).

Proof. If we consider that Algorithm ptSpar utilizes BFS (Breath First Search) to traverse the graph up to a depth of 𝑡 to compute the

set of neighbors. The average complexity depends on the average degree of the graph 𝑑 . In each level of the BFS, the potential number of

nodes to explore grows exponentially based on 𝑑 . Therefore, for a depth 𝑡 , the traversal of nodes (and consequently the operations count) is

proportional to 𝑑𝑡 , yielding an average time complexity of 𝑂 (|𝐸 |𝑑𝑡), where |𝐸 | denotes the number of edges in the graph.

In a complete graph scenario, every vertex is connected to every other vertex, effectively making the average degree 𝑑 approximate the

total number of vertices |𝑉 |. This situation represents the worst-case complexity, as the BFS would potentially need to explore nearly all

vertices at each level up to 𝑡 , culminating in a complexity of 𝑂 (|𝐸 | |𝑉 |𝑡). □

Theorem 3. The time complexity of computing the LP-based Edge Ordering in a graph𝐺 = (𝑉 , 𝐸) is𝑂 (𝑝𝑜𝑙𝑦 (|𝐸 | + |𝑉 |𝑑𝑡−1)), where |𝐸 | is the
number of edges, |𝑉 | is the number of vertices, 𝑑 is the average degree, and 𝑡 is the parameter of the sparsification.

Proof. The LP-based Edge Ordering algorithm involves formulating and solving a linear programming (LP) problem. The significant

factors contributing to its complexity are the number of variables and constraints in the LP formulation.

The number of edge variables, 𝑥𝑒 , is equal to the number of edges, |𝐸 |. Moreover, the algorithm considers path variables, which are

influenced by the number of paths of length less than or equal to 𝑡 − 1 from each vertex. The average number of such paths in a graph with

an average degree 𝑑 is 𝑂 (𝑑𝑡−1). As each of the |𝑉 | vertices can be the start point of these paths, the total count of path variables is on the

order of |𝑉 |𝑑𝑡−1.
Therefore, the LP formulation has 𝑂 (|𝐸 | + |𝑉 |𝑑𝑡−1) variables. As solving a linear programming problem is polynomial in the number of

variables, the time complexity of the LP-based Edge Ordering algorithm is 𝑂 (𝑝𝑜𝑙𝑦 (|𝐸 | + |𝑉 |𝑑𝑡−1)). □

Theorem 4. The average time complexity of algorithm 3 is 𝑂 (|𝐸 | (𝑑𝑡 + log |𝐸 |)).

Proof. Consider the following points:

• The average number of paths of length ≤ 𝑡 between two connected nodes 𝑢 and 𝑣 , starting from 𝑢, is of order 𝑂 (𝑑𝑡), where 𝑑 is the

average degree of the graph.

• The number of edges in the graph is denoted by |𝐸 |.
Hence, the time complexity of computing all the scores 𝑠 (𝑒) for each edge is 𝑂 (|𝐸 |𝑑𝑡). Furthermore, since sorting all these scores requires

𝑂 (|𝐸 | log |𝐸 |) time, the overall time complexity of the algorithm is 𝑂 (|𝐸 | (𝑑𝑡 + log |𝐸 |)). In the worst-case scenario, such as in a complete

graph, this complexity escalates to 𝑂 (|𝐸 | (|𝑉 |𝑡 + log |𝐸 |)). □

Abd Errahmane KIOUCHE, Julien BASTE, Mohammed HADDAD, Hamida SEBA, and Angela BONIFATI

6 DISCUSSION ABOUT THE APPROXIMATION RATIO
While the presented algorithms are efficient in practice, from a theoretical point of view, these algorithms do not provide a constant factor

approximation. We argue here for the ordering based on the linear programming.

For each integer 𝑘 ≥ 2, we construct the graph𝐺𝑘 as follows. We start from a clique 𝐾 of 𝑘 + 1 vertices 𝑣0, . . . , 𝑣𝑘 . For each 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 , we
add 2 vertices (𝑎1

𝑖, 𝑗
and 𝑎2

𝑖, 𝑗
), each of them having exactly 2 neighbors, 𝑣𝑖 and 𝑣 𝑗 . Finally, we add 𝑑 vertices 𝑏1, . . . , 𝑏𝑑 , each of them having

exactly 𝑘 neighbors, the vertices 𝑣1, . . . , 𝑣𝑘 . Note that the vertices 𝑎
𝑧
𝑖,𝑗
, 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 , 𝑧 ∈ {1, 2}, and 𝑏𝑧 , 𝑧 ∈ {1, . . . , 𝑑}, form an independent

set.

Let discuss about the form of an optimal (𝑝, 𝑡)-sparsifiers of 𝐺𝑘 where 𝑝 (1) = 0% and 𝑡 = 2. First for each 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 , with regard to the

neighbors of 𝑎1
𝑖, 𝑗

and 𝑎2
𝑖, 𝑗
, one can easily check that an optimal solution should contains the edge {𝑣𝑖 , 𝑣 𝑗 } together with one edge incident to

𝑎1
𝑖, 𝑗

and one edge incident to 𝑎2
𝑖, 𝑗
. This allows to satisfy the neighborhood constraint of 𝑎1

𝑖, 𝑗
and 𝑎2

𝑖, 𝑗
with 3 edges where any other solution

needs strictly more edges. We obtain that all the edges in the clique 𝐾 should be in any optimal solution. Adding exactly one edge incident to

𝑏𝑖 for each 𝑖 ∈ {1, . . . , 𝑑} provides an optimal (𝑝, 𝑡)-sparsifiers that contains𝑚𝑜𝑝𝑡 = 2 ·
(𝑘+1
2

)
+ 𝑑 = 𝑑 + 𝑘 · (𝑘 + 1) edges.

Let discuss about what can append with the use of the LP ordering when applied to 𝐺𝑘 . Lets assume that the LP provides a weight 1 for

each edge of the clique 𝐾 , the edges {𝑎1
𝑖, 𝑗
, 𝑣𝑖 }, 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 , and the edges {𝑏𝑧 , 𝑣1}, 𝑧 ∈ {1, . . . , 𝑑}, corresponding to the edges of an optimal

solution and 0 to all other edges. Let assume that the edges of the set 𝐸0 = {{𝑣0, 𝑣 𝑗 } | 0 < 𝑗 ≤ 𝑘} come first in the created ordering, that is a

possibility, followed directly by the other edges, named 𝐸1, of 𝐾 . Then when applying Algorithm 1, we obtain that the edges of 𝐸0 will be

added to the solution and the other edge {𝑣𝑖 , 𝑣 𝑗 }, 0 < 𝑖 < 𝑗 ≤ 𝑘 , will not as the condition of line 11 of the algorithm will already be satisfied.

Because of this, when we will deal with the edges incident to 𝑏𝑧 , 𝑧 ∈ {𝑖, . . . , 𝑑}, we will have to add each of them as none of the edges of 𝐸1

has been selected. This creates a solution of size at least𝑚𝐿𝑃 = 𝑑 · 𝑘 + 𝑘 . Using 𝑑 = 𝑘 · (𝑘 + 1), we obtain that𝑚𝐿𝑃 > 𝑘
2
·𝑚𝑜𝑝𝑡 . Thus no

constant factor approximation can be obtained here.

7 TABLES 5 WITH ALL DATASETS
Because of space limitation, we did not include the ENZYMES ans CA-HEPTH datasets in Table 5. In the following, we provide this table

with all the datasets.

Neighborhood-Preserving Graph Sparsification
Supplementary Material

Ta
bl
e
5:

Eff
ec
to

f
th
e
sp

ar
si
fi
ca
ti
on

on
th
e
en

tr
op

y
lo
ss

C
O
L
L
A
B

I
M
D
B

M
S
R
C
_

P
R
O
T
E
I
N
S

P
U
B
M
E
D

C
I
T
E
S
E
E
R

C
A
-
H
E
P
T
H

C
O
R
A

F
L
I
C
K
R

L
I
V
E

C
A
-

B
L
O
G
-

E
N
Z
Y
M
E
S

F
R
I
E
N
D
S
T
E
R

G
S
H
-

A
v
e
r
a
g
e

B
I
N
A
R
Y

2
1
C

J
O
U
R
N
A
L

A
S
T
R
O
P
H

C
A
T
A
L
O
G

2
0
1
5

p
t
S
p
a
r

1.
00

%
1
.5
0
%

0.
60

%
1
.5
0
%

0
.7
1
%

0
.6
5
%

0.
62

%
0
.4
0
%

0
.2
6
%

0
.7
8
%

0
.9
0
%

1
.6
7
%

1
.5
8
%

0
.7
1
%

0
.6
9
%

0.
85

%
S
L
B

2
0
.8
0
%

2
2
.7
0
%

4
.4
0
%

4
.1
0
%

0
.2
9
%

0
.7
7
%

4
.2
8
%

0
.5
1
%

0
.4
8
%

O
T

0
.9
4
%

T
O

2
1
.8
%

T
O

T
O

-

A
D

1
1
.8
0
%

3
.7
0
%

1
.5
0
%

4
.9
0
%

0
.5
2
%

0
.2
7
%

1
.4
3
%

0.
14

%
0.
07

%
2
.7
0
%

2
.8
9
%

0.
10

%
4
%

0
.6
2
%

0
.7
8
%

2
.5
9
%

L
S

7
.7
0
%

6
.4
0
%

0
.6
0
%

1.
30

%
0.
07

%
0.
17

%
0
.6
3
%

0
.2
1
%

0
.2
4
%

1
.0
9
%

1
.5
6
%

1
.2
8
%

6
.7
%

0.
48

%
0.
61

%
2
.0
3
%

Q
S
B

2
.9
0
%

1
.2
0
%

1
.7
0
%

5
.3
0
%

0
.6
0
%

1
.0
0
%

1
.7
5
%

1
.1
2
%

0.
07

%
0.
31

%
0.
75

%
1
.6
0
%

1
.5
%

0
.6
0
%

0
.8
4
%

1
.6
1
%

S
B

1
.7
0
%

1.
10

%
1
.8
0
%

4
.4
0
%

0
.6
3
%

1
.0
8
%

1
.7
7
%

1
.1
8
%

0.
07

%
0
.6
4
%

0
.9
8
%

4
.4
5
%

1.
45

%
0
.6
3
%

0
.9
2
%

1
.6
0
%

E
F
F

7
.4
0
%

6
.6
0
%

2
.9
0
%

3
.8
0
%

0
.7
8
%

1
.8
7
%

3
.0
7
%

1
.4
8
%

0
.4
7
%

2
.4
8
%

3
.1
5
%

3
.7
6
%

8
.3
%

0
.7
8
%

0
.9
9
%

3
.2
3
%

L
D

2
1
.3
0
%

1
9
.4
0
%

6
.4
0
%

4
.8
0
%

0
.5
7
%

0
.5
6
%

6
.5
7
%

1
.3
0
%

0
.4
4
%

0
.4
6
%

2
.8
4
%

6
.7
4
%

1
7
.9
3
%

1
.2
6
%

1
.1
3
%

5
.9
4
%

R
E

6
.8
0
%

5
.9
0
%

2
.7
0
%

2
.5
0
%

0
.8
8
%

1
.5
0
%

2
.6
6
%

1
.5
8
%

0
.7
2
%

1
.7
3
%

1
.8
5
%

7
.2
6
%

5
.8
7
%

0
.6
8
%

0
.7
9
%

2
.9
9
%

	1 Link to code and Data
	2 Proof of Theorem 2
	3 Proof of Theorem 3
	4 Proof of Theorem 4
	5 Complexity analysis
	6 Discussion about the approximation ratio
	7 Tables 5 with all datasets

