From 703d3c001fd3e9cdaf94e3539c6cf6d68bd1c04e Mon Sep 17 00:00:00 2001 From: Kerautret <bertrand.kerautret@univ-lyon2.fr> Date: Sat, 27 Apr 2019 16:49:44 +0200 Subject: [PATCH] relecture/prop section 2 --- Article/notions.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/Article/notions.tex b/Article/notions.tex index 0830d85..f2e6311 100755 --- a/Article/notions.tex +++ b/Article/notions.tex @@ -29,7 +29,7 @@ $\mathcal{L}$ of arithmetical width $w(\mathcal{L}) = \varepsilon$. \end{definition} A linear-time algorithm to recognize a blurred segment of assigned width -$\varepsilon$ \cite{DebledAl05} is used in the work. +$\varepsilon$ \cite{DebledAl05} is used in this work. It is based on an incremental growth of the convex hull of the blurred segment when adding each point $P_i$ successively. The minimal width $\mu$ of the blurred segment $\mathcal{B}$ is the @@ -56,7 +56,7 @@ and $\mathcal{B}_i = \mathcal{B}_{i-1}$.} \end{figure} Associated to this primitive, the following definition of a directional scan -based on digital straight lines is used in this work. + is an important point the proposed method. \subsection{Directional scan} @@ -163,6 +163,6 @@ $\mathcal{N}_i^{C,\vec{D},w}$: \mathcal{D}^{C,\vec{D},w} = \mathcal{L}(Y_D,~ -X_D,~ c_3 - w / 2,~ w) \\ \mathcal{N}_i^{C,\vec{D},w} = \mathcal{L}(X_D,~ Y_D,~ - c_4 - w / 2 + i\cdot w,~ \nu_{\vec{D}} + c_4 - w / 2 + i\cdot w,~ \nu_{\vec{D}}) \end{array} \right. \end{equation} -- GitLab