diff --git a/data_viz.py b/data_viz.py index 385a19f86da782372a70c6f01c6e56d874f015a0..b655f79c63a48307ffa2a30d5decb2791c4df3c2 100644 --- a/data_viz.py +++ b/data_viz.py @@ -254,7 +254,7 @@ def add_length(dataframe): dataframe['length']=dataframe['seq'].map(fonc) -# df = pd.read_csv('output/out_common_ISA_ISA_eval.csv') +df = pd.read_csv('output/out_common_ISA_ISA_eval_2.csv') # add_length(df) # df['abs_error'] = np.abs(df['rt pred']-df['true rt']) # histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_ISA_eval.png') @@ -275,11 +275,11 @@ def add_length(dataframe): # scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_prosit_ISA_eval.png', color=True) # histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_prosit_ISA_eval.png') -# df = pd.read_csv('output/out_common_ISA_ISA_eval_2.csv') +# df = pd.read_csv('output/out_common_ISA_ISA_eval_3.csv') # add_length(df) # df['abs_error'] = np.abs(df['rt pred']-df['true rt']) -# histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_ISA_eval_2.png') -# scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_ISA_eval_2_seq.png', color=True, col = 'seq') -# histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_ISA_ISA_eval_2.png') +# histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_ISA_eval_3.png') +# scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_ISA_eval_3_file.png', color=True, col = 'file') +# histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_ISA_ISA_eval_3.png') diff --git a/main_custom.py b/main_custom.py index 7de21bdad583b8cfe578e8526ce550d15b2cc3b3..59f34e834557b4d8b41844ee600e9133b2d5320c 100644 --- a/main_custom.py +++ b/main_custom.py @@ -186,6 +186,16 @@ def run(epochs, eval_inter, save_inter, model, data_train, data_val, data_test, if e % save_inter == 0: save(model, 'model_common_' + str(e) + '.pt') save_pred(model, data_val, 'both', output) + elif forward=='reverse': + for e in range(1, epochs + 1): + train(model, data_train, e, optimizer, criterion_rt, criterion_intensity, metric_rt, metric_intensity, 'both', + wandb=wandb) + if e % eval_inter == 0: + eval(model, data_val, e, criterion_rt, criterion_intensity, metric_rt, metric_intensity, 'rt', + wandb=wandb) + if e % save_inter == 0: + save(model, 'model_common_' + str(e) + '.pt') + save_pred(model, data_val, 'rt', output) else : for e in range(1, epochs + 1): @@ -213,7 +223,7 @@ def main(args): data_train, data_val, data_test = common_dataset.load_data(path_train=args.dataset_train, path_val=args.dataset_val, path_test=args.dataset_test, - batch_size=args.batch_size, length=25, pad = True, convert=True, vocab='iapuc') + batch_size=args.batch_size, length=25, pad = True, convert=True, vocab='unmod') elif args.forward == 'rt': data_train, data_val, data_test = dataloader.load_data(data_sources=[args.dataset_train,args.dataset_val,args.dataset_test], batch_size=args.batch_size, length=25) @@ -225,7 +235,16 @@ def main(args): _, data_val, data_test = common_dataset.load_data(path_train=args.dataset_val, path_val=args.dataset_val, path_test=args.dataset_test, - batch_size=args.batch_size, length=25, pad = True, convert=True, vocab='iapuc') + batch_size=args.batch_size, length=25, pad = True, convert=True, vocab='unmod') + + elif args.forward == 'reverse': + _, data_val, data_test = dataloader.load_data(data_sources=['database/data_holdout.csv',args.dataset_val,args.dataset_test], + batch_size=args.batch_size, length=25) + + data_train, _, _ = common_dataset.load_data(path_train=args.dataset_train, + path_val=args.dataset_train, + path_test=args.dataset_train, + batch_size=args.batch_size, length=25, pad = True, convert=True, vocab='unmod') print('\nData loaded')