import pandas as pd from sklearn.preprocessing import LabelEncoder import numpy as np def load_country_country_data(filename,self_link=False): df = pd.read_csv(filename,sep="\t") df = df[(~df.user_loc.isna()) & (~df.fr_loc.isna())] ign = ["CW","XK"] # No coords for these two countries ... got to investigate! df = df[(~df.user_loc.isin(ign)) & (~df.fr_loc.isin(ign))] if not self_link: mask = df.apply(lambda x:False if x.user_loc ==x.fr_loc else True,axis=1) df = df[mask] return df def sample_with_pandas(df,N): """ Return a sample of the avalaible connection using Pandas Dataframe.sample() method Parameters ---------- df : pd.Dataframe input Returns ------- pd.DataFrame Selected edges """ if not "norm_scaled_sci" in df.columns.values: df["norm_scaled_sci"] = df.scaled_sci/df.scaled_sci.sum() return df.sample(n=N,weights="norm_scaled_sci").rename(columns={"norm_scaled_sci":"weight"}) def to_edgelist(sample,encoder,weight=False): new_df = sample.copy() new_df["fr_loc"] = encoder.transform(new_df.fr_loc.values) new_df["user_loc"] = encoder.transform(new_df.user_loc.values) del new_df["scaled_sci"] if not weight: del new_df["weight"] return new_df