diff --git a/image_ref/main.py b/image_ref/main.py index d72f097c762668b76f4fe041b50ce7b24332694e..b47d1233a5f73d207cc22195963a6c92818b128b 100644 --- a/image_ref/main.py +++ b/image_ref/main.py @@ -22,6 +22,9 @@ def train_duo(model, data_train, optimizer, loss_function, epoch, wandb): param.requires_grad = True for imaer, imana, img_ref, label in data_train: + imaer = imaer.float() + imana = imana.float() + img_ref = img_ref.float() label = label.long() if torch.cuda.is_available(): imaer = imaer.cuda() @@ -55,6 +58,9 @@ def val_duo(model, data_test, loss_function, epoch, wandb): param.requires_grad = False for imaer, imana, img_ref, label in data_test: + imaer = imaer.float() + imana = imana.float() + img_ref = img_ref.float() imaer = imaer.transpose(0, 1) imana = imana.transpose(0, 1) img_ref = img_ref.transpose(0, 1) @@ -107,7 +113,7 @@ def run_duo(args): # load model model = Classification_model_duo_contrastive(model=args.model, n_class=2) - model.double() + model.float() # load weight if args.pretrain_path is not None: print('Model weight loaded') @@ -197,6 +203,9 @@ def make_prediction_duo(model, data, f_name, f_name2): soft_max = nn.Softmax(dim=1) # iterate over test data for imaer, imana, img_ref, label in data: + imaer = imaer.float() + imana = imana.float() + img_ref = img_ref.float() imaer = imaer.transpose(0, 1) imana = imana.transpose(0, 1) img_ref = img_ref.transpose(0, 1) diff --git a/main_ray.py b/main_ray.py index a45202e864f59f5f7ce4ab4184fef1f4f6b40f45..6734ecafe76008e5b48c822efa667ef6b75c5260 100644 --- a/main_ray.py +++ b/main_ray.py @@ -20,7 +20,7 @@ def train_model(config,args): # load data - data_train, data_test = load_data_duo(dataset_dir=args.dataset_dir, + data_train, data_test = load_data_duo(base_dir=args.dataset_dir, batch_size=args.batch_size, noise_threshold=config['noise'], )