diff --git a/diann_lib_processing.py b/diann_lib_processing.py index bcc05cafa7197ddab5e65ff752186f8721e0ceae..90ef00290874e107ea563fa4627f2280dfa263c2 100644 --- a/diann_lib_processing.py +++ b/diann_lib_processing.py @@ -93,16 +93,16 @@ def predict(data_pred, model, output_path): if __name__ =='__main__': - df = load_lib('data/spectral_lib/first_lib.parquet') - - plt.hist(df['RT']) - plt.savefig('test.png') - - df_2 = pd.read_csv('data/data_prosit/data.csv') - - plt.clf() - plt.hist(df_2['irt']) - plt.savefig('test2.png') + # df = load_lib('data/spectral_lib/first_lib.parquet') + # + # plt.hist(df['RT']) + # plt.savefig('test.png') + # + # df_2 = pd.read_csv('data/data_prosit/data.csv') + # + # plt.clf() + # plt.hist(df_2['irt']) + # plt.savefig('test2.png') # df_2 = extract_sequence(df).reset_index(drop=True) # @@ -124,23 +124,20 @@ if __name__ =='__main__': - # args = load_args() - # - # model = ModelTransformer(encoder_ff=args.encoder_ff, decoder_rt_ff=args.decoder_rt_ff, - # n_head=args.n_head, encoder_num_layer=args.encoder_num_layer, - # decoder_rt_num_layer=args.decoder_rt_num_layer, drop_rate=args.drop_rate, - # embedding_dim=args.embedding_dim, acti=args.activation, norm=args.norm_first, seq_length=30) - # - # if torch.cuda.is_available(): - # model = model.cuda() - # - # model.load_state_dict(torch.load(args.model_weigh, weights_only=True)) - # - # print(args.dataset_test) - # data_test = load_data(data_source='data/spectral_lib/data_uniprot_base.csv', batch_size=args.batch_size, length=30, mode=args.split_test, - # seq_col=args.seq_test) - # - # predict(data_test, model, args.output) + args = load_args() + + model = ModelTransformer(encoder_ff=args.encoder_ff, decoder_rt_ff=args.decoder_rt_ff, + n_head=args.n_head, encoder_num_layer=args.encoder_num_layer, + decoder_rt_num_layer=args.decoder_rt_num_layer, drop_rate=args.drop_rate, + embedding_dim=args.embedding_dim, acti=args.activation, norm=args.norm_first, seq_length=30) + + if torch.cuda.is_available(): + model = model.cuda() + + model.load_state_dict(torch.load(args.model_weigh, weights_only=True)) + + print(args.dataset_test) + data_test = load_data(data_source='data/spectral_lib/data_uniprot_base.csv', batch_size=args.batch_size, length=30, mode=args.split_test, + seq_col=args.seq_test) - plt.hist(df['RT']) - plt.savefig('test.png') \ No newline at end of file + predict(data_test, model, args.output)