diff --git a/diann_lib_processing.py b/diann_lib_processing.py index 232772839061d2faaf54a00296a32db157272d1e..e876c7668764060373f3e38a7ef88d7634077a05 100644 --- a/diann_lib_processing.py +++ b/diann_lib_processing.py @@ -54,22 +54,22 @@ def predict(data_pred, model, output_path): if __name__ =='__main__': - df = load_lib('data/spectral_lib/first_lib.parquet') - df_2 = extract_sequence(df).reset_index(drop=True) - df_2.to_csv('data/spectral_lib/data_uniprot_base.csv', index=False) - - - - # args = load_args() - # - # model = ModelTransformer(encoder_ff=args.encoder_ff, decoder_rt_ff=args.decoder_rt_ff, - # n_head=args.n_head, encoder_num_layer=args.encoder_num_layer, - # decoder_rt_num_layer=args.decoder_rt_num_layer, drop_rate=args.drop_rate, - # embedding_dim=args.embedding_dim, acti=args.activation, norm=args.norm_first) - # - # model.load_state_dict(torch.load(args.model_weigh, weights_only=True)) - # - # data_test = load_data(data_source=args.dataset_test, batch_size=args.batch_size, length=30, mode=args.split_test, - # seq_col=args.seq_test) - # - # predict(data_test, model, args.output) \ No newline at end of file + # df = load_lib('data/spectral_lib/first_lib.parquet') + # df_2 = extract_sequence(df).reset_index(drop=True) + # df_2.to_csv('data/spectral_lib/data_uniprot_base.csv', index=False) + + + + args = load_args() + + model = ModelTransformer(encoder_ff=args.encoder_ff, decoder_rt_ff=args.decoder_rt_ff, + n_head=args.n_head, encoder_num_layer=args.encoder_num_layer, + decoder_rt_num_layer=args.decoder_rt_num_layer, drop_rate=args.drop_rate, + embedding_dim=args.embedding_dim, acti=args.activation, norm=args.norm_first) + + model.load_state_dict(torch.load(args.model_weigh, weights_only=True)) + + data_test = load_data(data_source=args.dataset_test, batch_size=args.batch_size, length=30, mode=args.split_test, + seq_col=args.seq_test) + + predict(data_test, model, args.output) \ No newline at end of file