import numpy as np


def create_alias_table(area_ratio):
    """

    :param area_ratio: sum(area_ratio)=1
    :return: accept,alias
    """
    l = len(area_ratio)
    accept, alias = [0] * l, [0] * l
    small, large = [], []
    area_ratio_ = np.array(area_ratio) * l
    for i, prob in enumerate(area_ratio_):
        if prob < 1.0:
            small.append(i)
        else:
            large.append(i)

    while small and large:
        small_idx, large_idx = small.pop(), large.pop()
        accept[small_idx] = area_ratio_[small_idx]
        alias[small_idx] = large_idx
        area_ratio_[large_idx] = area_ratio_[large_idx] - \
            (1 - area_ratio_[small_idx])
        if area_ratio_[large_idx] < 1.0:
            small.append(large_idx)
        else:
            large.append(large_idx)

    while large:
        large_idx = large.pop()
        accept[large_idx] = 1
    while small:
        small_idx = small.pop()
        accept[small_idx] = 1

    return accept, alias


def alias_sample(accept, alias):
    """

    :param accept:
    :param alias:
    :return: data_train index
    """
    N = len(accept)
    i = int(np.random.random()*N)
    r = np.random.random()
    if r < accept[i]:
        return i
    else:
        return alias[i]