diff --git a/kernel_ridge_linear_model/__pycache__/utils_functions.cpython-38.pyc b/kernel_ridge_linear_model/__pycache__/utils_functions.cpython-38.pyc index 18c72c94f034e10f89d0484e2275a0daddef87d5..b93655e5bc80b17988cb8feb306f0bd28e94f337 100755 Binary files a/kernel_ridge_linear_model/__pycache__/utils_functions.cpython-38.pyc and b/kernel_ridge_linear_model/__pycache__/utils_functions.cpython-38.pyc differ diff --git a/kernel_ridge_linear_model/best_R2_exploration_summary.csv b/kernel_ridge_linear_model/best_R2_exploration_summary.csv index 23ad9e292a8162f71a6b77a0338109deb67b344d..cbd3c385c0bce64f5aedf85e4cc42af14dcdd70c 100755 --- a/kernel_ridge_linear_model/best_R2_exploration_summary.csv +++ b/kernel_ridge_linear_model/best_R2_exploration_summary.csv @@ -554,3 +554,119 @@ google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,Fals google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8761294231976631,10,10,base_Y, google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8610822098876969,10,10,base_Y, google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.7810539517550326,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8685438933206657,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8999417647627684,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6006699414996651,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6797854800078884,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.7810539517550326,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8685438933206657,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8045488981761043,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.7481135544515584,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8570058072524344,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8769218467621971,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8794740176613643,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6006699414996651,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6006699414996651,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8189148741606547,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6797854800078884,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.745267757534974,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.7810539517550326,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6878079839644367,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8685438933206657,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8377286369406771,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8045488981761043,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8285092053881798,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.7481135544515584,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8699099605536225,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8570058072524344,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8291989438106095,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8769218467621971,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8553388678683915,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8794740176613643,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8811131526964723,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6006699414996651,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6006699414996651,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6006699414996651,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8189148741606547,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6797854800078884,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.745267757534974,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.7810539517550326,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6878079839644367,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8685438933206657,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8377286369406771,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8045488981761043,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8285092053881798,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.7481135544515584,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8699099605536225,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8570058072524344,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8291989438106095,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8769218467621971,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8553388678683915,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8794740176613643,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8811131526964723,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6006699414996651,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6006699414996651,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8189148741606547,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6797854800078884,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.745267757534974,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.7810539517550326,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.6878079839644367,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8685438933206657,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8377286369406771,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8045488981761043,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8285092053881798,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.7481135544515584,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8699099605536225,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8570058072524344,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8291989438106095,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8769218467621971,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8553388678683915,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8794740176613643,10,10,base_Y, +google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.8811131526964723,10,10,base_Y, diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/R_2_and_dynamic_score_according_to_input_dataset_size.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/R_2_and_dynamic_score_according_to_input_dataset_size.png deleted file mode 100755 index 1a8047e2ba9860f1b4e7bd14b4ebe03303f3780f..0000000000000000000000000000000000000000 Binary files a/kernel_ridge_linear_model/finding_best_input_dataset_size/R_2_and_dynamic_score_according_to_input_dataset_size.png and /dev/null differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_R2.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_R2.csv deleted file mode 100755 index 3a2e05712fa7cb67611095c4079627c63fd6d85e..0000000000000000000000000000000000000000 --- a/kernel_ridge_linear_model/finding_best_input_dataset_size/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_R2.csv +++ /dev/null @@ -1,2 +0,0 @@ -input_data_set, R2 score, dynamic_score -779, 52.17391304347826, 0.8999417647627684 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_dynamic.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_dynamic.csv deleted file mode 100755 index 3a2e05712fa7cb67611095c4079627c63fd6d85e..0000000000000000000000000000000000000000 --- a/kernel_ridge_linear_model/finding_best_input_dataset_size/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_dynamic.csv +++ /dev/null @@ -1,2 +0,0 @@ -input_data_set, R2 score, dynamic_score -779, 52.17391304347826, 0.8999417647627684 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/R_2_and_dynamic_score_according_to_input_dataset_size_n_cov_7_n_strong_interact_3.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/R_2_and_dynamic_score_according_to_input_dataset_size_n_cov_7_n_strong_interact_3.png new file mode 100755 index 0000000000000000000000000000000000000000..7f84f4c50307121bd7e5611ebc6376c5e8aac142 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/R_2_and_dynamic_score_according_to_input_dataset_size_n_cov_7_n_strong_interact_3.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/R_2_and_dynamic_score_according_to_input_dataset_size_n_cov_7_n_strong_interact_3.pngsorted_R2.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/R_2_and_dynamic_score_according_to_input_dataset_size_n_cov_7_n_strong_interact_3.pngsorted_R2.csv new file mode 100755 index 0000000000000000000000000000000000000000..4c2571cdb0c1a1b315bed62cb7bdcc43174a78db --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/R_2_and_dynamic_score_according_to_input_dataset_size_n_cov_7_n_strong_interact_3.pngsorted_R2.csv @@ -0,0 +1,19 @@ +input_data_set, R2 score, dynamic_score +525, 0.5918367346938775, 0.8811131526964723 +500, 0.5714285714285715, 0.8794740176613643 +450, 0.657142857142857, 0.8769218467621971 +375, 0.7857142857142857, 0.8699099605536225 +250, 0.6122448979591837, 0.8685438933206657 +400, 0.6285714285714286, 0.8570058072524344 +475, 0.7142857142857143, 0.8553388678683915 +275, 0.6, 0.8377286369406771 +425, 0.8214285714285714, 0.8291989438106095 +325, 0.6, 0.8285092053881798 +125, 0.32142857142857145, 0.8189148741606547 +300, 0.7428571428571429, 0.8045488981761043 +200, 0.37142857142857144, 0.7810539517550326 +350, 0.7142857142857143, 0.7481135544515584 +175, 0.4857142857142857, 0.745267757534974 +225, 0.6, 0.6878079839644367 +150, 0.5555555555555556, 0.6797854800078884 +100, 0.42857142857142855, 0.6006699414996651 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/R_2_and_dynamic_score_according_to_input_dataset_size_n_cov_7_n_strong_interact_3.pngsorted_dynamic.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/R_2_and_dynamic_score_according_to_input_dataset_size_n_cov_7_n_strong_interact_3.pngsorted_dynamic.csv new file mode 100755 index 0000000000000000000000000000000000000000..91d411af4ca389914e37da23493a591e0c8675b8 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/R_2_and_dynamic_score_according_to_input_dataset_size_n_cov_7_n_strong_interact_3.pngsorted_dynamic.csv @@ -0,0 +1,19 @@ +input_data_set, R2 score, dynamic_score +425, 0.8214285714285714, 0.8291989438106095 +375, 0.7857142857142857, 0.8699099605536225 +300, 0.7428571428571429, 0.8045488981761043 +350, 0.7142857142857143, 0.7481135544515584 +475, 0.7142857142857143, 0.8553388678683915 +450, 0.657142857142857, 0.8769218467621971 +400, 0.6285714285714286, 0.8570058072524344 +250, 0.6122448979591837, 0.8685438933206657 +225, 0.6, 0.6878079839644367 +275, 0.6, 0.8377286369406771 +325, 0.6, 0.8285092053881798 +525, 0.5918367346938775, 0.8811131526964723 +500, 0.5714285714285715, 0.8794740176613643 +150, 0.5555555555555556, 0.6797854800078884 +175, 0.4857142857142857, 0.745267757534974 +100, 0.42857142857142855, 0.6006699414996651 +200, 0.37142857142857144, 0.7810539517550326 +125, 0.32142857142857145, 0.8189148741606547 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/log_file_compute_static_score_for_the_paper.txt b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/log_file_compute_static_score_for_the_paper.txt new file mode 100755 index 0000000000000000000000000000000000000000..2ceee7e6bc827f10fe08c2325d0d424cd9d5d451 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_3/log_file_compute_static_score_for_the_paper.txt differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_R2.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_R2.csv new file mode 100755 index 0000000000000000000000000000000000000000..de5cfa086838aad448bc1a443b862dac038112b9 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_R2.csv @@ -0,0 +1,19 @@ +input_data_set, R2 score, dynamic_score +525, 0.5882352941176471, 0.8811131526964723 +500, 0.5714285714285715, 0.8794740176613643 +450, 0.7032967032967034, 0.8769218467621971 +375, 0.7333333333333333, 0.8699099605536225 +250, 0.580952380952381, 0.8685438933206657 +400, 0.6476190476190475, 0.8570058072524344 +475, 0.7142857142857143, 0.8553388678683915 +275, 0.7047619047619048, 0.8377286369406771 +425, 0.6722689075630253, 0.8291989438106095 +325, 0.5798319327731093, 0.8285092053881798 +125, 0.49523809523809526, 0.8189148741606547 +300, 0.6190476190476191, 0.8045488981761043 +200, 0.5294117647058824, 0.7810539517550326 +350, 0.7238095238095238, 0.7481135544515584 +175, 0.4857142857142857, 0.745267757534974 +225, 0.4957983193277311, 0.6878079839644367 +150, 0.5142857142857143, 0.6797854800078884 +100, 0.5630252100840336, 0.6006699414996651 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_dynamic.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_dynamic.csv new file mode 100755 index 0000000000000000000000000000000000000000..01f7c18ad8eb09629e90dd56e69c99261f1b99b5 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/R_2_and_dynamic_score_according_to_input_dataset_size.pngsorted_dynamic.csv @@ -0,0 +1,19 @@ +input_data_set, R2 score, dynamic_score +375, 0.7333333333333333, 0.8699099605536225 +350, 0.7238095238095238, 0.7481135544515584 +475, 0.7142857142857143, 0.8553388678683915 +275, 0.7047619047619048, 0.8377286369406771 +450, 0.7032967032967034, 0.8769218467621971 +425, 0.6722689075630253, 0.8291989438106095 +400, 0.6476190476190475, 0.8570058072524344 +300, 0.6190476190476191, 0.8045488981761043 +525, 0.5882352941176471, 0.8811131526964723 +250, 0.580952380952381, 0.8685438933206657 +325, 0.5798319327731093, 0.8285092053881798 +500, 0.5714285714285715, 0.8794740176613643 +100, 0.5630252100840336, 0.6006699414996651 +200, 0.5294117647058824, 0.7810539517550326 +150, 0.5142857142857143, 0.6797854800078884 +225, 0.4957983193277311, 0.6878079839644367 +125, 0.49523809523809526, 0.8189148741606547 +175, 0.4857142857142857, 0.745267757534974 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/R_2_and_dynamic_score_according_to_input_dataset_size_best_cov_7_strong_interact_7.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/R_2_and_dynamic_score_according_to_input_dataset_size_best_cov_7_strong_interact_7.png new file mode 100755 index 0000000000000000000000000000000000000000..f34c6da166ddc70c0fcf11cd4ba35d80e07eb670 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/R_2_and_dynamic_score_according_to_input_dataset_size_best_cov_7_strong_interact_7.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/log_file_compute_static_score_for_the_paper.txt b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/log_file_compute_static_score_for_the_paper.txt new file mode 100755 index 0000000000000000000000000000000000000000..ed57de80134b9f972a0372dffb0c9e7aaf438d63 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/best_cov_7_strong_interact_7/log_file_compute_static_score_for_the_paper.txt differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_according_to_best_covariates_and_best_interactions.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_according_to_best_covariates_and_best_interactions.png new file mode 100755 index 0000000000000000000000000000000000000000..4454ff67a2111bb22df4483b9bef307b9ea542a6 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_according_to_best_covariates_and_best_interactions.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_according_to_best_interactions.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_according_to_best_interactions.png new file mode 100755 index 0000000000000000000000000000000000000000..6b6dab499005b6655fccb660221d59772f52d6cb Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_according_to_best_interactions.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions.png new file mode 100755 index 0000000000000000000000000000000000000000..9e312eb82663b52924868cfc0da7ff8a032697b0 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_100.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_100.png new file mode 100755 index 0000000000000000000000000000000000000000..425d01a03a7e3d1956e83cd5feb0431756a98c23 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_100.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_125.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_125.png new file mode 100755 index 0000000000000000000000000000000000000000..e1c40148eb486bbeb5177d5a2f4f8bf4c1d74f1a Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_125.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_150.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_150.png new file mode 100755 index 0000000000000000000000000000000000000000..3290899216171ce556822dcd4b2918e45a9832d0 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_150.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_175.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_175.png new file mode 100755 index 0000000000000000000000000000000000000000..74f37b7d9e29f19e69a9f8fe73e535e6e8aac67c Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_175.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_200.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_200.png new file mode 100755 index 0000000000000000000000000000000000000000..de1512b0c00a09e31594a0c74ddb766eb3a7ae91 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_200.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_225.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_225.png new file mode 100755 index 0000000000000000000000000000000000000000..0a5aea46e147cc2686bba95bc67029ce3e74c511 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_225.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_250.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_250.png new file mode 100755 index 0000000000000000000000000000000000000000..98c576e0b532735e5a8b70eb7dce82abafa45c51 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_250.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_275.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_275.png new file mode 100755 index 0000000000000000000000000000000000000000..1e3bd71f5e24b521b58318435f0af52072d38b3f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_275.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_300.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_300.png new file mode 100755 index 0000000000000000000000000000000000000000..fb8c8470a7e0046e6742c03fbfb6f0e8fb781ca4 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_300.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_325.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_325.png new file mode 100755 index 0000000000000000000000000000000000000000..e6df9bee953a7a652729af220fa1b757ce42d453 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_325.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_350.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_350.png new file mode 100755 index 0000000000000000000000000000000000000000..5ad8928b7ff52350479a4ab59d3d8f15c7335549 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_350.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_375.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_375.png new file mode 100755 index 0000000000000000000000000000000000000000..336dbdc7b36947170e770a8d14630b22ec36326f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_375.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_400.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_400.png new file mode 100755 index 0000000000000000000000000000000000000000..a21a6ec4d5db6cdf7423ea174670347fab2dcac0 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_400.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_425.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_425.png new file mode 100755 index 0000000000000000000000000000000000000000..0572c6bcb37fc76025f2f8a543e992cbf141ffb9 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_425.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_450.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_450.png new file mode 100755 index 0000000000000000000000000000000000000000..322e8fd401edc39154f514477a25c3ca16f88d2f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_450.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_475.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_475.png new file mode 100755 index 0000000000000000000000000000000000000000..f982f547c4316915fcf879c66bb09716b651c1e3 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_475.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_500.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_500.png new file mode 100755 index 0000000000000000000000000000000000000000..9e312eb82663b52924868cfc0da7ff8a032697b0 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_500.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_525.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_525.png new file mode 100755 index 0000000000000000000000000000000000000000..dd23d4c1d9779e6bf2dfcf70f4daac7fbb01de7f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_525.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..b676c5ba1a6b20e6d35d0aa861be11d7ca58078b Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..64cca7d90459b0800ff1587b8da7dc6826d724cd Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..b198d2de7383afb9c45e20ab6cba92421954e953 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..b676c5ba1a6b20e6d35d0aa861be11d7ca58078b Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..64cca7d90459b0800ff1587b8da7dc6826d724cd Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..95aa955f55836b5c631c3df07fed00de1830583f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..5faa353128c8056038cf4e67a8b84ff94d4ad192 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..7b3c22a86c58d49bbb233000a43386cda5171e40 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..b7b6fc21e373112b7d99644c7955b82f88e19154 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..c04d065a2e293c088c1128c4d571ff7c146790ae Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..3da5e5a6a110e36a610cb349cb3a1e3c5b15bbab Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..99d283534833386b12e0e204cfafade12a55effc Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..43b63c003e83bc1b54f23b9f9a19672140be635e --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-254568340.72204226,254568340.72204226 +X_1,Core 0 state,423352724.377739,423352724.377739 +X_2,Core 1 state,-1464906121.8514736,1464906121.8514736 +X_3,Core 2 state,-411820647.6775989,411820647.6775989 +X_4,Core 3 state,-86790962.96542674,86790962.96542674 +X_5,Core 4 state,-139700113.76335308,139700113.76335308 +X_6,Core 5 state,-1101765301.879651,1101765301.879651 +X_7,Medium Socket or core 6 frequency,626234008.7918454,626234008.7918454 +X_8,Big Socket or core 7 frequency,378085675.28271717,378085675.28271717 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_7,Medium Socket or core 6 frequency,626234008.7918454,626234008.7918454 +X_1,Core 0 state,423352724.377739,423352724.377739 +X_8,Big Socket or core 7 frequency,378085675.28271717,378085675.28271717 +X_4,Core 3 state,-86790962.96542674,86790962.96542674 +X_5,Core 4 state,-139700113.76335308,139700113.76335308 +X_0,frequency level of Little Socket,-254568340.72204226,254568340.72204226 +X_3,Core 2 state,-411820647.6775989,411820647.6775989 +X_6,Core 5 state,-1101765301.879651,1101765301.879651 +X_2,Core 1 state,-1464906121.8514736,1464906121.8514736 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_2,Core 1 state,-1464906121.8514736,1464906121.8514736 +X_6,Core 5 state,-1101765301.879651,1101765301.879651 +X_7,Medium Socket or core 6 frequency,626234008.7918454,626234008.7918454 +X_1,Core 0 state,423352724.377739,423352724.377739 +X_3,Core 2 state,-411820647.6775989,411820647.6775989 +X_8,Big Socket or core 7 frequency,378085675.28271717,378085675.28271717 +X_0,frequency level of Little Socket,-254568340.72204226,254568340.72204226 +X_5,Core 4 state,-139700113.76335308,139700113.76335308 +X_4,Core 3 state,-86790962.96542674,86790962.96542674 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..9c5c1f70f1c78328de4fd2a9a8d1062dddd1bbe0 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,-24302928.47166979,1100470630.687345,1124773559.1590147 +X_1,Core 0 state,-848771512.6321399,3013408220.2701793,3862179732.902319 +X_2,Core 1 state,-573777249.3126062,2994673442.7539153,3568450692.0665216 +X_3,Core 2 state,-672328810.9324038,2211978366.822596,2884307177.755 +X_4,Core 3 state,-608065448.4310292,1064387790.7683651,1672453239.1993942 +X_5,Core 4 state,237598924.2425849,270292673.46136653,32693749.21878162 +X_6,Core 5 state,-1541309076.7006836,2566022079.660638,4107331156.3613214 +X_7,Medium Socket or core 6 frequency,-373430914.66112703,1520981011.0296671,1894411925.6907942 +X_8,Big Socket or core 7 frequency,232690125.75441536,1193597545.8656027,960907420.1111873 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_5,Core 4 state,237598924.2425849,270292673.46136653,32693749.21878162 +X_8,Big Socket or core 7 frequency,232690125.75441536,1193597545.8656027,960907420.1111873 +X_0,frequency level of Little Socket,-24302928.47166979,1100470630.687345,1124773559.1590147 +X_7,Medium Socket or core 6 frequency,-373430914.66112703,1520981011.0296671,1894411925.6907942 +X_2,Core 1 state,-573777249.3126062,2994673442.7539153,3568450692.0665216 +X_4,Core 3 state,-608065448.4310292,1064387790.7683651,1672453239.1993942 +X_3,Core 2 state,-672328810.9324038,2211978366.822596,2884307177.755 +X_1,Core 0 state,-848771512.6321399,3013408220.2701793,3862179732.902319 +X_6,Core 5 state,-1541309076.7006836,2566022079.660638,4107331156.3613214 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_1,Core 0 state,-848771512.6321399,3013408220.2701793,3862179732.902319 +X_2,Core 1 state,-573777249.3126062,2994673442.7539153,3568450692.0665216 +X_6,Core 5 state,-1541309076.7006836,2566022079.660638,4107331156.3613214 +X_3,Core 2 state,-672328810.9324038,2211978366.822596,2884307177.755 +X_7,Medium Socket or core 6 frequency,-373430914.66112703,1520981011.0296671,1894411925.6907942 +X_8,Big Socket or core 7 frequency,232690125.75441536,1193597545.8656027,960907420.1111873 +X_0,frequency level of Little Socket,-24302928.47166979,1100470630.687345,1124773559.1590147 +X_4,Core 3 state,-608065448.4310292,1064387790.7683651,1672453239.1993942 +X_5,Core 4 state,237598924.2425849,270292673.46136653,32693749.21878162 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-1541309076.7006836,2566022079.660638,4107331156.3613214 +X_1,Core 0 state,-848771512.6321399,3013408220.2701793,3862179732.902319 +X_2,Core 1 state,-573777249.3126062,2994673442.7539153,3568450692.0665216 +X_3,Core 2 state,-672328810.9324038,2211978366.822596,2884307177.755 +X_7,Medium Socket or core 6 frequency,-373430914.66112703,1520981011.0296671,1894411925.6907942 +X_4,Core 3 state,-608065448.4310292,1064387790.7683651,1672453239.1993942 +X_0,frequency level of Little Socket,-24302928.47166979,1100470630.687345,1124773559.1590147 +X_8,Big Socket or core 7 frequency,232690125.75441536,1193597545.8656027,960907420.1111873 +X_5,Core 4 state,237598924.2425849,270292673.46136653,32693749.21878162 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..6bea52e4215b9d5388b9b6a8e92bfd11386ebded Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..692816f967dba45e7be5382ce823b0cea2f35f89 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..9c72c376d8583e9feeb1116cb460a28768c96a5b Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..b9ebb0e7f952d07b91defb033aa64ed81b548ad2 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.60_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..93fe128c22a0d1aca32351bae508d1bd7d85dc13 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..0c066b2bfd72878770e2efad8ac5a426d853475c Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..1198902fa40d290ca76e9b5a813f9b1bc41123b3 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..93fe128c22a0d1aca32351bae508d1bd7d85dc13 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..0c066b2bfd72878770e2efad8ac5a426d853475c Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..0050adc774bacba0029f96bf1e517e115192e77c Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..5bcb232d51036de8d405aec338887c6cc44350cb Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..7b87fd2ce39242a04af1d46a0bbbc997a6bfa0f1 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..86a3d99606ab564e27702f030596ce1686dcefd2 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..2a53655deb9efc50c07795b1eefcc95589eaad2b Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..d396f3f6c3b444eca56dc81f14541324d377ef62 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..743bad31cedb1d0c97bede6adf3bf5d798cea488 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..fb2e9319b125358237f603e36fc100bece8ad61a --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-930530926.3622773,930530926.3622773 +X_1,Core 0 state,375731659.7575902,375731659.7575902 +X_2,Core 1 state,-591868721.8247347,591868721.8247347 +X_3,Core 2 state,-424828389.40924513,424828389.40924513 +X_4,Core 3 state,-357396323.6746173,357396323.6746173 +X_5,Core 4 state,-395948469.2537131,395948469.2537131 +X_6,Core 5 state,-712676828.1784381,712676828.1784381 +X_7,Medium Socket or core 6 frequency,733057030.6806564,733057030.6806564 +X_8,Big Socket or core 7 frequency,143694139.7730887,143694139.7730887 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_7,Medium Socket or core 6 frequency,733057030.6806564,733057030.6806564 +X_1,Core 0 state,375731659.7575902,375731659.7575902 +X_8,Big Socket or core 7 frequency,143694139.7730887,143694139.7730887 +X_4,Core 3 state,-357396323.6746173,357396323.6746173 +X_5,Core 4 state,-395948469.2537131,395948469.2537131 +X_3,Core 2 state,-424828389.40924513,424828389.40924513 +X_2,Core 1 state,-591868721.8247347,591868721.8247347 +X_6,Core 5 state,-712676828.1784381,712676828.1784381 +X_0,frequency level of Little Socket,-930530926.3622773,930530926.3622773 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-930530926.3622773,930530926.3622773 +X_7,Medium Socket or core 6 frequency,733057030.6806564,733057030.6806564 +X_6,Core 5 state,-712676828.1784381,712676828.1784381 +X_2,Core 1 state,-591868721.8247347,591868721.8247347 +X_3,Core 2 state,-424828389.40924513,424828389.40924513 +X_5,Core 4 state,-395948469.2537131,395948469.2537131 +X_1,Core 0 state,375731659.7575902,375731659.7575902 +X_4,Core 3 state,-357396323.6746173,357396323.6746173 +X_8,Big Socket or core 7 frequency,143694139.7730887,143694139.7730887 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..20f890b4da85055bcb23f69c61cc53378f1409aa --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,-171650978.87577713,687146000.753648,858796979.6294252 +X_1,Core 0 state,-1445871294.5888696,2963981474.62224,4409852769.211109 +X_2,Core 1 state,51795453.52747224,2275886321.7911944,2224090868.2637224 +X_3,Core 2 state,-48973397.68558257,2465873997.9576936,2514847395.643276 +X_4,Core 3 state,-1015288897.669305,1625946240.900149,2641235138.569454 +X_5,Core 4 state,-326581814.5213657,311453620.8990408,638035435.4204066 +X_6,Core 5 state,-2475429562.4600945,3004697191.2506056,5480126753.7107 +X_7,Medium Socket or core 6 frequency,-152412312.96063545,1551349381.1822784,1703761694.1429138 +X_8,Big Socket or core 7 frequency,1397843595.1110857,1034416032.2752306,363427562.835855 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,1397843595.1110857,1034416032.2752306,363427562.835855 +X_2,Core 1 state,51795453.52747224,2275886321.7911944,2224090868.2637224 +X_3,Core 2 state,-48973397.68558257,2465873997.9576936,2514847395.643276 +X_7,Medium Socket or core 6 frequency,-152412312.96063545,1551349381.1822784,1703761694.1429138 +X_0,frequency level of Little Socket,-171650978.87577713,687146000.753648,858796979.6294252 +X_5,Core 4 state,-326581814.5213657,311453620.8990408,638035435.4204066 +X_4,Core 3 state,-1015288897.669305,1625946240.900149,2641235138.569454 +X_1,Core 0 state,-1445871294.5888696,2963981474.62224,4409852769.211109 +X_6,Core 5 state,-2475429562.4600945,3004697191.2506056,5480126753.7107 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-2475429562.4600945,3004697191.2506056,5480126753.7107 +X_1,Core 0 state,-1445871294.5888696,2963981474.62224,4409852769.211109 +X_3,Core 2 state,-48973397.68558257,2465873997.9576936,2514847395.643276 +X_2,Core 1 state,51795453.52747224,2275886321.7911944,2224090868.2637224 +X_4,Core 3 state,-1015288897.669305,1625946240.900149,2641235138.569454 +X_7,Medium Socket or core 6 frequency,-152412312.96063545,1551349381.1822784,1703761694.1429138 +X_8,Big Socket or core 7 frequency,1397843595.1110857,1034416032.2752306,363427562.835855 +X_0,frequency level of Little Socket,-171650978.87577713,687146000.753648,858796979.6294252 +X_5,Core 4 state,-326581814.5213657,311453620.8990408,638035435.4204066 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-2475429562.4600945,3004697191.2506056,5480126753.7107 +X_1,Core 0 state,-1445871294.5888696,2963981474.62224,4409852769.211109 +X_4,Core 3 state,-1015288897.669305,1625946240.900149,2641235138.569454 +X_3,Core 2 state,-48973397.68558257,2465873997.9576936,2514847395.643276 +X_2,Core 1 state,51795453.52747224,2275886321.7911944,2224090868.2637224 +X_7,Medium Socket or core 6 frequency,-152412312.96063545,1551349381.1822784,1703761694.1429138 +X_0,frequency level of Little Socket,-171650978.87577713,687146000.753648,858796979.6294252 +X_5,Core 4 state,-326581814.5213657,311453620.8990408,638035435.4204066 +X_8,Big Socket or core 7 frequency,1397843595.1110857,1034416032.2752306,363427562.835855 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..eaf9e40255ae67b1ecc33aba2931f26c00292e9d Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..33347b1aef806df33f8f1a7ac6e7ab21c57d25ec Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..1c0c0f16464f97cfde76fd60281fbe3b667051de Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..5c848b5e48b33b4b0d659333652393f29653b95c Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.67_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..b1068f426e690bffc3f3be8b995c2d3fb1c1fb06 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..3f86d536bc90623cbee42608185fd9769ec20cee Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..18bb5da2fb478c054d24d1ba8c3cd19cb89beed3 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..b1068f426e690bffc3f3be8b995c2d3fb1c1fb06 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..3f86d536bc90623cbee42608185fd9769ec20cee Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..eb83336c004d33f48b20043eddbd17446b179c9a Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..c158af7da1cd7865d101751faa13069b5a9c1fad Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..507dd1e7394ee708aeceaf1d046b020112d5a869 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..619c79ea19b56edcb4e5bbcad01c96e25e7224e6 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..67fc8f3f5167f2d35564aba17fff9c327114c77b Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..ff7ee85bf115f5f75b652982812414ed7569b3e8 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..3523137622b82d2283afa07ba79eccd39d58fad8 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..0b90325adbb05e40d81f548b7a820c9156476c2a --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-1302248688.5165067,1302248688.5165067 +X_1,Core 0 state,1162332230.2607567,1162332230.2607567 +X_2,Core 1 state,51955658.160334505,51955658.160334505 +X_3,Core 2 state,-33662317.383705415,33662317.383705415 +X_4,Core 3 state,-610105136.3702084,610105136.3702084 +X_5,Core 4 state,-1195468936.8333564,1195468936.8333564 +X_6,Core 5 state,205252249.7006661,205252249.7006661 +X_7,Medium Socket or core 6 frequency,64579666.38142292,64579666.38142292 +X_8,Big Socket or core 7 frequency,790048786.6840804,790048786.6840804 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1162332230.2607567,1162332230.2607567 +X_8,Big Socket or core 7 frequency,790048786.6840804,790048786.6840804 +X_6,Core 5 state,205252249.7006661,205252249.7006661 +X_7,Medium Socket or core 6 frequency,64579666.38142292,64579666.38142292 +X_2,Core 1 state,51955658.160334505,51955658.160334505 +X_3,Core 2 state,-33662317.383705415,33662317.383705415 +X_4,Core 3 state,-610105136.3702084,610105136.3702084 +X_5,Core 4 state,-1195468936.8333564,1195468936.8333564 +X_0,frequency level of Little Socket,-1302248688.5165067,1302248688.5165067 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-1302248688.5165067,1302248688.5165067 +X_5,Core 4 state,-1195468936.8333564,1195468936.8333564 +X_1,Core 0 state,1162332230.2607567,1162332230.2607567 +X_8,Big Socket or core 7 frequency,790048786.6840804,790048786.6840804 +X_4,Core 3 state,-610105136.3702084,610105136.3702084 +X_6,Core 5 state,205252249.7006661,205252249.7006661 +X_7,Medium Socket or core 6 frequency,64579666.38142292,64579666.38142292 +X_2,Core 1 state,51955658.160334505,51955658.160334505 +X_3,Core 2 state,-33662317.383705415,33662317.383705415 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..11aaeac4a5ce0612e7001f63c5003fe2f426fb0f --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,247759097.2093919,892735213.3077258,644976116.0983338 +X_1,Core 0 state,-658144683.3498574,2791580786.4727564,3449725469.8226137 +X_2,Core 1 state,-90652027.22433916,2443397758.3399205,2534049785.5642595 +X_3,Core 2 state,-43956891.53552361,2119011679.3593771,2162968570.894901 +X_4,Core 3 state,65251111.76502738,1204212006.673268,1138960894.9082408 +X_5,Core 4 state,-393753138.1512383,475496608.48126996,869249746.6325083 +X_6,Core 5 state,-1563081660.921212,2563071659.59,4126153320.5112123 +X_7,Medium Socket or core 6 frequency,410820978.98017323,1844174557.159548,1433353578.1793747 +X_8,Big Socket or core 7 frequency,569435292.9744079,761359433.2050244,191924140.23061645 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,569435292.9744079,761359433.2050244,191924140.23061645 +X_7,Medium Socket or core 6 frequency,410820978.98017323,1844174557.159548,1433353578.1793747 +X_0,frequency level of Little Socket,247759097.2093919,892735213.3077258,644976116.0983338 +X_4,Core 3 state,65251111.76502738,1204212006.673268,1138960894.9082408 +X_3,Core 2 state,-43956891.53552361,2119011679.3593771,2162968570.894901 +X_2,Core 1 state,-90652027.22433916,2443397758.3399205,2534049785.5642595 +X_5,Core 4 state,-393753138.1512383,475496608.48126996,869249746.6325083 +X_1,Core 0 state,-658144683.3498574,2791580786.4727564,3449725469.8226137 +X_6,Core 5 state,-1563081660.921212,2563071659.59,4126153320.5112123 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_1,Core 0 state,-658144683.3498574,2791580786.4727564,3449725469.8226137 +X_6,Core 5 state,-1563081660.921212,2563071659.59,4126153320.5112123 +X_2,Core 1 state,-90652027.22433916,2443397758.3399205,2534049785.5642595 +X_3,Core 2 state,-43956891.53552361,2119011679.3593771,2162968570.894901 +X_7,Medium Socket or core 6 frequency,410820978.98017323,1844174557.159548,1433353578.1793747 +X_4,Core 3 state,65251111.76502738,1204212006.673268,1138960894.9082408 +X_0,frequency level of Little Socket,247759097.2093919,892735213.3077258,644976116.0983338 +X_8,Big Socket or core 7 frequency,569435292.9744079,761359433.2050244,191924140.23061645 +X_5,Core 4 state,-393753138.1512383,475496608.48126996,869249746.6325083 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-1563081660.921212,2563071659.59,4126153320.5112123 +X_1,Core 0 state,-658144683.3498574,2791580786.4727564,3449725469.8226137 +X_2,Core 1 state,-90652027.22433916,2443397758.3399205,2534049785.5642595 +X_3,Core 2 state,-43956891.53552361,2119011679.3593771,2162968570.894901 +X_7,Medium Socket or core 6 frequency,410820978.98017323,1844174557.159548,1433353578.1793747 +X_4,Core 3 state,65251111.76502738,1204212006.673268,1138960894.9082408 +X_5,Core 4 state,-393753138.1512383,475496608.48126996,869249746.6325083 +X_0,frequency level of Little Socket,247759097.2093919,892735213.3077258,644976116.0983338 +X_8,Big Socket or core 7 frequency,569435292.9744079,761359433.2050244,191924140.23061645 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..c9094f6b250e8605fd84fe520b1b45434ba4ffd1 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..59ff599ed49792d2cebbfc7e28136e3e3a64bcd6 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..1f7349e0fc3e88de107924accd06d883176b17fb Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..b09dfdff9e5bda77dd1d80e89b9305449f2d8bdc Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.68_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..eb7c4ad23dcff527eda809ab8a2f16d7618bf9c4 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..8123341095018421d4f38114f15961b0e3c80df5 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..f69f7d8bc84b34af761a1d6cfaaac696b760c991 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..eb7c4ad23dcff527eda809ab8a2f16d7618bf9c4 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..8123341095018421d4f38114f15961b0e3c80df5 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..d44cbc58380ff9d137e147fba549d59006f93f03 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..bc1ad12bba955b64c8d931e689817abaaad03a03 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..fd31b756243001887d971405e24483594ef7d6dc Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..703cf6ddbdc8df5eb341e6a2fb9a8b2bf720889f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..45d65006cf4ea48306dabfbf4cfba810b16dbcb0 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..9f6d3cd08a4dead829a76d4994640ca88d282baa Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..12d4eb75951bc10712cab99b0e14295fc598eaf4 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..a74262479683e3d3fb82b31165afc295bee51a5e --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-1117269534.0663557,1117269534.0663557 +X_1,Core 0 state,1131604011.158693,1131604011.158693 +X_2,Core 1 state,-173503576.1408117,173503576.1408117 +X_3,Core 2 state,-219059025.7191286,219059025.7191286 +X_4,Core 3 state,-90906285.66594411,90906285.66594411 +X_5,Core 4 state,822729025.2075928,822729025.2075928 +X_6,Core 5 state,-859372240.4557033,859372240.4557033 +X_7,Medium Socket or core 6 frequency,391375460.77486295,391375460.77486295 +X_8,Big Socket or core 7 frequency,133621249.62755601,133621249.62755601 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1131604011.158693,1131604011.158693 +X_5,Core 4 state,822729025.2075928,822729025.2075928 +X_7,Medium Socket or core 6 frequency,391375460.77486295,391375460.77486295 +X_8,Big Socket or core 7 frequency,133621249.62755601,133621249.62755601 +X_4,Core 3 state,-90906285.66594411,90906285.66594411 +X_2,Core 1 state,-173503576.1408117,173503576.1408117 +X_3,Core 2 state,-219059025.7191286,219059025.7191286 +X_6,Core 5 state,-859372240.4557033,859372240.4557033 +X_0,frequency level of Little Socket,-1117269534.0663557,1117269534.0663557 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1131604011.158693,1131604011.158693 +X_0,frequency level of Little Socket,-1117269534.0663557,1117269534.0663557 +X_6,Core 5 state,-859372240.4557033,859372240.4557033 +X_5,Core 4 state,822729025.2075928,822729025.2075928 +X_7,Medium Socket or core 6 frequency,391375460.77486295,391375460.77486295 +X_3,Core 2 state,-219059025.7191286,219059025.7191286 +X_2,Core 1 state,-173503576.1408117,173503576.1408117 +X_8,Big Socket or core 7 frequency,133621249.62755601,133621249.62755601 +X_4,Core 3 state,-90906285.66594411,90906285.66594411 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..55e070d2b8fb7e229ecb0a07a6c2c237f1f3e0ed --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,358391135.0128328,1008991682.6076103,650600547.5947776 +X_1,Core 0 state,-55218601.661214955,2269347511.2771297,2324566112.9383445 +X_2,Core 1 state,300204910.4703489,2489757084.4162264,2189552173.9458776 +X_3,Core 2 state,1143296516.4597847,1529200364.6708114,385903848.21102667 +X_4,Core 3 state,-960980385.4522748,2001653223.458452,2962633608.9107265 +X_5,Core 4 state,63988272.50466162,1358034862.678526,1294046590.1738644 +X_6,Core 5 state,-2352950829.446074,2116477916.0939243,4469428745.539998 +X_7,Medium Socket or core 6 frequency,699302189.3879458,1777130482.3828113,1077828292.9948654 +X_8,Big Socket or core 7 frequency,1734586059.3456295,841070691.5499505,893515367.795679 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,1734586059.3456295,841070691.5499505,893515367.795679 +X_3,Core 2 state,1143296516.4597847,1529200364.6708114,385903848.21102667 +X_7,Medium Socket or core 6 frequency,699302189.3879458,1777130482.3828113,1077828292.9948654 +X_0,frequency level of Little Socket,358391135.0128328,1008991682.6076103,650600547.5947776 +X_2,Core 1 state,300204910.4703489,2489757084.4162264,2189552173.9458776 +X_5,Core 4 state,63988272.50466162,1358034862.678526,1294046590.1738644 +X_1,Core 0 state,-55218601.661214955,2269347511.2771297,2324566112.9383445 +X_4,Core 3 state,-960980385.4522748,2001653223.458452,2962633608.9107265 +X_6,Core 5 state,-2352950829.446074,2116477916.0939243,4469428745.539998 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_2,Core 1 state,300204910.4703489,2489757084.4162264,2189552173.9458776 +X_1,Core 0 state,-55218601.661214955,2269347511.2771297,2324566112.9383445 +X_6,Core 5 state,-2352950829.446074,2116477916.0939243,4469428745.539998 +X_4,Core 3 state,-960980385.4522748,2001653223.458452,2962633608.9107265 +X_7,Medium Socket or core 6 frequency,699302189.3879458,1777130482.3828113,1077828292.9948654 +X_3,Core 2 state,1143296516.4597847,1529200364.6708114,385903848.21102667 +X_5,Core 4 state,63988272.50466162,1358034862.678526,1294046590.1738644 +X_0,frequency level of Little Socket,358391135.0128328,1008991682.6076103,650600547.5947776 +X_8,Big Socket or core 7 frequency,1734586059.3456295,841070691.5499505,893515367.795679 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-2352950829.446074,2116477916.0939243,4469428745.539998 +X_4,Core 3 state,-960980385.4522748,2001653223.458452,2962633608.9107265 +X_1,Core 0 state,-55218601.661214955,2269347511.2771297,2324566112.9383445 +X_2,Core 1 state,300204910.4703489,2489757084.4162264,2189552173.9458776 +X_5,Core 4 state,63988272.50466162,1358034862.678526,1294046590.1738644 +X_7,Medium Socket or core 6 frequency,699302189.3879458,1777130482.3828113,1077828292.9948654 +X_8,Big Socket or core 7 frequency,1734586059.3456295,841070691.5499505,893515367.795679 +X_0,frequency level of Little Socket,358391135.0128328,1008991682.6076103,650600547.5947776 +X_3,Core 2 state,1143296516.4597847,1529200364.6708114,385903848.21102667 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..14a212afff81948086a584841ed302e89f1519cb Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..8bd2c9dc2b2800907db8ce14c21f35f15e063ee9 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..07364aaa3f6bd876f8067b9e411bd654a24b60ec Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..bb3f864972b393c02b0881bab125bd30ffd30223 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.74_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..573c937a25797af1d8a29face134eb99face55c2 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..0e132f9cf81f9613c4e6cb756558441a8e32de43 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..99e63631088c2afc4cc82d66d321281d86fd4c76 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..573c937a25797af1d8a29face134eb99face55c2 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..0e132f9cf81f9613c4e6cb756558441a8e32de43 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..f2d0936fdcc79997980b2a22837ef1a4e0f3f760 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..0f5314c88db44bb2593244ebaffa0566afe955d6 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..0f27f0028d57c97c912159c9bd3d5e04b8fa1a28 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..cd6a07c3470ddd29b21d4f4919263181201d1527 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..864f54eb8db69eb9c832cfa158c66172059d83e1 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..cdbe1b5505ef596d600f268219b9a0ac810a0f45 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..bc31130fbfa01c07bd8ca8c3dd8c9021292edb4b Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..7e00e8bc67895e591f520553a5a2b8ecab203ff0 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-1391298948.8166475,1391298948.8166475 +X_1,Core 0 state,750149154.3042555,750149154.3042555 +X_2,Core 1 state,-107553122.81035838,107553122.81035838 +X_3,Core 2 state,-1318347910.3446991,1318347910.3446991 +X_4,Core 3 state,435706436.9187136,435706436.9187136 +X_5,Core 4 state,-348505861.92560476,348505861.92560476 +X_6,Core 5 state,214660005.46119523,214660005.46119523 +X_7,Medium Socket or core 6 frequency,493791230.6147071,493791230.6147071 +X_8,Big Socket or core 7 frequency,338264775.64442056,338264775.64442056 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,750149154.3042555,750149154.3042555 +X_7,Medium Socket or core 6 frequency,493791230.6147071,493791230.6147071 +X_4,Core 3 state,435706436.9187136,435706436.9187136 +X_8,Big Socket or core 7 frequency,338264775.64442056,338264775.64442056 +X_6,Core 5 state,214660005.46119523,214660005.46119523 +X_2,Core 1 state,-107553122.81035838,107553122.81035838 +X_5,Core 4 state,-348505861.92560476,348505861.92560476 +X_3,Core 2 state,-1318347910.3446991,1318347910.3446991 +X_0,frequency level of Little Socket,-1391298948.8166475,1391298948.8166475 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-1391298948.8166475,1391298948.8166475 +X_3,Core 2 state,-1318347910.3446991,1318347910.3446991 +X_1,Core 0 state,750149154.3042555,750149154.3042555 +X_7,Medium Socket or core 6 frequency,493791230.6147071,493791230.6147071 +X_4,Core 3 state,435706436.9187136,435706436.9187136 +X_5,Core 4 state,-348505861.92560476,348505861.92560476 +X_8,Big Socket or core 7 frequency,338264775.64442056,338264775.64442056 +X_6,Core 5 state,214660005.46119523,214660005.46119523 +X_2,Core 1 state,-107553122.81035838,107553122.81035838 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..f0287a00effb5c9688da7bbb68982c5ad050bd8c --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,-648058272.4887108,800796291.1984218,1448854563.6871326 +X_1,Core 0 state,-563300924.8341497,2378172457.9370346,2941473382.7711844 +X_2,Core 1 state,75716454.45285082,2445920827.6867075,2370204373.2338567 +X_3,Core 2 state,100147121.69420162,2585640294.2857003,2485493172.591499 +X_4,Core 3 state,11044893.502585497,1752457228.8983686,1741412335.3957832 +X_5,Core 4 state,695285198.573055,777195678.879354,81910480.30629897 +X_6,Core 5 state,-612429861.518657,2222863625.365054,2835293486.883711 +X_7,Medium Socket or core 6 frequency,403175380.397992,1511948607.6930695,1108773227.2950773 +X_8,Big Socket or core 7 frequency,1642173772.406906,1005244623.4741137,636929148.9327922 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,1642173772.406906,1005244623.4741137,636929148.9327922 +X_5,Core 4 state,695285198.573055,777195678.879354,81910480.30629897 +X_7,Medium Socket or core 6 frequency,403175380.397992,1511948607.6930695,1108773227.2950773 +X_3,Core 2 state,100147121.69420162,2585640294.2857003,2485493172.591499 +X_2,Core 1 state,75716454.45285082,2445920827.6867075,2370204373.2338567 +X_4,Core 3 state,11044893.502585497,1752457228.8983686,1741412335.3957832 +X_1,Core 0 state,-563300924.8341497,2378172457.9370346,2941473382.7711844 +X_6,Core 5 state,-612429861.518657,2222863625.365054,2835293486.883711 +X_0,frequency level of Little Socket,-648058272.4887108,800796291.1984218,1448854563.6871326 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_3,Core 2 state,100147121.69420162,2585640294.2857003,2485493172.591499 +X_2,Core 1 state,75716454.45285082,2445920827.6867075,2370204373.2338567 +X_1,Core 0 state,-563300924.8341497,2378172457.9370346,2941473382.7711844 +X_6,Core 5 state,-612429861.518657,2222863625.365054,2835293486.883711 +X_4,Core 3 state,11044893.502585497,1752457228.8983686,1741412335.3957832 +X_7,Medium Socket or core 6 frequency,403175380.397992,1511948607.6930695,1108773227.2950773 +X_8,Big Socket or core 7 frequency,1642173772.406906,1005244623.4741137,636929148.9327922 +X_0,frequency level of Little Socket,-648058272.4887108,800796291.1984218,1448854563.6871326 +X_5,Core 4 state,695285198.573055,777195678.879354,81910480.30629897 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_1,Core 0 state,-563300924.8341497,2378172457.9370346,2941473382.7711844 +X_6,Core 5 state,-612429861.518657,2222863625.365054,2835293486.883711 +X_3,Core 2 state,100147121.69420162,2585640294.2857003,2485493172.591499 +X_2,Core 1 state,75716454.45285082,2445920827.6867075,2370204373.2338567 +X_4,Core 3 state,11044893.502585497,1752457228.8983686,1741412335.3957832 +X_0,frequency level of Little Socket,-648058272.4887108,800796291.1984218,1448854563.6871326 +X_7,Medium Socket or core 6 frequency,403175380.397992,1511948607.6930695,1108773227.2950773 +X_8,Big Socket or core 7 frequency,1642173772.406906,1005244623.4741137,636929148.9327922 +X_5,Core 4 state,695285198.573055,777195678.879354,81910480.30629897 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..ebfee4991db2b07f085357777946a2fc611f7c94 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..190c5c934ab0d5d96163213bec4a452ef938995e Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..db2d331560155516a1895b9e4516ebdb82ebd89d Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..f67f0636648dfaf8e999273976d3fe5291a2f592 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.78_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..5a5e405fe21adec61fa77a31f64779d29ea602c4 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..c0708d3bf21395ee928adcd14e80db428c83fc68 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..508e0ea3063760d258ceedda22e49ff2c6ef196f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..5a5e405fe21adec61fa77a31f64779d29ea602c4 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..c0708d3bf21395ee928adcd14e80db428c83fc68 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..e9e1e914b75f27e655e6f262786a39c7a96caa56 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..f77dd8eaee8c6b4e7c8502ed60a03342f603d1f4 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..9d7c3b1400b62b8e351d2236341626b0990cf5b7 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..4f7614ac84c4a3b55636313817484e1ea7f95f51 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..24b24dfdba2f8d80fa0ef24c419fa34dedc248e0 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..89f93036ae662c30d35fad47be8e9766b102d148 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..48418bfbe590fd612d4227ca78a8df4e3433c839 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..2fdd8a4b8fbf832b1960b3a5e8f853ac876f2a62 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-1429766950.178037,1429766950.178037 +X_1,Core 0 state,1752717741.2699828,1752717741.2699828 +X_2,Core 1 state,667321754.5563899,667321754.5563899 +X_3,Core 2 state,-189128973.73131338,189128973.73131338 +X_4,Core 3 state,-682119539.7883741,682119539.7883741 +X_5,Core 4 state,197471303.94952786,197471303.94952786 +X_6,Core 5 state,-857393800.6119171,857393800.6119171 +X_7,Medium Socket or core 6 frequency,187350120.02905306,187350120.02905306 +X_8,Big Socket or core 7 frequency,199969663.6693504,199969663.6693504 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1752717741.2699828,1752717741.2699828 +X_2,Core 1 state,667321754.5563899,667321754.5563899 +X_8,Big Socket or core 7 frequency,199969663.6693504,199969663.6693504 +X_5,Core 4 state,197471303.94952786,197471303.94952786 +X_7,Medium Socket or core 6 frequency,187350120.02905306,187350120.02905306 +X_3,Core 2 state,-189128973.73131338,189128973.73131338 +X_4,Core 3 state,-682119539.7883741,682119539.7883741 +X_6,Core 5 state,-857393800.6119171,857393800.6119171 +X_0,frequency level of Little Socket,-1429766950.178037,1429766950.178037 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1752717741.2699828,1752717741.2699828 +X_0,frequency level of Little Socket,-1429766950.178037,1429766950.178037 +X_6,Core 5 state,-857393800.6119171,857393800.6119171 +X_4,Core 3 state,-682119539.7883741,682119539.7883741 +X_2,Core 1 state,667321754.5563899,667321754.5563899 +X_8,Big Socket or core 7 frequency,199969663.6693504,199969663.6693504 +X_5,Core 4 state,197471303.94952786,197471303.94952786 +X_3,Core 2 state,-189128973.73131338,189128973.73131338 +X_7,Medium Socket or core 6 frequency,187350120.02905306,187350120.02905306 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..91f04373cc35a49713499055e36d6b6421bffe76 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,925163054.8466082,874121960.6927992,51041094.15380895 +X_1,Core 0 state,-136779197.83898953,2507500599.9860473,2644279797.825037 +X_2,Core 1 state,197308384.13765517,2213552126.0444465,2016243741.9067912 +X_3,Core 2 state,459180931.0805988,1473863343.2031279,1014682412.122529 +X_4,Core 3 state,-983839479.6052991,2002628825.3079872,2986468304.913286 +X_5,Core 4 state,-729117795.5356593,1081065241.0019073,1810183036.5375667 +X_6,Core 5 state,-1647672844.9930122,2548714587.15103,4196387432.144042 +X_7,Medium Socket or core 6 frequency,976990110.3278319,1726946523.2763584,749956412.9485265 +X_8,Big Socket or core 7 frequency,2263978995.1491833,968628620.8885312,1295350374.260652 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,2263978995.1491833,968628620.8885312,1295350374.260652 +X_7,Medium Socket or core 6 frequency,976990110.3278319,1726946523.2763584,749956412.9485265 +X_0,frequency level of Little Socket,925163054.8466082,874121960.6927992,51041094.15380895 +X_3,Core 2 state,459180931.0805988,1473863343.2031279,1014682412.122529 +X_2,Core 1 state,197308384.13765517,2213552126.0444465,2016243741.9067912 +X_1,Core 0 state,-136779197.83898953,2507500599.9860473,2644279797.825037 +X_5,Core 4 state,-729117795.5356593,1081065241.0019073,1810183036.5375667 +X_4,Core 3 state,-983839479.6052991,2002628825.3079872,2986468304.913286 +X_6,Core 5 state,-1647672844.9930122,2548714587.15103,4196387432.144042 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-1647672844.9930122,2548714587.15103,4196387432.144042 +X_1,Core 0 state,-136779197.83898953,2507500599.9860473,2644279797.825037 +X_2,Core 1 state,197308384.13765517,2213552126.0444465,2016243741.9067912 +X_4,Core 3 state,-983839479.6052991,2002628825.3079872,2986468304.913286 +X_7,Medium Socket or core 6 frequency,976990110.3278319,1726946523.2763584,749956412.9485265 +X_3,Core 2 state,459180931.0805988,1473863343.2031279,1014682412.122529 +X_5,Core 4 state,-729117795.5356593,1081065241.0019073,1810183036.5375667 +X_8,Big Socket or core 7 frequency,2263978995.1491833,968628620.8885312,1295350374.260652 +X_0,frequency level of Little Socket,925163054.8466082,874121960.6927992,51041094.15380895 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-1647672844.9930122,2548714587.15103,4196387432.144042 +X_4,Core 3 state,-983839479.6052991,2002628825.3079872,2986468304.913286 +X_1,Core 0 state,-136779197.83898953,2507500599.9860473,2644279797.825037 +X_2,Core 1 state,197308384.13765517,2213552126.0444465,2016243741.9067912 +X_5,Core 4 state,-729117795.5356593,1081065241.0019073,1810183036.5375667 +X_8,Big Socket or core 7 frequency,2263978995.1491833,968628620.8885312,1295350374.260652 +X_3,Core 2 state,459180931.0805988,1473863343.2031279,1014682412.122529 +X_7,Medium Socket or core 6 frequency,976990110.3278319,1726946523.2763584,749956412.9485265 +X_0,frequency level of Little Socket,925163054.8466082,874121960.6927992,51041094.15380895 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..43c734c04349b972c5a275922a5930e0a8994f7f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..3473f88ea05785c6b21184ad4d6d6dc9f76b6141 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..9108fdffe3dad02029d01881525a3b57d629f2cc Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..61ddc18d0f1081f5fc963f67d785eb26d78aea7e Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.80_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..4dc18a31ed90614bb59424aee8fdff934b151a76 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..b47e14ff8c2fa94f7b13b0643041ae9de7a6a75f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..840f4672e4cd28ce02ee7fd55cda6ebc26d20257 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..4dc18a31ed90614bb59424aee8fdff934b151a76 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..b47e14ff8c2fa94f7b13b0643041ae9de7a6a75f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..de4a06a5a94fc29bc58e270bbb68f97553349164 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..37d775ccdcf20dadddee5732352f3c179e4723e1 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..fc5f78bf4a72cee85f1510d1ff37e211be819e16 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..0b6cca9f6f63e0672790e5d8946b601a5759e3df Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..aaba0162e1edce5a49fbedab024e3fd354f36296 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..e863e4b7bf771f51e08033dfabbf25f32bf8a079 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..bfb472ca4650aaebdc3e2fc1f850f2820ad4ba6a Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..211af34270258efaf5b2740a83b5c45338f7b498 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-522746275.70211506,522746275.70211506 +X_1,Core 0 state,1556928765.080413,1556928765.080413 +X_2,Core 1 state,-1068797091.4579843,1068797091.4579843 +X_3,Core 2 state,-1275692183.4677234,1275692183.4677234 +X_4,Core 3 state,-470084384.5022531,470084384.5022531 +X_5,Core 4 state,-147218638.21377346,147218638.21377346 +X_6,Core 5 state,-1361994084.222492,1361994084.222492 +X_7,Medium Socket or core 6 frequency,792967381.9594053,792967381.9594053 +X_8,Big Socket or core 7 frequency,175442572.10140774,175442572.10140774 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1556928765.080413,1556928765.080413 +X_7,Medium Socket or core 6 frequency,792967381.9594053,792967381.9594053 +X_8,Big Socket or core 7 frequency,175442572.10140774,175442572.10140774 +X_5,Core 4 state,-147218638.21377346,147218638.21377346 +X_4,Core 3 state,-470084384.5022531,470084384.5022531 +X_0,frequency level of Little Socket,-522746275.70211506,522746275.70211506 +X_2,Core 1 state,-1068797091.4579843,1068797091.4579843 +X_3,Core 2 state,-1275692183.4677234,1275692183.4677234 +X_6,Core 5 state,-1361994084.222492,1361994084.222492 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1556928765.080413,1556928765.080413 +X_6,Core 5 state,-1361994084.222492,1361994084.222492 +X_3,Core 2 state,-1275692183.4677234,1275692183.4677234 +X_2,Core 1 state,-1068797091.4579843,1068797091.4579843 +X_7,Medium Socket or core 6 frequency,792967381.9594053,792967381.9594053 +X_0,frequency level of Little Socket,-522746275.70211506,522746275.70211506 +X_4,Core 3 state,-470084384.5022531,470084384.5022531 +X_8,Big Socket or core 7 frequency,175442572.10140774,175442572.10140774 +X_5,Core 4 state,-147218638.21377346,147218638.21377346 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..5b6bc5ead7803950e6bd2427d4df6e161d31f927 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,-96698343.67767243,885506254.043159,982204597.7208314 +X_1,Core 0 state,-904887585.3064551,2276947634.660237,3181835219.966692 +X_2,Core 1 state,-554009219.3722111,2512271661.4532614,3066280880.8254724 +X_3,Core 2 state,-419626092.5013106,2773671088.13172,3193297180.633031 +X_4,Core 3 state,-717348762.2809161,1072103391.2006868,1789452153.481603 +X_5,Core 4 state,-540336317.3364457,880156499.8830601,1420492817.2195058 +X_6,Core 5 state,-1583755935.7452784,2089054071.6337729,3672810007.379051 +X_7,Medium Socket or core 6 frequency,-355248662.9748347,1702258716.6190848,2057507379.5939195 +X_8,Big Socket or core 7 frequency,1058399698.5446509,949586670.9887613,108813027.5558896 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,1058399698.5446509,949586670.9887613,108813027.5558896 +X_0,frequency level of Little Socket,-96698343.67767243,885506254.043159,982204597.7208314 +X_7,Medium Socket or core 6 frequency,-355248662.9748347,1702258716.6190848,2057507379.5939195 +X_3,Core 2 state,-419626092.5013106,2773671088.13172,3193297180.633031 +X_5,Core 4 state,-540336317.3364457,880156499.8830601,1420492817.2195058 +X_2,Core 1 state,-554009219.3722111,2512271661.4532614,3066280880.8254724 +X_4,Core 3 state,-717348762.2809161,1072103391.2006868,1789452153.481603 +X_1,Core 0 state,-904887585.3064551,2276947634.660237,3181835219.966692 +X_6,Core 5 state,-1583755935.7452784,2089054071.6337729,3672810007.379051 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_3,Core 2 state,-419626092.5013106,2773671088.13172,3193297180.633031 +X_2,Core 1 state,-554009219.3722111,2512271661.4532614,3066280880.8254724 +X_1,Core 0 state,-904887585.3064551,2276947634.660237,3181835219.966692 +X_6,Core 5 state,-1583755935.7452784,2089054071.6337729,3672810007.379051 +X_7,Medium Socket or core 6 frequency,-355248662.9748347,1702258716.6190848,2057507379.5939195 +X_4,Core 3 state,-717348762.2809161,1072103391.2006868,1789452153.481603 +X_8,Big Socket or core 7 frequency,1058399698.5446509,949586670.9887613,108813027.5558896 +X_0,frequency level of Little Socket,-96698343.67767243,885506254.043159,982204597.7208314 +X_5,Core 4 state,-540336317.3364457,880156499.8830601,1420492817.2195058 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-1583755935.7452784,2089054071.6337729,3672810007.379051 +X_3,Core 2 state,-419626092.5013106,2773671088.13172,3193297180.633031 +X_1,Core 0 state,-904887585.3064551,2276947634.660237,3181835219.966692 +X_2,Core 1 state,-554009219.3722111,2512271661.4532614,3066280880.8254724 +X_7,Medium Socket or core 6 frequency,-355248662.9748347,1702258716.6190848,2057507379.5939195 +X_4,Core 3 state,-717348762.2809161,1072103391.2006868,1789452153.481603 +X_5,Core 4 state,-540336317.3364457,880156499.8830601,1420492817.2195058 +X_0,frequency level of Little Socket,-96698343.67767243,885506254.043159,982204597.7208314 +X_8,Big Socket or core 7 frequency,1058399698.5446509,949586670.9887613,108813027.5558896 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..ccf8168a6071b88c2651dd19de725c4a30720ac9 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..eccc25252fab139c0c20199ba545ec6ed1e338d4 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..57b26df749fcddb2fcb9492fd6b18d3181c8f176 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..fbb7c3ffa836ec2196b399928f27522da6c8d191 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.81_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..ed3da2dc45aef0e81e5abec6fc1fb81f7793f9d8 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..9b92a1debaafc05322fc1188b975bfdbe4a7fac1 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..8e2879a207171a0b43e42203e868dd7d4cf75f39 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..ed3da2dc45aef0e81e5abec6fc1fb81f7793f9d8 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..9b92a1debaafc05322fc1188b975bfdbe4a7fac1 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..9f4f933c089169befa5e82577d56e82534f6c8a0 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..22f9a3db4650a5132ed653ae067c3f64d01be961 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..db1942b154d80b382888136c87dea4114771699a Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..4ae4278a8771b0330887273679e04b40c7559f41 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..a4257610727ba3dbee3ef482d083940887b8b35f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..9e7fa18a02ff1ab0cf174340de497195331431c6 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..11f05433c54af6b0dd04717c3d897b8a230f6053 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..ace14cdde7d86a6f61557415f9f5ac03d07ad42e --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-461590936.1714992,461590936.1714992 +X_1,Core 0 state,2232622938.3714504,2232622938.3714504 +X_2,Core 1 state,67440013.19685216,67440013.19685216 +X_3,Core 2 state,608876181.1402817,608876181.1402817 +X_4,Core 3 state,139813522.86455327,139813522.86455327 +X_5,Core 4 state,-302199635.9298845,302199635.9298845 +X_6,Core 5 state,-1007863096.0333083,1007863096.0333083 +X_7,Medium Socket or core 6 frequency,346900050.19082034,346900050.19082034 +X_8,Big Socket or core 7 frequency,184213381.46021962,184213381.46021962 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,2232622938.3714504,2232622938.3714504 +X_3,Core 2 state,608876181.1402817,608876181.1402817 +X_7,Medium Socket or core 6 frequency,346900050.19082034,346900050.19082034 +X_8,Big Socket or core 7 frequency,184213381.46021962,184213381.46021962 +X_4,Core 3 state,139813522.86455327,139813522.86455327 +X_2,Core 1 state,67440013.19685216,67440013.19685216 +X_5,Core 4 state,-302199635.9298845,302199635.9298845 +X_0,frequency level of Little Socket,-461590936.1714992,461590936.1714992 +X_6,Core 5 state,-1007863096.0333083,1007863096.0333083 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,2232622938.3714504,2232622938.3714504 +X_6,Core 5 state,-1007863096.0333083,1007863096.0333083 +X_3,Core 2 state,608876181.1402817,608876181.1402817 +X_0,frequency level of Little Socket,-461590936.1714992,461590936.1714992 +X_7,Medium Socket or core 6 frequency,346900050.19082034,346900050.19082034 +X_5,Core 4 state,-302199635.9298845,302199635.9298845 +X_8,Big Socket or core 7 frequency,184213381.46021962,184213381.46021962 +X_4,Core 3 state,139813522.86455327,139813522.86455327 +X_2,Core 1 state,67440013.19685216,67440013.19685216 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..82598713ed746480a310f8666e9157b19a52d2d0 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,1023045692.4721718,978868503.1316272,44177189.34054458 +X_1,Core 0 state,1573736661.760368,2530164859.8327837,956428198.0724156 +X_2,Core 1 state,222993439.15208456,2019907083.363452,1796913644.2113674 +X_3,Core 2 state,771459767.0090067,1981822386.5936415,1210362619.5846348 +X_4,Core 3 state,-1000280791.8979663,1927621777.0962634,2927902568.99423 +X_5,Core 4 state,-1498110692.2617195,947209321.5931364,2445320013.854856 +X_6,Core 5 state,-2047826524.2674139,2461900500.8590336,4509727025.126448 +X_7,Medium Socket or core 6 frequency,834903311.9361974,1663205096.2567527,828301784.3205553 +X_8,Big Socket or core 7 frequency,2018267053.3246222,866732185.9166597,1151534867.4079623 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,2018267053.3246222,866732185.9166597,1151534867.4079623 +X_1,Core 0 state,1573736661.760368,2530164859.8327837,956428198.0724156 +X_0,frequency level of Little Socket,1023045692.4721718,978868503.1316272,44177189.34054458 +X_7,Medium Socket or core 6 frequency,834903311.9361974,1663205096.2567527,828301784.3205553 +X_3,Core 2 state,771459767.0090067,1981822386.5936415,1210362619.5846348 +X_2,Core 1 state,222993439.15208456,2019907083.363452,1796913644.2113674 +X_4,Core 3 state,-1000280791.8979663,1927621777.0962634,2927902568.99423 +X_5,Core 4 state,-1498110692.2617195,947209321.5931364,2445320013.854856 +X_6,Core 5 state,-2047826524.2674139,2461900500.8590336,4509727025.126448 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_1,Core 0 state,1573736661.760368,2530164859.8327837,956428198.0724156 +X_6,Core 5 state,-2047826524.2674139,2461900500.8590336,4509727025.126448 +X_2,Core 1 state,222993439.15208456,2019907083.363452,1796913644.2113674 +X_3,Core 2 state,771459767.0090067,1981822386.5936415,1210362619.5846348 +X_4,Core 3 state,-1000280791.8979663,1927621777.0962634,2927902568.99423 +X_7,Medium Socket or core 6 frequency,834903311.9361974,1663205096.2567527,828301784.3205553 +X_0,frequency level of Little Socket,1023045692.4721718,978868503.1316272,44177189.34054458 +X_5,Core 4 state,-1498110692.2617195,947209321.5931364,2445320013.854856 +X_8,Big Socket or core 7 frequency,2018267053.3246222,866732185.9166597,1151534867.4079623 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-2047826524.2674139,2461900500.8590336,4509727025.126448 +X_4,Core 3 state,-1000280791.8979663,1927621777.0962634,2927902568.99423 +X_5,Core 4 state,-1498110692.2617195,947209321.5931364,2445320013.854856 +X_2,Core 1 state,222993439.15208456,2019907083.363452,1796913644.2113674 +X_3,Core 2 state,771459767.0090067,1981822386.5936415,1210362619.5846348 +X_8,Big Socket or core 7 frequency,2018267053.3246222,866732185.9166597,1151534867.4079623 +X_1,Core 0 state,1573736661.760368,2530164859.8327837,956428198.0724156 +X_7,Medium Socket or core 6 frequency,834903311.9361974,1663205096.2567527,828301784.3205553 +X_0,frequency level of Little Socket,1023045692.4721718,978868503.1316272,44177189.34054458 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..62a0388fd3e250498222902586c94cc752f268eb Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..1c39b589ce5fce6b0202f9326e19c150d0d33779 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..5dcc83dd08bccecf09465783112680d7c530ea68 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..6905a3d1adc0185bfe295b5a203f562c04cd936f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.82_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..ca6ac40808d449256f4aaf5bc0bce73a0d562e67 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..facc7330d85bec55cf309eafa6592078d3ec881f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..64ce802f215479909ad6aefdfc5f9529eeba7dc0 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..ca6ac40808d449256f4aaf5bc0bce73a0d562e67 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..facc7330d85bec55cf309eafa6592078d3ec881f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..57b84519fe00c1b59e1058b930496820d1c1eb94 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..c562b4127e4450de025cf03355ac5a2a16bd2ea9 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..143f258cf4322457c5bb85889493812ccd6ab4ef Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..19f20f59190a683b29b48c6d534695deb43d998f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..496176df501abc61a3cd8b744547a3578a348481 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..5e72f7d9c5887894cacfb0622a8eb62c6961bc8d Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..4294e706fa8673d3731271f18903911798b13a70 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..50dc5c115160165b2d1785a50629c4bb5111d892 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-1133965416.91435,1133965416.91435 +X_1,Core 0 state,1615413178.2004354,1615413178.2004354 +X_2,Core 1 state,147668242.53326556,147668242.53326556 +X_3,Core 2 state,-153829694.89377084,153829694.89377084 +X_4,Core 3 state,188782560.43218148,188782560.43218148 +X_5,Core 4 state,180297617.82672137,180297617.82672137 +X_6,Core 5 state,-789382191.4511809,789382191.4511809 +X_7,Medium Socket or core 6 frequency,57337582.07944596,57337582.07944596 +X_8,Big Socket or core 7 frequency,176568350.59561536,176568350.59561536 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1615413178.2004354,1615413178.2004354 +X_4,Core 3 state,188782560.43218148,188782560.43218148 +X_5,Core 4 state,180297617.82672137,180297617.82672137 +X_8,Big Socket or core 7 frequency,176568350.59561536,176568350.59561536 +X_2,Core 1 state,147668242.53326556,147668242.53326556 +X_7,Medium Socket or core 6 frequency,57337582.07944596,57337582.07944596 +X_3,Core 2 state,-153829694.89377084,153829694.89377084 +X_6,Core 5 state,-789382191.4511809,789382191.4511809 +X_0,frequency level of Little Socket,-1133965416.91435,1133965416.91435 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1615413178.2004354,1615413178.2004354 +X_0,frequency level of Little Socket,-1133965416.91435,1133965416.91435 +X_6,Core 5 state,-789382191.4511809,789382191.4511809 +X_4,Core 3 state,188782560.43218148,188782560.43218148 +X_5,Core 4 state,180297617.82672137,180297617.82672137 +X_8,Big Socket or core 7 frequency,176568350.59561536,176568350.59561536 +X_3,Core 2 state,-153829694.89377084,153829694.89377084 +X_2,Core 1 state,147668242.53326556,147668242.53326556 +X_7,Medium Socket or core 6 frequency,57337582.07944596,57337582.07944596 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..2b0d75522476fd49e16ef42a97de0bfe871df5b4 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,1305408018.381304,851506120.4098593,453901897.9714447 +X_1,Core 0 state,-163346771.62363437,2445061530.543319,2608408302.1669536 +X_2,Core 1 state,497702809.3492439,2248661920.959177,1750959111.6099331 +X_3,Core 2 state,797991458.598069,1939414893.0309072,1141423434.4328382 +X_4,Core 3 state,195662370.68399423,2073362269.56917,1877699898.8851757 +X_5,Core 4 state,34623597.341355085,690475478.6954708,655851881.3541157 +X_6,Core 5 state,-2188484988.7606955,2420467597.8918395,4608952586.6525345 +X_7,Medium Socket or core 6 frequency,480255765.5576195,1745611145.002953,1265355379.4453335 +X_8,Big Socket or core 7 frequency,1598594659.007247,970662474.252771,627932184.754476 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,1598594659.007247,970662474.252771,627932184.754476 +X_0,frequency level of Little Socket,1305408018.381304,851506120.4098593,453901897.9714447 +X_3,Core 2 state,797991458.598069,1939414893.0309072,1141423434.4328382 +X_2,Core 1 state,497702809.3492439,2248661920.959177,1750959111.6099331 +X_7,Medium Socket or core 6 frequency,480255765.5576195,1745611145.002953,1265355379.4453335 +X_4,Core 3 state,195662370.68399423,2073362269.56917,1877699898.8851757 +X_5,Core 4 state,34623597.341355085,690475478.6954708,655851881.3541157 +X_1,Core 0 state,-163346771.62363437,2445061530.543319,2608408302.1669536 +X_6,Core 5 state,-2188484988.7606955,2420467597.8918395,4608952586.6525345 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_1,Core 0 state,-163346771.62363437,2445061530.543319,2608408302.1669536 +X_6,Core 5 state,-2188484988.7606955,2420467597.8918395,4608952586.6525345 +X_2,Core 1 state,497702809.3492439,2248661920.959177,1750959111.6099331 +X_4,Core 3 state,195662370.68399423,2073362269.56917,1877699898.8851757 +X_3,Core 2 state,797991458.598069,1939414893.0309072,1141423434.4328382 +X_7,Medium Socket or core 6 frequency,480255765.5576195,1745611145.002953,1265355379.4453335 +X_8,Big Socket or core 7 frequency,1598594659.007247,970662474.252771,627932184.754476 +X_0,frequency level of Little Socket,1305408018.381304,851506120.4098593,453901897.9714447 +X_5,Core 4 state,34623597.341355085,690475478.6954708,655851881.3541157 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-2188484988.7606955,2420467597.8918395,4608952586.6525345 +X_1,Core 0 state,-163346771.62363437,2445061530.543319,2608408302.1669536 +X_4,Core 3 state,195662370.68399423,2073362269.56917,1877699898.8851757 +X_2,Core 1 state,497702809.3492439,2248661920.959177,1750959111.6099331 +X_7,Medium Socket or core 6 frequency,480255765.5576195,1745611145.002953,1265355379.4453335 +X_3,Core 2 state,797991458.598069,1939414893.0309072,1141423434.4328382 +X_5,Core 4 state,34623597.341355085,690475478.6954708,655851881.3541157 +X_8,Big Socket or core 7 frequency,1598594659.007247,970662474.252771,627932184.754476 +X_0,frequency level of Little Socket,1305408018.381304,851506120.4098593,453901897.9714447 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..25408c7caf65d89d764c3069d160bd8ecdd4f4dd Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..98fba47819f207443518e2a988d447240dd376d5 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..387170a7001cfb0b76eae4cd67344222ea9c0d17 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..dc2aecd3b43d9a9fe34d915424562765a752ee54 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.83_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..db5bd98a3649b73e2220cae3213e5620990a7e39 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..1fafa7d8f1afc3267d66c82aeaf5282858b3c848 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..1e5182aa3d7b7273a10e7db1ada7ede1b49b7be3 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..db5bd98a3649b73e2220cae3213e5620990a7e39 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..1fafa7d8f1afc3267d66c82aeaf5282858b3c848 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..a490a23758eeabb0833d60df27e0d07aa1e32270 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..6d2afdc29fda201adaa5d5db093d21fec43a48e3 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..e67d548e185fb10e4b5c2628b377a2c96931c519 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..32a55bee69845d5a8ef1dbf820bc216577f90e91 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..5b8379c5b060387e6dd87b13bdd166a3235d12a4 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..99b2070f0f10d668893efe22d0fc393c578a28f5 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..342b2e34e885b3fe20f2ca5b4cad36f5eb8c9e6a Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..8299321593ca837f1cebced02de06163f8a985b4 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-647053522.9892951,647053522.9892951 +X_1,Core 0 state,2006002672.4183798,2006002672.4183798 +X_2,Core 1 state,171952546.00338057,171952546.00338057 +X_3,Core 2 state,120798680.58006701,120798680.58006701 +X_4,Core 3 state,-199767564.27658385,199767564.27658385 +X_5,Core 4 state,99565734.01791844,99565734.01791844 +X_6,Core 5 state,-1131701164.5683277,1131701164.5683277 +X_7,Medium Socket or core 6 frequency,33564214.09130338,33564214.09130338 +X_8,Big Socket or core 7 frequency,122857248.75686103,122857248.75686103 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,2006002672.4183798,2006002672.4183798 +X_2,Core 1 state,171952546.00338057,171952546.00338057 +X_8,Big Socket or core 7 frequency,122857248.75686103,122857248.75686103 +X_3,Core 2 state,120798680.58006701,120798680.58006701 +X_5,Core 4 state,99565734.01791844,99565734.01791844 +X_7,Medium Socket or core 6 frequency,33564214.09130338,33564214.09130338 +X_4,Core 3 state,-199767564.27658385,199767564.27658385 +X_0,frequency level of Little Socket,-647053522.9892951,647053522.9892951 +X_6,Core 5 state,-1131701164.5683277,1131701164.5683277 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,2006002672.4183798,2006002672.4183798 +X_6,Core 5 state,-1131701164.5683277,1131701164.5683277 +X_0,frequency level of Little Socket,-647053522.9892951,647053522.9892951 +X_4,Core 3 state,-199767564.27658385,199767564.27658385 +X_2,Core 1 state,171952546.00338057,171952546.00338057 +X_8,Big Socket or core 7 frequency,122857248.75686103,122857248.75686103 +X_3,Core 2 state,120798680.58006701,120798680.58006701 +X_5,Core 4 state,99565734.01791844,99565734.01791844 +X_7,Medium Socket or core 6 frequency,33564214.09130338,33564214.09130338 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..b672b9567cff3573e795ec458b66260a7ecfa2e7 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,954861861.8855973,979742956.178562,24881094.292964697 +X_1,Core 0 state,346259057.63173807,2159045866.4418755,1812786808.8101373 +X_2,Core 1 state,161477746.08878675,2084819445.0516849,1923341698.962898 +X_3,Core 2 state,1338887067.4847283,2050374398.3515584,711487330.8668301 +X_4,Core 3 state,-883846578.6083363,1946773429.4960554,2830620008.1043916 +X_5,Core 4 state,-990951794.4207653,1275751762.0429938,2266703556.463759 +X_6,Core 5 state,-2119706263.9893134,2269847592.051495,4389553856.040809 +X_7,Medium Socket or core 6 frequency,1156383822.2258942,1698889178.591497,542505356.3656027 +X_8,Big Socket or core 7 frequency,2329649924.36382,867542912.829265,1462107011.534555 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,2329649924.36382,867542912.829265,1462107011.534555 +X_3,Core 2 state,1338887067.4847283,2050374398.3515584,711487330.8668301 +X_7,Medium Socket or core 6 frequency,1156383822.2258942,1698889178.591497,542505356.3656027 +X_0,frequency level of Little Socket,954861861.8855973,979742956.178562,24881094.292964697 +X_1,Core 0 state,346259057.63173807,2159045866.4418755,1812786808.8101373 +X_2,Core 1 state,161477746.08878675,2084819445.0516849,1923341698.962898 +X_4,Core 3 state,-883846578.6083363,1946773429.4960554,2830620008.1043916 +X_5,Core 4 state,-990951794.4207653,1275751762.0429938,2266703556.463759 +X_6,Core 5 state,-2119706263.9893134,2269847592.051495,4389553856.040809 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-2119706263.9893134,2269847592.051495,4389553856.040809 +X_1,Core 0 state,346259057.63173807,2159045866.4418755,1812786808.8101373 +X_2,Core 1 state,161477746.08878675,2084819445.0516849,1923341698.962898 +X_3,Core 2 state,1338887067.4847283,2050374398.3515584,711487330.8668301 +X_4,Core 3 state,-883846578.6083363,1946773429.4960554,2830620008.1043916 +X_7,Medium Socket or core 6 frequency,1156383822.2258942,1698889178.591497,542505356.3656027 +X_5,Core 4 state,-990951794.4207653,1275751762.0429938,2266703556.463759 +X_0,frequency level of Little Socket,954861861.8855973,979742956.178562,24881094.292964697 +X_8,Big Socket or core 7 frequency,2329649924.36382,867542912.829265,1462107011.534555 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-2119706263.9893134,2269847592.051495,4389553856.040809 +X_4,Core 3 state,-883846578.6083363,1946773429.4960554,2830620008.1043916 +X_5,Core 4 state,-990951794.4207653,1275751762.0429938,2266703556.463759 +X_2,Core 1 state,161477746.08878675,2084819445.0516849,1923341698.962898 +X_1,Core 0 state,346259057.63173807,2159045866.4418755,1812786808.8101373 +X_8,Big Socket or core 7 frequency,2329649924.36382,867542912.829265,1462107011.534555 +X_3,Core 2 state,1338887067.4847283,2050374398.3515584,711487330.8668301 +X_7,Medium Socket or core 6 frequency,1156383822.2258942,1698889178.591497,542505356.3656027 +X_0,frequency level of Little Socket,954861861.8855973,979742956.178562,24881094.292964697 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..4b86ff5c7892912ffeaece8cc17a7b94703f384a Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..3b2f33d2db2527578b7c1a1ac3dc9325ea9ff40b Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..4f56ebb3054b8563bbb08e026deed92c20697f2d Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..ad43c517292f10fba297c4d44900bfe7f7a750e9 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.85_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..39ac2c60108d38d1e83b2429383336c876538fb7 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..0b7a2cb9979e49bff7ea968c5e178e9b5deeec22 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..9baa56b4f680e17a87839a373ec5e664230faba2 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..39ac2c60108d38d1e83b2429383336c876538fb7 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..0b7a2cb9979e49bff7ea968c5e178e9b5deeec22 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..159fd1a4f4414ee8ae5547d438c2bf7a4b734ede Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..7fbb08c78222d22ee08991f159453922e57522be Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..0abec33857e685c6169db42762cbb2d0f5d81a4f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..78411a3e3e6545b55c940054c8e7c16f5fe6a456 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..baef0820790e5ad3a3046be48b31d1520672277c Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..b374a56bed6fb0b08c37e6b42db4c0694d9b397b Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..d5284ab942909560e6a4b153a9c9cce1de0468d4 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..e8b3fb4f39cd41f5ade1056cf6210507c68d1d3d --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-792565220.225299,792565220.225299 +X_1,Core 0 state,1882642211.4522169,1882642211.4522169 +X_2,Core 1 state,-321190269.3511689,321190269.3511689 +X_3,Core 2 state,181951933.97881776,181951933.97881776 +X_4,Core 3 state,1011129329.200044,1011129329.200044 +X_5,Core 4 state,111192717.93385358,111192717.93385358 +X_6,Core 5 state,-1209947092.8364544,1209947092.8364544 +X_7,Medium Socket or core 6 frequency,364250128.5169419,364250128.5169419 +X_8,Big Socket or core 7 frequency,51425951.38153581,51425951.38153581 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1882642211.4522169,1882642211.4522169 +X_4,Core 3 state,1011129329.200044,1011129329.200044 +X_7,Medium Socket or core 6 frequency,364250128.5169419,364250128.5169419 +X_3,Core 2 state,181951933.97881776,181951933.97881776 +X_5,Core 4 state,111192717.93385358,111192717.93385358 +X_8,Big Socket or core 7 frequency,51425951.38153581,51425951.38153581 +X_2,Core 1 state,-321190269.3511689,321190269.3511689 +X_0,frequency level of Little Socket,-792565220.225299,792565220.225299 +X_6,Core 5 state,-1209947092.8364544,1209947092.8364544 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1882642211.4522169,1882642211.4522169 +X_6,Core 5 state,-1209947092.8364544,1209947092.8364544 +X_4,Core 3 state,1011129329.200044,1011129329.200044 +X_0,frequency level of Little Socket,-792565220.225299,792565220.225299 +X_7,Medium Socket or core 6 frequency,364250128.5169419,364250128.5169419 +X_2,Core 1 state,-321190269.3511689,321190269.3511689 +X_3,Core 2 state,181951933.97881776,181951933.97881776 +X_5,Core 4 state,111192717.93385358,111192717.93385358 +X_8,Big Socket or core 7 frequency,51425951.38153581,51425951.38153581 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..4a730dd7b67f7b8718d60db9fa8696d320761567 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,1078842478.9731789,877641334.0955703,201201144.87760854 +X_1,Core 0 state,1016425306.9680184,2613224981.483983,1596799674.5159645 +X_2,Core 1 state,703026784.2452468,2401287966.2938666,1698261182.0486197 +X_3,Core 2 state,216115984.99678615,2069859445.227145,1853743460.2303588 +X_4,Core 3 state,-211034459.9874711,2209902165.287872,2420936625.275343 +X_5,Core 4 state,-641170462.7617527,735449561.3862617,1376620024.1480145 +X_6,Core 5 state,-2140596363.4969409,2117922269.0841615,4258518632.5811024 +X_7,Medium Socket or core 6 frequency,332309669.81213844,1456462444.4902043,1124152774.6780658 +X_8,Big Socket or core 7 frequency,2502203819.4046893,1030489471.2338302,1471714348.170859 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,2502203819.4046893,1030489471.2338302,1471714348.170859 +X_0,frequency level of Little Socket,1078842478.9731789,877641334.0955703,201201144.87760854 +X_1,Core 0 state,1016425306.9680184,2613224981.483983,1596799674.5159645 +X_2,Core 1 state,703026784.2452468,2401287966.2938666,1698261182.0486197 +X_7,Medium Socket or core 6 frequency,332309669.81213844,1456462444.4902043,1124152774.6780658 +X_3,Core 2 state,216115984.99678615,2069859445.227145,1853743460.2303588 +X_4,Core 3 state,-211034459.9874711,2209902165.287872,2420936625.275343 +X_5,Core 4 state,-641170462.7617527,735449561.3862617,1376620024.1480145 +X_6,Core 5 state,-2140596363.4969409,2117922269.0841615,4258518632.5811024 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_1,Core 0 state,1016425306.9680184,2613224981.483983,1596799674.5159645 +X_2,Core 1 state,703026784.2452468,2401287966.2938666,1698261182.0486197 +X_4,Core 3 state,-211034459.9874711,2209902165.287872,2420936625.275343 +X_6,Core 5 state,-2140596363.4969409,2117922269.0841615,4258518632.5811024 +X_3,Core 2 state,216115984.99678615,2069859445.227145,1853743460.2303588 +X_7,Medium Socket or core 6 frequency,332309669.81213844,1456462444.4902043,1124152774.6780658 +X_8,Big Socket or core 7 frequency,2502203819.4046893,1030489471.2338302,1471714348.170859 +X_0,frequency level of Little Socket,1078842478.9731789,877641334.0955703,201201144.87760854 +X_5,Core 4 state,-641170462.7617527,735449561.3862617,1376620024.1480145 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-2140596363.4969409,2117922269.0841615,4258518632.5811024 +X_4,Core 3 state,-211034459.9874711,2209902165.287872,2420936625.275343 +X_3,Core 2 state,216115984.99678615,2069859445.227145,1853743460.2303588 +X_2,Core 1 state,703026784.2452468,2401287966.2938666,1698261182.0486197 +X_1,Core 0 state,1016425306.9680184,2613224981.483983,1596799674.5159645 +X_8,Big Socket or core 7 frequency,2502203819.4046893,1030489471.2338302,1471714348.170859 +X_5,Core 4 state,-641170462.7617527,735449561.3862617,1376620024.1480145 +X_7,Medium Socket or core 6 frequency,332309669.81213844,1456462444.4902043,1124152774.6780658 +X_0,frequency level of Little Socket,1078842478.9731789,877641334.0955703,201201144.87760854 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..ee5a0eeba3f095ecc9ccf2807a77a3c23106175b Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..8124dd651d748ad2c8ecbccb4b0de3c675978cf3 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..c2bc3121e64da2693a6a03a64f27aa89dcd9bb4a Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..0d663fe00d362643b0da0d607ac315afb7f70cd5 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.86_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..de251b27b806ea951e6565fa6e30bc5ced416905 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..ac9cd0f06d19fc142863fb4f20b4d1613f2d5ff0 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..f1783885ac8801aa8013648cdfc06e4b7c15b4cd Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..de251b27b806ea951e6565fa6e30bc5ced416905 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..ac9cd0f06d19fc142863fb4f20b4d1613f2d5ff0 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..bbaae1a2d963b7ea1812ff2cd8a5480c89664672 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..4192103a81d4d4ed0f7decf550da11a88701fa8d Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..6fe2ef70b5d9c14cf760f807f0066437f8384dfd Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..4bb79bb6a5fbb24c96fb5f80d64869b0fc165ac6 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..bbd72756799f07e95666a57a14b63f4885f5466d Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..fda3f305bde7316559e587cb9dd149d47960b143 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..89a327850d211b643ffad37ae1d257bbd21aa222 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..40e5b37c1c965b238cb89fca157756ed0f9f5182 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-648664831.4260929,648664831.4260929 +X_1,Core 0 state,1735984971.0867562,1735984971.0867562 +X_2,Core 1 state,-278041909.39126474,278041909.39126474 +X_3,Core 2 state,-242206651.11664099,242206651.11664099 +X_4,Core 3 state,-39334536.28806093,39334536.28806093 +X_5,Core 4 state,-140098941.88837793,140098941.88837793 +X_6,Core 5 state,-237877671.046037,237877671.046037 +X_7,Medium Socket or core 6 frequency,399742830.9845724,399742830.9845724 +X_8,Big Socket or core 7 frequency,-115551181.95174336,115551181.95174336 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1735984971.0867562,1735984971.0867562 +X_7,Medium Socket or core 6 frequency,399742830.9845724,399742830.9845724 +X_4,Core 3 state,-39334536.28806093,39334536.28806093 +X_8,Big Socket or core 7 frequency,-115551181.95174336,115551181.95174336 +X_5,Core 4 state,-140098941.88837793,140098941.88837793 +X_6,Core 5 state,-237877671.046037,237877671.046037 +X_3,Core 2 state,-242206651.11664099,242206651.11664099 +X_2,Core 1 state,-278041909.39126474,278041909.39126474 +X_0,frequency level of Little Socket,-648664831.4260929,648664831.4260929 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1735984971.0867562,1735984971.0867562 +X_0,frequency level of Little Socket,-648664831.4260929,648664831.4260929 +X_7,Medium Socket or core 6 frequency,399742830.9845724,399742830.9845724 +X_2,Core 1 state,-278041909.39126474,278041909.39126474 +X_3,Core 2 state,-242206651.11664099,242206651.11664099 +X_6,Core 5 state,-237877671.046037,237877671.046037 +X_5,Core 4 state,-140098941.88837793,140098941.88837793 +X_8,Big Socket or core 7 frequency,-115551181.95174336,115551181.95174336 +X_4,Core 3 state,-39334536.28806093,39334536.28806093 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..29d87463cefd10662647d1599fd0615077f3559b --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,1000611200.5585983,1160386427.1561096,159775226.5975113 +X_1,Core 0 state,343907465.3646556,2064579809.0515878,1720672343.686932 +X_2,Core 1 state,72112925.43767057,2118398164.654133,2046285239.2164626 +X_3,Core 2 state,-128171313.16444005,1988706922.6969607,2116878235.8614008 +X_4,Core 3 state,-818202220.4500784,2039609265.508494,2857811485.9585724 +X_5,Core 4 state,-1414137013.8812077,824315805.2437215,2238452819.1249294 +X_6,Core 5 state,-2806395247.106804,2310448873.3479185,5116844120.454722 +X_7,Medium Socket or core 6 frequency,1009414132.0768796,1791864555.088849,782450423.0119694 +X_8,Big Socket or core 7 frequency,2923164801.222365,811452526.3020192,2111712274.9203458 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,2923164801.222365,811452526.3020192,2111712274.9203458 +X_7,Medium Socket or core 6 frequency,1009414132.0768796,1791864555.088849,782450423.0119694 +X_0,frequency level of Little Socket,1000611200.5585983,1160386427.1561096,159775226.5975113 +X_1,Core 0 state,343907465.3646556,2064579809.0515878,1720672343.686932 +X_2,Core 1 state,72112925.43767057,2118398164.654133,2046285239.2164626 +X_3,Core 2 state,-128171313.16444005,1988706922.6969607,2116878235.8614008 +X_4,Core 3 state,-818202220.4500784,2039609265.508494,2857811485.9585724 +X_5,Core 4 state,-1414137013.8812077,824315805.2437215,2238452819.1249294 +X_6,Core 5 state,-2806395247.106804,2310448873.3479185,5116844120.454722 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-2806395247.106804,2310448873.3479185,5116844120.454722 +X_2,Core 1 state,72112925.43767057,2118398164.654133,2046285239.2164626 +X_1,Core 0 state,343907465.3646556,2064579809.0515878,1720672343.686932 +X_4,Core 3 state,-818202220.4500784,2039609265.508494,2857811485.9585724 +X_3,Core 2 state,-128171313.16444005,1988706922.6969607,2116878235.8614008 +X_7,Medium Socket or core 6 frequency,1009414132.0768796,1791864555.088849,782450423.0119694 +X_0,frequency level of Little Socket,1000611200.5585983,1160386427.1561096,159775226.5975113 +X_5,Core 4 state,-1414137013.8812077,824315805.2437215,2238452819.1249294 +X_8,Big Socket or core 7 frequency,2923164801.222365,811452526.3020192,2111712274.9203458 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-2806395247.106804,2310448873.3479185,5116844120.454722 +X_4,Core 3 state,-818202220.4500784,2039609265.508494,2857811485.9585724 +X_5,Core 4 state,-1414137013.8812077,824315805.2437215,2238452819.1249294 +X_3,Core 2 state,-128171313.16444005,1988706922.6969607,2116878235.8614008 +X_8,Big Socket or core 7 frequency,2923164801.222365,811452526.3020192,2111712274.9203458 +X_2,Core 1 state,72112925.43767057,2118398164.654133,2046285239.2164626 +X_1,Core 0 state,343907465.3646556,2064579809.0515878,1720672343.686932 +X_7,Medium Socket or core 6 frequency,1009414132.0768796,1791864555.088849,782450423.0119694 +X_0,frequency level of Little Socket,1000611200.5585983,1160386427.1561096,159775226.5975113 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..ece20ce1376f4e83bde5521684a553070563e3d7 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..038e5057939dde2cfef96b60b62baa65bd1ee586 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..2936016ec563d3532673d60373a30ca93b86dbb2 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..f132ac220d01584f218c93164673ccbec4afca34 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.87_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/Core_0_state_over_Core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/Core_0_state_over_Core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..988d224080c0bf5af88ed60dbe282c692a42f47f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/Core_0_state_over_Core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png new file mode 100755 index 0000000000000000000000000000000000000000..5cc3f64b3f8474bdaec7f378d8f76636dce65c65 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/Core_0_state_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__Core_4_state__Core_5_state__core_6_frequency__core_7_frequency.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_0_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_0_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..9bc9a94c1312a7e0749e21cd7cfa4f077a61fd53 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_0_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_1_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_1_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..988d224080c0bf5af88ed60dbe282c692a42f47f Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_1_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png new file mode 100755 index 0000000000000000000000000000000000000000..5cc3f64b3f8474bdaec7f378d8f76636dce65c65 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_1_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_2_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_2_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..b9a6e4de0a174ffd6b0af275e6e78143af43533b Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_2_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_3_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_3_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..974343aace27ec3a7bad238c778dc032c32051d0 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_3_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_4_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_4_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..1b40c0340f9729cd892bfc32a18fd984b407db06 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_4_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_5_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_5_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..6d170006be5a9d54496110f142712f95ec40524a Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_5_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_6_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_6_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..3e02fbbf0d2d4b637359749b9eb8ff9ed88e880e Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_6_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_7_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_7_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..261ce688aab641b95810d55c932dc50734de3559 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_7_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_8_over_X_0__.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_8_over_X_0__.png new file mode 100755 index 0000000000000000000000000000000000000000..ed335136945e6433f1922bc4610b879c06ffc293 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/X_8_over_X_0__.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/d_X_1_linear_coefficients.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/d_X_1_linear_coefficients.csv new file mode 100755 index 0000000000000000000000000000000000000000..5eb466e38bf2877816eb41fc1eec9a97c7293752 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/d_X_1_linear_coefficients.csv @@ -0,0 +1,36 @@ +Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_0,frequency level of Little Socket,-724774970.647948,724774970.647948 +X_1,Core 0 state,1722865904.1125815,1722865904.1125815 +X_2,Core 1 state,-210195775.6223024,210195775.6223024 +X_3,Core 2 state,193464803.33934504,193464803.33934504 +X_4,Core 3 state,165763215.43805712,165763215.43805712 +X_5,Core 4 state,-45986474.14333384,45986474.14333384 +X_6,Core 5 state,-103023909.66355129,103023909.66355129 +X_7,Medium Socket or core 6 frequency,-370818702.4458487,370818702.4458487 +X_8,Big Socket or core 7 frequency,370717091.7717444,370717091.7717444 + + + Ordered by value of coefficient, the first has the best positive interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1722865904.1125815,1722865904.1125815 +X_8,Big Socket or core 7 frequency,370717091.7717444,370717091.7717444 +X_3,Core 2 state,193464803.33934504,193464803.33934504 +X_4,Core 3 state,165763215.43805712,165763215.43805712 +X_5,Core 4 state,-45986474.14333384,45986474.14333384 +X_6,Core 5 state,-103023909.66355129,103023909.66355129 +X_2,Core 1 state,-210195775.6223024,210195775.6223024 +X_7,Medium Socket or core 6 frequency,-370818702.4458487,370818702.4458487 +X_0,frequency level of Little Socket,-724774970.647948,724774970.647948 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with Core 0 state + Variable,meaning ,d_X_1 (Variation relative to Core 0 state),asolute d_X_1 +X_1,Core 0 state,1722865904.1125815,1722865904.1125815 +X_0,frequency level of Little Socket,-724774970.647948,724774970.647948 +X_7,Medium Socket or core 6 frequency,-370818702.4458487,370818702.4458487 +X_8,Big Socket or core 7 frequency,370717091.7717444,370717091.7717444 +X_2,Core 1 state,-210195775.6223024,210195775.6223024 +X_3,Core 2 state,193464803.33934504,193464803.33934504 +X_4,Core 3 state,165763215.43805712,165763215.43805712 +X_6,Core 5 state,-103023909.66355129,103023909.66355129 +X_5,Core 4 state,-45986474.14333384,45986474.14333384 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000000000000000000000000000000000000..d3b06acfe05a91b935586ca1dab713add01bba44 --- /dev/null +++ b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,49 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,1252614171.903784,1158551500.854774,94062671.04901004 +X_1,Core 0 state,223387924.3475265,2271818654.5769033,2048430730.2293768 +X_2,Core 1 state,-310175106.8877546,2301456845.668397,2611631952.5561514 +X_3,Core 2 state,883923860.8181909,1789252636.6043031,905328775.7861122 +X_4,Core 3 state,-696561108.0667683,1783354538.4775958,2479915646.544364 +X_5,Core 4 state,-562774580.3112887,1139335831.5120652,1702110411.8233538 +X_6,Core 5 state,-1659154385.505798,2292403774.1547365,3951558159.660535 +X_7,Medium Socket or core 6 frequency,1254848553.4219894,1800614477.7153862,545765924.2933967 +X_8,Big Socket or core 7 frequency,2920195494.4779315,732405270.1277666,2187790224.350165 + + + Ordered by kernel ridge coefficients, higher is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_8,Big Socket or core 7 frequency,2920195494.4779315,732405270.1277666,2187790224.350165 +X_7,Medium Socket or core 6 frequency,1254848553.4219894,1800614477.7153862,545765924.2933967 +X_0,frequency level of Little Socket,1252614171.903784,1158551500.854774,94062671.04901004 +X_3,Core 2 state,883923860.8181909,1789252636.6043031,905328775.7861122 +X_1,Core 0 state,223387924.3475265,2271818654.5769033,2048430730.2293768 +X_2,Core 1 state,-310175106.8877546,2301456845.668397,2611631952.5561514 +X_5,Core 4 state,-562774580.3112887,1139335831.5120652,1702110411.8233538 +X_4,Core 3 state,-696561108.0667683,1783354538.4775958,2479915646.544364 +X_6,Core 5 state,-1659154385.505798,2292403774.1547365,3951558159.660535 + + + Ordered by linear regression coefficients, higher is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_2,Core 1 state,-310175106.8877546,2301456845.668397,2611631952.5561514 +X_6,Core 5 state,-1659154385.505798,2292403774.1547365,3951558159.660535 +X_1,Core 0 state,223387924.3475265,2271818654.5769033,2048430730.2293768 +X_7,Medium Socket or core 6 frequency,1254848553.4219894,1800614477.7153862,545765924.2933967 +X_3,Core 2 state,883923860.8181909,1789252636.6043031,905328775.7861122 +X_4,Core 3 state,-696561108.0667683,1783354538.4775958,2479915646.544364 +X_0,frequency level of Little Socket,1252614171.903784,1158551500.854774,94062671.04901004 +X_5,Core 4 state,-562774580.3112887,1139335831.5120652,1702110411.8233538 +X_8,Big Socket or core 7 frequency,2920195494.4779315,732405270.1277666,2187790224.350165 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 5 state,-1659154385.505798,2292403774.1547365,3951558159.660535 +X_2,Core 1 state,-310175106.8877546,2301456845.668397,2611631952.5561514 +X_4,Core 3 state,-696561108.0667683,1783354538.4775958,2479915646.544364 +X_8,Big Socket or core 7 frequency,2920195494.4779315,732405270.1277666,2187790224.350165 +X_1,Core 0 state,223387924.3475265,2271818654.5769033,2048430730.2293768 +X_5,Core 4 state,-562774580.3112887,1139335831.5120652,1702110411.8233538 +X_3,Core 2 state,883923860.8181909,1789252636.6043031,905328775.7861122 +X_7,Medium Socket or core 6 frequency,1254848553.4219894,1800614477.7153862,545765924.2933967 +X_0,frequency level of Little Socket,1252614171.903784,1158551500.854774,94062671.04901004 diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..bcde5df724f1159c3275f08a0cfd6d6906c81b14 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_core_0_state.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..d89f56c732e776d447cffa2fa2873e838a5c1192 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_core_6_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..8d486d5c9c5ae94e0a26b1f627fd5b9d6ecda07e Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_core_7_frequency_level.png differ diff --git a/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..41b0dc53bf2c3fd8ea09c243286cbdd090c2d3a1 Binary files /dev/null and b/kernel_ridge_linear_model/finding_best_input_dataset_size/marginal_effect_exploration_google__0.88_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png differ diff --git a/kernel_ridge_linear_model/kernel_ridge.py b/kernel_ridge_linear_model/kernel_ridge.py index c3e19495e03cc2176f6edabff4ee84f9d22a488e..660aaf47e2a5fcf18d12cf5ecfc234df3902edce 100755 --- a/kernel_ridge_linear_model/kernel_ridge.py +++ b/kernel_ridge_linear_model/kernel_ridge.py @@ -230,12 +230,7 @@ def function_to_remove_duplicates(X_user_friendly, X, y, output_data_folder, ene def function_to_fill_data_from_folders(consider_automatization_summaries, automatization_summaries_folder, max_input_size, energy_gap, number_of_neighbour, input_format, consider_exact_values_of_frequency, X_format_in_model, - phone_name, populate_inputs_to_considere_thread_combinations_on_same_socket, - maximum_number_of_combination, one_hot_encoding_of_frequency,standartize_inputs, - search_ridge_coeff, search_strategy, number_of_iteration_during_exploration, l_o_o_on_alpha_exploration, ltolerance,lambda_min, max_iterations,sequential_gap, - dichotomic_progression_ratio, - generate_plots, result_summary_csv_file_name, alpha, - repeat_experiments): + phone_name): if consider_automatization_summaries: X_user_friendly = utils.get_data_from_summary_folder(automatization_summaries_folder, "configurations", "human_readable_format", maximum_input_size = max_input_size ) @@ -248,6 +243,7 @@ def function_to_fill_data_from_folders(consider_automatization_summaries, print ("*** Total energy efficiencies: ", y) energy_array = utils.get_data_from_summary_folder(automatization_summaries_folder, "energy", maximum_input_size = max_input_size ) print ("*** Total energy : ", energy_array) + print("*** Sum of energy:", sum(energy_array)) workload_array = utils.get_data_from_summary_folder(automatization_summaries_folder, "workload", maximum_input_size = max_input_size ) print ("*** Total workload : ", workload_array) else: @@ -262,12 +258,34 @@ def function_to_fill_data_from_folders(consider_automatization_summaries, print ("*** Total energy efficiencies: ", y) if remove_aberrant_points : - X_user_friendly, X, y = function_to_remove_aberrant_points(X_user_friendly, X, y, output_data_folder, energy_array, workload_array, energy_gap, number_of_neighbour, repeat_experiments) + X_user_friendly, X, y = function_to_remove_aberrant_points(X_user_friendly, X, y, output_data_folder, energy_array, workload_array, + energy_gap, number_of_neighbour, repeat_experiments) if remove_duplicates: X_user_friendly, X, y = function_to_remove_duplicates(X_user_friendly, X, y, output_data_folder, energy_array, workload_array, value_to_retain) + return X_user_friendly, X, X_dict, y, energy_array, workload_array + + +def function_to_train_the_model(phone_name, energy_gap, number_of_neighbour, dataset_size_to_consider, X_user_friendly, X, X_dict, y, energy_array, workload_array, + input_format, consider_exact_values_of_frequency, X_format_in_model, + populate_inputs_to_considere_thread_combinations_on_same_socket, + maximum_number_of_combination, one_hot_encoding_of_frequency,standartize_inputs, + search_ridge_coeff, search_strategy, number_of_iteration_during_exploration, l_o_o_on_alpha_exploration, ltolerance,lambda_min, max_iterations,sequential_gap, + dichotomic_progression_ratio, + generate_plots, result_summary_csv_file_name, alpha, + repeat_experiments): - # to do generate_equivalent_entries(X,y) + ratio_to_throw_away = (len(X) - dataset_size_to_consider)/len(X) + if ratio_to_throw_away > 0: + X_to_considered, X_to_thrown, y_to_considered, y_to_thrown = train_test_split(X, y, test_size = ratio_to_throw_away, random_state=2) + print ("Set to consider (size = " + str(len(X_to_considered) )+ ") : ", X_to_considered) + print ("energy by workload to consider (size = " + str(len(y_to_considered) )+ ") : ", y_to_considered) + print ("Set to thrown (size = " + str(len(X_to_thrown) )+ ") : ", X_to_thrown) + print ("energy by workload to thrown (size = " + str(len(y_to_thrown) )+ ") : ", y_to_thrown) + X = X_to_considered + y = y_to_considered + + print("--- Total energy consumed :", energy_array) ################################# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state=2) @@ -472,21 +490,6 @@ def function_to_compute_marginal_effect(gauss_process, X_train, y_train, X_test, print("margins", margins) print("pointwise margins", pointwise_margins) - # computing the marginal effect of the observation with naive implementation - """ - print (" ***** START computing marginal effects with loop***** ") - print ("X = ", X_train) - n_pointwise_margins, n_margins = comput_margin.naive_marginal_effect(X_train, c_vector, sigma_2) - print (" ***** END computing marginal effects ***** ") - print("naive margins", n_margins) - print("margins", margins) - print("naive pointwise margins", n_pointwise_margins) - print("pointwise margins", pointwise_margins) - print("test of correctness means = " + str(np.sum(n_pointwise_margins[:,0]) / len(X_train)) + - " direct value = ", n_margins[0] ) - """ - - # generating linear regression coefficients ols = sm.OLS(y_train, X_train) # warning in the sm OLS function argument format, y is the first parameter. reg = ols.fit() @@ -496,287 +499,10 @@ def function_to_compute_marginal_effect(gauss_process, X_train, y_train, X_test, print("linear model parameters = ", linear_coefficients) print("*** Linear model R2 score = ", utils.compute_r2_score(y_test, reg_pred_y_test) ) - if phone_name == "samsung_galaxy_s8" : - - linear_coeff_vs_kernel_ridge_margins_file = marginal_effect_exploration_folder + "/linear_coeff_vs_kernel_ridge_margins.csv" # Can change depending on the r2 score - - X_meaning_dictionnary = base_Y__X_meaning_dictionnary if X_format_in_model == "base_Y" else base_Y_N_on_socket__X_meaning_dictionnary if X_format_in_model == "base_Y_N_on_socket" else {} - - #Capturing linear coefficients and kernel ridge means marginal effect (not pointwise) in a file - utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) - - if X_format_in_model == "base_Y": - - ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). - # plotting histograph - - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_0_state.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,5], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_big_socket_frequency_level.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,8], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_state.png", 3e-11, 8) - - - ### Plotting marginal effect plots - ## Regression of d_X_5 over all other variable including X_5 is the frequency of big cores - d_X_5_coefficients_file = marginal_effect_exploration_folder + "/d_X_5_linear_coefficients.csv" - d_X_5_ols = sm.OLS(pointwise_margins[:,5], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_5_reg = d_X_5_ols.fit() - d_X_5_linear_coefficients = d_X_5_reg.params - print("d_X_5 linear model parameters = ", d_X_5_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 5, - d_X_i_linear_coefficients = d_X_5_linear_coefficients, - file_path = d_X_5_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_5 over other variables") - - utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 5, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) - - # processing d_X_0 - d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" - d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_0_reg = d_X_0_ols.fit() - d_X_0_linear_coefficients = d_X_0_reg.params - print("d_X_0 linear model parameters = ", d_X_0_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, - d_X_i_linear_coefficients = d_X_0_linear_coefficients, - file_path = d_X_0_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_0 over other variables") - - utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) - - - - - # processing d_X_1 (core 0 state) - - d_X_1_coefficients_file = marginal_effect_exploration_folder + "/d_X_1_linear_coefficients.csv" - d_X_1_ols = sm.OLS(pointwise_margins[:,1], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_1_reg = d_X_1_ols.fit() - d_X_1_linear_coefficients = d_X_1_reg.params - print("d_X_1 linear model parameters = ", d_X_1_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 1, - d_X_i_linear_coefficients = d_X_1_linear_coefficients, - file_path = d_X_1_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_1 over other variables") - - utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 1, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) - - - # processing d_X_6 (core 6 state) - - d_X_6_coefficients_file = marginal_effect_exploration_folder + "/d_X_6_linear_coefficients.csv" - d_X_6_ols = sm.OLS(pointwise_margins[:,6], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_6_reg = d_X_6_ols.fit() - d_X_6_linear_coefficients = d_X_6_reg.params - print("d_X_6 linear model parameters = ", d_X_6_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 6, - d_X_i_linear_coefficients = d_X_6_linear_coefficients, - file_path = d_X_6_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_6 over other variables") - - utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 6, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) - - # processing d_X_4 (core 3 state) - - d_X_4_coefficients_file = marginal_effect_exploration_folder + "/d_X_4_linear_coefficients.csv" - d_X_4_ols = sm.OLS(pointwise_margins[:,4], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_4_reg = d_X_4_ols.fit() - d_X_4_linear_coefficients = d_X_4_reg.params - print("d_X_4 linear model parameters = ", d_X_4_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 4, - d_X_i_linear_coefficients = d_X_4_linear_coefficients, - file_path = d_X_4_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_4 over other variables") - - utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 4, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) - - - # processing d_X_9 (core 7 state) - d_X_9_coefficients_file = marginal_effect_exploration_folder + "/d_X_9_linear_coefficients.csv" - d_X_9_ols = sm.OLS(pointwise_margins[:,9], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_9_reg = d_X_9_ols.fit() - d_X_9_linear_coefficients = d_X_9_reg.params - print("d_X_9 linear model parameters = ", d_X_9_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 9, - d_X_i_linear_coefficients = d_X_9_linear_coefficients, - file_path = d_X_9_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_9 over other variables") - - utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 9, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) - - - - """ - - ## Regression of d_X_7 over all other variable including - d_X_7_coefficients_file = marginal_effect_exploration_folder + "/d_X_7_linear_coefficients.csv" - d_X_7_ols = sm.OLS(pointwise_margins[:,7], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_7_reg = d_X_7_ols.fit() - d_X_7_linear_coefficients = d_X_7_reg.params - print("X_7_d linear model parameters = ", d_X_7_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 7, - d_X_i_linear_coefficients = d_X_7_linear_coefficients, - file_path = d_X_7_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_7 over other variables") - utils.plot_marginal_interactions(X_train, pointwise_margins, 7, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) - - - - ## Regression of d_X_0 over all other variable including - d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" - d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_0_reg = d_X_0_ols.fit() - d_X_0_linear_coefficients = d_X_0_reg.params - print("X_0_d linear model parameters = ", d_X_0_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, - d_X_i_linear_coefficients = d_X_0_linear_coefficients, - file_path = d_X_0_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_0 over other variables") - utils.plot_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) - - - - ## Regression of d_X_0 over all other variable including - d_X_1_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" - d_X_1_ols = sm.OLS(pointwise_margins[:,1], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_1_reg = d_X_1_ols.fit() - d_X_1_linear_coefficients = d_X_1_reg.params - print("X_0_d linear model parameters = ", d_X_1_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 1, - d_X_i_linear_coefficients = d_X_1_linear_coefficients, - file_path = d_X_1_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_0 over other variables") - utils.plot_marginal_interactions(X_train, pointwise_margins, 1, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) - - """ - - elif X_format_in_model == "base_Y_N_on_socket": - ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). - # plotting histograph - - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_number_of_little_cores_actives.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,5], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_big_socket_frequency_level.png", 3e-11, 3) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,9], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 4) - - - d_X_2_coefficients_file = marginal_effect_exploration_folder + "/d_X_2_linear_coefficients.csv" - d_X_2_ols = sm.OLS(pointwise_margins[:,2], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_2_reg = d_X_2_ols.fit() - d_X_2_linear_coefficients = d_X_2_reg.params - print("X_2_d linear model parameters = ", d_X_2_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 2, - d_X_i_linear_coefficients = d_X_2_linear_coefficients, - file_path = d_X_2_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - - - # plotting of d_X_2, regarding to other_variables with - _, (d_X_2_over_X_0, d_X_2_over_X_1, d_X_2_over_X_3) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) - d_X_2_over_X_0.scatter(X_train[:,0], pointwise_margins[:,2], c = "blue") - # Add title and axis names - d_X_2_over_X_0.set_title('d_X_2 over X_0') - d_X_2_over_X_0.set_xlabel('X_0 : frequency level of little socket') - d_X_2_over_X_0.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") - d_X_2_over_X_0.tick_params(size=8) - - - d_X_2_over_X_1.scatter(X_train[:,1], pointwise_margins[:,2], c = "blue") - # Add title and axis names - d_X_2_over_X_1.set_title('d_X_2 over X_1') - d_X_2_over_X_1.set_xlabel('X_1 : Number of threads on little socket') - d_X_2_over_X_1.set_ylabel("d_X_2 ") - d_X_2_over_X_1.tick_params(size=8) - - - d_X_2_over_X_3.scatter(X_train[:,3], pointwise_margins[:,2], c = "blue") - # Add title and axis names - d_X_2_over_X_3.set_title('d_X_2 over X_3') - d_X_2_over_X_3.set_xlabel('X_3 : frequency of core 7 (8th core)') - d_X_2_over_X_3.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") - d_X_2_over_X_3.tick_params(size=8) - - #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") - - plt.gcf().autofmt_xdate() - plt.xticks(fontsize=8) - plt.savefig(marginal_effect_exploration_folder + "/point_wise_marginal_effect_of_frequency_of_Medium_core_over_frequency_of_little_socket_number_of_thread_on_little_socket_and_8_th_core_frequency.png") - plt.clf() - plt.cla() - plt.close() - - + if phone_name == "google_pixel_4a_5g" : - linear_coeff_vs_kernel_ridge_margins_file = marginal_effect_exploration_folder + "/linear_coeff_vs_kernel_ridge_margins.csv" # Can change depending on the r2 score - if X_format_in_model == "base_Y_N_on_socket": - X_meaning_dictionnary = base_Y_N_on_socket__X_meaning_dictionnary - utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) - - - ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). - # plotting histograph - - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_number_of_little_cores_actives.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,2], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_6_frequency_level.png", 3e-11, 3) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,3], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 4) - - - d_X_2_coefficients_file = marginal_effect_exploration_folder + "/d_X_2_linear_coefficients.csv" - d_X_2_ols = sm.OLS(pointwise_margins[:,2], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_2_reg = d_X_2_ols.fit() - d_X_2_linear_coefficients = d_X_2_reg.params - print("X_2_d linear model parameters = ", d_X_2_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 2, - d_X_i_linear_coefficients = d_X_2_linear_coefficients, - file_path = d_X_2_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - - - # plotting of d_X_2, regarding to other_variables with - _, (d_X_2_over_X_0, d_X_2_over_X_1, d_X_2_over_X_3) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) - d_X_2_over_X_0.scatter(X_train[:,0], pointwise_margins[:,2], c = "blue") - # Add title and axis names - d_X_2_over_X_0.set_title('d_X_2 over X_0') - d_X_2_over_X_0.set_xlabel('X_0 : frequency level of little socket') - d_X_2_over_X_0.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") - d_X_2_over_X_0.tick_params(size=8) - - - d_X_2_over_X_1.scatter(X_train[:,1], pointwise_margins[:,2], c = "blue") - # Add title and axis names - d_X_2_over_X_1.set_title('d_X_2 over X_1') - d_X_2_over_X_1.set_xlabel('X_1 : Number of threads on little socket') - d_X_2_over_X_1.set_ylabel("d_X_2 ") - d_X_2_over_X_1.tick_params(size=8) - - - d_X_2_over_X_3.scatter(X_train[:,3], pointwise_margins[:,2], c = "blue") - # Add title and axis names - d_X_2_over_X_3.set_title('d_X_2 over X_3') - d_X_2_over_X_3.set_xlabel('X_3 : frequency of core 7 (8th core)') - d_X_2_over_X_3.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") - d_X_2_over_X_3.tick_params(size=8) - - #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") - - plt.gcf().autofmt_xdate() - plt.xticks(fontsize=8) - plt.savefig(marginal_effect_exploration_folder + "/point_wise_marginal_effect_of_frequency_of_Medium_core_over_frequency_of_little_socket_number_of_thread_on_little_socket_and_8_th_core_frequency.png") - plt.clf() - plt.cla() - plt.close() - - elif X_format_in_model == "base_Y": + if X_format_in_model == "base_Y": if( workstep == "plotting_graphs_for_the_paper"): X_meaning_dictionnary = utils.get_for_the_paper_X_format_meaning_dictionnaries(phone_name) else: @@ -792,54 +518,7 @@ def function_to_compute_marginal_effect(gauss_process, X_train, y_train, X_test, utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,7], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_6_frequency_level.png", 3e-11, 8) utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,8], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 8) - ### Plotting marginal effect plots - """ - ## Regression of d_X_8 over all other variable including - d_X_8_coefficients_file = marginal_effect_exploration_folder + "/d_X_8_linear_coefficients.csv" - d_X_8_ols = sm.OLS(pointwise_margins[:,8], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_8_reg = d_X_8_ols.fit() - d_X_8_linear_coefficients = d_X_8_reg.params - print("X_8_d linear model parameters = ", d_X_8_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 8, - d_X_i_linear_coefficients = d_X_8_linear_coefficients, - file_path = d_X_8_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_8 over other variables") - utils.plot_marginal_interactions(X_train, pointwise_margins, 8, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) - - - - ## Regression of d_X_7 over all other variable including - d_X_7_coefficients_file = marginal_effect_exploration_folder + "/d_X_7_linear_coefficients.csv" - d_X_7_ols = sm.OLS(pointwise_margins[:,7], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_7_reg = d_X_7_ols.fit() - d_X_7_linear_coefficients = d_X_7_reg.params - print("X_7_d linear model parameters = ", d_X_7_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 7, - d_X_i_linear_coefficients = d_X_7_linear_coefficients, - file_path = d_X_7_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_7 over other variables") - utils.plot_marginal_interactions(X_train, pointwise_margins, 7, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) - - - - ## Regression of d_X_0 over all other variable including - d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" - d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_0_reg = d_X_0_ols.fit() - d_X_0_linear_coefficients = d_X_0_reg.params - print("X_0_d linear model parameters = ", d_X_0_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, - d_X_i_linear_coefficients = d_X_0_linear_coefficients, - file_path = d_X_0_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_0 over other variables") - utils.plot_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) - - - """ - + ## Regression of d_X_1 over all other variable including @@ -859,150 +538,8 @@ def function_to_compute_marginal_effect(gauss_process, X_train, y_train, X_test, avg_marginal_score_table = utils.plot_marginal_interactions(X_train, pointwise_margins, 1, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder, workstep = "plotting_graphs_for_the_paper", paper_fontsize = 28) - elif X_format_in_model == "base_Y_F": - X_meaning_dictionnary = base_Y_F__X_meaning_dictionnary - utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) - """ - {"X_0" : "Little Socket frequency is freed", - "X_1" : "frequency level of Little Socket", - "X_2" : "Core 0 state", - "X_3" : "Core 1 state", - "X_4" : "Core 2 state", - "X_5" : "Core 3 state", - "X_6" : "Core 4 state", - "X_7" : "Core 5 state", - "X_8" : "Medium Socket frequency is freed", - "X_9" : "Medium Socket or core 6 frequency", - "X_10" : "Big Socket frequency is freed", - "X_11" : "Big Socket or core 7 frequency"} - """ - ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). - # plotting histograph - - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_freed.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) - - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,2], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_0_state.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,9], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_6_frequency_level.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,11], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 8) - - ### Plotting marginal effect plots - - ## Regression of d_X_0 (frequency of little socket is freed) over all other variable - d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" - d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_0_reg = d_X_0_ols.fit() - d_X_0_linear_coefficients = d_X_0_reg.params - print("X_0_d linear model parameters = ", d_X_0_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, - d_X_i_linear_coefficients = d_X_0_linear_coefficients, - file_path = d_X_0_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_0 over other variables") - utils.plot_twelve_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6,7, 8, 9,10,11, X_meaning_dictionnary, marginal_effect_exploration_folder) - - - - - ## Regression of d_X_8 over (frequency of medium socket is freed) all other variable including - d_X_8_coefficients_file = marginal_effect_exploration_folder + "/d_X_8_linear_coefficients.csv" - d_X_8_ols = sm.OLS(pointwise_margins[:,8], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_8_reg = d_X_8_ols.fit() - d_X_8_linear_coefficients = d_X_8_reg.params - print("X_8_d linear model parameters = ", d_X_8_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 8, - d_X_i_linear_coefficients = d_X_8_linear_coefficients, - file_path = d_X_8_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_8 over other variables") - utils.plot_twelve_marginal_interactions(X_train, pointwise_margins, 8, 0, 1, 2, 3,4,5,6,7, 8, 9,10, 11, X_meaning_dictionnary, marginal_effect_exploration_folder) - - - - ## Regression of d_X_10 over (frequency of medium socket is freed) all other variable including - d_X_10_coefficients_file = marginal_effect_exploration_folder + "/d_X_10_linear_coefficients.csv" - d_X_10_ols = sm.OLS(pointwise_margins[:,10], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_10_reg = d_X_10_ols.fit() - d_X_10_linear_coefficients = d_X_10_reg.params - print("X_10_d linear model parameters = ", d_X_10_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 10, - d_X_i_linear_coefficients = d_X_10_linear_coefficients, - file_path = d_X_10_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_10 over other variables") - utils.plot_twelve_marginal_interactions(X_train, pointwise_margins, 10, 0, 1, 2, 3,4,5,6,7, 8, 9,10,11, X_meaning_dictionnary, marginal_effect_exploration_folder) - - elif X_format_in_model == "base_Y_F_N_on_socket": - """ - base_Y_F_N_on_socket__X_meaning_dictionnary = {"X_0" : "Little Socket frequency is freed", - "X_1" : "frequency level of Little Socket", - "X_2" : "Number of little cores active", - "X_3" : "Medium Socket frequency is freed", - "X_4" : "frequency level of Medium Socket or core 6", - "X_5" : "Big Socket frequency is freed", - "X_6" : "frequency level of Big Socket or core 7"} - """ - X_meaning_dictionnary = base_Y_F_N_on_socket__X_meaning_dictionnary - utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) - - ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). - # plotting histograph - - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_freed.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) - - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,2], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_number_of_little_cores_active.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,3], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_medium_socket_frequency_freed.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,5], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_big_socket_frequency_freed.png", 3e-11, 8) - - ### Plotting marginal effect plots - - ## Regression of d_X_0 (frequency of little socket is freed) over all other variable - d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" - d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_0_reg = d_X_0_ols.fit() - d_X_0_linear_coefficients = d_X_0_reg.params - print("X_0_d linear model parameters = ", d_X_0_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, - d_X_i_linear_coefficients = d_X_0_linear_coefficients, - file_path = d_X_0_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_0 over other variables") - utils.plot_seven_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6, X_meaning_dictionnary, marginal_effect_exploration_folder) - - - - - ## Regression of d_X_8 over (frequency of medium socket is freed) all other variable including - d_X_3_coefficients_file = marginal_effect_exploration_folder + "/d_X_3_linear_coefficients.csv" - d_X_3_ols = sm.OLS(pointwise_margins[:,3], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_3_reg = d_X_3_ols.fit() - d_X_3_linear_coefficients = d_X_3_reg.params - print("X_3_d linear model parameters = ", d_X_3_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 3, - d_X_i_linear_coefficients = d_X_3_linear_coefficients, - file_path = d_X_3_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_3 over other variables") - utils.plot_seven_marginal_interactions(X_train, pointwise_margins, 3, 0, 1, 2, 3,4,5,6, X_meaning_dictionnary, marginal_effect_exploration_folder) - - - - ## Regression of d_X_5 over (frequency of medium socket is freed) all other variable including - d_X_5_coefficients_file = marginal_effect_exploration_folder + "/d_X_5_linear_coefficients.csv" - d_X_5_ols = sm.OLS(pointwise_margins[:,5], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_5_reg = d_X_5_ols.fit() - d_X_5_linear_coefficients = d_X_5_reg.params - print("X_5_d linear model parameters = ", d_X_5_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 5, - d_X_i_linear_coefficients = d_X_5_linear_coefficients, - file_path = d_X_5_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_5 over other variables") - utils.plot_seven_marginal_interactions(X_train, pointwise_margins, 5, 0, 1, 2, 3,4,5,6, X_meaning_dictionnary, marginal_effect_exploration_folder) - - return pointwise_margins, X_meaning_dictionnary + return pointwise_margins, margins, X_meaning_dictionnary @@ -1029,18 +566,204 @@ def special_len(my_list): print(" --- Computing special sum and adding value ", i) if i is not None: result = result + 1 + else: + print("---- " + str(i) + " is not added") return result -def funtion_to_process_database( marginal_effect_exploration_folder , X_user_friendly, X, y, energy_array, workload_array, X_train, y_train, X_test, y_test, gauss_process, pointwise_margins, X_meaning_dictionnary): + +def compute_global_lin_reg_coef_and_abs_coef_table(X_train, pointwise_margins): + # return for all j an array contaning at each position the list + # [l1_coef,L2_coef, ..., LM coef] + # [ L1_abs_coef, L2_abs_coef, ... LM_abs_coef] + # + # + # + gobal_lin_reg_coef_table = [] + for i in range(0,9): + d_y_on_d_X_i_ols = sm.OLS(pointwise_margins[:,1], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_y_on_d_X_i_reg = d_y_on_d_X_i_ols.fit() + d_y_on_d_X_i_linear_coefficients = d_y_on_d_X_i_reg.params + + coef_array = [float(element) for element in d_y_on_d_X_i_linear_coefficients] + abs_coef_array = [abs(float(element)) for element in d_y_on_d_X_i_linear_coefficients] + + gobal_lin_reg_coef_table.append([coef_array, abs_coef_array]) + return gobal_lin_reg_coef_table + + + + +def compute_global_avg_dynamic_score_table(conn, X_train, pointwise_margins, X_meaning_dictionnary, marginal_effect_exploration_folder, repeat_experiments): + global_avg_margins_and_dynamic_score_table = [] + for i in range(0,9): + #for i in [1]: + avg_margin_table = utils.plot_marginal_interactions(X_train, pointwise_margins, i, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder, + workstep = "computing_static_dynamic_score_for_paper", paper_fontsize = 28, repeat_experiments = repeat_experiments) + print("--- Avg margin table " + str(i) + ": ", avg_margin_table ) + avg_margin_and_dynamic_score_table = utils_for_validation.validate_lesson_learned(conn, marginal_effect_exploration_folder, avg_marginal_score_table = avg_margin_table) + global_avg_margins_and_dynamic_score_table.append(avg_margin_and_dynamic_score_table) + print("--- Interaction table and validation scores of variable " + str(i) + ": ", avg_margin_and_dynamic_score_table ) + return global_avg_margins_and_dynamic_score_table + + +def get_color_map(n, name='hsv'): + '''Returns a function that maps each index in 0, 1, ..., n-1 to a distinct + RGB color; the keyword argument name must be a standard mpl colormap name.''' + return plt.cm.get_cmap(name, n) + +import sys +def plot_finalscore_as_a_function_of_best_margin_interact(global_avg_margins_and_dynamic_score_table, + gobal_lin_reg_coef_table, margins, dataset_size): + output_plot_name = "dynamic_score_scheduling_size_according_to_best_covariates_and_best_interactions_" + str(dataset_size) +".png" + numbers_of_selected_margins = np.arange(start=1, stop=10, step=1).tolist() # We just limit our self to all the margins + numbers_of_selected_interactions = np.arange(start=1, stop=10, step=1).tolist() + + score_data_set_to_plot = [] + size_data_set_to_plot = [] + x_of_data_set = [] + for i in numbers_of_selected_margins: + one_line_size_data_set = [] + one_line_score_data_set = [] + one_x_line_of_data_set = [] + for j in numbers_of_selected_interactions: + final_score, selected_global_table , table_size = compute_final_score_for_strong_interaction_and_margins(global_avg_margins_and_dynamic_score_table, + gobal_lin_reg_coef_table, margins, i, j, dataset_size) + + if final_score is not None : + one_line_score_data_set.append(final_score) + #one_line_size_data_set.append(sys.getsizeof(selected_global_table)) + one_line_size_data_set.append(table_size/1000) + one_x_line_of_data_set.append(j) + if(len(one_line_size_data_set) > 0 ): + size_data_set_to_plot.append(one_line_size_data_set) + score_data_set_to_plot.append(one_line_score_data_set) + x_of_data_set.append(one_x_line_of_data_set) + paper_fontsize = 20 + + + fig, ((scores_according_to_margins, score_and_size) ) = plt.subplots(nrows= 1, ncols = 2, sharex = True, figsize=(15, 7)) + color_map = get_color_map(len(score_data_set_to_plot)) + for i in range(0,len(score_data_set_to_plot)): + scores_according_to_margins.plot(x_of_data_set[i], score_data_set_to_plot[i] , label = r'$m_J$ = ' + str(i+1) , color= color_map(i),marker='o', linestyle='-') + scores_according_to_margins.set_xlabel("Number of secondary covariates L \n for J" + r'$\leftrightarrow$ ' +"L interactions", fontsize = paper_fontsize ) + scores_according_to_margins.set_ylabel( "FitsAll dynamic score", fontsize = paper_fontsize) + scores_according_to_margins.tick_params(axis='x', which='major' , labelsize= paper_fontsize) + scores_according_to_margins.tick_params(axis='y', which='major' , labelsize= paper_fontsize) + scores_according_to_margins.tick_params(size=8) + scores_according_to_margins.legend(loc = 'upper left', prop={'size': 18}) + scores_according_to_margins.set_title("Dynamic score computed with a different \n number " + r'$m_J$'+ " of covariates J selected.", fontsize = paper_fontsize) + + + + choosen_number_of_margins = 7-1 # -1 to get the index in dataset + score_and_size.plot(x_of_data_set[choosen_number_of_margins], score_data_set_to_plot[choosen_number_of_margins] , color='black',marker='o', linestyle='-' ) + #ax.set_xlabel( "For each covariate, number of other \n covariates considered when selecting interactions." , fontsize = paper_fontsize ) + score_and_size.set_ylabel( "FitsAll dynamic score", fontsize = paper_fontsize) + score_and_size.tick_params(axis='x', which='major' , labelsize= paper_fontsize) + score_and_size.tick_params(axis='y', which='major' , labelsize= paper_fontsize) + score_and_size.set_xlabel("Number of secondary covariates L \n for J" + r'$\leftrightarrow$ ' +"L interactions", fontsize = paper_fontsize) + + score_and_size.tick_params(size=8) + score_and_size.set_title( "Dynamic score (in black) and \n size of the produced scheduling data base (blue) ", fontsize = paper_fontsize) + + ax2=score_and_size.twinx() + ax2.plot(x_of_data_set[choosen_number_of_margins], size_data_set_to_plot[choosen_number_of_margins] , color="blue", marker='o', linestyle='-' ) + ax2.set_xlabel("Number of secondary covariates L \n for J" + r'$\leftrightarrow$' +"L interactions", color="blue", fontsize = paper_fontsize) + ax2.set_ylabel("Scheduling database size (KBytes)", color="blue", fontsize = paper_fontsize) + + #ax2.tick_params(axis='x', which='major' , labelsize= paper_fontsize, color="gray",) + ax2.tick_params(axis='y', which='major' , labelsize= paper_fontsize, color="Blue") + ax2.tick_params(size=8) + + # Get extents of subplot + + #plt.subplots_adjust(bottom = 0.15) + #fig.text(0.5, 0.04, "For each covariate J, number of other covariates considered when selecting interactions J " + r'$\leftrightarrow$ = ' +" L.", + # va='center', ha='center', fontsize=paper_fontsize) + #plt.yticks(fontsize=paper_fontsize) + #plt.legend(loc="upper left", fontsize = 12) + #ax = plt.gca() + #ax.yaxis.get_offset_text().set_fontsize(paper_fontsize) + #plt.locator_params(axis='x', nbins=4) + plt.tight_layout(pad = 1.5) + #output_plot_name = "dynamic_score_according_to_best_covariates_and_best_interactions" +str(j)+ ".png" + plt.savefig("finding_best_input_dataset_size/"+ output_plot_name ) + plt.clf() + plt.cla() + plt.close() + + + +def compute_final_score_for_strong_interaction_and_margins(global_avg_margins_and_dynamic_score_table, gobal_lin_reg_coef_table, + margins, n_best_covariates = 9, n_strong_interact = 9, dataset_size = 536): + final_score = 0 + # This function first sort each single table in the linear coef global table according to the coefficient of secondary covariates. + # secondly it sort the covariate lists occording to thier means margins + # it compute the dynamic score on the dynamic global table, by retaining only best secondary covariates. + # The best secondly are related to previous computed table + # step 1: sorting linear coefs + sorted_gobal_lin_reg_coef_table = [] + selected_global_avg_margins_and_dynamic_score_table = [] + table_size = 0 + for j in range(0,9): #1 because we take the abs coeff values table + sorted_table_second_cov_rank__coef_value = sorted(enumerate(gobal_lin_reg_coef_table[j][1]), key=lambda kv: kv[1], reverse=True) # with original indexes like [ (12, dist_1), (0, dist_2), (4, dist_3).. ] + sorted_gobal_lin_reg_coef_table.append(sorted_table_second_cov_rank__coef_value) + + # step 2: sorting margins + sorted_means_margins = [] + sorted_means_margins = sorted(enumerate(margins), key=lambda kv: kv[1], reverse=True) # with original indexes like [ (12, dist_1), (0, dist_2), (4, dist_3).. ] + + + #step 3: scomputing the score + dynamic_score_list = [] + number_of_dynamic_scores = 0 + total_of_dynamic_scores = 0 + considered_margin_couples = sorted_means_margins[0:n_best_covariates] + considered_margins_index = column(considered_margin_couples,0) # column of index of selected (Lindice, L_coef) couples + print("--- considered margins couples ", considered_margin_couples) + for j in considered_margins_index: + considered_l_couples = sorted_gobal_lin_reg_coef_table[j][0:n_strong_interact] + considered_l_index = column(considered_l_couples,0) # column of index of selected (Lindice, L_coef) couples + print("--- considered L (index, coef) couples ", considered_l_couples) + selected_avg_margins_and_dynamic_score_table = [] # to compute the selected table + for L_entry_index in considered_l_index: + L_entry = global_avg_margins_and_dynamic_score_table[j][L_entry_index] # now we have an L_entry, with l values, l_avg values and dynamic scores + score_and_transitions_list = L_entry[2] + print("--- Only scores and transitions, just to verify : ", score_and_transitions_list) + dynamic_score_list.append(column(score_and_transitions_list,0)) + number_of_dynamic_scores = number_of_dynamic_scores + special_len(column(score_and_transitions_list,0)) # columns because, we test only the score, if it is None + total_of_dynamic_scores = total_of_dynamic_scores + special_sum(column(score_and_transitions_list,0)) # because score_and_transitions_list is a matrice N_Lvalue * 3 (3 for score , positive_transition, negative_transition) + selected_avg_margins_and_dynamic_score_table.append(L_entry) + table_size = table_size + sys.getsizeof(L_entry[0]) + sys.getsizeof(L_entry[1]) # L values and interactions avg + selected_global_avg_margins_and_dynamic_score_table.append([j, selected_avg_margins_and_dynamic_score_table]) # Note, the final global table does not have the same format than the original one + # Because the means margins have been ranked, the J index should be also saved, so each + # entry in the final global table should have [j_index, corresponding list of L_entries] + if(number_of_dynamic_scores == 0): + return None, None, None + final_score = (total_of_dynamic_scores/number_of_dynamic_scores)/100 + print("--- AVG and Scores of all selected interactions", global_avg_margins_and_dynamic_score_table) + print("--- Dynamic scores only : ", dynamic_score_list ) + print("--- Dtatset_size: ", dataset_size) + print("--- N Best covariates = " + str(n_best_covariates) + ", N Best interactions = " + str(n_strong_interact)) + print("--- Final selected table: ", selected_global_avg_margins_and_dynamic_score_table) + print("--- size in scheduling database ", table_size) + print("--- Final_score : ", final_score) + return final_score, selected_global_avg_margins_and_dynamic_score_table, table_size + + +def funtion_to_process_database( marginal_effect_exploration_folder , X_user_friendly, X, y, energy_array, workload_array, + X_train, y_train, X_test, y_test, gauss_process, pointwise_margins, margins, X_meaning_dictionnary, dataset_size = 536, repeat_experiments = False, + n_best_covariates = 7, n_strong_interact = 7): + # this function write and make valilation on the database os.makedirs(marginal_effect_exploration_folder, exist_ok=True) lesson_learned_validation_output_file = "lesson_learned_validation_file.csv" static_score_plot_file = "static_score_plot.png" print("--- Creating / opening data base") conn = sqlite3.connect('experiments_and_estimations_results.db') - + if repeat_experiments : conn.close() print("--- Creating / opening data base") @@ -1048,124 +771,126 @@ def funtion_to_process_database( marginal_effect_exploration_folder , X_user_fri print("--- Opened database successfully") utils_for_validation.create_database_and_tables(conn) utils_for_validation.fill_database(conn, X_user_friendly, X, y, energy_array, workload_array, X_train, y_train, X_test, y_test, gauss_process, table_name = "all") - #utils_for_validation.validate_lesson_learned(marginal_effect_exploration_folder, lesson_learned_validation_output_file, static_score_plot_file, paper_fontsize, avg_marginal_score_table) - #utils_for_validation.alter_database() - # I also plan to add the a colomn to say if a configuration is in train set or in test set (Done) + + global_avg_margins_and_dynamic_score_table = compute_global_avg_dynamic_score_table(conn, X_train, pointwise_margins, X_meaning_dictionnary, + marginal_effect_exploration_folder, repeat_experiments) + gobal_lin_reg_coef_table = compute_global_lin_reg_coef_and_abs_coef_table(X_train, pointwise_margins) + # to uncomment - # computing global score for the paper - avg_margin_global_table = [] - dynamic_score_list = [] - avg_margin_global_dynamic_score_table = [] - number_of_dynamic_scores = 0 - total_of_dynamic_scores = 0 - ## Regression of d_X_0 over all other variable including - for i in range(0,9): - #for i in [1]: - avg_margin_table = utils.plot_marginal_interactions(X_train, pointwise_margins, i, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder, - workstep = "computing_static_dynamic_score_for_paper", paper_fontsize = 28) - print("--- Avg margin table " + str(i) + ": ", avg_margin_table ) - avg_margin_global_table.append(avg_margin_table) - avg_margin_table_dynamic_score = utils_for_validation.validate_lesson_learned(conn, marginal_effect_exploration_folder, avg_marginal_score_table = avg_margin_table) - avg_margin_global_dynamic_score_table.append(avg_margin_table_dynamic_score) - print("--- Interaction table and validation scores of variable " + str(i) + ": ", avg_margin_table_dynamic_score ) - for L_entry in avg_margin_table_dynamic_score: - score_and_transitions_list = L_entry[2] - print("--- Only scores and transitions, just to verify : ", score_and_transitions_list) - dynamic_score_list.append(column(score_and_transitions_list,0)) - number_of_dynamic_scores = number_of_dynamic_scores + special_len(score_and_transitions_list) - total_of_dynamic_scores = total_of_dynamic_scores + special_sum(column(score_and_transitions_list,0)) # because score_and_transitions_list is a matrice N_Lvalue * 3 (3 for score , positive_transition, negative_transition) - print("--- Scores of all interactions", avg_margin_global_dynamic_score_table) - print("--- Dynamic scores only : ", dynamic_score_list ) - print("--- Final_score : ", total_of_dynamic_scores/number_of_dynamic_scores ) + plot_finalscore_as_a_function_of_best_margin_interact(global_avg_margins_and_dynamic_score_table, + gobal_lin_reg_coef_table, margins, dataset_size) + + final_score, selected_global_table, table_size= compute_final_score_for_strong_interaction_and_margins(global_avg_margins_and_dynamic_score_table, + gobal_lin_reg_coef_table, margins, n_best_covariates, n_strong_interact, dataset_size) + conn.close() - return total_of_dynamic_scores/number_of_dynamic_scores + return final_score -def get_dynamic_and_R2_score(consider_automatization_summaries, - automatization_summaries_folder, max_input_size, energy_gap, number_of_neighbour, +def get_dynamic_and_R2_score( phone_name, energy_gap, number_of_neighbour, + dataset_size_to_consider, X_user_friendly, X, X_dict, y, energy_array, workload_array, input_format, consider_exact_values_of_frequency, X_format_in_model, - phone_name, populate_inputs_to_considere_thread_combinations_on_same_socket, + populate_inputs_to_considere_thread_combinations_on_same_socket, maximum_number_of_combination, one_hot_encoding_of_frequency,standartize_inputs, search_ridge_coeff, search_strategy, number_of_iteration_during_exploration, l_o_o_on_alpha_exploration, ltolerance,lambda_min, max_iterations,sequential_gap, dichotomic_progression_ratio, generate_plots, result_summary_csv_file_name, alpha, - repeat_experiments): + repeat_experiments = False , n_best_covariates = 7, n_strong_interact =7): + + gauss_process, X_user_friendly, X, y, energy_array, workload_array, X_train, y_train, X_test, y_test, sigma_2, marginal_effect_exploration_folder, R2_score \ - = function_to_fill_data_from_folders(consider_automatization_summaries, - automatization_summaries_folder, max_input_size, energy_gap, number_of_neighbour, + = function_to_train_the_model(phone_name, energy_gap, number_of_neighbour, + dataset_size_to_consider, X_user_friendly, X, X_dict, y, energy_array, workload_array, input_format, consider_exact_values_of_frequency, X_format_in_model, - phone_name, populate_inputs_to_considere_thread_combinations_on_same_socket, + populate_inputs_to_considere_thread_combinations_on_same_socket, maximum_number_of_combination, one_hot_encoding_of_frequency,standartize_inputs, search_ridge_coeff, search_strategy, number_of_iteration_during_exploration, l_o_o_on_alpha_exploration, ltolerance,lambda_min, max_iterations,sequential_gap, dichotomic_progression_ratio, generate_plots, result_summary_csv_file_name, alpha, repeat_experiments) - pointwise_margins, X_meaning_dictionnary = function_to_compute_marginal_effect(gauss_process, X_train, y_train, X_test, y_test, sigma_2, marginal_effect_exploration_folder, R2_score, + pointwise_margins, margins, X_meaning_dictionnary = function_to_compute_marginal_effect(gauss_process, X_train, y_train, X_test, y_test, sigma_2, marginal_effect_exploration_folder, R2_score, base_Y__X_meaning_dictionnary, base_Y_N_on_socket__X_meaning_dictionnary, base_Y_F__X_meaning_dictionnary, base_Y_F_N_on_socket__X_meaning_dictionnary, X_format_in_model, workstep, phone_name, repeat_experiments) dynamic_score = funtion_to_process_database( marginal_effect_exploration_folder , X_user_friendly, X, y, energy_array, workload_array, - X_train, y_train, X_test, y_test, gauss_process, pointwise_margins, X_meaning_dictionnary) - return R2_score, dynamic_score, marginal_effect_exploration_folder + X_train, y_train, X_test, y_test, gauss_process, pointwise_margins, margins, X_meaning_dictionnary, dataset_size_to_consider, repeat_experiments, n_best_covariates, n_strong_interact) + return R2_score, dynamic_score if one_experiment: if fill_data_from_folders: + X_user_friendly, X, X_dict, y, energy_array, workload_array = function_to_fill_data_from_folders(consider_automatization_summaries, + automatization_summaries_folder, max_input_size, energy_gap, number_of_neighbour, + input_format, consider_exact_values_of_frequency, X_format_in_model, + phone_name) + gauss_process, X_user_friendly, X, y, energy_array, workload_array, X_train, y_train, X_test, y_test, sigma_2, marginal_effect_exploration_folder, R2_score \ - = function_to_fill_data_from_folders(consider_automatization_summaries, - automatization_summaries_folder, max_input_size, energy_gap, number_of_neighbour, - input_format, consider_exact_values_of_frequency, X_format_in_model, - phone_name, populate_inputs_to_considere_thread_combinations_on_same_socket, - maximum_number_of_combination, one_hot_encoding_of_frequency,standartize_inputs, - search_ridge_coeff, search_strategy, number_of_iteration_during_exploration, l_o_o_on_alpha_exploration, ltolerance,lambda_min, max_iterations,sequential_gap, - dichotomic_progression_ratio, - generate_plots, result_summary_csv_file_name, alpha, - repeat_experiments) + = function_to_train_the_model(phone_name, energy_gap, number_of_neighbour, dataset_size_to_consider, X_user_friendly, X, X_dict, y, energy_array, workload_array, + input_format, consider_exact_values_of_frequency, X_format_in_model, + populate_inputs_to_considere_thread_combinations_on_same_socket, + maximum_number_of_combination, one_hot_encoding_of_frequency,standartize_inputs, + search_ridge_coeff, search_strategy, number_of_iteration_during_exploration, l_o_o_on_alpha_exploration, ltolerance,lambda_min, max_iterations,sequential_gap, + dichotomic_progression_ratio, + generate_plots, result_summary_csv_file_name, alpha, + repeat_experiments) if compute_marginal_effect: - pointwise_margins, X_meaning_dictionnary = function_to_compute_marginal_effect(gauss_process, X_train, y_train, X_test, y_test, sigma_2, marginal_effect_exploration_folder, R2_score, + pointwise_margins, margins, X_meaning_dictionnary = function_to_compute_marginal_effect(gauss_process, X_train, y_train, X_test, y_test, sigma_2, + marginal_effect_exploration_folder, R2_score, base_Y__X_meaning_dictionnary, base_Y_N_on_socket__X_meaning_dictionnary, base_Y_F__X_meaning_dictionnary, base_Y_F_N_on_socket__X_meaning_dictionnary, X_format_in_model, workstep, phone_name, repeat_experiments) # parameter are : if process_database: dynamic_score = funtion_to_process_database( marginal_effect_exploration_folder , X_user_friendly, X, y, energy_array, workload_array, - X_train, y_train, X_test, y_test, gauss_process, pointwise_margins, X_meaning_dictionnary) + X_train, y_train, X_test, y_test, gauss_process, pointwise_margins, margins, X_meaning_dictionnary, len(X_train), repeat_experiments) if repeat_experiments: - output_plot_name = "R_2_and_dynamic_score_according_to_input_dataset_size.png" - input_dataset_size = [779] - #input_dataset_size = np.arange(start=200, stop=779, step=50).tolist() + + X_user_friendly, X, X_dict, y, energy_array, workload_array = function_to_fill_data_from_folders(consider_automatization_summaries, + automatization_summaries_folder, max_input_size, energy_gap, number_of_neighbour, + input_format, consider_exact_values_of_frequency, X_format_in_model, + phone_name) + n_best_covariates = 7 + n_strong_interact = 3 + output_plot_name = "R_2_and_dynamic_score_according_to_input_dataset_size_n_cov_"+ str(n_best_covariates) + "_n_strong_interact_" + str(n_strong_interact) + ".png" + #input_dataset_size = [len(X)] + input_dataset_size = np.arange(start=100, stop=len(X), step=25).tolist() R2_score = [] dynamic_score = [] - for max_input_size in input_dataset_size: + for dataset_size_to_consider in input_dataset_size: print("--- Resetting the kernel matrix") - R2_, dynamic_ , marginal_effect_exploration_folder = get_dynamic_and_R2_score(consider_automatization_summaries, - automatization_summaries_folder, max_input_size, energy_gap, number_of_neighbour, + R2_, dynamic_ = get_dynamic_and_R2_score(phone_name, energy_gap, number_of_neighbour, + dataset_size_to_consider, X_user_friendly, X, X_dict, y, energy_array, workload_array, input_format, consider_exact_values_of_frequency, X_format_in_model, - phone_name, populate_inputs_to_considere_thread_combinations_on_same_socket, + populate_inputs_to_considere_thread_combinations_on_same_socket, maximum_number_of_combination, one_hot_encoding_of_frequency,standartize_inputs, search_ridge_coeff, search_strategy, number_of_iteration_during_exploration, l_o_o_on_alpha_exploration, ltolerance,lambda_min, max_iterations,sequential_gap, dichotomic_progression_ratio, generate_plots, result_summary_csv_file_name, alpha, - repeat_experiments) + repeat_experiments, n_best_covariates, n_strong_interact ) R2_score.append(R2_) dynamic_score.append(dynamic_) + print("--- Plotting R2 score and dynamic score.") + print("--- List of input dataset sizes: ", input_dataset_size) + print("--- R2 score list:", R2_score ) + print("--- Dynamic score list:", dynamic_score ) paper_fontsize = 16 static_score_plot = plt.figure() plt.plot(input_dataset_size, R2_score , color='black', marker='o', linestyle='-' , label = r'$R^2$' + " score") - plt.plot(input_dataset_size, R2_score , color='orange', marker='o', linestyle='-', label = "dynamic score" ) - plt.title( "FitsAll R2 and dynamic score according to \n the input dataset N", fontsize = paper_fontsize) + plt.plot(input_dataset_size, dynamic_score , color='orange', marker='o', linestyle='-', label = "dynamic score" ) + plt.title( "FitsAll R2 and dynamic scores according to \n the input dataset sise N", fontsize = paper_fontsize) plt.legend(loc="upper left", fontsize = paper_fontsize) plt.yticks(fontsize=paper_fontsize) - plt.xlabel( "Acceptance degree" , fontsize = paper_fontsize ) + #plt.xticks(fontsize=paper_fontsize) + plt.xlabel( "Dataset size" , fontsize = paper_fontsize ) ax = plt.gca() ax.yaxis.get_offset_text().set_fontsize(paper_fontsize) #plt.locator_params(axis='x', nbins=4) diff --git a/kernel_ridge_linear_model/kernel_ridge_prediction_on_google_pixel_4a_5g.png b/kernel_ridge_linear_model/kernel_ridge_prediction_on_google_pixel_4a_5g.png index f502386a7612ed2f8030acfe15aaf55c592859e0..920601ab8a03625233a787a98f01e8763eba671d 100755 Binary files a/kernel_ridge_linear_model/kernel_ridge_prediction_on_google_pixel_4a_5g.png and b/kernel_ridge_linear_model/kernel_ridge_prediction_on_google_pixel_4a_5g.png differ diff --git a/kernel_ridge_linear_model/log_file_compute_static_score_for_the_paper.txt b/kernel_ridge_linear_model/log_file_compute_static_score_for_the_paper.txt index 6a771466c6c82ddcc27e3ec45df8d1b7025afcdf..2ceee7e6bc827f10fe08c2325d0d424cd9d5d451 100755 Binary files a/kernel_ridge_linear_model/log_file_compute_static_score_for_the_paper.txt and b/kernel_ridge_linear_model/log_file_compute_static_score_for_the_paper.txt differ diff --git a/kernel_ridge_linear_model/old_codes_templates b/kernel_ridge_linear_model/old_codes_templates deleted file mode 100755 index 5f580cf1b50ea741125ded7ee3d6164fddb4c5b4..0000000000000000000000000000000000000000 --- a/kernel_ridge_linear_model/old_codes_templates +++ /dev/null @@ -1,402 +0,0 @@ - - - """ - # Caprices de Vlad - print("--- Number of input with fourth core activated: " + repr(utils.count_number_of_input_with_fourth_core_on(X_train))) - print("--- Size of X train: " + repr(len(X_train))) - print("--- Ratio of input with fourth core activated: " + repr(float(utils.count_number_of_input_with_fourth_core_on(X_train)) / float(len(X_train)))) - - input_to_look_at = utils.inputs_where_d_X_index_is_negative(pointwise_margins, 8, X_train) - print("--- Inputs where d_X_8 is negative: " , repr(input_to_look_at)) - print("--- Size: ", repr(len(input_to_look_at)) ) - print("--- Size of X train: " + repr(len(X_train))) - """ - - - - - #print(" ********** d_X_1 np array:", pointwise_margins[:,0]) - #print(" ********** d_X_1 dataframe:", pandas.DataFrame(n_pointwise_margins[:,0])) - #print(" ********** d_X_1 description: " + str (pandas.DataFrame(n_pointwise_margins[:,0]).describe())) - - """ - # plotting of d_X_1, regarding to other_variables with - _, (d_X_1_over_X_0, d_X_1_over_X_1, d_X_1_over_X_8) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) - d_X_1_over_X_0.scatter(X_train[:,0], pointwise_margins[:,1], c = "blue") - # Add title and axis names - d_X_1_over_X_0.set_title('d_X_1 over X_0') - d_X_1_over_X_0.set_xlabel('X_0 : frequency level of little socket') - d_X_1_over_X_0.set_ylabel("d_X_1 : pointwise marginal effect of core 0 state") - d_X_1_over_X_0.tick_params(size=8) - - - d_X_1_over_X_1.scatter(X_train[:,1], pointwise_margins[:,1], c = "blue") - # Add title and axis names - d_X_1_over_X_1.set_title('d_X_1 over X_1') - d_X_1_over_X_1.set_xlabel('X_1 : state of core 0 (1rst core)') - d_X_1_over_X_1.set_ylabel("d_X_1 ") - d_X_1_over_X_1.tick_params(size=8) - - - d_X_1_over_X_8.scatter(X_train[:,8], pointwise_margins[:,1], c = "blue") - # Add title and axis names - d_X_1_over_X_8.set_title('d_X_1 over X_8') - d_X_1_over_X_8.set_xlabel('X_8 : frequency of core 7 (8th core)') - d_X_1_over_X_8.set_ylabel("d_X_1 : pointwise marginal effect of core 0 state") - d_X_1_over_X_8.tick_params(size=8) - - #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") - - plt.gcf().autofmt_xdate() - plt.xticks(fontsize=8) - plt.savefig(marginal_effect_exploration_folder + "/point_wise_marginal_effect_of_core_1_state_over_little_socket__1_srt_and_8_th_cores.png") - plt.clf() - plt.cla() - plt.close() - - print(" ********** d_X_1 np array:", n_pointwise_margins[:,0]) - print(" ********** d_X_1 dataframe:", pandas.DataFrame(n_pointwise_margins[:,0])) - print(" ********** d_X_1 description: " + str (pandas.DataFrame(n_pointwise_margins[:,0]).describe())) - - """ - - - - """ - # plotting of d_X_1, regarding to other_variables with - _, (d_X_1_over_X_0, d_X_1_over_X_1, d_X_1_over_X_8) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) - d_X_1_over_X_0.scatter(X_train[:,0], pointwise_margins[:,1], c = "blue") - # Add title and axis names - d_X_1_over_X_0.set_title('d_X_1 over X_0') - d_X_1_over_X_0.set_xlabel('X_0 : frequency level of little socket') - d_X_1_over_X_0.set_ylabel("d_X_1 : pointwise marginal effect of core 0 state") - d_X_1_over_X_0.tick_params(size=8) - - - d_X_1_over_X_1.scatter(X_train[:,1], pointwise_margins[:,1], c = "blue") - # Add title and axis names - d_X_1_over_X_1.set_title('d_X_1 over X_1') - d_X_1_over_X_1.set_xlabel('X_1 : state of core 0 (1rst core)') - d_X_1_over_X_1.set_ylabel("d_X_1 ") - d_X_1_over_X_1.tick_params(size=8) - - - d_X_1_over_X_8.scatter(X_train[:,8], pointwise_margins[:,1], c = "blue") - # Add title and axis names - d_X_1_over_X_8.set_title('d_X_1 over X_8') - d_X_1_over_X_8.set_xlabel('X_8 : frequency of core 7 (8th core)') - d_X_1_over_X_8.set_ylabel("d_X_1 : pointwise marginal effect of core 0 state") - d_X_1_over_X_8.tick_params(size=8) - - #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") - - plt.gcf().autofmt_xdate() - plt.xticks(fontsize=8) - plt.savefig(marginal_effect_exploration_folder + "/point_wise_marginal_effect_of_core_1_state_over_little_socket__1_srt_and_8_th_cores.png") - plt.clf() - plt.cla() - plt.close() - - print(" ********** d_X_1 np array:", n_pointwise_margins[:,0]) - print(" ********** d_X_1 dataframe:", pandas.DataFrame(n_pointwise_margins[:,0])) - print(" ********** d_X_1 description: " + str (pandas.DataFrame(n_pointwise_margins[:,0]).describe())) - - """ - - - - - - - - -""" -#################################### Prediction on samsung galaxy s8 -X_user_friendly = data.X_user_friendly_samsung_galaxy_s8 -print ("*** Total configurations user friendly: ", X_user_friendly) -X =data.X_samsung_galaxy_s8 -print ("*** Total Configurations formatted: ", X) -X_dict = data.X_dict_samsung_galaxy_s8 -print ("*** Total Configurations dictionnary: ", X_dict) -y = data.y_samsung_galaxy_s8 -print("*** Ratio energy by wokload : ", y) - - - - -# to do generate_equivalent_entries(X,y) -################################# - - -X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state=2) -X_user_friendly_train = utils.get_X_user_friendly_from_X(X_train, X_dict) -X_user_friendly_test = utils.get_X_user_friendly_from_X(X_test, X_dict) - - -print ("Train set Configurations : ", X_train) -print ("Train set energy by workload : ", y_train) -print ("Test set Configurations : ", X_test) -print ("Test set energy by workload : ", y_test) -print ("Train set Configurations in user friendly mode : ", X_user_friendly_train) -print ("Test set Configurations in user friendly mode : ", X_user_friendly_test) - - -############## now using kernel ridge to train data -krr = KernelRidge(alpha=1.0, kernel="rbf") #gamma=10) -krr.fit(X_train, y_train) -krr_y_test = krr.predict(X_test) - - -_, (orig_data_ax, testin_data_ax, kernel_ridge_ax) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) -orig_data_ax.bar(X_user_friendly_train,y_train, width=0.4) -# Add title and axis names -orig_data_ax.set_title('Training datas energy/workload ratio') -orig_data_ax.set_xlabel('Configuration') -orig_data_ax.set_ylabel(r'Energy consumed/Workload ($\times 10E-11$)') -orig_data_ax.tick_params(size=8) - -testin_data_ax.bar(X_user_friendly_test,y_test, width=0.4) -# Add title and axis names -testin_data_ax.set_title('Testing datas energy/workload ratio') -testin_data_ax.set_xlabel('Configuration') -testin_data_ax.set_ylabel(r'Energy consumed/Workload ($\times 10E-11$)') -testin_data_ax.tick_params(size=8) - -kernel_ridge_ax.bar(X_user_friendly_test,krr_y_test, width=0.4) -# Add title and axis names -kernel_ridge_ax.set_title('Predited energy/workload ratio') -kernel_ridge_ax.set_xlabel('Configuration') -kernel_ridge_ax.set_ylabel(r'Energy consumed/Workload ($\times 10E-11$)') -kernel_ridge_ax.tick_params(size=8) - -_ = kernel_ridge_ax.set_title("Predicted data\n using kernel ridge, R2 = " + str(krr.score(X_test, y_test))) - -print("error = ", krr.score(X_test, y_test)) -print("parrams = " , krr.get_params(False)) -print("regressors = " , krr) -plt.gcf().autofmt_xdate() -plt.xticks(fontsize=8) -plt.savefig("kernel_ridge_prediction_on_samsung_galaxy_s8.png") -plt.clf() -plt.cla() -plt.close() -""" - -####### This code was used to test the avalaible source code of the statmodels class kernridgeregress_class from this -# https://github.com/statsmodels/statsmodels/blob/825581cf17f1e79118592f15f49be7ad890a7104/statsmodels/sandbox/regression/kernridgeregress_class.py#L9 - -""" - # code coming from sklearn -krr = KernelRidge(alpha=1.0, kernel="rbf") #gamma=10) -krr.fit(X_train, y_train) -krr_y_test = krr.predict(X_test) - - - - -#Code coming from the stasmodels kernelrige class source code -m,k = 10,4 -##m,k = 50,4 -upper = 6 -scale = 10 -xs = np.linspace(1,upper,m)[:,np.newaxis] -#xs1 = xs1a*np.ones((1,4)) + 1/(1.0+np.exp(np.random.randn(m,k))) -#xs1 /= np.std(xs1[::k,:],0) # normalize scale, could use cov to normalize -##y1true = np.sum(np.sin(xs1)+np.sqrt(xs1),1)[:,np.newaxis] -xs1 = np.sin(xs)#[:,np.newaxis] -y1true = np.sum(xs1 + 0.01*np.sqrt(np.abs(xs1)),1)[:,np.newaxis] -y1 = y1true + 0.10 * np.random.randn(m,1) - -stride = 3 #use only some points as trainig points e.g 2 means every 2nd -xstrain = xs1[::stride,:] -ystrain = y1[::stride,:] -ratio = int(m/2) -print("ratio = ", ratio) -xstrain = np.r_[xs1[:ratio,:], xs1[ratio+10:,:]] -ystrain = np.r_[y1[:ratio,:], y1[ratio+10:,:]] -index = np.hstack((np.arange(m/2), np.arange(m/2+10,m))) -print("Their own X", xstrain) - -# added for standartization -xstrain_ = utils.standartize(xstrain) -print("Their own X", xstrain) -print ("Standartized X", xstrain_) -xstrain = xstrain_ -#end of standartization - -# added for lambda exploration -utils.find_regularization_parameter(xstrain, ystrain) -# end added for lambda exploration - - - - -print("Their own y", ystrain) -gp1 = GaussProcess(xstrain, ystrain, #kernel=kernel_euclid, - ridgecoeff=5*1e-4) -gp1.fit(ystrain) -krr_y_test = gp1.predict(np.asarray(xstrain)) -print("Predicted y test = ", krr_y_test) -print(" Computed c values = ", gp1.parest) -c_vector = gp1.parest -sigma_2 = 0.5 -X = xstrain -#End of code coming from the stasmodels kernelrige class source code - - - - - - - - n_samples, n_features = 10, 2 -rng = np.random.RandomState(0) -#y = rng.randn(n_samples) -y = np.random.randint(1,9,n_samples) -X = rng.randn(n_samples, n_features) -print("X", X) -X_error = X[:,np.newaxis,:] -print("X_error", X_error) - -gauss_process = GaussProcess(X, y, - ridgecoeff=5*1e-4) - -krr = gauss_process.fit(y) - -""" - -####### this code was used to debug the data set splitting -""" -_, (train_ax, test_ax) = plt.subplots(nrows=2, sharex=True, sharey=True, figsize=(11, 10)) - - -train_ax.bar(X_user_friendly_train,y_train, width=0.4) -# Add title and axis names -train_ax.set_title('Energy/ Workload according to the configuration') -train_ax.set_xlabel('Number of CPUs') -train_ax.set_ylabel(r'Energy consumed/Workload ($\times 10E-11$)') -train_ax.tick_params( size=8) - -test_ax.bar(X_user_friendly_test,y_test, width=0.4) -# Add title and axis names -test_ax.set_title('Energy/ Workload according to the configuration') -test_ax.set_xlabel('Number of CPUs') -test_ax.set_ylabel(r'Energy consumed/Workload ($\times 10E-11$)') -test_ax.tick_params(size=8) - -_ = test_ax.set_title("Testing data") - - -plt.gcf().autofmt_xdate() -plt.xticks(fontsize=8) - -plt.savefig("kernel_ridge_training_and_testing_configuration_data__plot.png") - -plt.clf() -plt.cla() -plt.close() -""" - -########### adated version - before integrating powertool results -""" -from sklearn.kernel_ridge import KernelRidge -from sklearn.model_selection import train_test_split -import matplotlib.pyplot as plt - - -import numpy as np -n_samples, n_features = 100, 2 -rng = np.random.RandomState(0) -#y = rng.randn(n_samples) -y = np.random.randint(1,9,n_samples) - -X = rng.randn(n_samples, n_features) - -print("X values") -print (X) - -print("y values") -print(y) - - - - - -# X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0) -#X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0) - -X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state=2) - -_, (train_ax, test_ax) = plt.subplots(ncols=2, sharex=True, sharey=True, figsize=(8, 4)) - - -train_ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train) -train_ax.set_ylabel("Y values") -train_ax.set_xlabel("X values") -train_ax.set_title("Training data") - -test_ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test) -test_ax.set_xlabel("X values") -_ = test_ax.set_title("Testing data") - - - -plt.savefig("kernel_ridge_training_and_testing_random_data__plot.png") - -plt.clf() -plt.cla() -plt.close() - -############## now using kernel ridge to train data - -krr = KernelRidge(alpha=1.0) #gamma=10) -krr.fit(X_train, y_train) - -krr_y_test = krr.predict(X_test) - - -# %% -fig, (orig_data_ax, testin_data_ax, kernel_ridge_ax) = plt.subplots( - ncols=3, figsize=(14, 4) -) - - -orig_data_ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train) -orig_data_ax.set_ylabel("Y values") -orig_data_ax.set_xlabel("X values") -orig_data_ax.set_title("training data") - -testin_data_ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test) -testin_data_ax.set_ylabel("Y tested values") -testin_data_ax.set_xlabel("X tested values") -testin_data_ax.set_title("testing datas") - -kernel_ridge_ax.scatter(X_test[:, 0], X_test[:, 1], c=krr_y_test) -kernel_ridge_ax.set_ylabel("Y predicted values on tested sample") -kernel_ridge_ax.set_xlabel("X tested values") -_ = kernel_ridge_ax.set_title("Projection of testing data\n using kernel ridge") - -print("error = ", krr.score(X_test, krr_y_test)) - -plt.savefig("kernel_ridge_training_testing_predict_on_random_data__plot.png") - -plt.clf() -plt.cla() -plt.close() -""" - - - -############ unmodified version -""" -from sklearn.kernel_ridge import KernelRidge -import numpy as np -n_samples, n_features = 10, 5 -rng = np.random.RandomState(0) -y = rng.randn(n_samples) -X = rng.randn(n_samples, n_features) -krr = KernelRidge(alpha=1.0) -krr.fit(X, y) -param = krr.get_params(1) -print(param) -""" diff --git a/kernel_ridge_linear_model/old_codes_templates.py b/kernel_ridge_linear_model/old_codes_templates.py new file mode 100755 index 0000000000000000000000000000000000000000..2c0c5c8d66e8d580327ebd5c9e6cb5344ba54371 --- /dev/null +++ b/kernel_ridge_linear_model/old_codes_templates.py @@ -0,0 +1,959 @@ + + + def function_to_compute_marginal_effect(gauss_process, X_train, y_train, X_test, y_test, sigma_2, marginal_effect_exploration_folder, R2_score, + base_Y__X_meaning_dictionnary, base_Y_N_on_socket__X_meaning_dictionnary, base_Y_F__X_meaning_dictionnary, base_Y_F_N_on_socket__X_meaning_dictionnary, + X_format_in_model, workstep, phone_name, repeat_experiments = False): + + # computing marginal effect based on formulas (7) and (8) of the paper Kernel-Based Regularized Least Squares in R (KRLS) and Stata (krls). + + # Note : The index i represent the observation and j represent the variable. + # we have N observations and M variables + # getting the coef_i vector and sigma_2, in this case, I don't know why the format returned by gauss_process.parest is not the same as in this exemple, + # so I add M lines, to have the format (M,1), where M is the number of observation. + c_vector = (gauss_process.parest)[:,np.newaxis] + print("Computed c values = ", c_vector) + + # computing the marginal effect of the observation with "optimized" approaoch + print (" ***** START computing marginal effects with matrix***** ") + print ("X = ", X_train) + pointwise_margins, margins = comput_margin.marginal_effect(X_train, c_vector, sigma_2, repeat_experiments) + print (" ***** END computing marginal effects ***** ") + print("margins", margins) + print("pointwise margins", pointwise_margins) + + # computing the marginal effect of the observation with naive implementation + """ + print (" ***** START computing marginal effects with loop***** ") + print ("X = ", X_train) + n_pointwise_margins, n_margins = comput_margin.naive_marginal_effect(X_train, c_vector, sigma_2) + print (" ***** END computing marginal effects ***** ") + print("naive margins", n_margins) + print("margins", margins) + print("naive pointwise margins", n_pointwise_margins) + print("pointwise margins", pointwise_margins) + print("test of correctness means = " + str(np.sum(n_pointwise_margins[:,0]) / len(X_train)) + + " direct value = ", n_margins[0] ) + """ + + + # generating linear regression coefficients + ols = sm.OLS(y_train, X_train) # warning in the sm OLS function argument format, y is the first parameter. + reg = ols.fit() + reg_pred_y_test = reg.predict(X_test) + linear_coefficients = reg.params + print("Predicted y test = ", reg_pred_y_test) + print("linear model parameters = ", linear_coefficients) + print("*** Linear model R2 score = ", utils.compute_r2_score(y_test, reg_pred_y_test) ) + + if phone_name == "samsung_galaxy_s8" : + + linear_coeff_vs_kernel_ridge_margins_file = marginal_effect_exploration_folder + "/linear_coeff_vs_kernel_ridge_margins.csv" # Can change depending on the r2 score + + X_meaning_dictionnary = base_Y__X_meaning_dictionnary if X_format_in_model == "base_Y" else base_Y_N_on_socket__X_meaning_dictionnary if X_format_in_model == "base_Y_N_on_socket" else {} + + #Capturing linear coefficients and kernel ridge means marginal effect (not pointwise) in a file + utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) + + if X_format_in_model == "base_Y": + + ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). + # plotting histograph + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_0_state.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,5], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_big_socket_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,8], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_state.png", 3e-11, 8) + + + ### Plotting marginal effect plots + ## Regression of d_X_5 over all other variable including X_5 is the frequency of big cores + d_X_5_coefficients_file = marginal_effect_exploration_folder + "/d_X_5_linear_coefficients.csv" + d_X_5_ols = sm.OLS(pointwise_margins[:,5], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_5_reg = d_X_5_ols.fit() + d_X_5_linear_coefficients = d_X_5_reg.params + print("d_X_5 linear model parameters = ", d_X_5_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 5, + d_X_i_linear_coefficients = d_X_5_linear_coefficients, + file_path = d_X_5_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_5 over other variables") + + utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 5, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) + + # processing d_X_0 + d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" + d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_0_reg = d_X_0_ols.fit() + d_X_0_linear_coefficients = d_X_0_reg.params + print("d_X_0 linear model parameters = ", d_X_0_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, + d_X_i_linear_coefficients = d_X_0_linear_coefficients, + file_path = d_X_0_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_0 over other variables") + + utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) + + + + + # processing d_X_1 (core 0 state) + + d_X_1_coefficients_file = marginal_effect_exploration_folder + "/d_X_1_linear_coefficients.csv" + d_X_1_ols = sm.OLS(pointwise_margins[:,1], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_1_reg = d_X_1_ols.fit() + d_X_1_linear_coefficients = d_X_1_reg.params + print("d_X_1 linear model parameters = ", d_X_1_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 1, + d_X_i_linear_coefficients = d_X_1_linear_coefficients, + file_path = d_X_1_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_1 over other variables") + + utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 1, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) + + + # processing d_X_6 (core 6 state) + + d_X_6_coefficients_file = marginal_effect_exploration_folder + "/d_X_6_linear_coefficients.csv" + d_X_6_ols = sm.OLS(pointwise_margins[:,6], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_6_reg = d_X_6_ols.fit() + d_X_6_linear_coefficients = d_X_6_reg.params + print("d_X_6 linear model parameters = ", d_X_6_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 6, + d_X_i_linear_coefficients = d_X_6_linear_coefficients, + file_path = d_X_6_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_6 over other variables") + + utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 6, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) + + # processing d_X_4 (core 3 state) + + d_X_4_coefficients_file = marginal_effect_exploration_folder + "/d_X_4_linear_coefficients.csv" + d_X_4_ols = sm.OLS(pointwise_margins[:,4], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_4_reg = d_X_4_ols.fit() + d_X_4_linear_coefficients = d_X_4_reg.params + print("d_X_4 linear model parameters = ", d_X_4_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 4, + d_X_i_linear_coefficients = d_X_4_linear_coefficients, + file_path = d_X_4_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_4 over other variables") + + utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 4, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) + + + # processing d_X_9 (core 7 state) + d_X_9_coefficients_file = marginal_effect_exploration_folder + "/d_X_9_linear_coefficients.csv" + d_X_9_ols = sm.OLS(pointwise_margins[:,9], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_9_reg = d_X_9_ols.fit() + d_X_9_linear_coefficients = d_X_9_reg.params + print("d_X_9 linear model parameters = ", d_X_9_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 9, + d_X_i_linear_coefficients = d_X_9_linear_coefficients, + file_path = d_X_9_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_9 over other variables") + + utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 9, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder, acceptable_marginal_mean_value) + + + + """ + + ## Regression of d_X_7 over all other variable including + d_X_7_coefficients_file = marginal_effect_exploration_folder + "/d_X_7_linear_coefficients.csv" + d_X_7_ols = sm.OLS(pointwise_margins[:,7], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_7_reg = d_X_7_ols.fit() + d_X_7_linear_coefficients = d_X_7_reg.params + print("X_7_d linear model parameters = ", d_X_7_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 7, + d_X_i_linear_coefficients = d_X_7_linear_coefficients, + file_path = d_X_7_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_7 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 7, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + + ## Regression of d_X_0 over all other variable including + d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" + d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_0_reg = d_X_0_ols.fit() + d_X_0_linear_coefficients = d_X_0_reg.params + print("X_0_d linear model parameters = ", d_X_0_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, + d_X_i_linear_coefficients = d_X_0_linear_coefficients, + file_path = d_X_0_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_0 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + + ## Regression of d_X_0 over all other variable including + d_X_1_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" + d_X_1_ols = sm.OLS(pointwise_margins[:,1], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_1_reg = d_X_1_ols.fit() + d_X_1_linear_coefficients = d_X_1_reg.params + print("X_0_d linear model parameters = ", d_X_1_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 1, + d_X_i_linear_coefficients = d_X_1_linear_coefficients, + file_path = d_X_1_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_0 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 1, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + """ + + elif X_format_in_model == "base_Y_N_on_socket": + ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). + # plotting histograph + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_number_of_little_cores_actives.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,5], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_big_socket_frequency_level.png", 3e-11, 3) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,9], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 4) + + + d_X_2_coefficients_file = marginal_effect_exploration_folder + "/d_X_2_linear_coefficients.csv" + d_X_2_ols = sm.OLS(pointwise_margins[:,2], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_2_reg = d_X_2_ols.fit() + d_X_2_linear_coefficients = d_X_2_reg.params + print("X_2_d linear model parameters = ", d_X_2_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 2, + d_X_i_linear_coefficients = d_X_2_linear_coefficients, + file_path = d_X_2_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + + + # plotting of d_X_2, regarding to other_variables with + _, (d_X_2_over_X_0, d_X_2_over_X_1, d_X_2_over_X_3) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) + d_X_2_over_X_0.scatter(X_train[:,0], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_0.set_title('d_X_2 over X_0') + d_X_2_over_X_0.set_xlabel('X_0 : frequency level of little socket') + d_X_2_over_X_0.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") + d_X_2_over_X_0.tick_params(size=8) + + + d_X_2_over_X_1.scatter(X_train[:,1], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_1.set_title('d_X_2 over X_1') + d_X_2_over_X_1.set_xlabel('X_1 : Number of threads on little socket') + d_X_2_over_X_1.set_ylabel("d_X_2 ") + d_X_2_over_X_1.tick_params(size=8) + + + d_X_2_over_X_3.scatter(X_train[:,3], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_3.set_title('d_X_2 over X_3') + d_X_2_over_X_3.set_xlabel('X_3 : frequency of core 7 (8th core)') + d_X_2_over_X_3.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") + d_X_2_over_X_3.tick_params(size=8) + + #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") + + plt.gcf().autofmt_xdate() + plt.xticks(fontsize=8) + plt.savefig(marginal_effect_exploration_folder + "/point_wise_marginal_effect_of_frequency_of_Medium_core_over_frequency_of_little_socket_number_of_thread_on_little_socket_and_8_th_core_frequency.png") + plt.clf() + plt.cla() + plt.close() + + + if phone_name == "google_pixel_4a_5g" : + + linear_coeff_vs_kernel_ridge_margins_file = marginal_effect_exploration_folder + "/linear_coeff_vs_kernel_ridge_margins.csv" # Can change depending on the r2 score + if X_format_in_model == "base_Y_N_on_socket": + X_meaning_dictionnary = base_Y_N_on_socket__X_meaning_dictionnary + utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) + + + ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). + # plotting histograph + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_number_of_little_cores_actives.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,2], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_6_frequency_level.png", 3e-11, 3) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,3], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 4) + + + d_X_2_coefficients_file = marginal_effect_exploration_folder + "/d_X_2_linear_coefficients.csv" + d_X_2_ols = sm.OLS(pointwise_margins[:,2], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_2_reg = d_X_2_ols.fit() + d_X_2_linear_coefficients = d_X_2_reg.params + print("X_2_d linear model parameters = ", d_X_2_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 2, + d_X_i_linear_coefficients = d_X_2_linear_coefficients, + file_path = d_X_2_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + + + # plotting of d_X_2, regarding to other_variables with + _, (d_X_2_over_X_0, d_X_2_over_X_1, d_X_2_over_X_3) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) + d_X_2_over_X_0.scatter(X_train[:,0], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_0.set_title('d_X_2 over X_0') + d_X_2_over_X_0.set_xlabel('X_0 : frequency level of little socket') + d_X_2_over_X_0.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") + d_X_2_over_X_0.tick_params(size=8) + + + d_X_2_over_X_1.scatter(X_train[:,1], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_1.set_title('d_X_2 over X_1') + d_X_2_over_X_1.set_xlabel('X_1 : Number of threads on little socket') + d_X_2_over_X_1.set_ylabel("d_X_2 ") + d_X_2_over_X_1.tick_params(size=8) + + + d_X_2_over_X_3.scatter(X_train[:,3], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_3.set_title('d_X_2 over X_3') + d_X_2_over_X_3.set_xlabel('X_3 : frequency of core 7 (8th core)') + d_X_2_over_X_3.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") + d_X_2_over_X_3.tick_params(size=8) + + #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") + + plt.gcf().autofmt_xdate() + plt.xticks(fontsize=8) + plt.savefig(marginal_effect_exploration_folder + "/point_wise_marginal_effect_of_frequency_of_Medium_core_over_frequency_of_little_socket_number_of_thread_on_little_socket_and_8_th_core_frequency.png") + plt.clf() + plt.cla() + plt.close() + + elif X_format_in_model == "base_Y": + if( workstep == "plotting_graphs_for_the_paper"): + X_meaning_dictionnary = utils.get_for_the_paper_X_format_meaning_dictionnaries(phone_name) + else: + X_meaning_dictionnary = base_Y__X_meaning_dictionnary + utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) + + + ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). + # plotting histograph + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_0_state.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,7], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_6_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,8], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 8) + + ### Plotting marginal effect plots + """ + ## Regression of d_X_8 over all other variable including + d_X_8_coefficients_file = marginal_effect_exploration_folder + "/d_X_8_linear_coefficients.csv" + d_X_8_ols = sm.OLS(pointwise_margins[:,8], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_8_reg = d_X_8_ols.fit() + d_X_8_linear_coefficients = d_X_8_reg.params + print("X_8_d linear model parameters = ", d_X_8_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 8, + d_X_i_linear_coefficients = d_X_8_linear_coefficients, + file_path = d_X_8_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_8 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 8, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + + ## Regression of d_X_7 over all other variable including + d_X_7_coefficients_file = marginal_effect_exploration_folder + "/d_X_7_linear_coefficients.csv" + d_X_7_ols = sm.OLS(pointwise_margins[:,7], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_7_reg = d_X_7_ols.fit() + d_X_7_linear_coefficients = d_X_7_reg.params + print("X_7_d linear model parameters = ", d_X_7_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 7, + d_X_i_linear_coefficients = d_X_7_linear_coefficients, + file_path = d_X_7_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_7 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 7, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + + ## Regression of d_X_0 over all other variable including + d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" + d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_0_reg = d_X_0_ols.fit() + d_X_0_linear_coefficients = d_X_0_reg.params + print("X_0_d linear model parameters = ", d_X_0_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, + d_X_i_linear_coefficients = d_X_0_linear_coefficients, + file_path = d_X_0_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_0 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + """ + + + + ## Regression of d_X_1 over all other variable including + print(" X train size: ", len(X_train)) + print(" Margin size ", len(pointwise_margins[:,1])) + print(" Repeat experiments ", repeat_experiments) + d_X_1_coefficients_file = marginal_effect_exploration_folder + "/d_X_1_linear_coefficients.csv" + d_X_1_ols = sm.OLS(pointwise_margins[:,1], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_1_reg = d_X_1_ols.fit() + d_X_1_linear_coefficients = d_X_1_reg.params + print("X_0_d linear model parameters = ", d_X_1_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 1, + d_X_i_linear_coefficients = d_X_1_linear_coefficients, + file_path = d_X_1_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_0 over other variables") + avg_marginal_score_table = utils.plot_marginal_interactions(X_train, pointwise_margins, 1, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder, + workstep = "plotting_graphs_for_the_paper", paper_fontsize = 28) + + elif X_format_in_model == "base_Y_F": + X_meaning_dictionnary = base_Y_F__X_meaning_dictionnary + utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) + """ + {"X_0" : "Little Socket frequency is freed", + "X_1" : "frequency level of Little Socket", + "X_2" : "Core 0 state", + "X_3" : "Core 1 state", + "X_4" : "Core 2 state", + "X_5" : "Core 3 state", + "X_6" : "Core 4 state", + "X_7" : "Core 5 state", + "X_8" : "Medium Socket frequency is freed", + "X_9" : "Medium Socket or core 6 frequency", + "X_10" : "Big Socket frequency is freed", + "X_11" : "Big Socket or core 7 frequency"} + """ + ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). + # plotting histograph + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_freed.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,2], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_0_state.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,9], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_6_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,11], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 8) + + ### Plotting marginal effect plots + + ## Regression of d_X_0 (frequency of little socket is freed) over all other variable + d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" + d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_0_reg = d_X_0_ols.fit() + d_X_0_linear_coefficients = d_X_0_reg.params + print("X_0_d linear model parameters = ", d_X_0_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, + d_X_i_linear_coefficients = d_X_0_linear_coefficients, + file_path = d_X_0_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_0 over other variables") + utils.plot_twelve_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6,7, 8, 9,10,11, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + + + ## Regression of d_X_8 over (frequency of medium socket is freed) all other variable including + d_X_8_coefficients_file = marginal_effect_exploration_folder + "/d_X_8_linear_coefficients.csv" + d_X_8_ols = sm.OLS(pointwise_margins[:,8], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_8_reg = d_X_8_ols.fit() + d_X_8_linear_coefficients = d_X_8_reg.params + print("X_8_d linear model parameters = ", d_X_8_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 8, + d_X_i_linear_coefficients = d_X_8_linear_coefficients, + file_path = d_X_8_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_8 over other variables") + utils.plot_twelve_marginal_interactions(X_train, pointwise_margins, 8, 0, 1, 2, 3,4,5,6,7, 8, 9,10, 11, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + + ## Regression of d_X_10 over (frequency of medium socket is freed) all other variable including + d_X_10_coefficients_file = marginal_effect_exploration_folder + "/d_X_10_linear_coefficients.csv" + d_X_10_ols = sm.OLS(pointwise_margins[:,10], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_10_reg = d_X_10_ols.fit() + d_X_10_linear_coefficients = d_X_10_reg.params + print("X_10_d linear model parameters = ", d_X_10_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 10, + d_X_i_linear_coefficients = d_X_10_linear_coefficients, + file_path = d_X_10_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_10 over other variables") + utils.plot_twelve_marginal_interactions(X_train, pointwise_margins, 10, 0, 1, 2, 3,4,5,6,7, 8, 9,10,11, X_meaning_dictionnary, marginal_effect_exploration_folder) + + elif X_format_in_model == "base_Y_F_N_on_socket": + """ + base_Y_F_N_on_socket__X_meaning_dictionnary = {"X_0" : "Little Socket frequency is freed", + "X_1" : "frequency level of Little Socket", + "X_2" : "Number of little cores active", + "X_3" : "Medium Socket frequency is freed", + "X_4" : "frequency level of Medium Socket or core 6", + "X_5" : "Big Socket frequency is freed", + "X_6" : "frequency level of Big Socket or core 7"} + """ + X_meaning_dictionnary = base_Y_F_N_on_socket__X_meaning_dictionnary + utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) + + ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). + # plotting histograph + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_freed.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,2], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_number_of_little_cores_active.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,3], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_medium_socket_frequency_freed.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,5], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_big_socket_frequency_freed.png", 3e-11, 8) + + ### Plotting marginal effect plots + + ## Regression of d_X_0 (frequency of little socket is freed) over all other variable + d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" + d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_0_reg = d_X_0_ols.fit() + d_X_0_linear_coefficients = d_X_0_reg.params + print("X_0_d linear model parameters = ", d_X_0_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, + d_X_i_linear_coefficients = d_X_0_linear_coefficients, + file_path = d_X_0_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_0 over other variables") + utils.plot_seven_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + + + ## Regression of d_X_8 over (frequency of medium socket is freed) all other variable including + d_X_3_coefficients_file = marginal_effect_exploration_folder + "/d_X_3_linear_coefficients.csv" + d_X_3_ols = sm.OLS(pointwise_margins[:,3], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_3_reg = d_X_3_ols.fit() + d_X_3_linear_coefficients = d_X_3_reg.params + print("X_3_d linear model parameters = ", d_X_3_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 3, + d_X_i_linear_coefficients = d_X_3_linear_coefficients, + file_path = d_X_3_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_3 over other variables") + utils.plot_seven_marginal_interactions(X_train, pointwise_margins, 3, 0, 1, 2, 3,4,5,6, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + + ## Regression of d_X_5 over (frequency of medium socket is freed) all other variable including + d_X_5_coefficients_file = marginal_effect_exploration_folder + "/d_X_5_linear_coefficients.csv" + d_X_5_ols = sm.OLS(pointwise_margins[:,5], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_5_reg = d_X_5_ols.fit() + d_X_5_linear_coefficients = d_X_5_reg.params + print("X_5_d linear model parameters = ", d_X_5_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 5, + d_X_i_linear_coefficients = d_X_5_linear_coefficients, + file_path = d_X_5_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_5 over other variables") + utils.plot_seven_marginal_interactions(X_train, pointwise_margins, 5, 0, 1, 2, 3,4,5,6, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + return pointwise_margins, X_meaning_dictionnary + + + + + + """ + # Caprices de Vlad + print("--- Number of input with fourth core activated: " + repr(utils.count_number_of_input_with_fourth_core_on(X_train))) + print("--- Size of X train: " + repr(len(X_train))) + print("--- Ratio of input with fourth core activated: " + repr(float(utils.count_number_of_input_with_fourth_core_on(X_train)) / float(len(X_train)))) + + input_to_look_at = utils.inputs_where_d_X_index_is_negative(pointwise_margins, 8, X_train) + print("--- Inputs where d_X_8 is negative: " , repr(input_to_look_at)) + print("--- Size: ", repr(len(input_to_look_at)) ) + print("--- Size of X train: " + repr(len(X_train))) + """ + + + + + #print(" ********** d_X_1 np array:", pointwise_margins[:,0]) + #print(" ********** d_X_1 dataframe:", pandas.DataFrame(n_pointwise_margins[:,0])) + #print(" ********** d_X_1 description: " + str (pandas.DataFrame(n_pointwise_margins[:,0]).describe())) + + """ + # plotting of d_X_1, regarding to other_variables with + _, (d_X_1_over_X_0, d_X_1_over_X_1, d_X_1_over_X_8) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) + d_X_1_over_X_0.scatter(X_train[:,0], pointwise_margins[:,1], c = "blue") + # Add title and axis names + d_X_1_over_X_0.set_title('d_X_1 over X_0') + d_X_1_over_X_0.set_xlabel('X_0 : frequency level of little socket') + d_X_1_over_X_0.set_ylabel("d_X_1 : pointwise marginal effect of core 0 state") + d_X_1_over_X_0.tick_params(size=8) + + + d_X_1_over_X_1.scatter(X_train[:,1], pointwise_margins[:,1], c = "blue") + # Add title and axis names + d_X_1_over_X_1.set_title('d_X_1 over X_1') + d_X_1_over_X_1.set_xlabel('X_1 : state of core 0 (1rst core)') + d_X_1_over_X_1.set_ylabel("d_X_1 ") + d_X_1_over_X_1.tick_params(size=8) + + + d_X_1_over_X_8.scatter(X_train[:,8], pointwise_margins[:,1], c = "blue") + # Add title and axis names + d_X_1_over_X_8.set_title('d_X_1 over X_8') + d_X_1_over_X_8.set_xlabel('X_8 : frequency of core 7 (8th core)') + d_X_1_over_X_8.set_ylabel("d_X_1 : pointwise marginal effect of core 0 state") + d_X_1_over_X_8.tick_params(size=8) + + #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") + + plt.gcf().autofmt_xdate() + plt.xticks(fontsize=8) + plt.savefig(marginal_effect_exploration_folder + "/point_wise_marginal_effect_of_core_1_state_over_little_socket__1_srt_and_8_th_cores.png") + plt.clf() + plt.cla() + plt.close() + + print(" ********** d_X_1 np array:", n_pointwise_margins[:,0]) + print(" ********** d_X_1 dataframe:", pandas.DataFrame(n_pointwise_margins[:,0])) + print(" ********** d_X_1 description: " + str (pandas.DataFrame(n_pointwise_margins[:,0]).describe())) + + """ + + + + """ + # plotting of d_X_1, regarding to other_variables with + _, (d_X_1_over_X_0, d_X_1_over_X_1, d_X_1_over_X_8) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) + d_X_1_over_X_0.scatter(X_train[:,0], pointwise_margins[:,1], c = "blue") + # Add title and axis names + d_X_1_over_X_0.set_title('d_X_1 over X_0') + d_X_1_over_X_0.set_xlabel('X_0 : frequency level of little socket') + d_X_1_over_X_0.set_ylabel("d_X_1 : pointwise marginal effect of core 0 state") + d_X_1_over_X_0.tick_params(size=8) + + + d_X_1_over_X_1.scatter(X_train[:,1], pointwise_margins[:,1], c = "blue") + # Add title and axis names + d_X_1_over_X_1.set_title('d_X_1 over X_1') + d_X_1_over_X_1.set_xlabel('X_1 : state of core 0 (1rst core)') + d_X_1_over_X_1.set_ylabel("d_X_1 ") + d_X_1_over_X_1.tick_params(size=8) + + + d_X_1_over_X_8.scatter(X_train[:,8], pointwise_margins[:,1], c = "blue") + # Add title and axis names + d_X_1_over_X_8.set_title('d_X_1 over X_8') + d_X_1_over_X_8.set_xlabel('X_8 : frequency of core 7 (8th core)') + d_X_1_over_X_8.set_ylabel("d_X_1 : pointwise marginal effect of core 0 state") + d_X_1_over_X_8.tick_params(size=8) + + #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") + + plt.gcf().autofmt_xdate() + plt.xticks(fontsize=8) + plt.savefig(marginal_effect_exploration_folder + "/point_wise_marginal_effect_of_core_1_state_over_little_socket__1_srt_and_8_th_cores.png") + plt.clf() + plt.cla() + plt.close() + + print(" ********** d_X_1 np array:", n_pointwise_margins[:,0]) + print(" ********** d_X_1 dataframe:", pandas.DataFrame(n_pointwise_margins[:,0])) + print(" ********** d_X_1 description: " + str (pandas.DataFrame(n_pointwise_margins[:,0]).describe())) + + """ + + + + + + + + +""" +#################################### Prediction on samsung galaxy s8 +X_user_friendly = data.X_user_friendly_samsung_galaxy_s8 +print ("*** Total configurations user friendly: ", X_user_friendly) +X =data.X_samsung_galaxy_s8 +print ("*** Total Configurations formatted: ", X) +X_dict = data.X_dict_samsung_galaxy_s8 +print ("*** Total Configurations dictionnary: ", X_dict) +y = data.y_samsung_galaxy_s8 +print("*** Ratio energy by wokload : ", y) + + + + +# to do generate_equivalent_entries(X,y) +################################# + + +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state=2) +X_user_friendly_train = utils.get_X_user_friendly_from_X(X_train, X_dict) +X_user_friendly_test = utils.get_X_user_friendly_from_X(X_test, X_dict) + + +print ("Train set Configurations : ", X_train) +print ("Train set energy by workload : ", y_train) +print ("Test set Configurations : ", X_test) +print ("Test set energy by workload : ", y_test) +print ("Train set Configurations in user friendly mode : ", X_user_friendly_train) +print ("Test set Configurations in user friendly mode : ", X_user_friendly_test) + + +############## now using kernel ridge to train data +krr = KernelRidge(alpha=1.0, kernel="rbf") #gamma=10) +krr.fit(X_train, y_train) +krr_y_test = krr.predict(X_test) + + +_, (orig_data_ax, testin_data_ax, kernel_ridge_ax) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) +orig_data_ax.bar(X_user_friendly_train,y_train, width=0.4) +# Add title and axis names +orig_data_ax.set_title('Training datas energy/workload ratio') +orig_data_ax.set_xlabel('Configuration') +orig_data_ax.set_ylabel(r'Energy consumed/Workload ($\times 10E-11$)') +orig_data_ax.tick_params(size=8) + +testin_data_ax.bar(X_user_friendly_test,y_test, width=0.4) +# Add title and axis names +testin_data_ax.set_title('Testing datas energy/workload ratio') +testin_data_ax.set_xlabel('Configuration') +testin_data_ax.set_ylabel(r'Energy consumed/Workload ($\times 10E-11$)') +testin_data_ax.tick_params(size=8) + +kernel_ridge_ax.bar(X_user_friendly_test,krr_y_test, width=0.4) +# Add title and axis names +kernel_ridge_ax.set_title('Predited energy/workload ratio') +kernel_ridge_ax.set_xlabel('Configuration') +kernel_ridge_ax.set_ylabel(r'Energy consumed/Workload ($\times 10E-11$)') +kernel_ridge_ax.tick_params(size=8) + +_ = kernel_ridge_ax.set_title("Predicted data\n using kernel ridge, R2 = " + str(krr.score(X_test, y_test))) + +print("error = ", krr.score(X_test, y_test)) +print("parrams = " , krr.get_params(False)) +print("regressors = " , krr) +plt.gcf().autofmt_xdate() +plt.xticks(fontsize=8) +plt.savefig("kernel_ridge_prediction_on_samsung_galaxy_s8.png") +plt.clf() +plt.cla() +plt.close() +""" + +####### This code was used to test the avalaible source code of the statmodels class kernridgeregress_class from this +# https://github.com/statsmodels/statsmodels/blob/825581cf17f1e79118592f15f49be7ad890a7104/statsmodels/sandbox/regression/kernridgeregress_class.py#L9 + +""" + # code coming from sklearn +krr = KernelRidge(alpha=1.0, kernel="rbf") #gamma=10) +krr.fit(X_train, y_train) +krr_y_test = krr.predict(X_test) + + + + +#Code coming from the stasmodels kernelrige class source code +m,k = 10,4 +##m,k = 50,4 +upper = 6 +scale = 10 +xs = np.linspace(1,upper,m)[:,np.newaxis] +#xs1 = xs1a*np.ones((1,4)) + 1/(1.0+np.exp(np.random.randn(m,k))) +#xs1 /= np.std(xs1[::k,:],0) # normalize scale, could use cov to normalize +##y1true = np.sum(np.sin(xs1)+np.sqrt(xs1),1)[:,np.newaxis] +xs1 = np.sin(xs)#[:,np.newaxis] +y1true = np.sum(xs1 + 0.01*np.sqrt(np.abs(xs1)),1)[:,np.newaxis] +y1 = y1true + 0.10 * np.random.randn(m,1) + +stride = 3 #use only some points as trainig points e.g 2 means every 2nd +xstrain = xs1[::stride,:] +ystrain = y1[::stride,:] +ratio = int(m/2) +print("ratio = ", ratio) +xstrain = np.r_[xs1[:ratio,:], xs1[ratio+10:,:]] +ystrain = np.r_[y1[:ratio,:], y1[ratio+10:,:]] +index = np.hstack((np.arange(m/2), np.arange(m/2+10,m))) +print("Their own X", xstrain) + +# added for standartization +xstrain_ = utils.standartize(xstrain) +print("Their own X", xstrain) +print ("Standartized X", xstrain_) +xstrain = xstrain_ +#end of standartization + +# added for lambda exploration +utils.find_regularization_parameter(xstrain, ystrain) +# end added for lambda exploration + + + + +print("Their own y", ystrain) +gp1 = GaussProcess(xstrain, ystrain, #kernel=kernel_euclid, + ridgecoeff=5*1e-4) +gp1.fit(ystrain) +krr_y_test = gp1.predict(np.asarray(xstrain)) +print("Predicted y test = ", krr_y_test) +print(" Computed c values = ", gp1.parest) +c_vector = gp1.parest +sigma_2 = 0.5 +X = xstrain +#End of code coming from the stasmodels kernelrige class source code + + + + + + + + n_samples, n_features = 10, 2 +rng = np.random.RandomState(0) +#y = rng.randn(n_samples) +y = np.random.randint(1,9,n_samples) +X = rng.randn(n_samples, n_features) +print("X", X) +X_error = X[:,np.newaxis,:] +print("X_error", X_error) + +gauss_process = GaussProcess(X, y, + ridgecoeff=5*1e-4) + +krr = gauss_process.fit(y) + +""" + +####### this code was used to debug the data set splitting +""" +_, (train_ax, test_ax) = plt.subplots(nrows=2, sharex=True, sharey=True, figsize=(11, 10)) + + +train_ax.bar(X_user_friendly_train,y_train, width=0.4) +# Add title and axis names +train_ax.set_title('Energy/ Workload according to the configuration') +train_ax.set_xlabel('Number of CPUs') +train_ax.set_ylabel(r'Energy consumed/Workload ($\times 10E-11$)') +train_ax.tick_params( size=8) + +test_ax.bar(X_user_friendly_test,y_test, width=0.4) +# Add title and axis names +test_ax.set_title('Energy/ Workload according to the configuration') +test_ax.set_xlabel('Number of CPUs') +test_ax.set_ylabel(r'Energy consumed/Workload ($\times 10E-11$)') +test_ax.tick_params(size=8) + +_ = test_ax.set_title("Testing data") + + +plt.gcf().autofmt_xdate() +plt.xticks(fontsize=8) + +plt.savefig("kernel_ridge_training_and_testing_configuration_data__plot.png") + +plt.clf() +plt.cla() +plt.close() +""" + +########### adated version - before integrating powertool results +""" +from sklearn.kernel_ridge import KernelRidge +from sklearn.model_selection import train_test_split +import matplotlib.pyplot as plt + + +import numpy as np +n_samples, n_features = 100, 2 +rng = np.random.RandomState(0) +#y = rng.randn(n_samples) +y = np.random.randint(1,9,n_samples) + +X = rng.randn(n_samples, n_features) + +print("X values") +print (X) + +print("y values") +print(y) + + + + + +# X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0) +#X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0) + +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, random_state=2) + +_, (train_ax, test_ax) = plt.subplots(ncols=2, sharex=True, sharey=True, figsize=(8, 4)) + + +train_ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train) +train_ax.set_ylabel("Y values") +train_ax.set_xlabel("X values") +train_ax.set_title("Training data") + +test_ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test) +test_ax.set_xlabel("X values") +_ = test_ax.set_title("Testing data") + + + +plt.savefig("kernel_ridge_training_and_testing_random_data__plot.png") + +plt.clf() +plt.cla() +plt.close() + +############## now using kernel ridge to train data + +krr = KernelRidge(alpha=1.0) #gamma=10) +krr.fit(X_train, y_train) + +krr_y_test = krr.predict(X_test) + + +# %% +fig, (orig_data_ax, testin_data_ax, kernel_ridge_ax) = plt.subplots( + ncols=3, figsize=(14, 4) +) + + +orig_data_ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train) +orig_data_ax.set_ylabel("Y values") +orig_data_ax.set_xlabel("X values") +orig_data_ax.set_title("training data") + +testin_data_ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test) +testin_data_ax.set_ylabel("Y tested values") +testin_data_ax.set_xlabel("X tested values") +testin_data_ax.set_title("testing datas") + +kernel_ridge_ax.scatter(X_test[:, 0], X_test[:, 1], c=krr_y_test) +kernel_ridge_ax.set_ylabel("Y predicted values on tested sample") +kernel_ridge_ax.set_xlabel("X tested values") +_ = kernel_ridge_ax.set_title("Projection of testing data\n using kernel ridge") + +print("error = ", krr.score(X_test, krr_y_test)) + +plt.savefig("kernel_ridge_training_testing_predict_on_random_data__plot.png") + +plt.clf() +plt.cla() +plt.close() +""" + + + +############ unmodified version +""" +from sklearn.kernel_ridge import KernelRidge +import numpy as np +n_samples, n_features = 10, 5 +rng = np.random.RandomState(0) +y = rng.randn(n_samples) +X = rng.randn(n_samples, n_features) +krr = KernelRidge(alpha=1.0) +krr.fit(X, y) +param = krr.get_params(1) +print(param) +""" diff --git a/kernel_ridge_linear_model/utils_functions.py b/kernel_ridge_linear_model/utils_functions.py index 3d1b6a4693edd90c13bfa33a9fdb19e13ed51729..235de9164f46aaea905dc52c8a93249dfdca30d7 100755 --- a/kernel_ridge_linear_model/utils_functions.py +++ b/kernel_ridge_linear_model/utils_functions.py @@ -1848,7 +1848,8 @@ def plot_single_marginal_plot(name_in_global_plot, X_train, pointwise_margins, i -def plot_marginal_interactions (X_train, pointwise_margins, cibled_indice, indice_0, indice_1, indice_2, indice_3, indice_4, indice_5, indice_6, indice_7, indice_8 , X_meaning_dictionnary_, marginal_effect_exploration_folder_, workstep = "" , paper_fontsize = 12): +def plot_marginal_interactions (X_train, pointwise_margins, cibled_indice, indice_0, indice_1, indice_2, indice_3, + indice_4, indice_5, indice_6, indice_7, indice_8 , X_meaning_dictionnary_, marginal_effect_exploration_folder_, workstep = "" , paper_fontsize = 12, repeat_experiments = False): transparency = 0.007 J_L_mapping = [] @@ -1867,8 +1868,8 @@ def plot_marginal_interactions (X_train, pointwise_margins, cibled_indice, indic plt.tight_layout() - - plt.savefig(marginal_effect_exploration_folder_ + "/"+ X_meaning_dictionnary_["X_" + str(cibled_indice)].replace(" ","_")[-16:] + \ + if not repeat_experiments: + plt.savefig(marginal_effect_exploration_folder_ + "/"+ X_meaning_dictionnary_["X_" + str(cibled_indice)].replace(" ","_")[-16:] + \ "_over_" + X_meaning_dictionnary_["X_" + str(indice_1)].replace(" ","_")[-16:] + ".png") plt.savefig(marginal_effect_exploration_folder_ + "/"+ "X_" + str(cibled_indice) + \ @@ -1968,8 +1969,10 @@ def plot_marginal_interactions (X_train, pointwise_margins, cibled_indice, indic #plt.gcf().autofmt_xdate() - plt.savefig(marginal_effect_exploration_folder_ + "/"+ picture_name)#, format="png", bbox_inches="tight") - plt.savefig(marginal_effect_exploration_folder_ + "/"+ reduced_picture_name)#, format="png", bbox_inches="tight") + + if not repeat_experiments: + plt.savefig(marginal_effect_exploration_folder_ + "/"+ picture_name)#, format="png", bbox_inches="tight") + plt.savefig(marginal_effect_exploration_folder_ + "/"+ reduced_picture_name)#, format="png", bbox_inches="tight") plt.clf() plt.cla() plt.close()