diff --git a/features_extractor.py b/features_extractor.py
index 56d1944087d6153ebc0f810c2f16b20e83826c23..e807b0877e0ca15380c6da0477e592e215b787d7 100644
--- a/features_extractor.py
+++ b/features_extractor.py
@@ -8,6 +8,7 @@ import pandas as pd
 import numpy as np
 from gensim.models.doc2vec import Doc2Vec, TaggedDocument
 from nltk.tokenize import word_tokenize
+import spacy
 
 
 class feature_extractor:
@@ -60,36 +61,38 @@ class feature_extractor:
 
 
 
-    def doc2vec(self, max_epochs, vec_size, alpha = 0.025 , dm = 1):
-        #tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(self.docs_train)]
-        tagged_tr = [TaggedDocument(words = word_tokenize(_d.lower()),tags = [str(i)]) for i, _d in enumerate(self.docs_train)]
-        #Tag test set
-        tagged_test = [TaggedDocument(words=word_tokenize(_d.lower()), tags = [str(i)]) for i, _d in enumerate(self.docs_test)]
+    def doc2vec(self, max_epochs, doc2vec_vec_size, doc2vec_min_count ,  doc2vec_dm):
 
+        nlp = spacy.load("fr_core_news_sm")
+        stopWords = set(stopwords.words('french'))
 
-        model = Doc2Vec(vector_size=vec_size, alpha=alpha, min_alpha=0.00025, min_count=1, dm =1)
 
-        model.build_vocab(tagged_tr)
 
-        for epoch in range(max_epochs):
-            print('iteration {0}'.format(epoch))
-            model.train(tagged_tr, total_examples=model.corpus_count, epochs=model.iter)
-            # decrease the learning rate
-            model.alpha -= 0.0002
-            # fix the learning rate, no decay
-            model.min_alpha = model.alpha
+        def tokenize_fr_text(sentence):
+
+            result = string.punctuation
+
+
+            # Tokeniser la phrase
+            doc = nlp(sentence)
+            # Retourner le texte de chaque token
+            return [X.text.lower() for X in doc if not X.text in stopWords and not X.text in result and not len(X.text) < 2]
+
+
+        #tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(self.docs_train)]
+        tagged_tr = [TaggedDocument(words = tokenize_fr_text(_d),tags = [str(i)]) for i, _d in enumerate(self.docs_train)]
+        #Tag test set
+        tagged_test = [TaggedDocument(words=tokenize_fr_text(_d), tags = [str(i)]) for i, _d in enumerate(self.docs_test)]
+
+        model = Doc2Vec(vector_size=doc2vec_vec_size, min_count = doc2vec_min_count, dm = doc2vec_dm)
+        model.build_vocab(tagged_tr)
+        model.train(tagged_tr, total_examples=model.corpus_count, epochs = max_epochs)
 
 
-        set_tags = list(model.docvecs.doctags)
-        nb_docs_small = len(set_tags)
-        doc_vec_doc2vec = np.zeros(shape=(nb_docs_small, vec_size))
 
-        #i = 0
-        #for t in set_tags:
-        #    doc_vec_doc2vec[i] = model.docvecs[t]
-        #    i += 1
         X_train = np.array([model.docvecs[str(i)] for i in range(len(tagged_tr))])
         X_test = np.array([model.infer_vector(tagged_test[i][0]) for i in range(len(tagged_test))])
+
         return X_train, X_test