diff --git a/projet/main_1.py b/projet/main_1.py
deleted file mode 100644
index 4fcb6890c45071c4b1305db7b160616035818c8f..0000000000000000000000000000000000000000
--- a/projet/main_1.py
+++ /dev/null
@@ -1,71 +0,0 @@
-import pandas as pd
-from data_preprocessing import Preprocessor
-from features_extractor import feature_extractor
-from ClassPreprocessor import remove_weak_classes, resample_classes, create_dict, split_class
-from classifiers import classifiers, grid_params
-from sklearn.model_selection import train_test_split
-from sklearn import preprocessing
-from evaluate_model import evaluate_model
-from sklearn.naive_bayes import MultinomialNB
-
-# Reading data
-df = pd.read_csv('data/EDdA_dataframe_withContent.tsv', sep="\t")
-df_normClass_artfl = df[['normClass_artfl','content']].copy()
-
-#remove null values of class column and text column
-preprocessor = Preprocessor()
-preprocessor.remove_null_rows(df_normClass_artfl, 'content')
-preprocessor.remove_null_rows(df_normClass_artfl, 'normClass_artfl')
-df_normClass_artfl = split_class(df_normClass_artfl, 'normClass_artfl')
-
-minOfInstancePerClass = 200
-maxOfInstancePerClass = 1500
-
-#remove weak classes and resample classes
-
-df_normClass_artfl = remove_weak_classes(df_normClass_artfl, 'normClass_artfl', minOfInstancePerClass )
-df_normClass_artfl = resample_classes(df_normClass_artfl, 'normClass_artfl', maxOfInstancePerClass)
-
-preprocessor.saveDataFrametoCSV(df_normClass_artfl,'df_normClass_artfl.csv')
-#features extraction step
-#df_normClass_artfl = pd.read_csv('df_normClass_artfl.csv')
-extractor = feature_extractor(df_normClass_artfl,'content', 'normClass_artfl')
-
-X_count_vect = extractor.count_vect()
-X_tf = extractor.tf_idf()
-#X_doc2vec = extractor.doc2vec(10, 20, 0.025)
-#X_text_feature = extractor.text_based_features()
-
-
-# preparing the train and test data
-df_normClass_artfl = df_normClass_artfl[df_normClass_artfl['normClass_artfl'] != 'unclassified']
-y  = df_normClass_artfl['normClass_artfl']
-
-train_x, test_x, train_y, test_y = train_test_split(X_count_vect, y, test_size=0.33, random_state=42, stratify = y )
-encoder = preprocessing.LabelEncoder()
-train_y = encoder.fit_transform(train_y)
-valid_y = encoder.fit_transform(test_y)
-
-
-
-# fit the model
-m = MultinomialNB()
-
-m.fit(train_x, train_y)
-
-
-y_pred = m.predict(test_x)
-
-
-
-
-#evaluate model
-
-
-report, accuracy, weighted_avg = evaluate_model(y_pred, valid_y, [str(e) for e in encoder.transform(encoder.classes_)],  encoder.classes_)
-print(report)
-print('accuracy : {}'.format(accuracy))
-print('weighted_Precision : {}'.format(weighted_avg['precision']))
-print('weighted_Recall    : {}'.format(weighted_avg['recall']))
-print('weighted_F-score   : {}'.format(weighted_avg['f1-score']))
-print('weighted_Support   : {}'.format(weighted_avg['support']))
diff --git a/projet/main_2.py b/projet/main_2.py
deleted file mode 100644
index 8de72fe8308cf214181c76609d447c764e47d6f9..0000000000000000000000000000000000000000
--- a/projet/main_2.py
+++ /dev/null
@@ -1,73 +0,0 @@
-import pandas as pd
-from data_preprocessing import Preprocessor
-from features_extractor import feature_extractor
-from ClassPreprocessor import remove_weak_classes, resample_classes, create_dict, split_class
-from classifiers import classifiers, grid_params
-from sklearn.model_selection import train_test_split
-from sklearn import preprocessing
-from evaluate_model import evaluate_model
-from sklearn.naive_bayes import MultinomialNB
-
-# Reading data
-df = pd.read_csv('data/EDdA_dataframe_withContent.tsv', sep="\t")
-df_domaine_enccre = df[['_domaine_enccre','content']].copy()
-
-#remove null values of class column and text column
-preprocessor = Preprocessor()
-preprocessor.remove_null_rows(df_domaine_enccre, 'content')
-preprocessor.remove_null_rows(df_domaine_enccre, '_domaine_enccre')
-df_domaine_enccre = split_class(df_domaine_enccre, '_domaine_enccre')
-
-minOfInstancePerClass = 200
-maxOfInstancePerClass = 1500
-
-#remove weak classes and resample classes
-
-df_domaine_enccre = remove_weak_classes(df_domaine_enccre, '_domaine_enccre', minOfInstancePerClass )
-df_domaine_enccre = resample_classes(df_domaine_enccre, '_domaine_enccre', maxOfInstancePerClass)
-
-preprocessor.saveDataFrametoCSV(df_domaine_enccre,'df_domaine_enccre.csv')
-#features extraction step
-#df_domaine_enccre = pd.read_csv('df_domaine_enccre.csv')
-
-
-extractor = feature_extractor(df_domaine_enccre,'content', '_domaine_enccre')
-
-X_count_vect = extractor.count_vect()
-X_tf = extractor.tf_idf()
-#X_doc2vec = extractor.doc2vec(10, 20, 0.025)
-#X_text_feature = extractor.text_based_features()
-
-
-# preparing the train and test data
-df_domaine_enccre = df_domaine_enccre[df_domaine_enccre['domaine_enccre'] != 'unclassified']
-y  = df_domaine_enccre['domaine_enccre']
-
-train_x, test_x, train_y, test_y = train_test_split(X_count_vect, y, test_size=0.33, random_state=42, stratify = y )
-encoder = preprocessing.LabelEncoder()
-train_y = encoder.fit_transform(train_y)
-valid_y = encoder.fit_transform(test_y)
-
-
-
-# fit the model
-m = MultinomialNB()
-
-m.fit(train_x, train_y)
-
-
-y_pred = m.predict(test_x)
-
-
-
-
-#evaluate model
-
-
-report, accuracy, weighted_avg = evaluate_model(y_pred, valid_y, [str(e) for e in encoder.transform(encoder.classes_)],  encoder.classes_)
-print(report)
-print('accuracy : {}'.format(accuracy))
-print('weighted_Precision : {}'.format(weighted_avg['precision']))
-print('weighted_Recall    : {}'.format(weighted_avg['recall']))
-print('weighted_F-score   : {}'.format(weighted_avg['f1-score']))
-print('weighted_Support   : {}'.format(weighted_avg['support']))
diff --git a/projet/main_3.py b/projet/main_3.py
deleted file mode 100644
index ad7102f54640837ea35a322a45ec8103a2aee4a3..0000000000000000000000000000000000000000
--- a/projet/main_3.py
+++ /dev/null
@@ -1,85 +0,0 @@
-import pandas as pd
-import numpy as np
-from data_preprocessing import Preprocessor
-from features_extractor import feature_extractor
-from ClassPreprocessor import remove_weak_classes, resample_classes, create_dict, split_class
-from classifiers import classifiers, grid_params
-from sklearn.model_selection import train_test_split
-from sklearn import preprocessing
-from evaluate_model import evaluate_model
-from sklearn.linear_model import LogisticRegression
-from sklearn.model_selection import GridSearchCV
-
-
-# Reading data
-df = pd.read_csv('data/EDdA_dataframe_withContent.tsv', sep="\t")
-df_ensemble_domaine_enccre = df[['ensemble_domaine_enccre','content']].copy()
-
-#remove null values of class column and text column
-preprocessor = Preprocessor()
-preprocessor.remove_null_rows(df_ensemble_domaine_enccre, 'content')
-preprocessor.remove_null_rows(df_ensemble_domaine_enccre, 'ensemble_domaine_enccre')
-#df_ensemble_domaine_enccre = split_class(df_ensemble_domaine_enccre, 'ensemble_domaine_enccre')
-
-minOfInstancePerClass = 200
-maxOfInstancePerClass = 1500
-
-#remove weak classes and resample classes
-print(create_dict(df_ensemble_domaine_enccre, 'ensemble_domaine_enccre'))
-df_ensemble_domaine_enccre = remove_weak_classes(df_ensemble_domaine_enccre, 'ensemble_domaine_enccre', minOfInstancePerClass )
-df_ensemble_domaine_enccre = resample_classes(df_ensemble_domaine_enccre, 'ensemble_domaine_enccre', maxOfInstancePerClass)
-
-print(create_dict(df_ensemble_domaine_enccre, 'ensemble_domaine_enccre'))
-
-#preprocessor.saveDataFrametoCSV(df_ensemble_domaine_enccre,'df_ensemble_domaine_enccre.csv')
-#features extraction step
-#df_ensemble_domaine_enccre = pd.read_csv('df_ensemble_domaine_enccre.csv')
-
-
-extractor = feature_extractor(df_ensemble_domaine_enccre,'content', 'ensemble_domaine_enccre')
-
-X_count_vect = extractor.count_vect()
-#X_tf = extractor.tf_idf()
-#X_doc2vec = extractor.doc2vec(10, 20, 0.025)
-#X_text_feature = extractor.text_based_features()
-
-
-# preparing the train and test data
-df_ensemble_domaine_enccre = df_ensemble_domaine_enccre[df_ensemble_domaine_enccre['ensemble_domaine_enccre'] != 'unclassified']
-y  = df_ensemble_domaine_enccre['ensemble_domaine_enccre']
-
-train_x, test_x, train_y, test_y = train_test_split(X_count_vect, y, test_size=0.33, random_state=42, stratify = y )
-encoder = preprocessing.LabelEncoder()
-train_y = encoder.fit_transform(train_y)
-valid_y = encoder.fit_transform(test_y)
-
-
-
-# fit the model
-
-m = LogisticRegression() #MultinomialNB()
-#m.fit(train_x, train_y)
-
-param_grid_lr = {"C":np.logspace(-3,3,7)}
-
-clf = GridSearchCV(m, param_grid = param_grid_lr, cv = 5, verbose=True, n_jobs=-1)
-
-# Fit on data
-
-best_clf = clf.fit(train_x, train_y)
-
-y_pred = clf.predict(test_x)
-
-
-
-
-#evaluate model
-
-
-report, accuracy, weighted_avg = evaluate_model(y_pred, valid_y, [str(e) for e in encoder.transform(encoder.classes_)],  encoder.classes_)
-print(report)
-print('accuracy : {}'.format(accuracy))
-print('weighted_Precision : {}'.format(weighted_avg['precision']))
-print('weighted_Recall    : {}'.format(weighted_avg['recall']))
-print('weighted_F-score   : {}'.format(weighted_avg['f1-score']))
-print('weighted_Support   : {}'.format(weighted_avg['support']))