SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS

Consensus-Based Decentralized Auctions for
Robust Task Allocation

Han-Lim Choi, Member, IEEE, Luc Brunet, and Jonathan P. How, Senior Member, IEEE

Abstract—This paper addresses task allocation to coordinate
a fleet of autonomous vehicles by presenting two decentralized
algorithms: consensus-based auction algorithm (CBAA) and its
generalization to the multi-assignment problem, consensus-based
bundle algorithm (CBBA). These algorithms utilize a market-
based decision strategy as the mechanism for decentralized task
selection, and use a consensus routine based on local communi-
cation as the conflict resolution mechanism to achieve agreement
on the winning bid values. Under reasonable assumptions on
the scoring scheme, both of the proposed algorithms are proven
to guarantee convergence to a conflict-free assignment, and it
is shown that the converged solutions exhibit provable worst-
case performance. It is also demonstrated that CBAA and
CBBA produce conflict-free feasible solutions that are robust
to both inconsistencies in the situational awareness across the
fleet and variations in the communication network topology.
Numerical experiments confirm superior convergence properties
and performance when compared to existing auction-based task
allocation algorithms.

I. INTRODUCTION

Cooperation amongst a fleet of robotic agents is necessary
in order to improve the overall performance of any mission.
Many different methods exist that enable a group of such
agents the ability to distribute tasks amongst themselves from
a known task list. Centralized planners [1-7] communicate
their situational awareness (SA) to a centralized server that
generates a plan for the entire fleet. These types of systems
are useful since they place much of the heavy processing
requirements safely on the ground, making the robots smaller
and cheaper to build. On the other hand, agents must consis-
tently communicate with a fixed location, reducing the possible
mission ranges that the fleet can handle, as well as creating a
single point of failure in the mission.

Some types of decentralized methods have thus been devel-
oped by instantiating the centralized planner on each agent
in order to increase the mission range, as well as remove
the single point of failure [8—11]. These methods often as-
sume perfect communication links with infinite bandwidth
since each agent must have the same SA. If this is not the
case, it has been shown that realistic networks with limited

This work is funded in part by AFOSR STTR # FA9550-06-C-0088 (with
Dr. Jim Paduano at Aurora Flight Sciences) and by AFOSR # FA9550-08-
1-0086. An earlier version of this work was presented in [54] while refined
theoretical proofs and extensive numerical results have been included in this
work.

H.-L. Choi and J. P. How are with the Dept. of Aeronautics and Astro-
nautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,
E-mails: {hanlimc, jhow} @mit.edu

L. Brunet is with Frontline Robotics, Ottawa, ON K4P 1A2, Canada, E-
mail: lbrunet@mit.edu

H.-L. Choi and L. Brunet are equally contributing authors, and H.-L. Choi
is the corresponding author.

communication can significantly affect the fleet’s ability to
coordinate their actions [12]. In this case, inconsistencies
in the SA might cause conflicting assignments, since each
agent will be performing the centralized optimization with a
different information set. Thus, decentralized algorithms gen-
erally make use of consensus algorithms [13—-18] to converge
on a consistent SA before performing the assignment [19].
These consensus algorithms can guarantee convergence of the
SA over many different dynamic network topologies [20-22],
allowing the fleet to perform the assignment in highly dynamic
and uncertain environments.

Although consensus algorithms allow a fleet of vehicles to
converge on the SA and perform an assignment over many
generic network topologies, convergence to a consistent SA
may take a significant amount of time and can often require
transmitting large amounts of data to do so [23]. This can
cause severe latency in low bandwidth environments and can
substantially increase the time it takes to find an assignment
for the fleet. To resolve this, approaches that do not aim
for perfect consensus on the SA have been suggested: [23]
enhanced robustness to inconsistent SA by allowing agents
to communicate plans as well as SA, while [24] restricted
communication occurrence only to the cases there is mismatch
between plans based on the local knowledge and on the
estimated global knowledge. However, these algorithms might
still take a significant amount of time to produce a final
solution, because the first requires each agent to receive plans
from all other agents, and the second might still need perfect
consensus to guarantee conflict-free solutions.

Auction algorithms [25-28] are another method for task
assignment that have been shown to efficiently produce sub-
optimal solutions [29]. Generally, agents place bids on tasks
and the highest bid wins the assignment. The traditional way
of computing the winner is to have a central system act as the
auctioneer to receive and evaluate each bid in the fleet [30-32].
Once all of the bids have been collected, a winner is selected
based on a pre-defined scoring metric. In other formulations,
the central system is removed and one of the bidders acts as
the auctioneer [33-37]. In these types of algorithms, agents
bid on tasks with values based solely on their own SA. It
is known that each task will only be assigned to a single
agent since only one agent is selected by the auctioneer as the
winner. Because of this, most auction algorithms can naturally
converge to a conflict-free solutions even with inconsistencies
in their SA. The downside of these approaches is that the
bids from each agent must somehow be transmitted to the
auctioneer. This limits the network topologies that can be used
since a connected network is required between the agents in
order to route all of the bid information. A common method

to avoid this is to sacrifice mission performance by running
the auction solely within the set of direct neighbors of the
auctioneer [38, 39].

Thus, algorithms that use consensus before planning are
generally more robust to network topologies, while traditional
auction approaches are computationally efficient and robust to
inconsistencies in the SA. This paper aims at combining both
approaches in order to take advantage of properties from both
allocation strategies. This work employs the auction approach
for decentralized task selection, and the consensus proce-
dure for decentralized conflict resolution. The key difference
from previous consensus-based methods is that the consensus
routine is used to achieve agreement on the winning bid
values instead of situational awareness. For single-assignment
problem in which at most one task can be assigned to a
single agent, the consensus-based auction algorithm (CBAA)
is presented; then, this algorithm is extended to the multi-
assignment problem in which a sequence of multiple tasks
is assigned to each agent by developing the consensus-based
bundle algorithm (CBBA).

Various efforts have been made in the literature to extend
the auction class of algorithms to the multi-assignment case.
In many cases, this is done by running sequential auctions and
awarding a single task at a time until there are no remaining
tasks left to assign [33, 39, 40]. Bundle approaches [41-44]
have been developed that group common tasks into bundles
and allowing agents to bid on groups rather than the individual
tasks. By grouping similar tasks, these types of algorithms
will converge faster than their sequential counterparts and may
have improved value in the assignment since they can logically
group tasks that have commonalities. However, difficulties can
arise in the computational cost in enumerating all possible
bundle combinations, and in determining the winner amongst
these bundles. The winner determination has been shown to be
NP-complete [45], and only heuristic methods [46—48] are
available. CBBA, however, builds a single bundle and bids
on the included tasks based on the improvement they provide
to the bundle. Computation is reduced by considering only
a single bundle while convergence times are improved over
sequential auctions since multiple tasks can be assigned in
parallel. In this work, it is analytically shown that CBBA
produces the same solution as some centralized sequential
greedy procedure, and this solution guarantees 50% optimality.
Also, numerical simulations verify that the proposed algorithm
outperforms existing sequential auction methods in terms of
quick convergence and small optimality gap.

II. BACKGROUND
A. Task Allocation Problems

The goal of task allocation is, given a list of NN, tasks
and N, agents, to find a conflict-free matching of tasks to
agents that maximizes some global reward. An assignment
is said to be free of conflicts if each task is assigned to no
more than one agent. Each agent can be assigned a maximum
of L, tasks, and the assignment is said to be completed
once Ny, 2 min{N;, N,,L;} tasks have been assigned.
The global objective function is assumed to be a sum of

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS

local reward values, while each local reward is determined
as a function of the tasks assigned to each agent. The task
assignment problem described above can be written as the
following integer (possibly nonlinear) program with binary
decision variables x;; that indicate whether or not task j is
assigned to agent i:

max

PO (;-Vél Cij(xivpi)mij)

subject to:

¥ <Ly, Vi€l

Sl <L Vied (1)

Z’f\iﬁ Z;V:tl Tij = min £ min{Nt, NuLt}
z;; €{0,1}, V(i,j) €I x J

where xz;; = 1 if agent ¢ is assigned to task j, and x; €
{0,1}™t is a vector whose j-th element is ;. The index
sets are defined as Z 2 {1,...,N,} and J 2 {1,...,N:}.
The vector p; € (J U {0})%* represents an ordered sequence
of tasks for agent ¢; its k-th element is 5 € J if agent @
conducts j at the k-th point along the path, and becomes (
(denoting an empty task), if agent 7 conducts less than & tasks.
The summation term inside the parenthesis represents the local
reward for agent i. The score function is assumed to satisfy
¢ij(x;,pi) > 0 and can be any nonnegative function of either
assignment x; or path p; (usually not a function of both). In
the context of task allocation for autonomous vehicles with
mobility, the core function often represents a path-dependent
reward such as the path length, the mission completion time,
and the time-discounted value of target.

One special case of interest of the above formulation is
when L, = 1 and ¢;;(x;,p;) = ¢;; without dependency
on x; and p;; in this paper, this special case will be called
single assignment in contrast to the general multi-assignment
formulation in (1). The single assignment problem is important
as it can represent a higher-level abstraction of a multi-
assignment problem with a mathematically simpler form.

This work will first present an algorithm for the single
assignment case in section III to provide conceptual insights
on the consensus-based auction idea, and then extend it to
the multi-assignment case in section IV with a more detailed
algorithmic description.

B. Auction Algorithms

One of the key concepts this work is based on is the auction
method for assignment problems. The auction algorithm was
first proposed in [25] as a polynomial-time algorithm for the
single assignment problem, and many modifications and exten-
sions have been made to address multi assignment problems
since then. In centralized auction systems [25], the value of
a task is given by ¢;; = a;; — pj, where a;; is the reward of
assigning task j to agent 4 and p; is the global price of task j.
As the assignment progresses, the value of p; is continuously
updated to reflect the current bid for the task. Auctions are
done in rounds and continue until all agents are assigned to
the task giving it the maximum value (max; c;;). Each round
selects some agent ¢ that has not been assigned a task and

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 3

finds out j* £ argmax; (a;; —p;). If task j* has already been
assigned to another agent, the two agents swap tasks. Once this
is done, the price of task j* is increased such that the value
cij+ is the same as the second highest valued task in agent 4’s
list. Repeating this leads to every agent being assigned to the
task giving it the maximum value.

In decentralized methods, the task scores are calculated
using c;; = a;; — pi;, where p;; is the local price for
task j. The bids are generally submitted to an auctioneer
[30, 33, 36] to determine the winner based on the highest
bids ¢* = argmax; c;;. Other decentralized auction algorithms
have been developed that remove the auctioneer in place of
different conflict resolution approaches, and allow tasks to be
bid on asynchronously [49, 50]. The decentralized auction
approach developed herein uses a consensus algorithm for
conflict resolution without the need of any auctioneer.

C. Consensus Algorithms

For decentralized systems, cooperating agents often require
a globally consistent situational awareness (SA) [18]. In a
dynamic environment with sensor noise and varying network
topologies, maintaining consistent SA throughout the fleet can
be very difficult. Consensus algorithms are used in these cases
to enable the fleet to converge on some specific information set
before generating a plan [19]. Examples of typical information
sets could be detected target positions, target classifications,
and agent positions. These consensus approaches have been
shown to guarantee convergence over many different dynamic
network topologies [20-22].

In this paper, the consensus idea is used to converge on the
assignment value rather than the situational awareness. Thus,
a maximum consensus strategy is implemented such that the
current assignment will be overwritten if a higher value is
received. By doing this, the network convergence properties
found in the consensus algorithm literature can be exploited
to converge on the assignment.

III. CONSENSUS-BASED AUCTION ALGORITHM

The consensus-based auction algorithm (CBAA) is a sin-
gle assignment strategy that makes use of both auction and
consensus. The algorithm consists of iterations between two
phases. The first phase of the algorithm is the auction process,
while the second is a consensus algorithm that is used to
converge on a winning bids list. By iterating between the two,
CBAA can exploit convergence properties of decentralized
consensus algorithms as well as the robustness and compu-
tational efficiency of the auction algorithms.

A. Phase 1: The Auction Process

The first phase of the algorithm is the auction process. Here,
each agent places a bid on a task asynchronously with the rest
of the fleet. Let ¢;; > 0 be the bid that agent 7 places for task
j. Two vectors of length N, that each agent stores and updates
throughout the assignment process are also defined. The first
vector is X;, which is agent ¢’s task list, where x;; = 1 if agent
1 has been assigned to task j, and O otherwise. The second

Algorithm 1 CBAA Phase 1 for agent ¢ at iteration ¢
1: procedure SELECT TASK(c;,x;(t — 1),y;(t — 1))
2 Xl(t) = Xl‘(t — 1)

3 yit) =yt —1)

4 if Zj Tij (t) = 0 then

5: hij = Mcij > yi; (1), Vi€ T
6

7

8

if h; # 0 then

Ji = argmaxj hij * Cij

xi”]i (t) =1
9: Yi,g, (1) = cig,
10: end if
11: end if

12: end procedure

vector is the winning bids list y;. This list will be further
developed in section III-B; but it can be assumed for now that
Yi; 1s an as up-to-date as possible estimate of the highest bid
made for each task thus far. These two vectors are initialized
as zero vectors. Using the winning bids list, the list of valid
tasks h; can be generated using

hij = W(cij > yij), Vi €T (2)

where I(-) is the indicator function that is unity if the argument
is true and zero otherwise.

Algorithm 1 shows the procedure of agent i’s phase 1 at
iteration ¢ where one iteration consists of a single run of
phase 1 and phase 2. Note that each agent’s iteration count
can be different, which allows for the possibility that each
agent has different iteration periods. An unassigned agent @
(equivalently, an agent with >, x;;(t) = 0) first computes the
valid task list h;. If there are valid tasks, it then selects a task
J; giving it the maximum score based on the current list of
winning bids (line 7 of Algorithm 1), and updates its task x;
and the winning bids list y; accordingly. Also, in the case that
the agent has already been assigned a task (3 j Tij # 0), this
selection process is skipped and the agent moves to phase 2.

B. Phase 2: The Consensus Process

The second phase of the CBAA is the consensus section of
the algorithm. Here, agents make use of a consensus strategy
to converge on the list of winning bids, and use that list to
determine the winner. This allows conflict resolution over all
tasks while not limiting the network to a specific structure.

Let G(7) be the undirected communication network at time
7 with symmetric adjacency matrix G(7). The adjacency
matrix is defined such that g;;(7) = 1 if a link exists between
agents ¢ and k at time 7, and O otherwise. Agents ¢ and k are
said to be neighbors if such a link exists. By convention, every
node has a self-connected edge; in other words, ¢;;(7) = 1, Vi.

At each iteration of phase 2 of the algorithm, agent @
receives the list of winning bids y; from each of its neighbors.
The procedure of phase 2 is shown in Algorithm 1 when agent
1’s t-th iteration corresponds to 7 in real time. The consensus
is performed on the winning bids list y; based on the winning
bids lists received from each neighbor y; for all £ such that
gik = 1 in a way that agent ¢ replaces y;; values with the

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS

Algorithm 2 CBAA Phase 2 for agent ¢ at iteration ¢:

Algorithm 3 CBBA Phase 1 for agent 7 at iteration ¢:

1: SEND y; to k with g;x(7) =1
2: RECEIVE yy, from k with g;x(7) =1
3: procedure UPDATE TASK(g:(7), Yie{k|g:(r)=1} (1) » Ji)

4 yi(t) = maxy gin(7T) - ks (), Vi€ T
5: 2., = argmaxy, gik(7) - Yk, (t)

6 if z; j, # i then

7: i, (t)=0

8 end if

9: end procedure

largest value between itself and its neighbors (line 4). Also, an
agent loses its assignment if it finds that it is outbid by others
for the task it had selected, i.e. z; j, # ¢ (line 6). Also, this
work assumes that ties occurring in determining .J; in phase
1 or z; 5, in phase 2 are resolved in a systematic way. For
example, ties can be avoided with probability one by having
each agent add a very smaller random number to every bid.

Important properties related to convergence and perfor-
mance of CBAA will be discussed in section V and VI along
with those for a generalized CBAA presented in the following
section.

IV. GENERALIZED CBAA: CONSENSUS-BASED BUNDLE
ALGORITHM

As expressed in (1), the scoring function for the multi-
assignment problem can depend on the assignment x; or the
path p;. To address this dependency, previous combinatorial
auction methods [41-44] treated each assignment combination
(bundle) as a single item for bidding which led to complicated
winner selection methods. In this section, CBAA is extended
to the multi-assignment problem by presenting the consensus-
based bundle algorithm (CBBA). In CBBA, each agent has
a list of tasks potentially assigned to itself, but the auction
process is done at the task level rather than at the bundle
level. Similar to CBAA, CBBA consists of iterations between
two phases — bundle construction and conflict resolution.

A. Phase 1: Bundle Construction

The first phase of the CBBA algorithm is the bundle
construction process. In contrast to the bundle algorithms in
[41-44], which enumerate all possible bundles for bidding, in
CBBA, each agent creates just a single bundle and updates it
as the assignment process progresses. During phase 1 of the
algorithm, each agent continuously adds tasks to its bundle
until it is incapable of adding any others. The tasks are added
into the bundle in the following way.

Each agent carries two types of lists of tasks: the bundle
b; and the path p;. Tasks in the bundle are ordered based on
which ones were added first in time, while in the path they
are ordered based on their location in the assignment. Note
that the cardinality of b; and p; cannot be greater than the
maximum assignment size L;. Let SP* be defined as the total
reward value for agent ¢ performing the tasks along the path
pi. In CBBA, if a task j is added to the bundle b, it incurs

1: procedure BUILD BUNDLE(z;(t—1), y;(t—1), b;(t—1))
3 Zz(t) = Zi(t — 1)

4: bz(t) = bz(t — 1)

55 pi(t) =pi(t—1)

6: while |b;| < L; do 4

7 Cij :maxngp”Sfi@”{]} *Slpl,v‘] S j\bl

8 hij =(eij > yij), Vi€ T

9

J; = argmax; ¢;j - hij

10: n; j, = argmax,, S’ipi@"{J”}
11: b; = b; ®end {Ji}

12: Pi = Pi &n, ,, {Ji}

13: i, (t) = cig,

14: Zi, J; (t) =1

15: end while

16: end procedure

the marginal score improvement of

0, if j € b,
Cij bl = . : . . 3
ibd {maxnﬂmszp”@"{y} — 8P otherwise ©)
where | - | denotes the cardinality of the list, and ®,, denotes

the operation that inserts the second list right after the n-th
element of the first list. In the later part of this paper, the notion
of @eng Will also be used to denote the operation to add the
second list at the end of the first one. In other words, the CBBA
scoring scheme inserts a new task to the location that incurs
the largest score improvement, and this value becomes the
marginal score associated with this task given the current path.
Thus, if the task is already included in the path, then it does
not provide any additional improvement in score. Also, it is
assumed that the addition of any new task provides nontrivial
reward; namely, ¢;;[b;] > 0 and the equality holds only when
j € b;.

The score function is initialized as Si{@} = 0, while the path
and bundle is recursively updated as

b; = b; ®ena {Ji}, Pi = Pi ©n, ,, {Ji} “4)
where Ji = argmaxj(cij [b7] X hij), N, J; =
argmax,, Sf"@"{‘]i}, and h;; = I(c;;j > yi;). The above
recursion continues until either |b;| = L; or until h; = 0.

Notice that with (4), a path is uniquely defined for a given
bundle, while multiple bundles might result in the same path.

The first phase of the CBBA is summarized in Algorithm 3.
Each agent carries four vectors: a winning bid list y; € th,
a winning agent list z; € Z™Vt, a bundle b; € (J U {0})*¢,
and the corresponding path p; € (J U {0})L*. Note the
difference between x; used in CBAA and z; in CBBA. In
CBBA, each agent needs information about not only whether
or not it is outbid on the task it selects but also who is assigned
to each task; this enables better assignments based on more
sophisticated conflict resolution rules. These conflict resolution
rules are discussed in detail in the following section.

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 5

B. Phase 2: Conflict Resolution

In CBAA, agents bid on a single task and release it upon
receiving a higher value in the winning bids list. On the
contrary, in CBBA, agents add tasks to their bundle based
on their currently assigned task set. Suppose that an agent is
outbid for a task and thus releases it; then, the marginal score
values for the tasks added to the bundle after this task are no
longer valid. Therefore, the agent also needs to release all the
tasks added after the outbid task. Otherwise, the agent will
make further decisions based on wrong score values, which
may lead to poor performance.

Releasing the tasks in this manner can, however, cause
further complexity in the algorithm. If an agent is able to
release tasks without another member selecting it, a simple
application of the max consensus update on the winning bids
list y; will no longer converge to the appropriate values, since
then the maximum bid observed might no longer be valid.
Therefore, the consensus phase of the algorithm needs to be
modified in order to ensure that these updates are appropriate.

In the multi-assignment consensus stage, three vectors are
communicated for consensus. Two were described in the
bundle construction phase: the winning bids list y; € R™V* and
the winning agent list z; € ZV¢. The third vector s; € RV«
represents the time stamp of the last information update from
each of the other agents. Each time a message is passed, the
time vector is populated with

Tr, if Gik = 1
Sik = . &)
mMaXyy.q,,. =1 Smk, Otherwise.

where 7, is the message reception time.

When agent ¢ receives a message from another agent k, z;
and s; are used to determine which agent’s information is the
most up-to-date for each task. There are three possible actions
agent ¢ can take on task j:

1) update: yi; = Yrj, Zij = Zkj

2) reset: y;; =0, z;; =0

3) leave: Yij = Yij, Zij = Zij-

Table I outlines the decision rules. The first two columns of the
table indicate the agent that each of the sender k and receiver
1 believes to be the current winner for a given task; the third
column indicates the action the receiver should take, where
the default action is leave.

If a bid is changed by the decision rules in Table I, each
agent checks if any of the updated or reset tasks were in their
bundle, and if so, those tasks, along with all of the tasks that
were added to the bundle after them, are released:

yi,bm = 07 Zi,b,‘,n = ®7 vn > ﬁl

6
bin =0, n>n, ©

where b;, denotes the n-th entry of bundle b;, and n; =
min{n : zp,, 7# i}. It should be noted that the wining bid
and the winning agent for the tasks added after b; 5, are reset,
because removal of b, can change scores for all the ensuing
tasks. From here, the algorithm returns to the first phase and
new tasks are added.

Finally, note that CBBA can produce the same solution
as CBAA for the problem with L; = 1. The update of the

x; vector can be equivalently realized by updating b;, and
the conflict resolution step of the CBAA is equivalent to
performing the receiver action rules neglecting sy, vectors, for
only the task that the receiver has selected. Since in CBAA a
task is released only when the agent is outbid on that particular
task, every incoming yj, information is valid if it is larger than
the local information regardless of the agent belief on when
it is sent.

C. Scoring Scheme

1) Diminishing Marginal Gain: One important assumption
on the scoring function is that the value of a task does not
increase as other elements are added to the set before it. In
other words,

cij[bi] > ¢ij[bi Dena b @)

for all b;,b,j such that ((b; ®eng b) ®ena {j}) € (J U
{0})L* where () denotes an empty task. This relation is similar
to the notion of submodularity [51] for a set function except
that the bundle is an ordered list rather than an unordered set;
this work will refer to this condition as diminishing marginal
gain (DMG), and satisfaction of this condition as “being
DMG” in the later part. Since the marginal score of task j
is defined as (3), the condition (7) can also be expressed in
terms of the total score as:

max S;)iGBn{J} _ Szpq
n<|pil

> max max Si(pi@'rn{k})@n{j}_ max S’}Di@m{k}
n<|p;|+1 m<|p;|
3

for all p;, j, k such that ((p; @, {k}) @ {j}) € (FU{D})%.

It is true that not all of the scoring functions of interest
in multi-task allocation satisfy (7). For instance, a scoring
scheme with DMG cannot model some synergism by multiple
selections. However, in the search and exploration problems
for autonomous robots, many reward functions are DMG.
For example, in an exploration mission for robotic vehicles,
discovery of one feature may provide knowledge about the
other targets’ locations; thus, the marginal reward of finding
other target decreases. In a time-sensitive target assignment
problem, the time-discounted reward for a target decreases as
the combat vehicle visits another target first.

In case the scoring scheme is DMG, the following relation
is always satisfied:

m<|p;|

yi7bin 2 yiybim,’ lf n S m. (9)
where b;;, is the k-th entry of agent ¢’s bundle b;, because
Yiibyn = MAXCij (b1 > max cij (b ! Bena by]
(10)
with b 2 {bir,...,by}. In other words, the y value for a
task near the start of the bundle is never smaller than that for
a task near the end.
2) Time-Discounted Reward: In this work, the following
scoring function representing the time-discounted reward will
be considered with specific emphasis [1, 7, 23]:

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS

TABLE 1
ACTION RULE FOR AGENT 7 BASED ON COMMUNICATION WITH AGENT k REGARDING TASK j

Agent k (sender) thinks z;; is

Agent i (receiver) thinks z;; is

Receiver’s Action (default: leave)

1

if yr; > vy;; — update

3 k update
m ¢ {i,k} if Sgm > Sim OF Yr; > y;; — update
none update
i leave
; k reset
m ¢ {i,k} if Sy > Sim — reset
none leave
) if Sgm > Sim and yr; > y;; — update
I if Sgm > Sim — update
else — reset
m Skm > Sim — update

m & {i,k}

n ¢ {i,k,m}

if Sgm > Sim and sk, >S4, — update
if Sgm > Sim and yr; > yi; — update

if Sgn > Sin and Sy, > Sk — reEset

none

none if Sgm > Sim — update
i leave
k update

m ¢ {i, k}

if sgm > Sim — update

none

leave

where \; < 1 is the discounting factor for task j, 77 (p;) is
the estimated time agent ¢ will take to arrive at task location
J along the path p;, and ¢; is the static score associated with
performing task j. The time-discounted reward can model
the search scenario in which uncertainty growth with time
causes degradation of the expected reward for visiting a certain
location, or planning of service routes in which satisfaction
of client diminishes with time. Since the triangular inequality
holds for the actual distance between task locations,

7 (pi @ {k}) = 7/ (pi), Vn,Vk.

In other words, if an agent moves along a longer path, then
it arrives at each of the task locations at later time than if
it moves along a shorter path, resulting in further discounted
score value. Thus, for all nonnegative constants ¢;’s, Sf “in
(11) is DMG.

(12)

V. CONVERGENCE

This section analyzes the convergence properties of CBBA,
where convergence means producing an assignment in finite
time with all of the constraints in (1) being satisfied.

A. Sequential Greedy Algorithm

This section starts by presenting a centralized algorithm that
will be shown to give the same solution as CBBA gives in
section V-B. Consider the sequential greedy algorithm (SGA)

Algorithm 4 Sequential greedy algorithm
4L =1I, i =J
221 =0,VieZ
ey = cyl{O)), Vi) €T x T

4: for n =1 to Ny, do

(i5, Jn) = aTGMAX(; ey 7 CE?)
T]i; = T}i;/ +1

b{ = b Bena {5}

o0 b =bl" ik

10: if 7]27*1 = Lt then

(95}

® W

11: Lns1r =Tn \ {in}

12: cz(-f:zl) =0,VjeJ

13: else

14: Tnv1 =1,

15: end if

16: cz(.”;:{l) =0, Vi € Tpys

17: CE?H) = Cij [bz('n)]a V(i,7) € Tny1 X Tns1
18: end for

in Algorithm 4 that sequentially finds a sequence of agent-task
pairs that render the largest score values given prior selections.
This algorithm is a centralized procedure in the sense that a
single central agent can access every agent’s scoring scheme;
every agent’s scoring scheme is assumed to be DMG. Note that

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 7

if n; < Ly, the score update in lines 16 and 17 of Algorithm 4
results in

N R A
e =10, if j =3 (13)
e =iy, j A

with some a(”) € [0, 1], because b{™ remains the same for

i # i} and the marginal gains that ¢}, can achieve diminish
as one task is added in its bundle. In case 7; = L; for some
agent ¢, all of the agent’s scores for the next selection step
becomes zero (line 12). Thus, for n; < L, the score cE;) is
monotonically decreasing with respect to n; namely,

cl(-?) > CE;-W), if n <m. (14)
Also, by definition of DMG,
e = b V] > ¢y [b" T @ena b, Vb, (15)

(n) .

which means that ¢;;” is the largest score agent 7 can obtain

for task j given prlor selection of b(" Y Since the selected
pair at the n-th step, (i¥, %) in line 5 gives the largest score

given selections up to the (n — 1)-th step, it is satisfied that:
o) (n) .
Ci % >Cz] , V(i,5)) eI xJ.

Therefore, notice that from (14) and (16),

(16)

>c(),

m 7-7 m

Q) (n) (m) ;o :
Cixjx = Cix v > ¢ , V(i,j) €eIx T, if n <m.

a7
Namely, the best score at the n-th step is greater than, or
equal to, any score value showing up in the later steps. It is

also noted that the recursion in (13) leads to
I =0, W(i,5) ¢ Turr X T,

because the marginal score of a task that is already in a bundle
is zero.

(18)

B. Static Network

The communication network of a fleet of unmanned vehicles
can be modeled as an undirected graph with every edge length
being unity. Suppose that this communication network is static
and connected; then, there exists a (undirected) shortest path
length d;; < oo for every pair of agents ¢ and k. The network
diameter D is defined as the longest of all shortest path
lengths:

D2 (19)

max d;g.
(i,k)€Z?

If the conflict resolution is assumed to be synchronized, i.e.,
every agent’s second phase in the ¢-th iteration takes place
simultaneously, then the actual time 7 can be equivalently rep-
resented by the iteration count ¢. In this case the convergence
time T € Z4 can be defined as the smallest iteration number
at which a feasible assignment is found that will not change
afterwards:

Te 2 minte T (20)

where the set 7 is defined as

T ={t ez, Vs = t:ay(s) = 2y (0), Dl (s) =
S wii(s) < Ly S0ty Yo wis(s) = Now

H/—/

21
with x;; being the same binary variable defined in (1).

Lemma 1. Consider the CBBA process with synchronous
conflict resolution over a static network with diameter D for
the case that every agent’s scoring scheme is DMG. Suppose
that after completing phase 2 of some iteration ¢,

. k .
Zigg () = ik, Yigp (8) = i), Vi€ T, Vk<n, (22)

where (4, j5)’s are assignment pairs from the SGA procedure
and c(f)J* s are the corresponding score values. Then, the
f0110w1ng hold:
1) The first L(") |b(n)| entries of agent ¢’s current bundle
coincide w1th those of the bundle at the n-th SGA step,

b{™:
’ ()
bt =p™. (23)
2) The bid that agent i), places on task j* ; is
(n+1)
yi;+1’j;+1 (t) C ,,_,_1’],,_,_1 (24)
and this value satisfies
Yirgne, () 2 9ij (), Vi, 7) € Tngr X Tns1. (25)
3) Entries in (22) do not change over time; or,
2i g (8) = 2zijr (1), Yige(8) = yijx (t), (26)

forall s>t and forall k <n .
4) The bid agent iy , | places on task j;, ,; will remain the
same and it will not be outbid:

yi:m+17j:z+1(8) = yi;+11j;,+1(t) 2 yi»j:l+1(s) (27

for all s >t for all © € 7.
5) After D iterations, every agent will have agreed on the
assignment (i} 1, j,1); in other words,

Yije,, C+ D) =wir g (), 2ijz, (t+D) =iy
(28)

for all s € 7.
Proof: See Appendix A. []

Lemma 2. Consider a CBBA process with synchronized
conflict resolution over a static network of diameter D, where
every agent’s scoring scheme is DMG. Then, every agent
agrees on the first n SGA assignments by iteration nD. In
other words,

zi jr (nD) = if, VieZ, Vk <mn, and (29)
yi.j; (nD) = cﬁf)ﬁ, Vi e I, Vk < n. (30)
Proof: The proof is by induction. Since

argmax; ¢ 7 Ci;,j[{@}] = j7, agent i places task jI in

the first position of its bundle in phase 1 of iteration 1.
Because ¢;: j«[{0}] > ¢;;[b] for all (i,j) € T x J for any b,
no agent can place a higher bid in later iterations. Thus, the &
iterations of CBBA conflict resolution procedures leads k-hop
neighbors of agent ¢} to agree that ¢] is the winning agent for
task ji. Thus, after D iterations of phase 2, every agent will
have agreed on the assignment (i, j7). Due to statement 3 and
5 in Lemma 1, if 2; j+ (mD) =i}, y; jx(mD) = ng)j,: for all
k < m, then Zijt (mD + D) = 7:;;, Yi,jf (mD + D) = ngk,)]:
for all k& < m + 1. Thus, together with (i, j5) being agreed
at D, after nD iterations, every agent will have agreed on the
assignments (i}, j7) for all k < n. [|

Theorem 1. (Convergence of CBBA) Provided that the scoring
function is DMG, the CBBA process with a synchronized
conflict resolution phase over a static communication network
with diameter D satisfies the following:
1) CBBA produces the same solution as SGA, with the
corresponding winning bid values and winning agent
information being shared across the fleet; i.e.,

-
Zigr = Uk Vk < Nminv

yivj; = C("*C)'* Vk < Nmin-

tdi’

€29

2) The convergence time T is bounded above by Ny, D.
Proof: Combining the statement 5 in Lemma 1 and
Lemma 2, after phase 2 of iteration nD, the first n SGA
assignments are agreed over the fleet for any n. This must be
true in case n = Ny, Which is the number of assignments
needed for convergence. In addition, from statement 3, these
assignments will not change in the later iterations. Thus,
by iteration Ny, D, the CBBA process converges and the
converged solutions are equivalent to SGA solution.]

Note that in many cases CBBA converges much earlier than
Npin D iterations, because the maximum distance from some
1}, to another agent is likely to be less than D, and multiple
SGA assignment sequences can be fixed simultaneously. Quick
convergence of CBBA will be empirically verified in section
VII-A.

Lemma 3. Suppose that the score values of the agents satisfy

cij(t) > cij(s), V(i,j) €T x T, Vt<s (32)

cij(t) = cij(t) < cij(s) = crj(s),

: . (33)
Vi.keI VjeJ, Vi,seN

in the process of CBBA, where ¢;;(t) is agent i’s score for
task j at iteration t. Then, CBBA converges to a conflict
free assignment in Ny,;, D iterations in a static network with
diameter D.

Proof: The key idea of the proof is to consider a sequen-
tial procedure that is similar to SGA but replaces line 5 in
Algorithm 4 by:

(if,j1) = argmax cij(til)
(1,7)EIxT

where tf, £ (n — 1)D + 1. Then, to show that y,; .+ is not

nyn

outbid in the later iterations completes the proof of this lemma.
See Appendix B for details.]

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS

The conditions in Lemma 3 can be restrictive. For example,
the time-discounted reward in (11), which is DMG, does
not satisfy them in general. However, Lemma 3 facilitates
modification of CBBA to render a conflict-free assignment
even when the scoring schemes are not DMG:

Lemma 4. Consider a CBBA process with synchronized
conflict resolution over a static network of diameter D, where
agents’ scoring schemes are not necessarily DMG. Let cfj(t)
be the score of task j for agent ¢ computed by this underlying
scoring scheme. Then, CBBA converges to a conflict-free
assignment within NVy,;, D by utilizing the following modified
score instead of cf;(t):

cij(t) = min {cf;(t), ci5(t — 1)} .

Proof: The proof is straightforward, since (34) ensures
(32) and (33). |

(34)

To summarize, in a static network with diameter D, CBBA
(with a slight modification) creates a conflict-free assignment
within N3, D iterations independent of scoring schemes.
Moreover, if the score function is DMG, it generates the
identical solution to SGA.

C. Dynamic Network and Asynchronous Conflict Resolution

For dynamic networks in which G(7) varies with time,
convergence of CBBA with a synchronous conflict resolution
phase can still be guaranteed if there exists some value p < co
such that

W(r(t)) = G(r(t) UG(r(t + 1)) U+ UG(r(t + p— 1))

is fully connected V¢ [52] where 7(¢) denotes the actual time
at which every agent’s t-th CBBA iteration takes place. In
this case, the convergence time will then be upper-bounded
by pNmin, since any information about conflicts is transmitted
within p.

Asynchronous conflict resolution can be modeled as a
dynamic network with synchronized conflict resolution, as the
situation where an agent is waiting for neighbors’ information
can be treated as the network being disconnected for that
period. Thus, if it is ensured that an agent eventually commu-
nicates with its neighbor, then the CBBA process converges in
finite time even in the case asynchronous conflict resolution
is allowed.

D. Inconsistent Information

It is typical that each agent’s scoring scheme is based on its
own understanding of the environment (commonly known as
the situational awareness). For instance, the time-discounted
reward in (11) depends on the target and agent locations; so
with different estimates of either, the resulting scores used
by the agents in CBBA may differ. Since these scores may
also differ from the (typically not knowable) actual scores, the
CBBA solution based on inconsistent information over fleet
can degrade the performance of the decision making process.

However, this inconsistency in situational awareness does
not affect the convergence of CBBA to a feasible assignment,

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 9

because whatever knowledge each agent scoring scheme is
based on, the only needed information for resolving conflicts
among agents are the winning bid list, winning agent list, and
the time stamp. If these three pieces of information are com-
municated error-free, the conflict resolution process of CBBA
is insensitive to the details of each agent’s scoring scheme.
Thus, CBBA does not require any level of agreement on
situational awareness for convergence, although inconsistent
information might still cause actual performance degradation.
This is an distinguishing feature of CBBA compared to previ-
ous decentralized algorithms such as such as implicit coordi-
nation [7, 13] and the ETSP ASSIGMT algorithm [49, 50] in
which each agent must have the same information to guarantee
convergence.

VI. MINIMUM PERFORMANCE GUARANTEE

This section shows that the CBBA and CBAA solutions
guarantee some performance level without regard to the actual
scoring scheme. First define the following quantities:

o SOPT: the optimal objective value of the single assign-

ment problem for a given non-negative scoring scheme.

« CBAA: the objective value provided by CBAA for
the single assignment problem for a given non-negative
scoring scheme.

e MOPT: the optimal objective value of the multi-
assignment problem for a given non-negative DMG scor-
ing scheme.

« CBBA: the objective value provided by CBBA for the
multi-assignment problem for a given non-negative DMG
scoring scheme.

The worst-case performance analysis addresses the relation-
ship between MOPT and CBBA (or between SOPT and
CBAA). This section starts with the single assignment case:

Lemma 5. (CBAA Performance Bound) Assuming the agents
have accurate knowledge of the situational awareness, CBAA
guarantees 50% optimality. In other words,

SOPT < 2-CBAA. (35)

Proof: Since the CBAA solution provides the same
performance as SGA, it is sufficient to prove that the SGA
solution guarantees 50% optimality. First, for notational con-
venience, reorder the agent and target indices so that:

it =k, ji=Fk, Vk< Nun. (36)

In other words, for now call agent i} as agent k and task j; as
task k, while other indices are adjusted accordingly to avoid

overlap. Then, from the property in (17) for SGA,
Ci; > Cjjs if i< 7, 37

and the objective value of CBAA solution (or equivalently

SGA solution) becomes
CBAA = Y Mminey,. (38)

Because each agent selects its task in a greedy way given the
selections of its precedents, the following inequalities hold for

the greedy solution:

Cii 2 Cigp V4 V) >0 (39)

Cii > Cji, Vi, Vj > 1.
Consider the case the greedy selection is the farthest from
the optimal solution; in other words, think of the case where
variations of assignment could cause the largest improvement
in the objective value while still satisfying the conditions in
(39). Also, since each agent cannot take multiple tasks, a
change in the assignment should be based on swapping of the
tasks (or possibly cyclic exchange of tasks). Consider a task
swapping between two agents ¢ and j > %; then, the overall
score becomes c;; +-c;; while it was originally c;; +c;;. Since
(39) holds, the new overall score c;; + c¢;; is upperbounded by

Cij + ¢ji < Cii + Cii = 2044, (40)
where the upperbound is attained if
Cij = Cji = Cij- (41)

Thus, if (41) holds, agents ¢ and j can increase their overall
score the most by swapping their tasks. Now suppose that the
similar condition to (41) holds for all pairs of agents:

Vi, Vi > i
Vi, V§ > 1,

Cij = Cig, (42)
Cji = Ciis

then an appropriate sequence of task swapping processes will
lead to the largest possible improvement of the overall score
amongst the fleet.

One way to achieve the greatest performance enhancement
is to use the following policy:
7 = {Nmin Sl el N}

0, otherwise,

where J is the new task assigned to agent ¢, in which agent
i€{1,..., Npin} swaps its task with agent Ny, — i+ 1. In
this way, the first [Npin/2] agents (who were assigned tasks
by CBAA) are assigned to tasks that provide the same scores
as the CBAA solution, while the next | Ny, /2| agents (who
were assigned tasks by CBAA) gain as much as possible score
improvement. Since the policy in (43) ensures one agent to be
assigned at most one task, it creates a conflict-free assignment;
moreover, as the overall score is improved as much as it can
be, the resulting solution is the optimal solution. Hence, the
optimal objective value SOPT should satisfy

[Nimin /2] Nmin
SOPT = Z Cii + Z C(Numin—i41),(Nunin—i-+1)
i=1 i=[Npmin/2]+1
[Nmin/2] [Nmin /2] Nmin
=2X Z cii + Z CiiSQXZCu‘
i=1 i=| Numin /2] +1 i=1
=2-CBAA.
Thus, 50% optimality is guaranteed for the CBAA. []

Based on the above proof for the CBAA solution for single
assignment problems, the worst-case performance bound for

the CBBA solution for multi-assignment algorithms can also
be derived:

Theorem 2. (CBBA Performance Bound) Assuming the
agents have accurate knowledge of the situational awareness,
CBBA guarantees 50% optimality for the multiple assignment
problem with DMG scoring schemes:

MOPT < 2-CBBA. (44)

Proof: The key proof idea is that a multi-assignment
problem can be treated as a single assignment with additional
combinatorial number of virtual agents. See Appendix C for
the detailed proof.]

Note that in many cases CBBA creates a numerical solution
providing much greater than 50% optimality. This observation
is consistent with the very good average performance of CBBA
that is analytically demonstrated for several special cases in
[54].

VII. NUMERICAL RESULTS

A. Convergence and Performance with Inconsistent Informa-
tion

As discussed in section V-D, the presented CBBA method
guarantees convergence of the algorithm to a conflict-free
assignment regardless of inconsistency in situational aware-
ness. Monte-Carlo simulations are performed to verify this
robustness property. The agents and tasks are randomly placed
on a W x W two-dimensional space (W = 2 km). The
time-discounted reward in (11) is used to define the scoring
function. ¢; = 1 and A = 0.95/s are used, and every agent
moves with speed of 40 m/s.

The source of inconsistent information considered is dis-
crepancy in the understanding of task locations, while it is
assumed that each agent knows its own position correctly.
Agents estimate the coordinates of task locations subject to
additive Gaussian noises (with sensing noise standard devi-
ation from 0.01W to 0.2W), and compute the score values
based on these estimates. As a metric of level of inconsistency
across the fleet, the following average SA error is calculated:

Ny

N,
> Iy — Lyl

ikiitk j=1

Ega = (45)

V2W N,

where 1;; and 1;; is the estimated position vector of task j
by agent ¢ and k, respectively, and || - || denotes the Euclidian
norm. Each agent computes the scores for the tasks based on
its own estimate of target positions. Communication networks
are created by generating a random spanning tree [53], and
then adding varying amounts of random links to the network.
Also, the optimal solution with perfect information is obtained
by the implicit coordination algorithm [7] for comparison.
Figs. 1 and 2 show the average convergence time and the
optimality gap as a function of /Ny, which is set to be same as
N, in this simulation, and the SA error. Note in Fig. 1 that
SA error does not affect the convergence time of CBBA, as
the algorithm converges within a few time steps for all cases.
The optimality gap in Fig 2 demonstrates that (a) with perfect

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS

w
wn

w

N
wn

N

15

Covergence Time (steps)

- 0 o0
Nu(_Nt)

Average SA Error

Fig. 1. Convergence of CBBA in the presence of inconsistency in situational
awareness

N N w
o (&) o

Optimality Gap (%)
= [
o (4]

0.2

- 0
Nu =(Nt) 0 Average SA Error

Fig. 2. Optimality gap of CBBA in the presence of inconsistency in
situational awareness

information, the optimality gap is very small (less than 3%),
(b) performance of CBBA degrades as SA error grows, but
(c) even with a large amount of SA error, the CBBA solution
exhibits reasonable good average performance (optimality gap
being less than 30%). To summarize, the results verify that
CBBA produces a reasonably good suboptimal solution even
with a significant amount of discrepancy in the situational
awareness.

B. Comparison with Prim Allocation for Multi-Assignment

For further validation of the convergence and performance
aspects of CBBA, this work compares CBBA with an existing
centralized sequential auction algorithm, Prim Allocation (PA)
[32]. The PA algorithm is a well known auction algorithm
for multi-assignment and has a similar insertion heuristic to
the score definition in (3), thus providing a good baseline for
comparison.

In the PA algorithm, each agent creates a minimum spanning
tree (MST) with the tasks as nodes and the edges indicating
the task ordering. Each agent bids on the task that is closest
to any of the nodes in the assignment and the winner inserts it
into that location in the tree. This process continues until all of

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 11

the tasks have been assigned. Tasks are then ordered through
the tree by performing a depth-first search (DFS) [55]. The
algorithm is designed to minimize the total distance traveled
by the fleet to accomplish the tasks, however, other heuristics
have been developed in [56, 57] that can be used as well.

The iterative CBAA (ICBAA) that sequentially runs the
CBAA single assignment routine until all the tasks are as-
signed is also considered for comparison. A key difference
between ICBAA and CBBA solutions is that the same number
of tasks are assigned per agent in ICBAA, while CBBA allows
an agent to take up to L; tasks.

The total distance traveled by the vehicles for the PA
algorithm and CBBA are compared with each other. CBBA
tries to maximize the time-discounted reward in (11) instead of
to minimize the total distance traveled. This is a good example
of how using generic scores when developing algorithms can
provide more flexibility in terms of objective functions. Fig. 3
compares the performance of the three algorithms for different
N; values where N, = 5 and L; = N; are used. It can be
seen that CBBA provides a solution with the smallest total
distance traveled, although it does not explicitly minimize
it. This is because the CBBA algorithm is able to outbid
earlier allocated tasks in the conflict resolution stage to provide
better assignments. For PA, once a task has a winner, it
is locked into that assignment. The convergence times for
the three algorithms are compared in Fig. 4; to account for
centralized aspect of PA algorithm, a fully connected network
(i.e., D = 1) is assumed for ICBAA and CBBA. Since the
PA algorithm assigns each task one at a time, the convergence
time steps for PA is same as the number of tasks in a fully-
connected network. It can be found that ICBAA converges
within about a half of the number of tasks and CBBA does
within much smaller steps. Since ICBAA consists of [N;/N,,]
individual CBAA routines, the total convergence time step is
approximately [N;/N, | multiplied by convergence time of a
single CBAA. A single CBAA can take up to N, D iterations
by Theorem 1, but usually takes much shorter because multiple
conflicts can be resolved per time step. As a result, [CBAA
converges faster than PA by the factor of the number of
conflicts resolved in parallel in CBAA. For CBBA, multiple
tasks are assigned to an agent as well as multiple conflicts are
resolved in parallel, because each agent carries a bundle of
tasks that can be very long if L; is large. These two capabilities
of CBBA enable further acceleration.

VIII. CONCLUSIONS

This paper presented two decentralized task allocation al-
gorithms addressing single and multi-assignment problems,
respectively, that are shown to produce conflict-free solutions
independent of inconsistencies in situational awareness. These
algorithms feature a task selection process based on auctioning
with greedy heuristics, and a conflict resolution protocol based
on consensus on the winning bid values over the team. It
was also shown that the solutions for the proposed algorithms
guarantee 50% optimality under the assumptions of consistent
situational awareness and diminishing marginal gain from
tasks. Numerical experiments validated good performance and

25
——Prim
X ICBAA
201 - - -CBBA 1
3
=3
8 150
c
<
0
[a)
>10
o
>
<
5 |
O L L L L L L L
0 5 10 15 20 25 30 35 40
Tasks
Fig. 3. The total distance traveled to accomplish assignment (N, = 5)
40
—— Prim
B x icBaa |
— = ==CBBA
@ 30 1
Q
)
“é 25r 1
= Ko XK
o 201 o
e xxx
S 15l XXX]
5] X
: XXX
X
8 10} R]
XxXX
5r XXX e me e =
N i TTTo
O L L L L L L L
0 5 10 15 20 25 30 35 40
Tasks

Fig. 4. Convergence time steps (N, = 5)

quick convergence of the proposed methods compared to an
existing sequential auction algorithm.

ACKNOWLEDGMENT

This work is funded in part by AFOSR STTR # FA9550-06-
C-0088 (with Dr. Jim Paduano at Aurora Flight Sciences) and
by AFOSR # FA9550-08-1-0086. The authors thank Dr. Mehdi
Alighanbari for his invaluable contribution in development of
the precursors to the consensus-based auction algorithm.

REFERENCES

[1] J. Bellingham, M. Tillerson, A. Richards, and J. How, “Multi-Task
Allocation and Path Planning for Cooperating UAVS,” in Proceedings
of Conference of Cooperative Control and Optimization, Nov. 2001.

[2] C. Schumacher, P. Chandler, and S. Rasmussen, “Task allocation for
wide area search munitions,” in Proceedings of the American Control
Conference, 2002.

[3] C. Cassandras and W. Li, “A receding horizon approach for solving some
cooperative control problems,” in Proceedings of the IEEE Conference
on Decision and Control, 2002.

[4] Y. Jin, A. Minai, and M. Polycarpou, “Cooperative Real-Time Search
and Task Allocation in UAV Teams,” in Proceedings of the IEEE
Conference on Decision and Control, 2003.

[5] L. Xu and U. Ozguner, “Battle management for unmanned aerial
vehicles,” in Proceedings of the IEEE Conference on Decision and
Control, 2003.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

(7]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

D. Turra, L. Pollini, and M. Innocenti, “Fast unmanned vehicles task
allocation with moving targets,” in Proceedings of the IEEE Conference
on Decision and Control, Dec 2004.

M. Alighanbari, “Task assignment algorithms for teams of UAVs in
dynamic environments,” Master’s thesis, Massachusetts Institute of Tech-
nology, 2004.

T. W. McLain and R. W. Beard, “Coordination variables, coordination
functions, and cooperative-timing missions,” Journal of Guidance, Con-
trol, and Dynamics, vol. 28(1), pp. 150-161, 2005.

D. Castanon and C. Wu, “Distributed algorithms for dynamic reassign-
ment,” in Proceedings of the IEEE Conference of Decision and Control,
2003.

J. Curtis and R. Murphey, “Simultaneous area search and task as-
signment for a team of cooperative agents,” in Proceedings of AIAA
Guidance, Navigation, and Control Conference and Exhibit, 2003.

T. Shima, S. J. Rasmussen, and P. Chandler, “UAV Team Decision and
Control using Efficient Collaborative Estimation,” in Proceedings of the
American Control Conference, 2005.

J. A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Transactions on Automatic Control, vol.
49(9), pp. 1465-1476, 2004.

W. Ren, R. Beard, and D. Kingston, “Multi-agent kalman consensus with
relative uncertainty,” in Proceedings of American Control Conference,
2005.

R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transactions
on Automatic Control, vol. 49(9), pp. 1520-1533, 2004.

M. Alighanbari and J. P. How, “An unbiased kalman consensus algo-
rithm,” in Proceedings of the American Control Conference, 2006.

C. C. Moallemi and B. V. Roy, “Consensus propagation,” I[EEE Trans-
actions on Information Theory, vol. 52(11), pp. 4753-4766, 2006.

A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed
consensus and averaging,” in Proceedings of the 45th IEEE Conference
on Decision and Control, 2006.

W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in
multivehicle control,” IEEE Control Systems Magazine, vol. 27(2), pp.
71-82, 2007.

R. Beard and V. Stepanyan, “Synchronization of information in dis-
tributed multiple vehicle coordinated control,” in Proceedings of the
IEEE Conference on Decision and Control, 2003.

Y. Hatano and M. Mesbahi, “Agreement over random networks,” in 43rd
IEEE Conference on Decision and Control, 2004.

C. W. Wu, “Synchronization and convergence of linear dynamics in
random directed networks,” IEEE Transactions on Automatic Control,
vol. 51(7), p. 12071210, 2006.

A. Tahbaz-Salehi and A. Jadbabaie, “On consensus over random net-
works,” in 44th Annual Allerton Conference, 2006.

M. Alighanbari and J. P. How, “Decentralized task assignment for
unmanned aerial vehicles,” in Proceedings of the 44th IEEE Conference
on Decision and Control, and the European Control Conference, 2005.
D. Dionne and C. A. Rabbath, “Multi-UAV Decentralized Task Al-
location with Intermittent Communications: the DTC algorithm,” in
Proceedings of the American Control Conference, 2007.

D. P. Bertsekas, “The auction algorithm for assignment and other
network flow problems,” MIT, Tech. Rep., 1989.

M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol.
94(7), pp. 1257-1270, 2006.

B. Gerkey and M. Mataric, “Sold!: Auction methods for multirobot
coordination,” IEEE Transactions on Robotics and Automation, vol.
18(5), pp. 758-768, 2002.

D. P. Bertsekas, “Auction algorithms,” in Encyclopedia of Optimization.
Kluwer Academic Publishers, 2001.

B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” International Journal of Robotics
Research, vol. 23(9), pp. 939-954, 2004.

A. M. Kwasnica, J. O. Ledyard, D. Porter, and C. DeMartini, “A new
and improved design for multiobject iterative auctions,” Management
Science, vol. 51(3), p. 419434, 2005.

P. Milgrom, “Putting auction theory to work: The simultaneous ascend-
ing auction,” The Journal of Political Economy, vol. 108(2), pp. 245—
272, 2000.

M. G. Lagoudakis, M. Berhaultt, S. Koenigt, P. Keskinocak, and A. J.
Kleywegt, “Simple auctions with performance guarantees for multi-
robot task allocation,” in Proceedings of the IEEE/RSI International
Conference on Intelllgent Robots and Systems, 2004.

S. Sariel and T. Balch, “Real time auction based allocation of tasks for

(34]

[35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS

multi-robot exploration problem in dynamic environments,” in Proceed-
ings of the AIAA Workshop on ”Integrating Planning Into Scheduling”,
2005.

A. Ahmed, A. Patel, T. Brown, M. Ham, M. Jang, and G. Agha, “Task
assignment for a physical agent team via a dynamic forward/reverse
auction mechanism,” in International Conference on Integration of
Knowledge Intensive Multi-Agent Systems, 2005.

M. L. Atkinson, “Results Analysis of Using Free Market Auctions
to Distribute Control of UAVS,” in AIAA 3rd ”Unmanned Unlimited”
Technical Conference, Workshop and Exhibit, 2004.

T. Lemaire, R. Alami, and S. Lacroix, “A Distributed Task Allocation
Scheme in Multi-UAV Context,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, 2004.

W. Walsh and M. Wellman, “A market protocol for decentralized task
allocation,” in Proceedings of International Conference on Multi Agent
Systems, 1998.

M. Hoeing, P. Dasgupta, P. Petrov, and S. OHara, “Auction-based
Multi-Robot Task Allocation in COMSTAR,” in Proceedings of the 6th
international joint conference on Autonomous agents and multiagent
systems, 2007.

P. B. Sujit and R. Beard, “Distributed Sequential Auctions for Multiple
UAV Task Allocation,” in Proceedings of the American Control Confer-
ence, 2007.

X. Zheng, S. Koenig, and C. Tovey, “Improving sequential single-item
auctions,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2006.

D. C. Parkes and L. H. Ungar, “Iterative combinatorial auctions:theory
and practice,” in Proceedings of the 17th National Conference on
Artificial Intelligence, 2000.

M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby,
P. Griffin, and A. Kleywegt, “Robot exploration with combinatorial
auctions,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2003.

A. Andersson, M. Tenhunen, and F. Ygge, “Integer programming for
combinatorial auction winner determination,” in Proceedings. Fourth
International Conference on MultiAgent Systems, 2000.

S. de Vries and R. Vohra, “Combinatorial auctions: A survey,” IN-
FORMS Journal of Computing, vol. 15(3), pp. 284-309, 2003.

M. H. Rothkopf, A. Pekec, and R. M. Harstad, “Computationally
manageable combinatorial auctions,” Rutgers University, Tech. Rep.,
1998.

T. Sandholm, “Algorithm for optimal winner determination in combina-
torial auctions,” Artificial Intelligence, vol. 135(1-2), pp. 1-54, 2002.
M. Nandy and A. Mahanti, “An improved search technique for optimal
winner determination in combinatorial auctions,” in Proceedings of the
37th Hawaii International Conference on System Sciences, 2004.

M. Mito and S. Fujita, “On heuristics for solving winner determination
problem in combinatorial auctions,” Journal of Heuristics, vol. 2004,
pp. 507 — 523, 10(5).

S. L. Smith and F. Bullo, “Target assignment for robotic networks:
Asymptotic performance under limited communication,” in Proceedings
of the American Control Conference, 2007.

——, “Monotonic target assignment for robotic networks,” IEEE Trans.
on Automatic Control, vol. submitted, 2007.

S. Fujishige, “Submodular functions and optimization,” in Annals of
Discrete Mathematics. Elsevier Science, 1991.

V. D. Blondel, J. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking,” in
Proceedings of the 44th IEEE Conference on Decision and Control, and
the European Control Conference, 2005.

D. B. Wilson, “Generating random spanning trees more quickly than
the cover time,” in Proceedings of the Twenty-eighth Annual ACM
Symposium on the Theory of Computing, 1996.

L. Brunet, H.-L. Choi, and J. P. How, “Consensus-based auction ap-
proaches for decentralized task assignment,” in Proceedings of AIAA
Guidance, Navigation, and Control Conference, vol. AIAA 2008-6839,
2008.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms, T. M. Press, Ed. The MIT Press, 1990.

M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. Kleywegt,
S. Koenig, C. Tovey, A. Meyerson, and S. Jain, “Auction-based multi-
robot routing,” in Proceedings of Robotics: Science and Systems, 2005.
C. Tovey, M. G. Lagoudakis, S. Jain, and S. Koenig, “The generation
of bidding rules for auction-based robot coordination,” in Proceedings
of the 3rd International Multi-Robot Systems Workshop, 2005.

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 13

APPENDIX
A. Proof of Lemma 1

Statement 1: The proof is by induction. Suppose that b;
{dk, - ’JkLW} with some k1 < ...

() _
< kL(."> where Lg O
Ib{™)|. Then, the first entry ji, is determined from

C(k - Cw’;l [{@}] S]rggli Ci,j [{@}]7

LY

(40)

where {0} denotes the null bundle, and Jj, is the reduced
task set defined from the recursion in line 7 in Algorithm 4
with n + 1 = k; (or by line 1 for k; = 1), because no task
has been selected in advance of j,:l. On the other hand, by
the phase 1 of CBBA at some iteration s < ¢, agent ¢ finds
the first entry in the bundle from

Ji = argmax c; j[{0}] x T (i [{0}] > wi5), (47
JjeT

and has kept it until iteration ¢, where I(-) is the indicator
function that is unity if the argument is satisfied and zero
otherwise. Such J; has been fixed in agent ¢’s bundle until
Note that ¢;;[{0}] < y;; for j ¢ Ji,, because all those j’s are
assigned to the other agents. Thus, the maximization in (47)
is equivalent to the maximization in (46) that searches over a
more restricted set J,. Hence, J; in (47) equals to j,: ; the
corresponding score values are identical: ¢; j, = c(1) . Thus,
the first entry of the CBBA bundle is ji which is “also the
first entry of the SGA bundle.

Now suppose that the SGA bundle and the CBBA bundle
coincide up to the I-th entry. Then, the ({ 4 1)-th entry of the
SGA bundle ji is determined from

et =gy, D] = max e fb{™)
‘]kH—l kg Jejkl+1

(48)

where b§“) represents the list of the first [entries of agent
i’s SGA bundle. Consider a task j ¢ Jy,. ,: then, either of the

following is the case: j € b{"™", or j € (T \ J,,,) \ b,
If j € b, then ¢;[b{""] = 0 from (3). Otherwise,
Cij [b2(1:z)] < y;j, because then task j must be in another
agent’s bundle. Thus, the following holds

cij [b(l l)] « 1 (c” [b(l l)] > yij) =0, jJ ¢ ijl, (49)

either because the first term is zero (for j € bgl:l)) or the
second term is zero (for j € (J \ Jk,,) \ bgl:l)). On the
other hand, the corresponding entry of the CBBA bundle of
agent ¢ is determined from

1:1 1:1
mee;wu[b(IxT (Cij[bl(- > yij) :

Using the result in (49),

(50)

max ¢; J[b(lzl)] x I (Cu [b(l l)] > yij)

jeT
= max ¢;;b{""] x]I(Cm[b(ll)] >yvzj>

VISV

= max c”[b(ll)]
VISV

61V

since every score value is non-negative. Note that (51) is iden-
tical to the maximization in (48). Thus, if the first [entries of
the SGA and the CBBA bundles coincide, the (I+1)-th entries
also coincide because they are computed from two equivalent
procedures. Together with the coincidence of the first entry,

L
this completes the proof showing that b = bz(-").
Statement 2: The proof is in two parts First, it is proved

that at iteration ¢, agent 4y, , ; places a bid of c(nJr g on task
+1n+1

Jni1 Where (% 1, j* 1) is the (n41)-th SGA’ agent -task pair.
Second, it is proved that this bid is greater than any bid for
agent ¢ € Z,,1 on task j € Jp41.

In the (n + 1)-th step of SGA procedure, agent iy,
determines the corresponding task from the following max-
imization:

max c(?—H) (52)
JE€EITn+1 "nt1d

Since statement 1 in this lemma holds for agent iy, ,, the
(Lf?jrl + 1)-th entry of its CBBA bundle is selected from

Max c;+ [b(n)] x]I(+1J[b(n)] > yifﬁ»l’j). (53)

jeT nad 100
Note that for j ¢ 7,41, either of the following holds: (a)
Cir -[b("J)r] =0forje bgibi , or (b) ¢ix [b(”)] <

nt1J IRy | >
for j ¢ b(. Thus, the maximization in (53) is

yz 1,]
equivalent to the max1mlzat10n in (52) because c(o

'n.+1"7
Cit [bgni |. Hence, iy, places a bid of C(:rll’)j:t-t—l on task
Jni1» locates it at the (Lz(-") + 1)-th position of its CBBA
bundle; also, the corresponding entry of its winning bid list is

set as:

_ n+1)
yi;+1>j;+1(t) = Cir ny (54
The second part is to prove that
et s 2 v (), Yd) € Tugs X Tugr. (59)

Consider the maximization to determine the (n 4 1)-th SGA
selection; then, the following relation holds:

z(»:lﬂ)-* £ max cgr-”rl) = max Cij [bl(-n)],
ntvdntr o (g)eIxg Y (.)€ Tns1 X Tnt1
(56)
since c("H) 0 for (4,5) ¢ Znt+1 X Jns1 by (18). Because

statement 1 specifically holds for ¢ € Z,, 1,

“ (1) = e bM)

where b;(t) is agent i’s CBBA bundle at iteration ¢. Note that
for (4,j) € Zpnt1 X Jn+1, the winning bid value y;;(t)

Cij [b

1.,
Yij (t) = cx j[by ™](t) Gena b] (57)
n)
(t) @ena b €
(JU{0})+. Since the scoring scheme is assumed to be DMG,
this leads to

. 1:L(
with some k € 7,41 and b such that b, *

A

yis(t) < e glby, "] = en (bl (58)

for the same £ as in (57). From (56) and (58), it follows that

C(;il; = yij(t)’ V(Z,]) €Lnt1 X Tnt1-

Statement 3: The proof is by induction. First, for the score
value of the first SGA assignment determined by:

1
o = e g [{0}) = ci; ({0},
the following holds:

c(})]* Cizt jt [{9}] > Cijr [b], VieZ, Vbe (T U {@})Lt.
(59)

max
(i,J)EIXT

Note that
Vyij(r), (,5) €T x T, r>1,
3k €I, be (JU{BH)™, such that y;;(r) = ci;[b].
Specifically, at r = ¢ for any ¢ and for j = 57, k = ¢] and
b = {0} satisfy (60):
Yijr (t) = cir i [{0}].
Yi,jx (t) can be changed in the later iteration, only when some

agent places a bid larger than it, but (59) prevents occurrence
of such situations. Therefore,

(60)

Yijr (S) = Yijr (t) = C * IiE VieZ, Vs>t 61)

and this also means z; j:(s) = i7,Vi € Z, Vs > t.

Now suppose that y; j+(s) = y; j: (t) = cff)jm Vs >t for
all k¥ < m for some m < n. Then, since the statement 1 with n
being replaced by m holds at iteration s: b::‘bgm) | (s) = bz(-m).
Consider the (|b(m) | + 1)-th entry of agent i}, ,’s CBBA

bundle. From statement 2 in this lemma, that entry is {j} ,,}

and the corresponding bid is c(m+ 3 , which satisfies:
mt1dm1’
p(™
D> b @ b (62)
m+1Ym+1

for all (i,5) € Z x J for any b € (J U {@})Lt_lb(ﬂl)\
Since it is assumed in (22) that y; j» (f) = C(TH)
. . . Wmt1 mt1]m+1
the following identity holds

m-+1)
+l’-]'m.+1

Yir it (8) = et = Yijz,, (1), Vi. (63)

The CBBA conflict resolution does not replace a winning bid
unless a higher bid shows up; for yiyj;,ﬂ(t)’ no agent can
place a higher bid between iteration ¢ and s because of (62).
Thus, if y; j: (s) = yij: (t) = B Vs >tforall k<m

g
(m+1)
for some m < n, then y; ;- +1(s) Yige,,, (1) = ¢ AT
Together with (61), this completes the proof using induction.

Statement 4: From statement 3 in this lemma, at any itera-
tion s > t, (22) is satisfied. Fr?m s)tatement 2 in this lemma,

n+1 .o
this means y;» -+ (s) = G iny 2 vii (), V(z,]). €
Trn+1 X In+1 forany s > ¢. Moreover with statement 3 being
satisfied, agent ¢y, will not change its bid on jy,, after
iteration ¢; thus, y;» j+ (s) =
n+17n+1

(n+1)

yi:z+l Jhta (t)
Statement 5: Because c¢;. 7. s the highest bid on task
7L+17 n+1

Jnayq for all s > ¢, the conflict resolution phase of CBBA
(n+1)

. Since the
oS B

leads to i # iy | to update Yijz,, With ¢

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS

agents in agent 4y , ;’s k-hop neighbors perform this update in
k iterations from ¢, and the farthest agent from i , ; is apart
at most D hops, every agent will have agreed on the winning
bid on task j; ,; by iteration ¢ + D.

B. Proof of Lemma 3

Consider a procedure that samples the score values at every
t1 -th iteration of the CBBA process where ¢}, = (n — 1)D +
1, n € N, and solves the following maximization:

(iil,j};) = argmax cij(t}:). (64)
(1,J)€EIXT
Then, the following holds:
Yii 1 (th) >y, 1 (8), Vi € T, vt > th, (65)

which is proved as follows. By definition, c,+ JT(tT) >
(1), Vi € I} the condition (33) ensures that ¢, it () 2
c” (), ¥t € N. Since at every iteration agent sz "achieves
the largest score on task j!, its respective bid is the largest
at every iteration: y;1 .+ (t) >y, ;1 (t), Vi € Z, Vt € N; this
specifically means (65) is satlsﬁed
Since no agent can bid higher than y,; ¢ (t}) on task j}
at any iteration later than ¢}, this winning bid information
is propagated through the entire network within D iterations:
Yi it (th +1) = Yt gt (t]). Therefore, it is straightforward to
show that at N, D,

Yijt (NminD) = ;1 1 (8h), and 2, s (Nmin D) = if,, Vi € T.

C. Proof of Theorem 2

The multi-assignment problem can be treated as a single
assignment with additional combinatorial number of agents.
Let agent i®, b € (J U {0})L* be an virtual agent that can
be assigned to at most one task, and whose score is defined
in such a way that

Cib

J = ciz[b].

Then, there will be a total of N 2 N,,- SN N,1/n! agents
(because the bundle is an ordered list not unordered set) each
of which can only select up to one task. Consider an single
assignment for these artificial agents, and call it expanded
single assignment.

Since a task already in a bundle incurs zero reward, and the
scoring schemes are assumed to be DMG, the scores for the
expanded single assignment should satisfy

Cib j = O7

Cip1 > Cib1@enaba L

if j€b
. (66)
VjeJ, Vb, bs.
Similar to (36) in Lemma 5, the agent and task indices can be
reordered such that
bk
ik =k, ji==k Vk< Npn=

min{N,L;, N¢}. (67)

For these reordered virtual agents and tasks, the objective value
for the CBBA solution becomes

CBBA = Y Nming,,, (68)

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION

with the following conditions being satisfied:

Cii > cpp for k> 1 o 69)
Cij < ¢i4,s Cji < ¢4, for j > .

Now consider a task swapping procedure for optimality.
Similar to Lemma 5, the high-ranked agent tries to choose
a task with smallest loss, while the low-ranked agent tries
to pick a task with highest gain. However, for this expanded
single assignment case, the task swapping process is more
restricted than the case in Lemma 5, because agent i1% and
agent i® (both in terms of indices before reordering) cannot
independently select their tasks. For instance, suppose that
agent i1?}, who has been assigned to task j, picks another
task j/, then agent i1/} must release its assignment. Thus,
the reselection process is not simply based on pair-wise (or
cyclic) task swappings. However, it should be noted that the
optimal solution obtained by considering all these restrictions
is bounded above by the unconstrained swapping solution that
allows inadmissible task swapping as if the expanded single
assignment is identical to a single assignment problem.

There is still another restriction in performing this uncon-
strained task swapping: it should be ensured that Cirb jr = 0
for b # {0}, while the swapping policy in (43) leads to
Ciz,b’j; = Cix jr- However, note that the maximum achievable
score increases if this restriction is relaxed, and a similar
swapping policy to (43) renders the maximum achievable score
for this relaxation. Thus, MOPT is upperbounded by the
score generated by the policy in (43) applied to the expanded
single assignment:

[Nmin /2] Nmin
MOPT < Z cii + Z C(Nmin—i+1),(Nmin—i+1)
i=1 i=[Nmin/2]+1

[Nmin /2] [Nmin/2]

=2X Z Ci; + Z Cijg

i=1 i=|Nmin/2]+1

Nmin

§2>< ZCHZQCBBA
i=1

(70)
Therefore, CBBA guarantees 50% optimality.

	Introduction
	Background
	Task Allocation Problems
	Auction Algorithms
	Consensus Algorithms

	Consensus-Based Auction Algorithm
	Phase 1: The Auction Process
	Phase 2: The Consensus Process

	Generalized CBAA: Consensus-Based Bundle Algorithm
	Phase 1: Bundle Construction
	Phase 2: Conflict Resolution
	Scoring Scheme
	Diminishing Marginal Gain
	Time-Discounted Reward

	Convergence
	Sequential Greedy Algorithm
	Static Network
	Dynamic Network and Asynchronous Conflict Resolution
	Inconsistent Information

	Minimum Performance Guarantee
	Numerical Results
	Convergence and Performance with Inconsistent Information
	Comparison with Prim Allocation for Multi-Assignment

	Conclusions
	Appendix
	Proof of Lemma 1
	Proof of Lemma 3
	Proof of Theorem 2

