From a6f959d271324391e8636f074fbb545f4ce785ab Mon Sep 17 00:00:00 2001
From: Ludovic Moncla <moncla.ludovic@gmail.com>
Date: Tue, 14 Mar 2023 22:16:30 +0100
Subject: [PATCH] Delete Predict_Classification.ipynb

---
 notebooks/Predict_Classification.ipynb | 3786 ------------------------
 1 file changed, 3786 deletions(-)
 delete mode 100644 notebooks/Predict_Classification.ipynb

diff --git a/notebooks/Predict_Classification.ipynb b/notebooks/Predict_Classification.ipynb
deleted file mode 100644
index df05631..0000000
--- a/notebooks/Predict_Classification.ipynb
+++ /dev/null
@@ -1,3786 +0,0 @@
-{
-  "cells": [
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "m39L6DJ2r0zN"
-      },
-      "source": [
-        "# BERT Predict classification\n",
-        "\n",
-        "## 1. Setup the environment\n",
-        "\n",
-        "### 1.1 Setup colab environment\n",
-        "\n",
-        "#### 1.1.1 Install packages"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "pwmZ5bBvgGNh",
-        "outputId": "1a080856-4e47-4e1d-81d1-d38bb58948a5"
-      },
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
-            "Collecting transformers==4.10.3\n",
-            "  Downloading transformers-4.10.3-py3-none-any.whl (2.8 MB)\n",
-            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.8/2.8 MB\u001b[0m \u001b[31m46.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
-            "\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from transformers==4.10.3) (2.25.1)\n",
-            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from transformers==4.10.3) (1.21.6)\n",
-            "Collecting sacremoses\n",
-            "  Downloading sacremoses-0.0.53.tar.gz (880 kB)\n",
-            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m880.6/880.6 KB\u001b[0m \u001b[31m45.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
-            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
-            "Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from transformers==4.10.3) (23.0)\n",
-            "Collecting tokenizers<0.11,>=0.10.1\n",
-            "  Downloading tokenizers-0.10.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.3 MB)\n",
-            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.3/3.3 MB\u001b[0m \u001b[31m57.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
-            "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.8/dist-packages (from transformers==4.10.3) (4.64.1)\n",
-            "Collecting huggingface-hub>=0.0.12\n",
-            "  Downloading huggingface_hub-0.12.0-py3-none-any.whl (190 kB)\n",
-            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m190.3/190.3 KB\u001b[0m \u001b[31m13.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
-            "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from transformers==4.10.3) (3.9.0)\n",
-            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.8/dist-packages (from transformers==4.10.3) (2022.6.2)\n",
-            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from transformers==4.10.3) (6.0)\n",
-            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub>=0.0.12->transformers==4.10.3) (4.4.0)\n",
-            "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->transformers==4.10.3) (4.0.0)\n",
-            "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->transformers==4.10.3) (1.24.3)\n",
-            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->transformers==4.10.3) (2.10)\n",
-            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->transformers==4.10.3) (2022.12.7)\n",
-            "Requirement already satisfied: six in /usr/local/lib/python3.8/dist-packages (from sacremoses->transformers==4.10.3) (1.15.0)\n",
-            "Requirement already satisfied: click in /usr/local/lib/python3.8/dist-packages (from sacremoses->transformers==4.10.3) (7.1.2)\n",
-            "Requirement already satisfied: joblib in /usr/local/lib/python3.8/dist-packages (from sacremoses->transformers==4.10.3) (1.2.0)\n",
-            "Building wheels for collected packages: sacremoses\n",
-            "  Building wheel for sacremoses (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
-            "  Created wheel for sacremoses: filename=sacremoses-0.0.53-py3-none-any.whl size=895260 sha256=1a6d3101ab60a657a64074bebed597b1987c115de1092b993a013ae317d882f9\n",
-            "  Stored in directory: /root/.cache/pip/wheels/82/ab/9b/c15899bf659ba74f623ac776e861cf2eb8608c1825ddec66a4\n",
-            "Successfully built sacremoses\n",
-            "Installing collected packages: tokenizers, sacremoses, huggingface-hub, transformers\n",
-            "Successfully installed huggingface-hub-0.12.0 sacremoses-0.0.53 tokenizers-0.10.3 transformers-4.10.3\n",
-            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
-            "Collecting sentencepiece\n",
-            "  Downloading sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
-            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m33.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
-            "\u001b[?25hInstalling collected packages: sentencepiece\n",
-            "Successfully installed sentencepiece-0.1.97\n"
-          ]
-        }
-      ],
-      "source": [
-        "!pip install transformers==4.10.3\n",
-        "!pip install sentencepiece"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "57zgbn_jr0zR"
-      },
-      "source": [
-        "#### 1.1.2 Use more RAM"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "WF0qFN_g3ekz",
-        "outputId": "56e76858-932c-42fd-ace0-37bf11c7b4ce"
-      },
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Your runtime has 27.3 gigabytes of available RAM\n",
-            "\n",
-            "You are using a high-RAM runtime!\n"
-          ]
-        }
-      ],
-      "source": [
-        "from psutil import virtual_memory\n",
-        "ram_gb = virtual_memory().total / 1e9\n",
-        "print('Your runtime has {:.1f} gigabytes of available RAM\\n'.format(ram_gb))\n",
-        "\n",
-        "if ram_gb < 20:\n",
-        "  print('Not using a high-RAM runtime')\n",
-        "else:\n",
-        "  print('You are using a high-RAM runtime!')"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "vpr71iWGr0zS"
-      },
-      "source": [
-        "#### 1.1.3 Mount GoogleDrive"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "vL0S-s9Uofvn",
-        "outputId": "dbe3e901-da63-48b5-d8c6-b8cbda503fef"
-      },
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Mounted at /content/drive\n"
-          ]
-        }
-      ],
-      "source": [
-        "from google.colab import drive\n",
-        "drive.mount('/content/drive')"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "8hzEGHl7gmzk"
-      },
-      "source": [
-        "### 1.2 Setup GPU"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "dPOU-Efhf4ui",
-        "outputId": "0bb7fd0e-e2fb-4477-e5f7-b408d0a1ced7"
-      },
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "There are 1 GPU(s) available.\n",
-            "We will use the GPU: Tesla T4\n"
-          ]
-        }
-      ],
-      "source": [
-        "import torch\n",
-        "\n",
-        "# If there's a GPU available...\n",
-        "if torch.cuda.is_available():    \n",
-        "    # Tell PyTorch to use the GPU.    \n",
-        "    device = torch.device(\"cuda\")\n",
-        "    print('There are %d GPU(s) available.' % torch.cuda.device_count())\n",
-        "    print('We will use the GPU:', torch.cuda.get_device_name(0))\n",
-        "\n",
-        "# for MacOS\n",
-        "elif torch.backends.mps.is_available() and torch.backends.mps.is_built():\n",
-        "    device = torch.device(\"mps\")\n",
-        "    print('We will use the GPU')\n",
-        "else:\n",
-        "    device = torch.device(\"cpu\")\n",
-        "    print('No GPU available, using the CPU instead.')"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "wSqbrupGMc1M"
-      },
-      "source": [
-        "### 1.3 Import librairies"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "SkErnwgMMbRj"
-      },
-      "outputs": [],
-      "source": [
-        "import pandas as pd \n",
-        "import numpy as np\n",
-        "\n",
-        "from transformers import BertTokenizer, BertForSequenceClassification, CamembertTokenizer, CamembertForSequenceClassification\n",
-        "from torch.utils.data import TensorDataset, DataLoader, SequentialSampler"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "c5QKcXulhNJ-"
-      },
-      "source": [
-        "## 2. Load Data"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "M2awiee1r0zV"
-      },
-      "outputs": [],
-      "source": [
-        "drive_path = \"drive/MyDrive/Classification-EDdA/\"\n",
-        "path = \"./\""
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "X1A_J8MGr0zV",
-        "outputId": "ca5c966c-00a2-4d74-cd1c-576c18f98d3d"
-      },
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "--2023-02-15 07:14:06--  https://geode.liris.cnrs.fr/EDdA-Classification/datasets/Parallel_datatset_articles_230215.tsv\n",
-            "Resolving geode.liris.cnrs.fr (geode.liris.cnrs.fr)... 134.214.142.28\n",
-            "Connecting to geode.liris.cnrs.fr (geode.liris.cnrs.fr)|134.214.142.28|:443... connected.\n",
-            "HTTP request sent, awaiting response... 200 OK\n",
-            "Length: 42343065 (40M) [text/tab-separated-values]\n",
-            "Saving to: ‘Parallel_datatset_articles_230215.tsv’\n",
-            "\n",
-            "Parallel_datatset_a 100%[===================>]  40.38M  74.9MB/s    in 0.5s    \n",
-            "\n",
-            "2023-02-15 07:14:07 (74.9 MB/s) - ‘Parallel_datatset_articles_230215.tsv’ saved [42343065/42343065]\n",
-            "\n"
-          ]
-        }
-      ],
-      "source": [
-        "#!wget https://geode.liris.cnrs.fr/files/datasets/EDdA/Classification/LGE_withContent.tsv\n",
-        "#!wget https://geode.liris.cnrs.fr/EDdA-Classification/datasets/EDdA_dataset_articles_no_superdomain.tsv\n",
-        "!wget https://geode.liris.cnrs.fr/EDdA-Classification/datasets/Parallel_datatset_articles_230215.tsv"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "#filepath = \"data/LGE_withContent.tsv\"\n",
-        "#filepath = \"EDdA_dataset_articles_no_superdomain.tsv\"\n",
-        "filepath = \"Parallel_datatset_articles_230215.tsv\""
-      ],
-      "metadata": {
-        "id": "eea7F4vato1x"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 333
-        },
-        "id": "erjPU3y8r0zW",
-        "outputId": "e2b4a39d-a72b-4e7a-8b26-e709eb983df3"
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "             idLGE  tomeLGE  rankLGE  \\\n",
-              "0            aam-0        1       63   \n",
-              "1          abaco-0        1       92   \n",
-              "2         abacot-0        1       96   \n",
-              "3        abaddon-0        1      104   \n",
-              "4  abandonnement-0        1      138   \n",
-              "\n",
-              "                                          contentLGE  volumeEDdA  numeroEDdA  \\\n",
-              "0  AAM. Mesure de capacité pour les liquides en u...           1          31   \n",
-              "1  ABACO, architecte italien du xvi siècle (V. La...           1          42   \n",
-              "2  ABACOT. Double couronne que portaient autrefoi...           1          44   \n",
-              "3  ABADDONou APOLYON le Destructeur. « Elles\\nava...           1          46   \n",
-              "4  ABANDONNEMENT. I. Droit civil. — Ce mot est un...           1          75   \n",
-              "\n",
-              "        headEDdA  authorEDdA normclassEDdA  \\\n",
-              "0            AAM     Diderot  unclassified   \n",
-              "1          ABACO  d'Alembert  unclassified   \n",
-              "2         ABACOT     Diderot  unclassified   \n",
-              "3        ABADDON     Diderot  unclassified   \n",
-              "4  ABANDONNEMENT   Toussaint         Droit   \n",
-              "\n",
-              "                                         contentEDdA  nbWordsEDdA  \\\n",
-              "0  \\n* AAM, s. mesure des Liquides, en usage à Am...           18   \n",
-              "1  \\nABACO, s. m. Quelques anciens Auteurs se ser...           26   \n",
-              "2  \\n* ABACOT, s. m. nom de l'ancienne parure dè\\...           22   \n",
-              "3  \\n* ABADDON, s. m. vient d'abad, perdre. C'est...           25   \n",
-              "4  \\nABANDONNEMENT, s. m. en Droit, est le délais...           77   \n",
-              "\n",
-              "       superdomainEDdA  \n",
-              "0         Unclassified  \n",
-              "1         Unclassified  \n",
-              "2         Unclassified  \n",
-              "3         Unclassified  \n",
-              "4  Droit Jurisprudence  "
-            ],
-            "text/html": [
-              "\n",
-              "  <div id=\"df-be30bfa5-3524-40b4-abed-43faebfa6628\">\n",
-              "    <div class=\"colab-df-container\">\n",
-              "      <div>\n",
-              "<style scoped>\n",
-              "    .dataframe tbody tr th:only-of-type {\n",
-              "        vertical-align: middle;\n",
-              "    }\n",
-              "\n",
-              "    .dataframe tbody tr th {\n",
-              "        vertical-align: top;\n",
-              "    }\n",
-              "\n",
-              "    .dataframe thead th {\n",
-              "        text-align: right;\n",
-              "    }\n",
-              "</style>\n",
-              "<table border=\"1\" class=\"dataframe\">\n",
-              "  <thead>\n",
-              "    <tr style=\"text-align: right;\">\n",
-              "      <th></th>\n",
-              "      <th>idLGE</th>\n",
-              "      <th>tomeLGE</th>\n",
-              "      <th>rankLGE</th>\n",
-              "      <th>contentLGE</th>\n",
-              "      <th>volumeEDdA</th>\n",
-              "      <th>numeroEDdA</th>\n",
-              "      <th>headEDdA</th>\n",
-              "      <th>authorEDdA</th>\n",
-              "      <th>normclassEDdA</th>\n",
-              "      <th>contentEDdA</th>\n",
-              "      <th>nbWordsEDdA</th>\n",
-              "      <th>superdomainEDdA</th>\n",
-              "    </tr>\n",
-              "  </thead>\n",
-              "  <tbody>\n",
-              "    <tr>\n",
-              "      <th>0</th>\n",
-              "      <td>aam-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>63</td>\n",
-              "      <td>AAM. Mesure de capacité pour les liquides en u...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>31</td>\n",
-              "      <td>AAM</td>\n",
-              "      <td>Diderot</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\n* AAM, s. mesure des Liquides, en usage à Am...</td>\n",
-              "      <td>18</td>\n",
-              "      <td>Unclassified</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>1</th>\n",
-              "      <td>abaco-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>92</td>\n",
-              "      <td>ABACO, architecte italien du xvi siècle (V. La...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>42</td>\n",
-              "      <td>ABACO</td>\n",
-              "      <td>d'Alembert</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\nABACO, s. m. Quelques anciens Auteurs se ser...</td>\n",
-              "      <td>26</td>\n",
-              "      <td>Unclassified</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>2</th>\n",
-              "      <td>abacot-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>96</td>\n",
-              "      <td>ABACOT. Double couronne que portaient autrefoi...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>44</td>\n",
-              "      <td>ABACOT</td>\n",
-              "      <td>Diderot</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\n* ABACOT, s. m. nom de l'ancienne parure dè\\...</td>\n",
-              "      <td>22</td>\n",
-              "      <td>Unclassified</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>3</th>\n",
-              "      <td>abaddon-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>104</td>\n",
-              "      <td>ABADDONou APOLYON le Destructeur. « Elles\\nava...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>46</td>\n",
-              "      <td>ABADDON</td>\n",
-              "      <td>Diderot</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\n* ABADDON, s. m. vient d'abad, perdre. C'est...</td>\n",
-              "      <td>25</td>\n",
-              "      <td>Unclassified</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>4</th>\n",
-              "      <td>abandonnement-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>138</td>\n",
-              "      <td>ABANDONNEMENT. I. Droit civil. — Ce mot est un...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>75</td>\n",
-              "      <td>ABANDONNEMENT</td>\n",
-              "      <td>Toussaint</td>\n",
-              "      <td>Droit</td>\n",
-              "      <td>\\nABANDONNEMENT, s. m. en Droit, est le délais...</td>\n",
-              "      <td>77</td>\n",
-              "      <td>Droit Jurisprudence</td>\n",
-              "    </tr>\n",
-              "  </tbody>\n",
-              "</table>\n",
-              "</div>\n",
-              "      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-be30bfa5-3524-40b4-abed-43faebfa6628')\"\n",
-              "              title=\"Convert this dataframe to an interactive table.\"\n",
-              "              style=\"display:none;\">\n",
-              "        \n",
-              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
-              "       width=\"24px\">\n",
-              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
-              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
-              "  </svg>\n",
-              "      </button>\n",
-              "      \n",
-              "  <style>\n",
-              "    .colab-df-container {\n",
-              "      display:flex;\n",
-              "      flex-wrap:wrap;\n",
-              "      gap: 12px;\n",
-              "    }\n",
-              "\n",
-              "    .colab-df-convert {\n",
-              "      background-color: #E8F0FE;\n",
-              "      border: none;\n",
-              "      border-radius: 50%;\n",
-              "      cursor: pointer;\n",
-              "      display: none;\n",
-              "      fill: #1967D2;\n",
-              "      height: 32px;\n",
-              "      padding: 0 0 0 0;\n",
-              "      width: 32px;\n",
-              "    }\n",
-              "\n",
-              "    .colab-df-convert:hover {\n",
-              "      background-color: #E2EBFA;\n",
-              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
-              "      fill: #174EA6;\n",
-              "    }\n",
-              "\n",
-              "    [theme=dark] .colab-df-convert {\n",
-              "      background-color: #3B4455;\n",
-              "      fill: #D2E3FC;\n",
-              "    }\n",
-              "\n",
-              "    [theme=dark] .colab-df-convert:hover {\n",
-              "      background-color: #434B5C;\n",
-              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
-              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
-              "      fill: #FFFFFF;\n",
-              "    }\n",
-              "  </style>\n",
-              "\n",
-              "      <script>\n",
-              "        const buttonEl =\n",
-              "          document.querySelector('#df-be30bfa5-3524-40b4-abed-43faebfa6628 button.colab-df-convert');\n",
-              "        buttonEl.style.display =\n",
-              "          google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
-              "\n",
-              "        async function convertToInteractive(key) {\n",
-              "          const element = document.querySelector('#df-be30bfa5-3524-40b4-abed-43faebfa6628');\n",
-              "          const dataTable =\n",
-              "            await google.colab.kernel.invokeFunction('convertToInteractive',\n",
-              "                                                     [key], {});\n",
-              "          if (!dataTable) return;\n",
-              "\n",
-              "          const docLinkHtml = 'Like what you see? Visit the ' +\n",
-              "            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
-              "            + ' to learn more about interactive tables.';\n",
-              "          element.innerHTML = '';\n",
-              "          dataTable['output_type'] = 'display_data';\n",
-              "          await google.colab.output.renderOutput(dataTable, element);\n",
-              "          const docLink = document.createElement('div');\n",
-              "          docLink.innerHTML = docLinkHtml;\n",
-              "          element.appendChild(docLink);\n",
-              "        }\n",
-              "      </script>\n",
-              "    </div>\n",
-              "  </div>\n",
-              "  "
-            ]
-          },
-          "metadata": {},
-          "execution_count": 13
-        }
-      ],
-      "source": [
-        "df = pd.read_csv(path + filepath, sep=\"\\t\")\n",
-        "df.head()"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "corpus = 'LGE'\n",
-        "#corpus = 'EDdA'\n",
-        "data = df['content'+corpus].values\n"
-      ],
-      "metadata": {
-        "id": "Ndw4UtgWt_MJ"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "U6KSUho7r0zX"
-      },
-      "source": [
-        "## 3. Load model and predict\n",
-        "\n",
-        "### 3.1 BERT / CamemBERT"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "0qDZ86qTr0zX"
-      },
-      "outputs": [],
-      "source": [
-        "model_name = \"bert-base-multilingual-cased\"\n",
-        "#model_name = \"camembert-base\"\n",
-        "#model_path = path + \"models/model_\" + model_name + \"_s10000.pt\"\n",
-        "\n",
-        "model_path = drive_path + \"models/model_\" + model_name + \"_s10000_superdomains.pt\""
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "KEljGX0br0zX"
-      },
-      "outputs": [],
-      "source": [
-        "def generate_dataloader(tokenizer, sentences, batch_size = 8, max_len = 512):\n",
-        "\n",
-        "    # Tokenize all of the sentences and map the tokens to thier word IDs.\n",
-        "    input_ids_test = []\n",
-        "    # For every sentence...\n",
-        "    for sent in sentences:\n",
-        "        # `encode` will:\n",
-        "        #   (1) Tokenize the sentence.\n",
-        "        #   (2) Prepend the `[CLS]` token to the start.\n",
-        "        #   (3) Append the `[SEP]` token to the end.\n",
-        "        #   (4) Map tokens to their IDs.\n",
-        "        encoded_sent = tokenizer.encode(\n",
-        "                            sent,                      # Sentence to encode.\n",
-        "                            add_special_tokens = True, # Add '[CLS]' and '[SEP]'\n",
-        "                            # This function also supports truncation and conversion\n",
-        "                            # to pytorch tensors, but I need to do padding, so I\n",
-        "                            # can't use these features.\n",
-        "                            #max_length = max_len,          # Truncate all sentences.\n",
-        "                            #return_tensors = 'pt',     # Return pytorch tensors.\n",
-        "                    )\n",
-        "        input_ids_test.append(encoded_sent)\n",
-        "\n",
-        "    # Pad our input tokens\n",
-        "    padded_test = []\n",
-        "    for i in input_ids_test:\n",
-        "        if len(i) > max_len:\n",
-        "            padded_test.extend([i[:max_len]])\n",
-        "        else:\n",
-        "            padded_test.extend([i + [0] * (max_len - len(i))])\n",
-        "    input_ids_test = np.array(padded_test)\n",
-        "\n",
-        "    # Create attention masks\n",
-        "    attention_masks = []\n",
-        "\n",
-        "    # Create a mask of 1s for each token followed by 0s for padding\n",
-        "    for seq in input_ids_test:\n",
-        "        seq_mask = [float(i>0) for i in seq]\n",
-        "        attention_masks.append(seq_mask)\n",
-        "\n",
-        "    # Convert to tensors.\n",
-        "    inputs = torch.tensor(input_ids_test)\n",
-        "    masks = torch.tensor(attention_masks)\n",
-        "    #set batch size\n",
-        "\n",
-        "    # Create the DataLoader.\n",
-        "    data = TensorDataset(inputs, masks)\n",
-        "    prediction_sampler = SequentialSampler(data)\n",
-        "\n",
-        "    return DataLoader(data, sampler=prediction_sampler, batch_size=batch_size)\n",
-        "\n",
-        "\n",
-        "\n",
-        "def predict(model, dataloader, device):\n",
-        "\n",
-        "    # Put model in evaluation mode\n",
-        "    model.eval()\n",
-        "\n",
-        "    # Tracking variables\n",
-        "    predictions_test , true_labels = [], []\n",
-        "    pred_labels_ = []\n",
-        "    # Predict\n",
-        "    for batch in dataloader:\n",
-        "    # Add batch to GPU\n",
-        "        batch = tuple(t.to(device) for t in batch)\n",
-        "\n",
-        "        # Unpack the inputs from the dataloader\n",
-        "        b_input_ids, b_input_mask = batch\n",
-        "\n",
-        "        # Telling the model not to compute or store gradients, saving memory and\n",
-        "        # speeding up prediction\n",
-        "        with torch.no_grad():\n",
-        "            # Forward pass, calculate logit predictions\n",
-        "            outputs = model(b_input_ids, token_type_ids=None,\n",
-        "                            attention_mask=b_input_mask)\n",
-        "\n",
-        "        logits = outputs[0]\n",
-        "        #print(logits)\n",
-        "\n",
-        "        # Move logits and labels to CPU ???\n",
-        "        logits = logits.detach().cpu().numpy()\n",
-        "        #print(logits)\n",
-        "\n",
-        "        # Store predictions and true labels\n",
-        "        predictions_test.append(logits)\n",
-        "\n",
-        "        pred_labels = []\n",
-        "        \n",
-        "        for i in range(len(predictions_test)):\n",
-        "            # The predictions for this batch are a 2-column ndarray (one column for \"0\"\n",
-        "            # and one column for \"1\"). Pick the label with the highest value and turn this\n",
-        "            # in to a list of 0s and 1s.\n",
-        "            pred_labels_i = np.argmax(predictions_test[i], axis=1).flatten()\n",
-        "            pred_labels.append(pred_labels_i)\n",
-        "\n",
-        "    pred_labels_ += [item for sublist in pred_labels for item in sublist]\n",
-        "    return pred_labels_"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 162,
-          "referenced_widgets": [
-            "11c285bed74e46a08fbb7bf88715aafa",
-            "3fde7318ebc3458cb64f8927fdcbaee3",
-            "8d57eb44d9394604981a8f8f97f48b7c",
-            "1cb6ed877c2b455b9463b12c2da877d8",
-            "5e03651dca944a5f91b675c503feeeac",
-            "0521c3cc6abd44ae989ac0701100045d",
-            "d12a8ef069af4d79870bd783f2343184",
-            "28d38094dcd54d6694e2efad7fea6abb",
-            "6f80ea06220b4a498e6169e55cd8800f",
-            "3de8b4b0d6494c058589c535dc24dc3e",
-            "e0df5e2d4ebd4eb3b126c16dadb2ba62",
-            "9be44ba364a344f2b6b2546ae9d61ba8",
-            "fe472df31774495c83aa159e116ba2ee",
-            "0180ffc200e8466191a11a723c82e43f",
-            "a07ac2935a3f4d84971ae9147a854969",
-            "af4ae976808042bf929ab17df10530b2",
-            "b2277b3d600c43f999b3a07215ac2e13",
-            "ebe5e6f8af1e4e04a8a2b5939ac09039",
-            "c4ea841cb43747cdbce35f8f9c711cde",
-            "2d937fce2e6c4b69816352bd264ded41",
-            "64b57e3be2c743b3b0e58d338243c656",
-            "6ca9688ac7fa4e638994b91242c0ac87",
-            "aa6a7a9106554f85a91150bd65c271d0",
-            "ea3f471546734f5994edfdc214319368",
-            "04a86b4164fa49de8fd47d4d373e1d81",
-            "be067a8a406f41779e42bd35abcbfcf0",
-            "7df91507e47d4a6992464293ce002a29",
-            "ecef81814a7c4481aa49eb73807bfe4d",
-            "2b9b4eac7994405ca9bce38332df2629",
-            "4edc5b66f0eb44a0b05876fda90f0d1b",
-            "5285a390fb42415289d89585e04c8994",
-            "53643db8401846f2af6f15f5cd0c9998",
-            "bc4825e1a43f4a20b496d82ea3687e6f",
-            "4c46904f8e944d2b834ba9d384b00a8c",
-            "ef37bbf1f34e4765b1803a607716d0d1",
-            "c2d6041cd6674043953e094791ab9659",
-            "e4c43817f44743388e6fd98b8dbb2eda",
-            "39636049d60a4bb4bde7d0ef1af25d78",
-            "c3e73d423c2c41c0a942331070fda723",
-            "087ebcb093bb41c28485bdc762fb5da6",
-            "de270f0aa8194e0bb470e693a35d7d6e",
-            "2924cdc1348942cfb23f28a5383af3e4",
-            "209ff109c8e142dfba37baea2d3d5de7",
-            "4203b950e245481590e8105f31301782"
-          ]
-        },
-        "id": "eGKU1J9Ar0zY",
-        "outputId": "0a5f7fe5-7b5e-4c11-8a6e-7e85e8478b92"
-      },
-      "outputs": [
-        {
-          "output_type": "stream",
-          "name": "stdout",
-          "text": [
-            "Loading Bert Tokenizer...\n"
-          ]
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading:   0%|          | 0.00/996k [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "11c285bed74e46a08fbb7bf88715aafa"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading:   0%|          | 0.00/29.0 [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "9be44ba364a344f2b6b2546ae9d61ba8"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading:   0%|          | 0.00/1.96M [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "aa6a7a9106554f85a91150bd65c271d0"
-            }
-          },
-          "metadata": {}
-        },
-        {
-          "output_type": "display_data",
-          "data": {
-            "text/plain": [
-              "Downloading:   0%|          | 0.00/625 [00:00<?, ?B/s]"
-            ],
-            "application/vnd.jupyter.widget-view+json": {
-              "version_major": 2,
-              "version_minor": 0,
-              "model_id": "4c46904f8e944d2b834ba9d384b00a8c"
-            }
-          },
-          "metadata": {}
-        }
-      ],
-      "source": [
-        "if model_name == 'bert-base-multilingual-cased' :\n",
-        "    print('Loading Bert Tokenizer...')\n",
-        "    tokenizer = BertTokenizer.from_pretrained(model_name)\n",
-        "elif model_name == 'camembert-base':\n",
-        "    print('Loading Camembert Tokenizer...')\n",
-        "    tokenizer = CamembertTokenizer.from_pretrained(model_name)"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "-O6NspVTr0zZ"
-      },
-      "outputs": [],
-      "source": [
-        "data_loader = generate_dataloader(tokenizer, data)"
-      ]
-    },
-    {
-      "cell_type": "markdown",
-      "metadata": {
-        "id": "4lv8lvUar0zZ"
-      },
-      "source": [
-        "\n",
-        "https://discuss.huggingface.co/t/an-efficient-way-of-loading-a-model-that-was-saved-with-torch-save/9814\n",
-        "\n",
-        "https://github.com/huggingface/transformers/issues/2094\n"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "CN8EZst-r0zZ"
-      },
-      "outputs": [],
-      "source": [
-        "#model = torch.load(model_path, map_location=torch.device('mps'))\n",
-        "#model.load_state_dict(torch.load(model_path, map_location=torch.device('mps')))\n",
-        "\n",
-        "model = BertForSequenceClassification.from_pretrained(model_path).to(\"cuda\")"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "_fzgS5USJeAF"
-      },
-      "outputs": [],
-      "source": [
-        "pred = predict(model, data_loader, device)"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "ISkijyclr0za",
-        "outputId": "8120e858-9950-4380-f887-70ca47360c76"
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "[4,\n",
-              " 1,\n",
-              " 7,\n",
-              " 16,\n",
-              " 5,\n",
-              " 7,\n",
-              " 7,\n",
-              " 8,\n",
-              " 6,\n",
-              " 6,\n",
-              " 0,\n",
-              " 9,\n",
-              " 7,\n",
-              " 5,\n",
-              " 6,\n",
-              " 3,\n",
-              " 11,\n",
-              " 7,\n",
-              " 11,\n",
-              " 9,\n",
-              " 12,\n",
-              " 5,\n",
-              " 5,\n",
-              " 13,\n",
-              " 9,\n",
-              " 16,\n",
-              " 6,\n",
-              " 5,\n",
-              " 9,\n",
-              " 1,\n",
-              " 7,\n",
-              " 11,\n",
-              " 4,\n",
-              " 5,\n",
-              " 6,\n",
-              " 8,\n",
-              " 14,\n",
-              " 1,\n",
-              " 8,\n",
-              " 13,\n",
-              " 14,\n",
-              " 16,\n",
-              " 16,\n",
-              " 13,\n",
-              " 8,\n",
-              " 8,\n",
-              " 8,\n",
-              " 8,\n",
-              " 6,\n",
-              " 8,\n",
-              " 13,\n",
-              " 10,\n",
-              " 13,\n",
-              " 5,\n",
-              " 5,\n",
-              " 13,\n",
-              " 13,\n",
-              " 2,\n",
-              " 1,\n",
-              " 14,\n",
-              " 4,\n",
-              " 13,\n",
-              " 7,\n",
-              " 0,\n",
-              " 1,\n",
-              " 11,\n",
-              " 12,\n",
-              " 9,\n",
-              " 10,\n",
-              " 7,\n",
-              " 12,\n",
-              " 3,\n",
-              " 9,\n",
-              " 5,\n",
-              " 5,\n",
-              " 13,\n",
-              " 11,\n",
-              " 8,\n",
-              " 7,\n",
-              " 6,\n",
-              " 4,\n",
-              " 7,\n",
-              " 7,\n",
-              " 7,\n",
-              " 11,\n",
-              " 7,\n",
-              " 14,\n",
-              " 6,\n",
-              " 5,\n",
-              " 5,\n",
-              " 5,\n",
-              " 4,\n",
-              " 16,\n",
-              " 2,\n",
-              " 13,\n",
-              " 7,\n",
-              " 14,\n",
-              " 2,\n",
-              " 10,\n",
-              " 7,\n",
-              " 8,\n",
-              " 14,\n",
-              " 5,\n",
-              " 1,\n",
-              " 6,\n",
-              " 16,\n",
-              " 14,\n",
-              " 13,\n",
-              " 6,\n",
-              " 7,\n",
-              " 5,\n",
-              " 5,\n",
-              " 11,\n",
-              " 5,\n",
-              " 0,\n",
-              " 6,\n",
-              " 5,\n",
-              " 13,\n",
-              " 9,\n",
-              " 4,\n",
-              " 8,\n",
-              " 7,\n",
-              " 6,\n",
-              " 5,\n",
-              " 13,\n",
-              " 6,\n",
-              " 5,\n",
-              " 5,\n",
-              " 5,\n",
-              " 7,\n",
-              " 11,\n",
-              " 2,\n",
-              " 7,\n",
-              " 8,\n",
-              " 7,\n",
-              " 13,\n",
-              " 5,\n",
-              " 4,\n",
-              " 8,\n",
-              " 6,\n",
-              " 6,\n",
-              " 5,\n",
-              " 12,\n",
-              " 8,\n",
-              " 7,\n",
-              " 13,\n",
-              " 6,\n",
-              " 7,\n",
-              " 9,\n",
-              " 10,\n",
-              " 13,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 9,\n",
-              " 9,\n",
-              " 8,\n",
-              " 8,\n",
-              " 6,\n",
-              " 8,\n",
-              " 13,\n",
-              " 14,\n",
-              " 11,\n",
-              " 13,\n",
-              " 6,\n",
-              " 1,\n",
-              " 11,\n",
-              " 1,\n",
-              " 4,\n",
-              " 8,\n",
-              " 6,\n",
-              " 1,\n",
-              " 9,\n",
-              " 2,\n",
-              " 8,\n",
-              " 6,\n",
-              " 5,\n",
-              " 4,\n",
-              " 8,\n",
-              " 7,\n",
-              " 4,\n",
-              " 7,\n",
-              " 14,\n",
-              " 14,\n",
-              " 8,\n",
-              " 7,\n",
-              " 7,\n",
-              " 16,\n",
-              " 6,\n",
-              " 13,\n",
-              " 9,\n",
-              " 9,\n",
-              " 9,\n",
-              " 16,\n",
-              " 6,\n",
-              " 6,\n",
-              " 14,\n",
-              " 6,\n",
-              " 8,\n",
-              " 6,\n",
-              " 14,\n",
-              " 7,\n",
-              " 8,\n",
-              " 5,\n",
-              " 6,\n",
-              " 6,\n",
-              " 14,\n",
-              " 14,\n",
-              " 6,\n",
-              " 0,\n",
-              " 4,\n",
-              " 10,\n",
-              " 6,\n",
-              " 10,\n",
-              " 14,\n",
-              " 8,\n",
-              " 6,\n",
-              " 2,\n",
-              " 3,\n",
-              " 8,\n",
-              " 3,\n",
-              " 2,\n",
-              " 8,\n",
-              " 8,\n",
-              " 13,\n",
-              " 7,\n",
-              " 6,\n",
-              " 7,\n",
-              " 4,\n",
-              " 8,\n",
-              " 8,\n",
-              " 6,\n",
-              " 13,\n",
-              " 11,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 13,\n",
-              " 5,\n",
-              " 9,\n",
-              " 12,\n",
-              " 11,\n",
-              " 7,\n",
-              " 2,\n",
-              " 11,\n",
-              " 8,\n",
-              " 3,\n",
-              " 3,\n",
-              " 9,\n",
-              " 2,\n",
-              " 8,\n",
-              " 7,\n",
-              " 5,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 13,\n",
-              " 9,\n",
-              " 6,\n",
-              " 14,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 8,\n",
-              " 6,\n",
-              " 5,\n",
-              " 6,\n",
-              " 7,\n",
-              " 3,\n",
-              " 8,\n",
-              " 7,\n",
-              " 5,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 5,\n",
-              " 5,\n",
-              " 8,\n",
-              " 14,\n",
-              " 6,\n",
-              " 6,\n",
-              " 7,\n",
-              " 11,\n",
-              " 8,\n",
-              " 7,\n",
-              " 6,\n",
-              " 1,\n",
-              " 7,\n",
-              " 5,\n",
-              " 2,\n",
-              " 11,\n",
-              " 6,\n",
-              " 11,\n",
-              " 16,\n",
-              " 2,\n",
-              " 7,\n",
-              " 2,\n",
-              " 4,\n",
-              " 2,\n",
-              " 7,\n",
-              " 13,\n",
-              " 6,\n",
-              " 11,\n",
-              " 13,\n",
-              " 13,\n",
-              " 2,\n",
-              " 13,\n",
-              " 11,\n",
-              " 11,\n",
-              " 6,\n",
-              " 11,\n",
-              " 6,\n",
-              " 8,\n",
-              " 8,\n",
-              " 1,\n",
-              " 6,\n",
-              " 9,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 7,\n",
-              " 0,\n",
-              " 6,\n",
-              " 11,\n",
-              " 6,\n",
-              " 7,\n",
-              " 11,\n",
-              " 6,\n",
-              " 6,\n",
-              " 7,\n",
-              " 12,\n",
-              " 9,\n",
-              " 11,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 8,\n",
-              " 14,\n",
-              " 6,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 5,\n",
-              " 7,\n",
-              " 6,\n",
-              " 2,\n",
-              " 7,\n",
-              " 6,\n",
-              " 14,\n",
-              " 5,\n",
-              " 8,\n",
-              " 14,\n",
-              " 8,\n",
-              " 11,\n",
-              " 9,\n",
-              " 9,\n",
-              " 11,\n",
-              " 2,\n",
-              " 14,\n",
-              " 7,\n",
-              " 9,\n",
-              " 7,\n",
-              " 8,\n",
-              " 16,\n",
-              " 11,\n",
-              " 13,\n",
-              " 14,\n",
-              " 5,\n",
-              " 6,\n",
-              " 6,\n",
-              " 14,\n",
-              " 10,\n",
-              " 7,\n",
-              " 7,\n",
-              " 8,\n",
-              " 6,\n",
-              " 2,\n",
-              " 7,\n",
-              " 6,\n",
-              " 13,\n",
-              " 13,\n",
-              " 10,\n",
-              " 6,\n",
-              " 11,\n",
-              " 16,\n",
-              " 6,\n",
-              " 6,\n",
-              " 12,\n",
-              " 2,\n",
-              " 6,\n",
-              " 11,\n",
-              " 13,\n",
-              " 6,\n",
-              " 11,\n",
-              " 2,\n",
-              " 6,\n",
-              " 5,\n",
-              " 13,\n",
-              " 7,\n",
-              " 6,\n",
-              " 11,\n",
-              " 11,\n",
-              " 7,\n",
-              " 6,\n",
-              " 14,\n",
-              " 8,\n",
-              " 8,\n",
-              " 7,\n",
-              " 7,\n",
-              " 7,\n",
-              " 2,\n",
-              " 7,\n",
-              " 7,\n",
-              " 7,\n",
-              " 6,\n",
-              " 7,\n",
-              " 16,\n",
-              " 2,\n",
-              " 2,\n",
-              " 11,\n",
-              " 11,\n",
-              " 10,\n",
-              " 11,\n",
-              " 16,\n",
-              " 3,\n",
-              " 16,\n",
-              " 11,\n",
-              " 7,\n",
-              " 5,\n",
-              " 5,\n",
-              " 3,\n",
-              " 6,\n",
-              " 8,\n",
-              " 1,\n",
-              " 11,\n",
-              " 6,\n",
-              " 13,\n",
-              " 14,\n",
-              " 5,\n",
-              " 5,\n",
-              " 12,\n",
-              " 9,\n",
-              " 14,\n",
-              " 5,\n",
-              " 13,\n",
-              " 6,\n",
-              " 8,\n",
-              " 11,\n",
-              " 14,\n",
-              " 8,\n",
-              " 9,\n",
-              " 7,\n",
-              " 7,\n",
-              " 6,\n",
-              " 3,\n",
-              " 1,\n",
-              " 1,\n",
-              " 6,\n",
-              " 14,\n",
-              " 6,\n",
-              " 5,\n",
-              " 13,\n",
-              " 6,\n",
-              " 8,\n",
-              " 12,\n",
-              " 1,\n",
-              " 6,\n",
-              " 7,\n",
-              " 3,\n",
-              " 7,\n",
-              " 16,\n",
-              " 14,\n",
-              " 3,\n",
-              " 7,\n",
-              " 10,\n",
-              " 5,\n",
-              " 7,\n",
-              " 7,\n",
-              " 7,\n",
-              " 7,\n",
-              " 9,\n",
-              " 7,\n",
-              " 3,\n",
-              " 1,\n",
-              " 1,\n",
-              " 1,\n",
-              " 1,\n",
-              " 5,\n",
-              " 10,\n",
-              " 5,\n",
-              " 7,\n",
-              " 12,\n",
-              " 12,\n",
-              " 6,\n",
-              " 14,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 8,\n",
-              " 6,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 1,\n",
-              " 6,\n",
-              " 8,\n",
-              " 7,\n",
-              " 14,\n",
-              " 8,\n",
-              " 7,\n",
-              " 2,\n",
-              " 12,\n",
-              " 7,\n",
-              " 16,\n",
-              " 6,\n",
-              " 10,\n",
-              " 8,\n",
-              " 7,\n",
-              " 14,\n",
-              " 6,\n",
-              " 9,\n",
-              " 1,\n",
-              " 9,\n",
-              " 9,\n",
-              " 16,\n",
-              " 13,\n",
-              " 5,\n",
-              " 7,\n",
-              " 6,\n",
-              " 9,\n",
-              " 7,\n",
-              " 6,\n",
-              " 11,\n",
-              " 8,\n",
-              " 9,\n",
-              " 9,\n",
-              " 5,\n",
-              " 2,\n",
-              " 5,\n",
-              " 5,\n",
-              " 9,\n",
-              " 3,\n",
-              " 0,\n",
-              " 5,\n",
-              " 8,\n",
-              " 7,\n",
-              " 2,\n",
-              " 2,\n",
-              " 7,\n",
-              " 11,\n",
-              " 11,\n",
-              " 13,\n",
-              " 13,\n",
-              " 14,\n",
-              " 3,\n",
-              " 13,\n",
-              " 1,\n",
-              " 6,\n",
-              " 7,\n",
-              " 7,\n",
-              " 14,\n",
-              " 7,\n",
-              " 11,\n",
-              " 8,\n",
-              " 16,\n",
-              " 6,\n",
-              " 6,\n",
-              " 1,\n",
-              " 8,\n",
-              " 13,\n",
-              " 7,\n",
-              " 8,\n",
-              " 4,\n",
-              " 11,\n",
-              " 6,\n",
-              " 7,\n",
-              " 5,\n",
-              " 5,\n",
-              " 5,\n",
-              " 4,\n",
-              " 5,\n",
-              " 6,\n",
-              " 5,\n",
-              " 8,\n",
-              " 2,\n",
-              " 13,\n",
-              " 6,\n",
-              " 13,\n",
-              " 12,\n",
-              " 16,\n",
-              " 8,\n",
-              " 14,\n",
-              " 7,\n",
-              " 3,\n",
-              " 13,\n",
-              " 11,\n",
-              " 6,\n",
-              " 7,\n",
-              " 6,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 1,\n",
-              " 7,\n",
-              " 11,\n",
-              " 14,\n",
-              " 7,\n",
-              " 11,\n",
-              " 1,\n",
-              " 9,\n",
-              " 0,\n",
-              " 11,\n",
-              " 5,\n",
-              " 1,\n",
-              " 0,\n",
-              " 5,\n",
-              " 12,\n",
-              " 1,\n",
-              " 14,\n",
-              " 12,\n",
-              " 8,\n",
-              " 13,\n",
-              " 13,\n",
-              " 4,\n",
-              " 12,\n",
-              " 3,\n",
-              " 1,\n",
-              " 6,\n",
-              " 7,\n",
-              " 5,\n",
-              " 5,\n",
-              " 5,\n",
-              " 5,\n",
-              " 13,\n",
-              " 5,\n",
-              " 12,\n",
-              " 7,\n",
-              " 8,\n",
-              " 6,\n",
-              " 2,\n",
-              " 5,\n",
-              " 6,\n",
-              " 9,\n",
-              " 13,\n",
-              " 7,\n",
-              " 16,\n",
-              " 6,\n",
-              " 7,\n",
-              " 7,\n",
-              " 4,\n",
-              " 11,\n",
-              " 6,\n",
-              " 12,\n",
-              " 2,\n",
-              " 7,\n",
-              " 6,\n",
-              " 2,\n",
-              " 14,\n",
-              " 7,\n",
-              " 7,\n",
-              " 14,\n",
-              " 13,\n",
-              " 11,\n",
-              " 5,\n",
-              " 6,\n",
-              " 7,\n",
-              " 13,\n",
-              " 7,\n",
-              " 7,\n",
-              " 8,\n",
-              " 13,\n",
-              " 8,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 8,\n",
-              " 11,\n",
-              " 7,\n",
-              " 6,\n",
-              " 0,\n",
-              " 9,\n",
-              " 7,\n",
-              " 6,\n",
-              " 7,\n",
-              " 7,\n",
-              " 9,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 1,\n",
-              " 4,\n",
-              " 1,\n",
-              " 7,\n",
-              " 6,\n",
-              " 1,\n",
-              " 8,\n",
-              " 9,\n",
-              " 7,\n",
-              " 5,\n",
-              " 5,\n",
-              " 8,\n",
-              " 7,\n",
-              " 0,\n",
-              " 10,\n",
-              " 9,\n",
-              " 9,\n",
-              " 3,\n",
-              " 6,\n",
-              " 9,\n",
-              " 9,\n",
-              " 1,\n",
-              " 9,\n",
-              " 0,\n",
-              " 2,\n",
-              " 2,\n",
-              " 6,\n",
-              " 3,\n",
-              " 8,\n",
-              " 7,\n",
-              " 7,\n",
-              " 3,\n",
-              " 1,\n",
-              " 1,\n",
-              " 6,\n",
-              " 5,\n",
-              " 6,\n",
-              " 1,\n",
-              " 6,\n",
-              " 11,\n",
-              " 9,\n",
-              " 8,\n",
-              " 7,\n",
-              " 5,\n",
-              " 5,\n",
-              " 5,\n",
-              " 5,\n",
-              " 1,\n",
-              " 13,\n",
-              " 6,\n",
-              " 5,\n",
-              " 6,\n",
-              " 7,\n",
-              " 2,\n",
-              " 6,\n",
-              " 6,\n",
-              " 13,\n",
-              " 1,\n",
-              " 7,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 7,\n",
-              " 7,\n",
-              " 6,\n",
-              " 13,\n",
-              " 8,\n",
-              " 8,\n",
-              " 1,\n",
-              " 6,\n",
-              " 2,\n",
-              " 3,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 8,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 7,\n",
-              " 14,\n",
-              " 6,\n",
-              " 4,\n",
-              " 8,\n",
-              " 11,\n",
-              " 7,\n",
-              " 7,\n",
-              " 6,\n",
-              " 7,\n",
-              " 6,\n",
-              " 3,\n",
-              " 6,\n",
-              " 14,\n",
-              " 6,\n",
-              " 6,\n",
-              " 10,\n",
-              " 1,\n",
-              " 14,\n",
-              " 4,\n",
-              " 11,\n",
-              " 12,\n",
-              " 1,\n",
-              " 6,\n",
-              " 7,\n",
-              " 6,\n",
-              " 9,\n",
-              " 6,\n",
-              " 6,\n",
-              " 8,\n",
-              " 6,\n",
-              " 6,\n",
-              " 8,\n",
-              " 2,\n",
-              " 7,\n",
-              " 6,\n",
-              " 5,\n",
-              " 12,\n",
-              " 7,\n",
-              " 1,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 1,\n",
-              " 10,\n",
-              " 16,\n",
-              " 5,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 0,\n",
-              " 12,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 13,\n",
-              " 6,\n",
-              " 6,\n",
-              " 9,\n",
-              " 3,\n",
-              " 7,\n",
-              " 3,\n",
-              " 13,\n",
-              " 6,\n",
-              " 6,\n",
-              " 7,\n",
-              " 7,\n",
-              " 6,\n",
-              " 8,\n",
-              " 8,\n",
-              " 7,\n",
-              " 7,\n",
-              " 10,\n",
-              " 6,\n",
-              " 16,\n",
-              " 2,\n",
-              " 7,\n",
-              " 6,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 13,\n",
-              " 6,\n",
-              " 2,\n",
-              " 6,\n",
-              " 5,\n",
-              " 3,\n",
-              " 12,\n",
-              " 6,\n",
-              " 8,\n",
-              " 4,\n",
-              " 6,\n",
-              " 10,\n",
-              " 11,\n",
-              " 11,\n",
-              " 8,\n",
-              " 5,\n",
-              " 1,\n",
-              " 1,\n",
-              " 13,\n",
-              " 5,\n",
-              " 14,\n",
-              " 6,\n",
-              " 12,\n",
-              " 6,\n",
-              " 11,\n",
-              " 12,\n",
-              " 6,\n",
-              " 0,\n",
-              " 0,\n",
-              " 9,\n",
-              " 11,\n",
-              " 1,\n",
-              " 6,\n",
-              " 6,\n",
-              " 3,\n",
-              " 3,\n",
-              " 8,\n",
-              " 6,\n",
-              " 8,\n",
-              " 6,\n",
-              " 12,\n",
-              " 8,\n",
-              " 9,\n",
-              " 6,\n",
-              " 8,\n",
-              " 7,\n",
-              " 8,\n",
-              " 8,\n",
-              " 1,\n",
-              " 9,\n",
-              " 12,\n",
-              " 8,\n",
-              " 6,\n",
-              " 14,\n",
-              " 12,\n",
-              " 0,\n",
-              " 4,\n",
-              " 6,\n",
-              " 6,\n",
-              " 5,\n",
-              " 7,\n",
-              " 3,\n",
-              " 7,\n",
-              " 7,\n",
-              " 6,\n",
-              " 9,\n",
-              " 9,\n",
-              " 9,\n",
-              " 12,\n",
-              " 3,\n",
-              " 6,\n",
-              " 8,\n",
-              " 8,\n",
-              " 8,\n",
-              " 12,\n",
-              " 12,\n",
-              " 9,\n",
-              " 7,\n",
-              " 7,\n",
-              " 8,\n",
-              " 6,\n",
-              " 14,\n",
-              " 3,\n",
-              " 3,\n",
-              " 5,\n",
-              " 9,\n",
-              " 3,\n",
-              " 1,\n",
-              " 7,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 7,\n",
-              " 7,\n",
-              " 6,\n",
-              " 1,\n",
-              " 6,\n",
-              " 6,\n",
-              " 6,\n",
-              " 1,\n",
-              " 9,\n",
-              " 14,\n",
-              " 9,\n",
-              " 0,\n",
-              " 9,\n",
-              " 1,\n",
-              " 3,\n",
-              " 6,\n",
-              " 7,\n",
-              " 5,\n",
-              " 6,\n",
-              " 8,\n",
-              " 7,\n",
-              " 7,\n",
-              " 4,\n",
-              " 0,\n",
-              " 6,\n",
-              " 6,\n",
-              " 9,\n",
-              " 9,\n",
-              " 9,\n",
-              " 0,\n",
-              " 11,\n",
-              " 8,\n",
-              " 7,\n",
-              " 4,\n",
-              " 5,\n",
-              " 6,\n",
-              " 6,\n",
-              " 8,\n",
-              " 6,\n",
-              " 9,\n",
-              " 10,\n",
-              " 12,\n",
-              " 4,\n",
-              " 14,\n",
-              " 6,\n",
-              " 10,\n",
-              " 5,\n",
-              " 7,\n",
-              " 1,\n",
-              " 1,\n",
-              " 6,\n",
-              " 0,\n",
-              " 6,\n",
-              " 3,\n",
-              " 6,\n",
-              " ...]"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 32
-        }
-      ],
-      "source": [
-        "pred"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "fo6k4li1r0za"
-      },
-      "outputs": [],
-      "source": [
-        "import pickle \n",
-        "#encoder_filename = \"models/label_encoder.pkl\"\n",
-        "encoder_filename = \"models/label_encoder_superdomains.pkl\"\n",
-        "with open(drive_path + encoder_filename, 'rb') as file:\n",
-        "      encoder = pickle.load(file)"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "UU7qg7zVr0zb"
-      },
-      "outputs": [],
-      "source": [
-        "p2 = list(encoder.inverse_transform(pred))"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "w4eHpBztr0zb"
-      },
-      "outputs": [],
-      "source": [
-        "df['superdomainBert'+corpus] = p2"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "df[df.numero == 2835]['content'+corpus].values"
-      ],
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/"
-        },
-        "id": "KsJQMhCBxpSF",
-        "outputId": "2ffa7475-e6de-4c42-a413-22c0d4b2d45f"
-      },
-      "execution_count": null,
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "array([\"\\nQueue, terme de Chancellerie, ce mot se dit de la\\nmaniere de sceller les lettres. Une lettre est scellée à\\nsimple queue, quand le sceau est attaché à un coin du\\nparchemin de la lettre qu'on a fendu exprès ; & elle\\nest scellée à double queue, quand le sceau est pendant\\nà une bande en double de parchemin passée au-travers de la lettre, comme on fait dans les expéditions\\nimportantes.\\n\",\n",
-              "       \"\\nPiquer, v. act. (Charp. & Maçon.) piquer en Charpenterie, c'est marquer un piece de bois, pour la\\ntailler & la façonner. Piquer en Maçonnerie, c'est\\nrustiquer le parement ou les lits d'une pierre, c'est-à-dire que piquer signifie en fait de moilon le tailler\\ngrossierement ; on emploie le moilon piqué de la sorte\\naux voûtes de caves, aux puits & aux murs de clôture.\\nPiquer signifie aussi faire sur les matériaux destinés à \\nla construction extérieure les bâtimens, les petits\\npoints ou creux nécessaires pour leur servir d'ornement ; \\non pique de cette maniere la pierre de taille,\\n\\nle grès & le moilon particulierement pour l'ordre\\ntoscan. (D. J.)\\n\"],\n",
-              "      dtype=object)"
-            ]
-          },
-          "metadata": {},
-          "execution_count": 34
-        }
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "colab": {
-          "base_uri": "https://localhost:8080/",
-          "height": 797
-        },
-        "id": "OCy54lRLr0zb",
-        "outputId": "a42d8a75-48b9-431a-9b8e-71e4d7018c6b"
-      },
-      "outputs": [
-        {
-          "output_type": "execute_result",
-          "data": {
-            "text/plain": [
-              "             idLGE  tomeLGE  rankLGE  \\\n",
-              "0            aam-0        1       63   \n",
-              "1          abaco-0        1       92   \n",
-              "2         abacot-0        1       96   \n",
-              "3        abaddon-0        1      104   \n",
-              "4  abandonnement-0        1      138   \n",
-              "5        abantes-0        1      143   \n",
-              "6         abaque-0        1      146   \n",
-              "7   abaremo-temo-0        1      152   \n",
-              "8         abares-0        1      153   \n",
-              "9         abarim-0        1      154   \n",
-              "\n",
-              "                                          contentLGE  volumeEDdA  numeroEDdA  \\\n",
-              "0  AAM. Mesure de capacité pour les liquides en u...           1          31   \n",
-              "1  ABACO, architecte italien du xvi siècle (V. La...           1          42   \n",
-              "2  ABACOT. Double couronne que portaient autrefoi...           1          44   \n",
-              "3  ABADDONou APOLYON le Destructeur. « Elles\\nava...           1          46   \n",
-              "4  ABANDONNEMENT. I. Droit civil. — Ce mot est un...           1          75   \n",
-              "5  ABANTES. Peuplade d’origine douteuse que l’on ...           1          81   \n",
-              "6  ABAQUE. I. Antiquité.— Dans l’antiquité on don...           1          84   \n",
-              "7  ABAREMO-TEMO(Bot.). Nom sous lequel Pison\\n(Br...           1          90   \n",
-              "8  ABARES. Nom de deux peuples distincts, habitan...           1          91   \n",
-              "9  ABARIM. Chaîne de montagnes de la Palestine au...           1          92   \n",
-              "\n",
-              "        headEDdA   authorEDdA normclassEDdA  \\\n",
-              "0            AAM      Diderot  unclassified   \n",
-              "1          ABACO   d'Alembert  unclassified   \n",
-              "2         ABACOT      Diderot  unclassified   \n",
-              "3        ABADDON      Diderot  unclassified   \n",
-              "4  ABANDONNEMENT    Toussaint         Droit   \n",
-              "5        ABANTES      Diderot  unclassified   \n",
-              "6         ABAQUE  d'Alembert2  unclassified   \n",
-              "7   ABAREMO-TEMO      Diderot  unclassified   \n",
-              "8         ABARES      Diderot  unclassified   \n",
-              "9         ABARIM      Diderot  unclassified   \n",
-              "\n",
-              "                                         contentEDdA  nbWordsEDdA  \\\n",
-              "0  \\n* AAM, s. mesure des Liquides, en usage à Am...           18   \n",
-              "1  \\nABACO, s. m. Quelques anciens Auteurs se ser...           26   \n",
-              "2  \\n* ABACOT, s. m. nom de l'ancienne parure dè\\...           22   \n",
-              "3  \\n* ABADDON, s. m. vient d'abad, perdre. C'est...           25   \n",
-              "4  \\nABANDONNEMENT, s. m. en Droit, est le délais...           77   \n",
-              "5  \\n* ABANTES, s. m. pl. Peuples de Thrace qui p...           26   \n",
-              "6  \\nABAQUE, s. m. chez les anciens Mathématicien...           52   \n",
-              "7  \\n* ABAREMO-TEMO, s. m. arbre qui croît, dit-o...           55   \n",
-              "8  \\n* ABARES, restes de la Nation des Huns qui s...           24   \n",
-              "9  \\n* ABARIM, montagne de l'Arabie d'où Moyse vi...           23   \n",
-              "\n",
-              "       superdomainEDdA  superdomainBertEDdA   superdomainBertLGE  \n",
-              "0         Unclassified             Commerce             Commerce  \n",
-              "1         Unclassified             Physique           Beaux-arts  \n",
-              "2         Unclassified             Histoire             Histoire  \n",
-              "3         Unclassified             Histoire             Religion  \n",
-              "4  Droit Jurisprudence  Droit Jurisprudence  Droit Jurisprudence  \n",
-              "5         Unclassified             Histoire             Histoire  \n",
-              "6         Unclassified             Physique             Histoire  \n",
-              "7         Unclassified   Histoire naturelle   Histoire naturelle  \n",
-              "8         Unclassified             Histoire           Géographie  \n",
-              "9         Unclassified           Géographie           Géographie  "
-            ],
-            "text/html": [
-              "\n",
-              "  <div id=\"df-825c5672-f5f9-49ed-95eb-fdcae67ba1f1\">\n",
-              "    <div class=\"colab-df-container\">\n",
-              "      <div>\n",
-              "<style scoped>\n",
-              "    .dataframe tbody tr th:only-of-type {\n",
-              "        vertical-align: middle;\n",
-              "    }\n",
-              "\n",
-              "    .dataframe tbody tr th {\n",
-              "        vertical-align: top;\n",
-              "    }\n",
-              "\n",
-              "    .dataframe thead th {\n",
-              "        text-align: right;\n",
-              "    }\n",
-              "</style>\n",
-              "<table border=\"1\" class=\"dataframe\">\n",
-              "  <thead>\n",
-              "    <tr style=\"text-align: right;\">\n",
-              "      <th></th>\n",
-              "      <th>idLGE</th>\n",
-              "      <th>tomeLGE</th>\n",
-              "      <th>rankLGE</th>\n",
-              "      <th>contentLGE</th>\n",
-              "      <th>volumeEDdA</th>\n",
-              "      <th>numeroEDdA</th>\n",
-              "      <th>headEDdA</th>\n",
-              "      <th>authorEDdA</th>\n",
-              "      <th>normclassEDdA</th>\n",
-              "      <th>contentEDdA</th>\n",
-              "      <th>nbWordsEDdA</th>\n",
-              "      <th>superdomainEDdA</th>\n",
-              "      <th>superdomainBertEDdA</th>\n",
-              "      <th>superdomainBertLGE</th>\n",
-              "    </tr>\n",
-              "  </thead>\n",
-              "  <tbody>\n",
-              "    <tr>\n",
-              "      <th>0</th>\n",
-              "      <td>aam-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>63</td>\n",
-              "      <td>AAM. Mesure de capacité pour les liquides en u...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>31</td>\n",
-              "      <td>AAM</td>\n",
-              "      <td>Diderot</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\n* AAM, s. mesure des Liquides, en usage à Am...</td>\n",
-              "      <td>18</td>\n",
-              "      <td>Unclassified</td>\n",
-              "      <td>Commerce</td>\n",
-              "      <td>Commerce</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>1</th>\n",
-              "      <td>abaco-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>92</td>\n",
-              "      <td>ABACO, architecte italien du xvi siècle (V. La...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>42</td>\n",
-              "      <td>ABACO</td>\n",
-              "      <td>d'Alembert</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\nABACO, s. m. Quelques anciens Auteurs se ser...</td>\n",
-              "      <td>26</td>\n",
-              "      <td>Unclassified</td>\n",
-              "      <td>Physique</td>\n",
-              "      <td>Beaux-arts</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>2</th>\n",
-              "      <td>abacot-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>96</td>\n",
-              "      <td>ABACOT. Double couronne que portaient autrefoi...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>44</td>\n",
-              "      <td>ABACOT</td>\n",
-              "      <td>Diderot</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\n* ABACOT, s. m. nom de l'ancienne parure dè\\...</td>\n",
-              "      <td>22</td>\n",
-              "      <td>Unclassified</td>\n",
-              "      <td>Histoire</td>\n",
-              "      <td>Histoire</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>3</th>\n",
-              "      <td>abaddon-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>104</td>\n",
-              "      <td>ABADDONou APOLYON le Destructeur. « Elles\\nava...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>46</td>\n",
-              "      <td>ABADDON</td>\n",
-              "      <td>Diderot</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\n* ABADDON, s. m. vient d'abad, perdre. C'est...</td>\n",
-              "      <td>25</td>\n",
-              "      <td>Unclassified</td>\n",
-              "      <td>Histoire</td>\n",
-              "      <td>Religion</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>4</th>\n",
-              "      <td>abandonnement-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>138</td>\n",
-              "      <td>ABANDONNEMENT. I. Droit civil. — Ce mot est un...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>75</td>\n",
-              "      <td>ABANDONNEMENT</td>\n",
-              "      <td>Toussaint</td>\n",
-              "      <td>Droit</td>\n",
-              "      <td>\\nABANDONNEMENT, s. m. en Droit, est le délais...</td>\n",
-              "      <td>77</td>\n",
-              "      <td>Droit Jurisprudence</td>\n",
-              "      <td>Droit Jurisprudence</td>\n",
-              "      <td>Droit Jurisprudence</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>5</th>\n",
-              "      <td>abantes-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>143</td>\n",
-              "      <td>ABANTES. Peuplade d’origine douteuse que l’on ...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>81</td>\n",
-              "      <td>ABANTES</td>\n",
-              "      <td>Diderot</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\n* ABANTES, s. m. pl. Peuples de Thrace qui p...</td>\n",
-              "      <td>26</td>\n",
-              "      <td>Unclassified</td>\n",
-              "      <td>Histoire</td>\n",
-              "      <td>Histoire</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>6</th>\n",
-              "      <td>abaque-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>146</td>\n",
-              "      <td>ABAQUE. I. Antiquité.— Dans l’antiquité on don...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>84</td>\n",
-              "      <td>ABAQUE</td>\n",
-              "      <td>d'Alembert2</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\nABAQUE, s. m. chez les anciens Mathématicien...</td>\n",
-              "      <td>52</td>\n",
-              "      <td>Unclassified</td>\n",
-              "      <td>Physique</td>\n",
-              "      <td>Histoire</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>7</th>\n",
-              "      <td>abaremo-temo-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>152</td>\n",
-              "      <td>ABAREMO-TEMO(Bot.). Nom sous lequel Pison\\n(Br...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>90</td>\n",
-              "      <td>ABAREMO-TEMO</td>\n",
-              "      <td>Diderot</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\n* ABAREMO-TEMO, s. m. arbre qui croît, dit-o...</td>\n",
-              "      <td>55</td>\n",
-              "      <td>Unclassified</td>\n",
-              "      <td>Histoire naturelle</td>\n",
-              "      <td>Histoire naturelle</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>8</th>\n",
-              "      <td>abares-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>153</td>\n",
-              "      <td>ABARES. Nom de deux peuples distincts, habitan...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>91</td>\n",
-              "      <td>ABARES</td>\n",
-              "      <td>Diderot</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\n* ABARES, restes de la Nation des Huns qui s...</td>\n",
-              "      <td>24</td>\n",
-              "      <td>Unclassified</td>\n",
-              "      <td>Histoire</td>\n",
-              "      <td>Géographie</td>\n",
-              "    </tr>\n",
-              "    <tr>\n",
-              "      <th>9</th>\n",
-              "      <td>abarim-0</td>\n",
-              "      <td>1</td>\n",
-              "      <td>154</td>\n",
-              "      <td>ABARIM. Chaîne de montagnes de la Palestine au...</td>\n",
-              "      <td>1</td>\n",
-              "      <td>92</td>\n",
-              "      <td>ABARIM</td>\n",
-              "      <td>Diderot</td>\n",
-              "      <td>unclassified</td>\n",
-              "      <td>\\n* ABARIM, montagne de l'Arabie d'où Moyse vi...</td>\n",
-              "      <td>23</td>\n",
-              "      <td>Unclassified</td>\n",
-              "      <td>Géographie</td>\n",
-              "      <td>Géographie</td>\n",
-              "    </tr>\n",
-              "  </tbody>\n",
-              "</table>\n",
-              "</div>\n",
-              "      <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-825c5672-f5f9-49ed-95eb-fdcae67ba1f1')\"\n",
-              "              title=\"Convert this dataframe to an interactive table.\"\n",
-              "              style=\"display:none;\">\n",
-              "        \n",
-              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
-              "       width=\"24px\">\n",
-              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
-              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
-              "  </svg>\n",
-              "      </button>\n",
-              "      \n",
-              "  <style>\n",
-              "    .colab-df-container {\n",
-              "      display:flex;\n",
-              "      flex-wrap:wrap;\n",
-              "      gap: 12px;\n",
-              "    }\n",
-              "\n",
-              "    .colab-df-convert {\n",
-              "      background-color: #E8F0FE;\n",
-              "      border: none;\n",
-              "      border-radius: 50%;\n",
-              "      cursor: pointer;\n",
-              "      display: none;\n",
-              "      fill: #1967D2;\n",
-              "      height: 32px;\n",
-              "      padding: 0 0 0 0;\n",
-              "      width: 32px;\n",
-              "    }\n",
-              "\n",
-              "    .colab-df-convert:hover {\n",
-              "      background-color: #E2EBFA;\n",
-              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
-              "      fill: #174EA6;\n",
-              "    }\n",
-              "\n",
-              "    [theme=dark] .colab-df-convert {\n",
-              "      background-color: #3B4455;\n",
-              "      fill: #D2E3FC;\n",
-              "    }\n",
-              "\n",
-              "    [theme=dark] .colab-df-convert:hover {\n",
-              "      background-color: #434B5C;\n",
-              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
-              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
-              "      fill: #FFFFFF;\n",
-              "    }\n",
-              "  </style>\n",
-              "\n",
-              "      <script>\n",
-              "        const buttonEl =\n",
-              "          document.querySelector('#df-825c5672-f5f9-49ed-95eb-fdcae67ba1f1 button.colab-df-convert');\n",
-              "        buttonEl.style.display =\n",
-              "          google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
-              "\n",
-              "        async function convertToInteractive(key) {\n",
-              "          const element = document.querySelector('#df-825c5672-f5f9-49ed-95eb-fdcae67ba1f1');\n",
-              "          const dataTable =\n",
-              "            await google.colab.kernel.invokeFunction('convertToInteractive',\n",
-              "                                                     [key], {});\n",
-              "          if (!dataTable) return;\n",
-              "\n",
-              "          const docLinkHtml = 'Like what you see? Visit the ' +\n",
-              "            '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
-              "            + ' to learn more about interactive tables.';\n",
-              "          element.innerHTML = '';\n",
-              "          dataTable['output_type'] = 'display_data';\n",
-              "          await google.colab.output.renderOutput(dataTable, element);\n",
-              "          const docLink = document.createElement('div');\n",
-              "          docLink.innerHTML = docLinkHtml;\n",
-              "          element.appendChild(docLink);\n",
-              "        }\n",
-              "      </script>\n",
-              "    </div>\n",
-              "  </div>\n",
-              "  "
-            ]
-          },
-          "metadata": {},
-          "execution_count": 36
-        }
-      ],
-      "source": [
-        "df.head(10)"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "execution_count": null,
-      "metadata": {
-        "id": "J9rObbvVr0zc"
-      },
-      "outputs": [],
-      "source": [
-        "df.to_csv(drive_path + \"/predictions/predictions_parallel_superdomain.tsv\", sep=\"\\t\")"
-      ]
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "df.drop(columns=['contentLGE', 'contentEDdA'], inplace=True)"
-      ],
-      "metadata": {
-        "id": "8cX6XBq8_F5T"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [
-        "df.to_csv(drive_path + \"/predictions/metadata_parallel_predictions_superdomain.csv\", sep=\",\", index=False)"
-      ],
-      "metadata": {
-        "id": "7fx6BPpg0iNc"
-      },
-      "execution_count": null,
-      "outputs": []
-    },
-    {
-      "cell_type": "code",
-      "source": [],
-      "metadata": {
-        "id": "7TD1mbKj_fXH"
-      },
-      "execution_count": null,
-      "outputs": []
-    }
-  ],
-  "metadata": {
-    "accelerator": "GPU",
-    "colab": {
-      "machine_shape": "hm",
-      "provenance": []
-    },
-    "kernelspec": {
-      "display_name": "Python 3.9.13 ('geode-classification-py39')",
-      "language": "python",
-      "name": "python3"
-    },
-    "language_info": {
-      "codemirror_mode": {
-        "name": "ipython",
-        "version": 3
-      },
-      "file_extension": ".py",
-      "mimetype": "text/x-python",
-      "name": "python",
-      "nbconvert_exporter": "python",
-      "pygments_lexer": "ipython3",
-      "version": "3.9.13"
-    },
-    "vscode": {
-      "interpreter": {
-        "hash": "16fac9c2d845f8e1f8c6fffffe3d3a0def61c7e42da17a08d00f279ad4dea797"
-      }
-    },
-    "widgets": {
-      "application/vnd.jupyter.widget-state+json": {
-        "11c285bed74e46a08fbb7bf88715aafa": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_3fde7318ebc3458cb64f8927fdcbaee3",
-              "IPY_MODEL_8d57eb44d9394604981a8f8f97f48b7c",
-              "IPY_MODEL_1cb6ed877c2b455b9463b12c2da877d8"
-            ],
-            "layout": "IPY_MODEL_5e03651dca944a5f91b675c503feeeac"
-          }
-        },
-        "3fde7318ebc3458cb64f8927fdcbaee3": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_0521c3cc6abd44ae989ac0701100045d",
-            "placeholder": "​",
-            "style": "IPY_MODEL_d12a8ef069af4d79870bd783f2343184",
-            "value": "Downloading: 100%"
-          }
-        },
-        "8d57eb44d9394604981a8f8f97f48b7c": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_28d38094dcd54d6694e2efad7fea6abb",
-            "max": 995526,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_6f80ea06220b4a498e6169e55cd8800f",
-            "value": 995526
-          }
-        },
-        "1cb6ed877c2b455b9463b12c2da877d8": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_3de8b4b0d6494c058589c535dc24dc3e",
-            "placeholder": "​",
-            "style": "IPY_MODEL_e0df5e2d4ebd4eb3b126c16dadb2ba62",
-            "value": " 996k/996k [00:00&lt;00:00, 2.00MB/s]"
-          }
-        },
-        "5e03651dca944a5f91b675c503feeeac": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "0521c3cc6abd44ae989ac0701100045d": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "d12a8ef069af4d79870bd783f2343184": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "28d38094dcd54d6694e2efad7fea6abb": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "6f80ea06220b4a498e6169e55cd8800f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "3de8b4b0d6494c058589c535dc24dc3e": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "e0df5e2d4ebd4eb3b126c16dadb2ba62": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "9be44ba364a344f2b6b2546ae9d61ba8": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_fe472df31774495c83aa159e116ba2ee",
-              "IPY_MODEL_0180ffc200e8466191a11a723c82e43f",
-              "IPY_MODEL_a07ac2935a3f4d84971ae9147a854969"
-            ],
-            "layout": "IPY_MODEL_af4ae976808042bf929ab17df10530b2"
-          }
-        },
-        "fe472df31774495c83aa159e116ba2ee": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_b2277b3d600c43f999b3a07215ac2e13",
-            "placeholder": "​",
-            "style": "IPY_MODEL_ebe5e6f8af1e4e04a8a2b5939ac09039",
-            "value": "Downloading: 100%"
-          }
-        },
-        "0180ffc200e8466191a11a723c82e43f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_c4ea841cb43747cdbce35f8f9c711cde",
-            "max": 29,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_2d937fce2e6c4b69816352bd264ded41",
-            "value": 29
-          }
-        },
-        "a07ac2935a3f4d84971ae9147a854969": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_64b57e3be2c743b3b0e58d338243c656",
-            "placeholder": "​",
-            "style": "IPY_MODEL_6ca9688ac7fa4e638994b91242c0ac87",
-            "value": " 29.0/29.0 [00:00&lt;00:00, 1.88kB/s]"
-          }
-        },
-        "af4ae976808042bf929ab17df10530b2": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "b2277b3d600c43f999b3a07215ac2e13": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "ebe5e6f8af1e4e04a8a2b5939ac09039": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "c4ea841cb43747cdbce35f8f9c711cde": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "2d937fce2e6c4b69816352bd264ded41": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "64b57e3be2c743b3b0e58d338243c656": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "6ca9688ac7fa4e638994b91242c0ac87": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "aa6a7a9106554f85a91150bd65c271d0": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_ea3f471546734f5994edfdc214319368",
-              "IPY_MODEL_04a86b4164fa49de8fd47d4d373e1d81",
-              "IPY_MODEL_be067a8a406f41779e42bd35abcbfcf0"
-            ],
-            "layout": "IPY_MODEL_7df91507e47d4a6992464293ce002a29"
-          }
-        },
-        "ea3f471546734f5994edfdc214319368": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_ecef81814a7c4481aa49eb73807bfe4d",
-            "placeholder": "​",
-            "style": "IPY_MODEL_2b9b4eac7994405ca9bce38332df2629",
-            "value": "Downloading: 100%"
-          }
-        },
-        "04a86b4164fa49de8fd47d4d373e1d81": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_4edc5b66f0eb44a0b05876fda90f0d1b",
-            "max": 1961828,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_5285a390fb42415289d89585e04c8994",
-            "value": 1961828
-          }
-        },
-        "be067a8a406f41779e42bd35abcbfcf0": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_53643db8401846f2af6f15f5cd0c9998",
-            "placeholder": "​",
-            "style": "IPY_MODEL_bc4825e1a43f4a20b496d82ea3687e6f",
-            "value": " 1.96M/1.96M [00:00&lt;00:00, 2.16MB/s]"
-          }
-        },
-        "7df91507e47d4a6992464293ce002a29": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "ecef81814a7c4481aa49eb73807bfe4d": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "2b9b4eac7994405ca9bce38332df2629": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "4edc5b66f0eb44a0b05876fda90f0d1b": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "5285a390fb42415289d89585e04c8994": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "53643db8401846f2af6f15f5cd0c9998": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "bc4825e1a43f4a20b496d82ea3687e6f": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "4c46904f8e944d2b834ba9d384b00a8c": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HBoxModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HBoxModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HBoxView",
-            "box_style": "",
-            "children": [
-              "IPY_MODEL_ef37bbf1f34e4765b1803a607716d0d1",
-              "IPY_MODEL_c2d6041cd6674043953e094791ab9659",
-              "IPY_MODEL_e4c43817f44743388e6fd98b8dbb2eda"
-            ],
-            "layout": "IPY_MODEL_39636049d60a4bb4bde7d0ef1af25d78"
-          }
-        },
-        "ef37bbf1f34e4765b1803a607716d0d1": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_c3e73d423c2c41c0a942331070fda723",
-            "placeholder": "​",
-            "style": "IPY_MODEL_087ebcb093bb41c28485bdc762fb5da6",
-            "value": "Downloading: 100%"
-          }
-        },
-        "c2d6041cd6674043953e094791ab9659": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "FloatProgressModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "FloatProgressModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "ProgressView",
-            "bar_style": "success",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_de270f0aa8194e0bb470e693a35d7d6e",
-            "max": 625,
-            "min": 0,
-            "orientation": "horizontal",
-            "style": "IPY_MODEL_2924cdc1348942cfb23f28a5383af3e4",
-            "value": 625
-          }
-        },
-        "e4c43817f44743388e6fd98b8dbb2eda": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "HTMLModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_dom_classes": [],
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "HTMLModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/controls",
-            "_view_module_version": "1.5.0",
-            "_view_name": "HTMLView",
-            "description": "",
-            "description_tooltip": null,
-            "layout": "IPY_MODEL_209ff109c8e142dfba37baea2d3d5de7",
-            "placeholder": "​",
-            "style": "IPY_MODEL_4203b950e245481590e8105f31301782",
-            "value": " 625/625 [00:00&lt;00:00, 35.2kB/s]"
-          }
-        },
-        "39636049d60a4bb4bde7d0ef1af25d78": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "c3e73d423c2c41c0a942331070fda723": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "087ebcb093bb41c28485bdc762fb5da6": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        },
-        "de270f0aa8194e0bb470e693a35d7d6e": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "2924cdc1348942cfb23f28a5383af3e4": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "ProgressStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "ProgressStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "bar_color": null,
-            "description_width": ""
-          }
-        },
-        "209ff109c8e142dfba37baea2d3d5de7": {
-          "model_module": "@jupyter-widgets/base",
-          "model_name": "LayoutModel",
-          "model_module_version": "1.2.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/base",
-            "_model_module_version": "1.2.0",
-            "_model_name": "LayoutModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "LayoutView",
-            "align_content": null,
-            "align_items": null,
-            "align_self": null,
-            "border": null,
-            "bottom": null,
-            "display": null,
-            "flex": null,
-            "flex_flow": null,
-            "grid_area": null,
-            "grid_auto_columns": null,
-            "grid_auto_flow": null,
-            "grid_auto_rows": null,
-            "grid_column": null,
-            "grid_gap": null,
-            "grid_row": null,
-            "grid_template_areas": null,
-            "grid_template_columns": null,
-            "grid_template_rows": null,
-            "height": null,
-            "justify_content": null,
-            "justify_items": null,
-            "left": null,
-            "margin": null,
-            "max_height": null,
-            "max_width": null,
-            "min_height": null,
-            "min_width": null,
-            "object_fit": null,
-            "object_position": null,
-            "order": null,
-            "overflow": null,
-            "overflow_x": null,
-            "overflow_y": null,
-            "padding": null,
-            "right": null,
-            "top": null,
-            "visibility": null,
-            "width": null
-          }
-        },
-        "4203b950e245481590e8105f31301782": {
-          "model_module": "@jupyter-widgets/controls",
-          "model_name": "DescriptionStyleModel",
-          "model_module_version": "1.5.0",
-          "state": {
-            "_model_module": "@jupyter-widgets/controls",
-            "_model_module_version": "1.5.0",
-            "_model_name": "DescriptionStyleModel",
-            "_view_count": null,
-            "_view_module": "@jupyter-widgets/base",
-            "_view_module_version": "1.2.0",
-            "_view_name": "StyleView",
-            "description_width": ""
-          }
-        }
-      }
-    }
-  },
-  "nbformat": 4,
-  "nbformat_minor": 0
-}
\ No newline at end of file
-- 
GitLab