diff --git a/AugmentTests.py b/AugmentTests.py new file mode 100644 index 0000000000000000000000000000000000000000..b71b81e8798d2109bdda31cf257504ecbe7eb53a --- /dev/null +++ b/AugmentTests.py @@ -0,0 +1,55 @@ +from main import run_duo +from config.config import load_args +import pandas as pd +import numpy as np + +if __name__ == "__main__": + args = load_args() + + #On commence avec le standard + losses = np.zeros(20); accs = np.zeros(20) + for random in range(20): + args.random_state = random + losses[random], accs[random] = run_duo(args) + records = pd.DataFrame([["Standard",losses.mean(),losses.std(),accs.mean(),accs.std()]],columns = ["Augmentation","mu_loss","std_loss","mu_acc","std_acc"]) + records.to_csv("output/DataAugment/perfs.csv",index = False) + + #On continue avec le random_erasing + for prob in [k/20 for k in range(1,21)]: + args.augment_args[0] = prob + for prop in [k/20 for k in range(1,21)]: + args.augment_args[3] = prop + losses = np.zeros(5); accs = np.zeros(5) + for random in range(5): + args.random_state = random + losses[random], accs[random] = run_duo(args) + records = pd.concat([records,pd.DataFrame([[f"erasing prob{prob} prop{prop}",losses.mean(),losses.std(),accs.mean(),accs.std()]],columns = ["Augmentation","mu_loss","std_loss","mu_acc","std_acc"])]) + records.to_csv("output/DataAugment/perfs.csv",index = False) + + #Puis le int shift + for prob in [k/20 for k in range(1,21)]: + args.augment_args[1] = prob + for maximum in ([k/10 for k in range(11,20)]+[k for k in range(2,11)]): + args.augment_args[4] = maximum + losses = np.zeros(5); accs = np.zeros(5) + for random in range(5): + args.random_state = random + losses[random], accs[random] = run_duo(args) + records = pd.concat([records,pd.DataFrame([[f"intShift prob{prob} max{maximum}",losses.mean(),losses.std(),accs.mean(),accs.std()]],columns = ["Augmentation","mu_loss","std_loss","mu_acc","std_acc"])]) + records.to_csv("output/DataAugment/perfs.csv",index = False) + + #Et enfin le rt-shift + for prob in [k/20 for k in range(1,21)]: + args.augment_args[2] = prob + for mean in [5,10,15,20,25,30,40,50,60,70,80,90]: + args.augment_args[5] = mean + for std in [mean/k for k in range(1,11)]: + args.augment_args[6] = std + losses = np.zeros(5); accs = np.zeros(5) + for random in range(5): + args.random_state = random + losses[random], accs[random] = run_duo(args) + records = pd.concat([records,pd.DataFrame([[f"rtShift prob{prob} mean{mean} std{std}",losses.mean(),losses.std(),accs.mean(),accs.std()]],columns = ["Augmentation","mu_loss","std_loss","mu_acc","std_acc"])]) + records.to_csv("output/DataAugment/perfs.csv",index = False) + + \ No newline at end of file