diff --git a/experiments/scripts/eval_linemod.sh b/experiments/scripts/eval_linemod.sh index 2c289eedf3c7c1a64ef605a53fefc952e6f270af..7a4d45ec7e38cb7d82e8c051eb2d725ff0f23bcb 100755 --- a/experiments/scripts/eval_linemod.sh +++ b/experiments/scripts/eval_linemod.sh @@ -7,5 +7,4 @@ export PYTHONUNBUFFERED="True" export CUDA_VISIBLE_DEVICES=0 python3 ./tools/eval_linemod.py --dataset_root ./datasets/linemod/Linemod_preprocessed\ - --model trained_checkpoints/linemod/pose_model_9_0.01310166542980859.pth\ - --refine_model trained_checkpoints/linemod/pose_refine_model_493_0.006761023565178073.pth \ No newline at end of file + --model trained_models/linemod8/pose_model_4_0.012983739659874712.pth --refine_model trained_models/linemod8/pose_refine_model_9_0.01186443073513208.pth diff --git a/tools/eval_linemod.py b/tools/eval_linemod.py index c47d48d22b3cf2670c9130e8da6426ab66db54e9..40b2d2c760d5687473705fd79d28fa6da5b21a8b 100644 --- a/tools/eval_linemod.py +++ b/tools/eval_linemod.py @@ -132,8 +132,10 @@ parser.add_argument('--model', type=str, default='', help='resume PoseNet model' parser.add_argument('--refine_model', type=str, default='', help='resume PoseRefineNet model') opt = parser.parse_args() +# num_objects = 5 num_objects = 8 -objlist = [1, 2, 3, 4, 5, 6, 7, 8] +# objlist = [1, 3, 6, 7, 8] +objlist = [1, 2, 3, 4 ,5 ,6, 7, 8] num_points = 500 iteration = 4 bs = 1 @@ -143,7 +145,7 @@ cam_fx = 543.2527222420504 # TODO cam_fy = 724.3369629894005 # TODO # ["banana1", "kiwi1", "pear2", "strawberry1", "apricot", "orange2", "peach1", "lemon2", "apple2" ] -map_id_obj = { +"""map_id_obj = { 1: 'banana1', 2: 'kiwi1', 3: 'pear2', @@ -152,7 +154,14 @@ map_id_obj = { 6: 'peach1', 7: 'lemon2', 8: 'apple2', -} +}""" +#map_id_obj = {1: 'apple2', 3: 'banana1'} +map_id_obj = {1: 'apple2', 2: 'apricot', 3: 'banana1', 4: 'kiwi1', 5:'lemon2', 6: 'orange2', 7: 'peach1', 8: 'pear2'} + # apple2, apricot, banana1, kiwi1, lemon2, orange2, peach1, pear2 + #self.objlist = [1, 2, 3, 4, 5, 6, 7, 8] + #self.objlist = [1, 3, 6, 7, 8] + + K = np.array([[cam_fx, 0, cam_cx], [0, cam_fy, cam_cy], [0, 0, 1]]) dataset_config_dir = 'datasets/linemod/dataset_config' output_result_dir = 'experiments/eval_result/linemod' @@ -176,8 +185,9 @@ criterion = Loss(num_points_mesh, sym_list) criterion_refine = Loss_refine(num_points_mesh, sym_list) diameter = [] +print('{0}/models_info.yml'.format(dataset_config_dir)) meta_file = open('{0}/models_info.yml'.format(dataset_config_dir), 'r') -meta = yaml.load(meta_file) +meta = yaml.load(meta_file, yaml.Loader) for obj in objlist: diameter.append(meta[obj]['diameter'] / 1000.0 * 0.1) print(diameter)