{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "m39L6DJ2r0zN" }, "source": [ "# BERT Predict classification\n", "\n", "## 1. Setup the environment\n", "\n", "### 1.1 Setup colab environment\n", "\n", "#### 1.1.1 Install packages" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "pwmZ5bBvgGNh", "outputId": "1a080856-4e47-4e1d-81d1-d38bb58948a5" }, "outputs": [], "source": [ "!pip install transformers==4.10.3\n", "!pip install sentencepiece" ] }, { "cell_type": "markdown", "metadata": { "id": "57zgbn_jr0zR" }, "source": [ "#### 1.1.2 Use more RAM" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "WF0qFN_g3ekz", "outputId": "56e76858-932c-42fd-ace0-37bf11c7b4ce" }, "outputs": [], "source": [ "from psutil import virtual_memory\n", "ram_gb = virtual_memory().total / 1e9\n", "print('Your runtime has {:.1f} gigabytes of available RAM\\n'.format(ram_gb))\n", "\n", "if ram_gb < 20:\n", " print('Not using a high-RAM runtime')\n", "else:\n", " print('You are using a high-RAM runtime!')" ] }, { "cell_type": "markdown", "metadata": { "id": "vpr71iWGr0zS" }, "source": [ "#### 1.1.3 Mount GoogleDrive" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "vL0S-s9Uofvn", "outputId": "dbe3e901-da63-48b5-d8c6-b8cbda503fef" }, "outputs": [], "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ] }, { "cell_type": "markdown", "metadata": { "id": "8hzEGHl7gmzk" }, "source": [ "### 1.2 Setup GPU" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "dPOU-Efhf4ui", "outputId": "0bb7fd0e-e2fb-4477-e5f7-b408d0a1ced7" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "No GPU available, using the CPU instead.\n" ] } ], "source": [ "import torch\n", "\n", "# If there's a GPU available...\n", "if torch.cuda.is_available(): \n", " # Tell PyTorch to use the GPU. \n", " device = torch.device(\"cuda\")\n", " print('There are %d GPU(s) available.' % torch.cuda.device_count())\n", " print('We will use the GPU:', torch.cuda.get_device_name(0))\n", "\n", "# for MacOS\n", "elif torch.backends.mps.is_available() and torch.backends.mps.is_built():\n", " device = torch.device(\"mps\")\n", " print('We will use the GPU')\n", "else:\n", " device = torch.device(\"cpu\")\n", " print('No GPU available, using the CPU instead.')\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "wSqbrupGMc1M" }, "source": [ "### 1.3 Import librairies" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "id": "SkErnwgMMbRj" }, "outputs": [], "source": [ "import pandas as pd \n", "import numpy as np\n", "\n", "from transformers import BertTokenizer, BertForSequenceClassification, CamembertTokenizer, TextClassificationPipeline\n", "from torch.utils.data import TensorDataset, DataLoader, SequentialSampler\n", "\n", "import pickle " ] }, { "cell_type": "markdown", "metadata": { "id": "c5QKcXulhNJ-" }, "source": [ "## 2. Load Data" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "X1A_J8MGr0zV", "outputId": "ca5c966c-00a2-4d74-cd1c-576c18f98d3d" }, "outputs": [], "source": [ "#!wget https://geode.liris.cnrs.fr/files/datasets/EDdA/Classification/LGE_withContent.tsv\n", "#!wget https://geode.liris.cnrs.fr/EDdA-Classification/datasets/EDdA_dataset_articles_no_superdomain.tsv\n", "#!wget https://geode.liris.cnrs.fr/EDdA-Classification/datasets/Parallel_datatset_articles_230215.tsv" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "M2awiee1r0zV" }, "outputs": [], "source": [ "#drive_path = \"drive/MyDrive/Classification-EDdA/\"\n", "drive_path = \"../\"\n", "#path = \"/Users/lmoncla/git/gitlab.liris/GEODE/EDdA/output/\"\n", "path = \"/Users/lmoncla/Nextcloud-LIRIS/GEODE/GEODE - Partage consortium/Corpus/LGE/\"\n", "\n", "\n", "#filepath = \"Parallel_datatset_articles_230215.tsv\"\n", "#filepath = \"EDdA_dataset_articles.tsv\"\n", "filepath = 'LGE_dataset_articles_230314.tsv'\n", "\n", "corpus = 'lge'\n", "#corpus = ''" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 333 }, "id": "erjPU3y8r0zW", "outputId": "e2b4a39d-a72b-4e7a-8b26-e709eb983df3" }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>uid</th>\n", " <th>lge-volume</th>\n", " <th>lge-numero</th>\n", " <th>lge-head</th>\n", " <th>lge-page</th>\n", " <th>lge-id</th>\n", " <th>lge-content</th>\n", " <th>lge-nbWords</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>lge_1_a-0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>A</td>\n", " <td>0</td>\n", " <td>a-0</td>\n", " <td>A(Ling.). Son vocal et première lettre de notr...</td>\n", " <td>1761.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>lge_1_a-1</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>A</td>\n", " <td>1</td>\n", " <td>a-1</td>\n", " <td>A(Paléogr.). C’est à l’alphabet phénicien, on ...</td>\n", " <td>839.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>lge_1_a-2</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>A</td>\n", " <td>4</td>\n", " <td>a-2</td>\n", " <td>A(Log.). Cette voyelle désigne les proposition...</td>\n", " <td>56.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>lge_1_a-3</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>A</td>\n", " <td>4</td>\n", " <td>a-3</td>\n", " <td>A(Mus.). La lettre a est employée par les musi...</td>\n", " <td>267.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>lge_1_a-4</td>\n", " <td>1</td>\n", " <td>5</td>\n", " <td>A</td>\n", " <td>4</td>\n", " <td>a-4</td>\n", " <td>A(Numis.). Dans la numismatique grecque, la le...</td>\n", " <td>67.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " uid lge-volume lge-numero lge-head lge-page lge-id \\\n", "0 lge_1_a-0 1 1 A 0 a-0 \n", "1 lge_1_a-1 1 2 A 1 a-1 \n", "2 lge_1_a-2 1 3 A 4 a-2 \n", "3 lge_1_a-3 1 4 A 4 a-3 \n", "4 lge_1_a-4 1 5 A 4 a-4 \n", "\n", " lge-content lge-nbWords \n", "0 A(Ling.). Son vocal et première lettre de notr... 1761.0 \n", "1 A(Paléogr.). C’est à l’alphabet phénicien, on ... 839.0 \n", "2 A(Log.). Cette voyelle désigne les proposition... 56.0 \n", "3 A(Mus.). La lettre a est employée par les musi... 267.0 \n", "4 A(Numis.). Dans la numismatique grecque, la le... 67.0 " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(path + filepath, sep=\"\\t\")\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "id": "Ndw4UtgWt_MJ" }, "outputs": [], "source": [ "dataset = df[corpus+'-content'].values" ] }, { "cell_type": "markdown", "metadata": { "id": "U6KSUho7r0zX" }, "source": [ "## 3. Load model and predict\n", "\n", "### 3.1 BERT / CamemBERT" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "0qDZ86qTr0zX" }, "outputs": [], "source": [ "model_name = \"bert-base-multilingual-cased\"\n", "#model_name = \"camembert-base\"\n", "#model_path = path + \"models/model_\" + model_name + \"_s10000.pt\"\n", "\n", "model_path = drive_path + \"models/model_\" + model_name + \"_s10000_superdomains.pt\"" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "KEljGX0br0zX" }, "outputs": [], "source": [ "def generate_dataloader(tokenizer, sentences, batch_size = 8, max_len = 512):\n", "\n", " # Tokenize all of the sentences and map the tokens to thier word IDs.\n", " input_ids_test = []\n", " # For every sentence...\n", " for sent in sentences:\n", " # `encode` will:\n", " # (1) Tokenize the sentence.\n", " # (2) Prepend the `[CLS]` token to the start.\n", " # (3) Append the `[SEP]` token to the end.\n", " # (4) Map tokens to their IDs.\n", " encoded_sent = tokenizer.encode(\n", " sent, # Sentence to encode.\n", " add_special_tokens = True, # Add '[CLS]' and '[SEP]'\n", " # This function also supports truncation and conversion\n", " # to pytorch tensors, but I need to do padding, so I\n", " # can't use these features.\n", " #max_length = max_len, # Truncate all sentences.\n", " #return_tensors = 'pt', # Return pytorch tensors.\n", " )\n", " input_ids_test.append(encoded_sent)\n", "\n", " # Pad our input tokens\n", " padded_test = []\n", " for i in input_ids_test:\n", " if len(i) > max_len:\n", " padded_test.extend([i[:max_len]])\n", " else:\n", " padded_test.extend([i + [0] * (max_len - len(i))])\n", " input_ids_test = np.array(padded_test)\n", "\n", " # Create attention masks\n", " attention_masks = []\n", "\n", " # Create a mask of 1s for each token followed by 0s for padding\n", " for seq in input_ids_test:\n", " seq_mask = [float(i>0) for i in seq]\n", " attention_masks.append(seq_mask)\n", "\n", " # Convert to tensors.\n", " inputs = torch.tensor(input_ids_test)\n", " masks = torch.tensor(attention_masks)\n", " #set batch size\n", "\n", " # Create the DataLoader.\n", " data = TensorDataset(inputs, masks)\n", " prediction_sampler = SequentialSampler(data)\n", "\n", " return DataLoader(data, sampler=prediction_sampler, batch_size=batch_size)\n", "\n", "\n", "\n", "def predict(model, dataloader, device):\n", "\n", " # Put model in evaluation mode\n", " model.eval()\n", "\n", " # Tracking variables\n", " predictions_test , true_labels = [], []\n", " pred_labels_ = []\n", " # Predict\n", " for batch in dataloader:\n", " # Add batch to GPU\n", " batch = tuple(t.to(device) for t in batch)\n", "\n", " # Unpack the inputs from the dataloader\n", " b_input_ids, b_input_mask = batch\n", "\n", " # Telling the model not to compute or store gradients, saving memory and\n", " # speeding up prediction\n", " with torch.no_grad():\n", " # Forward pass, calculate logit predictions\n", " outputs = model(b_input_ids, token_type_ids=None,\n", " attention_mask=b_input_mask)\n", "\n", " logits = outputs[0]\n", " #print(logits)\n", "\n", " # Move logits and labels to CPU ???\n", " logits = logits.detach().cpu().numpy()\n", " #print(logits)\n", "\n", " # Store predictions and true labels\n", " predictions_test.append(logits)\n", "\n", " pred_labels = []\n", " \n", " for i in range(len(predictions_test)):\n", " # The predictions for this batch are a 2-column ndarray (one column for \"0\"\n", " # and one column for \"1\"). Pick the label with the highest value and turn this\n", " # in to a list of 0s and 1s.\n", " pred_labels_i = np.argmax(predictions_test[i], axis=1).flatten()\n", " pred_labels.append(pred_labels_i)\n", "\n", " pred_labels_ += [item for sublist in pred_labels for item in sublist]\n", " return pred_labels_\n", "\n", "\n", "\n", "#https://discuss.huggingface.co/t/i-have-trained-my-classifier-now-how-do-i-do-predictions/3625/3\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 162, "referenced_widgets": [ "11c285bed74e46a08fbb7bf88715aafa", "3fde7318ebc3458cb64f8927fdcbaee3", "8d57eb44d9394604981a8f8f97f48b7c", "1cb6ed877c2b455b9463b12c2da877d8", "5e03651dca944a5f91b675c503feeeac", "0521c3cc6abd44ae989ac0701100045d", "d12a8ef069af4d79870bd783f2343184", "28d38094dcd54d6694e2efad7fea6abb", "6f80ea06220b4a498e6169e55cd8800f", "3de8b4b0d6494c058589c535dc24dc3e", "e0df5e2d4ebd4eb3b126c16dadb2ba62", "9be44ba364a344f2b6b2546ae9d61ba8", "fe472df31774495c83aa159e116ba2ee", "0180ffc200e8466191a11a723c82e43f", "a07ac2935a3f4d84971ae9147a854969", "af4ae976808042bf929ab17df10530b2", "b2277b3d600c43f999b3a07215ac2e13", "ebe5e6f8af1e4e04a8a2b5939ac09039", "c4ea841cb43747cdbce35f8f9c711cde", "2d937fce2e6c4b69816352bd264ded41", "64b57e3be2c743b3b0e58d338243c656", "6ca9688ac7fa4e638994b91242c0ac87", "aa6a7a9106554f85a91150bd65c271d0", "ea3f471546734f5994edfdc214319368", "04a86b4164fa49de8fd47d4d373e1d81", "be067a8a406f41779e42bd35abcbfcf0", "7df91507e47d4a6992464293ce002a29", "ecef81814a7c4481aa49eb73807bfe4d", "2b9b4eac7994405ca9bce38332df2629", "4edc5b66f0eb44a0b05876fda90f0d1b", "5285a390fb42415289d89585e04c8994", "53643db8401846f2af6f15f5cd0c9998", "bc4825e1a43f4a20b496d82ea3687e6f", "4c46904f8e944d2b834ba9d384b00a8c", "ef37bbf1f34e4765b1803a607716d0d1", "c2d6041cd6674043953e094791ab9659", "e4c43817f44743388e6fd98b8dbb2eda", "39636049d60a4bb4bde7d0ef1af25d78", "c3e73d423c2c41c0a942331070fda723", "087ebcb093bb41c28485bdc762fb5da6", "de270f0aa8194e0bb470e693a35d7d6e", "2924cdc1348942cfb23f28a5383af3e4", "209ff109c8e142dfba37baea2d3d5de7", "4203b950e245481590e8105f31301782" ] }, "id": "eGKU1J9Ar0zY", "outputId": "0a5f7fe5-7b5e-4c11-8a6e-7e85e8478b92" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Loading Bert Tokenizer...\n" ] } ], "source": [ "if model_name == 'bert-base-multilingual-cased' :\n", " print('Loading Bert Tokenizer...')\n", " tokenizer = BertTokenizer.from_pretrained(model_name)\n", "elif model_name == 'camembert-base':\n", " print('Loading Camembert Tokenizer...')\n", " tokenizer = CamembertTokenizer.from_pretrained(model_name)" ] }, { "cell_type": "markdown", "metadata": { "id": "4lv8lvUar0zZ" }, "source": [ "\n", "https://discuss.huggingface.co/t/an-efficient-way-of-loading-a-model-that-was-saved-with-torch-save/9814\n", "\n", "https://github.com/huggingface/transformers/issues/2094\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "CN8EZst-r0zZ" }, "outputs": [], "source": [ "model = BertForSequenceClassification.from_pretrained(model_path).to(device.type)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "-O6NspVTr0zZ" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Token indices sequence length is longer than the specified maximum sequence length for this model (3408 > 512). Running this sequence through the model will result in indexing errors\n" ] } ], "source": [ "#data_loader = generate_dataloader(tokenizer, data)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "id": "_fzgS5USJeAF" }, "outputs": [], "source": [ "#pred = predict(model, data_loader, device)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "# https://huggingface.co/docs/transformers/main_classes/pipelines\n", "\n", "def data(): #TODO : \n", " for d in dataset:\n", " yield f\"{d}\"\n", "\n", "pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, device=device)\n", "\n", "# https://stackoverflow.com/questions/67849833/how-to-truncate-input-in-the-huggingface-pipeline\n", "tokenizer_kwargs = {'padding':True, 'truncation':True, 'max_length':512}" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "13 0.9375858902931213 2 0.02119206078350544 7 0.012656883336603642\n", "6 0.9926056861877441 7 0.0029342961497604847 8 0.0010190310422331095\n", "13 0.9823671579360962 2 0.004123885650187731 1 0.0022031611297279596\n", "10 0.9058954119682312 2 0.029458750039339066 7 0.014979332685470581\n", "7 0.9861114025115967 2 0.003949114587157965 6 0.0015271356096491218\n", "4 0.9868665933609009 5 0.0021403145510703325 15 0.0018120042514055967\n" ] } ], "source": [ "pred = []\n", "cpt = 0\n", "for out in pipe(data(), **tokenizer_kwargs):\n", " out = sorted(out, key=lambda d: d['score'], reverse=True) \n", " print(int(out[0]['label'][6:]), out[0]['score'], int(out[1]['label'][6:]), out[1]['score'], int(out[2]['label'][6:]), out[2]['score']) # label ### TODO modifier ici\n", " pred.append([int(out[0]['label'][6:]), out[0]['score'], int(out[1]['label'][6:]), out[1]['score'], int(out[2]['label'][6:]), out[2]['score']])\n", " cpt += 1\n", " if cpt == 6:\n", " break\n", "\n", "pred = np.array(pred)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "id": "fo6k4li1r0za" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/Caskroom/miniforge/base/envs/geode-classification-py39/lib/python3.9/site-packages/sklearn/base.py:329: UserWarning: Trying to unpickle estimator LabelEncoder from version 1.0.2 when using version 1.1.3. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:\n", "https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitations\n", " warnings.warn(\n" ] } ], "source": [ "# Load label encoder\n", "\n", "#encoder_filename = \"models/label_encoder.pkl\"\n", "encoder_filename = \"models/label_encoder_superdomains.pkl\"\n", "with open(drive_path + encoder_filename, 'rb') as file:\n", " encoder = pickle.load(file)" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "id": "UU7qg7zVr0zb" }, "outputs": [], "source": [ "pred1 = list(encoder.inverse_transform(pred[:,0].astype(int)))\n", "pred2 = list(encoder.inverse_transform(pred[:,2].astype(int)))\n", "pred3 = list(encoder.inverse_transform(pred[:,4].astype(int)))\n" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Philosophie', 'Géographie', 'Philosophie', 'Musique', 'Histoire', 'Commerce']\n", "[0.93758589 0.99260569 0.98236716 0.90589541 0.9861114 0.98686659]\n" ] } ], "source": [ "#print(pred1)\n", "#print(pred[:,1])" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "id": "w4eHpBztr0zb" }, "outputs": [], "source": [ "df[corpus+'-superdomainPred1'] = pred1\n", "df[corpus+'-superdomainProba1'] = pred[:,1]\n", "df[corpus+'-superdomainPred2'] = pred2\n", "df[corpus+'-superdomainProba2'] = pred[:,3]\n", "df[corpus+'-superdomainPred3'] = pred3\n", "df[corpus+'-superdomainProba3'] = pred[:,5]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 797 }, "id": "OCy54lRLr0zb", "outputId": "a42d8a75-48b9-431a-9b8e-71e4d7018c6b" }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>uid</th>\n", " <th>lge-volume</th>\n", " <th>lge-numero</th>\n", " <th>lge-head</th>\n", " <th>lge-page</th>\n", " <th>lge-id</th>\n", " <th>lge-content</th>\n", " <th>lge-nbWords</th>\n", " <th>lge-superdomainBert</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>lge_1_a-0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>A</td>\n", " <td>0</td>\n", " <td>a-0</td>\n", " <td>A(Ling.). Son vocal et première lettre de notr...</td>\n", " <td>1761.0</td>\n", " <td>Philosophie</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>lge_1_a-1</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>A</td>\n", " <td>1</td>\n", " <td>a-1</td>\n", " <td>A(Paléogr.). C’est à l’alphabet phénicien, on ...</td>\n", " <td>839.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>lge_1_a-2</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>A</td>\n", " <td>4</td>\n", " <td>a-2</td>\n", " <td>A(Log.). Cette voyelle désigne les proposition...</td>\n", " <td>56.0</td>\n", " <td>Philosophie</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>lge_1_a-3</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>A</td>\n", " <td>4</td>\n", " <td>a-3</td>\n", " <td>A(Mus.). La lettre a est employée par les musi...</td>\n", " <td>267.0</td>\n", " <td>Musique</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>lge_1_a-4</td>\n", " <td>1</td>\n", " <td>5</td>\n", " <td>A</td>\n", " <td>4</td>\n", " <td>a-4</td>\n", " <td>A(Numis.). Dans la numismatique grecque, la le...</td>\n", " <td>67.0</td>\n", " <td>Histoire</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>lge_1_aa-0</td>\n", " <td>1</td>\n", " <td>6</td>\n", " <td>AA</td>\n", " <td>4</td>\n", " <td>aa-0</td>\n", " <td>AA. Ces deux lettres désignent l’atelier monét...</td>\n", " <td>14.0</td>\n", " <td>Commerce</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>lge_1_aa-1</td>\n", " <td>1</td>\n", " <td>7</td>\n", " <td>AA</td>\n", " <td>4</td>\n", " <td>aa-1</td>\n", " <td>AA. Nom de plusieurs cours d’eau de l’Europe o...</td>\n", " <td>75.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>lge_1_aa-2</td>\n", " <td>1</td>\n", " <td>8</td>\n", " <td>AA</td>\n", " <td>5</td>\n", " <td>aa-2</td>\n", " <td>AA. Rivière de France, prend sa source aux Tro...</td>\n", " <td>165.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>lge_1_aa-3</td>\n", " <td>1</td>\n", " <td>9</td>\n", " <td>AA</td>\n", " <td>5</td>\n", " <td>aa-3</td>\n", " <td>AA. Rivière de Hollande, affluent de la Dommel...</td>\n", " <td>17.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>lge_1_aa-4</td>\n", " <td>1</td>\n", " <td>10</td>\n", " <td>AA</td>\n", " <td>5</td>\n", " <td>aa-4</td>\n", " <td>AA. Nom de deux fleuves de la Russie. Le premi...</td>\n", " <td>71.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " uid lge-volume lge-numero lge-head lge-page lge-id \\\n", "0 lge_1_a-0 1 1 A 0 a-0 \n", "1 lge_1_a-1 1 2 A 1 a-1 \n", "2 lge_1_a-2 1 3 A 4 a-2 \n", "3 lge_1_a-3 1 4 A 4 a-3 \n", "4 lge_1_a-4 1 5 A 4 a-4 \n", "5 lge_1_aa-0 1 6 AA 4 aa-0 \n", "6 lge_1_aa-1 1 7 AA 4 aa-1 \n", "7 lge_1_aa-2 1 8 AA 5 aa-2 \n", "8 lge_1_aa-3 1 9 AA 5 aa-3 \n", "9 lge_1_aa-4 1 10 AA 5 aa-4 \n", "\n", " lge-content lge-nbWords \\\n", "0 A(Ling.). Son vocal et première lettre de notr... 1761.0 \n", "1 A(Paléogr.). C’est à l’alphabet phénicien, on ... 839.0 \n", "2 A(Log.). Cette voyelle désigne les proposition... 56.0 \n", "3 A(Mus.). La lettre a est employée par les musi... 267.0 \n", "4 A(Numis.). Dans la numismatique grecque, la le... 67.0 \n", "5 AA. Ces deux lettres désignent l’atelier monét... 14.0 \n", "6 AA. Nom de plusieurs cours d’eau de l’Europe o... 75.0 \n", "7 AA. Rivière de France, prend sa source aux Tro... 165.0 \n", "8 AA. Rivière de Hollande, affluent de la Dommel... 17.0 \n", "9 AA. Nom de deux fleuves de la Russie. Le premi... 71.0 \n", "\n", " lge-superdomainBert \n", "0 Philosophie \n", "1 Géographie \n", "2 Philosophie \n", "3 Musique \n", "4 Histoire \n", "5 Commerce \n", "6 Géographie \n", "7 Géographie \n", "8 Géographie \n", "9 Géographie " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(10)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "id": "J9rObbvVr0zc" }, "outputs": [], "source": [ "#df.to_csv(drive_path + \"predictions/EDdA_dataset_articles_superdomainBERT_230313.tsv\", sep=\"\\t\")\n", "df.to_csv(drive_path + \"predictions/LGE_dataset_articles_superdomainBERT_230321.tsv\", sep=\"\\t\", index=False)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "id": "8cX6XBq8_F5T" }, "outputs": [], "source": [ "#df.drop(columns=['contentLGE', 'contentEDdA'], inplace=True)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "7TD1mbKj_fXH" }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>uid</th>\n", " <th>lge-volume</th>\n", " <th>lge-numero</th>\n", " <th>lge-head</th>\n", " <th>lge-page</th>\n", " <th>lge-id</th>\n", " <th>lge-content</th>\n", " <th>lge-nbWords</th>\n", " <th>lge-superdomainBert</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>lge_1_a-1</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>A</td>\n", " <td>1</td>\n", " <td>a-1</td>\n", " <td>A(Paléogr.). C’est à l’alphabet phénicien, on ...</td>\n", " <td>839.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>lge_1_aa-1</td>\n", " <td>1</td>\n", " <td>7</td>\n", " <td>AA</td>\n", " <td>4</td>\n", " <td>aa-1</td>\n", " <td>AA. Nom de plusieurs cours d’eau de l’Europe o...</td>\n", " <td>75.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>lge_1_aa-2</td>\n", " <td>1</td>\n", " <td>8</td>\n", " <td>AA</td>\n", " <td>5</td>\n", " <td>aa-2</td>\n", " <td>AA. Rivière de France, prend sa source aux Tro...</td>\n", " <td>165.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>lge_1_aa-3</td>\n", " <td>1</td>\n", " <td>9</td>\n", " <td>AA</td>\n", " <td>5</td>\n", " <td>aa-3</td>\n", " <td>AA. Rivière de Hollande, affluent de la Dommel...</td>\n", " <td>17.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>lge_1_aa-4</td>\n", " <td>1</td>\n", " <td>10</td>\n", " <td>AA</td>\n", " <td>5</td>\n", " <td>aa-4</td>\n", " <td>AA. Nom de deux fleuves de la Russie. Le premi...</td>\n", " <td>71.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>134800</th>\n", " <td>lge_31_zvornix-0</td>\n", " <td>31</td>\n", " <td>7757</td>\n", " <td>ZVORNIX</td>\n", " <td>1370</td>\n", " <td>zvornix-0</td>\n", " <td>ZVORNIX. Ville de Bosnie, sur la r. g. de la D...</td>\n", " <td>27.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>134801</th>\n", " <td>lge_31_zweibrücken-0</td>\n", " <td>31</td>\n", " <td>7758</td>\n", " <td>ZWEIBRÜCKEN</td>\n", " <td>1370</td>\n", " <td>zweibrücken-0</td>\n", " <td>ZWEIBRÜCKEN. Ville de Bavière (V. Deux-Ponts).\\n</td>\n", " <td>6.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>134803</th>\n", " <td>lge_31_zwickau-0</td>\n", " <td>31</td>\n", " <td>7760</td>\n", " <td>ZWICKAU</td>\n", " <td>1370</td>\n", " <td>zwickau-0</td>\n", " <td>ZWICKAU. Ville de Saxe, ch.-l. d’un cercle, su...</td>\n", " <td>92.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>134806</th>\n", " <td>lge_31_zwolle-0</td>\n", " <td>31</td>\n", " <td>7763</td>\n", " <td>ZWOLLE</td>\n", " <td>1371</td>\n", " <td>zwolle-0</td>\n", " <td>ZWOLLE. Ville des Pays-Bas, ch.-l. de la prov....</td>\n", " <td>115.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " <tr>\n", " <th>134819</th>\n", " <td>lge_31_zyrmi-0</td>\n", " <td>31</td>\n", " <td>7776</td>\n", " <td>ZYRMI</td>\n", " <td>1372</td>\n", " <td>zyrmi-0</td>\n", " <td>ZYRMI. Ville du Soudan. Ancienne capitale du p...</td>\n", " <td>16.0</td>\n", " <td>Géographie</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>50917 rows × 9 columns</p>\n", "</div>" ], "text/plain": [ " uid lge-volume lge-numero lge-head lge-page \\\n", "1 lge_1_a-1 1 2 A 1 \n", "6 lge_1_aa-1 1 7 AA 4 \n", "7 lge_1_aa-2 1 8 AA 5 \n", "8 lge_1_aa-3 1 9 AA 5 \n", "9 lge_1_aa-4 1 10 AA 5 \n", "... ... ... ... ... ... \n", "134800 lge_31_zvornix-0 31 7757 ZVORNIX 1370 \n", "134801 lge_31_zweibrücken-0 31 7758 ZWEIBRÜCKEN 1370 \n", "134803 lge_31_zwickau-0 31 7760 ZWICKAU 1370 \n", "134806 lge_31_zwolle-0 31 7763 ZWOLLE 1371 \n", "134819 lge_31_zyrmi-0 31 7776 ZYRMI 1372 \n", "\n", " lge-id lge-content \\\n", "1 a-1 A(Paléogr.). C’est à l’alphabet phénicien, on ... \n", "6 aa-1 AA. Nom de plusieurs cours d’eau de l’Europe o... \n", "7 aa-2 AA. Rivière de France, prend sa source aux Tro... \n", "8 aa-3 AA. Rivière de Hollande, affluent de la Dommel... \n", "9 aa-4 AA. Nom de deux fleuves de la Russie. Le premi... \n", "... ... ... \n", "134800 zvornix-0 ZVORNIX. Ville de Bosnie, sur la r. g. de la D... \n", "134801 zweibrücken-0 ZWEIBRÜCKEN. Ville de Bavière (V. Deux-Ponts).\\n \n", "134803 zwickau-0 ZWICKAU. Ville de Saxe, ch.-l. d’un cercle, su... \n", "134806 zwolle-0 ZWOLLE. Ville des Pays-Bas, ch.-l. de la prov.... \n", "134819 zyrmi-0 ZYRMI. Ville du Soudan. Ancienne capitale du p... \n", "\n", " lge-nbWords lge-superdomainBert \n", "1 839.0 Géographie \n", "6 75.0 Géographie \n", "7 165.0 Géographie \n", "8 17.0 Géographie \n", "9 71.0 Géographie \n", "... ... ... \n", "134800 27.0 Géographie \n", "134801 6.0 Géographie \n", "134803 92.0 Géographie \n", "134806 115.0 Géographie \n", "134819 16.0 Géographie \n", "\n", "[50917 rows x 9 columns]" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[(df[corpus+'-superdomainProba1'] == 'Géographie')]" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(134820, 9)" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "accelerator": "GPU", "colab": { "machine_shape": "hm", "provenance": [] }, "kernelspec": { "display_name": "Python 3.9.13 ('geode-classification-py39')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.15" }, "vscode": { "interpreter": { "hash": "16fac9c2d845f8e1f8c6fffffe3d3a0def61c7e42da17a08d00f279ad4dea797" } }, "widgets": { "application/vnd.jupyter.widget-state+json": { "0180ffc200e8466191a11a723c82e43f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c4ea841cb43747cdbce35f8f9c711cde", "max": 29, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_2d937fce2e6c4b69816352bd264ded41", "value": 29 } }, "04a86b4164fa49de8fd47d4d373e1d81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4edc5b66f0eb44a0b05876fda90f0d1b", "max": 1961828, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_5285a390fb42415289d89585e04c8994", "value": 1961828 } }, "0521c3cc6abd44ae989ac0701100045d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "087ebcb093bb41c28485bdc762fb5da6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "11c285bed74e46a08fbb7bf88715aafa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_3fde7318ebc3458cb64f8927fdcbaee3", "IPY_MODEL_8d57eb44d9394604981a8f8f97f48b7c", "IPY_MODEL_1cb6ed877c2b455b9463b12c2da877d8" ], "layout": "IPY_MODEL_5e03651dca944a5f91b675c503feeeac" } }, "1cb6ed877c2b455b9463b12c2da877d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3de8b4b0d6494c058589c535dc24dc3e", "placeholder": "", "style": "IPY_MODEL_e0df5e2d4ebd4eb3b126c16dadb2ba62", "value": " 996k/996k [00:00<00:00, 2.00MB/s]" } }, "209ff109c8e142dfba37baea2d3d5de7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "28d38094dcd54d6694e2efad7fea6abb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2924cdc1348942cfb23f28a5383af3e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "2b9b4eac7994405ca9bce38332df2629": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "2d937fce2e6c4b69816352bd264ded41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "39636049d60a4bb4bde7d0ef1af25d78": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3de8b4b0d6494c058589c535dc24dc3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3fde7318ebc3458cb64f8927fdcbaee3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0521c3cc6abd44ae989ac0701100045d", "placeholder": "", "style": "IPY_MODEL_d12a8ef069af4d79870bd783f2343184", "value": "Downloading: 100%" } }, "4203b950e245481590e8105f31301782": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4c46904f8e944d2b834ba9d384b00a8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ef37bbf1f34e4765b1803a607716d0d1", "IPY_MODEL_c2d6041cd6674043953e094791ab9659", "IPY_MODEL_e4c43817f44743388e6fd98b8dbb2eda" ], "layout": "IPY_MODEL_39636049d60a4bb4bde7d0ef1af25d78" } }, "4edc5b66f0eb44a0b05876fda90f0d1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5285a390fb42415289d89585e04c8994": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "53643db8401846f2af6f15f5cd0c9998": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5e03651dca944a5f91b675c503feeeac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "64b57e3be2c743b3b0e58d338243c656": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6ca9688ac7fa4e638994b91242c0ac87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6f80ea06220b4a498e6169e55cd8800f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "7df91507e47d4a6992464293ce002a29": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8d57eb44d9394604981a8f8f97f48b7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_28d38094dcd54d6694e2efad7fea6abb", "max": 995526, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_6f80ea06220b4a498e6169e55cd8800f", "value": 995526 } }, "9be44ba364a344f2b6b2546ae9d61ba8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_fe472df31774495c83aa159e116ba2ee", "IPY_MODEL_0180ffc200e8466191a11a723c82e43f", "IPY_MODEL_a07ac2935a3f4d84971ae9147a854969" ], "layout": "IPY_MODEL_af4ae976808042bf929ab17df10530b2" } }, "a07ac2935a3f4d84971ae9147a854969": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_64b57e3be2c743b3b0e58d338243c656", "placeholder": "", "style": "IPY_MODEL_6ca9688ac7fa4e638994b91242c0ac87", "value": " 29.0/29.0 [00:00<00:00, 1.88kB/s]" } }, "aa6a7a9106554f85a91150bd65c271d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ea3f471546734f5994edfdc214319368", "IPY_MODEL_04a86b4164fa49de8fd47d4d373e1d81", "IPY_MODEL_be067a8a406f41779e42bd35abcbfcf0" ], "layout": "IPY_MODEL_7df91507e47d4a6992464293ce002a29" } }, "af4ae976808042bf929ab17df10530b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b2277b3d600c43f999b3a07215ac2e13": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bc4825e1a43f4a20b496d82ea3687e6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "be067a8a406f41779e42bd35abcbfcf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_53643db8401846f2af6f15f5cd0c9998", "placeholder": "", "style": "IPY_MODEL_bc4825e1a43f4a20b496d82ea3687e6f", "value": " 1.96M/1.96M [00:00<00:00, 2.16MB/s]" } }, "c2d6041cd6674043953e094791ab9659": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_de270f0aa8194e0bb470e693a35d7d6e", "max": 625, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_2924cdc1348942cfb23f28a5383af3e4", "value": 625 } }, "c3e73d423c2c41c0a942331070fda723": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c4ea841cb43747cdbce35f8f9c711cde": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d12a8ef069af4d79870bd783f2343184": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "de270f0aa8194e0bb470e693a35d7d6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e0df5e2d4ebd4eb3b126c16dadb2ba62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e4c43817f44743388e6fd98b8dbb2eda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_209ff109c8e142dfba37baea2d3d5de7", "placeholder": "", "style": "IPY_MODEL_4203b950e245481590e8105f31301782", "value": " 625/625 [00:00<00:00, 35.2kB/s]" } }, "ea3f471546734f5994edfdc214319368": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ecef81814a7c4481aa49eb73807bfe4d", "placeholder": "", "style": "IPY_MODEL_2b9b4eac7994405ca9bce38332df2629", "value": "Downloading: 100%" } }, "ebe5e6f8af1e4e04a8a2b5939ac09039": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ecef81814a7c4481aa49eb73807bfe4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ef37bbf1f34e4765b1803a607716d0d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c3e73d423c2c41c0a942331070fda723", "placeholder": "", "style": "IPY_MODEL_087ebcb093bb41c28485bdc762fb5da6", "value": "Downloading: 100%" } }, "fe472df31774495c83aa159e116ba2ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b2277b3d600c43f999b3a07215ac2e13", "placeholder": "", "style": "IPY_MODEL_ebe5e6f8af1e4e04a8a2b5939ac09039", "value": "Downloading: 100%" } } } } }, "nbformat": 4, "nbformat_minor": 0 }