from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from nltk.stem.snowball import SnowballStemmer from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import string import pandas as pd import numpy as np from gensim.models.doc2vec import Doc2Vec, TaggedDocument from nltk.tokenize import word_tokenize import spacy class feature_extractor: def __init__(self, train_x, test_x, column, target): self.column = column #self.data = data #self.X = data[column] #self.y = data[target] self.docs_train = train_x[column].tolist() self.docs_test = test_x[column].tolist() #for index, row in data.iterrows(): # self.docs.append(row[column]) def count_vect(self, max_df= 1.0 , min_df= 1, numberOfFeatures= None ): stop_words = set(stopwords.words('french')) stemmer_fr = SnowballStemmer("french") analyzer = CountVectorizer().build_analyzer() def stemmed_words_fr(doc): return (stemmer_fr.stem(w) for w in analyzer(doc) if not w in stop_words) stem_vectorizer_fr = CountVectorizer( stop_words = 'french', analyzer = stemmed_words_fr, max_df= max_df, min_df = min_df, max_features = numberOfFeatures) stem_vectorizer_fr.fit(self.docs_train) return stem_vectorizer_fr.transform(self.docs_train), stem_vectorizer_fr.transform(self.docs_test) def tf_idf(self, max_df= 1.0 , min_df= 1, numberOfFeatures = None): stop_words = set(stopwords.words('french')) stemmer_fr = SnowballStemmer("french") analyzer = TfidfVectorizer().build_analyzer() def stemmed_words_fr(doc): return (stemmer_fr.stem(w) for w in analyzer(doc) if not w in stop_words) tfidf_vectorizer = TfidfVectorizer(stop_words= 'french', analyzer=stemmed_words_fr, max_df= max_df, min_df = min_df, max_features= numberOfFeatures) tfidf_vectorizer.fit(self.docs_train) return tfidf_vectorizer.transform(self.docs_train), tfidf_vectorizer.transform(self.docs_test) def doc2vec(self, max_epochs, doc2vec_vec_size, doc2vec_min_count , doc2vec_dm, doc2vec_workers): nlp = spacy.load("fr_core_news_sm") stopWords = set(stopwords.words('french')) def tokenize_fr_text(sentence): result = string.punctuation # Tokeniser la phrase doc = nlp(sentence) # Retourner le texte de chaque token return [X.text.lower() for X in doc if not X.text in stopWords and not X.text in result and not len(X.text) < 2] #tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(self.docs_train)] tagged_tr = [TaggedDocument(words = tokenize_fr_text(_d),tags = [str(i)]) for i, _d in enumerate(self.docs_train)] #Tag test set tagged_test = [TaggedDocument(words=tokenize_fr_text(_d), tags = [str(i)]) for i, _d in enumerate(self.docs_test)] model = Doc2Vec(vector_size=doc2vec_vec_size, min_count = doc2vec_min_count, dm = doc2vec_dm, workers = doc2vec_workers) model.build_vocab(tagged_tr) model.train(tagged_tr, total_examples=model.corpus_count, epochs = max_epochs) X_train = np.array([model.docvecs[str(i)] for i in range(len(tagged_tr))]) X_test = np.array([model.infer_vector(tagged_test[i][0]) for i in range(len(tagged_test))]) return X_train, X_test def text_based_features(self): # Classical measures df = pd.DataFrame(columns=['char_count', 'word_count', 'word_density', 'punctuation_count', 'title_word_count', 'upper_case_word_count']) df['char_count'] = self.data[self.column].apply(len) df['word_count'] = self.data[self.column].apply(lambda x: len(x.split())) df['word_density'] = df['char_count'] / (df['word_count']+1) df['punctuation_count'] = self.data[self.column].apply(lambda x: len("".join(_ for _ in x if _ in string.punctuation))) df['title_word_count'] = self.data[self.column].apply(lambda x: len([wrd for wrd in x.split() if wrd.istitle()])) df['upper_case_word_count'] = self.data[self.column].apply(lambda x: len([wrd for wrd in x.split() if wrd.isupper()])) return df