diff --git a/read_count.py b/read_count.py index 11eca90f9c9bdc448257403edbfc333ace3871c9..1c728b7bdd5b39cf061fad5dab881f17ee92bf0e 100644 --- a/read_count.py +++ b/read_count.py @@ -89,8 +89,7 @@ if __name__ == '__main__': dataset_type = data_options[choice] dataset_name = f"/gpfsscratch/rech/uli/ubn15wo/dataset/s2rg/Fruits_all_medium/GUIMOD_{choice}" list_categories = [ "apple2" , "apricot", "banana1", "kiwi1", "lemon2", "orange2", "peach1", "pear2"] - #list_Nb_instance = [ "apple2" , "apricot", "banana1", "kiwi1", "lemon2", "orange2", "peach1", "pear2"] - + path_json = "Count_150000.json" @@ -119,15 +118,6 @@ if __name__ == '__main__': mix_eval=[] mix_test=[] - array_apple=[] - array_apricot=[] - array_banana=[] - array_kiwi=[] - array_lemon=[] - array_orange=[] - array_peach=[] - array_pear=[] - stat_cat_inst = {} for scenario_loop in scenarios : @@ -135,12 +125,10 @@ if __name__ == '__main__': for cat in list_categories : stat_cat_inst[scenario_loop][cat] = {} - for cat in list_categories : stat_cat[cat] = {} for scenario_loop in scenarios : stat_cat[cat][scenario_loop] = {} - for destination_folder_loop in destination_folders_list[scenario_loop] : # [f"Generated_{scenario}_Testing", f"Generated_{scenario}_Evaluating", f"Generated_{scenario}_Training"] : #print("scenario_loop : " , scenario_loop) #print("destination_folder_loop : " , destination_folder_loop) @@ -200,24 +188,107 @@ if __name__ == '__main__': print(mix_eval) print(mix_test) + list_Nb_instance = [ "0_instances" , "1_instances", "2_instances", "3_instances", "4_instances", "5_instances" , + "6_instances", "7_instances" , "8_instances", "9_instances","10_instances","11_instances", + "12_instances", "13_instances" , "14_instances", "15_instances","16_instances","17_instances", "18_instances"] + + array_apple=[] + array_apricot=[] + array_banana=[] + array_kiwi=[] + array_lemon=[] + array_orange=[] + array_peach=[] + array_pear=[] - # for scenario_loop in scenarios : - # for cat in list_categories : - # for destination_folder_loop in destination_folders_list[scenario_loop] : - - # stat_cat_inst[scenario_loop][cat][nb_inst] - - - df1_train=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"]) - df2_eval=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_eval), np.array(cameras_eval), np.array(mix_eval)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"]) - df3_test=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_test), np.array(cameras_test), np.array(mix_test)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"]) + list_categories = [ "apple2" , "apricot", "banana1", "kiwi1", "lemon2", "orange2", "peach1", "pear2"] - df1 = prep_df(df1_train, 'Train') - df2 = prep_df(df2_eval, 'Eval') - df3 = prep_df(df3_test, 'Test') + for cat in list_categories : + for nb_inst in list_Nb_instance : + print(stat_cat_inst[scenario_loop][cat].keys()) + + if nb_inst in stat_cat_inst[scenario_loop][cat].keys() : #because some rare occurance of large instance number + if cat == "apple2" : + array_apple.append(stat_cat_inst[scenario_loop][cat][nb_inst]) + if cat == "apricot" : + array_apricot.append(stat_cat_inst[scenario_loop][cat][nb_inst]) + if cat == "banana1" : + array_banana.append(stat_cat_inst[scenario_loop][cat][nb_inst]) + if cat == "kiwi1" : + array_kiwi.append(stat_cat_inst[scenario_loop][cat][nb_inst]) + if cat == "lemon2" : + array_lemon.append(stat_cat_inst[scenario_loop][cat][nb_inst]) + if cat == "orange2" : + array_orange.append(stat_cat_inst[scenario_loop][cat][nb_inst]) + if cat == "peach1" : + array_peach.append(stat_cat_inst[scenario_loop][cat][nb_inst]) + if cat == "pear2" : + array_pear.append(stat_cat_inst[scenario_loop][cat][nb_inst]) + else : #because some rare occurance of large instance number + print(nb_inst) + if cat == "apple2" : + array_apple.append(0) + if cat == "apricot" : + array_apricot.append(0) + if cat == "banana1" : + array_banana.append(0) + if cat == "kiwi1" : + array_kiwi.append(0) + if cat == "lemon2" : + array_lemon.append(0) + if cat == "orange2" : + array_orange.append(0) + if cat == "peach1" : + array_peach.append(0) + if cat == "pear2" : + array_pear.append(0) + + print() + + print(array_apple) + print(array_apricot) + print(array_banana) + print(array_kiwi) + print(array_lemon) + print(array_orange) + print(array_peach) + print(array_pear) + print(len(array_pear)) + print(np.resize( array_apple , (3, 19))) + + df_apple=pd.DataFrame(np.resize( array_apple , (1, 19)),index=["Dataset"],columns=list_Nb_instance) + df_apricot=pd.DataFrame(np.resize( array_apricot , (1, 19)),index=["Dataset"],columns=list_Nb_instance) + df_banana=pd.DataFrame(np.resize( array_banana , (1, 19)),index=["Dataset"],columns=list_Nb_instance) + df_kiwi=pd.DataFrame(np.resize( array_kiwi , (1, 19)),index=["Dataset"],columns=list_Nb_instance) + df_lemon=pd.DataFrame(np.resize( array_lemon , (1, 19)),index=["Dataset"],columns=list_Nb_instance) + df_orange=pd.DataFrame(np.resize( array_orange , (1, 19)),index=["Dataset"],columns=list_Nb_instance) + df_peach=pd.DataFrame(np.resize( array_peach , (1, 19)),index=["Dataset"],columns=list_Nb_instance) + df_pear=pd.DataFrame(np.resize( array_pear , (1, 19)),index=["Dataset"],columns=list_Nb_instance) + + df_apple1 = prep_df(df_apple, 'Apple') + df_apricot1 = prep_df(df_apricot, 'Apricot') + df_banana1 = prep_df(df_banana, 'Banana') + df_kiwi1 = prep_df(df_kiwi, 'Kiwi') + df_lemon1 = prep_df(df_lemon, 'Lemon') + df_orange1 = prep_df(df_orange, 'Orange') + df_peach1 = prep_df(df_peach, 'Peach') + df_pear1 = prep_df(df_pear, 'Pear') + + df = pd.concat([df_apple1, df_apricot1, df_banana1, df_kiwi1, df_lemon1, df_orange1, df_peach1, df_pear1]) + + # qxqxs + + # df1_train=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"]) + # df2_eval=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_eval), np.array(cameras_eval), np.array(mix_eval)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"]) + # df3_test=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_test), np.array(cameras_test), np.array(mix_test)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"]) + + + # df1 = prep_df(df1_train, 'Train') + # df2 = prep_df(df2_eval, 'Eval') + # df3 = prep_df(df3_test, 'Test') - df = pd.concat([df1, df2, df3]) + # df = pd.concat([df1, df2, df3]) # print(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8))) @@ -242,9 +313,10 @@ if __name__ == '__main__': alt.renderers.enable('altair_viewer') chart = alt.Chart(df).mark_bar().encode( - + + # tell Altair which field to group columns on - x=alt.X('c2:N', title=None), + x=alt.X('c2:N', title=None, sort=None), # tell Altair which field to use as Y values and how to calculate y=alt.Y('sum(values):Q',