diff --git a/README.md b/README.md index 69eccea3db856f0d8a55c541007652ce9d471f27..b1cc15d261a396ba8a8846375854283324a5f6a0 100644 --- a/README.md +++ b/README.md @@ -47,7 +47,7 @@ We adopt yolox as the detection method. We used stronger data augmentation and r ### Training -Download the pretrained model at [Onedrive](https://mailstsinghuaeducn-my.sharepoint.com/:f:/g/personal/liuxy21_mails_tsinghua_edu_cn/EkCTrRfHUZVEtD7eHwLkYSkBCTXlh9ekDteSzK6jM4oo-A?e=6TCh8y) (password: groupji) and put it in the folder `pretrained_models/yolox`. Then use the following command: +Download the pretrained model at [Onedrive](https://mailstsinghuaeducn-my.sharepoint.com/:f:/g/personal/liuxy21_mails_tsinghua_edu_cn/EkCTrRfHUZVEtD7eHwLkYSkBCTXlh9ekDteSzK6jM4oo-A?e=m0aNCy) (password: groupji) and put it in the folder `pretrained_models/yolox`. Then use the following command: `./det/yolox/tools/train_yolox.sh <config_path> <gpu_ids> (other args)` diff --git a/core/gdrn_modeling/engine/gdrn_evaluator.py b/core/gdrn_modeling/engine/gdrn_evaluator.py index 0704ef041a8916c0c1cbe277cc49ae3c5be2e4ec..e1cb3186cdb028d93a373a805b32b7c4a35d7252 100644 --- a/core/gdrn_modeling/engine/gdrn_evaluator.py +++ b/core/gdrn_modeling/engine/gdrn_evaluator.py @@ -518,8 +518,6 @@ class GDRN_Evaluator(DatasetEvaluator): net_cfg = cfg.MODEL.POSE_NET crop_res = net_cfg.OUTPUT_RES - - for _ in range(cfg.TEST.DEPTH_REFINE_ITER): self.ren.clear() self.ren.set_cam(K_crop)