diff --git a/read_count.py b/read_count.py
index 11eca90f9c9bdc448257403edbfc333ace3871c9..1c728b7bdd5b39cf061fad5dab881f17ee92bf0e 100644
--- a/read_count.py
+++ b/read_count.py
@@ -89,8 +89,7 @@ if __name__ == '__main__':
     dataset_type = data_options[choice]
     dataset_name = f"/gpfsscratch/rech/uli/ubn15wo/dataset/s2rg/Fruits_all_medium/GUIMOD_{choice}"
     list_categories = [ "apple2" , "apricot", "banana1", "kiwi1", "lemon2", "orange2", "peach1", "pear2"]
-    #list_Nb_instance = [ "apple2" , "apricot", "banana1", "kiwi1", "lemon2", "orange2", "peach1", "pear2"]
-    
+
 
     path_json = "Count_150000.json"
 
@@ -119,15 +118,6 @@ if __name__ == '__main__':
     mix_eval=[]
     mix_test=[]
 
-    array_apple=[]
-    array_apricot=[]
-    array_banana=[]
-    array_kiwi=[]
-    array_lemon=[]
-    array_orange=[]
-    array_peach=[]
-    array_pear=[]
-
     stat_cat_inst = {}
 
     for scenario_loop in scenarios :
@@ -135,12 +125,10 @@ if __name__ == '__main__':
         for cat in list_categories :
             stat_cat_inst[scenario_loop][cat] = {}
 
-
     for cat in list_categories : 
         stat_cat[cat] = {}
         for scenario_loop in scenarios :
             stat_cat[cat][scenario_loop] = {}
-            
             for destination_folder_loop in destination_folders_list[scenario_loop] : # [f"Generated_{scenario}_Testing", f"Generated_{scenario}_Evaluating", f"Generated_{scenario}_Training"] :
                 #print("scenario_loop : " , scenario_loop)
                 #print("destination_folder_loop : " , destination_folder_loop)
@@ -200,24 +188,107 @@ if __name__ == '__main__':
     print(mix_eval)
     print(mix_test)
 
+    list_Nb_instance = [ "0_instances" , "1_instances", "2_instances", "3_instances", "4_instances", "5_instances" , 
+                        "6_instances", "7_instances" , "8_instances", "9_instances","10_instances","11_instances",
+                        "12_instances", "13_instances" , "14_instances", "15_instances","16_instances","17_instances", "18_instances"]
+    
+    array_apple=[]
+    array_apricot=[]
+    array_banana=[]
+    array_kiwi=[]
+    array_lemon=[]
+    array_orange=[]
+    array_peach=[]
+    array_pear=[]
 
-    # for scenario_loop in scenarios :
-    #     for cat in list_categories :
-    #         for destination_folder_loop in destination_folders_list[scenario_loop] :
-
-    # stat_cat_inst[scenario_loop][cat][nb_inst]
-
-
-    df1_train=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
-    df2_eval=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_eval), np.array(cameras_eval), np.array(mix_eval)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
-    df3_test=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_test), np.array(cameras_test), np.array(mix_test)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
+    list_categories = [ "apple2" , "apricot", "banana1", "kiwi1", "lemon2", "orange2", "peach1", "pear2"]
 
 
-    df1 = prep_df(df1_train, 'Train')
-    df2 = prep_df(df2_eval, 'Eval')
-    df3 = prep_df(df3_test, 'Test')
+    for cat in list_categories :
+        for nb_inst in list_Nb_instance :
+            print(stat_cat_inst[scenario_loop][cat].keys())
+            
+            if nb_inst in stat_cat_inst[scenario_loop][cat].keys() : #because some rare occurance of large instance number
+                if cat == "apple2" :
+                    array_apple.append(stat_cat_inst[scenario_loop][cat][nb_inst])
+                if cat == "apricot" :
+                    array_apricot.append(stat_cat_inst[scenario_loop][cat][nb_inst])
+                if cat == "banana1" :
+                    array_banana.append(stat_cat_inst[scenario_loop][cat][nb_inst])
+                if cat == "kiwi1" :
+                    array_kiwi.append(stat_cat_inst[scenario_loop][cat][nb_inst])
+                if cat == "lemon2" :
+                    array_lemon.append(stat_cat_inst[scenario_loop][cat][nb_inst])
+                if cat == "orange2" :
+                    array_orange.append(stat_cat_inst[scenario_loop][cat][nb_inst])
+                if cat == "peach1" :
+                    array_peach.append(stat_cat_inst[scenario_loop][cat][nb_inst])
+                if cat == "pear2" :
+                    array_pear.append(stat_cat_inst[scenario_loop][cat][nb_inst])
+            else : #because some rare occurance of large instance number
+                print(nb_inst)
+                if cat == "apple2" :
+                    array_apple.append(0)
+                if cat == "apricot" :
+                    array_apricot.append(0)
+                if cat == "banana1" :
+                    array_banana.append(0)
+                if cat == "kiwi1" :
+                    array_kiwi.append(0)
+                if cat == "lemon2" :
+                    array_lemon.append(0)
+                if cat == "orange2" :
+                    array_orange.append(0)
+                if cat == "peach1" :
+                    array_peach.append(0)
+                if cat == "pear2" :
+                    array_pear.append(0)
+                    
+    print()
+
+    print(array_apple)
+    print(array_apricot)
+    print(array_banana)
+    print(array_kiwi)
+    print(array_lemon)
+    print(array_orange)
+    print(array_peach)
+    print(array_pear)
+    print(len(array_pear))
+    print(np.resize( array_apple , (3, 19)))
+
+    df_apple=pd.DataFrame(np.resize( array_apple , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
+    df_apricot=pd.DataFrame(np.resize( array_apricot , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
+    df_banana=pd.DataFrame(np.resize( array_banana , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
+    df_kiwi=pd.DataFrame(np.resize( array_kiwi , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
+    df_lemon=pd.DataFrame(np.resize( array_lemon , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
+    df_orange=pd.DataFrame(np.resize( array_orange , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
+    df_peach=pd.DataFrame(np.resize( array_peach , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
+    df_pear=pd.DataFrame(np.resize( array_pear , (1, 19)),index=["Dataset"],columns=list_Nb_instance)
+
+    df_apple1 = prep_df(df_apple, 'Apple')
+    df_apricot1 = prep_df(df_apricot, 'Apricot')
+    df_banana1 = prep_df(df_banana, 'Banana')
+    df_kiwi1 = prep_df(df_kiwi, 'Kiwi')
+    df_lemon1 = prep_df(df_lemon, 'Lemon')
+    df_orange1 = prep_df(df_orange, 'Orange')
+    df_peach1 = prep_df(df_peach, 'Peach')
+    df_pear1 = prep_df(df_pear, 'Pear')
+
+    df = pd.concat([df_apple1, df_apricot1, df_banana1, df_kiwi1, df_lemon1, df_orange1, df_peach1, df_pear1])
+
+    # qxqxs
+
+    # df1_train=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
+    # df2_eval=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_eval), np.array(cameras_eval), np.array(mix_eval)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
+    # df3_test=pd.DataFrame(np.resize(np.concatenate((np.array(worlds_test), np.array(cameras_test), np.array(mix_test)) ), (3,8)),index=["World", "Cameras", "All"],columns=[ "apple" , "apricot", "banana", "kiwi", "lemon", "orange", "peach", "pear"])
+
+
+    # df1 = prep_df(df1_train, 'Train')
+    # df2 = prep_df(df2_eval, 'Eval')
+    # df3 = prep_df(df3_test, 'Test')
 
-    df = pd.concat([df1, df2, df3])
+    # df = pd.concat([df1, df2, df3])
 
 
     # print(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8)))
@@ -242,9 +313,10 @@ if __name__ == '__main__':
     alt.renderers.enable('altair_viewer')
 
     chart = alt.Chart(df).mark_bar().encode(
-
+    
+    
     # tell Altair which field to group columns on
-    x=alt.X('c2:N', title=None),
+    x=alt.X('c2:N', title=None, sort=None),
 
     # tell Altair which field to use as Y values and how to calculate
     y=alt.Y('sum(values):Q',