diff --git a/predihood/classes/Classifier.py b/predihood/classes/Classifier.py
index 11bdb62582a0dd9c8629dcb9fcad3debd60b4412..9be06c35c7b3b41fdd35e1e95522f1fe3e852d73 100644
--- a/predihood/classes/Classifier.py
+++ b/predihood/classes/Classifier.py
@@ -13,4 +13,4 @@ class Classifier:
     def set_params(self, **parameters):
         for parameter, value in parameters.items():
             setattr(self, parameter, value)
-        return self
\ No newline at end of file
+        return self
diff --git a/predihood/static/css/styles.css b/predihood/static/css/styles.css
index b9ba52570170460290354ca2d4a45829f85004f0..02f6de538a1e22ed1e6a164d539b1f2a0d0374a8 100644
--- a/predihood/static/css/styles.css
+++ b/predihood/static/css/styles.css
@@ -2,8 +2,6 @@ html, body {
     width: 100%;
     height: 100%;
     padding: 0;
-    overflow-x: scroll;
-    overflow-y: scroll;
 }
 
 header {
@@ -77,7 +75,6 @@ h3 {
 }
 */
 
-
 .fa-angle-double-down, .fa-angle-double-up {
     margin-left: 0.5rem;
 }
@@ -85,53 +82,16 @@ h3 {
 
 /**************************************************/
 
-/*.vertical-nav {*/
-/*    min-width: 17rem;*/
-/*    width: 17rem;*/
-/*    height: 100vh;*/
-/*    position: fixed;*/
-/*    top: 0;*/
-/*    left: 0;*/
-/*    box-shadow: 3px 3px 10px rgba(0, 0, 0, 0.1);*/
-/*    transition: all 0.4s;*/
-/*    overflow-x: scroll; !* allow to scroll in the menu *!*/
-/*}*/
-
 .page-content {
     width: calc(100% - 17rem);
     margin-left: 17rem;
     transition: all 0.4s;
 }
 
-/* for toggle behavior */
-/*#sidebar.active {*/
-/*    margin-left: -17rem;*/
-/*}*/
-
-/*#content.active {*/
-/*    width: 100%;*/
-/*    margin: 0;*/
-/*}*/
-
-/*@media (max-width: 768px) {*/
-/*    !* small devices *!*/
-/*    #sidebar {*/
-/*        margin-left: -17rem;*/
-/*    }*/
-
-/*    #sidebar.active {*/
-/*        margin-left: 0;*/
-/*    }*/
-
 #content {
     text-align: left;
 }
 
-/*    #content.active {*/
-/*        margin-left: 17rem;*/
-/*        width: calc(100% - 17rem);*/
-/*    }*/
-/*}*/
 
 .separator {
     margin: 3rem 0;
@@ -146,7 +106,6 @@ h3 {
     font-size: 0.9rem;
 }
 
-
 .table-hover tbody tr:hover {
    background-color: lightgray;
 }
diff --git a/predihood/static/img/logo-imu.png b/predihood/static/img/logo-imu.png
new file mode 100644
index 0000000000000000000000000000000000000000..686bd5285a2d9f45831b7a72e97eb51b9d8f72b6
Binary files /dev/null and b/predihood/static/img/logo-imu.png differ
diff --git a/predihood/static/img/logo-insee.jpg b/predihood/static/img/logo-insee.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0352fa97a0f9234cbb7830af908f05ddbd952a60
Binary files /dev/null and b/predihood/static/img/logo-insee.jpg differ
diff --git a/predihood/static/img/liris.png b/predihood/static/img/logo-liris.png
similarity index 100%
rename from predihood/static/img/liris.png
rename to predihood/static/img/logo-liris.png
diff --git a/predihood/templates/footer.html b/predihood/templates/footer.html
index 78d0124f734989996f8ade5fec6ae6693dfc4195..62198f2df72c6d89e3d3310af33fa8cf05eba1a4 100644
--- a/predihood/templates/footer.html
+++ b/predihood/templates/footer.html
@@ -1,18 +1,8 @@
 <footer>
     <hr>
     <div style="display: flex; justify-content: space-around;">
-        <a href="https://liris.cnrs.fr/"><img src="{{url_for('static', filename='img/liris.png')}}" width="111px" height="50px" alt="Laboratoire d'InfoRmatique en Imagerie et Systèmes d'information"/></a>
-        <a href="http://imu.universite-lyon.fr/projet/hil-intelligence-artificielle-pour-faciliter-la-recherche-immobiliere-systeme-de-recommandation-avec-visualisation-spatiale-et-non-spatiale-pour-la-recherche-immobiliere-2017/">
-            <img src="{{url_for('static', filename='img/imu.jpg')}}" width="126px" height="50px" alt="Laboratoire d'Excellence - Intelligence des Mondes Urbains"/>
-        </a>
-    </div>
-    <hr>
-    <div style="display: flex; justify-content: space-around;">
-        {% if language == "french" %}
-            <span>Sources de données<br>(statistiques, IRIS)</span>
-        {% else %}
-            <span>Data sources<br>(statistics, IRIS)</span>
-        {% endif %}
-        <a href="http://www.insee.fr/"><img src="{{url_for('static', filename='img/insee.jpg')}}" width="43px" height="50px" alt="INSEE"/></a>
+        <a href="https://liris.cnrs.fr/"><img src="{{url_for('static', filename='img/logo-liris.png')}}" height="50px" alt="LIRIS"/></a>
+        <a href="http://imu.universite-lyon.fr/projet/hil-intelligence-artificielle-pour-faciliter-la-recherche-immobiliere-systeme-de-recommandation-avec-visualisation-spatiale-et-non-spatiale-pour-la-recherche-immobiliere-2017/"><img src="{{url_for('static', filename='img/logo-imu.png')}}" height="50px" alt="LabEx IMU"/></a>
+        <a href="http://www.insee.fr/"><img src="{{url_for('static', filename='img/logo-insee.jpg')}}" height="50px" alt="INSEE"/></a>
     </div>
 </footer>
\ No newline at end of file
diff --git a/predihood/templates/index.html b/predihood/templates/index.html
index 4724c4b9040a79f9e70f744cd030c2aa7f1ba438..472d1cb9577851622e4b926a451f369dc2770d92 100644
--- a/predihood/templates/index.html
+++ b/predihood/templates/index.html
@@ -31,7 +31,7 @@
                     <button id="btnSearch" class="btn btn-success"><a href="cartographic-interface.html" style="color: black">Rechercher un quartier</a></button>
                 {% else %}
                     <p>I'm looking for a new living place</p><br>
-                    <button id="btnSearch" class="btn btn-success"><a href="cartographic-interface.html" style="color: black">Search a neighbourhood</a></button>
+                    <button id="btnSearch" class="btn btn-success"><a href="cartographic-interface.html" style="color: black">Search neighbourhoods</a></button>
                 {% endif %}
             </div>
         </div>
@@ -44,8 +44,8 @@
                     <p>Je souhaite paramétrer mes algorithmes</p><br>
                     <button id="btnTune" class="btn btn-success"><a href="algorithmic-interface.html" style="color: black">Paramétrer mes algorithmes</a></button>
                 {% else %}
-                    <p>I want to tune my classifier</p><br>
-                    <button id="btnTune" class="btn btn-success"><a href="algorithmic-interface.html" style="color: black">Tune my classifiers</a></button>
+                    <p>I want to tune and run classifiers</p><br>
+                    <button id="btnTune" class="btn btn-success"><a href="algorithmic-interface.html" style="color: black">Run classifiers</a></button>
                 {% endif %}
             </div>
         </div>
diff --git a/predihood/tests_selection.py b/predihood/tests_selection.py
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..1e5640fd2331512da69620dce814923640fe3087 100644
--- a/predihood/tests_selection.py
+++ b/predihood/tests_selection.py
@@ -0,0 +1,30 @@
+#!/usr/bin/env python
+# encoding: utf-8
+# =============================================================================
+# Unit tests for predihood.
+# =============================================================================
+import os
+
+import pandas as pd
+import unittest
+
+from predihood.config import FOLDER_DATASETS, ENVIRONMENT_VALUES
+
+
+class TestCase(unittest.TestCase):
+    """
+    A class for Predihood unit tests.
+    """
+
+    def test_values_dataset(self):
+        # test if values used in dataset are the same than the one declared by social science researchers
+        filename = os.path.join(FOLDER_DATASETS, "data_density.csv")
+        dataset = pd.read_csv(filename)
+        values_for_building_type = set([value for key, value in ENVIRONMENT_VALUES["building_type"].items()])
+
+        assert set(dataset["building_type"].tolist()) == values_for_building_type
+
+
+if __name__ == "__main__":
+    unittest.main(verbosity=2)  # run all tests with verbose mode
+
diff --git a/predihood/tests_utility_functions.py b/predihood/tests_utility_functions.py
index f945fb1165452fd0c590d476a99a83e740c70e6a..e7a60c59cdaf05f12fd31c282f321e8083b18157 100644
--- a/predihood/tests_utility_functions.py
+++ b/predihood/tests_utility_functions.py
@@ -18,26 +18,31 @@ class TestCase(unittest.TestCase):
     """
 
     def test_address_to_code(self):
+        # test if converting an address into a code gives the correct code
         address = "46 avenue Victor Hugo Tassin"
         code = address_to_code(address)
         assert code == "692440201"
         assert 1 != "1"
 
+        # test if converting an address not located in France returns None
         address = "Westminster, London SW1A 0AA, United Kingdom"
         code = address_to_code(address)
         assert code is None
 
     def test_address_to_city(self):
+        # test if converting an address into a city gives the correct city
         address = "46 avenue Victor Hugo Tassin"
         city = address_to_city(address)
         assert city == "Tassin-la-Demi-Lune"
 
     def test_indicator_full_to_short_label(self):
+        # test if converting a full label of an indicator into its short label gives the correct short label
         full_label = "Pop 11-17 ans en 2014 (princ)"
         short_label = indicator_full_to_short_label(full_label)
         assert short_label == "P14_POP1117"
 
     def test_indicator_short_to_full_label(self):
+        # test if converting a short label of an indicator into its full label gives the correct full label
         short_label = "P14_POP1117"
         full_label = indicator_short_to_full_label(short_label)
         assert full_label == "Pop 11-17 ans en 2014 (princ)"
@@ -46,12 +51,14 @@ class TestCase(unittest.TestCase):
         assert True == True  # TODO
 
     def test_get_classifier(self):
+        # test if selecting a classifier gives the correct object
         classifier_name = "KNeighbors Classifier"
         classifier = get_classifier(classifier_name)
         # classifier == KNeighborsClassifier() fails because they are different objects
         assert type(classifier) == type(KNeighborsClassifier())
 
     def test_set_classifier(self):
+        # test if setting the parameters of a classifier changes its internal parameters
         classifier_name = "KNeighbors Classifier"
         classifier = get_classifier(classifier_name)
         assert classifier.n_neighbors == 5  # default is 5
@@ -61,6 +68,7 @@ class TestCase(unittest.TestCase):
         assert classifier.n_neighbors == 10
 
     def test_signature(self):
+        # test if the signature function is able to pick correct parameters
         classifier_name = "KNeighbors Classifier"
         classifier_signature = signature(classifier_name)
         assert "n_neighbors" in classifier_signature
@@ -68,6 +76,11 @@ class TestCase(unittest.TestCase):
         assert classifier_signature["n_neighbors"]["default"] == "5"
 
     def test_train_test_percentages(self):
+        # test if train and test sizes are correctly changed if needed
+        train_size, test_size = check_train_test_percentages(0.7, 0.3)
+        assert train_size == 0.7
+        assert test_size == 0.3
+
         train_size, test_size = check_train_test_percentages(40, 60)
         assert 0 < train_size < 1
         assert 0 < test_size < 1
@@ -79,18 +92,21 @@ class TestCase(unittest.TestCase):
         assert train_size + test_size == 1
 
     def test_intersection(self):
+        # test if intersection gives the correct output
         l1 = [1, 2, 3]
         l2 = [2, 3, 4]
         result = intersection(l1, l2)
         assert result == [2, 3]
 
     def test_union(self):
+        # test if union gives the correct output
         l1 = [1, 2, 3]
         l2 = [2, 3, 4]
         result = union(l1, l2)
         assert result == [1, 2, 3, 4]
 
     def test_similarity(self):
+        # test if a given value is correctly compared to already added values by checking the returned index
         value = "Countyside"
         lst = [["Houses", "House"], ["Countryside", "Countrysid"], ["Green areas"]]
         index = similarity(value, lst)
@@ -107,12 +123,14 @@ class TestCase(unittest.TestCase):
         assert index == -2
 
     def test_get_most_frequent(self):
+        # test if the most frequent function gives the correct value and count correctly the number of occurrences
         lst = ["Houses", "Houses", "Towers", "Housing estate", "Houses"]
         result = get_most_frequent(lst)
         assert result["most_frequent"] == "Houses"
         assert result["count_frequent"] == 3
 
     def test_add_assessment_to_file(self):
+        # test if an IRIS is correctly added to the dataset and if it is not appended twice
         code_iris = "692440201"
         values = ["Houses", "Housing", "Green areas", "Peri-urban", "West", "Upper middle"]
         add_assessment_to_file(code_iris, values)