From 13d9d2cb5d75a04fad83ea827b7772fa03344c7e Mon Sep 17 00:00:00 2001 From: Schneider Leo <leo.schneider@etu.ec-lyon.fr> Date: Mon, 21 Oct 2024 09:06:51 +0200 Subject: [PATCH] datasets --- main_custom.py | 2 -- model_custom.py | 2 ++ 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/main_custom.py b/main_custom.py index 8ddbdea..7c7421b 100644 --- a/main_custom.py +++ b/main_custom.py @@ -26,7 +26,6 @@ def train(model, data_train, epoch, optimizer, criterion_rt, criterion_intensity param.requires_grad = True if forward == 'both': for seq, charge, rt, intensity in data_train: - print(seq, charge, rt, intensity ) rt, intensity = rt.float(), intensity.float() if torch.cuda.is_available(): seq, charge, rt, intensity = seq.cuda(), charge.cuda(), rt.cuda(), intensity.cuda() @@ -288,7 +287,6 @@ def get_n_params(model): for s in list(p.size()): nn = nn * s - print(n, nn) pp += nn return pp diff --git a/model_custom.py b/model_custom.py index eddc158..6745da3 100644 --- a/model_custom.py +++ b/model_custom.py @@ -102,6 +102,8 @@ class Model_Common_Transformer(nn.Module): def forward(self, seq, charge): meta_ohe = torch.nn.functional.one_hot(charge - 1, self.charge_max).float() seq_emb = torch.nn.functional.one_hot(seq, self.nb_aa).float() + print(seq_emb.shape()) + print(self.nb_aa, self.embedding_dim) emb = self.pos_embedding(self.emb(seq_emb)) meta_enc = self.meta_enc(meta_ohe) -- GitLab