diff --git a/tmp_preprocess_data.py b/tmp_preprocess_data.py
index d353bc44e0dc37e124b1aa94be45af9540e31150..bc852b8c430d8b20319d42f72d1f64c9134d4b28 100644
--- a/tmp_preprocess_data.py
+++ b/tmp_preprocess_data.py
@@ -1,40 +1,59 @@
-import sys
-import os
-import time
-import argparse
+#import sys
+#import os
+#import time
+#import argparse
 import pandas as pd
-import numpy as np
-from data_preprocessing import Preprocessor
-from features_extractor import feature_extractor
-from ClassPreprocessor import remove_weak_classes, resample_classes, create_dict, split_class
-from classifiers import classifiers, grid_params
-from sklearn.model_selection import train_test_split
-from sklearn import preprocessing
-from evaluate_model import evaluate_model
-from sklearn.model_selection import GridSearchCV
-import configparser
-from re import search
-import math
-import re
-import nltk
-from ClassPreprocessor import create_dict
-
-
-print("Begin preprocess")
+#import numpy as np
+#from data_preprocessing import Preprocessor
+#from features_extractor import feature_extractor
+#from ClassPreprocessor import remove_weak_classes, resample_classes, create_dict, split_class
+#from classifiers import classifiers, grid_params
+#from sklearn.model_selection import train_test_split
+#from sklearn import preprocessing
+#from evaluate_model import evaluate_model
+#from sklearn.model_selection import GridSearchCV
+#import configparser
+#from re import search
+#import math
+#import re
+#import nltk
+#from ClassPreprocessor import create_dict
+
+
+#print("Begin preprocess")
 
 # Reading data and preprocessings steps
 
-preprocessor = Preprocessor()
+#preprocessor = Preprocessor()
 
 print("load dataset")
 
-df_original = pd.read_csv('data/EDdA_dataframe_withContent.tsv', sep="\t")
-df = df_original.copy()
+df = pd.read_csv('data/EDdA_dataframe_withContent.tsv', sep="\t")
+#df = df_original.copy()
 
 print("remove blank rows")
 df.dropna(subset = ['content', 'contentWithoutClass', 'firstParagraph', 'ensemble_domaine_enccre', 'domaine_enccre', 'normClass'], inplace = True)
 df.reset_index(drop=True, inplace=True)
 
+
+print("filter unclassified rows")
+# filtrer les articles non classés par ARTFL mais classé par ENCCRE (jeu de test)
+df_unclassified = df.loc[(df['normClass']=="unclassified")]
+df_classified = df.loc[(df['normClass']!="unclassified")]
+
+
+
+print("save dataframe")
+df_classified.to_csv('./data/train_dataframe.tsv', sep="\t")
+df_unclassified.to_csv('./data/test_dataframe.tsv', sep="\t")
+
+print("some stats")
+
+print("len(df_unclassified)",len(df_unclassified))
+print("len(df_classified)",len(df_classified))
+
+'''
+
 #preprocessor.remove_null_rows(df_original, 'content')
 print("copy")
 df_1 = df[['ensemble_domaine_enccre','content','contentWithoutClass','firstParagraph']].copy()
@@ -44,21 +63,20 @@ df_3 = df[['normClass','content','contentWithoutClass','firstParagraph']].copy()
 print("split ensemble domaine enccre")
 df_1 = split_class(df_1, 'ensemble_domaine_enccre')
 print("save dataframe")
-df_1.to_csv('./data/dataframe_with_ensemble_domaine_enccre.csv')
+df_1.to_csv('./data/train_dataframe_with_ensemble_domaine_enccre.csv')
 
-print("split ensemble domaine enccre")
+print("split  domaine enccre")
 df_2 = split_class(df_2, 'domaine_enccre')
 print("save dataframe")
-df_2.to_csv('./data/dataframe_with_domaine_enccre.csv')
+df_2.to_csv('./data/train_dataframe_with_domaine_enccre.csv')
 
-print("split ensemble domaine enccre")
+print("split normclass")
 df_3 = split_class(df_3, 'normClass')
 print("save dataframe")
-df_3.to_csv('./data/dataframe_with_normClass_artfl.csv')
+df_3.to_csv('./data/train_dataframe_with_normClass_artfl.csv')
 
 
 
-print("some stats")
 d_1 = create_dict(df_1, 'ensemble_domaine_enccre')
 tosave = pd.DataFrame.from_dict(d_1, orient='index',  columns=[ 'Count'])
 tosave.to_excel("ensemble_domaine_enccre.xlsx")
@@ -72,3 +90,4 @@ tosave = pd.DataFrame.from_dict(d_3, orient='index',  columns=[ 'Count'])
 tosave.to_excel("normClass_artfl.xlsx")
 
 print(df_original.shape)
+'''