From 21015384f0f90e5a0a1dfed1d43aa9359bfdfc30 Mon Sep 17 00:00:00 2001 From: Schneider Leo <leo.schneider@etu.ec-lyon.fr> Date: Mon, 5 May 2025 13:10:53 +0200 Subject: [PATCH] add : print confidence matrix construction --- image_ref/main.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/image_ref/main.py b/image_ref/main.py index 20a099ff..2b53852e 100644 --- a/image_ref/main.py +++ b/image_ref/main.py @@ -228,6 +228,7 @@ def make_prediction_duo(model, data, f_name, f_name2): label = label.long() specie = torch.argmin(label) + if torch.cuda.is_available(): imaer = imaer.cuda() imana = imana.cuda() @@ -235,6 +236,8 @@ def make_prediction_duo(model, data, f_name, f_name2): label = label.cuda() output = model(imaer, imana, img_ref) confidence = soft_max(output) + print(label) + print(confidence) confidence_pred_list[specie].append(confidence[:, 0].data.cpu().numpy()) # Mono class output (only most postive paire) output = torch.argmax(output[:, 0]) @@ -248,8 +251,10 @@ def make_prediction_duo(model, data, f_name, f_name2): cf_matrix = confusion_matrix(y_true, y_pred) confidence_matrix = np.zeros((n_class, n_class)) for i in range(n_class): + print('species ',classes[i],' nb sample test : ',len(confidence_pred_list[i])) confidence_matrix[i] = np.mean(confidence_pred_list[i], axis=0) + df_cm = pd.DataFrame(cf_matrix / np.sum(cf_matrix, axis=1)[:, None], index=[i for i in classes], columns=[i for i in classes]) print('Saving Confusion Matrix') @@ -267,6 +272,8 @@ def make_prediction_duo(model, data, f_name, f_name2): plt.savefig(f_name2) + + def save_model(model, path): print('Model saved') torch.save(model.state_dict(), path) -- GitLab