diff --git a/classifiers.py b/classifiers.py
index 16db401d1b54bfd1d667e2e9c7a32a1e5b298e5f..96e90abaff3291f453c7a6b5f889d77e523927ab 100644
--- a/classifiers.py
+++ b/classifiers.py
@@ -22,6 +22,8 @@ classifiers = [
 
 
 param_grid_svm = {'C':[1,10,100,1000],'gamma':[1,0.1,0.001,0.0001], 'kernel':['linear','rbf']}
+#param_grid_svm = {'C':[1,10],'gamma':[1], 'kernel':['linear','rbf']}
+#param_grid_svm = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
 param_grid_decisionTree = { 'criterion' : ['gini', 'entropy'], 'max_depth':range(5,10), 'min_samples_split': range(5,10), 'min_samples_leaf': range(1,5) }
 param_grid_rfc = { 'n_estimators': [200, 500], 'max_features': ['auto', 'sqrt', 'log2'], 'max_depth' : [4,5,6,7,8], 'criterion' :['gini', 'entropy'] }
 param_grid_lr = {"C":np.logspace(-3,3,7), "penalty":["l1","l2"]}
diff --git a/experimentsClassicClassifiers.py b/experimentsClassicClassifiers.py
index c6a9f72df02bcf23e2b34c57b2629128f3581b03..091a4ef6cc6e07bc6632fc027233fccc8d6f3388 100644
--- a/experimentsClassicClassifiers.py
+++ b/experimentsClassicClassifiers.py
@@ -51,9 +51,8 @@ if not os.path.exists('models'):
 # Reading data and preprocessings steps
 preprocessor = Preprocessor()
 
-df_original = pd.read_csv(dataPath)
+df = pd.read_csv(dataPath)
 
-df = df_original[[columnClass,columnText]].copy()
 df = remove_weak_classes(df, columnClass, minOfInstancePerClass)
 df = resample_classes(df, columnClass, maxOfInstancePerClass)
 
@@ -73,7 +72,7 @@ for columnInput in [columnText, 'firstParagraph']:
 
     print('Process: ' + columnInput)
 
-    extractor = feature_extractor(df,columnText, columnClass)
+    extractor = feature_extractor(df, columnInput, columnClass)
 
     features_techniques = [
     ('counter',  extractor.count_vect(max_df = vectorization_max_df, min_df = vectorization_min_df, numberOfFeatures = vectorization_numberOfFeatures )),
@@ -95,19 +94,22 @@ for columnInput in [columnText, 'firstParagraph']:
             clf_name, clf = tmp_clf
             grid_param_name, grid_param = tmp_grid_params
             print(clf_name, clf, grid_param_name, grid_param)
-            model_file_name = columnInput + '_' +feature_technique_name + '_' + clf_name+ str(minOfInstancePerClass) + '_' + str(maxOfInstancePerClass) +".pkl"
+            model_file_name = columnInput + '_' + feature_technique_name + '_' + clf_name + '_' + str(minOfInstancePerClass) + '_' + str(maxOfInstancePerClass) +".pkl"
             if clf_name == 'bayes' :
                 if feature_technique_name == 'doc2vec':
                     continue
                 else:
                     t_begin = time.time()
                     # if model exist
-                    if os.path.isfile(os.path.join('./model', model_file_name)):
-                        with open(model_file_name, 'rb') as file:
+                    if os.path.isfile(os.path.join('./models', model_file_name)):
+                        print('trained model loaded')
+                        with open(os.path.join('./models', model_file_name), 'rb') as file:
                             clf = pickle.load(file)
                     else:
+                        print('model training')
                         #if model not exists we save
-                        with open(Pkl_Filename, 'wb') as file:
+                        with open(os.path.join('./models', model_file_name), 'wb') as file:
+
                             clf.fit(train_x, train_y)
                             pickle.dump(clf, file)
 
@@ -121,11 +123,13 @@ for columnInput in [columnText, 'firstParagraph']:
                 clf = GridSearchCV(clf, grid_param, refit = True, verbose = 3)
                 t_begin = time.time()
 
-                if os.path.isfile(os.path.join('./model', model_file_name)):
-                    with open(model_file_name, 'rb') as file:
+                if os.path.isfile(os.path.join('./models', model_file_name)):
+                    print('trained model loaded')
+                    with open(os.path.join('./models', model_file_name), 'rb') as file:
                         clf = pickle.load(file)
                 else:
-                    with open(Pkl_Filename, 'wb') as file:
+                    print('model training')
+                    with open(os.path.join('./models', model_file_name), 'wb') as file:
                         clf.fit(train_x, train_y)
                         pickle.dump(clf, file)