diff --git a/classifiers.py b/classifiers.py
index f68b2c6519a28447f62aa24426ef707455155f4f..c061dac54e384c33fe4d9c33f23c977f7fddd3e5 100644
--- a/classifiers.py
+++ b/classifiers.py
@@ -30,10 +30,11 @@ param_grid_knn = {'n_neighbors' : list(range(3,20)), 'weights' : ['uniform', 'di
 
 grid_params = [
                 ('bayes', None),
+                ('lr', param_grid_lr),
+                ('sgd', param_grid_sgd ),
                 ('svm', param_grid_svm),
                 ('decisionTree', param_grid_decisionTree),
                 ('rfc', param_grid_rfc ),
-                ('lr', param_grid_lr),
-                ('sgd', param_grid_sgd ),
-                ('knn', param_grid_knn),
+                ('knn', param_grid_knn),               
+
                 ]
diff --git a/experimentsClassicClassifiers.py b/experimentsClassicClassifiers.py
index 1cc2f91dac3edb0d237da6605ce743a112c0e01c..35da41c4e80bf9e430df179bef1fb0a3e1f2f2d6 100644
--- a/experimentsClassicClassifiers.py
+++ b/experimentsClassicClassifiers.py
@@ -72,35 +72,42 @@ for columnInput in [columnText, 'firstParagraph']:
 
     print('Process: ' + columnInput)
 
-    extractor = feature_extractor(df, columnInput, columnClass)
+    #prepare data
+    df = df[df[columnClass] != 'unclassified']
+    y  = df[columnClass]
+
+    train_x, test_x, train_y, test_y = train_test_split(features, y, test_size=0.33, random_state=42, stratify = y )
+    encoder = preprocessing.LabelEncoder()
+    train_y = encoder.fit_transform(train_y)
+    valid_y = encoder.fit_transform(test_y)
+
+
+    extractor = feature_extractor(train_x, test_x, columnInput, columnClass)
 
     features_techniques = [
     ('counter',  extractor.count_vect(max_df = vectorization_max_df, min_df = vectorization_min_df, numberOfFeatures = vectorization_numberOfFeatures )),
     ('tf_idf',  extractor.tf_idf(max_df = vectorization_max_df, min_df = vectorization_min_df, numberOfFeatures = vectorization_numberOfFeatures)),
     ('doc2vec',  extractor.doc2vec(doc2vec_epochs, doc2vec_vec_size, doc2vec_lr))]
 
-    #prepare data
-    df = df[df[columnClass] != 'unclassified']
-    y  = df[columnClass]
+
 
     #case of full text
     for feature_technique_name, features in features_techniques:
-        train_x, test_x, train_y, test_y = train_test_split(features, y, test_size=0.33, random_state=42, stratify = y )
-        encoder = preprocessing.LabelEncoder()
-        train_y = encoder.fit_transform(train_y)
-        valid_y = encoder.fit_transform(test_y)
+
+        # features has the train_x and the test_x after vectorization
+        train_x, test_x = features
 
         for tmp_clf, tmp_grid_params in zip(classifiers, grid_params):
             clf_name, clf = tmp_clf
             grid_param_name, grid_param = tmp_grid_params
             print(clf_name, clf, grid_param_name, grid_param)
             model_file_name = columnInput + '_' +feature_technique_name + '_' + clf_name+ str(minOfInstancePerClass) + '_' + str(maxOfInstancePerClass) +".pkl"
-            
+
             if clf_name != 'bayes' :
                 clf = GridSearchCV(clf, grid_param, refit = True, verbose = 3)
             elif feature_technique_name == 'doc2vec':
                     continue
-            
+
             t_begin = time.time()
 
             if os.path.isfile(os.path.join('./models', model_file_name)):
diff --git a/features_extractor.py b/features_extractor.py
index a0c99fe4cd018aff722527e727cb51a516b0f315..56d1944087d6153ebc0f810c2f16b20e83826c23 100644
--- a/features_extractor.py
+++ b/features_extractor.py
@@ -12,16 +12,17 @@ from nltk.tokenize import word_tokenize
 
 class feature_extractor:
 
-    def __init__(self, data, column, target):
+    def __init__(self, train_x, test_x, column, target):
 
         self.column = column
-        self.data = data
-        self.X = data[column]
-        self.y = data[target]
+        #self.data = data
+        #self.X = data[column]
+        #self.y = data[target]
 
-        self.docs = []
-        for index, row in data.iterrows():
-            self.docs.append(row[column])
+        self.docs_train = train_x[column].tolist()
+        self.docs_test = test_x[column].tolist()
+        #for index, row in data.iterrows():
+        #    self.docs.append(row[column])
 
 
     def count_vect(self, max_df= 1.0 , min_df= 1, numberOfFeatures= None ):
@@ -36,9 +37,9 @@ class feature_extractor:
 
         stem_vectorizer_fr = CountVectorizer( stop_words = 'french', analyzer = stemmed_words_fr, max_df= max_df, min_df = min_df, max_features = numberOfFeatures)
 
-        stem_vectorizer_fr.fit(self.docs)
+        stem_vectorizer_fr.fit(self.docs_train)
 
-        return stem_vectorizer_fr.transform(self.docs)
+        return stem_vectorizer_fr.transform(self.docs_train), stem_vectorizer_fr.transform(self.docs_test)
 
 
     def tf_idf(self, max_df= 1.0 , min_df= 1, numberOfFeatures = None):
@@ -53,21 +54,26 @@ class feature_extractor:
             return (stemmer_fr.stem(w) for w in analyzer(doc) if not w in stop_words)
 
         tfidf_vectorizer = TfidfVectorizer(stop_words= 'french', analyzer=stemmed_words_fr, max_df= max_df, min_df = min_df, max_features= numberOfFeatures)
-        tfidf_vectorizer.fit(self.docs)
-        return tfidf_vectorizer.transform(self.docs)
+        tfidf_vectorizer.fit(self.docs_train)
+        return tfidf_vectorizer.transform(self.docs_train), tfidf_vectorizer.transform(self.docs_test)
 
 
 
 
     def doc2vec(self, max_epochs, vec_size, alpha = 0.025 , dm = 1):
-        tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(self.docs)]
+        #tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(self.docs_train)]
+        tagged_tr = [TaggedDocument(words = word_tokenize(_d.lower()),tags = [str(i)]) for i, _d in enumerate(self.docs_train)]
+        #Tag test set
+        tagged_test = [TaggedDocument(words=word_tokenize(_d.lower()), tags = [str(i)]) for i, _d in enumerate(self.docs_test)]
+
+
         model = Doc2Vec(vector_size=vec_size, alpha=alpha, min_alpha=0.00025, min_count=1, dm =1)
 
-        model.build_vocab(tagged_data)
+        model.build_vocab(tagged_tr)
 
         for epoch in range(max_epochs):
             print('iteration {0}'.format(epoch))
-            model.train(tagged_data, total_examples=model.corpus_count, epochs=model.iter)
+            model.train(tagged_tr, total_examples=model.corpus_count, epochs=model.iter)
             # decrease the learning rate
             model.alpha -= 0.0002
             # fix the learning rate, no decay
@@ -78,12 +84,13 @@ class feature_extractor:
         nb_docs_small = len(set_tags)
         doc_vec_doc2vec = np.zeros(shape=(nb_docs_small, vec_size))
 
-        i = 0
-        for t in set_tags:
-            doc_vec_doc2vec[i] = model.docvecs[t]
-            i += 1
-
-        return doc_vec_doc2vec
+        #i = 0
+        #for t in set_tags:
+        #    doc_vec_doc2vec[i] = model.docvecs[t]
+        #    i += 1
+        X_train = np.array([model.docvecs[str(i)] for i in range(len(tagged_tr))])
+        X_test = np.array([model.infer_vector(tagged_test[i][0]) for i in range(len(tagged_test))])
+        return X_train, X_test
 
 
     def text_based_features(self):