from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.neighbors import KNeighborsClassifier import numpy as np classifiers = [ ('bayes', MultinomialNB()), ('lr', LogisticRegression()), ('sgd', SGDClassifier()), ('svm', SVC() ), #('decisionTree',DecisionTreeClassifier()), ('rfc', RandomForestClassifier()), #('knn', KNeighborsClassifier()) ] param_grid_svm = {'kernel':['linear','rbf']} #param_grid_decisionTree = { 'criterion' : ['gini', 'entropy'], 'max_depth':range(5,10), 'min_samples_split': range(5,10), 'min_samples_leaf': range(1,5) } param_grid_rfc = { 'max_features': ['sqrt', 'log2'], 'max_depth' : [4,5,6,7,8]} param_grid_lr = {"C":np.logspace(-3,3,7)} param_grid_sgd = { "loss" : ["log", "modified_huber"]} #param_grid_knn = {'n_neighbors' : list(range(3,20)), 'weights' : ['uniform', 'distance'], 'metric' : ['euclidean', 'manhattan'] } grid_params = [ ('bayes', None), ('lr', param_grid_lr), ('sgd', param_grid_sgd ), ('svm', param_grid_svm), #('decisionTree', param_grid_decisionTree), ('rfc', param_grid_rfc ), #('knn', param_grid_knn), ]