From 7c72e9d43dcd34e01030ac955105511eac5dcad1 Mon Sep 17 00:00:00 2001
From: Maxime MORGE <maxime.morge@univ-lille.fr>
Date: Mon, 27 Jan 2025 14:08:29 +0100
Subject: [PATCH] LLM4AAMAS : add license

---
 README.html | 272 ++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 272 insertions(+)
 create mode 100644 README.html

diff --git a/README.html b/README.html
new file mode 100644
index 0000000..800e370
--- /dev/null
+++ b/README.html
@@ -0,0 +1,272 @@
+<?xml version="1.0" encoding="UTF-8" ?>
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
+	"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
+
+<html xmlns="http://www.w3.org/1999/xhtml">
+
+<head>
+<title>README.html</title>
+<meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
+
+</head>
+
+<body>
+
+<h1 id="llm4aamas">LLM4AAMAS</h1>
+<p>Generative Autonomous Agents and Multi-Agent Systems (AAMAS) offer
+promising opportunities for solving problems in open environments and
+simulating complex social dynamics.</p>
+<p>This repository contains a collection of papers and ressources
+related to generative AAMAS. This list is a work in progress and will be
+regularly updated with new resources.</p>
+<h2 id="artificial-intelligence">Artificial Intelligence</h2>
+<ul>
+<li><p><strong><a
+href="https://hal.archives-ouvertes.fr/hal-04245057">Intelligence
+artificielle : une approche moderne (4e édition)</a></strong> <em>Stuart
+Russell, Peter Norvig, Fabrice Popineau, Laurent Miclet, Claire Cadet
+(2021)</em> Publisher: Pearson France</p></li>
+<li><p><strong><a href="https://www.eyrolles.com/">Apprentissage
+artificiel - 3e édition : Deep learning, concepts et
+algorithmes</a></strong> <em>Antoine Cornuéjols, Laurent Miclet, Vincent
+Barra (2018)</em> Publisher: Eyrolles</p></li>
+</ul>
+<h2 id="neural-networks-rnn-transformers">Neural networks (RNN,
+Transformers)</h2>
+<ul>
+<li><p><strong><a href="https://doi.org/10.1038/323533a0">Learning
+representations by back-propagating errors</a></strong> <em>David E.
+Rumelhart, Geoffrey E. Hinton, Ronald J. Williams (1986)</em> Published
+in <em>Nature</em></p></li>
+<li><p><strong><a
+href="https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks">ImageNet
+Classification with Deep Convolutional Neural Networks</a></strong>
+<em>Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton (2012)</em>
+Presented at <em>NeurIPS</em></p></li>
+</ul>
+<h2 id="large-language-models">Large Language Models</h2>
+<ul>
+<li><p><strong><a href="https://arxiv.org/abs/2303.18223">A Survey of
+Large Language Models</a></strong> <em>Wayne Xin Zhao, Kun Zhou, Junyi
+Li, et al. (2024)</em> Published on <em>arXiv</em></p></li>
+<li><p><strong><a href="https://arxiv.org/abs/2402.01680">Large Language
+Model based Multi-Agents: A Survey of Progress and
+Challenges</a></strong> <em>Taicheng Guo et al. (2024)</em> Published on
+<em>arXiv</em> arXiv:2402.01680 [cs.CL]</p></li>
+<li><p><strong><a
+href="https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf">Improving
+language understanding by generative pre-training</a></strong> <em>Alec
+Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever (2018)</em>
+Published by OpenAI</p></li>
+<li><p><strong><a
+href="https://www.aclweb.org/anthology/N19-1423/">BERT: Pre-training of
+Deep Bidirectional Transformers for Language Understanding</a></strong>
+<em>Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
+(2019)</em> Presented at <em>NAACL-HLT</em></p></li>
+<li><p><strong><a href="https://arxiv.org/abs/1409.3215">Sequence to
+Sequence Learning with Neural Networks</a></strong> <em>Ilya Sutskever,
+Oriol Vinyals, Quoc V. Le (2014)</em> Published on
+<em>arXiv</em></p></li>
+<li><p><strong><a href="https://arxiv.org/abs/1406.1078">Learning Phrase
+Representations using RNN Encoder-Decoder for Statistical Machine
+Translation</a></strong> <em>Kyunghyun Cho, Bart van Merrienboer, Caglar
+Gulcehre, et al. (2014)</em> Published on <em>arXiv</em></p></li>
+</ul>
+<h2 id="tuning">Tuning</h2>
+<h3 id="instruction-tuning">Instruction tuning</h3>
+<ul>
+<li><p><strong><a href="https://arxiv.org/abs/2106.09685">LoRA: Low-Rank
+Adaptation of Large Language Models</a></strong> <em>Edward J. Hu,
+Yelong Shen, Phillip Wallis, et al. (2021)</em> Published on
+<em>arXiv</em></p></li>
+<li><p><strong><a
+href="https://papers.nips.cc/paper/2020/file/fc2c7f9a3f3f86cde5d8ad2c7f7e57b2-Paper.pdf">Language
+Models are Few-Shot Learners</a></strong> <em>Tom Brown, Benjamin Mann,
+Nick Ryder, et al. (2020)</em> Presented at <em>NeurIPS</em></p></li>
+</ul>
+<h3 id="alignement-tuning">Alignement tuning</h3>
+<ul>
+<li><strong><a
+href="https://papers.nips.cc/paper/2022/hash/17f4c5f98073d1fb95f7e53f5c7fdb64-Abstract.html">Training
+language models to follow instructions with human feedback</a></strong>
+<em>Long Ouyang, Jeffrey Wu, Xu Jiang, et al. (2022)</em> Presented at
+<em>NeurIPS</em></li>
+</ul>
+<h2 id="existing-llms">Existing LLMs</h2>
+<p>Many models are available at the following URLs:<br />
+<a href="https://www.nomic.ai/gpt4all">https://www.nomic.ai/gpt4all</a>
+and<br />
+<a
+href="https://huggingface.co/models">https://huggingface.co/models</a>.</p>
+<ul>
+<li><p><strong><a href="https://arxiv.org/abs/2303.08774">GPT-4
+Technical Report</a></strong> <em>OpenAI Team (2024)</em> Published on
+<em>arXiv</em></p></li>
+<li><p><strong><a href="https://arxiv.org/abs/2407.21783">The Llama 3
+Herd of Models</a></strong> <em>Meta Team (2024)</em> Published on
+<em>arXiv</em></p></li>
+<li><p><strong><a
+href="https://github.com/tatsu-lab/stanford_alpaca">Stanford Alpaca: An
+Instruction-Following LLaMa Model</a></strong> <em>Rohan Taori, Ishaan
+Gulrajani, Tianyi Zhang, Yann Dubois, et al. (2023)</em> Published on
+<em>GitHub</em></p></li>
+<li><p><strong><a href="https://arxiv.org/abs/2401.04088">Mixtral of
+Experts</a></strong><br />
+<em>Mistral AI team (2024)</em><br />
+Published on <em>arXiv</em></p></li>
+<li><p><strong><a href="https://arxiv.org/abs/2310.06825">Mistral
+7B</a></strong><br />
+<em>Mistral AI team (2023)</em><br />
+Published on <em>arXiv</em></p></li>
+<li><p><strong><a href="https://arxiv.org/abs/">The Lucie-7B LLM and the
+Lucie Training Dataset: Open Resources for Multilingual Language
+Generation</a></strong> <em>Olivier Gouvert, Julie Hunter, Jérôme
+Louradour, Evan Dufraisse, Yaya Sy, Pierre-Carl Langlais, Anastasia
+Stasenko, Laura Rivière, Christophe Cerisara, Jean-Pierre Lorré
+(2025)</em></p></li>
+</ul>
+<h2 id="prompt-engineering">Prompt engineering</h2>
+<h3 id="icl">ICL</h3>
+<ul>
+<li><strong>A Survey on In-context Learning</strong> <em>Qingxiu Dong,
+Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing
+Xu, Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, Zhifang Sui (2024)</em>
+Presented at the <em>Conference on Empirical Methods in Natural Language
+Processing (EMNLP)</em> Location: Miami, Florida, USA Published by:
+Association for Computational Linguistics</li>
+</ul>
+<h3 id="cot">CoT</h3>
+<ul>
+<li><strong><a
+href="https://papers.nips.cc/paper/52604-chain-of-thought-prompting-elicits-reasoning-in-large-language-models">Chain-of-Thought
+Prompting Elicits Reasoning in Large Language Models</a></strong>
+<em>Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, et
+al. (2022)</em> Presented at <em>NeurIPS</em></li>
+</ul>
+<h3 id="rag">RAG</h3>
+<ul>
+<li><strong><a
+href="https://arxiv.org/abs/2312.10997">Retrieval-Augmented Generation
+for Large Language Models: A Survey</a></strong> <em>Yunfan Gao, Yun
+Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei
+Sun, Meng Wang, Haofen Wang (2024)</em> Published on <em>arXiv</em></li>
+</ul>
+<h2 id="generative-autonomous-agents">Generative Autonomous Agents</h2>
+<ul>
+<li><p><strong>A Survey on Large Language Model Based Autonomous
+Agents</strong> Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang,
+Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin
+Zhao, Zhewei Wei, Jirong Wen (2024)<em> Published in </em>Frontiers of
+Computer Science* (Volume 18, Issue 6, Pages</p>
+<ol start="186345" type="1">
+<li>Publisher: Springer</li>
+</ol></li>
+<li><p><strong><a
+href="https://papers.nips.cc/paper/2023/hash/38154-hugginggpt-solving-ai-tasks-with-chatgpt-and-its-friends-in-hugging-face.pdf">HuggingGPT:
+Solving AI Tasks with ChatGPT and its Friends in Hugging
+Face</a></strong> <em>Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
+Weiming Lu, Yueting Zhuang (2023)</em> Presented at <em>Advances in
+Neural Information Processing Systems (NeurIPS)</em> Pages: 38154–38180
+Publisher: Curran Associates, Inc. Volume: 36</p></li>
+<li><p><strong><a
+href="https://papers.nips.cc/paper/86759-toolformer-language-models-can-teach-themselves-to-use-tools">Toolformer:
+Language Models Can Teach Themselves to Use Tools</a></strong> <em>Timo
+Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, et
+al. (2023)</em> Presented at <em>NeurIPS</em></p></li>
+<li><p><strong><a href="https://arxiv.org/abs/2309.02427">Cognitive
+Architectures for Language Agents</a></strong><br />
+<em>Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, Thomas L.
+Griffiths (2024)</em><br />
+Published on <em>arXiv</em></p></li>
+</ul>
+<h3 id="generative-autonomous-agents-on-the-shelf">Generative Autonomous
+Agents on the shelf</h3>
+<ul>
+<li><p><a href="https://www.langchain.com">LangChain</a> is an
+open-source framework for designing prompts for LLMs. It can be used to
+define high-level reasoning sequences, conversational agents, RAGs
+(Retrieval-Augmented Generation), document summaries, or even the
+generation of synthetic data.</p></li>
+<li><p><a href="https://langchain-ai.github.io/langgraph">LangGraph</a>
+is a low-level library for the design of cognitive architecture for
+autonomous agents, whose reasoning engine is an LLM.</p></li>
+<li><p><a
+href="https://github.com/Significant-Gravitas/AutoGPT">AutoGPT</a> is a
+platform for the creation, deployment, and management of generative
+agents.</p></li>
+<li><p><a href="https://github.com/team-openpm/workgpt">WorkGPT</a> is
+similar to AutoGPT</p></li>
+</ul>
+<h2 id="generative-mas">Generative MAS</h2>
+<ul>
+<li><p><strong><a
+href="https://doi.org/10.1057/s41599-024-01235-9">Large language models
+empowered agent-based modeling and simulation: A survey and
+perspectives</a></strong> **Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan,
+Jingtao Ding, Zhilun Zhou, Fengli Xu, Yong Li (2024)* Published in
+<em>Humanities and Social Sciences Communications</em>, Volume 11, Issue
+1, Pages 1–24</p></li>
+<li><p><strong><a
+href="https://dl.acm.org/doi/10.1145/3526110.3545617">Social Simulacra:
+Creating Populated Prototypes for Social Computing Systems</a></strong>
+<em>Joon Sung Park, Lindsay Popowski, Carrie Cai, Meredith Ringel
+Morris, Percy Liang, Michael S. Bernstein (2022)</em> Published in
+<em>Proceedings of the 35th Annual ACM Symposium on User Interface
+Software and Technology</em> Articleno: 74, Pages: 18, Location: Bend,
+OR, USA</p></li>
+<li><p><strong><a
+href="https://dl.acm.org/doi/10.1145/3586184.3594067">Generative Agents:
+Interactive Simulacra of Human Behavior</a></strong> <em>Joon Sung Park,
+Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang,
+Michael S. Bernstein (2023)</em> Published in <em>Proceedings of the
+36th Annual ACM Symposium on User Interface Software and Technology</em>
+Articleno: 2, Pages: 22, Location: San Francisco, CA, USA, Series: UIST
+’23</p></li>
+<li><p><strong><a
+href="https://openreview.net/forum?id=HywBMyh6JGR">Agentverse:
+Facilitating multi-agent collaboration and exploring emergent
+behaviors</a></strong> <em>Weize Chen, Yusheng Su, Jingwei Zuo, Cheng
+Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu, Yi-Hsin Hung, Chen
+Qian, et al. (2023)</em> Published in <em>The Twelfth International
+Conference on Learning Representations (ICLR 2023)</em></p></li>
+<li><p><strong><a href="https://arxiv.org/abs/2305.16960">Training
+socially aligned language models on simulated social
+interactions</a></strong> <em>Ruibo Liu, Ruixin Yang, Chenyan Jia, Ge
+Zhang, Denny Zhou, Andrew M. Dai, Diyi Yang, Soroush Vosoughi
+(2023)</em> Published on <em>arXiv</em> arXiv:2305.16960</p></li>
+<li><p><a href="https://arxiv.org/abs/2307.14984">S3: Social-network
+Simulation System with Large Language Model-Empowered Agents</a>**
+<em>Chen Gao, Xiaochong Lan, Zhihong Lu, Jinzhu Mao, Jinghua Piao,
+Huandong Wang, Depeng Jin, Yong Li (2023)</em> Published on
+<em>arXiv</em> arXiv:2307.14984</p></li>
+</ul>
+<h3 id="generative-mas-on-the-shelf">Generative MAS on the shelf</h3>
+<ul>
+<li><p><a href="https://github.com/geekan/MetaGPT">MetaGPT</a> is a
+framework for creating generative MAS dedicated to software
+development.</p></li>
+<li><p><a href="https://github.com/camel-ai/camel">CAMEL</a> proposes a
+generative multi-agent framework for accomplishing complex
+tasks.</p></li>
+<li><p><a href="https://github.com/microsoft/autogen">AutoGen</a> is a
+versatile open-source framework for creating generative multi-agent
+systems.</p></li>
+</ul>
+<h2 id="authors">Authors</h2>
+<p>Maxime MORGE</p>
+<h2 id="license">License</h2>
+<p>This program is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by the
+Free Software Foundation, either version 3 of the License, or (at your
+option) any later version.</p>
+<p>This program is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
+Public License for more details.</p>
+<p>You should have received a copy of the GNU General Public License
+along with this program. If not, see <a
+href="http://www.gnu.org/licenses/"
+class="uri">http://www.gnu.org/licenses/</a>.</p>
+
+</body>
+</html>
-- 
GitLab