diff --git a/README.md b/README.md
index 499cc73047f58096bc46ba407cec3cad3f54ad17..a2e97e1307f5c3845c1477d7c6c1391ecb1674b1 100755
--- a/README.md
+++ b/README.md
@@ -31,7 +31,11 @@ Next, to install the database, run the MongoDB server and execute this command (
 ./mongorestore --archive=/path/to/dump-iris.bin
 ```
 
-where `/path/to/` is the path to the dump file of the IRIS collection (provided with the package mongiris in `mongiris/data/dump-iris.bin`).
+where `/path/to/` is the path to the dump file of the IRIS collection (provided with the package mongiris in `mongiris/data/dump-iris.bin`). 
+You may have to create two folders for Mongodb: `data/db` under `PATH/TO/MONGODB/bin`. A tip is to move the dump into that folder and use the hollowing steps:
+
+1. In a first terminal: `./mongod --dbpath=./data/db` (to run mongodb),
+2. In a second terminal: `./mongorestore --archive=./data/db/dump-dbinsee.bin` (to restore data from the dump).
 
 ### Run Predihood
 
diff --git a/predihood/__init__.py b/predihood/__init__.py
index b22478b7c702aba8e96c2a06009250a37cb23920..b85fb43366971f6c9024513fa238df2f7c2a8cc4 100644
--- a/predihood/__init__.py
+++ b/predihood/__init__.py
@@ -1,4 +1,3 @@
 import logging
-import sys
 
 logging.basicConfig(level=logging.DEBUG)
\ No newline at end of file
diff --git a/predihood/classifiers_list.py b/predihood/classifiers_list.py
index d1971991e9d133645ec23814659961ce73a88d9d..052708daac65dbc5ac5e3b7960d4049f63281431 100644
--- a/predihood/classifiers_list.py
+++ b/predihood/classifiers_list.py
@@ -1,7 +1,6 @@
 # define available classifiers for the algorithmic interface
 import os
 import re
-import sys
 
 from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
 from sklearn.neighbors import KNeighborsClassifier
@@ -12,7 +11,7 @@ from sklearn.tree import DecisionTreeClassifier
 import importlib
 tree = os.listdir('algorithms')
 regex = re.compile(r'__[^_]*__')
-tree_filtered = [i for i in tree if not regex.match(i)] # remove undesirable files such as __pycache__
+tree_filtered = [i for i in tree if not regex.match(i)]  # remove undesirable files such as __pycache__
 
 AVAILABLE_CLASSIFIERS = {
     "Random Forest Classifier": RandomForestClassifier,
diff --git a/predihood/static/js/carto.js b/predihood/static/js/carto.js
index b13931a0b8d47885a6831748d74763b4f2243c0e..df7e98ae0edf57705b12806ce1370f44e605686f 100644
--- a/predihood/static/js/carto.js
+++ b/predihood/static/js/carto.js
@@ -104,87 +104,34 @@ function displayPopup(e) {
         divInformation.append(moreInfosLink);
     }
 
-
-    if($("#assessmentMode").is(":checked")) {
-        // alert("assessment mode");
-
-        for(let env in environment_variables) {
-            let env_values = environment_variables[env]
-            let div_container = $("<div>").prop("id", "assessment"+env)
-            let list_values = $("<select>");
-            for(let value in env_values) { list_values.append($("<option>").prop("value", env_values[value]).text(env_values[value])) }
-            div_container.append(env).append(list_values)
-            divInformation.append(div_container)
-        }
-
-        if($("#addAssessmentButton").length > 0) {
-            $("#addAssessmentButton").removeAttr("id"); // remove id to avoid duplicates (fix the miss of event on button)
-        }
-
-        let to_csv_button = $("<button>").prop("id", "addAssessmentButton");
-        if(preferred_language_carto === "french") {
-            to_csv_button.text("Ajouter au jeu de données");
-        } else {
-            to_csv_button.text("Add to dataset");
-        }
-
-        let messageTooltip = divInformation[0].outerHTML + to_csv_button[0].outerHTML;
-        layer.bindPopup(messageTooltip)
-        layer.bringToFront();
-        layer.openPopup();
-
-        $("#addAssessmentButton").on("click", function() {
-            let data_param = {}
-            for(let env in environment_variables) {
-                data_param[env] = $("#assessment"+env)[0].children[0].value
-            }
-            data_param["code_iris"] = code_iris
-            console.log(data_param)
-            $.ajax({
-                type: "GET",
-                url: "/add_iris_to_csv",
-                data: data_param,
-                "async": false,
-                contentType: 'application/json;charset=UTF-8',
-                success: function(result) {
-                    alert(result)
-                },
-                error: function(result, textStatus, errorThrown) {
-                    console.log(errorThrown);
-                }
-            });
-        });
+    if (selected_algorithm !== "undefined" && selected_algorithm !== undefined) {
+        predictions = predict(code_iris, selected_algorithm)
+        console.log(predictions)
     }
-    else {
-        if (selected_algorithm !== "undefined" && selected_algorithm !== undefined) {
-            predictions = predict(code_iris, selected_algorithm)
-            console.log(predictions)
-        }
 
-        let selectAlgorithm = $("<select>")
-        selectAlgorithm
-            .prop("id", "selectAlgorithmTooltip")
-            .append($("<option>").prop("value", "undefined").text("---"))
+    let selectAlgorithm = $("<select>")
+    selectAlgorithm
+        .prop("id", "selectAlgorithmTooltip")
+        .append($("<option>").prop("value", "undefined").text("---"))
 
-        for(let algorithm of classifiers) {
-           selectAlgorithm.append($("<option>").prop("value", algorithm).text(algorithm));
-        }
-        previously_selected_algorithm = selected_algorithm;
+    for(let algorithm of classifiers) {
+       selectAlgorithm.append($("<option>").prop("value", algorithm).text(algorithm));
+    }
+    previously_selected_algorithm = selected_algorithm;
 
-        let divPredictions = $("<div>").prop("id", "divPredictions")
-        if(predictions !== undefined) {
-            for(let key in predictions) { divPredictions.append(capitalizeFirstLetter(key.split("_").join(" "))+': ' + predictions[key]["most_frequent"] + " (" + predictions[key]["count_frequent"] + "/7)").append($('<br>')); }
-        }
+    let divPredictions = $("<div>").prop("id", "divPredictions")
+    if(predictions !== undefined) {
+        for(let key in predictions) { divPredictions.append(capitalizeFirstLetter(key.split("_").join(" "))+': ' + predictions[key]["most_frequent"] + " (" + predictions[key]["count_frequent"] + "/7)").append($('<br>')); }
+    }
 
-        let messageTooltip = divInformation[0].outerHTML + selectAlgorithm[0].outerHTML + divPredictions[0].outerHTML;
-        console.log(messageTooltip)
-        layer.bindPopup(messageTooltip)
-        layer.bringToFront();
-        layer.openPopup();
+    let messageTooltip = divInformation[0].outerHTML + selectAlgorithm[0].outerHTML + divPredictions[0].outerHTML;
+    console.log(messageTooltip)
+    layer.bindPopup(messageTooltip)
+    layer.bringToFront();
+    layer.openPopup();
 
-        $("#selectAlgorithmTooltip").val(previously_selected_algorithm); // must be after binding the popup to be effective
-        $("#selectAlgorithmTooltip").on("click", function() { displayPopup(e)}) // update popup (env variables) when click on an algorithm
-    }
+    $("#selectAlgorithmTooltip").val(previously_selected_algorithm); // must be after binding the popup to be effective
+    $("#selectAlgorithmTooltip").on("click", function() { displayPopup(e)}) // update popup (env variables) when click on an algorithm
 }
 
 /**
diff --git a/predihood/temp.py b/predihood/temp.py
deleted file mode 100644
index 3ea63a13d49acebd0cda3eecd1802d3aaec977b4..0000000000000000000000000000000000000000
--- a/predihood/temp.py
+++ /dev/null
@@ -1,89 +0,0 @@
-import pandas as pd
-from sklearn.cluster import KMeans
-
-from predihood.classes.Data import Data
-from predihood.classes.Dataset import Dataset
-from predihood.classes.Method import Method
-from predihood.config import ENVIRONMENT_VALUES
-
-
-def geo_position():
-    file = pd.read_csv("generated_files/cleaned_data.csv")
-    north, south, east, west, southEast, northEast, southWest, northWest, centre, problem = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
-
-    for index, line in file.iterrows():
-        # print(line)
-        # print(line["old_landscape"])
-        if isinstance(line["old_geographical_position"], str):
-            old_val = line["old_geographical_position"].split()[0].upper()
-            if old_val == "NORD":
-                north += 1
-            elif old_val == "SUD":
-                south += 1
-            elif old_val == "EST":
-                east += 1
-            elif old_val == "OUEST":
-                west += 1
-            elif old_val == "CENTRE":
-                centre += 1
-            elif old_val == "NORD-EST":
-                northEast += 1
-            elif old_val == "NORD-OUEST":
-                northWest += 1
-            elif old_val == "SUD-EST":
-                southEast += 1
-            elif old_val == "SUD-OUEST":
-                southWest += 1
-            else:
-                problem += 1
-                print(line["old_geographical_position"])
-        else:
-            print(line["old_geographical_position"])
-            problem += 1
-
-        if isinstance(line["new_geographical_position"], str):
-            new_val = line["new_geographical_position"].split()[0].upper()
-            if new_val == "NORD":
-                north += 1
-            elif new_val == "SUD":
-                south += 1
-            elif new_val == "EST":
-                east += 1
-            elif new_val == "OUEST":
-                west += 1
-            elif new_val == "CENTRE":
-                centre += 1
-            elif new_val == "NORD-EST":
-                northEast += 1
-            elif new_val == "NORD-OUEST":
-                northWest += 1
-            elif new_val == "SUD-EST":
-                southEast += 1
-            elif new_val == "SUD-OUEST":
-                southWest += 1
-            else:
-                problem += 1
-                print(line["new_geographical_position"])
-        else:
-            print(line["new_geographical_position"])
-            problem += 1
-
-    print(north, south, east, west, southEast, northEast, southWest, northWest, centre, " - ", problem)
-
-
-def k_means_v1():
-    data = Data()
-    data.init_all_in_one()
-    for env in ENVIRONMENT_VALUES:
-        dataset = Dataset(data, env, "unsupervised")
-        # dataset.selected_indicators =
-        nb_clust = len(ENVIRONMENT_VALUES[env])
-        print(dataset.selected_indicators)
-
-        estimator = Method("kmeans", dataset, KMeans(n_clusters=nb_clust))
-        estimator.fit()
-
-
-if __name__ == '__main__':
-    # k_means_v1()
-    geo_position()
diff --git a/predihood/templates/algorithmic-interface.html b/predihood/templates/algorithmic-interface.html
index 9b4c6e52351dedf555b59e0a368f15ef2c94bd4a..1c0f0d2aae2e824f661611816c6ec3dc2c9d59db 100644
--- a/predihood/templates/algorithmic-interface.html
+++ b/predihood/templates/algorithmic-interface.html
@@ -33,7 +33,7 @@
                         {% if language == "french" %}
                             <h6>Paramètres spécifiques<i id="specificParametersTitle" class="fas fa-angle-double-up"></i></h6>
                             <ul id="specificParameters" class="nav flex-column bg-white mb-0" style="display: block"></ul>
-                            <h6>Paramèteres communs<i id="commonParametersTitle" class="fas fa-angle-double-up"></i></h6>
+                            <h6>Paramètres communs<i id="commonParametersTitle" class="fas fa-angle-double-up"></i></h6>
                             <ul id="commonParameters" class="nav flex-column bg-white mb-0" style="display: block"></ul>
                         {% else %}
                             <h6>Specific parameters<i id="specificParametersTitle" class="fas fa-angle-double-up"></i></h6>
diff --git a/predihood/templates/form.html b/predihood/templates/form.html
index 2f114f0f862f1835162f0b4213ae25565ee624cd..84d99687daace27c7db28553f41250fadc1f9333 100644
--- a/predihood/templates/form.html
+++ b/predihood/templates/form.html
@@ -55,14 +55,6 @@
   <br>
 </div>
 
-<div>
-    {% if language == "french" %}
-        Expertise manuelle: <input type="checkbox" id="assessmentMode"/>
-    {% else %}
-        Manual assessment: <input type="checkbox" id="assessmentMode"/>
-    {% endif %}
-</div>
-
 <div class="input-group mb-3">
     <button class="btn" type="button" id="boutonEffacer">
         {% if language == "french" %}
diff --git a/predihood/tests.py b/predihood/tests.py
index 97fb69451af178d245f8b8078decbbf8b4d59b55..d445c260b8588caf9c8ed0ae29b84f39f6cfb8ad 100644
--- a/predihood/tests.py
+++ b/predihood/tests.py
@@ -54,7 +54,7 @@ class TestCase(unittest.TestCase):
         classifier_name = "KNeighbors Classifier"
         classifier = get_classifier(classifier_name)
         # classifier == KNeighborsClassifier() fails because they are different objects
-        assert type(classifier) == type(KNeighborsClassifier())
+        assert classifier.isistance(type(KNeighborsClassifier()))
 
     def test_set_classifier(self):
         # test if setting the parameters of a classifier changes its internal parameters
@@ -150,4 +150,3 @@ class TestCase(unittest.TestCase):
 
 if __name__ == "__main__":
     unittest.main(verbosity=2)  # run all tests with verbose mode
-