diff --git a/image_ref/config.py b/image_ref/config.py index 3676bcdc2f4702c4d0578e750798b8f69a7a4662..3f96b9eb85e5be7b488e249318e3a753377e08a5 100644 --- a/image_ref/config.py +++ b/image_ref/config.py @@ -4,7 +4,7 @@ import argparse def load_args_contrastive(): parser = argparse.ArgumentParser() - parser.add_argument('--epoches', type=int, default=3) + parser.add_argument('--epoches', type=int, default=1) parser.add_argument('--save_inter', type=int, default=50) parser.add_argument('--eval_inter', type=int, default=1) parser.add_argument('--noise_threshold', type=int, default=0) diff --git a/image_ref/main.py b/image_ref/main.py index b9b861112b4e15bc4102cc3cf8e5dfdcc439eaf5..3d983bc765b526e5298f9d7b5aaaa26157f664b2 100644 --- a/image_ref/main.py +++ b/image_ref/main.py @@ -160,18 +160,12 @@ def make_prediction_duo(model, data, f_name, f_name2): img_ref = img_ref.cuda() label = label.cuda() output = model(imaer,imana,img_ref) - print(output, label) confidence_pred_list[specie].append(output[:,0].data.cpu().numpy()) #Mono class output (only most postive paire) output = torch.argmax(output[:,0]) label = torch.argmin(label) - - print(output, label) - y_pred.extend(output) - - label = torch.argmin(label) - print(output, label) - y_true.extend(label) # Save Truth + y_pred.append(output.tolist()) + y_true.append(label.tolist()) # Save Truth # constant for classes # Build confusion matrix