diff --git a/compute_features.py b/compute_features.py
index 9167a8294dc898c4624d5fcea238289f19bfafab..e7afe776ef8f11a831e0dd4e765adbf5181d431d 100644
--- a/compute_features.py
+++ b/compute_features.py
@@ -17,29 +17,54 @@ def process_compute(data_name, camera, camera_resized, new_size, Nb_camera, Worl
                                 [0.0000000, 0.0000000, -1.0000000],
                                 [1.0000000, 0.0000000, 0.0000000]])
     
-    scenario = "Worlds"
-    destination_folders = [f"Generated_{scenario}_Testing", f"Generated_{scenario}_Evaluating", f"Generated_{scenario}_Training" ]
+    scenarios = ["Worlds", "Cameras", "Mix_all"]
+
+    destination_folders_list = {}
+    for scenario_loop in scenarios:
+        destination_folders_list[scenario_loop] = [f"Generated_{scenario_loop}_Testing", f"Generated_{scenario_loop}_Evaluating", f"Generated_{scenario_loop}_Training" ]
 
     list_count_categories = {}
-    for destination_folder_loop in destination_folders : # [f"Generated_{scenario}_Testing", f"Generated_{scenario}_Evaluating", f"Generated_{scenario}_Training"] :
-        list_count_categories[destination_folder_loop] = {}
+    for scenario_loop in scenarios :
+        list_count_categories[scenario_loop] = {}
+        for destination_folder_loop in destination_folders_list[scenario_loop] : # [f"Generated_{scenario}_Testing", f"Generated_{scenario}_Evaluating", f"Generated_{scenario}_Training"] :
+            list_count_categories[scenario_loop][destination_folder_loop] = {}
+
+    print("destination_folders : ", destination_folders_list)
+    print("list_count_categories : ", list_count_categories)
 
+    destination_folders = {}
 
     for i in range(World_begin, World_begin + Nb_world): # worlds
 
 
         if i > 4 :
-            destination_folder = f"Generated_{scenario}_Testing"
+            destination_folders["Worlds"] = f"Generated_Worlds_Testing"
         elif i > 3 :
-            destination_folder = f"Generated_{scenario}_Evaluating"
+            destination_folders["Worlds"] = f"Generated_Worlds_Evaluating"
         else :
-            destination_folder = f"Generated_{scenario}_Training"
+            destination_folders["Worlds"] = f"Generated_Worlds_Training"
         
         catergories_instance_array_id_to_cat, catergories_instance_array_cat_to_id, catergories_label_to_id = compute_categories_id(data_name, i)
         
         for j in range(1, Nb_camera+1): # cameras
             p = ((i-1)*Nb_camera) + j
 
+            if j > 12 :
+                destination_folders["Cameras"] = f"Generated_Cameras_Testing"
+            elif j > 9 :
+                destination_folders["Cameras"] = f"Generated_Cameras_Evaluating"
+            else :
+                destination_folders["Cameras"] = f"Generated_Cameras_Training"
+
+            if i > 4 and j > 12 :
+                destination_folders["Mix_all"] = f"Generated_Mix_all_Testing"
+            elif i > 3 and i <=4 and j > 9 and j >= 12 :
+                destination_folders["Mix_all"] = f"Generated_Mix_all_Evaluating"
+            elif i <= 3 and j <= 9 :
+                destination_folders["Mix_all"] = f"Generated_Mix_all_Training"
+            else : 
+                destination_folders["Mix_all"] = "dont_save"
+
             catergories_occ_array = compute_id_good_occ(data_name, p, catergories_instance_array_id_to_cat, catergories_instance_array_cat_to_id, occ_target)
 
             ### 3D Poses ###
@@ -57,46 +82,53 @@ def process_compute(data_name, camera, camera_resized, new_size, Nb_camera, Worl
 
             if len(data_Bbox_2d) != len(data_3D_pose) :
                 raise TypeError("size of datas are differents !!")
-            
-            if os.path.isfile(f'{data_name}/{destination_folder}/Count_{p-1}.json'):
-                with open(f'{data_name}/{destination_folder}/Count_{p-1}.json') as f:
-                    list_count_categories[destination_folder] = json.load(f)
+                
+            for scenario_loop in scenarios:
+                if not destination_folders[scenario_loop] == "dont_save" :
+                    if os.path.isfile(f'{data_name}/{destination_folders[scenario_loop]}/Count_{p-1}.json'):
+                        with open(f'{data_name}/{destination_folders[scenario_loop]}/Count_{p-1}.json') as f:
+                            list_count_categories[scenario_loop][destination_folders[scenario_loop]] = json.load(f)
 
             for categories in list_categories:
                 if categories in catergories_occ_array.keys():
                     Nb_instance = len(catergories_occ_array[categories])
 
-                    meta = {}
-                    if not categories in list_count_categories[destination_folder].keys():
-                        #list_count_categories[categories] = {categories}
-                        list_count_categories[destination_folder][categories] = {}
-
-                    if Nb_instance in list_count_categories[destination_folder][categories].keys() : 
-                        list_count_categories[destination_folder][categories][Nb_instance] += 1
-                    else : 
-                        list_count_categories[destination_folder][categories][Nb_instance] = 1
-
-                    meta['id_generated'] = list_count_categories[destination_folder][categories][Nb_instance]
-                    meta['id_original'] = p
-                    meta['id_category'] = catergories_label_to_id[categories] 
-                    meta['id_instance'] = catergories_occ_array[categories]
-                    meta['id_dataset'] = 1
-                    meta['world'] = i
-                    meta['camera'] = f"grabber_{j}"
-                    meta['occlusion'] = occ_target
-                    meta['Nb_instance_category'] = Nb_instance
-
-                    if not os.path.isfile(f'{data_name}/{destination_folder}/{categories}/Meta_Gen/{categories}.json'):
-                        with open(f'{data_name}/{destination_folder}/{categories}/Meta_Gen/{categories}.json', mode='w') as f:
-                            feeds = {}
-                            feeds[meta['id_generated']]=meta
-                            f.write(json.dumps(feeds, indent=2))
-                    else:
-                        with open(f'{data_name}/{destination_folder}/{categories}/Meta_Gen/{categories}.json') as feedsjson:
-                            feeds = json.load(feedsjson)
-                            feeds[meta['id_generated']]=meta
-                        with open(f'{data_name}/{destination_folder}/{categories}/Meta_Gen/{categories}.json', mode='w') as f:
-                            f.write(json.dumps(feeds, indent=4))    
+                    for scenario_loop in scenarios:
+
+                        meta = {}
+                        # 
+                        if not destination_folders[scenario_loop] in list_count_categories[scenario_loop].keys():
+                            #list_count_categories[categories] = {categories}
+                            list_count_categories[scenario_loop][destination_folders[scenario_loop]] = {}
+                        if not categories in list_count_categories[scenario_loop][destination_folders[scenario_loop]].keys():
+                            #list_count_categories[categories] = {categories}
+                            list_count_categories[scenario_loop][destination_folders[scenario_loop]][categories] = {}
+                        if f"{Nb_instance}_instances" in list_count_categories[scenario_loop][destination_folders[scenario_loop]][categories].keys() : 
+                            list_count_categories[scenario_loop][destination_folders[scenario_loop]][categories][f"{Nb_instance}_instances"] += 1
+                        else : 
+                            list_count_categories[scenario_loop][destination_folders[scenario_loop]][categories][f"{Nb_instance}_instances"] = 1
+
+                        meta['id_generated'] = list_count_categories[scenario_loop][destination_folders[scenario_loop]][categories][f"{Nb_instance}_instances"]
+                        meta['id_original'] = p
+                        meta['id_category'] = catergories_label_to_id[categories] 
+                        meta['id_instance'] = catergories_occ_array[categories]
+                        meta['id_dataset'] = 1
+                        meta['world'] = i
+                        meta['camera'] = f"grabber_{j}"
+                        meta['occlusion'] = occ_target
+                        meta['Nb_instance_category'] = Nb_instance
+
+                        if not os.path.isfile(f'{data_name}/{destination_folders[scenario_loop]}/{categories}/Meta_Gen/{categories}.json'):
+                            with open(f'{data_name}/{destination_folders[scenario_loop]}/{categories}/Meta_Gen/{categories}.json', mode='w') as f:
+                                feeds = {}
+                                feeds[meta['id_generated']]=meta
+                                f.write(json.dumps(feeds, indent=2))
+                        else:
+                            with open(f'{data_name}/{destination_folders[scenario_loop]}/{categories}/Meta_Gen/{categories}.json') as feedsjson:
+                                feeds = json.load(feedsjson)
+                                feeds[meta['id_generated']]=meta
+                            with open(f'{data_name}/{destination_folders[scenario_loop]}/{categories}/Meta_Gen/{categories}.json', mode='w') as f:
+                                f.write(json.dumps(feeds, indent=4))    
 
                     if (Nb_instance == 1):
                         for k in range(len(data_3D_pose)):
@@ -110,19 +142,24 @@ def process_compute(data_name, camera, camera_resized, new_size, Nb_camera, Worl
                                 T_exp = transformation @ xyz
                                 T_exp = np.array(T_exp)
                                 num_arr = np.c_[R_exp, T_exp[0]]
-                                np.save(f'{data_name}/{destination_folder}/{categories}/Pose_transformed/{p}.npy', num_arr)  # save
+                                #for scenario_loop in scenarios:
+                                np.save(f'{data_name}/Generated/{categories}/Pose_transformed/{p}.npy', num_arr)  # save
                             else:
                                 continue
 
                             if data_Bbox_2d[k]['id'] == catergories_occ_array[categories][0]:
                                 bbox = bbox_2d(data_Bbox_2d[k])
-                                np.savetxt(f'{data_name}/{destination_folder}/{categories}/Bbox/{p}.txt', np.array(bbox).reshape((1, 4)))  # save
+                                for scenario_loop in scenarios:
+                                    if not destination_folders[scenario_loop] == "dont_save" :
+                                        np.savetxt(f'{data_name}/{destination_folders[scenario_loop]}/{categories}/Bbox/{p}.txt', np.array(bbox).reshape((1, 4)))  # save
                             else:
                                 continue
 
                             if data_Bbox_3d[k]['id'] == catergories_occ_array[categories][0]:
                                 bbox3d_size = data_Bbox_3d[k]['bbox']['size']
-                                np.savetxt(f'{data_name}/{destination_folder}/{categories}/Bbox_3d_Gen/{p}.txt', bbox3d_size)  # save
+                                for scenario_loop in scenarios:
+                                    if not destination_folders[scenario_loop] == "dont_save" :
+                                        np.savetxt(f'{data_name}/{destination_folders[scenario_loop]}/{categories}/Bbox_3d_Gen/{p}.txt', bbox3d_size)  # save
                             else:
                                 continue
 
@@ -130,17 +167,26 @@ def process_compute(data_name, camera, camera_resized, new_size, Nb_camera, Worl
                         img = cv2.imread(f"{data_name}/Instance_Segmentation/{p}.png", cv2.IMREAD_UNCHANGED) # plt.imread(path)
 
                         instance_img = instance(img, id)
-                        cv2.imwrite(f"{data_name}/{destination_folder}/{categories}/Instance_Mask/{p}.png", 255*instance_img)
+                        for scenario_loop in scenarios:
+                            if not destination_folders[scenario_loop] == "dont_save" :
+                                cv2.imwrite(f"{data_name}/{destination_folders[scenario_loop]}/{categories}/Instance_Mask/{p}.png", 255*instance_img)
                         instance_img_resized = cv2.resize(instance_img, new_size)
-                        cv2.imwrite(f"{data_name}/{destination_folder}/{categories}/Instance_Mask_resized/{p}.png", 255*instance_img_resized)
+                        for scenario_loop in scenarios:
+                            if not destination_folders[scenario_loop] == "dont_save" :
+                                cv2.imwrite(f"{data_name}/{destination_folders[scenario_loop]}/{categories}/Instance_Mask_resized/{p}.png", 255*instance_img_resized)
 
                         img = cv2.imread(f"{data_name}/RGB/{p}.png")
-                        cv2.imwrite(f"{data_name}/{destination_folder}/{categories}/RGB_Gen/{p}.png", img)
+                        for scenario_loop in scenarios:
+                            if not destination_folders[scenario_loop] == "dont_save" :
+                                cv2.imwrite(f"{data_name}/{destination_folders[scenario_loop]}/{categories}/RGB_Gen/{p}.png", img)
                         img_resized = cv2.resize(img, new_size)
-                        cv2.imwrite(f"{data_name}/{destination_folder}/{categories}/RGB_resized/{p}.png", img_resized)
+                        for scenario_loop in scenarios:
+                            if not destination_folders[scenario_loop] == "dont_save" :
+                                cv2.imwrite(f"{data_name}/{destination_folders[scenario_loop]}/{categories}/RGB_resized/{p}.png", img_resized)
 
                         np.set_printoptions(precision=15)
-                        pose = np.load(f'{data_name}/{destination_folder}/{categories}/Pose_transformed/{p}.npy')
+                        #for scenario_loop in scenarios:
+                        pose = np.load(f'{data_name}/Generated/{categories}/Pose_transformed/{p}.npy')
                         R_exp = pose[0:3, 0:3]
                         tVec = pose[0:3, 3]
 
@@ -156,7 +202,10 @@ def process_compute(data_name, camera, camera_resized, new_size, Nb_camera, Worl
                             out.append(x)
                             out.append(y)
                             ind += 2
-                        np.savetxt(f'{data_name}/{destination_folder}/{categories}/FPS/{p}.txt',  np.array(out).reshape(1, len(out)))
+                        
+                        for scenario_loop in scenarios:
+                            if not destination_folders[scenario_loop] == "dont_save" :
+                                np.savetxt(f'{data_name}/{destination_folders[scenario_loop]}/{categories}/FPS/{p}.txt',  np.array(out).reshape(1, len(out)))
 
                         points_resized = process2(fps_points, R_exp, tVec, camera_resized, img_resized, vis)
                         out_resized = [int(catergories_occ_array[categories][0])] #len have to be 1 !
@@ -167,13 +216,25 @@ def process_compute(data_name, camera, camera_resized, new_size, Nb_camera, Worl
                             out_resized.append(x_resized)
                             out_resized.append(y_resized)
                             ind_resized += 2
-                        np.savetxt(f'{data_name}/{destination_folder}/{categories}/FPS_resized/{p}.txt',  np.array(out_resized).reshape(1, len(out_resized)))
+                        for scenario_loop in scenarios:
+                            if not destination_folders[scenario_loop] == "dont_save" :
+                                np.savetxt(f'{data_name}/{destination_folders[scenario_loop]}/{categories}/FPS_resized/{p}.txt',  np.array(out_resized).reshape(1, len(out_resized)))
     
 
-    for destination_folder_loop in destination_folders : # [f"Generated_{scenario}_Testing", f"Generated_{scenario}_Evaluating", f"Generated_{scenario}_Training"] :
-        with open(f'{data_name}/{destination_folder_loop}/Count_{p}.json', mode='w') as f:
-            f.write(json.dumps(list_count_categories[destination_folder], indent=4))
-        print(list_count_categories[destination_folder])
+    for scenario_loop in scenarios:
+        print("scenarios : " , scenarios)
+        print("scenario_loop : " , scenario_loop)
+        print ("destination_folders : ", destination_folders )
+        for destination_folder_loop in destination_folders_list[scenario_loop] : # [f"Generated_{scenario}_Testing", f"Generated_{scenario}_Evaluating", f"Generated_{scenario}_Training"] :
+            print("destination_folders[scenario_loop]", destination_folders_list[scenario_loop])
+            print("destination_folder_loop", destination_folder_loop)
+            with open(f'{data_name}/{destination_folder_loop}/Count_{p}.json', mode='w') as f:
+                f.write(json.dumps(list_count_categories[scenario_loop][destination_folder_loop], indent=4))
+            print(f'{data_name}/{destination_folders_list[scenario_loop]}/Count_{p}.json')
+            print(list_count_categories[scenario_loop][destination_folder_loop])
+
+
+    with open(f'{data_name}/Count_{p}.json', mode='w') as f:
+                f.write(json.dumps(list_count_categories, indent=4))
     print(list_count_categories)
 
-
diff --git a/main.py b/main.py
index 6541bb50ec91a8c77d0c4be36452c57271e32512..eaf6f3f82598457468c0f57641e53bc9eb5d47d8 100644
--- a/main.py
+++ b/main.py
@@ -23,15 +23,22 @@ def generate_folders(name, list_categories, scenario):
                     is_exist2 = os.path.exists(f"{name}/Generated/{cat}")
                     if not is_exist2:
                         os.makedirs(f"{name}/Generated/{cat}")
-                    is_exist2 = os.path.exists(f"{name}/Generated_{scenario}_Training/{cat}/{f}")
+                    is_exist2 = os.path.exists(f"{name}/Generated/{cat}/Pose_transformed")
                     if not is_exist2:
-                        os.makedirs(f"{name}/Generated_{scenario}_Training/{cat}/{f}")
-                    is_exist2 = os.path.exists(f"{name}/Generated_{scenario}_Evaluating/{cat}/{f}")
-                    if not is_exist2:
-                        os.makedirs(f"{name}/Generated_{scenario}_Evaluating/{cat}/{f}")
-                    is_exist2 = os.path.exists(f"{name}/Generated_{scenario}_Testing/{cat}/{f}")
-                    if not is_exist2:
-                        os.makedirs(f"{name}/Generated_{scenario}_Testing/{cat}/{f}")
+                        os.makedirs(f"{name}/Generated/{cat}/Pose_transformed")
+                    for scenario in ["Worlds", "Cameras", "Mix_all"] :
+                        is_exist2 = os.path.exists(f"{name}/Generated_{scenario}_Training/{cat}/{f}")
+                        if not is_exist2:
+                            os.makedirs(f"{name}/Generated_{scenario}_Training/{cat}/{f}")
+                        is_exist2 = os.path.exists(f"{name}/Generated_{scenario}_Evaluating/{cat}/{f}")
+                        if not is_exist2:
+                            os.makedirs(f"{name}/Generated_{scenario}_Evaluating/{cat}/{f}")
+                        is_exist2 = os.path.exists(f"{name}/Generated_{scenario}_Testing/{cat}/{f}")
+                        if not is_exist2:
+                            os.makedirs(f"{name}/Generated_{scenario}_Testing/{cat}/{f}")
+                        is_exist2 = os.path.exists(f"{name}/dont_save/{cat}/{f}")
+                        if not is_exist2:
+                            os.makedirs(f"{name}/dont_save/{cat}/{f}")