diff --git a/notebooks/Classification_BertFineTuning.ipynb b/notebooks/Classification_BertFineTuning.ipynb index 692d3b5af2a782eef88210ca4cb8b64052dd80a1..6e533e75b3b02a47abe1c2c3ba679bcbe93de0ac 100644 --- a/notebooks/Classification_BertFineTuning.ipynb +++ b/notebooks/Classification_BertFineTuning.ipynb @@ -20,7 +20,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -28,17 +28,7 @@ "id": "WF0qFN_g3ekz", "outputId": "f3a5f049-24ee-418f-fe5e-84c633234ad8" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Your runtime has 27.3 gigabytes of available RAM\n", - "\n", - "You are using a high-RAM runtime!\n" - ] - } - ], + "outputs": [], "source": [ "from psutil import virtual_memory\n", "ram_gb = virtual_memory().total / 1e9\n", @@ -52,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -60,15 +50,7 @@ "id": "vL0S-s9Uofvn", "outputId": "4b7efa4d-7f09-4c8e-bc98-99e6099ede32" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Mounted at /content/drive\n" - ] - } - ], + "outputs": [], "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" @@ -85,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -95,11 +77,10 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "There are 1 GPU(s) available.\n", - "We will use the GPU: Tesla P100-PCIE-16GB\n" + "We will use the GPU\n" ] } ], @@ -108,18 +89,18 @@ "\n", "# If there's a GPU available...\n", "if torch.cuda.is_available(): \n", - "\n", " # Tell PyTorch to use the GPU. \n", " device = torch.device(\"cuda\")\n", - "\n", " print('There are %d GPU(s) available.' % torch.cuda.device_count())\n", - "\n", " print('We will use the GPU:', torch.cuda.get_device_name(0))\n", "\n", - "# If not...\n", + "# for MacOS\n", + "elif torch.backends.mps.is_available() and torch.backends.mps.is_built():\n", + " device = torch.device(\"mps\")\n", + " print('We will use the GPU')\n", "else:\n", - " print('No GPU available, using the CPU instead.')\n", - " device = torch.device(\"cpu\")" + " device = torch.device(\"cpu\")\n", + " print('No GPU available, using the CPU instead.')" ] }, { @@ -133,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -141,57 +122,7 @@ "id": "pwmZ5bBvgGNh", "outputId": "fce0a8bf-1779-4079-c7ac-200ebb2678c5" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting transformers==4.10.3\n", - " Downloading transformers-4.10.3-py3-none-any.whl (2.8 MB)\n", - "\u001b[K |████████████████████████████████| 2.8 MB 5.2 MB/s \n", - "\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers==4.10.3) (2.23.0)\n", - "Collecting sacremoses\n", - " Downloading sacremoses-0.0.47-py2.py3-none-any.whl (895 kB)\n", - "\u001b[K |████████████████████████████████| 895 kB 47.4 MB/s \n", - "\u001b[?25hRequirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers==4.10.3) (4.11.0)\n", - "Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from transformers==4.10.3) (21.3)\n", - "Collecting tokenizers<0.11,>=0.10.1\n", - " Downloading tokenizers-0.10.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.3 MB)\n", - "\u001b[K |████████████████████████████████| 3.3 MB 49.6 MB/s \n", - "\u001b[?25hRequirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers==4.10.3) (2019.12.20)\n", - "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers==4.10.3) (1.21.5)\n", - "Collecting huggingface-hub>=0.0.12\n", - " Downloading huggingface_hub-0.4.0-py3-none-any.whl (67 kB)\n", - "\u001b[K |████████████████████████████████| 67 kB 5.8 MB/s \n", - "\u001b[?25hCollecting pyyaml>=5.1\n", - " Downloading PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (596 kB)\n", - "\u001b[K |████████████████████████████████| 596 kB 46.7 MB/s \n", - "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers==4.10.3) (4.62.3)\n", - "Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers==4.10.3) (3.4.2)\n", - "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub>=0.0.12->transformers==4.10.3) (3.10.0.2)\n", - "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->transformers==4.10.3) (3.0.7)\n", - "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers==4.10.3) (3.7.0)\n", - "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.10.3) (1.24.3)\n", - "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.10.3) (3.0.4)\n", - "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.10.3) (2.10)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.10.3) (2021.10.8)\n", - "Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers==4.10.3) (1.1.0)\n", - "Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers==4.10.3) (1.15.0)\n", - "Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers==4.10.3) (7.1.2)\n", - "Installing collected packages: pyyaml, tokenizers, sacremoses, huggingface-hub, transformers\n", - " Attempting uninstall: pyyaml\n", - " Found existing installation: PyYAML 3.13\n", - " Uninstalling PyYAML-3.13:\n", - " Successfully uninstalled PyYAML-3.13\n", - "Successfully installed huggingface-hub-0.4.0 pyyaml-6.0 sacremoses-0.0.47 tokenizers-0.10.3 transformers-4.10.3\n", - "Collecting sentencepiece\n", - " Downloading sentencepiece-0.1.96-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n", - "\u001b[K |████████████████████████████████| 1.2 MB 5.1 MB/s \n", - "\u001b[?25hInstalling collected packages: sentencepiece\n", - "Successfully installed sentencepiece-0.1.96\n" - ] - } - ], + "outputs": [], "source": [ "!pip install transformers==4.10.3\n", "!pip install sentencepiece" @@ -208,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": { "id": "SkErnwgMMbRj" }, @@ -250,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 3, "metadata": { "id": "WkIVcabUgxIl" }, @@ -290,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -298,36 +229,7 @@ "id": "jdCdUVOTZrqh", "outputId": "ac52be55-ed4b-4c50-dc8c-9124ca6b71e5" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "--2022-02-18 07:03:04-- https://projet.liris.cnrs.fr/geode/EDdA-Classification/datasets/training_set.tsv\n", - "Resolving projet.liris.cnrs.fr (projet.liris.cnrs.fr)... 134.214.142.28\n", - "Connecting to projet.liris.cnrs.fr (projet.liris.cnrs.fr)|134.214.142.28|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 175634219 (167M) [text/tab-separated-values]\n", - "Saving to: ‘training_set.tsv’\n", - "\n", - "training_set.tsv 100%[===================>] 167.50M 27.7MB/s in 6.8s \n", - "\n", - "2022-02-18 07:03:11 (24.7 MB/s) - ‘training_set.tsv’ saved [175634219/175634219]\n", - "\n", - "--2022-02-18 07:03:11-- https://projet.liris.cnrs.fr/geode/EDdA-Classification/datasets/test_set.tsv\n", - "Resolving projet.liris.cnrs.fr (projet.liris.cnrs.fr)... 134.214.142.28\n", - "Connecting to projet.liris.cnrs.fr (projet.liris.cnrs.fr)|134.214.142.28|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 42730598 (41M) [text/tab-separated-values]\n", - "Saving to: ‘test_set.tsv’\n", - "\n", - "test_set.tsv 100%[===================>] 40.75M 19.5MB/s in 2.1s \n", - "\n", - "2022-02-18 07:03:14 (19.5 MB/s) - ‘test_set.tsv’ saved [42730598/42730598]\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "!wget https://projet.liris.cnrs.fr/geode/EDdA-Classification/datasets/training_set.tsv\n", "!wget https://projet.liris.cnrs.fr/geode/EDdA-Classification/datasets/test_set.tsv" @@ -344,36 +246,32 @@ }, { "cell_type": "code", - "source": [ - "train_path = 'training_set.tsv'\n", - "test_path = 'test_set.tsv'" - ], + "execution_count": 4, "metadata": { "id": "7JEnKknRoClH" }, - "execution_count": 7, - "outputs": [] + "outputs": [], + "source": [ + "train_path = '../data/training_set.tsv'\n", + "test_path = '../data/test_set.tsv'" + ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "metadata": { - "id": "5u1acjunhoxe", "colab": { "base_uri": "https://localhost:8080/", "height": 496 }, + "id": "5u1acjunhoxe", "outputId": "3038048d-6506-473d-85c9-2d3ebdcc6a72" }, "outputs": [ { - "output_type": "execute_result", "data": { "text/html": [ - "\n", - " <div id=\"df-5a25a6b1-21af-4b77-8ab1-a5df357d33f1\">\n", - " <div class=\"colab-df-container\">\n", - " <div>\n", + "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", @@ -489,97 +387,48 @@ " </tr>\n", " </tbody>\n", "</table>\n", - "</div>\n", - " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-5a25a6b1-21af-4b77-8ab1-a5df357d33f1')\"\n", - " title=\"Convert this dataframe to an interactive table.\"\n", - " style=\"display:none;\">\n", - " \n", - " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", - " width=\"24px\">\n", - " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", - " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", - " </svg>\n", - " </button>\n", - " \n", - " <style>\n", - " .colab-df-container {\n", - " display:flex;\n", - " flex-wrap:wrap;\n", - " gap: 12px;\n", - " }\n", - "\n", - " .colab-df-convert {\n", - " background-color: #E8F0FE;\n", - " border: none;\n", - " border-radius: 50%;\n", - " cursor: pointer;\n", - " display: none;\n", - " fill: #1967D2;\n", - " height: 32px;\n", - " padding: 0 0 0 0;\n", - " width: 32px;\n", - " }\n", - "\n", - " .colab-df-convert:hover {\n", - " background-color: #E2EBFA;\n", - " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", - " fill: #174EA6;\n", - " }\n", - "\n", - " [theme=dark] .colab-df-convert {\n", - " background-color: #3B4455;\n", - " fill: #D2E3FC;\n", - " }\n", - "\n", - " [theme=dark] .colab-df-convert:hover {\n", - " background-color: #434B5C;\n", - " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", - " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", - " fill: #FFFFFF;\n", - " }\n", - " </style>\n", + "</div>" + ], + "text/plain": [ + " volume numero head normClass \\\n", + "0 15 5 SENACULE Antiquité romaine \n", + "1 8 3509 Investir Marine \n", + "2 2 3428 BOYARDS, ou BOJARES, ou BOJARDS Histoire moderne \n", + "3 2 6532 Cerceau Tonnelier \n", + "4 8 1827 HIERONYMITES, ou HERMITES DE S. JEROME unclassified \n", "\n", - " <script>\n", - " const buttonEl =\n", - " document.querySelector('#df-5a25a6b1-21af-4b77-8ab1-a5df357d33f1 button.colab-df-convert');\n", - " buttonEl.style.display =\n", - " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", + " classEDdA author id_enccre domaine_enccre \\\n", + "0 Antiq. rom. Jaucourt v15-4-0 antiquité \n", + "1 Marine. Le Blond v8-2689-1 marine \n", + "2 Hist. mod. Mallet v2-2041-0 histoire \n", + "3 Tonneliers unsigned v2-4266-3 tonnelier \n", + "4 unclassified unsigned v8-1404-0 histoireecclésiastique \n", "\n", - " async function convertToInteractive(key) {\n", - " const element = document.querySelector('#df-5a25a6b1-21af-4b77-8ab1-a5df357d33f1');\n", - " const dataTable =\n", - " await google.colab.kernel.invokeFunction('convertToInteractive',\n", - " [key], {});\n", - " if (!dataTable) return;\n", + " ensemble_domaine_enccre content \\\n", + "0 Antiquité SENACULE, s. m. (Antiq. rom.) senaculum:\\nlieu... \n", + "1 Marine Investir, (Marine.) se dit parmi les matelots\\... \n", + "2 Histoire BOYARDS, ou BOJARES, ou BOJARDS, s. m.\\npl. (H... \n", + "3 Métiers Cerceau, c'est un lien de bois qui se plie fac... \n", + "4 Religion HIERONYMITES, ou HERMITES DE S. JEROME, Voyez ... \n", "\n", - " const docLinkHtml = 'Like what you see? Visit the ' +\n", - " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", - " + ' to learn more about interactive tables.';\n", - " element.innerHTML = '';\n", - " dataTable['output_type'] = 'display_data';\n", - " await google.colab.output.renderOutput(dataTable, element);\n", - " const docLink = document.createElement('div');\n", - " docLink.innerHTML = docLinkHtml;\n", - " element.appendChild(docLink);\n", - " }\n", - " </script>\n", - " </div>\n", - " </div>\n", - " " - ], - "text/plain": [ - " volume numero ... firstParagraph nb_words\n", - "0 15 5 ... senacule s. m. senaculum \\n lieu où tenoit s... 91\n", - "1 8 3509 ... investir parmi matelot \\n méditerranée échou... 30\n", - "2 2 3428 ... boyard bojares bojards s. m. \\n pl nom donne... 218\n", - "3 2 6532 ... cerceau lien bois plie facilement \\n servent... 229\n", - "4 8 1827 ... hieronymites hermites s. jerome jeronymites he... 34\n", + " contentWithoutClass \\\n", + "0 senacule s. m. senaculum \\n lieu où tenoit s... \n", + "1 investir parmi matelot \\n méditerranée échou... \n", + "2 boyard bojares bojards s. m. \\n pl nom donne... \n", + "3 cerceau lien bois plie facilement \\n servent... \n", + "4 hieronymites hermites s. jerome jeronymites he... \n", "\n", - "[5 rows x 13 columns]" + " firstParagraph nb_words \n", + "0 senacule s. m. senaculum \\n lieu où tenoit s... 91 \n", + "1 investir parmi matelot \\n méditerranée échou... 30 \n", + "2 boyard bojares bojards s. m. \\n pl nom donne... 218 \n", + "3 cerceau lien bois plie facilement \\n servent... 229 \n", + "4 hieronymites hermites s. jerome jeronymites he... 34 " ] }, + "execution_count": 5, "metadata": {}, - "execution_count": 9 + "output_type": "execute_result" } ], "source": [ @@ -589,7 +438,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -599,8 +448,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "(46807, 13)\n" ] @@ -612,60 +461,61 @@ }, { "cell_type": "markdown", - "source": [ - "## Configuration" - ], "metadata": { "id": "dADYGtTcn4AB" - } + }, + "source": [ + "## Configuration" + ] }, { "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "I0OrfFsBn4Io" + }, + "outputs": [], "source": [ "columnText = 'contentWithoutClass'\n", "columnClass = 'ensemble_domaine_enccre'\n", "\n", "maxOfInstancePerClass = 10000\n", "\n", - "#model_chosen = \"bert\"\n", - "model_chosen = \"camembert\"\n", + "model_chosen = \"bert\"\n", + "#model_chosen = \"camembert\"\n", "\n", - "batch_size = 8 # 16 or 32 recommended\n", + "batch_size = 16 # 16 or 32 recommended\n", "max_len = 512\n", "\n", - "path = \"drive/MyDrive/Classification-EDdA/\"\n", + "#path = \"drive/MyDrive/Classification-EDdA/\"\n", + "path = \"../models/new/\"\n", "encoder_filename = \"label_encoder.pkl\"" - ], - "metadata": { - "id": "I0OrfFsBn4Io" - }, - "execution_count": 30, - "outputs": [] + ] }, { "cell_type": "markdown", - "source": [ - "## Preprocessing" - ], "metadata": { "id": "t3brU-Yvn4XS" - } + }, + "source": [ + "## Preprocessing" + ] }, { "cell_type": "code", - "source": [ - "if maxOfInstancePerClass != 10000:\n", - " df_train = resample_classes(df_train, columnClass, maxOfInstancePerClass)" - ], + "execution_count": null, "metadata": { "id": "aQCLJE4Jtm7v" }, - "execution_count": 31, - "outputs": [] + "outputs": [], + "source": [ + "if maxOfInstancePerClass != 10000:\n", + " df_train = resample_classes(df_train, columnClass, maxOfInstancePerClass)" + ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 25, "metadata": { "id": "zrjZvs2dhzAy" }, @@ -693,7 +543,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 26, "metadata": { "id": "Xt_PhH_6h1_3" }, @@ -705,7 +555,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 27, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -715,7 +565,6 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ "array(['senacule s. m. senaculum \\n lieu où tenoit sénat rome \\n sénacules endroit où corps illustre assembloit \\n capitole forum \\n porte capène troisieme près temple \\n bellone cirque flaminien empereur héliogabale bâtir lieu assemblée dame \\n lieu appellé senaculum matronarum d. j.',\n", @@ -728,8 +577,9 @@ " dtype=object)" ] }, + "execution_count": 27, "metadata": {}, - "execution_count": 34 + "output_type": "execute_result" } ], "source": [ @@ -748,7 +598,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 28, "metadata": { "id": "YZ5PhEYZiCEA" }, @@ -764,7 +614,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 29, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -810,53 +660,11 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "Loading CamemBERT tokenizer...\n" + "Loading BERT tokenizer...\n" ] - }, - { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "274e505b5f354efc8de3ef26cc43e617", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - "Downloading: 0%| | 0.00/811k [00:00<?, ?B/s]" - ] - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0279837673b446b09aac18346213eb7e", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - "Downloading: 0%| | 0.00/1.40M [00:00<?, ?B/s]" - ] - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8f467553598f4dcc9abf55da79c11018", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - "Downloading: 0%| | 0.00/508 [00:00<?, ?B/s]" - ] - }, - "metadata": {} } ], "source": [ @@ -871,7 +679,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 30, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -881,10 +689,10 @@ }, "outputs": [ { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ - "Token indices sequence length is longer than the specified maximum sequence length for this model (531 > 512). Running this sequence through the model will result in indexing errors\n" + "Token indices sequence length is longer than the specified maximum sequence length for this model (667 > 512). Running this sequence through the model will result in indexing errors\n" ] } ], @@ -917,7 +725,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -927,10 +735,10 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "Max sentence length train: 38073\n" + "Max sentence length train: 45443\n" ] } ], @@ -940,7 +748,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": null, "metadata": { "id": "xh1TQJyvjOx5" }, @@ -961,7 +769,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": null, "metadata": { "id": "ZiwY6gn0jUkD" }, @@ -985,7 +793,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": null, "metadata": { "id": "oBTR5AfAjXJe" }, @@ -1001,7 +809,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": null, "metadata": { "id": "b9Mw5kq3jhTb" }, @@ -1018,7 +826,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": null, "metadata": { "id": "UfFWzbENjnkw" }, @@ -1046,7 +854,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1070,334 +878,333 @@ }, "outputs": [ { - "output_type": "display_data", - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d09d664839d04303b8fef9ef895f6e4f", - "version_minor": 0, - "version_major": 2 - }, - "text/plain": [ - "Downloading: 0%| | 0.00/445M [00:00<?, ?B/s]" - ] - }, - "metadata": {} - }, - { - "output_type": "stream", "name": "stderr", + "output_type": "stream", "text": [ - "Some weights of the model checkpoint at camembert-base were not used when initializing CamembertForSequenceClassification: ['lm_head.layer_norm.bias', 'lm_head.dense.bias', 'lm_head.layer_norm.weight', 'lm_head.bias', 'roberta.pooler.dense.weight', 'roberta.pooler.dense.bias', 'lm_head.dense.weight', 'lm_head.decoder.weight']\n", - "- This IS expected if you are initializing CamembertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing CamembertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", - "Some weights of CamembertForSequenceClassification were not initialized from the model checkpoint at camembert-base and are newly initialized: ['classifier.dense.bias', 'classifier.out_proj.bias', 'classifier.dense.weight', 'classifier.out_proj.weight']\n", + "Some weights of the model checkpoint at bert-base-multilingual-cased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.predictions.bias', 'cls.seq_relationship.bias']\n", + "- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", + "- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", + "Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-multilingual-cased and are newly initialized: ['classifier.bias', 'classifier.weight']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] }, { - "output_type": "execute_result", "data": { "text/plain": [ - "CamembertForSequenceClassification(\n", - " (roberta): RobertaModel(\n", - " (embeddings): RobertaEmbeddings(\n", - " (word_embeddings): Embedding(32005, 768, padding_idx=1)\n", - " (position_embeddings): Embedding(514, 768, padding_idx=1)\n", - " (token_type_embeddings): Embedding(1, 768)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + "BertForSequenceClassification(\n", + " (bert): BertModel(\n", + " (embeddings): BertEmbeddings(\n", + " (word_embeddings): Embedding(119547, 768, padding_idx=0)\n", + " (position_embeddings): Embedding(512, 768)\n", + " (token_type_embeddings): Embedding(2, 768)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (encoder): RobertaEncoder(\n", + " (encoder): BertEncoder(\n", " (layer): ModuleList(\n", - " (0): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (0): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (1): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (1): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (2): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (2): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (3): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (3): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (4): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (4): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (5): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (5): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (6): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (6): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (7): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (7): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (8): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (8): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (9): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (9): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (10): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (10): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (11): RobertaLayer(\n", - " (attention): RobertaAttention(\n", - " (self): RobertaSelfAttention(\n", + " (11): BertLayer(\n", + " (attention): BertAttention(\n", + " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", - " (output): RobertaSelfOutput(\n", + " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", - " (intermediate): RobertaIntermediate(\n", + " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", + " (intermediate_act_fn): GELUActivation()\n", " )\n", - " (output): RobertaOutput(\n", + " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", - " (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n", + " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " )\n", + " (pooler): BertPooler(\n", + " (dense): Linear(in_features=768, out_features=768, bias=True)\n", + " (activation): Tanh()\n", + " )\n", " )\n", - " (classifier): RobertaClassificationHead(\n", - " (dense): Linear(in_features=768, out_features=768, bias=True)\n", - " (dropout): Dropout(p=0.1, inplace=False)\n", - " (out_proj): Linear(in_features=768, out_features=38, bias=True)\n", - " )\n", + " (dropout): Dropout(p=0.1, inplace=False)\n", + " (classifier): Linear(in_features=768, out_features=38, bias=True)\n", ")" ] }, + "execution_count": 20, "metadata": {}, - "execution_count": 44 + "output_type": "execute_result" } ], "source": [ @@ -1423,16 +1230,26 @@ " )\n", "\n", "# Tell pytorch to run this model on the GPU.\n", - "model.cuda()" + "#model.cuda()\n", + "model.to(\"mps\")" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": { "id": "xd_cG-8pj4Iw" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/homebrew/Caskroom/miniforge/base/envs/geode-classification-py39/lib/python3.9/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n", + " warnings.warn(\n" + ] + } + ], "source": [ "#Note: AdamW is a class from the huggingface library (as opposed to pytorch) \n", "# I believe the 'W' stands for 'Weight Decay fix\"\n", @@ -1444,7 +1261,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": null, "metadata": { "id": "65G-uHuLj4_6" }, @@ -1474,107 +1291,26 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\n", "======== Epoch 1 / 4 ========\n", - "Training...\n", - " Batch 40 of 5,851. Elapsed: 0:00:19.\n", - " Batch 80 of 5,851. Elapsed: 0:00:37.\n", - " Batch 120 of 5,851. Elapsed: 0:00:55.\n", - " Batch 160 of 5,851. Elapsed: 0:01:14.\n", - " Batch 200 of 5,851. Elapsed: 0:01:32.\n", - " Batch 240 of 5,851. Elapsed: 0:01:51.\n", - " Batch 280 of 5,851. Elapsed: 0:02:09.\n", - " Batch 320 of 5,851. Elapsed: 0:02:28.\n", - " Batch 360 of 5,851. Elapsed: 0:02:46.\n", - " Batch 400 of 5,851. Elapsed: 0:03:04.\n", - " Batch 440 of 5,851. Elapsed: 0:03:23.\n", - " Batch 480 of 5,851. Elapsed: 0:03:41.\n", - " Batch 520 of 5,851. Elapsed: 0:04:00.\n", - " Batch 560 of 5,851. Elapsed: 0:04:18.\n", - " Batch 600 of 5,851. Elapsed: 0:04:37.\n", - " Batch 640 of 5,851. Elapsed: 0:04:55.\n", - " Batch 680 of 5,851. Elapsed: 0:05:14.\n", - " Batch 720 of 5,851. Elapsed: 0:05:32.\n", - " Batch 760 of 5,851. Elapsed: 0:05:50.\n", - " Batch 800 of 5,851. Elapsed: 0:06:09.\n", - " Batch 840 of 5,851. Elapsed: 0:06:27.\n", - " Batch 880 of 5,851. Elapsed: 0:06:46.\n", - " Batch 920 of 5,851. Elapsed: 0:07:04.\n", - " Batch 960 of 5,851. Elapsed: 0:07:23.\n", - " Batch 1,000 of 5,851. Elapsed: 0:07:41.\n", - " Batch 1,040 of 5,851. Elapsed: 0:08:00.\n", - " Batch 1,080 of 5,851. Elapsed: 0:08:18.\n", - " Batch 1,120 of 5,851. Elapsed: 0:08:37.\n", - " Batch 1,160 of 5,851. Elapsed: 0:08:55.\n", - " Batch 1,200 of 5,851. Elapsed: 0:09:14.\n", - " Batch 1,240 of 5,851. Elapsed: 0:09:32.\n", - " Batch 1,280 of 5,851. Elapsed: 0:09:51.\n", - " Batch 1,320 of 5,851. Elapsed: 0:10:09.\n", - " Batch 1,360 of 5,851. Elapsed: 0:10:28.\n", - " Batch 1,400 of 5,851. Elapsed: 0:10:46.\n", - " Batch 1,440 of 5,851. Elapsed: 0:11:05.\n", - " Batch 1,480 of 5,851. Elapsed: 0:11:23.\n", - " Batch 1,520 of 5,851. Elapsed: 0:11:42.\n", - " Batch 1,560 of 5,851. Elapsed: 0:12:00.\n", - " Batch 1,600 of 5,851. Elapsed: 0:12:19.\n", - " Batch 1,640 of 5,851. Elapsed: 0:12:37.\n", - " Batch 1,680 of 5,851. Elapsed: 0:12:56.\n", - " Batch 1,720 of 5,851. Elapsed: 0:13:14.\n", - " Batch 1,760 of 5,851. Elapsed: 0:13:33.\n", - " Batch 1,800 of 5,851. Elapsed: 0:13:51.\n", - " Batch 1,840 of 5,851. Elapsed: 0:14:10.\n", - " Batch 1,880 of 5,851. Elapsed: 0:14:28.\n", - " Batch 1,920 of 5,851. Elapsed: 0:14:47.\n", - " Batch 1,960 of 5,851. Elapsed: 0:15:05.\n", - " Batch 2,000 of 5,851. Elapsed: 0:15:23.\n", - " Batch 2,040 of 5,851. Elapsed: 0:15:42.\n", - " Batch 2,080 of 5,851. Elapsed: 0:16:00.\n", - " Batch 2,120 of 5,851. Elapsed: 0:16:19.\n", - " Batch 2,160 of 5,851. Elapsed: 0:16:37.\n", - " Batch 2,200 of 5,851. Elapsed: 0:16:56.\n", - " Batch 2,240 of 5,851. Elapsed: 0:17:14.\n", - " Batch 2,280 of 5,851. Elapsed: 0:17:32.\n", - " Batch 2,320 of 5,851. Elapsed: 0:17:51.\n", - " Batch 2,360 of 5,851. Elapsed: 0:18:09.\n", - " Batch 2,400 of 5,851. Elapsed: 0:18:28.\n", - " Batch 2,440 of 5,851. Elapsed: 0:18:46.\n", - " Batch 2,480 of 5,851. Elapsed: 0:19:04.\n", - " Batch 2,520 of 5,851. Elapsed: 0:19:23.\n", - " Batch 2,560 of 5,851. Elapsed: 0:19:41.\n", - " Batch 2,600 of 5,851. Elapsed: 0:20:00.\n", - " Batch 2,640 of 5,851. Elapsed: 0:20:18.\n", - " Batch 2,680 of 5,851. Elapsed: 0:20:37.\n", - " Batch 2,720 of 5,851. Elapsed: 0:20:55.\n", - " Batch 2,760 of 5,851. Elapsed: 0:21:13.\n", - " Batch 2,800 of 5,851. Elapsed: 0:21:32.\n", - " Batch 2,840 of 5,851. Elapsed: 0:21:50.\n", - " Batch 2,880 of 5,851. Elapsed: 0:22:09.\n", - " Batch 2,920 of 5,851. Elapsed: 0:22:27.\n", - " Batch 2,960 of 5,851. Elapsed: 0:22:46.\n", - " Batch 3,000 of 5,851. Elapsed: 0:23:04.\n", - " Batch 3,040 of 5,851. Elapsed: 0:23:22.\n", - " Batch 3,080 of 5,851. Elapsed: 0:23:41.\n", - " Batch 3,120 of 5,851. Elapsed: 0:23:59.\n", - " Batch 3,160 of 5,851. Elapsed: 0:24:18.\n", - " Batch 3,200 of 5,851. Elapsed: 0:24:36.\n", - " Batch 3,240 of 5,851. Elapsed: 0:24:54.\n", - " Batch 3,280 of 5,851. Elapsed: 0:25:13.\n", - " Batch 3,320 of 5,851. Elapsed: 0:25:31.\n", - " Batch 3,360 of 5,851. Elapsed: 0:25:50.\n", - " Batch 3,400 of 5,851. Elapsed: 0:26:08.\n", - " Batch 3,440 of 5,851. Elapsed: 0:26:27.\n", - " Batch 3,480 of 5,851. Elapsed: 0:26:45.\n", - " Batch 3,520 of 5,851. Elapsed: 0:27:04.\n", - " Batch 3,560 of 5,851. Elapsed: 0:27:23.\n", - " Batch 3,600 of 5,851. Elapsed: 0:27:41.\n", - " Batch 3,640 of 5,851. Elapsed: 0:27:59.\n", - " Batch 3,680 of 5,851. Elapsed: 0:28:18.\n", - " Batch 3,720 of 5,851. Elapsed: 0:28:36.\n", - " Batch 3,760 of 5,851. Elapsed: 0:28:55.\n", - " Batch 3,800 of 5,851. Elapsed: 0:29:13.\n" + "Training...\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [23], line 92\u001b[0m\n\u001b[1;32m 88\u001b[0m loss\u001b[39m.\u001b[39mbackward()\n\u001b[1;32m 90\u001b[0m \u001b[39m# Clip the norm of the gradients to 1.0.\u001b[39;00m\n\u001b[1;32m 91\u001b[0m \u001b[39m# This is to help prevent the \"exploding gradients\" problem.\u001b[39;00m\n\u001b[0;32m---> 92\u001b[0m torch\u001b[39m.\u001b[39;49mnn\u001b[39m.\u001b[39;49mutils\u001b[39m.\u001b[39;49mclip_grad_norm_(model\u001b[39m.\u001b[39;49mparameters(), \u001b[39m1.0\u001b[39;49m)\n\u001b[1;32m 94\u001b[0m \u001b[39m# Update parameters and take a step using the computed gradient.\u001b[39;00m\n\u001b[1;32m 95\u001b[0m \u001b[39m# The optimizer dictates the \"update rule\"--how the parameters are\u001b[39;00m\n\u001b[1;32m 96\u001b[0m \u001b[39m# modified based on their gradients, the learning rate, etc.\u001b[39;00m\n\u001b[1;32m 97\u001b[0m optimizer\u001b[39m.\u001b[39mstep()\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/geode-classification-py39/lib/python3.9/site-packages/torch/nn/utils/clip_grad.py:43\u001b[0m, in \u001b[0;36mclip_grad_norm_\u001b[0;34m(parameters, max_norm, norm_type, error_if_nonfinite)\u001b[0m\n\u001b[1;32m 41\u001b[0m total_norm \u001b[39m=\u001b[39m norms[\u001b[39m0\u001b[39m] \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(norms) \u001b[39m==\u001b[39m \u001b[39m1\u001b[39m \u001b[39melse\u001b[39;00m torch\u001b[39m.\u001b[39mmax(torch\u001b[39m.\u001b[39mstack(norms))\n\u001b[1;32m 42\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m---> 43\u001b[0m total_norm \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mnorm(torch\u001b[39m.\u001b[39mstack([torch\u001b[39m.\u001b[39mnorm(g\u001b[39m.\u001b[39mdetach(), norm_type)\u001b[39m.\u001b[39mto(device) \u001b[39mfor\u001b[39;00m g \u001b[39min\u001b[39;00m grads]), norm_type)\n\u001b[1;32m 44\u001b[0m \u001b[39mif\u001b[39;00m error_if_nonfinite \u001b[39mand\u001b[39;00m torch\u001b[39m.\u001b[39mlogical_or(total_norm\u001b[39m.\u001b[39misnan(), total_norm\u001b[39m.\u001b[39misinf()):\n\u001b[1;32m 45\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\n\u001b[1;32m 46\u001b[0m \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mThe total norm of order \u001b[39m\u001b[39m{\u001b[39;00mnorm_type\u001b[39m}\u001b[39;00m\u001b[39m for gradients from \u001b[39m\u001b[39m'\u001b[39m\n\u001b[1;32m 47\u001b[0m \u001b[39m'\u001b[39m\u001b[39m`parameters` is non-finite, so it cannot be clipped. To disable \u001b[39m\u001b[39m'\u001b[39m\n\u001b[1;32m 48\u001b[0m \u001b[39m'\u001b[39m\u001b[39mthis error and scale the gradients by the non-finite norm anyway, \u001b[39m\u001b[39m'\u001b[39m\n\u001b[1;32m 49\u001b[0m \u001b[39m'\u001b[39m\u001b[39mset `error_if_nonfinite=False`\u001b[39m\u001b[39m'\u001b[39m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/geode-classification-py39/lib/python3.9/site-packages/torch/nn/utils/clip_grad.py:43\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 41\u001b[0m total_norm \u001b[39m=\u001b[39m norms[\u001b[39m0\u001b[39m] \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(norms) \u001b[39m==\u001b[39m \u001b[39m1\u001b[39m \u001b[39melse\u001b[39;00m torch\u001b[39m.\u001b[39mmax(torch\u001b[39m.\u001b[39mstack(norms))\n\u001b[1;32m 42\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m---> 43\u001b[0m total_norm \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39mnorm(torch\u001b[39m.\u001b[39mstack([torch\u001b[39m.\u001b[39;49mnorm(g\u001b[39m.\u001b[39;49mdetach(), norm_type)\u001b[39m.\u001b[39mto(device) \u001b[39mfor\u001b[39;00m g \u001b[39min\u001b[39;00m grads]), norm_type)\n\u001b[1;32m 44\u001b[0m \u001b[39mif\u001b[39;00m error_if_nonfinite \u001b[39mand\u001b[39;00m torch\u001b[39m.\u001b[39mlogical_or(total_norm\u001b[39m.\u001b[39misnan(), total_norm\u001b[39m.\u001b[39misinf()):\n\u001b[1;32m 45\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\n\u001b[1;32m 46\u001b[0m \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mThe total norm of order \u001b[39m\u001b[39m{\u001b[39;00mnorm_type\u001b[39m}\u001b[39;00m\u001b[39m for gradients from \u001b[39m\u001b[39m'\u001b[39m\n\u001b[1;32m 47\u001b[0m \u001b[39m'\u001b[39m\u001b[39m`parameters` is non-finite, so it cannot be clipped. To disable \u001b[39m\u001b[39m'\u001b[39m\n\u001b[1;32m 48\u001b[0m \u001b[39m'\u001b[39m\u001b[39mthis error and scale the gradients by the non-finite norm anyway, \u001b[39m\u001b[39m'\u001b[39m\n\u001b[1;32m 49\u001b[0m \u001b[39m'\u001b[39m\u001b[39mset `error_if_nonfinite=False`\u001b[39m\u001b[39m'\u001b[39m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/geode-classification-py39/lib/python3.9/site-packages/torch/functional.py:1485\u001b[0m, in \u001b[0;36mnorm\u001b[0;34m(input, p, dim, keepdim, out, dtype)\u001b[0m\n\u001b[1;32m 1483\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39misinstance\u001b[39m(p, \u001b[39mstr\u001b[39m):\n\u001b[1;32m 1484\u001b[0m _dim \u001b[39m=\u001b[39m [i \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(ndim)] \u001b[39m# noqa: C416 TODO: rewrite as list(range(m))\u001b[39;00m\n\u001b[0;32m-> 1485\u001b[0m \u001b[39mreturn\u001b[39;00m _VF\u001b[39m.\u001b[39;49mnorm(\u001b[39minput\u001b[39;49m, p, dim\u001b[39m=\u001b[39;49m_dim, keepdim\u001b[39m=\u001b[39;49mkeepdim) \u001b[39m# type: ignore[attr-defined]\u001b[39;00m\n\u001b[1;32m 1487\u001b[0m \u001b[39m# TODO: when https://github.com/pytorch/pytorch/issues/33782 is fixed\u001b[39;00m\n\u001b[1;32m 1488\u001b[0m \u001b[39m# remove the overloads where dim is an int and replace with BraodcastingList1\u001b[39;00m\n\u001b[1;32m 1489\u001b[0m \u001b[39m# and remove next four lines, replace _dim with dim\u001b[39;00m\n\u001b[1;32m 1490\u001b[0m \u001b[39mif\u001b[39;00m dim \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ], @@ -1619,7 +1355,7 @@ " for step, batch in enumerate(train_dataloader):\n", "\n", " # Progress update every 40 batches.\n", - " if step % 40 == 0 and not step == 0:\n", + " if step % 5 == 0 and not step == 0:\n", " # Calculate elapsed time in minutes.\n", " elapsed = format_time(time.time() - t0)\n", " \n", @@ -1723,7 +1459,18 @@ }, "outputs": [], "source": [ - "torch.save(model, model_path)" + "#torch.save(model, model_path)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.save_pretrained(model_path)\n", + "tokenizer.save_pretrained(model_path)\n", + "#ludo: changement de la façon de sauver le modèle" ] }, { @@ -1737,13 +1484,14 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": { "id": "cEycmiS8Cnjw" }, "outputs": [], "source": [ - "model = torch.load(model_path)" + "#model = torch.load(model_path)\n", + "model = BertForSequenceClassification.from_pretrained(model_path).to(\"mps\") #.to(\"cuda\")" ] }, { @@ -1757,7 +1505,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": { "id": "K9qdtYexIIvk" }, @@ -1959,9 +1707,7 @@ "id": "cVdM4eT6I8g2" }, "outputs": [], - "source": [ - "" - ] + "source": [] }, { "cell_type": "code", @@ -1970,9 +1716,7 @@ "id": "HzxyFO3knanV" }, "outputs": [], - "source": [ - "" - ] + "source": [] }, { "cell_type": "code", @@ -1981,9 +1725,7 @@ "id": "KDRPPw4Wnap7" }, "outputs": [], - "source": [ - "" - ] + "source": [] }, { "cell_type": "code", @@ -1992,9 +1734,7 @@ "id": "DX81R2dcnasF" }, "outputs": [], - "source": [ - "" - ] + "source": [] }, { "cell_type": "code", @@ -2003,9 +1743,7 @@ "id": "wgfqJFVeJMK1" }, "outputs": [], - "source": [ - "" - ] + "source": [] }, { "cell_type": "code", @@ -2014,9 +1752,7 @@ "id": "GqEf5_41JMNZ" }, "outputs": [], - "source": [ - "" - ] + "source": [] }, { "cell_type": "code", @@ -2050,25 +1786,7 @@ "id": "_fzgS5USJeAF", "outputId": "be4a5506-76ed-4eef-bb3c-fe2bb77c6e4d" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2021-09-30 19:38:22-- https://projet.liris.cnrs.fr/geode/files/datasets/EDdA/Classification/LGE_withContent.tsv\n", - "Resolving projet.liris.cnrs.fr (projet.liris.cnrs.fr)... 134.214.142.28\n", - "Connecting to projet.liris.cnrs.fr (projet.liris.cnrs.fr)|134.214.142.28|:443... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 356197 (348K) [text/tab-separated-values]\n", - "Saving to: ‘LGE_withContent.tsv’\n", - "\n", - "LGE_withContent.tsv 100%[===================>] 347.85K 567KB/s in 0.6s \n", - "\n", - "2021-09-30 19:38:24 (567 KB/s) - ‘LGE_withContent.tsv’ saved [356197/356197]\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "!wget https://projet.liris.cnrs.fr/geode/files/datasets/EDdA/Classification/LGE_withContent.tsv" ] @@ -2099,102 +1817,7 @@ "id": "9qJDTU-6vzkk", "outputId": "1b279f0e-7715-4d23-f524-08e8ba327f6c" }, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>id</th>\n", - " <th>tome</th>\n", - " <th>rank</th>\n", - " <th>domain</th>\n", - " <th>remark</th>\n", - " <th>content</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>abrabeses-0</td>\n", - " <td>1</td>\n", - " <td>623</td>\n", - " <td>geography</td>\n", - " <td>NaN</td>\n", - " <td>ABRABESES. Village d’Espagne de la prov. de Za...</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>accius-0</td>\n", - " <td>1</td>\n", - " <td>1076</td>\n", - " <td>biography</td>\n", - " <td>NaN</td>\n", - " <td>ACCIUS, L. ou L. ATTIUS (170-94 av. J.-C.), po...</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>achenbach-2</td>\n", - " <td>1</td>\n", - " <td>1357</td>\n", - " <td>biography</td>\n", - " <td>NaN</td>\n", - " <td>ACHENBACH(Henri), administrateur prussien, né ...</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>acireale-0</td>\n", - " <td>1</td>\n", - " <td>1513</td>\n", - " <td>geography</td>\n", - " <td>NaN</td>\n", - " <td>ACIREALE. Yille de Sicile, de la province et d...</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>actée-0</td>\n", - " <td>1</td>\n", - " <td>1731</td>\n", - " <td>botany</td>\n", - " <td>NaN</td>\n", - " <td>ACTÉE(Actœa L.). Genre de plantes de la famill...</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "</div>" - ], - "text/plain": [ - " id tome ... remark content\n", - "0 abrabeses-0 1 ... NaN ABRABESES. Village d’Espagne de la prov. de Za...\n", - "1 accius-0 1 ... NaN ACCIUS, L. ou L. ATTIUS (170-94 av. J.-C.), po...\n", - "2 achenbach-2 1 ... NaN ACHENBACH(Henri), administrateur prussien, né ...\n", - "3 acireale-0 1 ... NaN ACIREALE. Yille de Sicile, de la province et d...\n", - "4 actée-0 1 ... NaN ACTÉE(Actœa L.). Genre de plantes de la famill...\n", - "\n", - "[5 rows x 6 columns]" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df_LGE.head()" ] @@ -2209,18 +1832,7 @@ "id": "71-fP61-OOwQ", "outputId": "ef08b49e-0a9f-4653-e303-3163250af35b" }, - "outputs": [ - { - "data": { - "text/plain": [ - "(310, 6)" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df_LGE.shape" ] @@ -2367,22 +1979,7 @@ "id": "O9eer_kgI8rC", "outputId": "94ea7418-14a8-4918-e210-caf0018f5989" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading Bert Tokenizer...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Token indices sequence length is longer than the specified maximum sequence length for this model (1204 > 512). Running this sequence through the model will result in indexing errors\n" - ] - } - ], + "outputs": [], "source": [ "data_loader = generate_prediction_dataloader('bert-base-multilingual-cased', data_LGE)\n", "#data_loader = generate_prediction_dataloader('camembert-base', data_LGE)" @@ -2398,16 +1995,7 @@ "id": "sFpAwbrBwF2h", "outputId": "8d210732-619d-41f0-b6e2-ad9d06a85069" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "There are 1 GPU(s) available.\n", - "We will use the GPU: Tesla P100-PCIE-16GB\n" - ] - } - ], + "outputs": [], "source": [ "p = predict_class_bertFineTuning( model, data_loader )" ] @@ -2422,18 +2010,7 @@ "id": "51HF6-8UPSTc", "outputId": "26bff792-eb8d-4e1a-efa4-a7a6c9d32bf9" }, - "outputs": [ - { - "data": { - "text/plain": [ - "310" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "len(p)" ] @@ -2445,9 +2022,7 @@ "id": "rFFGhaCvQHfh" }, "outputs": [], - "source": [ - "" - ] + "source": [] }, { "cell_type": "code", @@ -2459,18 +2034,7 @@ "id": "qgJ-O4rcQHiI", "outputId": "bfe93dd6-4d89-4d5c-be0d-45e1c98c6b14" }, - "outputs": [ - { - "data": { - "text/plain": [ - "LabelEncoder()" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Il faudrait enregistrer l'encoder, \n", "# sinon on est obligé de le refaire à partir du jeu d'entrainement pour récupérer le noms des classes.\n", @@ -2498,327 +2062,7 @@ "id": "6ek7suq9QHqE", "outputId": "6636983a-7eba-48c8-d884-f8fb437294dc" }, - "outputs": [ - { - "data": { - "text/plain": [ - "['Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Histoire naturelle',\n", - " 'Chimie',\n", - " 'Histoire naturelle',\n", - " 'Géographie',\n", - " 'Mathématiques',\n", - " 'Histoire',\n", - " 'Géographie',\n", - " 'Musique',\n", - " 'Commerce',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Histoire',\n", - " 'Géographie',\n", - " 'Histoire naturelle',\n", - " 'Géographie',\n", - " 'Physique - [Sciences physico-mathématiques]',\n", - " 'Histoire naturelle',\n", - " 'Chimie',\n", - " 'Histoire',\n", - " 'Physique - [Sciences physico-mathématiques]',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Histoire',\n", - " 'Histoire naturelle',\n", - " 'Médecine - Chirurgie',\n", - " 'Géographie',\n", - " 'Architecture',\n", - " 'Histoire naturelle',\n", - " 'Histoire naturelle',\n", - " 'Géographie',\n", - " 'Arts et métiers',\n", - " 'Géographie',\n", - " 'Histoire naturelle',\n", - " 'Marine',\n", - " 'Histoire',\n", - " 'Géographie',\n", - " 'Architecture',\n", - " 'Histoire naturelle',\n", - " 'Beaux-arts',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Beaux-arts',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Médecine - Chirurgie',\n", - " 'Géographie',\n", - " 'Histoire naturelle',\n", - " 'Chimie',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Religion',\n", - " 'Histoire naturelle',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Agriculture - Economie rustique',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Jeu',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Beaux-arts',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Beaux-arts',\n", - " 'Histoire naturelle',\n", - " 'Géographie',\n", - " 'Histoire naturelle',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Histoire naturelle',\n", - " 'Histoire',\n", - " 'Histoire naturelle',\n", - " 'Commerce',\n", - " 'Histoire',\n", - " 'Militaire (Art) - Guerre - Arme',\n", - " 'Histoire',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Histoire',\n", - " 'Géographie',\n", - " 'Religion',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Agriculture - Economie rustique',\n", - " 'Histoire',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Métiers',\n", - " 'Belles-lettres - Poésie',\n", - " 'Beaux-arts',\n", - " 'Religion',\n", - " 'Architecture',\n", - " 'Architecture',\n", - " 'Architecture',\n", - " 'Géographie',\n", - " 'Chimie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Beaux-arts',\n", - " 'Histoire naturelle',\n", - " 'Militaire (Art) - Guerre - Arme',\n", - " 'Géographie',\n", - " 'Histoire naturelle',\n", - " 'Médecine - Chirurgie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Minéralogie',\n", - " 'Belles-lettres - Poésie',\n", - " 'Histoire naturelle',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Médecine - Chirurgie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Grammaire',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Mathématiques',\n", - " 'Géographie',\n", - " 'Médecine - Chirurgie',\n", - " 'Blason',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Histoire naturelle',\n", - " 'Militaire (Art) - Guerre - Arme',\n", - " 'Géographie',\n", - " 'Antiquité',\n", - " 'Agriculture - Economie rustique',\n", - " 'Chimie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Histoire naturelle',\n", - " 'Belles-lettres - Poésie',\n", - " 'Histoire',\n", - " 'Géographie',\n", - " 'Métiers',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Arts et métiers',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Beaux-arts',\n", - " 'Géographie',\n", - " 'Beaux-arts',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Musique',\n", - " 'Médecine - Chirurgie',\n", - " 'Religion',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Histoire',\n", - " 'Droit - Jurisprudence',\n", - " 'Histoire',\n", - " 'Médecine - Chirurgie',\n", - " 'Histoire',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Chimie',\n", - " 'Antiquité',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Histoire',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Beaux-arts',\n", - " 'Histoire',\n", - " 'Géographie',\n", - " 'Histoire naturelle',\n", - " 'Antiquité',\n", - " 'Grammaire',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Beaux-arts',\n", - " 'Beaux-arts',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Histoire',\n", - " 'Architecture',\n", - " 'Commerce',\n", - " 'Antiquité',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Médecine - Chirurgie',\n", - " 'Histoire naturelle',\n", - " 'Histoire',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Anatomie',\n", - " 'Commerce',\n", - " 'Beaux-arts',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Histoire naturelle',\n", - " 'Géographie',\n", - " 'Beaux-arts',\n", - " 'Commerce',\n", - " 'Architecture',\n", - " 'Commerce',\n", - " 'Antiquité',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Médecine - Chirurgie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Antiquité',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Histoire',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Antiquité',\n", - " 'Géographie',\n", - " 'Religion',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Philosophie',\n", - " 'Géographie',\n", - " 'Chimie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Géographie',\n", - " 'Beaux-arts',\n", - " 'Commerce',\n", - " 'Commerce',\n", - " 'Géographie',\n", - " 'Géographie']" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "p2" ] @@ -2830,9 +2074,7 @@ "id": "XvdDj5PBQHtk" }, "outputs": [], - "source": [ - "" - ] + "source": [] }, { "cell_type": "code", @@ -2856,108 +2098,7 @@ "id": "-VZ7geRmQHaD", "outputId": "350a4122-5b1f-43e2-e372-2f628f665c4a" }, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>id</th>\n", - " <th>tome</th>\n", - " <th>rank</th>\n", - " <th>domain</th>\n", - " <th>remark</th>\n", - " <th>content</th>\n", - " <th>class_bert</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>abrabeses-0</td>\n", - " <td>1</td>\n", - " <td>623</td>\n", - " <td>geography</td>\n", - " <td>NaN</td>\n", - " <td>ABRABESES. Village d’Espagne de la prov. de Za...</td>\n", - " <td>Géographie</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>accius-0</td>\n", - " <td>1</td>\n", - " <td>1076</td>\n", - " <td>biography</td>\n", - " <td>NaN</td>\n", - " <td>ACCIUS, L. ou L. ATTIUS (170-94 av. J.-C.), po...</td>\n", - " <td>Géographie</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>achenbach-2</td>\n", - " <td>1</td>\n", - " <td>1357</td>\n", - " <td>biography</td>\n", - " <td>NaN</td>\n", - " <td>ACHENBACH(Henri), administrateur prussien, né ...</td>\n", - " <td>Géographie</td>\n", - " </tr>\n", - " <tr>\n", - " <th>3</th>\n", - " <td>acireale-0</td>\n", - " <td>1</td>\n", - " <td>1513</td>\n", - " <td>geography</td>\n", - " <td>NaN</td>\n", - " <td>ACIREALE. Yille de Sicile, de la province et d...</td>\n", - " <td>Géographie</td>\n", - " </tr>\n", - " <tr>\n", - " <th>4</th>\n", - " <td>actée-0</td>\n", - " <td>1</td>\n", - " <td>1731</td>\n", - " <td>botany</td>\n", - " <td>NaN</td>\n", - " <td>ACTÉE(Actœa L.). Genre de plantes de la famill...</td>\n", - " <td>Histoire naturelle</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "</div>" - ], - "text/plain": [ - " id ... class_bert\n", - "0 abrabeses-0 ... Géographie\n", - "1 accius-0 ... Géographie\n", - "2 achenbach-2 ... Géographie\n", - "3 acireale-0 ... Géographie\n", - "4 actée-0 ... Histoire naturelle\n", - "\n", - "[5 rows x 7 columns]" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df_LGE.head()" ] @@ -2983,1380 +2124,1395 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.9.13 ('geode-classification-py39')", + "language": "python", "name": "python3" }, "language_info": { - "name": "python" + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "vscode": { + "interpreter": { + "hash": "16fac9c2d845f8e1f8c6fffffe3d3a0def61c7e42da17a08d00f279ad4dea797" + } }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "274e505b5f354efc8de3ef26cc43e617": { + "0279837673b446b09aac18346213eb7e": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_view_name": "HBoxView", "_dom_classes": [], - "_model_name": "HBoxModel", - "_view_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", + "_view_name": "HBoxView", "box_style": "", - "layout": "IPY_MODEL_f1f9d5b32f60473b86ae6b340d6c0850", - "_model_module": "@jupyter-widgets/controls", "children": [ - "IPY_MODEL_ad5e0e1439a94578a31b80c90dbf3247", - "IPY_MODEL_0779c8ea0ed24e64a800ae5dff6bc8ce", - "IPY_MODEL_7870340ac12b469c8ac19de3a47b6e67" - ] - } - }, - "f1f9d5b32f60473b86ae6b340d6c0850": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "IPY_MODEL_69004a5069094f8c9d59d5136f627bef", + "IPY_MODEL_e96a95317b0945c58c8ff0e944c7593e", + "IPY_MODEL_68b69c9d3a274900bc2892848f725cb0" + ], + "layout": "IPY_MODEL_09b5f0bbd5c14bc289b0f92a22bb29ab" } }, - "ad5e0e1439a94578a31b80c90dbf3247": { + "0779c8ea0ed24e64a800ae5dff6bc8ce": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_5f321455342348f49879a9ca8b392077", "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": "Downloading: 100%", + "_model_name": "FloatProgressModel", "_view_count": null, + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_9420a47a2bf44ead8cff283f20566cda" - } - }, - "0779c8ea0ed24e64a800ae5dff6bc8ce": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { "_view_name": "ProgressView", - "style": "IPY_MODEL_99b785ea53744868b8b11e5e94936fcc", - "_dom_classes": [], - "description": "", - "_model_name": "FloatProgressModel", "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8d24b669a39b4876ac0a014dff678db1", "max": 810912, - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": 810912, - "_view_count": null, - "_view_module_version": "1.5.0", - "orientation": "horizontal", "min": 0, - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_8d24b669a39b4876ac0a014dff678db1" + "orientation": "horizontal", + "style": "IPY_MODEL_99b785ea53744868b8b11e5e94936fcc", + "value": 810912 } }, - "7870340ac12b469c8ac19de3a47b6e67": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", + "09b5f0bbd5c14bc289b0f92a22bb29ab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_2cf386a8d14d43389374f79bfa922675", - "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": " 811k/811k [00:00<00:00, 2.75MB/s]", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_2c44d9c11e704b70aa32904a23d1790c" - } - }, - "5f321455342348f49879a9ca8b392077": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9420a47a2bf44ead8cff283f20566cda": { + "12afa6b6474b401f9ff3f189cc0d3d11": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, + "display": null, + "flex": null, + "flex_flow": null, "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", + "grid_template_rows": null, + "height": null, + "justify_content": null, "justify_items": null, - "grid_row": null, + "left": null, + "margin": null, "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, + "min_height": null, + "min_width": null, "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "99b785ea53744868b8b11e5e94936fcc": { + "152a31110bf9477989833eac91794688": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_view_name": "StyleView", - "_model_name": "ProgressStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module_version": "1.2.0", - "bar_color": null, - "_model_module": "@jupyter-widgets/controls" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_826bd7d0a1f146ea9f7d53584468190c", + "max": 445032417, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e86a1d4d268c4314897b58f7bba5ec25", + "value": 445032417 } }, - "8d24b669a39b4876ac0a014dff678db1": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "1bf6a76237454349aafc1e9284376879": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, + "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "_view_name": "StyleView", + "description_width": "" } }, - "2cf386a8d14d43389374f79bfa922675": { + "274e505b5f354efc8de3ef26cc43e617": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ad5e0e1439a94578a31b80c90dbf3247", + "IPY_MODEL_0779c8ea0ed24e64a800ae5dff6bc8ce", + "IPY_MODEL_7870340ac12b469c8ac19de3a47b6e67" + ], + "layout": "IPY_MODEL_f1f9d5b32f60473b86ae6b340d6c0850" } }, "2c44d9c11e704b70aa32904a23d1790c": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, + "display": null, "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, "grid_auto_rows": null, + "grid_column": null, "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", + "grid_row": null, "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "0279837673b446b09aac18346213eb7e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "HBoxView", - "_dom_classes": [], - "_model_name": "HBoxModel", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.5.0", - "box_style": "", - "layout": "IPY_MODEL_09b5f0bbd5c14bc289b0f92a22bb29ab", - "_model_module": "@jupyter-widgets/controls", - "children": [ - "IPY_MODEL_69004a5069094f8c9d59d5136f627bef", - "IPY_MODEL_e96a95317b0945c58c8ff0e944c7593e", - "IPY_MODEL_68b69c9d3a274900bc2892848f725cb0" - ] - } - }, - "09b5f0bbd5c14bc289b0f92a22bb29ab": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_view_name": "LayoutView", + "grid_template_columns": null, "grid_template_rows": null, - "right": null, + "height": null, "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", - "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", "justify_items": null, - "grid_row": null, + "left": null, + "margin": null, "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, + "min_height": null, + "min_width": null, "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "69004a5069094f8c9d59d5136f627bef": { + "2cf386a8d14d43389374f79bfa922675": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_76007b17ffd2478fa4a86f959d4f1766", - "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "value": "Downloading: 100%", - "_view_count": null, - "_view_module_version": "1.5.0", - "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_cb447c62ce1d4c1ea760175ae619fbb9" - } - }, - "e96a95317b0945c58c8ff0e944c7593e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "ProgressView", - "style": "IPY_MODEL_d4ad1a78750d49feaea584a82940bb7d", - "_dom_classes": [], - "description": "", - "_model_name": "FloatProgressModel", - "bar_style": "success", - "max": 1395301, - "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": 1395301, + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module_version": "1.5.0", - "orientation": "horizontal", - "min": 0, - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_a9c47cb226ee41e18812f29f690992eb" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "68b69c9d3a274900bc2892848f725cb0": { + "2d1d632da0f740c38512c9ad779d3173": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_c4c1675163bd4997bb44d7ea3967a356", - "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": " 1.40M/1.40M [00:00<00:00, 6.57MB/s]", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_5032547e748f45a3b0cdd12fafe1dd05" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "76007b17ffd2478fa4a86f959d4f1766": { + "3592b1ed1d6d452b93c57b304943a1cb": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, + "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" + "_view_name": "StyleView", + "description_width": "" } }, - "cb447c62ce1d4c1ea760175ae619fbb9": { + "4a23110523184d019a77368116f738f3": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, + "display": null, + "flex": null, + "flex_flow": null, "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", + "grid_template_rows": null, + "height": null, + "justify_content": null, "justify_items": null, - "grid_row": null, + "left": null, + "margin": null, "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, + "min_height": null, + "min_width": null, "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d4ad1a78750d49feaea584a82940bb7d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "ProgressStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "bar_color": null, - "_model_module": "@jupyter-widgets/controls" - } - }, - "a9c47cb226ee41e18812f29f690992eb": { + "500826e3813b414a820aa260bfde9e23": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, + "display": null, + "flex": null, + "flex_flow": null, "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", + "grid_template_rows": null, + "height": null, + "justify_content": null, "justify_items": null, - "grid_row": null, + "left": null, + "margin": null, "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, + "min_height": null, + "min_width": null, "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "c4c1675163bd4997bb44d7ea3967a356": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, "5032547e748f45a3b0cdd12fafe1dd05": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, + "display": null, + "flex": null, + "flex_flow": null, "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", + "grid_template_rows": null, + "height": null, + "justify_content": null, "justify_items": null, - "grid_row": null, + "left": null, + "margin": null, "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, + "min_height": null, + "min_width": null, "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8f467553598f4dcc9abf55da79c11018": { + "58b4f9e0366f4d4eba7f902af84b8965": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_view_name": "HBoxView", "_dom_classes": [], - "_model_name": "HBoxModel", - "_view_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "box_style": "", - "layout": "IPY_MODEL_9d7a8b3ecfe74f66b4238fe085c05906", - "_model_module": "@jupyter-widgets/controls", - "children": [ - "IPY_MODEL_58b4f9e0366f4d4eba7f902af84b8965", - "IPY_MODEL_9383e09698ae4bd1820a4bca22e78315", - "IPY_MODEL_a189838c4de648198b0f4fc99c29ced8" - ] + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_12afa6b6474b401f9ff3f189cc0d3d11", + "placeholder": "​", + "style": "IPY_MODEL_c4d981755d1d42b6940396b77bc251bc", + "value": "Downloading: 100%" } }, - "9d7a8b3ecfe74f66b4238fe085c05906": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "5978954f56fb40928b970f32d1634aaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, "_view_module": "@jupyter-widgets/base", - "overflow": null, - "_model_module_version": "1.2.0", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5f321455342348f49879a9ca8b392077": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, - "align_items": null, - "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, + "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "_view_name": "StyleView", + "description_width": "" } }, - "58b4f9e0366f4d4eba7f902af84b8965": { + "68b69c9d3a274900bc2892848f725cb0": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_c4d981755d1d42b6940396b77bc251bc", "_dom_classes": [], - "description": "", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5032547e748f45a3b0cdd12fafe1dd05", "placeholder": "​", + "style": "IPY_MODEL_c4c1675163bd4997bb44d7ea3967a356", + "value": " 1.40M/1.40M [00:00<00:00, 6.57MB/s]" + } + }, + "69004a5069094f8c9d59d5136f627bef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cb447c62ce1d4c1ea760175ae619fbb9", + "placeholder": "​", + "style": "IPY_MODEL_76007b17ffd2478fa4a86f959d4f1766", + "value": "Downloading: 100%" + } + }, + "70dd7428d78c44409308d62ba04917de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": "Downloading: 100%", + "_model_name": "HTMLModel", "_view_count": null, + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", "description_tooltip": null, + "layout": "IPY_MODEL_4a23110523184d019a77368116f738f3", + "placeholder": "​", + "style": "IPY_MODEL_1bf6a76237454349aafc1e9284376879", + "value": "Downloading: 100%" + } + }, + "76007b17ffd2478fa4a86f959d4f1766": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_12afa6b6474b401f9ff3f189cc0d3d11" + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "9383e09698ae4bd1820a4bca22e78315": { + "7870340ac12b469c8ac19de3a47b6e67": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_view_name": "ProgressView", - "style": "IPY_MODEL_5978954f56fb40928b970f32d1634aaf", "_dom_classes": [], - "description": "", - "_model_name": "FloatProgressModel", - "bar_style": "success", - "max": 508, - "_view_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": 508, + "_model_name": "HTMLModel", "_view_count": null, + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "orientation": "horizontal", - "min": 0, + "_view_name": "HTMLView", + "description": "", "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_fe0e3b1df104484c98fbdcd31a04e427" + "layout": "IPY_MODEL_2c44d9c11e704b70aa32904a23d1790c", + "placeholder": "​", + "style": "IPY_MODEL_2cf386a8d14d43389374f79bfa922675", + "value": " 811k/811k [00:00<00:00, 2.75MB/s]" + } + }, + "826bd7d0a1f146ea9f7d53584468190c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8d24b669a39b4876ac0a014dff678db1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a189838c4de648198b0f4fc99c29ced8": { + "8f467553598f4dcc9abf55da79c11018": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_2d1d632da0f740c38512c9ad779d3173", "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": " 508/508 [00:00<00:00, 16.9kB/s]", + "_model_name": "HBoxModel", "_view_count": null, + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_df95c20399dd4918bc7559a90886d4aa" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_58b4f9e0366f4d4eba7f902af84b8965", + "IPY_MODEL_9383e09698ae4bd1820a4bca22e78315", + "IPY_MODEL_a189838c4de648198b0f4fc99c29ced8" + ], + "layout": "IPY_MODEL_9d7a8b3ecfe74f66b4238fe085c05906" } }, - "c4d981755d1d42b6940396b77bc251bc": { + "9383e09698ae4bd1820a4bca22e78315": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fe0e3b1df104484c98fbdcd31a04e427", + "max": 508, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5978954f56fb40928b970f32d1634aaf", + "value": 508 } }, - "12afa6b6474b401f9ff3f189cc0d3d11": { + "9420a47a2bf44ead8cff283f20566cda": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, + "display": null, + "flex": null, + "flex_flow": null, "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", + "grid_template_rows": null, + "height": null, + "justify_content": null, "justify_items": null, - "grid_row": null, + "left": null, + "margin": null, "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, + "min_height": null, + "min_width": null, "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5978954f56fb40928b970f32d1634aaf": { + "99b785ea53744868b8b11e5e94936fcc": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_view_name": "StyleView", - "_model_name": "ProgressStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, + "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", + "_view_name": "StyleView", "bar_color": null, - "_model_module": "@jupyter-widgets/controls" + "description_width": "" } }, - "fe0e3b1df104484c98fbdcd31a04e427": { + "9d7a8b3ecfe74f66b4238fe085c05906": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, + "display": null, + "flex": null, + "flex_flow": null, "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", + "grid_template_rows": null, + "height": null, + "justify_content": null, "justify_items": null, - "grid_row": null, + "left": null, + "margin": null, "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, + "min_height": null, + "min_width": null, "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null - } - }, - "2d1d632da0f740c38512c9ad779d3173": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", - "_model_module_version": "1.5.0", - "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "df95c20399dd4918bc7559a90886d4aa": { + "a159d62667734657a49ba3a96494f137": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, - "grid_area": null, - "grid_template_columns": null, + "display": null, "flex": null, - "_model_name": "LayoutModel", - "justify_items": null, - "grid_row": null, - "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, "grid_auto_rows": null, - "grid_gap": null, - "max_width": null, - "order": null, - "_view_module_version": "1.2.0", + "grid_column": null, + "grid_gap": null, + "grid_row": null, "grid_template_areas": null, - "object_position": null, - "object_fit": null, - "grid_auto_columns": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, "margin": null, - "display": null, - "left": null + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d09d664839d04303b8fef9ef895f6e4f": { + "a189838c4de648198b0f4fc99c29ced8": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_view_name": "HBoxView", "_dom_classes": [], - "_model_name": "HBoxModel", - "_view_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "box_style": "", - "layout": "IPY_MODEL_500826e3813b414a820aa260bfde9e23", - "_model_module": "@jupyter-widgets/controls", - "children": [ - "IPY_MODEL_70dd7428d78c44409308d62ba04917de", - "IPY_MODEL_152a31110bf9477989833eac91794688", - "IPY_MODEL_fcde5f4cf49846a0ad1b284aad98a38a" - ] + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_df95c20399dd4918bc7559a90886d4aa", + "placeholder": "​", + "style": "IPY_MODEL_2d1d632da0f740c38512c9ad779d3173", + "value": " 508/508 [00:00<00:00, 16.9kB/s]" } }, - "500826e3813b414a820aa260bfde9e23": { + "a9c47cb226ee41e18812f29f690992eb": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, + "display": null, + "flex": null, + "flex_flow": null, "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", + "grid_template_rows": null, + "height": null, + "justify_content": null, "justify_items": null, - "grid_row": null, + "left": null, + "margin": null, "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, + "min_height": null, + "min_width": null, "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "70dd7428d78c44409308d62ba04917de": { + "ad5e0e1439a94578a31b80c90dbf3247": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_1bf6a76237454349aafc1e9284376879", "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": "Downloading: 100%", + "_model_name": "HTMLModel", "_view_count": null, + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_4a23110523184d019a77368116f738f3" + "layout": "IPY_MODEL_9420a47a2bf44ead8cff283f20566cda", + "placeholder": "​", + "style": "IPY_MODEL_5f321455342348f49879a9ca8b392077", + "value": "Downloading: 100%" } }, - "152a31110bf9477989833eac91794688": { + "c4c1675163bd4997bb44d7ea3967a356": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_view_name": "ProgressView", - "style": "IPY_MODEL_e86a1d4d268c4314897b58f7bba5ec25", - "_dom_classes": [], - "description": "", - "_model_name": "FloatProgressModel", - "bar_style": "success", - "max": 445032417, - "_view_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": 445032417, + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module_version": "1.5.0", - "orientation": "horizontal", - "min": 0, - "description_tooltip": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c4d981755d1d42b6940396b77bc251bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_826bd7d0a1f146ea9f7d53584468190c" + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "fcde5f4cf49846a0ad1b284aad98a38a": { + "cb447c62ce1d4c1ea760175ae619fbb9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d09d664839d04303b8fef9ef895f6e4f": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_view_name": "HTMLView", - "style": "IPY_MODEL_3592b1ed1d6d452b93c57b304943a1cb", "_dom_classes": [], - "description": "", - "_model_name": "HTMLModel", - "placeholder": "​", - "_view_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": " 445M/445M [00:14<00:00, 39.2MB/s]", + "_model_name": "HBoxModel", "_view_count": null, + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "description_tooltip": null, - "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_a159d62667734657a49ba3a96494f137" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_70dd7428d78c44409308d62ba04917de", + "IPY_MODEL_152a31110bf9477989833eac91794688", + "IPY_MODEL_fcde5f4cf49846a0ad1b284aad98a38a" + ], + "layout": "IPY_MODEL_500826e3813b414a820aa260bfde9e23" } }, - "1bf6a76237454349aafc1e9284376879": { + "d4ad1a78750d49feaea584a82940bb7d": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, + "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4a23110523184d019a77368116f738f3": { + "df95c20399dd4918bc7559a90886d4aa": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, + "display": null, + "flex": null, + "flex_flow": null, "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", + "grid_template_rows": null, + "height": null, + "justify_content": null, "justify_items": null, - "grid_row": null, + "left": null, + "margin": null, "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, + "min_height": null, + "min_width": null, "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, "e86a1d4d268c4314897b58f7bba5ec25": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_view_name": "StyleView", - "_model_name": "ProgressStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, + "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", + "_view_name": "StyleView", "bar_color": null, - "_model_module": "@jupyter-widgets/controls" + "description_width": "" } }, - "826bd7d0a1f146ea9f7d53584468190c": { + "e96a95317b0945c58c8ff0e944c7593e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a9c47cb226ee41e18812f29f690992eb", + "max": 1395301, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d4ad1a78750d49feaea584a82940bb7d", + "value": 1395301 + } + }, + "f1f9d5b32f60473b86ae6b340d6c0850": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, + "display": null, + "flex": null, + "flex_flow": null, "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", + "grid_template_rows": null, + "height": null, + "justify_content": null, "justify_items": null, - "grid_row": null, + "left": null, + "margin": null, "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, + "min_height": null, + "min_width": null, "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3592b1ed1d6d452b93c57b304943a1cb": { + "fcde5f4cf49846a0ad1b284aad98a38a": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_view_name": "StyleView", - "_model_name": "DescriptionStyleModel", - "description_width": "", - "_view_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module_version": "1.2.0", - "_model_module": "@jupyter-widgets/controls" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a159d62667734657a49ba3a96494f137", + "placeholder": "​", + "style": "IPY_MODEL_3592b1ed1d6d452b93c57b304943a1cb", + "value": " 445M/445M [00:14<00:00, 39.2MB/s]" } }, - "a159d62667734657a49ba3a96494f137": { + "fe0e3b1df104484c98fbdcd31a04e427": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_view_name": "LayoutView", - "grid_template_rows": null, - "right": null, - "justify_content": null, - "_view_module": "@jupyter-widgets/base", - "overflow": null, + "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, - "flex_flow": null, - "width": null, - "min_width": null, - "border": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, "align_items": null, + "align_self": null, + "border": null, "bottom": null, - "_model_module": "@jupyter-widgets/base", - "top": null, - "grid_column": null, - "overflow_y": null, - "overflow_x": null, - "grid_auto_flow": null, + "display": null, + "flex": null, + "flex_flow": null, "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, - "flex": null, - "_model_name": "LayoutModel", + "grid_template_rows": null, + "height": null, + "justify_content": null, "justify_items": null, - "grid_row": null, + "left": null, + "margin": null, "max_height": null, - "align_content": null, - "visibility": null, - "align_self": null, - "height": null, - "min_height": null, - "padding": null, - "grid_auto_rows": null, - "grid_gap": null, "max_width": null, - "order": null, - "_view_module_version": "1.2.0", - "grid_template_areas": null, - "object_position": null, + "min_height": null, + "min_width": null, "object_fit": null, - "grid_auto_columns": null, - "margin": null, - "display": null, - "left": null + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } } @@ -4364,4 +3520,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +}