diff --git a/test.py b/test.py index 056bb3cf416cee4d648258e1d2faa53ce994cd0b..5f788fb210656ca045d61ff49067ffb23e062636 100644 --- a/test.py +++ b/test.py @@ -1,114 +1,13 @@ -import os -import wandb as wdb -import torch.nn as nn -import torch.optim as optim +from loss import masked_cos_sim import torch -from dataloader import load_data, load_split_intensity, Intentsity_Dataset, load_intensity_from_files -from model import RT_pred_model, Intensity_pred_model_multi_head, RT_pred_model_self_attention -from config import load_args -from loss import masked_cos_sim, masked_pearson_correlation_distance +acc =[] +for i in range(1000): + true = torch.rand(1024,174) + target = torch.rand(1024,174) + acc.append(masked_cos_sim(true, target)) -def train(model, data_train, epoch, optimizer, criterion, cuda=False): - losses = 0. - distance = 0. - for data1, data2, data3, target in data_train: - if torch.cuda.is_available(): - data1, data2, data3, target = data1.cuda(), data2.cuda(), data3.cuda(), target.cuda() - pred_rt = model.forward(data1, data2, data3) - target.float() - loss = criterion(pred_rt, target) - dist = torch.mean(torch.abs(pred_rt - target)) - distance += dist.item() - optimizer.zero_grad() - loss.backward() - optimizer.step() - losses += loss.item() - # wdb.log({"train loss": losses / len(data_train), "train mean distance": distance / len(data_train)}) - print('epoch : ', epoch, ',train losses : ', losses / len(data_train), " ,mean distance : ", - distance / len(data_train)) - - -def eval(model, data_test, epoch, criterion=masked_cos_sim, cuda=False): - losses = 0. - distance = 0. - for data, target in data_test: - if torch.cuda.is_available(): - data, target = data.cuda(), target.cuda() - pred_rt = model(data) - loss = criterion(pred_rt, target) - losses += loss.item() - dist = torch.mean(torch.abs(pred_rt - target)) - distance += dist.item() - # wdb.log({"eval loss": losses / len(data_test), "eval mean distance": distance / len(data_test)}) - print('epoch : ', epoch, ',eval losses : ', losses / len(data_test), " ,eval mean distance: :", - distance / len(data_test)) - - -def save(model, optimizer, epoch, checkpoint_name): - print('\nModel Saving...') - model_state_dict = model.state_dict() - os.makedirs('checkpoints', exist_ok=True) - torch.save({ - 'model_state_dict': model_state_dict, - 'global_epoch': epoch, - 'optimizer_state_dict': optimizer.state_dict(), - }, os.path.join('checkpoints', checkpoint_name)) - - -def run(epochs, eval_inter, save_inter, model, data_train, data_test, optimizer, criterion=masked_cos_sim, - cuda=False): - for e in range(1, epochs + 1): - train(model, data_train, e, optimizer, criterion, cuda=cuda) - if e % eval_inter == 0: - eval(model, data_test, e, cuda=cuda) - if e % save_inter == 0: - save(model, optimizer, epochs, 'model_self_attention_' + str(e) + '.pt') - - -def main(args): - - os.environ["WANDB_API_KEY"] = 'b4a27ac6b6145e1a5d0ee7f9e2e8c20bd101dccd' - os.environ["WANDB_MODE"] = "offline" - os.environ["WANDB_DIR"] = os.path.abspath("./wandb_run") - - wdb.init(project="RT prediction", dir='./wandb_run') - print(torch.cuda.is_available()) - # sources_train = ('data/intensity/sequence_train.npy', - # 'data/intensity/intensity_train.npy', - # 'data/intensity/collision_energy_train.npy', - # 'data/intensity/precursor_charge_train.npy') - # - # sources_test = ('data/intensity/sequence_test.npy', - # 'data/intensity/intensity_test.npy', - # 'data/intensity/collision_energy_test.npy', - # 'data/intensity/precursor_charge_test.npy') - # - # data_train = load_intensity_from_files(sources_train[0], sources_train[1], sources_train[2], sources_train[3]) - # data_test = load_intensity_from_files(sources_test[0], sources_test[1], sources_test[2], sources_test[3]) - - sources = ('data/intensity/sequence_header.npy', - 'data/intensity/intensity_header.npy', - 'data/intensity/collision_energy_header.npy', - 'data/intensity/precursor_charge_header.npy') - - data_train, data_test, data_validation = load_split_intensity(sources,32, (0.5, 0.25, 0.25)) - - - - print('\nData loaded') - model = Intensity_pred_model_multi_head() - if torch.cuda.is_available(): - model = model.cuda() - optimizer = optim.Adam(model.parameters(), lr=0.001) - print('\nModel initialised') - run(args.epochs, args.eval_inter, args.save_inter, model, data_train, data_test, optimizer=optimizer, cuda=True) - - wdb.finish() - -if __name__ == "__main__": - args = load_args() - print(args) - main(args) +acc = torch.tensor(acc) +m = acc.mean() \ No newline at end of file