From 046482d474287520ae0f8b0e022ae3c922684311 Mon Sep 17 00:00:00 2001 From: Guillaume-Duret <guillaume.duret@ec-lyon.fr> Date: Fri, 19 May 2023 18:48:04 +0200 Subject: [PATCH] script for eval --- compute_seg_result.py | 43 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) create mode 100644 compute_seg_result.py diff --git a/compute_seg_result.py b/compute_seg_result.py new file mode 100644 index 0000000..29d600f --- /dev/null +++ b/compute_seg_result.py @@ -0,0 +1,43 @@ +from ultralytics import YOLO +import cv2 +import matplotlib.pyplot as plt +import argparse +import os + +# Create the parser +parser = argparse.ArgumentParser() +# Add an argument +parser.add_argument('--path_evaluation', type=str, required=True) +parser.add_argument('--path_result', type=str, required=True) +parser.add_argument('--class_object', type=str, required=True) +parser.add_argument('--path_model_yolo', type=str, required=True) +# Parse the argument +args = parser.parse_args() + + +# load the model. +model = YOLO(f"{args.path_model_yolo}") +# + +path_evaluation_data = args.path_evaluation + "/" + args.class_object + "/RGB_resized" + +for files in os.listdir(path_evaluation_data): + #print("files : ", files) + #print(f"{path_evaluation_data}/{files}") + + try: + results = model.predict(source=f"{path_evaluation_data}/{files}", conf=0.5, +save=True) + #print(results) + results1 = results[0].to('cpu') + results11 = results1.numpy() + # boxes = results11.boxes # Boxes object for bbox outputs + # probs = results11.probs # Class probabilities for classification outputs +# + masks = results11.masks # Masks object for segmentation masks outputs + #print(masks) + mask_res = masks.data[0] + plt.imsave(f"{args.path_result}/{files}", mask_res, cmap='gray') + print("images saved : ", files ) + except : + print("no prediction") -- GitLab