diff --git a/loss.py b/loss.py index 0021caf94bb9fb8eb90572c0c6f9ad012937c2d5..0d82d027da425b2aa14925d2e43befca37fe35b6 100644 --- a/loss.py +++ b/loss.py @@ -37,7 +37,7 @@ def masked_spectral_angle(y_true, y_pred): true_masked = F.normalize(true_masked, p=2, dim=1) # print(pred_masked.sum(dim=1)) # print((pred_masked * true_masked).sum(dim=1).shape) - return 1 -2 * torch.acos((pred_masked * true_masked).sum(dim=1)).mean() / np.pi + return 1 -2 * torch.acos((pred_masked * true_masked).sum(dim=1).mean()) / np.pi def masked_pearson_correlation_distance(y_true, y_pred, reduce='mean'): diff --git a/main_custom.py b/main_custom.py index 7048332c805a7e88a84b13704abe9d8b52e78b17..ff87467c0aba7a9f854810fb31f62114f8e55ecc 100644 --- a/main_custom.py +++ b/main_custom.py @@ -24,6 +24,7 @@ def train(model, data_train, epoch, optimizer, criterion_rt, criterion_intensity for param in model.parameters(): param.requires_grad = True if forward == 'both': + i=0 for seq, charge, rt, intensity in data_train: rt, intensity = rt.float(), intensity.float() if torch.cuda.is_available(): @@ -41,6 +42,7 @@ def train(model, data_train, epoch, optimizer, criterion_rt, criterion_intensity optimizer.zero_grad() loss.backward() optimizer.step() + print(i,'/',len(data_train)) if wandb is not None: wdb.log({"train rt loss": losses_rt / len(data_train), "train int loss": losses_int / len(data_train),