From 99f0dc51c98c28b2c403a35ba9f47ef12e376d15 Mon Sep 17 00:00:00 2001 From: Schneider Leo <leo.schneider@etu.ec-lyon.fr> Date: Tue, 30 Jan 2024 15:27:52 +0100 Subject: [PATCH] main intensity --- main_intensity.py | 106 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 106 insertions(+) create mode 100644 main_intensity.py diff --git a/main_intensity.py b/main_intensity.py new file mode 100644 index 0000000..04df4ed --- /dev/null +++ b/main_intensity.py @@ -0,0 +1,106 @@ +import os +import wandb as wdb +import torch.nn as nn +import torch.optim as optim +import torch +from dataloader import load_data, load_split_intensity, Intentsity_Dataset, load_intensity_from_files +from model import RT_pred_model, Intensity_pred_model_multi_head, RT_pred_model_self_attention +from config import load_args +from loss import masked_cos_sim, masked_pearson_correlation_distance + + +def train(model, data_train, epoch, optimizer, criterion, cuda=False): + losses = 0. + distance = 0. + for data1, data2, data3, target in data_train: + if torch.cuda.is_available(): + data1, data2, data3, target = data1.cuda(), data2.cuda(), data3.cuda(), target.cuda() + pred_rt = model.forward(data1, data2, data3) + target.float() + loss = criterion(pred_rt, target) + dist = torch.mean(torch.abs(pred_rt - target)) + distance += dist.item() + optimizer.zero_grad() + loss.backward() + optimizer.step() + losses += loss.item() + + # wdb.log({"train loss": losses / len(data_train), "train mean distance": distance / len(data_train)}) + + print('epoch : ', epoch, ',train losses : ', losses / len(data_train), " ,mean distance : ", + distance / len(data_train)) + + +def eval(model, data_test, epoch, criterion=masked_cos_sim, cuda=False): + losses = 0. + distance = 0. + for data, target in data_test: + if torch.cuda.is_available(): + data, target = data.cuda(), target.cuda() + pred_rt = model(data) + loss = criterion(pred_rt, target) + losses += loss.item() + dist = torch.mean(torch.abs(pred_rt - target)) + distance += dist.item() + # wdb.log({"eval loss": losses / len(data_test), "eval mean distance": distance / len(data_test)}) + print('epoch : ', epoch, ',eval losses : ', losses / len(data_test), " ,eval mean distance: :", + distance / len(data_test)) + + +def save(model, optimizer, epoch, checkpoint_name): + print('\nModel Saving...') + model_state_dict = model.state_dict() + os.makedirs('checkpoints', exist_ok=True) + torch.save({ + 'model_state_dict': model_state_dict, + 'global_epoch': epoch, + 'optimizer_state_dict': optimizer.state_dict(), + }, os.path.join('checkpoints', checkpoint_name)) + + +def run(epochs, eval_inter, save_inter, model, data_train, data_test, optimizer, criterion=masked_cos_sim, + cuda=False): + for e in range(1, epochs + 1): + train(model, data_train, e, optimizer, criterion, cuda=cuda) + if e % eval_inter == 0: + eval(model, data_test, e, cuda=cuda) + if e % save_inter == 0: + save(model, optimizer, epochs, 'model_self_attention_' + str(e) + '.pt') + + +def main(args): + + os.environ["WANDB_API_KEY"] = 'b4a27ac6b6145e1a5d0ee7f9e2e8c20bd101dccd' + os.environ["WANDB_MODE"] = "offline" + os.environ["WANDB_DIR"] = os.path.abspath("./wandb_run") + + wdb.init(project="RT prediction", dir='./wandb_run') + print(torch.cuda.is_available()) + + sources_train = ('data/intensity/sequence_train.npy', + 'data/intensity/intensity_train.npy', + 'data/intensity/collision_energy_train.npy', + 'data/intensity/precursor_charge_train.npy') + + sources_test = ('data/intensity/sequence_test.npy', + 'data/intensity/intensity_test.npy', + 'data/intensity/collision_energy_test.npy', + 'data/intensity/precursor_charge_test.npy') + + data_train = load_intensity_from_files(sources_train[0], sources_train[1], sources_train[2], sources_train[3], args.batch_size) + data_test = load_intensity_from_files(sources_test[0], sources_test[1], sources_test[2], sources_test[3], args.batch_size) + + print('\nData loaded') + model = Intensity_pred_model_multi_head() + if torch.cuda.is_available(): + model = model.cuda() + optimizer = optim.Adam(model.parameters(), lr=0.001) + print('\nModel initialised') + run(args.epochs, args.eval_inter, args.save_inter, model, data_train, data_test, optimizer=optimizer, cuda=True) + + wdb.finish() + +if __name__ == "__main__": + args = load_args() + print(args) + main(args) -- GitLab