\section{Base notions} \subsection{Blurred segment} Our work relies on the notion of digital straight line as classically defined in the digital geometry literature \cite{debled}. Only the 2-dimensional case is considered here. \begin{definition} A digital line $\cal D$ with integer parameters $(a,b,c,\nu)$ is the set of points $P(x,y)$ of $\mathbb{Z}^2$ that satisfy : $0 \leq ax + by - c < \nu$. \end{definition} The parameter $\nu$ is the width of the digital line. If $\nu = max (|a|, |b|)$, $\cal D$ is the narrowest 8-connected line and is called a naive line. \begin{definition} A blurred segment of width $\nu$ is a set ${\cal S}_\nu$ of points in $\mathbb{Z}^2$ that all belong to a digital line of width $\nu$. \end{definition} \begin{picture}(300,20) \framebox(300,20){Exemple de segment flou ? (\c ca va finir par lasser)} \end{picture} To construct a blurred segment we use a liner time algorithm based on the incremental growth of the convex hull of the input points using Melkman algorithm \cite{Melkman87}. Points are added while the convex hull width is less than the blurred segment assigned width. \subsection{Directional scan} A directional scan is a partition of a digital straight line ${\cal S}$, called the {\it scan strip}, into naive straight line segments ${\cal L}_i$, that are orthogonal to ${\cal S}$. The segments, called {\it scan lines}, are developed on each side of a central scan line ${\cal S}_0$, and labelled with their manhattan distance ($d_1 = |d_x| + |d_y|$) to ${\cal L}_0$ and a positive (resp. negative) sign if their are on the left (resp. right) of ${\cal L}_0$. \begin{picture}(300,20) \framebox(300,20){Exemple de directional scan} \end{picture} The directional scan can be defined by its central scan line ${\cal L}_0$. If $A(x_A,y_A)$ and $B(x_B,y_B)$ are the end points of this scan line, the scan strip is defined by : \centerline{ ${\cal S}(A,B) = {\cal D}(a, b, c, \nu)$, with $\left\{ \begin{array}{l} a = x_B - x_A \\ b = y_B - y_A \\ \nu = 1 + |c_2 - c_1| \\ c = min (c_1, c_2) \end{array} \right.$ } \noindent where $c_1 = a\cdot x_A + b\cdot y_A$ and $c_2 = a\cdot x_B + b\cdot y_B$. The scan line $\cal{L}_i(A,B)$ is then defined by : \centerline{ ${\cal L}_i(A,B) = {\cal S}(A,B) \cap {\cal D}(a, b, c, \nu)$, with $\left\{ \begin{array}{l} a = y_B - y_A \\ b = x_A - x_B \\ \nu = max (|a|,|b|) \\ c = a\cdot x_A + b\cdot y_A + i \cdot \nu \end{array} \right.$ } The scan lines length is $d_\infty(AB)$ or $d_\infty(AB)-1$, where $d_\infty$ is the chessboard distance ($d_\infty = max (|d_x|,|d_y|)$). In practice, this difference of length between scan lines is not a drawback, as the image bounds should also be processed anyway. The directional scan can also be defined by its central point $C$, its direction $\vec{D}$ and its width $w$. TO BE DEVELOPED. \subsection{Adaptive directional scan} Notions \`a d\'evelopper : \begin{itemize} \item Direction de scan \item Epaisseur de consigne du SF \item Largeur optimale du SF \end{itemize} Poser le pb : la direction est incompl\`etement estim\'ee, d'o\`u un risque de sortie de scan. \begin{picture}(300,20) \framebox(300,20){Illustration d'une sortie de scan avec les diff\'erentes \'epaisseurs en jeu} \end{picture} La direction du segment ne peut \^etre connue qu'a posteriori. La direction d'une droite discr\`ete s'affine au fur et \`a mesure de son d\'eveloppement. Ainsi en va t-il des segments flous (a fortiori). Il faut donc r\'eactualiser la direction du scan. $N$ scans reste limit\'e. D'o\`u le scan adaptatif $\rightarrow$ r\'eorientation de $\cal S$.