
Query-replace operations for topologically controlled 3D mesh editing

Guillaume Damiand, Vincent Nivoliers

Univ Lyon, CNRS, UCBL, INSA Lyon, LIRIS, UMR5205, F-69622 Villeurbanne, France

A R T I C L E I N F O

Article history:
Received July 21, 2022

3D Volumic Mesh, Transformation Op-
eration, Topological Validity, Query-Re-
place.

A B S T R A C T

We propose a generic framework to describe modifications on 3D objects (surfaces and
volumes) based on a query and replace mechanism. These modifications are described
in terms of rewriting rules: a set of patterns is provided, each one defining a possible re-
placement. The patterns are expressed using 3D combinatorial maps, ensuring the global
topological validity of the transformed mesh. At the core of the framework, we use topo-
logical signatures to efficiently query and match patterns on the input. Our formalism can
generically describe many different transformations like subdivision, smoothing, topolog-
ical correction, or remeshing. Its interest is twofold. It provides an easy implementation
for such operations, especially when many cases arise: we provide an example with over
300 cases. It is also able to detect corner cases that were not provided and are required to
ensure the topological correctness of the output.

1. Introduction

Many operations can be designed on volumetric meshes to
build or modify them, such as the generation of conformal hexa-
hedral meshes using adaptive refinement [1], hexahedral meshes
based on symmetric moving frames [2] or octrees [3] and hy-
brid mesh generation in parallel based on refinement and coars-
ening [4] for instance. Non-conventional meshes made of a wider
class of polygons rather than just triangles are also getting used
in computer graphics in applications based on tilings such as tex-
ture generation, sampling theory, remeshing, and generation of
decorative patterns [5]. New methods are developed to mesh sur-
faces with such meshes [6] or exploit their aperiodic structure in
procedural generation [7].

These applications on various types of meshes (hexahedral
meshes, mixed polygonal or polyhedral elements) emphasize the
need for operations to transform these meshes. Many of the
transformation operations in the above mentioned contributions –
adaptive refinement or tiling for instance – can be seen as query-
replace operation: a target cell is transformed by replacing its
interior by another subdivision given by a pattern. The usual
pipeline to perform such operations is first to identify for each
element the corresponding case, and then to insert the replace-
ment. Detecting cases depends on the problem, and is gener-
ally performed by indexing the cases and designing an algorithm
computing for each input cell the corresponding index. Adding
the replacements requires identifying the entities (vertices, edges,
faces) to be matched and connected for each case. With many
cases, this becomes a tedious task, and factoring the code for this

∗Corresponding author
e-mail: guillaume.damiand@cnrs.fr (Guillaume Damiand)

identification on multiple cases is error prone.
Our main contribution in this work is the definition of a generic

query-replace framework that allows to: (1: query) quickly iden-
tify portions of the input mesh compatible with a set of desirable
modifications and (2: replace) locally remesh the interior of the
identified portion of the input mesh by the interior of the pro-
vided pattern, ensuring a topologically valid output. In our work,
we focus on replacing single faces or volume elements of the
mesh. Faces can have any number of vertices and volume ele-
ments can have any connected manifold as boundary. The prob-
lem is especially complex for volume elements where applying a
replacement requires matching arbitrary complex manifolds.

Our method has several advantages that will be detailed in the
following: (1) it is generic (works for patterns and targets with
any topology); (2) it is easy to use: patterns can be designed with
a 3D modeler in which case there is no code to write; (3) it pro-
duces a mesh with a valid topology avoiding topological cracks;
(4) the query from a set of patterns is efficient thanks to the use of
topological signatures; (5) the query tool can be used in order to
prove the validity and completeness of a set of patterns, to avoid
missing corner cases. To the best of our knowledge, our solution
is the first operation of this kind providing all these properties.

1.1. Related Work

Several works about mesh generation and transformation exist
based on the idea of using transformation rules. For example, in
procedural modeling, 3D objects can be generated automatically,
using some randomness to add variety to the final result (see for
example [7]). But such techniques usually are only able to gen-
erate a mesh and do not allow to transform an existing mesh.

Shape grammars [8] and L-systems [9] are methods allowing
to generate meshes based mainly on grammar and rewriting rules



2

(several variants exist based on the same principle). These meth-
ods allow mainly to create a mesh. Due to their recursive nature,
they can be easily used to create fractal objects. For this reason,
they were used for example to describe plants and other branch-
ing structures [10] or architectural models of buildings of differ-
ent styles [11]. The grammar is defined based on a number of
symbols that represent components of the mesh, and symbols are
transformed according to rewriting rules. [12] proposes an ex-
tension of L-systems to 3G-maps (a variant of 3D combinatorial
maps) which is also based on symbols associated with volumes
and faces of the mesh. The transformation rules of these meth-
ods use symbols and the validity of the produced mesh depends
on the validity of the rules defined by users. Moreover, the def-
inition of the rules can be a complicated and long task requiring
an high level of expertise.

Jerboa [13] uses a different approach. This is a topologi-
cal modeler based of G-maps, where all operations are defined
through particular graph transformation rules. These rules are
defined graphically in the modeler, and a specific formalism must
be learned before to be able to define a new rule. A rule can be
applied if a morphism exists between the left part of the rule and
the graph.

Our approach uses also the principle of rewriting rules. The
main differences between these previous works are: (1) our rules
are defined with patterns given as meshes. They can be designed
with a 3D modeler, and there is no code to write, no new for-
malism to learn. (2) we guarantee the topological validity of the
result whatever the rules defined. (3) searching a rule among a
huge set is fast thanks to the use of our topological signature.

1.2. Outline
Preliminary notions are introduced in Section 2 before provid-

ing an introductive example in Section 3 to generally outline our
method. We then define in Section 4 the query part of the opera-
tion and in Section 5 the replace part. Section 6 states and proves
our claims about the properties and strengths of our method and
Section 7 finally provides several experiments to demonstrate its
use in practical applications.

2. Preliminaries and Related Work

2.1. Mesh Data Structures
Various data structures exist to describe meshes, depending

on the desired complexities. Winged edges [14], Doubly Con-
nected Edge List [15], half-edge data structure [16] or Surface
Meshes [17] are based on edges and allow for efficient queries for
most traversal operations. Corner Tables [18] are based on ver-
tices and are especially interesting for real time rendering with a
data layout that more closely matches that of the classical render-
ing pipeline. In this work, we use Combinatorial maps [19, 20]
which can be seen of a generalization of half-edge meshes which
can handle higher dimensional cell complexes. Comparisons for
these various data structures can be found in [21] and [20].

Our main reason for using combinatorial maps is that it al-
lows for the description of volumetric cell complexes with a fine
grain control over the topology of the complex. 2D faces and
3D cells are not limited to triangles, tetrahedrons or even convex
shapes. With such a data structure, our query and replace oper-
ations can precisely identify the regions of the input map where

4

1

c

ae

b

2

d

3

Fig. 1: Example of a 3-map encoding two adjacent cubes. Faces are drawn with
small gaps between them, in order to differentiate the darts. A detailed zoom of
the interface between the two cubes is provided on the right.

our replacement patterns can be applied without topological er-
rors. Reconnecting our replacements can be done efficiently and
without ambiguities, leaving a properly connected output map.

2.2. Combinatorial Maps

Combinatorial maps use darts as their core primitives. Darts
are attached to the edges of the cell complex, but duplicated for
each volumetric cell and each polygonal face incident to the edge.
The connectivity between these darts is encoded by functions
mapping darts to others. In terms of implementation, these func-
tions can be stored as pointers or indices.

Definition 1 (3D Combinatorial map [19]). A 3D combinato-
rial map (3-map) is defined by a tuple M = (D, β1, β2, β3) where

• D is a finite set of darts;

• β1 is a permutation on D, i.e., a one-to-one mapping from D
to D;

• β2 and β3 are involutions on D, i.e., a one-to-one mapping
from D to D such that βi = β

−1
i ;

• β1 ◦ β3 is an involution on D.

Intuitively, β1 connects the darts in order to circulate clock-
wise around the 2D face containing the dart. It is a permutation
because the boundary of every face is a cycle. We note β0 for β−1

1 ,
allowing to turn around faces with respect to the opposite orien-
tation. β2 connects darts associated to the same edge on adjacent
faces of the same volumetric cell. It therefore allows to circulate
the surface corresponding to the boundary of a single volumetric
cell. β3 connects darts corresponding to the same edge on the op-
posite face of an adjacent 3D cell. Using β3 therefore allows to
circulate between volumetric cells. A dart d is said to be i-sewn
with another dart d′ if d = βi(d′).

Comparing with half-edges, β0 is equivalent to previous, β1 is
equivalent to next, β2 is equivalent to opposite, and β3 is a new
relation similar to opposite but for volumes instead of faces.

In some cases, it may be useful to allow some βi to be partially
defined, thus leading to open combinatorial maps. The idea is
to add an element ϵ to the set of darts, and to allow darts to be
i-sewn with ϵ. By definition, ∀0 ≤ i ≤ 3, βi(ϵ) = ϵ. A dart d is
said i-free if βi(d) = ϵ. In this work, we restrict this possibility to



3

β3 for volumetric meshes, prohibiting this for β1 and β2 in order
to avoid degenerated configurations, while allowing meshes with
boundary, i.e. some volumes can have no adjacent volume along
some of their faces. A dart d 3-free belongs to the boundary of
the mesh: the face containing d is incident to only one volume.
For surface meshes without β3, we can allow β2 to be null, thus
allowing meshes with boundaries.

An example of a 3-map is provided in Fig. 1. It contains 48
darts representing two adjacent cubes. The closeup shows the
face separating the two cubes to illustrate the different dart oper-
ators. We have for example β0(a) = d, β1(a) = b, β2(a) = e, and
β3(a) = 1.

2.3. Combinatorial Maps Isomorphism
A combinatorial map can be seen as a graph with darts as

vertices, and connected by the β functions. For our query and
replace algorithm, we need a tool to match maps. In terms of
graphs, we therefore need to compute graph isomorphisms.

Definition 2 (Map Isomorphism [19]). Two 3-maps M =

(D, β1, β2, β3) and M′ = (D′, β′1, β
′
2, β
′
3) are isomorphic if there

exists a one-to-one mapping f : D → D′, called isomorphism
function, such that ∀d ∈ D,∀i ∈ {1,2,3} f (βi(d)) = β′i( f (d)).

This definition has been extended to open maps in [22] by
adding that f (ϵ) = ϵ, thus enforcing that when a dart is i-sewn
with ϵ the dart matched to it by f is also i-sewn with ϵ.

In the general case, computing graph isomorphisms is a hard
problem, but efficient algorithms exist for planar graphs [23, 24].
The main idea is that on such graphs, an order can be defined
on the neighbors of each vertex thus allowing for a determinis-
tic traversal only depending on the starting vertex. This gener-
alizes for combinatorial maps in any dimension [25], ordering
the neighboring darts by increasing subscript on the β functions:
from a given dart d, if i < j, then βi(d) will be handled before
β j(d). Using any deterministic traversal (DFS of BFS for in-
stance), the darts of the first map can be indexed and the indexing
only depends on the starting vertex chosen for the traversal. On
the second map, an identical traversal can be started for every
dart as a starting point. If the maps are isomorphic, there exists
at least one starting vertex on the second map which will lead to a
matching indexing of the darts. Traversals shall therefore be per-
formed for one dart d of M, and all starting darts d′ of M′, yield-
ing a time complexity of O(|D|2) (we can assume that |D| = |D′|
as the contrary trivially prevents the maps to be isomorphic).

2.4. Signatures of Combinatorial Maps
The goal of map signatures [26] is to define a canonical traver-

sal for each map (when the map is automorphic, this canonical
traversal can be obtained from multiple starting darts). To do so,
a word is built from the traversal, using a labeling of the darts
and using their neighborhoods. These words can be seen as some
sort of perfect hashing for the graphs. Checking for graph iso-
morphism therefore reduces to ensure that their corresponding
words are identical. This allows for signature precomputation,
and the use of Hash tables with signatures as keys.

Definition 3 (Labelling [26]). Given a 3-map M =

(D, β1, β2, β3), a labeling of M is a bijective function
l : D ∪ {ϵ} → {0, . . . ,|D|} such that l(ϵ) = 0.

Algorithm 1: BFL(M,d)
Input: M = (D, β1, β2, β3): a connected 3-map;

d ∈ D: a dart.
Output: a labeling l : D ∪ {ϵ} → {0, . . . ,|D|}

1 for each d′ ∈ D do l(d′)← −1;
2 l(ϵ)← 0; l(d)← 1; l← 2;
3 let Q be an empty queue;
4 add d at the end of Q;
5 while Q is not empty do
6 remove d′ from the head of Q;
7 for i in {1,2,3} do
8 if l(βi(d′)) = −1 then
9 l(βi(d′))← l; l← l + 1 ;

10 add βi(d′) at the end of Q;

11 return l;

Labeling a 3-map can be done through classical graph traver-
sal algorithms, Algo. 1 for instance uses a breadth first traversal
and labels the nodes with complexity O(|D|), since darts are con-
nected to at most three other darts. The labeling will vary de-
pending on the traversal algorithm, the initial dart used to start
the traversal and the order in which the neighboring darts are
considered. Here neighboring darts are considered in a deter-
ministic order: β1 then β2 and finally β3. The key insight of
the graph isomorphism algorithm is that labellings obtained with
graph traversals encode the topology of the graph.

Definition 4 (Word [26]). Given a connected 3-map M =

(D, β1, β2, β3) and a labeling l : D ∪ {ϵ} → {0, . . . ,|D|} the word
associated with (M,l) is the sequence

W(M,l) =< w1·1,w2·1,w3·1,w1·2, . . . ,w3·|D| >

such that ∀i ∈ {1,2,3}, ∀k ∈ {1, . . . ,|D|}, wi·k = l(βi(dk)) where dk

is the dart labeled with k, i.e., dk = l−1(k).

In the following, we only consider the breadth first labeling,
and we denote by W(M,d) the word associated with the breadth
first labeling of map M, starting from dart d. W(M,d) can be
computed on the fly during the breadth first search algorithm by
enumerating the three labels of βi(d) for each dart considered in
the main loop (and labeling the neighboring darts with no label
so far).

Theorem 1 (Word Isomorphism [26]). Two connected 3-maps
M = (D, β1, β2, β3) and M′ = (D′, β′1, β

′
2, β
′
3) are isomorphic iff

there exists two darts d ∈ D and d′ ∈ D′ such that W(M,d) =
W(M′,d′).

One pair of darts is enough to ensure that two maps are iso-
morphic. When they are, the set of all possible words that can
be obtained by traversing M from its darts is equal to that of M′.
Since words can be totally ordered using lexicographical order,
a canonical word can therefore be defined as the minimum word
for all starting darts.

Definition 5 (Map Signature [26]). The signature S (M) of a
connected 3−map M = (D, β1, β2, β3) is the word W(M,d) for
d ∈ D such that W(M,d) ≤ W(M,d′) for every d′ ∈ D.



4

Two maps are therefore isomorphic provided their signatures
are the same. In terms of time complexity, computing a map
signature requires O(|D|2) elementary operations.

Using map signatures is interesting when one map will be
tested many times against other maps. This is the case for our
query and replace formalism, where the queries are maps to be
tested against portions of the input map. We therefore precom-
pute the signatures of our queries. In addition, when testing por-
tions of the input map against our queries, computing the signa-
ture of the map portions allows for testing against every query
without additional traversals.

3. Introductive Example

Mesh modifications are described in our formalism as a se-
quence of patterns. Each pattern describes modifications to be
applied on matching faces of volumes of the input mesh. This
matching is efficiently performed using signatures computed for
each pattern and each face and volume of the input mesh. Fig. 2
illustrates this process to carve grooves is a cube element. First,
the desired edges are flagged and cut in three. Then a first set of
patterns splits the faces of the cube. One such pattern is provided
in Fig. 3. Another pattern is used for faces with two opposite split
edges. The volume cell is then split according to the pattern de-
picted on Fig. 5. The final result is then the cube with the groove
carved.

Our formalism ensures that the combinatorial structure re-
mains valid at each step with darts properly connected. Matching
signatures provide matching labelings of the darts on the replaced
piece of input map and the pattern. Each dart in the pattern can
then be connected properly according to the labeling. In some
situations however, relying on the sole signature is not enough
due to automorphisms. In Fig. 3 for instance, the boundary of
the pattern is a cycle with 6 vertices. Using only this topologi-
cal information, the replacement can be applied in six different
ways by rotating it in the cycle such as the cases provided in
Fig. 4. To provide more control over how replacements should
be applied, we therefore augment our pattern description with
flags (depicted as red crosses) integrated in the signatures. These
ensure that matched darts are identically flagged. When flagged
darts are split, we use as a convention that the resulting dart start-
ing at the same vertex as the original dart inherits the flag. This
is illustrated on Fig. 2b.

4. Query

Our query replace operations are defined using a set of pat-
terns. Each pattern is described by a 3-map. The boundary of
the pattern is the portion of input mesh that will be searched for.
When a cell of the input mesh is found with a matching boundary,
the cell is replaced by the interior of the pattern. We distinguish
e-patterns which will act on the input edges, f-patterns on the
input faces and v-patterns on the input volumetric cells.

Depending on the application, the set of patterns may be big.
Our idea is therefore to compute signatures for the boundaries of
the patterns and store them in a hash map. For each cell of the
input mesh, we can compute its signature and look for matches
in the hash map. Since our patterns only aim at replacing single

elements of the input map, there is no overlap between the pat-
terns and the order in which the elements are processed does not
influence the result.

To provide additional control over how the patterns should be
applied, we added a flag mechanism integrated into the signa-
tures. Flags can be assigned automatically based on geometrical
or topological criteria or interactively. With flags, input elements
and patterns can only be matched when a map isomorphism ex-
ists and preserves the flags.

4.1. e-pattern

The only useful operation on an input edge is to subdivide it
into several edges. An e-pattern is therefore a path of k edges. In
this case, we do not need to use signatures, the operation being
totally defined by the number k. We remind that the operation
that adds a vertex into an edge modifies all the darts of the edge
in order to ensure the global validity of the combinatorial map
(cf. [20] for all details).

4.2. f -pattern

4.2.1. Definition
An f -pattern is a set of connected faces, like the example given

in Fig. 3. The boundary of the pattern will be matched against
the boundaries of the input mesh faces. Since a face has to be a
topological disc, its boundary is a cycle of darts. The boundary
of an f -pattern therefore has to be a cycle of 2-free darts to be
able to match some input cell.

We define the f -signature S FP of an f -pattern as the number of
edges in its boundary, and the f -signature S F of a face as number
of edges as well: this number of edges characterizes the topology
of the boundary. Querying for an f -pattern therefore reduces to
finding input faces with the right number of edges.

Counting the number of edges on the boundary of a face is
simply done by starting on any dart of the face, and using β1
to circulate around the boundary until the initial dart is reached
again. To traverse the boundary of an f -pattern, we start from
a 2-free dart of the pattern, and find the next 2-free dart on the
boundary by circulating around the vertex at the tip of the current
dart using β1 ◦ β2 until another 2-free dart is found.

4.2.2. Flagged Version
Dart cycles are automorphic to themselves and replacements

can therefore be performed in several ways. In the example of
Fig. 3, the pattern applies on a face having 6 edges. The de-
sired behavior would be to match dart b on the boundary of the
face with dart 4 on the f -pattern. Topology alone is however
not enough to distinguish dart b from any other dart of the cy-
cle. Without additional control, dart 4 can therefore be matched
with any dart on the boundary of the face leading to undesired
replacement (although topologically valid) as shown on Fig. 4.

We therefore propose an optional flag system integrated to
the signatures to enforce more control over how darts should
be matched between the boundary of the f -pattern and the face.
Such flags are marked with red crosses on the figures. When
flags are set, flagged darts are always matched together (and non-
flagged darts together).

To achieve this goal, we extend the f -signature from a single
number to a sequence of numbers, each number being the length
of a path starting from a flagged dart and ending to the dart before



5

(a) (b) (c) (d) (e)

Fig. 2: Steps to create a slot on a cube with our formalism. (a) Starting cube. (b) Flagged edges are cut in three. (c) Three faces are updated with face query-replaces.
(d) The initial volume is cut in two by one volume query-replace. (e) The new volume is removed to retrieve the initial volume with a slot.

a

f

b c

d

e

41
5 6

7

8

9

10

2 3

Fig. 3: Example of a face (left) matching an f -pattern (right). The sequence of
darts (1,4,7,8,9,10) is the boundary of the f -pattern. The face and the pattern
boundary both have 6 as their signatures

b ~ 4 c ~ 4 d ~ 4

Fig. 4: Without flags, applying the f -pattern described in Fig. 3 can be done in
several ways, since the boundary is a cycle automorphic to itself. Matching dart
4 with dart b in Fig. 3 is the desired behavior, but without flags, dart 4 could be
matched with darts c or d, leading to undesired replacements. Adding flags and
constraining flagged edges to be matched enforces the desired replacement.

the next flagged dart along the cycle. Signatures must however
be independent of the starting dart. We therefore normalize the
sequence using the smallest sequence according to the lexico-
graphic order among all the sequences obtained from all flagged
darts. When no dart of the face is flagged, the signature is (0,k)
where k is the length of the dart cycle. This allows us to differ-
entiate the case of Fig. 3 with (6) as a signature, and a hexagonal
face without flags, with a signature of (0,6).

When a face f and an f -pattern p f have the same flagged sig-
nature, the border of p f has the same length as f since the sum
of the integers in the sequence encodes that length. When flags
are present, both starting darts d and d′ associated with the signa-
tures of f and p f are flagged and the sequence of numbers ensure
that matched darts have the same state.

4.3. v-pattern

4.3.1. Definition
A v-pattern is a set of connected volumes having one boundary

surface, like the example given in Fig. 5. If the boundary is not a
surface, it cannot match the boundary of a single volume element
of the input mesh.

The boundary of a v-pattern cannot be characterized by a sin-
gle number as for an f -pattern. We use a variant of the signatures
of Gosselin et al. [26] summarized in Section 2.4.

We start by labeling all the 3-free darts of the v-pattern. These
form the boundary of the 3-map. Iteration over these darts is

Fig. 5: Example of a volume (left) and a v-pattern (right).

performed using a variant of a breadth-first traversal of the 3-
map (cf. Section 2.4) described in Algo. 2. The use of β2 in the
original BFS is replaced by β2 ◦ β3 on non 3-free darts in order
to circulate around boundary edges from one 3-free dart to the
next without considering inner faces. The resulting labeling is
uniquely defined for a given starting dart since the order of the
traversed darts is unique.

Like for the definition of the signature of a 3-map, we encode
the traversal of the boundary of a v-pattern from dart d as a word
listing for each dart of the boundary (sorted by label) the label se-
quence of its adjacent darts (β1 then β2). Note however that since
we only traverse the boundary, the β2 neighbor of a dart is set to
be the opposite dart on the boundary rather than in the adjacent
face on the same volumetric cell. In Algo. 2 this corresponds to
the additional loop in line 11.

Definition 6 (Word of a v-pattern). Given a v-pattern vp =

(D, β1, β2, β3), and a labeling l : D′ → {1, . . . ,|D′|} (with D′ =
{d ∈ D|d is 3-free}). The word associated with (vp,l) is the se-
quence

WVP(vp,l) =< w1, . . . ,w2·|D′ | >

such that ∀k ∈ {1, . . . ,|D′|}, w2·k = l(β1(dk)), and w2·k+1 = l(d′′),
where dk is the dart labeled with k, i.e., dk = l−1(k), and d′′ =
(β2 ◦ β3) j(β2(dk)), with j the smallest positive integer such that
d′′ is 3-free.

We denote by WVP(vp,d) the word associated with v-pattern
vp, for the labeling obtained by Algo. 2 starting from dart d. The
v-signature of vp, S VP(vp) is the smallest word WVP(vp,d) for
each 3-free dart d, with respect to the lexicographical order.

Signatures for volumetric cells of the input mesh are computed
in a similar way, the only difference being that there is no internal
face and thus there is no need to use β2 ◦ β3 to jump over inner
faces. The algorithm iterating through all the darts of the volume
is thus the same as Algo. 2, removing lines 11 to 12. Similarly,



6

Algorithm 2: Label the border of a v-pattern
Input: vp = (D, β1, β2, β3): a v-pattern;

d ∈ D: a 3-free dart.
Result: Labels for all darts of the border of vp.

1 let Q be an empty queue;
2 add d at the end of Q;
3 let label be an empty map associating an index to a dart ;
4 label[d]← 1; l← 2 ;
5 while Q is not empty do
6 remove d′ from the head of Q;

// circulate around the face of d′

7 if β1(d′) is not mapped to an index in label then
8 label[β1(d′)]← l; l← l + 1 ;
9 add β1(d′) at the end of Q;

// find the adjacent boundary face at d′

10 d′′ ← β2(d′);
11 while d′′ is not 3-free do
12 d′′ ← β2 ◦ β3(d′′);

13 if d′′ is not mapped to an index in label then
14 label[d′′]← l; l← l + 1 ;
15 add d′′ at the end of Q;

16 return label;

the definition of the word of a volume WV is the same as that
provided in Def. 6 but using w2·k+1 = l(β2(dk)).

Computing such signatures amounts to computing the map
signature of an imaginary 2-map coating the boundary of the pat-
tern or the volumetric cell. It therefore follows from Gosselin
et al. [26] that when the signatures of the v-pattern and the input
volumetric cell match, they are isomorphic. The matched input
volumetric cell can therefore be replaced by the interior of the
pattern without creating topological issues.

4.3.2. Flagged Version
Like for f -patterns, darts can be optionally flagged on a v-

pattern and on the input mesh to restrict set of darts than can
be matched, providing more control to the user on the possible
matches. The flags are integrated in the signatures by modifying
the definition of words for a v-patterns and a volume. A bit field
is appended at the end of the signature with one bit per dart. The
kth bit indicates whether dk is flagged.

Without the appended bit field, a signature is a regular word
associated with a traversal of the map. Two maps with the same
word are therefore isomorphic. Matching bit fields along with
the words ensures that darts with identical labels have identical
flags. Therefore, patterns will only be matched with input cells
exhibiting compatible flags.

5. Replace

Given one target t input cell and a pattern p with a matching
signature, the replace operation rewrites the interior of the target
by the interior of the pattern. A matching signature ensures that
the border of the pattern is isomorphic to that of the target: a
map isomorphism f maps every dart in the boundary of the tar-
get cell to the dart on the boundary of the pattern with the same

Algorithm 3: Replace the interior of a face by the interior of
a compatible f -pattern

Input: M = (D, β1, β2, β3): a target 3-map;
f p = (D′, β′1, β

′
2, β
′
3): an f -pattern;

f : D′ → D: a map isomorphism from the boundary
of D′ to a subset of D.

Result: the interior darts of f p are inserted and connected in
D in the matching face.

1 foreach d′ ∈ D′ do
2 if d′ is 2-free then

// d′ is a boundary dart

3 if β′1(d′) is not 2-free then
// its next dart is an interior dart

// 1-sew the matching dart in D to it

4 1-sew( f (d′), β′1(d′)));
5 d′′ ← d′;
6 do
7 d′′ ← β′1 ◦ β

′
2(d′′);

8 while β1(d′′) is not 2-free;
// d′′ is 1-sewn to the next 2-free dart

9 1-sew(d′′, β1( f (d′)));

10 else
// d′ is an interior dart

11 D← D ∪ {d′}

label. From the initial dart of the traversal producing the signa-
tures, the input cell and the pattern boundaries can be traversed
simultaneously to build this mapping.

Pattern replacement requires addressing two issues: (1) updat-
ing of the mesh connectivity and partitioning the target into cells;
(2) specifying the positions of the interior vertices of the pattern
from the shape of the boundary of the target boundary vertices.

5.1. Mesh Connectivity

5.1.1. f -pattern
Algorithm 3 gives the method to replace a face (given by one

of its darts) by a compatible f -pattern. This algorithm links the
interior darts of the pattern with the darts of the face. Note that
most of the interior darts of the pattern can be inserted as is with-
out changing their connections to other darts. The only modi-
fied darts are along the boundary where multiple new inner faces
share a vertex. For each such vertex, two darts need to be updated
to take into account the fan of inner edges at the vertex. This is
illustrated in Fig. 3, the isomorphism matches darts (a,b,c,d,e, f )
respectively with darts (1,4,7,8,9,10). Dart 1 is 2-free and β′1(1)
is not 2-free, meaning that the vertex at the tip of 1 is shared
by several faces. The dart a of the target – matched to 1 in the
pattern – therefore has to be 1-sewn with 2, and the inner dart 3
needs to be 1-sewn with dart b (the next boundary dart). These
modifications insert locally the edge {2,3} of the pattern. In the
algorithm, β′1 ◦ β

′
2 is used to circulate around a boundary vertex

shared by multiple faces. Performing such insertions for all inte-
rior edges will integrate the interior of the pattern to replace the
target face. All the 2-sewn darts of the pattern are added into M.

If the target face is between two different volumes, each dart
of the face is 3-sewn to another dart on the opposite face of the



7

Algorithm 4: Replace the interior of a volume by the interior
of a compatible v-pattern
Input: M = (D, β1, β2, β3): a 3-map;

vp = (D′, β′1, β
′
2, β
′
3): a v-pattern;

f : D′ → D: a map isomorphism from the boundary
of D′ to a subset of D.

Result: the interior darts of vp are inserted and connected in
D in the matching volume.

1 foreach d′ ∈ D′ do
2 if d′ is 3-free then
3 if β′2(d′) is not 3-free then
4 2-sew( f (d′), β′2(d′));
5 2-sew(β′2(d′), f (d′));

6 else D← D ∪ {d′};

a
b

1

2

3

4

Fig. 6: Zoom on the two upper faces of the volume shown in Fig. 5 (left), and on
the two faces that are inserted locally (right, in red).

neighboring volume. In such a case, the replacement has to be
done similarly for the two opposite faces, but with reverse orien-
tations (swapping β0 and β1) on one side to preserve the correct
orientation of the volumes around the face. Each inner dart in
the replacement of one of the faces is 3-sewn with its reversed
counterpart in the replacement of the opposite face.

5.1.2. v-pattern
Algorithm 4 details the replacement of the interior of a volume

by a compatible v-pattern. Interior faces are inserted by using 2-
sew operations. An interior dart of the pattern 2-sewn to a dart
d′ on the boundary of the pattern has to be 2-sewn to the dart
matching d′ in the target map. Since β′2 is an involution, such
edges are found using β′2 on the edges of the boundary of the
pattern, identified as the 3-free darts in the pattern. The involu-
tion also requires 2-sewing the pattern and the target darts in both
ways. Fig. 6 zooms on the two upper faces of the volume shown
in Fig. 5 to illustrate the required 2-sewing operations. One inter-
nal face (drawn in red in Fig. 6 right) must be inserted between
two faces. When considering the 3-free dart 1 in the pattern, dart
a = f (1) will be 2-sewn with dart 2 = β′2(1), and vice versa. A
second modification will be done when considering 3-free dart 4:
dart b = f (4) will be 2-sewn with dart 3 = β′2(4) and vice versa.

5.2. Geometry
In the previous section, we showed how the interior of a face

is replaced by the interior of a pattern, but only for the mesh con-
nectivity part. The positions of the external vertices on the border
of the pattern (drawn in blue in Fig. 7) are constrained to those
of their corresponding vertices on the target face. When a pat-
tern has internal vertices (drawn in red in Fig. 7), the positions of

Fig. 7: Example of the replacement of a face with 12 edges by an f -pattern
containing an inner circle. (left) The pattern boundary is provided with a squared
shape. (right) The target face has a trapezoidal shape.

these vertices must be interpolated as a function of the positions
of the vertices of the target face.

The main idea is to compute generalized barycentric coordi-
nates for the internal vertices of the pattern as a function of the
external vertices, for each pattern. When a pattern is used, posi-
tions of the internal vertices are interpolated using these barycen-
tric coordinates and the positions of the external vertices of the
target. Such barycentric coordinates can be defined in 2D [27]
for f -patterns and 3D [28] for v-patterns. Fig. 7 illustrates the
process for an f -pattern.

6. Properties and Strengths

6.1. Genericity and Simplicity
The operation is generic: any face/volume can be used as a

pattern and as a target. This enables many different uses of this
operation for different mesh transformation methods. In addi-
tion, the query-replace operation is easy to use: it is sufficient
to provide specific sets of f -patterns and v-patterns to define a
new modification operation. These patterns can be made by a
3D modeler, and in this case there is no code to write to define
a new operation. These various advantages are illustrated in our
experiments detailed in Section 7.

6.2. Topological Validity
A 3-map represents a 3D quasi-manifold (combinatorial

equivalent of manifold, see [20] for all definitions), and thus is
by definition a topologically valid 3D object. The query-replace
operation takes two 3-maps as input: a target M = (D, β1, β2, β3)
being the object to transform, and a pattern p = (D′, β′1, β

′
2, β
′
3).

The target is modified using either Algo. 3 for an f -pattern or
Algo. 4 for a v-pattern. Proving that these two algorithms pro-
duce a valid 3-map as output implies the topological validity of
the query-replace operation: the modified object is a valid 3D
quasi-manifold.

Theorem 2. The 3-map resulting from the replacement of an in-
put volume element with the interior of a v-pattern is topologi-
cally valid: β1 is a permutation and β2, β3 and β1 ◦ β3 are invo-
lutions.

Proof. Let M be the 3-map undergoing the query-replace oper-
ation with pattern p. There are two modifications of M: (1) non
3-free darts of p are copied into M; (2) some darts of the target
are 2-sewn with some darts of the pattern and vice versa. Let d
be a dart in the resulting 3-map.

1. If d is an original dart of M, then β1(d) and β3(d) are also
original darts because β1 and β3 are not modified by Algo. 4;



8

2. If d is a dart copied from p, then from Algo. 4 d was not
3-free in the pattern. It therefore belongs to a face in the
interior of the pattern, and β1(d) as well. β1(d) was there-
fore not 3-free in p, and is thus also present in M after the
modification. Since d is not 3-free and β3 is an involution,
β3(d) is not 3-free as well and was also copied to M. As
a conclusion, β1, β3 and β1 ◦ β3 are still involutions after
the modification since it was the case in p, they were not
modified, and all the concerned darts were copied to M.

β1 and β3 are therefore preserved, β1 is still a permutation, β3
and β1 ◦ β3 are still involutions. To prove that β2 is an involution
there are several cases.

1. If β2(d) was modified by the algorithm, then the modifica-
tion in Algo. 4 is done in both ways which enforces that β2
is an involution on these darts;

2. If β2(d) is not modified:

• If d is an interior edge of the pattern, or an edge of M
which is not related to the replacement, the β2 neigh-
bors are not modified as well, and are present in the
modified map, the involution is thus preserved;

• If d is a dart on the boundary of the volume replaced
by the pattern, it is matched to some 3-free dart d′ on
the boundary of the pattern. In Algo. 4, the fact that
β2(d) is not modified means that d′′ = β′2(d′) is 3-free
as well. The signature matching implies a map isomor-
phism, and therefore d′′ is matched with β2(d). Since
d′′ and d′ are 3-free β2(β2(d)) will not be modified.

β2 is therefore an involution. □
A similar proof can be done for f -patterns for Algo. 3. The key

point of this second proof is the fact that the same modification
is applied similarly, but in reverse orientation, on both half-faces
for non 3-free darts.

6.3. Computation Time Complexity

The use of signatures gives us a very good computation time
complexity for the query replace operation, particularly when the
number of patterns is big. Indeed, we can start by computing the
signatures of all the patterns, and store them in an associative
array using the signatures as keys, and the patterns as values.
Then, for each face or volume element of the target (depending
on the type of patterns), computing its signature and querying the
associative array directly provides a compatible pattern if any.

The complexity of the access is in amortized constant time if
a hash-table is used. The complexity of the replace algorithms
is linear in the number of darts of the target nt. The complexity
to compute the signature of a target element is quadratic in the
number of darts forming the element: from each dart, a linear
traversal is performed (cf. Section 2.4). This gives an overall
amortized complexity in n2

t , which does not depend on the num-
ber of patterns.

The same operation can be done without using signatures. In
this case, all the patterns have to be iterated over, and for each
one an isomorphism test is performed with the target element.
The complexity of the isomorphism test is also quadratic in the
number of darts of the target (cf. Section 2.3). Applying this test

for each pattern however gives an overall complexity in #p × n2
t ,

with #p the number of patterns. When this number is small, the
difference between the computation times of the two methods is
also small. It becomes significant when the number of patters
increases, as we will see in our experiments.

6.4. Proof of the exhaustiveness of a set of configurations

Signatures are a good tool to prove the exhaustiveness of a
set of patterns. This problem is complicated, as illustrated by
the well known topological errors of the initial marching cube
method [29] and the numerous following papers proposing cor-
rections and additional cases.

Given a set of patterns, two important questions are: (1) are
there two patterns with an isomorphic boundary? (2) do the pat-
terns cover all the possible cases? The first question can be ad-
dressed with an associative array of signatures. For each pattern
its signature is computed and queried in the array. If it already
belongs to the array, another pattern has an isomorphic boundary.
Otherwise, the signature can be added in the array. The second
question can be tackled by first generating all possible configura-
tions of the studied algorithm. For each configuration, its signa-
ture is computed and queried against the pattern signature array.
If no pattern matches, a pattern is missing and the corresponding
configuration is not handled by the set of patterns.

Note that depending on the use cases, it can be on purpose that
two patterns have isomorphic boundaries. Even in such cases, the
signatures allow a user to detect and control these configurations.
When a target is compatible with several patterns, additional in-
formation is required in order to find which one must be used
(based on geometry, values associated with vertices. . . ).

7. Experiments

We have implemented our query/replace operation, both for
faces and volumes, based on the CGAL implementation of com-
binatorial maps [30] and the linear cell complex additional layer
[31], which represents the geometry. All experiments were run
on an Intel®i7-1165G7 GPU @ 2.80GHz with 32 GB RAM.
The code and the data to generate the results are available on
the following repository https://gitlab.liris.cnrs.fr/

gdamiand/3d-query-replace.
In our experiments, we used the 3 meshes shown in Fig. 8 as

input, coming from the Thingi10K 3D mesh dataset [32].
We implemented four different mesh transformation methods

based on our query-replace operation. In each case, a preliminary
step inserts some vertices on some/all edges on a mesh. Depend-
ing on the application, a post-processing step removes or merges
some cells in order to obtain the final mesh. In all cases, the core
of the transformation used the query-replace for f -patterns then
for v-patterns. These patterns were created using the Moka 3D
modeler [33], except for the conforming mesh experiment where
they were imported from existing vtk files.

For all these experiments, flags were automatically set on in-
put darts and darts of f -patterns and v-patterns having a corner
as origin (the 8 vertices of a cube for instance, but not the ver-
tices in the middle of its edges or faces). We use the convention
that when a dart is split, the flag is transferred to the output dart
with the same origin. Using flags in these experiments therefore
required no manual user intervention.

https://gitlab.liris.cnrs.fr/gdamiand/3d-query-replace
https://gitlab.liris.cnrs.fr/gdamiand/3d-query-replace


9

(a) (b) (c)

Fig. 8: The 3 meshes used in our experiments (the names are the ones used in Thingi10K). (a) S1 is “Stanford’s Lucy”, 24,975 vertices, 74,919 edges and 49,946 faces.
(b) S2 is “Famous Paris buildings”, 174,066 vertices, 522,192 edges and 348,128 faces. (c) S3 is “Involute Blower”, 1,268 vertices, 3,912 edges and 2,608 faces.

Algorithm 5: Hexahedral Subdivision
Input: S : a 3D surface;

lmax: a maximal subdivision level.
Output: M: a hexadral approximation of S at level lmax.

1 Create one hexahedron in M having the geometry of the
bounding box of S ;

2 for i← 1 to lmax do
3 H ← all hexahedra to subdivide of M;
4 Split all edges of H in two;
5 Query-replace all faces of H using pattern Fig. 9a;
6 Query-replace all volumes of H using pattern Fig. 9b;

7 return M

(a) (b)

Fig. 9: (a) f -pattern to transform a square, with each edge cut in two, into 2 × 2
squares. (b) v-pattern to transform a cube, with each face cut in 4, into 2 × 2 × 2
cubes.

7.1. Hexahedral Subdivision

Our first experiment implements a method to approximate a
3D surface by a set of hexahedra at a desired resolution. The
main principle of the method is given in Algo. 5.

Starting from a 3D surface and a maximal subdivision level,
the method first determines the set of all hexahedra to subdivide
H. These hexahedra are those intersected by the surface, and
those having more than one subdivision level of difference with
respect to at least one of their neighbors. All the edges of these
hexahedra are then split in two (by inserting a new vertex in the
middle of the edge). The rest of the method only consists in us-
ing twice our query-replace operation: first for all faces of H
with four subdivided edges using the f -pattern shown in Fig. 9a,
which subdivides such a face into 4 squares; second for all vol-
umes of H using the v-pattern shown in Fig. 9b, which subdivides
a volume into 8 hexahedra.

In this algorithm, we only use one f -pattern and one v-pattern.

Mesh #volumes #fqr #vqr time-qr time-direct
S1 116,865 88,031 23,103 9.04s 4.54s
S2 233,877 167,260 43,129 18.22s 11.40s
S3 279,604 203,436 54,741 39.05s 30.87s

Table 1: Number of elements and timings for Hexahedral Subdivision for the
three meshes given in Fig. 8, with lmax= 7. #volumes is the number of volumes
obtained at the end of the subdivision; #fqr is the number of query-replace of
faces done, and #vqr the number of query-replace of volumes; time-qr is the
total computation time of the method using the query-replace operations; time-
direct is the total computation time of the same method using a direct hexahedral
subdivision.

In addition, by construction, we know that each face of H is com-
patible with the f -pattern, and that each volume of H is compat-
ible with the v-pattern. For this reason, we can avoid the query-
part of the query-replace operation since we know it is always
satisfied, and use only the replace part of the operation.

We can see in Table 1 the number of volumes obtained by
this method for our three input surface meshes, using 7 as maxi-
mal subdivision level, and the number of query-replace used (for
faces and for volumes). We compared the computation time of
our method using Algo. 5 and the query-replace operations with
a direct implementation of the hexahedral subdivision. The lat-
ter is obviously faster since it is optimized for the subdivision,
creating only the necessary darts and updating only the minimal
information. We observed an overhead of about 36% in aver-
age for the query-replace method, which is significant. The main
advantage of the query-replace method is its simplicity: there is
almost no code to develop and thus few risk of bugs comparing
to the direct implementation. Another advantage is the simplic-
ity to change the subdivision scheme, by only modifying the two
patterns using a 3D modeler. Note that if the computation time is
critical, query-replace method can be used as a validation tool to
verify that the direct method produces the correct result.

Fig. 10 shows a partial representation of the result obtain for
mesh S1. We did not draw all hexahedra in order to visualize the
interior of the final map, showing hexahedra at different levels of
subdivision.

7.2. Marching-Cubes

In this second experiment, we implemented a Marching-Cube
method [29] aiming at extracting a 3D surface from a hexahedral
mesh. This hexahedral mesh can be obtained from various inputs



10

Fig. 10: Result of the hexahedral subdivision obtained for mesh S1, with lmax= 7
(partial representation to visualize the interior of the mesh with different levels of
subdivision).

Fig. 11: The 3 f -patterns used for the marching cubes implementation.

(like for example a 3D scalar field or a signed distance function).
The only requirement is to be able to test whether a vertex is
inside or outside the object. The original paper defines 15 differ-
ent configurations (exploiting rotations and symmetries), but it
has topological inconsistencies (cracks appearing for ambiguous
cases). Several papers proposed solutions to this problem, un-
til obtaining 33 different configurations [34, 35], which has been
proved to be complete.

Algorithm 6: Marching-Cube
Input: M: a 3D hexahedral mesh.
Result: Transform M into a 3D surface approximating the

initial hexahedral mesh.
1 Split in two all edges of M connecting one vertex inside and

one vertex outside;
2 Query-replace all faces of M using the 3 f -patterns Fig. 11;
3 Query-replace all volumes of M using the 29 v-patterns, 3

being drawn in Fig. 12;
4 Remove all faces incident to one old vertex.

Algorithm 6 formalizes our method to build a marching-cube
surface from a 3D hexahedral mesh using our query-replace op-
eration. First, a new vertex is inserted on each edge crossing the
surface (i.e. one vertex is inside and the other one is outside, note
that we consider as inside vertices on the surface). We then use
the query-replace operation for all faces and all volumes.

There are 3 different possible cases for faces, and thus 3 dif-
ferent f -patterns shown in Fig. 11.

For v-patterns, we initially created the 15 original configu-

Fig. 12: The first 3 v-patterns (among the 29 total ones) used for the marching
cube experiment.

Fig. 13: Result of the marching cube method applied on the hexahedral mesh
obtained from mesh S3, with lmax= 7.

rations [29] using a 3D modeler. We then used the validation
method presented in Section 6.4 to progressively identify miss-
ing v-patterns: we generated all possible configurations for the
inside and outside status of the 8 vertices of a cube, and for each
one tested if an existing pattern matched. When it was not the
case, we created a new corresponding pattern and went on with
the next configuration. We obtained 29 v-patterns (3 of them
being drawn in Fig. 12) which is the minimal set of required con-
figurations in order to consider all possibles cases. We did not
obtain the 33 different configurations of [34, 35] because we did
not create configurations with isomorphic boundaries but differ-
ent internal subdivisions.

After all the query-replace operations, the surface is extracted
by removing all the faces having at least one initial vertex among
their vertices. This is done in the last step of Algo. 6.

We applied this algorithm for three input hexahedral meshes
(obtained from the three input surfaces of Fig. 8 with a maxi-
mal subdivision level equal to 7). The computation time of our
method is 7.79s (resp. 15.76s and 23.34s) to generate triangu-
lar meshes with 121,809 triangles (resp. 208,855 and 260,004).
Fig. 13 shows the results obtained from the S3 case.

7.3. Conformal Mesh

The goal of this third experiment was to generate a conformal
3D mesh, using hexahedra, tetrahedra, prisms and pyramids unit
elements. A mesh is conformal if the pairwise intersection of any
two cells is either a single lower-dimensional cell or is empty.
Visually, the mesh has no T-junctions. Jaillet and Lobos [36]1

constructed a set of 325 cases to transform a hexahedral mesh
with at most one level of subdivision between adjacent cells into
a conformal mesh. We therefore translated these cases into v-
patterns and applied our query and replace method.

We first perform a query-replace on faces, and ensured with
our exhaustiveness test that the five f -patterns given in Fig. 14

1Thanks to Fabrice Jaillet for providing us with the VTK files of the 325
patterns.



11

Fig. 14: The 5 f -patterns used for the conforming mesh experiment.

Algorithm 7: Conformal Mesh Generation
Input: M: a 3D hexahedral mesh.
Result: Transform M into a conformal mesh.

1 Query-replace all faces of M using the 5 f -patterns Fig. 14;
2 Query-replace all volumes of M using the 325 v-patterns,

some of which are drawn in Fig. 15.

are sufficient to handle all cases. Once the faces subdivided ac-
cording to these patterns, a second query-replace acts on all vol-
umes using the 325 v-patterns, 3 of which are depicted in Fig. 15.
The resulting mesh is a conformal mesh.

This experiment illustrates perfectly the great interest of our
query-replace operation with a great number of cases (325 v-
patterns). Manually implementing a test to identify the proper
cases to apply would have been a tedious task prone to bugs in
the developed code. With our method, no additional code is re-
quired. In addition, we proved the exhaustiveness of the set of
325 configurations using the method presented in Section 6.4.

We tested the process for the 3 hexahedral meshes obtained for
our 3 surfaces with a maximal subdivision level equal to 7. The
distribution volume types in the resulting mesh is provided in
Table 2. The column time-qr provides the efficient computation
time of our method: 6.59s to transform 257,642 hexahedra for
the second mesh.

In a second experiment, we demonstrated the importance of
using signatures to handle the size of the set of patterns. As a
comparison, we used the isomorphism test directly to retrieve
for each target its compatible pattern. This second method is
much more expensive in terms of computation time, since the
325 patterns need to be tested in the worst case for every target
hexahedron until a compatible one is found. This computation
time is given in the time-qrns column in Table 2. It is in average
18 times slower than the method with signatures.
7.4. Mesh Transformation

In this last experiment, we implemented a mesh transformation
method that transforms a tetrahedral mesh into a hexahedral one.
Starting from a 3D surface, we used TetGen [37] to generate a
3D tetrahedral mesh. We then split each edge in two by inserting
a vertex in the middle of the edge, and used our query-replace for
each face, then for each volume, using the two patterns shown in
Fig. 16. Fig. 17 shows (partially) the result of this transformation
starting from mesh S1.

Fig. 15: 3 v-patterns (among the 325 total ones) used for the conformal mesh
experiment.

Mesh #h #t #pr #py time-qr time-qrns
S1 108,754 41,159 6,659 58,935 2.18s 29.86s
S2 207,165 97,410 16,626 143,606 6.59s 131.9s
S3 272,164 37,772 4,972 46,908 2.54s 46.42s

Table 2: Number of elements and timings for Conformal Mesh Generation
for the three hexahedral meshes obtained from the surfaces given in Fig. 8, with
lmax= 7. #h is the number of hexahedra obtained at the end of the generation (#t
tetrahedra, #pr prisms and #py pyramids); time-qr is the total computation time of
the method using the query-replace operations; time-qrns is the total computation
time of the same method using the query-replace operations but without using
signatures.

Fig. 16: (Left) f -pattern to transform a triangle, with each edge cut in two, into 3
quadrilaterals. (Right) v-pattern to transform a tetrahedron, with each face cut in
3, into 4 hexahedra.

Fig. 17: Result of the transformation of a tetrahedral mesh into a hexahedral one
for mesh S1 (zoom).



12

8. Conclusion

In this paper, we defined a query-replace operation for faces
and volumes of 3D meshes. Our operation is generic, simple to
use, topologically valid, and can be used to prove the exhaus-
tiveness of a set of patterns. Moreover, the query of one pattern
from a set of patterns is fast thanks to the use of topological sig-
natures. We provide the formal definition of the basic operation,
along with a flagged version to augment the signatures and pro-
vide more control when necessary. The efficiency and versatility
of our operation is demonstrated by several experiments repro-
ducing existing mesh generation methods in our formalism and
illustrating the efficiency of our solution.

Note that our appoach can be used for different data structures
when it is possible to define and compute signatures and replace
operations. This is for example possible for half-edge data struc-
tures, but obviously only for e-patterns and f -patterns since it is
not possible to represent groups of volumes in this case.

This work opens many possible future work. First, our query
and replace operation is currently limited to the replacement of
single elements of the target mesh. This is fine to encode many
mesh generation techniques, but other operations like edge con-
traction or flips cannot be expressed in our formalism. We there-
fore would like to be able to handle the replacement of portions of
a mesh made of multiple elements. This would allow more pos-
sible transformations, like for example the method of [38] which
regroups several tetrahedra into hexahedra. Secondly, we would
like to extend this work to meshes with possibly 1-free and 2-
free darts, allowing to consider surfaces with boundaries. Lastly,
we would like to study if other operations could be defined by
using a similar principle of rewriting rules to create new cells or
to remove existing ones. The goal would be to define a generic
language to describe mesh portions or graphs, in a way similar to
that of regular expressions on one dimensional words. We would
also like to explore the expressiveness of our approach for proce-
dural generation of patterns and automatic addition of details to
a rough initial structure.

References

[1] Pitzalis, L, Livesu, M, Cherchi, G, Gobbetti, E, Scateni, R. Generalized
adaptive refinement for grid-based hexahedral meshing 2021;40(6).

[2] Corman, E, Crane, K. Symmetric moving frames. ACM Trans Graph
2019;38(4).

[3] Gao, X, Shen, H, Panozzo, D. Feature preserving octree-based hexahedral
meshing. Computer Graphics Forum ????;38(5):135–149.

[4] Parallel hybrid mesh adaptation by refinement and coarsening. Graphical
Models 2020;111:101084.

[5] Kaplan, CS. Introductory tiling theory for computer graphics. In: Intro-
ductory Tiling Theory for Computer Graphics. 2009,.

[6] Meekes, M, Vaxman, A. Unconventional patterns on surfaces. ACM
Transactions on Graphics (TOG) 2021;40:1 – 16.

[7] Peytavie, A, Galin, E, Grosjean, J, Mérillou, S. Procedural Gener-
ation of Rock Piles Using Aperiodic Tiling. Computer Graphics Forum
2009;28(7):1801–1809.

[8] Stiny, G, Gips, J. ‘shape grammars and the generative specification of
painting and sculpture’. vol. 71. 1971, p. 1460–1465.

[9] Lindenmayer, A. Mathematical models for cellular interactions in devel-
opment II. Simple and branching filaments with two-sided inputs. Journal
of Theoretical Biology 1968;18(3):300–315.

[10] Tobler, RF, Maierhofer, S, Wilkie, A. Mesh-based parametrized l-systems
and generalized subdivision for generating complex geometry. Int J Shape
Model 2002;8:173–191.

[11] Marvie, JE, Perret, J, Bouatouch, K. Fl-system: A functional l-system for
procedural geometric modeling. The Visual Computer 2005;21:329–339.

[12] Bohl, E, Terraz, O, Ghazanfarpour, D. Modeling fruits and their internal
structure using parametric 3Gmap L-systems ????;.

[13] Belhaouari, H, Arnould, A, Le Gall, P, Bellet, T. Jerboa: A graph
transformation library for topology-based geometric modeling. In: Giese,
H, König, B, editors. Graph Transformation. Cham: Springer International
Publishing. ISBN 978-3-319-09108-2; 2014, p. 269–284.

[14] Baumgart, B. A polyhedron representation for computer vision. In: Proc.
of AFIPS National Computer Conference; vol. 44. 1975, p. 589–596.

[15] Muller, D, Preparata, F. Finding the intersection of two convex polyhedra.
Theoretical Computer Science 1978;7(2):217–236.

[16] Weiler, K. Edge-based data structures for solid modelling in curved-surface
environments. Computer Graphics and Applications 1985;5(1):21–40.

[17] Sieger, D, Botsch, M. Design, implementation, and evaluation of the
surface mesh data structure. In: Quadros, WR, editor. Proc. of 20th Inter-
national Meshing Roundtable. Berlin, Heidelberg: Springer Berlin Heidel-
berg. ISBN 978-3-642-24734-7; 2012, p. 533–550.

[18] Rossignac, J. 3D compression made simple: Edgebreaker with zipandwrap
on a corner-table. In: Proc. of International Conference on Shape Modeling
and Applications. 2001, p. 278–283.

[19] Lienhardt, P. N-Dimensional generalized combinatorial maps and cellu-
lar quasi-manifolds. Inte J of Computational Geometry and Applications
1994;4(3):275–324.

[20] Damiand, G, Lienhardt, P. Combinatorial Maps: Efficient Data Struc-
tures for Computer Graphics and Image Processing. A K Peters/CRC Press;
2014.

[21] Botsch, M, Kobbelt, L, Pauly, M, Alliez, P, Lévy, B. Polygon Mesh
Processing. AK Peters; 2010.

[22] Damiand, G, De La Higuera, C, Janodet, JC, Samuel, E, Solnon, C.
Polynomial algorithm for submap isomorphism: Application to searching
patterns in images. In: Proc. of 7th Workshop on Graph-Based Representa-
tion in Pattern Recognition (GBR); vol. 5534 of Lecture Notes in Computer
Science. Venice, Italy: Springer Berlin/Heidelberg; 2009, p. 102–112.

[23] Hopcroft, JE, Wong, JK. Linear time algorithm for isomorphism of planar
graphs. In: STOC. ACM; 1974, p. 172–184.

[24] Cori, R. Un code pour les graphes planaires et ses applications. In:
Astérisque; vol. 27. Paris, France: Soc. Math. de France; 1975,.

[25] Solnon, C, Damiand, G, de la Higuera, C, Janodet, JC. On the complexity
of submap isomorphism and maximum common submap problems. Pattern
Recognition (PR) 2015;48(2):302–316.

[26] Gosselin, S, Damiand, G, Solnon, C. Efficient search of combi-
natorial maps using signatures. Theoretical Computer Science (TCS)
2011;412(15):1392–1405.

[27] Hormann, K, Floater, MS. Mean value coordinates for arbitrary planar
polygons. ACM Trans Graph 2006;25(4):1424–1441.

[28] Ju, T, Schaefer, S, Warren, J. Mean value coordinates for closed triangu-
lar meshes. New York, NY, USA: Association for Computing Machinery.
ISBN 9781450378253; 2005,.

[29] Lorensen, WE, Cline, HE. In: Stone, MC, editor. SIGGRAPH. ????,.
[30] Damiand, G. Combinatorial maps. In: CGAL User and Reference Manual;

3.9 ed. 2011,http://www.cgal.org/Pkg/CombinatorialMaps.
[31] Damiand, G. Linear Cell Complex. In: CGAL User and Reference Manual;

4.0 ed. 2012,http://www.cgal.org/Pkg/LinearCellComplex.
[32] Zhou, Q, Jacobson, A. Thingi10k: A dataset of 10,000 3d-printing models.

arXiv preprint arXiv:160504797 2016;.
[33] Vidil, F, Damiand, G, Dexet-Guiard, M, Guiard, N, Ledoux, F, Fousse,

A, et al. Moka: 3d topological modeler. 2002. http://moka-modeller.
sourceforge.net/.

[34] Chernyaev, E. Marching cubes 33: Construction of topologically correct
isosurfaces. Tech. Rep.; 1995.

[35] Lewiner, T, Lopes, H, Vieira, AW, Tavares, G. Efficient implementation
of marching cubes’ cases with topological guarantees. Journal of Graphics
Tools 2003;8(2):1–15.

[36] Jaillet, F, Lobos, C. Fast Quadtree/Octree adaptive meshing and re-
meshing with linear mixed elements. Engineering with Computers 2021;.

[37] Si, H. Tetgen, a delaunay-based quality tetrahedral mesh generator
2015;41(2).

[38] Identifying combinations of tetrahedra into hexahedra: A vertex based strat-
egy. Computer-Aided Design 2018;105:1–10.

http://www.cgal.org/Pkg/CombinatorialMaps
http://www.cgal.org/Pkg/LinearCellComplex
http://moka-modeller.sourceforge.net/
http://moka-modeller.sourceforge.net/


13

Appendix

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 18: Visual results of all methods applied to the three meshes used in the experiments in Section 7. First line: Hexahedra Subdivision; Second line: Marching-
Cubes; Third line: Conformal Mesh; Fourth line: Mesh Transformation. Results for Marching-cubes are surfacic meshes; for other methods they are volumic meshes,
drawn sometimes only partially to see the interior.


	Introduction
	Related Work
	Outline

	Preliminaries and Related Work
	Mesh Data Structures
	Combinatorial Maps
	Combinatorial Maps Isomorphism
	Signatures of Combinatorial Maps

	Introductive Example
	Query
	e-pattern
	f-pattern
	Definition
	Flagged Version

	v-pattern
	Definition
	Flagged Version


	Replace
	Mesh Connectivity
	f-pattern
	v-pattern

	Geometry

	Properties and Strengths
	Genericity and Simplicity
	Topological Validity
	Computation Time Complexity
	Proof of the exhaustiveness of a set of configurations

	Experiments
	Hexahedral Subdivision
	Marching-Cubes
	Conformal Mesh
	Mesh Transformation

	Conclusion

