# coding = utf-8 from collections import Iterable import numpy as np import networkx as nx import pandas as pd from networkx.generators.degree_seq import _to_stublist import random def powerlaw(nb_nodes, nb_edges, exponent=2, tries=100, min_deg=1): """ Return a degree distribution that fit the power law and specified number of edges and vertices. Parameters ---------- nb_nodes : int nb_edges : int exponent : int tries : int min_deg : int Returns ------- np.ndarray degree sequence """ nb_stubs = nb_edges * 2 # Draw a first time a powerlaw degree sequence degs = np.round(nx.utils.powerlaw_sequence(nb_nodes, exponent=exponent)) degs = degs[degs >= min_deg] # Compute de degree sum sum_deg = degs.sum() for _ in range(tries): # If the sum of the degree sequence is equal to the number of stubs, then it's good if sum_deg == nb_stubs: return degs # Draw a a new powerlaw degree sequence new_draw = np.round(nx.utils.powerlaw_sequence(nb_nodes, exponent=exponent)) new_draw = new_draw[new_draw >= min_deg] new_sum_deg = new_draw.sum() # If the new degree sequence is closer to the objective than the previously draw sequence if abs(nb_stubs - new_sum_deg) < abs(nb_stubs - sum_deg): degs = new_draw sum_deg = new_sum_deg # Once the final draw is executed and the sequence degree sum is not equal to number of stubs expected if not sum_deg == nb_stubs: # We randomly pick sequence degrees and increment (or decrement) their values diff = abs(sum_deg - nb_stubs) signe = -1 if (nb_stubs - sum_deg) < 0 else 1 indexes = np.random.choice(np.arange(len(degs)), int(diff)) for ind in indexes: degs[ind] = degs[ind] + signe return degs.astype(int) def get_countries_coords(): """ Return the coordinates of each country in the world. Returns ------- np.ndarray coordinates """ try: import geopandas as gpd except: raise ImportError("Geopandas is not installed !") gdf = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres")) return np.asarray(gdf.centroid.apply(lambda x: [x.x, x.y]).values.tolist()) def _conf_model(degree_seq): stubs_list = _to_stublist(degree_seq) random.shuffle(stubs_list) register = set() edges = [] hash_func = lambda x, y: "_".join(sorted([str(x), str(y)])) tries = 0 while len(stubs_list) > 0 and tries < 100: to_del = set([]) for i in range(0, len(stubs_list) - 2, 2): u, v = stubs_list[i], stubs_list[i + 1] hash_ = hash_func(u, v) if hash_ in register: continue else: register.add(hash_) edges.append([u, v]) to_del.add(i) to_del.add(i + 1) stubs_list = [stubs_list[i] for i in range(len(stubs_list)) if not i in to_del] random.shuffle(stubs_list) tries += 1 G = nx.from_edgelist(edges) return G def powerlaw_graph(nb_nodes, nb_edges, exponent=2, tries=1000, min_deg=1): """ Generate a graph with a defined number of vertices, edges, and a degree distribution that fit the power law. Using the Molloy-Reed algorithm to Parameters ---------- nb_nodes : int nb_edges : int exponent : int tries : int min_deg : int Returns ------- nx.Graph generated graph """ G = _conf_model(powerlaw(nb_nodes, nb_edges, exponent, tries, min_deg).astype(int)) tries_ = 0 while len(G) != nb_nodes and tries_ <tries: G = _conf_model(powerlaw(nb_nodes, nb_edges, exponent, tries, min_deg).astype(int)) tries_ += 1 if len(G) != nb_nodes: print(nb_nodes,nb_edges,exponent) raise Exception("Cant compute configuration model based on parameters") if G.size() != nb_edges: diff = abs(G.size() - nb_edges) signe = 1 if G.size() - nb_edges < 0 else -1 if signe: for n in list(G.nodes()): if G.size() == nb_edges: break for n2 in list(G.nodes()): if not G.has_edge(n, n2): G.add_edge(n, n2) if G.size() == nb_edges: break else: edges_ = list(G.edges()) random.shuffle(edges_) i = diff for ed in edges_: u, v = ed[0], ed[1] if G.degree(u) > 1 and G.degree(v) > 1: G.remove_edge(u, v) i -= 1 return G def spatial_graph(nb_nodes, nb_edges, coords="country", dist_func=lambda a, b: np.linalg.norm(a - b), self_link=False): """ Generate a spatial graph with a specific number of vertices and edges Parameters ---------- nb_nodes : int nb_edges : int coords : array of shape (n,2) or str if str, possible choice are "random" or "country" dist_func : callable self_link : bool Returns ------- nx.Graph generated graph """ if coords and isinstance(coords, Iterable) and not isinstance(coords, str): if len(coords) != nb_nodes: raise ValueError("number of nodes must match the size of the coords dict") elif coords == "random": coords = np.random.random(nb_nodes * 2).reshape(nb_nodes, 2) coords[:, 0] = (coords[:, 0] * 360) - 180 coords[:, 1] = (coords[:, 1] * 180) - 90 else: coords = get_countries_coords() if nb_nodes > len(coords): raise ValueError( "Too many nodes for coords = \"country\". Change nb_nodes value or change coords to 'random' or your own list of coords") coords_index = np.random.choice(np.arange(len(coords)), nb_nodes) coords = coords[coords_index] data = [] for i in range(nb_nodes): for j in range(nb_nodes): if i == j and not self_link: continue data.append([i, j, dist_func(coords[i], coords[j])]) df = pd.DataFrame(data, columns="src tar weight".split()).astype({"src": int, "tar": int}) df["hash"] = df.apply(lambda x: "_".join(sorted([str(int(x.src)), str(int(x.tar))])), axis=1) df = df.drop_duplicates(subset="hash") register = set([]) def add_register(hashes): for hash_ in hashes: register.add(hash_) def in_register(hashes): return np.array([True if hash_ in register else False for hash_ in hashes]) nodes = np.arange(nb_nodes).astype(int) sizes = [len(x) for x in np.array_split(np.arange(nb_edges), nb_nodes)] new_df = df[(df.src == nodes[0]) | (df.tar == nodes[0])].sample(n=sizes[0], weights="weight").copy() add_register(new_df.hash.values) df = df[~in_register(df.hash.values)] for ix, node in enumerate(nodes[1:]): sample = df[(df.src == node) | (df.tar == node)].sample(n=sizes[ix + 1], weights="weight").copy() new_df = pd.concat((new_df, sample)) add_register(new_df.hash.values) df = df[~in_register(df.hash.values)] G = nx.from_pandas_edgelist(new_df, source="src", target="tar", edge_attr="weight") for n in list(G.nodes()): G.nodes[n]["pos"] = coords[n] return G def ER_graph(nb_nodes, nb_edges): """ Generate a random graph with a specific nb of nodes and edges. Parameters ---------- nb_nodes : int nb_edges : int Returns ------- nx.Graph generated graph """ return nx.dense_gnm_random_graph(nb_nodes, nb_edges) def stochastic_block_model_graph(nb_nodes, nb_edges, nb_com, percentage_edge_betw, verbose=False): """ Generate a stochastic block model graph with defined number of vertices and edges. Parameters ---------- nb_nodes : int nb_edges : int nb_com : int percentage_edge_betw : float verbose : bool Returns ------- nx.Graph generated graph """ if nb_nodes % nb_com != 0: raise ValueError("Modulo between the number of nodes and community must be equal to 0") edge_max = (1 / nb_com) * ((nb_nodes * (nb_nodes - 1)) / 2) if nb_edges > edge_max: raise ValueError("nb_edges must be inferior to {0}".format(edge_max)) percentage_edge_within = 1 - percentage_edge_betw G = nx.planted_partition_graph(nb_com, int(np.round(nb_nodes / nb_com)), 1, 1) if verbose: print(G.size()) block_assign = nx.get_node_attributes(G, "block") inter_edges, intra_edges = [], [] register = set([]) for n1 in list(G.nodes()): for n2 in list(G.nodes()): hash_ = "_".join(sorted([str(n1), str(n2)])) if (n1 == n2) or (hash_ in register): continue b1, b2 = block_assign[n1], block_assign[n2] if b1 != b2: inter_edges.append([n1, n2]) else: intra_edges.append([n1, n2]) register.add(hash_) inter_edges = np.asarray(inter_edges) intra_edges = np.asarray(intra_edges) inter_N, intra_N = len(inter_edges), len(intra_edges) if verbose: print(inter_N, intra_N) print(int(np.ceil(nb_edges * percentage_edge_betw)), int(np.ceil(nb_edges * percentage_edge_within))) final_edges = [] index_inter = np.random.choice(np.arange(inter_N), int(np.round(nb_edges * percentage_edge_betw)), replace=False) index_intra = np.random.choice(np.arange(intra_N), int(np.round(nb_edges * percentage_edge_within)), replace=False) final_edges.extend(inter_edges[index_inter]) final_edges.extend(intra_edges[index_intra]) if verbose: print(len(final_edges)) G2 = nx.from_edgelist(final_edges) if len(G2) != nb_nodes: equilibrate(G2, nb_nodes, percentage_edge_betw, percentage_edge_within, inter_edges, intra_edges, block_assign) for n in list(G2.nodes()): G2.nodes[n]["block"] = block_assign[n] return G2 def equilibrate(G, nb_nodes, percentage_edge_betw, percentage_edge_within, inter_edges, intra_edges, block_assign): """ Sometimes the generated graph from the stochastic block model have some missing nodes due to the sampling method. This function fix this issue. Parameters ---------- G nb_nodes percentage_edge_betw percentage_edge_within inter_edges intra_edges block_assign Returns ------- """ diff = nb_nodes - len(G) nodes_missing = list(set(list(range(nb_nodes))) - set(list(G.nodes()))) nb_edge_inter = int(np.round(len(nodes_missing) * percentage_edge_betw)) nodes_inter = np.random.choice(nodes_missing, nb_edge_inter, replace=False) nodes_intra = list(set(nodes_missing) - set(nodes_inter)) def draw_(array, register, hash_func=lambda x, y: "_".join(sorted([str(x), str(y)]))): tries = 0 while tries < 1000: index_array = np.random.choice(np.arange(len(array)), 1) res = array[index_array] res = res[0] hash_ = hash_func(res[0], res[1]) if not hash_ in register: register.add(hash_) return index_array tries += 1 raise Exception("Error ! (TODO)") # Draw new edges new_edges = [] register = set([]) for node in nodes_inter: mask_inter = np.isin(inter_edges, node).sum(axis=1).astype(bool) index_inter = draw_(inter_edges[mask_inter], register) new_edges.extend(inter_edges[mask_inter][index_inter]) for node in nodes_intra: mask_intra = np.isin(intra_edges, node).sum(axis=1).astype(bool) index_intra = draw_(intra_edges[mask_intra], register) new_edges.extend(intra_edges[mask_intra][index_intra]) # Draw existing edge to delete edge_to_delete = [] inter_edges_c, intra_edges_c = [], [] for ed in list(G.edges()): if G.degree(ed[0]) > 1 and G.degree(ed[1]) > 1: # We don't want the nodes edge to be removed with the # disappearance of the edge if block_assign[ed[0]] != block_assign[ed[1]]: inter_edges_c.append([ed[0], ed[1]]) else: intra_edges_c.append([ed[0], ed[1]]) index_inter = np.random.choice(np.arange(len(inter_edges_c)), int(np.round(diff * percentage_edge_betw)), replace=False) index_intra = np.random.choice(np.arange(len(intra_edges_c)), int(np.round(diff * percentage_edge_within)), replace=False) edge_to_delete.extend(np.asarray(inter_edges_c)[index_inter]) edge_to_delete.extend(np.asarray(intra_edges_c)[index_intra]) for ed in edge_to_delete: G.remove_edge(*ed) for ed in new_edges: G.add_edge(*ed) return G