diff --git a/diann_lib_processing.py b/diann_lib_processing.py index 419754dd075fe26e9b17636ac7aaf70af98f13c6..5228eeaa9e7fe0c17ef8e862d19794ab68b36fee 100644 --- a/diann_lib_processing.py +++ b/diann_lib_processing.py @@ -54,20 +54,20 @@ if __name__ =='__main__': # df_2 = extract_sequence(df).reset_index(drop=True) # df_2.to_csv('./data/spectral_lib/data_uniprot_base.csv', index=False) - df = pd.read_csv('spectral_lib/data_uniprot_base.csv') - df['sequence']=df['sequence'].map(lambda x:x.replace('M(UniMod:35)','-OxM-')) - df.to_csv('spectral_lib/data_uniprot_base.csv') - - # # args = load_args() - # - # model = ModelTransformer(encoder_ff=args.encoder_ff, decoder_rt_ff=args.decoder_rt_ff, - # n_head=args.n_head, encoder_num_layer=args.encoder_num_layer, - # decoder_rt_num_layer=args.decoder_rt_num_layer, drop_rate=args.drop_rate, - # embedding_dim=args.embedding_dim, acti=args.activation, norm=args.norm_first) - # - # model.load_state_dict(torch.load(args.model_weigh, weights_only=True)) - # - # data_test = load_data(data_source=args.dataset_test, batch_size=args.batch_size, length=30, mode=args.split_test, - # seq_col=args.seq_test) - # - # predict(data_test, model, args.output) \ No newline at end of file + # df = pd.read_csv('spectral_lib/data_uniprot_base.csv') + # df['sequence']=df['sequence'].map(lambda x:x.replace('M(UniMod:35)','-OxM-')) + # df.to_csv('spectral_lib/data_uniprot_base.csv') + + args = load_args() + + model = ModelTransformer(encoder_ff=args.encoder_ff, decoder_rt_ff=args.decoder_rt_ff, + n_head=args.n_head, encoder_num_layer=args.encoder_num_layer, + decoder_rt_num_layer=args.decoder_rt_num_layer, drop_rate=args.drop_rate, + embedding_dim=args.embedding_dim, acti=args.activation, norm=args.norm_first) + + model.load_state_dict(torch.load(args.model_weigh, weights_only=True)) + + data_test = load_data(data_source=args.dataset_test, batch_size=args.batch_size, length=30, mode=args.split_test, + seq_col=args.seq_test) + + predict(data_test, model, args.output) \ No newline at end of file