diff --git a/lib/erosion_model.py b/lib/erosion_model.py index 935737ac8d238632f302912a52d16f286cf576dc..6aa7e7da235e57df5b2282da923052370087645a 100644 --- a/lib/erosion_model.py +++ b/lib/erosion_model.py @@ -43,6 +43,7 @@ class ErosionModel(): old_probs = dict(self.probs_df["hash_ p_{0}".format(self.nb_of_erosion - 1).split()].values) auc_sbm, auc_spatial = get_auc_heuristics(self.H, 60) + if VERBOSE:print(auc_sbm,auc_spatial) edges = get_all_possible_edges(self.H) if auc_sbm > auc_spatial: probs = stochastic_block_model(self.H, edges) diff --git a/lib/link_prediction_eval.py b/lib/link_prediction_eval.py index 5535a9c2b8a94bd9e4e9316239c472a7b5db3420..c022e833c213aa480effdc3956074d0a7f3f0289 100644 --- a/lib/link_prediction_eval.py +++ b/lib/link_prediction_eval.py @@ -7,7 +7,7 @@ from evalne.utils import preprocess as pp from .lambda_func import hash_func def get_auc_heuristics(G,timeout=60): - H, _ = pp.prep_graph(G.copy(),maincc=True) + H, _ = pp.prep_graph(G.copy(),maincc=True,relabel=False) traintest_split = LPEvalSplit() traintest_split.compute_splits(H, split_alg="spanning_tree", train_frac=0.90, fe_ratio=1) nee = LPEvaluator(traintest_split)