diff --git a/data/data_processing.py b/data/data_processing.py index 97d3ebf0b683a18ba04913563096b42d61c04a5b..9f7fd3e5c8dbc7234e7ec6d877e4e35ba63c1215 100644 --- a/data/data_processing.py +++ b/data/data_processing.py @@ -156,16 +156,16 @@ def numerical_to_alphabetical_str(s): if __name__ == '__main__': # main() - df_base = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/plasma_train/data_aligned_train_plasma.csv') + df_base = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/e_coli/data_aligned_train_coli.csv') df_base = df_base[['sequence', 'irt_scaled','state']] t = [0.05,0.1,0.2,0.3,0.4,0.5,0.7,1,10] #reste 07 1 et all name = ['005','01','02','03','04','05','07','1','all'] - df_0 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_plasma_aligned_train_0.csv') - df_1 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_plasma_aligned_train_1.csv') - df_2 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_plasma_aligned_train_2.csv') - df_3 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_plasma_aligned_train_3.csv') - df_4 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_plasma_aligned_train_4.csv') + df_0 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_coli_aligned_train_0.csv') + df_1 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_coli_aligned_train_1.csv') + df_2 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_coli_aligned_train_2.csv') + df_3 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_coli_aligned_train_3.csv') + df_4 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_coli_aligned_train_4.csv') list_df = [df_0, df_1, df_2, df_3, df_4] for i in range(len(name)): @@ -173,12 +173,12 @@ if __name__ == '__main__': print('thresold {} en cours'.format(name[i])) # df = select_best_data(list_df, t[i]) - df.to_pickle('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/plasma_train/data_ISA_additionnal_{}.pkl'.format(name[i])) - df = pd.read_pickle('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/plasma_train/data_ISA_additionnal_{}.pkl'.format(name[i])) + df.to_pickle('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/e_coli/data_ISA_additionnal_{}.pkl'.format(name[i])) + df = pd.read_pickle('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/e_coli/data_ISA_additionnal_{}.pkl'.format(name[i])) df['state'] = 'train' df['sequence'] = df['sequence'].map(numerical_to_alphabetical_str) df_augmented_1 = pd.concat([df, df_base], axis=0).reset_index(drop=True) df_augmented_1.columns = ['sequence', 'irt_scaled','state'] - df_augmented_1.to_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/plasma_train/plasma_data_augmented_{}.csv'.format(name[i]), index=False) + df_augmented_1.to_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/e_coli/plasma_data_augmented_{}.csv'.format(name[i]), index=False) print(df_augmented_1.shape) \ No newline at end of file