From 9758361caa76eb7c4417337080e045443324b550 Mon Sep 17 00:00:00 2001 From: plwapet <lavoisierwapet@gmail.com> Date: Tue, 6 Sep 2022 14:53:19 +0200 Subject: [PATCH] before meeting --- .../input_configurations_file.csv | 46 - ...nput_configurations_file__finally_used.csv | 22 - .../.~lock.summary___06Sep22_09_42_02.csv# | 1 + .../summary___06Sep22_09_42_02.csv | 46 + .../utils_functions.cpython-38.pyc | Bin 39523 -> 45836 bytes .../best_R2_exploration_summary.csv | 7 + kernel_ridge_linear_model/kernel_ridge.py | 467 +- ...ridge_prediction_on_google_pixel_4a_5g.png | Bin 78350 -> 86669 bytes .../log_file_for_samsung.txt | 53011 ++++++---------- .../loo_errors_according_to_lamda.csv | 121 +- ...tion_has_negative_impact_on_efficacity.txt | 141 + ....linear_coeff_vs_kernel_ridge_margins.csv# | 1 + .../d_X_5_linear_coefficients.csv | 39 + .../linear_coeff_vs_kernel_ridge_margins.csv | 53 + ...ribution_of_big_socket_frequency_level.png | Bin 0 -> 19544 bytes ..._marginal_distribution_of_core_0_state.png | Bin 0 -> 13307 bytes ..._marginal_distribution_of_core_7_state.png | Bin 0 -> 13468 bytes ...ution_of_little_socket_frequency_level.png | Bin 0 -> 11950 bytes ...X_2__X_3__X_4__X_5__X_6__X_7__X_8__X_9.png | Bin 0 -> 235151 bytes .../d_X_5_linear_coefficients.csv | 39 + ...re_5_state__Core_6_state__Core_7_state.png | Bin 0 -> 235151 bytes .../linear_coeff_vs_kernel_ridge_margins.csv | 53 + ...ribution_of_big_socket_frequency_level.png | Bin 0 -> 10840 bytes ..._marginal_distribution_of_core_0_state.png | Bin 0 -> 11088 bytes ..._marginal_distribution_of_core_7_state.png | Bin 0 -> 13554 bytes ...ution_of_little_socket_frequency_level.png | Bin 0 -> 13224 bytes ...ies_X_y_after_removing_aberrant_points.csv | 58 +- ...summaries_X_y_after_removing_duplicate.csv | 60 +- ...es_X_y_before_removing_aberrant_points.csv | 82 +- ...ummaries_X_y_before_removing_duplicate.csv | 58 +- kernel_ridge_linear_model/utils_functions.py | 179 +- 31 files changed, 20389 insertions(+), 34095 deletions(-) delete mode 100755 experiment_automatization/input_configurations_file.csv delete mode 100755 experiment_automatization/input_configurations_file__finally_used.csv create mode 100755 experiment_automatization/summary_files_only/.~lock.summary___06Sep22_09_42_02.csv# create mode 100755 experiment_automatization/summary_files_only/summary___06Sep22_09_42_02.csv create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_0.89_base_Y/cases_where_big_cores_variation_has_negative_impact_on_efficacity.txt create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/.~lock.linear_coeff_vs_kernel_ridge_margins.csv# create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/d_X_5_linear_coefficients.csv create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/linear_coeff_vs_kernel_ridge_margins.csv create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_big_socket_frequency_level.png create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_core_0_state.png create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_core_7_state.png create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/X_5_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8__X_9.png create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/d_X_5_linear_coefficients.csv create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/el_of_Big_Socket_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__el_of_Big_Socket__Core_4_state__Core_5_state__Core_6_state__Core_7_state.png create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/linear_coeff_vs_kernel_ridge_margins.csv create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_big_socket_frequency_level.png create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_core_0_state.png create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_core_7_state.png create mode 100755 kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png diff --git a/experiment_automatization/input_configurations_file.csv b/experiment_automatization/input_configurations_file.csv deleted file mode 100755 index 2572702..0000000 --- a/experiment_automatization/input_configurations_file.csv +++ /dev/null @@ -1,46 +0,0 @@ -configurations,samsung galaxy format -2000-2000,[2- 0- 0- 0- 2- 0- 0- 0] -3000-1100,[3- 0- 0- 0- 1- 1- 0- 0] -3000-2200,[3- 0- 0- 0- 2- 2- 0- 0] -1000-1100,[1- 0- 0- 0- 1- 1- 0- 0] -2000-2200,[2- 0- 0- 0- 2- 2- 0- 0] -3000-3300,[3- 0- 0- 0- 3- 3- 0- 0] -0000-1000,[0- 0- 0- 0- 1- 0- 0- 0] -0000-2000,[0- 0- 0- 0- 2- 0- 0- 0] -0000-1100,[0- 0- 0- 0- 1- 1- 0- 0] -0000-2200,[0- 0- 0- 0- 2- 2- 0- 0] -0022-2222,[0- 0- 2- 2- 2- 2- 2- 2] -1001-2220,[1- 0- 0- 1- 2- 2- 2- 0] -2020-3303,[2- 0- 2- 0- 3- 3- 0- 3] -0200-1100,[0- 2- 0- 0- 1- 1- 0- 0] -2002-0100,[2- 0- 0- 2- 0- 1- 0- 0] -0000-0001,[0- 0- 0- 0- 0- 0- 0- 1] -1110-0222,[1- 1- 1- 0- 0- 2- 2- 2] -0101-0200,[0- 1- 0- 1- 0- 2- 0- 0] -0033-0033,[0- 0- 3- 3- 0- 0- 3- 3] -3300-3033,[3- 3- 0- 0- 3- 0- 3- 3] -3330-2220,[3- 3- 3- 0- 2- 2- 2- 0] -0000-3003,[0- 0- 0- 0- 3- 0- 0- 3] -2002-2000,[2- 0- 0- 2- 2- 0- 0- 0] -0001-0200,[0- 0- 0- 1- 0- 2- 0- 0] -0220-0020,[0- 2- 2- 0- 0- 0- 2- 0] -0220-0333,[0- 2- 2- 0- 0- 3- 3- 3] -0303-1000,[0- 3- 0- 3- 1- 0- 0- 0] -0111-0033,[0- 1- 1- 1- 0- 0- 3- 3] -2022-2022,[2- 0- 2- 2- 2- 0- 2- 2] -3333-2222,[3- 3- 3- 3- 2- 2- 2- 2] -0110-0020,[0- 1- 1- 0- 0- 0- 2- 0] -0030-2000,[0- 0- 3- 0- 2- 0- 0- 0] -2002-1001,[2- 0- 0- 2- 1- 0- 0- 1] -0300-3303,[0- 3- 0- 0- 3- 3- 0- 3] -3303-0003,[3- 3- 0- 3- 0- 0- 0- 3] -0101-2020,[0- 1- 0- 1- 2- 0- 2- 0] -0202-1001,[0- 2- 0- 2- 1- 0- 0- 1] -3003-1101,[3- 0- 0- 3- 1- 1- 0- 1] -0220-1001,[0- 2- 2- 0- 1- 0- 0- 1] -3333-3333,[3- 3- 3- 3- 3- 3- 3- 3] -3003-0002,[3- 0- 0- 3- 0- 0- 0- 2] -0001-0033,[0- 0- 0- 1- 0- 0- 3- 3] -1111-0101,[1- 1- 1- 1- 0- 1- 0- 1] -2220-0000,[2- 2- 2- 0- 0- 0- 0- 0] -2020-0022,[2- 0- 2- 0- 0- 0- 2- 2] diff --git a/experiment_automatization/input_configurations_file__finally_used.csv b/experiment_automatization/input_configurations_file__finally_used.csv deleted file mode 100755 index 1fe4c34..0000000 --- a/experiment_automatization/input_configurations_file__finally_used.csv +++ /dev/null @@ -1,22 +0,0 @@ -configurations,generic format,exact frequency,samsung galaxy format,exact frequencies -1100-0000,[1- 1- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0],[598000- 598000- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0],[1- 1- 0- 0- 0- 0- 0- 0], [598000- 598000- 0- 0- 0- 0- 0- 0] -2200-0000,[2- 2- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0],[1248000- 1248000- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0],[2- 2- 0- 0- 0- 0- 0- 0], [1248000- 1248000- 0- 0- 0- 0- 0- 0] -1110-0000,[1- 1- 1- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0],[598000- 598000- 598000- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0],[1- 1- 1- 0- 0- 0- 0- 0], [598000- 598000- 598000- 0- 0- 0- 0- 0] -2220-0000,[2- 2- 2- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0],[1248000- 1248000- 1248000- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0],[2- 2- 2- 0- 0- 0- 0- 0], [1248000- 1248000- 1248000- 0- 0- 0- 0- 0] -3300-1000,[3- 3- 0- 0- 0- 0- 0- 0- 0- 1- 0- 0- 0],[1690000- 1690000- 0- 0- 0- 0- 0- 0- 0- 741000- 0- 0- 0],[3- 3- 0- 0- 1- 0- 0- 0], [1690000- 1690000- 0- 0- 741000- 0- 0- 0] -3300-2000,[3- 3- 0- 0- 0- 0- 0- 0- 0- 2- 0- 0- 0],[1690000- 1690000- 0- 0- 0- 0- 0- 0- 0- 1469000- 0- 0- 0],[3- 3- 0- 0- 2- 0- 0- 0], [1690000- 1690000- 0- 0- 1469000- 0- 0- 0] -1100-1000,[1- 1- 0- 0- 0- 0- 0- 0- 0- 1- 0- 0- 0],[598000- 598000- 0- 0- 0- 0- 0- 0- 0- 741000- 0- 0- 0],[1- 1- 0- 0- 1- 0- 0- 0], [598000- 598000- 0- 0- 741000- 0- 0- 0] -2200-2000,[2- 2- 0- 0- 0- 0- 0- 0- 0- 2- 0- 0- 0],[1248000- 1248000- 0- 0- 0- 0- 0- 0- 0- 1469000- 0- 0- 0],[2- 2- 0- 0- 2- 0- 0- 0], [1248000- 1248000- 0- 0- 1469000- 0- 0- 0] -3000-1000,[3- 0- 0- 0- 0- 0- 0- 0- 0- 1- 0- 0- 0],[1690000- 0- 0- 0- 0- 0- 0- 0- 0- 741000- 0- 0- 0],[3- 0- 0- 0- 1- 0- 0- 0], [1690000- 0- 0- 0- 741000- 0- 0- 0] -3000-2000,[3- 0- 0- 0- 0- 0- 0- 0- 0- 2- 0- 0- 0],[1690000- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 0- 0- 0],[3- 0- 0- 0- 2- 0- 0- 0], [1690000- 0- 0- 0- 1469000- 0- 0- 0] -1000-1000,[1- 0- 0- 0- 0- 0- 0- 0- 0- 1- 0- 0- 0],[598000- 0- 0- 0- 0- 0- 0- 0- 0- 741000- 0- 0- 0],[1- 0- 0- 0- 1- 0- 0- 0], [598000- 0- 0- 0- 741000- 0- 0- 0] -2000-2000,[2- 0- 0- 0- 0- 0- 0- 0- 0- 2- 0- 0- 0],[1248000- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 0- 0- 0],[2- 0- 0- 0- 2- 0- 0- 0], [1248000- 0- 0- 0- 1469000- 0- 0- 0] -3000-1100,[3- 0- 0- 0- 0- 0- 0- 0- 0- 1- 1- 0- 0],[1690000- 0- 0- 0- 0- 0- 0- 0- 0- 741000- 741000- 0- 0],[3- 0- 0- 0- 1- 1- 0- 0], [1690000- 0- 0- 0- 741000- 741000- 0- 0] -3000-2200,[3- 0- 0- 0- 0- 0- 0- 0- 0- 2- 2- 0- 0],[1690000- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 1469000- 0- 0],[3- 0- 0- 0- 2- 2- 0- 0], [1690000- 0- 0- 0- 1469000- 1469000- 0- 0] -1000-1100,[1- 0- 0- 0- 0- 0- 0- 0- 0- 1- 1- 0- 0],[598000- 0- 0- 0- 0- 0- 0- 0- 0- 741000- 741000- 0- 0],[1- 0- 0- 0- 1- 1- 0- 0], [598000- 0- 0- 0- 741000- 741000- 0- 0] -2000-2200,[2- 0- 0- 0- 0- 0- 0- 0- 0- 2- 2- 0- 0],[1248000- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 1469000- 0- 0],[2- 0- 0- 0- 2- 2- 0- 0], [1248000- 0- 0- 0- 1469000- 1469000- 0- 0] -3000-3300,[3- 0- 0- 0- 0- 0- 0- 0- 0- 3- 3- 0- 0],[1690000- 0- 0- 0- 0- 0- 0- 0- 0- 2314000- 2314000- 0- 0],[3- 0- 0- 0- 3- 3- 0- 0], [1690000- 0- 0- 0- 2314000- 2314000- 0- 0] -0000-1000,[0- 0- 0- 0- 0- 0- 0- 0- 0- 1- 0- 0- 0],[0- 0- 0- 0- 0- 0- 0- 0- 0- 741000- 0- 0- 0],[0- 0- 0- 0- 1- 0- 0- 0], [0- 0- 0- 0- 741000- 0- 0- 0] -0000-2000,[0- 0- 0- 0- 0- 0- 0- 0- 0- 2- 0- 0- 0],[0- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 0- 0- 0],[0- 0- 0- 0- 2- 0- 0- 0], [0- 0- 0- 0- 1469000- 0- 0- 0] -0000-1100,[0- 0- 0- 0- 0- 0- 0- 0- 0- 1- 1- 0- 0],[0- 0- 0- 0- 0- 0- 0- 0- 0- 741000- 741000- 0- 0],[0- 0- 0- 0- 1- 1- 0- 0], [0- 0- 0- 0- 741000- 741000- 0- 0] -0000-2200,[0- 0- 0- 0- 0- 0- 0- 0- 0- 2- 2- 0- 0],[0- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 1469000- 0- 0],[0- 0- 0- 0- 2- 2- 0- 0], [0- 0- 0- 0- 1469000- 1469000- 0- 0] diff --git a/experiment_automatization/summary_files_only/.~lock.summary___06Sep22_09_42_02.csv# b/experiment_automatization/summary_files_only/.~lock.summary___06Sep22_09_42_02.csv# new file mode 100755 index 0000000..e3e2061 --- /dev/null +++ b/experiment_automatization/summary_files_only/.~lock.summary___06Sep22_09_42_02.csv# @@ -0,0 +1 @@ +,DESKTOP-D49H2V3/lavoi,DESKTOP-D49H2V3,06.09.2022 14:43,file:///C:/Users/lavoi/AppData/Roaming/LibreOffice/4; \ No newline at end of file diff --git a/experiment_automatization/summary_files_only/summary___06Sep22_09_42_02.csv b/experiment_automatization/summary_files_only/summary___06Sep22_09_42_02.csv new file mode 100755 index 0000000..7aa1320 --- /dev/null +++ b/experiment_automatization/summary_files_only/summary___06Sep22_09_42_02.csv @@ -0,0 +1,46 @@ +configurations,generic format,exact frequency,samsung galaxy format,exact frequencies,phone energy,phone power,workload,energy by workload,starting cc_info,ending cc_info +2000-2000,[2- 0- 0- 0- 0- 0- 0- 0- 0- 2- 0- 0- 0],[1248000- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 0- 0- 0],[2- 0- 0- 0- 2- 0- 0- 0],[1248000- 0- 0- 0- 1469000- 0- 0- 0],36.241340818491324,1093.294435058518,1.50528e+11,2.40761e-10,5616500,5616500 +3000-1100,[3- 0- 0- 0- 0- 0- 0- 0- 0- 1- 1- 0- 0],[1690000- 0- 0- 0- 0- 0- 0- 0- 0- 741000- 741000- 0- 0],[3- 0- 0- 0- 1- 1- 0- 0],[1690000- 0- 0- 0- 741000- 741000- 0- 0],43.3608751201712,1276.8164639037316,2.79393e+11,1.55197e-10,5615000,5615000 +3000-2200,[3- 0- 0- 0- 0- 0- 0- 0- 0- 2- 2- 0- 0],[1690000- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 1469000- 0- 0],[3- 0- 0- 0- 2- 2- 0- 0],[1690000- 0- 0- 0- 1469000- 1469000- 0- 0],42.79271109577192,1271.3818653290398,2.78971e+11,1.53395e-10,5613500,5613500 +1000-1100,[1- 0- 0- 0- 0- 0- 0- 0- 0- 1- 1- 0- 0],[598000- 0- 0- 0- 0- 0- 0- 0- 0- 741000- 741000- 0- 0],[1- 0- 0- 0- 1- 1- 0- 0],[598000- 0- 0- 0- 741000- 741000- 0- 0],42.80059101405426,1269.5453373842686,2.76003e+11,1.55073e-10,5612000,5612000 +2000-2200,[2- 0- 0- 0- 0- 0- 0- 0- 0- 2- 2- 0- 0],[1248000- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 1469000- 0- 0],[2- 0- 0- 0- 2- 2- 0- 0],[1248000- 0- 0- 0- 1469000- 1469000- 0- 0],42.61363347008094,1266.6690782721996,2.78672e+11,1.52917e-10,5610500,5610500 +3000-3300,[3- 0- 0- 0- 0- 0- 0- 0- 0- 3- 3- 0- 0],[1690000- 0- 0- 0- 0- 0- 0- 0- 0- 2314000- 2314000- 0- 0],[3- 0- 0- 0- 3- 3- 0- 0],[1690000- 0- 0- 0- 2314000- 2314000- 0- 0],42.474892742303716,1262.3509051047158,2.74951e+11,1.54482e-10,5609500,5609500 +0000-1000,[0- 0- 0- 0- 0- 0- 0- 0- 0- 1- 0- 0- 0],[0- 0- 0- 0- 0- 0- 0- 0- 0- 741000- 0- 0- 0],[0- 0- 0- 0- 1- 0- 0- 0],[0- 0- 0- 0- 741000- 0- 0- 0],35.44774676664167,1059.0791958246482,1.11489e+11,3.17948e-10,5608500,5608500 +0000-2000,[0- 0- 0- 0- 0- 0- 0- 0- 0- 2- 0- 0- 0],[0- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 0- 0- 0],[0- 0- 0- 0- 2- 0- 0- 0],[0- 0- 0- 0- 1469000- 0- 0- 0],35.40657570372512,1062.9050649971523,1.17941e+11,3.00206e-10,5607500,5607500 +0000-1100,[0- 0- 0- 0- 0- 0- 0- 0- 0- 1- 1- 0- 0],[0- 0- 0- 0- 0- 0- 0- 0- 0- 741000- 741000- 0- 0],[0- 0- 0- 0- 1- 1- 0- 0],[0- 0- 0- 0- 741000- 741000- 0- 0],90.46258013235764,2571.130574984406,7.9638e+11,1.13592e-10,5590000,5530500 +0000-2200,[0- 0- 0- 0- 0- 0- 0- 0- 0- 2- 2- 0- 0],[0- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 1469000- 0- 0],[0- 0- 0- 0- 2- 2- 0- 0],[0- 0- 0- 0- 1469000- 1469000- 0- 0],42.51731520413714,1266.0320229601746,2.43375e+11,1.74699e-10,5594500,5594500 +0022-2222,[0- 0- 2- 2- 0- 0- 0- 0- 0- 2- 2- 2- 2],[0- 0- 1248000- 1248000- 0- 0- 0- 0- 0- 1469000- 1469000- 1469000- 1469000],[0- 0- 2- 2- 2- 2- 2- 2],[0- 0- 1248000- 1248000- 1469000- 1469000- 1469000- 1469000],90.088043640181,2562.564209617514,1.21823e+12,7.39499e-11,5588500,5569500 +1001-2220,[1- 0- 0- 1- 0- 0- 0- 0- 0- 2- 2- 2- 0],[598000- 0- 0- 598000- 0- 0- 0- 0- 0- 1469000- 1469000- 1469000- 0],[1- 0- 0- 1- 2- 2- 2- 0],[598000- 0- 0- 598000- 1469000- 1469000- 1469000- 0],50.735447078258076,1501.013010791581,4.65069e+11,1.09092e-10,5573500,5573500 +2020-3303,[2- 0- 2- 0- 0- 0- 0- 0- 0- 3- 3- 0- 3],[1248000- 0- 1248000- 0- 0- 0- 0- 0- 0- 2314000- 2314000- 0- 2314000],[2- 0- 2- 0- 3- 3- 0- 3],[1248000- 0- 1248000- 0- 2314000- 2314000- 0- 2314000],90.5561378672525,2573.4985902482695,1.16422e+12,7.77827e-11,5548500,5487500 +0200-1100,[0- 2- 0- 0- 0- 0- 0- 0- 0- 1- 1- 0- 0],[0- 1248000- 0- 0- 0- 0- 0- 0- 0- 741000- 741000- 0- 0],[0- 2- 0- 0- 1- 1- 0- 0],[0- 1248000- 0- 0- 741000- 741000- 0- 0],42.722378810206706,1269.6628417868571,2.79405e+11,1.52905e-10,5550000,5550000 +2002-0100,[2- 0- 0- 2- 0- 0- 0- 0- 0- 0- 1- 0- 0],[1248000- 0- 0- 1248000- 0- 0- 0- 0- 0- 0- 741000- 0- 0],[2- 0- 0- 2- 0- 1- 0- 0],[1248000- 0- 0- 1248000- 0- 741000- 0- 0],42.016301664202444,1246.8311976834332,3.04426e+11,1.38018e-10,5548500,5548500 +0000-0001,[0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 1],[0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 741000],[0- 0- 0- 0- 0- 0- 0- 1],[0- 0- 0- 0- 0- 0- 0- 741000],35.588916806469584,1061.9129725113023,1.18205e+11,3.01078e-10,5547500,5547500 +1110-0222,[1- 1- 1- 0- 0- 0- 0- 0- 0- 0- 2- 2- 2],[598000- 598000- 598000- 0- 0- 0- 0- 0- 0- 0- 1469000- 1469000- 1469000],[1- 1- 1- 0- 0- 2- 2- 2],[598000- 598000- 598000- 0- 0- 1469000- 1469000- 1469000],84.95659161453054,2431.421248184294,8.65996e+11,9.81028e-11,5544000,5543500 +0101-0200,[0- 1- 0- 1- 0- 0- 0- 0- 0- 0- 2- 0- 0],[0- 598000- 0- 598000- 0- 0- 0- 0- 0- 0- 1469000- 0- 0],[0- 1- 0- 1- 0- 2- 0- 0],[0- 598000- 0- 598000- 0- 1469000- 0- 0],37.334916995372765,1114.0610357968417,2.07187e+11,1.80199e-10,5542000,5542000 +0033-0033,[0- 0- 3- 3- 0- 0- 0- 0- 0- 0- 0- 3- 3],[0- 0- 1690000- 1690000- 0- 0- 0- 0- 0- 0- 0- 2314000- 2314000],[0- 0- 3- 3- 0- 0- 3- 3],[0- 0- 1690000- 1690000- 0- 0- 2314000- 2314000],90.10648087748085,2561.7090808066246,9.16768e+11,9.82871e-11,5521000,5498500 +3300-3033,[3- 3- 0- 0- 0- 0- 0- 0- 0- 3- 0- 3- 3],[1690000- 1690000- 0- 0- 0- 0- 0- 0- 0- 2314000- 0- 2314000- 2314000],[3- 3- 0- 0- 3- 0- 3- 3],[1690000- 1690000- 0- 0- 2314000- 0- 2314000- 2314000],90.14771706389868,2564.550394188339,1.13348e+12,7.95318e-11,5504500,5452500 +3330-2220,[3- 3- 3- 0- 0- 0- 0- 0- 0- 2- 2- 2- 0],[1690000- 1690000- 1690000- 0- 0- 0- 0- 0- 0- 1469000- 1469000- 1469000- 0],[3- 3- 3- 0- 2- 2- 2- 0],[1690000- 1690000- 1690000- 0- 1469000- 1469000- 1469000- 0],51.28077619994492,1509.8672133793746,4.73319e+11,1.08343e-10,5505500,5505500 +0000-3003,[0- 0- 0- 0- 0- 0- 0- 0- 0- 3- 0- 0- 3],[0- 0- 0- 0- 0- 0- 0- 0- 0- 2314000- 0- 0- 2314000],[0- 0- 0- 0- 3- 0- 0- 3],[0- 0- 0- 0- 2314000- 0- 0- 2314000],90.00050196668379,2558.614664977575,7.91396e+11,1.13724e-10,5488000,5427000 +2002-2000,[2- 0- 0- 2- 0- 0- 0- 0- 0- 2- 0- 0- 0],[1248000- 0- 0- 1248000- 0- 0- 0- 0- 0- 1469000- 0- 0- 0],[2- 0- 0- 2- 2- 0- 0- 0],[1248000- 0- 0- 1248000- 1469000- 0- 0- 0],41.829225389075674,1247.388638969819,3.03807e+11,1.37684e-10,5484000,5484000 +0001-0200,[0- 0- 0- 1- 0- 0- 0- 0- 0- 0- 2- 0- 0],[0- 0- 0- 598000- 0- 0- 0- 0- 0- 0- 1469000- 0- 0],[0- 0- 0- 1- 0- 2- 0- 0],[0- 0- 0- 598000- 0- 1469000- 0- 0],36.59285860316189,1099.4674555219783,1.60475e+11,2.28028e-10,5483000,5483000 +0220-0020,[0- 2- 2- 0- 0- 0- 0- 0- 0- 0- 0- 2- 0],[0- 1248000- 1248000- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 0],[0- 2- 2- 0- 0- 0- 2- 0],[0- 1248000- 1248000- 0- 0- 0- 1469000- 0],36.67117347490831,1094.3145213360206,1.84845e+11,1.98389e-10,5481000,5481000 +0220-0333,[0- 2- 2- 0- 0- 0- 0- 0- 0- 0- 3- 3- 3],[0- 1248000- 1248000- 0- 0- 0- 0- 0- 0- 0- 2314000- 2314000- 2314000],[0- 2- 2- 0- 0- 3- 3- 3],[0- 1248000- 1248000- 0- 0- 2314000- 2314000- 2314000],89.70654161484846,2550.6519808822336,1.04439e+12,8.58937e-11,5453000,5411000 +0303-1000,[0- 3- 0- 3- 0- 0- 0- 0- 0- 1- 0- 0- 0],[0- 1690000- 0- 1690000- 0- 0- 0- 0- 0- 741000- 0- 0- 0],[0- 3- 0- 3- 1- 0- 0- 0],[0- 1690000- 0- 1690000- 741000- 0- 0- 0],53.6166443408558,1573.6269057528625,3.71471e+11,1.44336e-10,5464000,5464000 +0111-0033,[0- 1- 1- 1- 0- 0- 0- 0- 0- 0- 0- 3- 3],[0- 598000- 598000- 598000- 0- 0- 0- 0- 0- 0- 0- 2314000- 2314000],[0- 1- 1- 1- 0- 0- 3- 3],[0- 598000- 598000- 598000- 0- 0- 2314000- 2314000],89.88732743388194,2556.7200250852184,9.61911e+11,9.34466e-11,5445000,5382500 +2022-2022,[2- 0- 2- 2- 0- 0- 0- 0- 0- 2- 0- 2- 2],[1248000- 0- 1248000- 1248000- 0- 0- 0- 0- 0- 1469000- 0- 1469000- 1469000],[2- 0- 2- 2- 2- 0- 2- 2],[1248000- 0- 1248000- 1248000- 1469000- 0- 1469000- 1469000],89.78406463840186,2551.954455920421,1.05373e+12,8.52059e-11,5437000,5432000 +3333-2222,[3- 3- 3- 3- 0- 0- 0- 0- 0- 2- 2- 2- 2],[1690000- 1690000- 1690000- 1690000- 0- 0- 0- 0- 0- 1469000- 1469000- 1469000- 1469000],[3- 3- 3- 3- 2- 2- 2- 2],[1690000- 1690000- 1690000- 1690000- 1469000- 1469000- 1469000- 1469000],89.67593024695213,2549.527552072643,1.50278e+12,5.96734e-11,5421500,5376000 +0110-0020,[0- 1- 1- 0- 0- 0- 0- 0- 0- 0- 0- 2- 0],[0- 598000- 598000- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 0],[0- 1- 1- 0- 0- 0- 2- 0],[0- 598000- 598000- 0- 0- 0- 1469000- 0],36.31061849927073,1084.9578138183351,2.11379e+11,1.7178e-10,5412000,5412000 +0030-2000,[0- 0- 3- 0- 0- 0- 0- 0- 0- 2- 0- 0- 0],[0- 0- 1690000- 0- 0- 0- 0- 0- 0- 1469000- 0- 0- 0],[0- 0- 3- 0- 2- 0- 0- 0],[0- 0- 1690000- 0- 1469000- 0- 0- 0],35.93660318178646,1074.6161231671197,1.72823e+11,2.07939e-10,5405500,5405500 +2002-1001,[2- 0- 0- 2- 0- 0- 0- 0- 0- 1- 0- 0- 1],[1248000- 0- 0- 1248000- 0- 0- 0- 0- 0- 741000- 0- 0- 741000],[2- 0- 0- 2- 1- 0- 0- 1],[1248000- 0- 0- 1248000- 741000- 0- 0- 741000],48.71596839606954,1438.7796228385223,4.28493e+11,1.13691e-10,5403500,5403500 +0300-3303,[0- 3- 0- 0- 0- 0- 0- 0- 0- 3- 3- 0- 3],[0- 1690000- 0- 0- 0- 0- 0- 0- 0- 2314000- 2314000- 0- 2314000],[0- 3- 0- 0- 3- 3- 0- 3],[0- 1690000- 0- 0- 2314000- 2314000- 0- 2314000],89.99960485423202,2559.7015349419344,1.12066e+12,8.03095e-11,5376500,5313500 +3303-0003,[3- 3- 0- 3- 0- 0- 0- 0- 0- 0- 0- 0- 3],[1690000- 1690000- 0- 1690000- 0- 0- 0- 0- 0- 0- 0- 0- 2314000],[3- 3- 0- 3- 0- 0- 0- 3],[1690000- 1690000- 0- 1690000- 0- 0- 0- 2314000],90.0977136670513,2562.32045261569,7.63242e+11,1.18046e-10,5388500,5357500 +0101-2020,[0- 1- 0- 1- 0- 0- 0- 0- 0- 2- 0- 2- 0],[0- 598000- 0- 598000- 0- 0- 0- 0- 0- 1469000- 0- 1469000- 0],[0- 1- 0- 1- 2- 0- 2- 0],[0- 598000- 0- 598000- 1469000- 0- 1469000- 0],43.37670883350873,1284.528003627786,3.62938e+11,1.19515e-10,5365000,5365000 +0202-1001,[0- 2- 0- 2- 0- 0- 0- 0- 0- 1- 0- 0- 1],[0- 1248000- 0- 1248000- 0- 0- 0- 0- 0- 741000- 0- 0- 741000],[0- 2- 0- 2- 1- 0- 0- 1],[0- 1248000- 0- 1248000- 741000- 0- 0- 741000],48.8428586507307,1446.0655557443365,4.34491e+11,1.12414e-10,5369500,5369500 +3003-1101,[3- 0- 0- 3- 0- 0- 0- 0- 0- 1- 1- 0- 1],[1690000- 0- 0- 1690000- 0- 0- 0- 0- 0- 741000- 741000- 0- 741000],[3- 0- 0- 3- 1- 1- 0- 1],[1690000- 0- 0- 1690000- 741000- 741000- 0- 741000],67.46193459835338,1961.439854655698,6.3609e+11,1.06057e-10,5369500,5369500 +0220-1001,[0- 2- 2- 0- 0- 0- 0- 0- 0- 1- 0- 0- 1],[0- 1248000- 1248000- 0- 0- 0- 0- 0- 0- 741000- 0- 0- 741000],[0- 2- 2- 0- 1- 0- 0- 1],[0- 1248000- 1248000- 0- 741000- 0- 0- 741000],43.18443043197562,1283.9586963119107,3.14499e+11,1.37312e-10,5368000,5368000 +3333-3333,[3- 3- 3- 3- 0- 0- 0- 0- 0- 3- 3- 3- 3],[1690000- 1690000- 1690000- 1690000- 0- 0- 0- 0- 0- 2314000- 2314000- 2314000- 2314000],[3- 3- 3- 3- 3- 3- 3- 3],[1690000- 1690000- 1690000- 1690000- 2314000- 2314000- 2314000- 2314000],90.11457881018515,2562.0827243881736,1.6023e+12,5.62408e-11,5338500,5281000 +3003-0002,[3- 0- 0- 3- 0- 0- 0- 0- 0- 0- 0- 0- 2],[1690000- 0- 0- 1690000- 0- 0- 0- 0- 0- 0- 0- 0- 1469000],[3- 0- 0- 3- 0- 0- 0- 2],[1690000- 0- 0- 1690000- 0- 0- 0- 1469000],65.80063109114849,1905.6196213108017,4.99771e+11,1.31662e-10,5369000,5369000 +0001-0033,[0- 0- 0- 1- 0- 0- 0- 0- 0- 0- 0- 3- 3],[0- 0- 0- 598000- 0- 0- 0- 0- 0- 0- 0- 2314000- 2314000],[0- 0- 0- 1- 0- 0- 3- 3],[0- 0- 0- 598000- 0- 0- 2314000- 2314000],90.21787325835247,2564.014161748072,8.50301e+11,1.06101e-10,5352500,5291500 +1111-0101,[1- 1- 1- 1- 0- 0- 0- 0- 0- 0- 1- 0- 1],[598000- 598000- 598000- 598000- 0- 0- 0- 0- 0- 0- 741000- 0- 741000],[1- 1- 1- 1- 0- 1- 0- 1],[598000- 598000- 598000- 598000- 0- 741000- 0- 741000],45.44863666563364,1352.868396046611,4.12706e+11,1.10124e-10,5368500,5368500 +2220-0000,[2- 2- 2- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0],[1248000- 1248000- 1248000- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0],[2- 2- 2- 0- 0- 0- 0- 0],[1248000- 1248000- 1248000- 0- 0- 0- 0- 0],30.63396781022152,921.8330770914387,9.16421e+10,3.34278e-10,5370000,5370000 +2020-0022,[2- 0- 2- 0- 0- 0- 0- 0- 0- 0- 0- 2- 2],[1248000- 0- 1248000- 0- 0- 0- 0- 0- 0- 0- 0- 1469000- 1469000],[2- 0- 2- 0- 0- 0- 2- 2],[1248000- 0- 1248000- 0- 0- 0- 1469000- 1469000],65.93701913313123,1920.3018114235188,5.77244e+11,1.14227e-10,5368000,5368000 diff --git a/kernel_ridge_linear_model/__pycache__/utils_functions.cpython-38.pyc b/kernel_ridge_linear_model/__pycache__/utils_functions.cpython-38.pyc index d747a248b00ba46a8d261732697244d23aa43c1d..8aeb1e28909c3d09f1af871432becd2002deb943 100755 GIT binary patch delta 10168 zcmb7K33yZ2mDbhneUUA17z-O4%V3OcjBx<7o5f&OC&ny7=sg=5S(2}0u#FsrvhQ&( zA)zga({_d-nJ`I|(zGQcq@7ONq_mxBGGAXhlOdh9q4_2u-`9`nM>@@%bDwy60%IHd z^RIi)JNMr6pL6c^<lnufJ@E%^YHLbLq6U6WFU)a$<MdGK1oF3`skWq@f=<vMAniuM zJ@n`gNf*l}lgKVMm*gdRgxNv^JgN}7*>*C&&?~GERzkf-&<Mm++g>a9gf+rikjxbP z><ST6I)u&xn)W3E*`TraM9Q?kCR0-8YP`uIonXw>gtP+Gf*K(;q}{J28n0eR+W=Bf zPG^(!mnIs(yn$R>Wo4ypy%^~A1Z@smz}X$>^>*6k+1PcxKyq2F;R})<sWRqi>r+6V z8UgGEnu_H#gbajqgiHXtiCVCng^-P4Wnpv4v>Yh5=X-m*cZk&C>u~IFcRE}?Dh3=* zSJ1s%q`9ceA&*@*50L`4J>d%&e@kLXlKR=P#1(}&xTN>_MXzM0qEqm=y`p3Y_&x3* zO=q_f>*HF~B+Vhym^bOlYHoB14m25|2mvj(8)+GQNTi>Zqs)#_fs)jI2X^iN!$s<L z#aX#0c@e2%-%tKJnZO=RX=u8qck}=l6{K#zJcxl0LZ@Ko@x#P*`(Da=Qq9U!Us#A8 z+Kp0Lo1-@XUhAN4(JOfRc@L6)iQ5&V=vGO$OYCnq^*MGsJ-zXcw4~LOS?qjOA={bO zZkdhBWLNxXX*FaXGp8S{<L1vp<G4!<vZ0TlpcbJ4VGe>i9B-%Bkw*5H^fQ@C9)LGF z$87d&hBbZey)Ax}(L@%qq|D#X!F-VuNogx-y?#mGEjqn+z08xW=4m96uDEfhS}OES z(4H+=k<Gl8>=|g3ok+x~Rs)%o(B1C{^z=HZ_*bX~v;Z1HS41L~Ya}1L;CUOfL()Oa z=puG1+g`yvksuqA+U7vJAYlUz>f1w?KvRjd$VtAG-N@b;mvsxQ%g6?H#9EWN49DQ+ z>0~D^X75^a<CH(MP9?38f}B+CqdW}UGu*Zf*qFPg8B2VgEy9r#c8ji{kGcm$+KP3P zGvK7u*)Nfe_Cz@V>#+rzN!PJ(UcQk}$EEDKyd`mif10<1Y-Y9jx5!F1x!|QDZUK%# z7b9?6R$*y1!diB#pu~t>x0kTS2_<aqgk$NvXLVY<KVcr(7Rf67j4a=dt$3fDK`B-p z0Fti59h6LdDhim%e84t*$T_aX5)N%olgU)F=AwP~5A@rjwWKRjX}hH(?QG)YR}H(c zYxdsc%T~1KB9XMacB@l@Jzv^P>e&C3ZXtziW!VvV+IC?popVQkawBnJlZ*i$4T^$f za0kWi0L67fGVGyHlMTy@8U}LO!E&bzk!<$DlsB{McwaCX<A!~_{3<!h=GnJSz-82~ z<%Fdq9y5ms`RRd-Kf*5CZE?Z5VXr2qnWbXql4ICRFZ<~@j>-MRU1Xp~P;dg_B!Fb} zdz>yYKu@7W9hWyNmXM){e(LuKNnux~y_LiR!}BYX9jz=$=beVI*=dAkcBOJJcy{*m zNt~BFkh(|j^nP-VeLVdUGv@h40t;|O)%-XP!K!j{K61V)fsh(@VMbTn!wJ>(#(%(} zo{em(zM&1HL6U9&7ELZahmUx|C%JrHmoq4O;ZNp%9-i4PlBvxRq)xY2GWE*^`fY4< z7UAmv?HPWbzt;oJ1jk*CZ{fpAgug@hdxQ%B?d*FqTgW$<xo%OMm92FS<4dU2$G%?| z*;a_fet?Sxo)>a{52BRk508pT(hJU@ldt;i3AkH1x_yF351|_0Vh%$|GTgsxzcZ_W zyvhvqmm1MTyP0mnCVYnQ_{i}>8IC3ycoNZ9QP-qO$};wOeQg|#s@b#juY($2H6Ne- zBFSVG4U^+kHZ@EqKZqP@SgIo_k?V7Jkn$cJh=-giC0@<LY7pSE77D$rt+9gaX8Rkz zLtLz3eq=t+EuKc)>LFC;M~1yvQXIvXH%aIA2JPAMRx<^kSF))KdXjizV@}g2*@Xow zjeNtiGRHzIOIhfSvwYveXUH#D{-TpBmZLsFxP-u?g@+v;GWt(Yf)h*`3SLIw0l`?% zR}j?MeQQwz`DLVH@n5vY*WlSeBfHu(m2GIsGP+PTInv#fMT~t|Ud|3L^OSS(sLo2z zfpRY^SiYL<j<}Z-QaN84^+67{@HS{bD|>5sE&JJu--JgUr0{M7dxpGwU`EQbhWmX0 zt309j%FZM89h70FNyebh;|>HReX!pz%Eu&3E;-eCmhaWD;^qV7yX-=94Oz;h<}z}K zkyW?TRnEhnW-{CInUOiG&+D|WX;}4B7Iw=~T*j3q!gE*#Ct=482=Ps6F{@j5twK?~ zD62{)(Ia+?-r)V}w)M+qqdIiT>G9*;A4lpLWV69R0X-Cq8m)%9*mLXmkmW3A!-*0; z;)4RQN)FzSH>`n7w{HCA=ux0b6w*hG0(U!~5j+%10H}mke}KSA+~<5CnJFa;jy6`` zT1v{;*48rPcR{^9pRHM!TL=e~kFfFY5SAkRH^T1`4za7P7w-+zEcVWZS&^3>wGfLJ zmGICe83kuxrzn7P{_U}y$%|2>4~l(3*c6tvbwIo?wZ$(T|IxM+){Lf2PLh&>z2KCC z1u2!i)?NoI&7azTtDdisUu}L_XXJD9Id<4lSLnhvu##w~3Fa>4vjY3MLu|C3{l?Ky zq$C5ip&GAp;44uvtKNQiOr3w<zI;rbM(5%&b%vc|_hZ^oy)hXql?;C09+6VaH_5!m zM|XLAPJw<Cs&H20Sx|z6CL@$0{1^dOP02(>zM0c}6cr#8u@gHg^YF~oo*d}y?sn3C zM~B-Z(#!bN&i-{rb^f=oI2Bb=T)mXSgo$1crn5p<SzH`iTm?GU8>s&#!VeLCgz(P* z7(e)sGTd<Rg}WPdLQj4lEY|Y!(T0jVh4~tf%Zxo!y^7=We?j;Od$(g@(oeDYGlX|o zZs&C4yI4HJR&^HNo0C>n-C<>CI**z$31CvUu+p8j`%Zw7)|~~!jJab^rkSkIJ*Sax zkK7zStscW6Dj=mKlULm1>~jYw&NRDxuBSL}Xc=Z4dX%nbpS#zQ1#EHG+&C{C>++Me zJXFY0N)-G2j&3L1?)v1Z&Bv?3Zup>l1o;XhcfKAw=VPhTHnP%_r60!zdk!)O_KZV* z++bhv?@f9ed%J@02CMI>v0TL>58qo@x&{Dyd|4HJAFF&ss+3|=1~>12<b6Y-iMk@c z>S-knoF$LxOyq;RwUi+8D=?nDxO>qF@)pjC^L!m(j(|0rUl!#Z9Cf0xKNjfadpG?# zGX!5Lx(<)pQ@Y{k@ANuEuSh%l)zg{17yO_U&9v+2i|`?tT)ti}jD6ou!QShAfqacU zvD;pRigFBduypU968XvQt*I5bs@SzR(fpf8@uE&Lc;Px1fDf0?6Oc?D?#=+*s{Y8< z9Nb%jHr(BLbi1AOB5BXOJD>QA0k>BW`()Fji_l*WHrtkg-y|bU%w1se3Unf#9`0yu z<@6IQu+BprGn!G(W3dWLElO4H2=u;y&?uYK9rk~R#G)}8v3-Y|$JF`caC6BR{lMTh z_SxZOWA^ptk@56ZkA00}%tfdd9^1B6u(c?Tp#|W%o43CF@=M9+@WHDjhop5l?&zoc zy`6VVb{mRpceM6tcl7pYw!}L+KqyYPCDK1*Fi6$KEY$^7&$b@RAsMXq7$q;VkB`;W zN@j?%+a)?;rJ0JXPASb&O7#+3dwetd{CF{`MP#>*Pv*6myte6tT&v@?w@(xjiT&4! z>;fsp4>#dnDmsGhAS~xRH+Wj)Mbb~E>1;=Us0*|9?hl@!%<!j!zkoK4&3|&f-6)t& z>b7VH)3#{07zWb^GX^sUErVH5&K|T5<_zWz<_YG({7^bOy{D)kA(Ss93P~poL=!X! z$wJD0?Gnw_#-kc|{_`gr!e0xe4;w=%f+a}cEh5R$<Y|Pg9F1Vf(cF~?*-*FUXrfv= zSqo$_JuXAN=LvzHhfTacS(<ZyOIfSSEaYYhc_(?3t^^@pDB$G`_EcX{$;gH;0K+r7 z^oKPaM3}%X4Aq8*Lm3ZAKtBQjE)xo)1TvxoWND0m(vlO%7)}%>HYr{zQg}xFc(*g; z8Ks$_qM6yH4{6}lujZgOWMI$tSw^7@x}36&J@wVv@bysULsB-3K$**wm}N#O%hDKS zr6s4Fsg7Buij0N5Gf-6e;FwvW1SSb-ENyQIdv_=~tm}C{WO+y;#u12cnL@-8B_c~> zM3k1Ch^5P1tVG44B9f(wiV34K3MtU#Q7HyeIU$*pzUMzfSr19dGy*9uQ%Ge!fRxgb zlgjEcTNP4SDpJ|(gV1Qv$&L~!0U||%G7&@1A41s=NyIz?5iV1RWJig}(pYqqmYhho zIy%`ZB34y&62^!Q=<?`H22xWVmq{6WJ`GtPl2pP7q_|8WWsQ=Or7==UOHRtFj*eAD zDu;dY_-N6|i4rLVB2{6Th^gmxDCZ%GB#uCY%M>CxQ6jQ5Mnq}JiR7rGlcOS%tBOw2 z7|{V;9-T5ERsV!c%G~p}Q0_yLN*aL_mno!jqoibMjFi%nlgd?-%2kodQ;|wWQq>P$ z<v^E{nj)kfFe{6DGW&2(4qx#SdyJvHha{Lh0zocQ2<Alz%F-A?r6nhr*JTbXi$k7@ zVBFq6oFtSB8P974JMK$x7N}5mwdlTouLhh0rYbto4e|jxVR@+Nmhu24Stq($kE#=0 z{6^J@t}C)mIL0f^>gYTjwWH`17*!{lQ4iD!;~^^=l@XNSJJi8~*g*_kA3cW22PtrK zv@V}ZVs&}bj@9M8FIJZ~lc`~)19|z4Dab2VtS&DAvAR5WVs$yy(BKJUoE<Bb+|cb0 z^W!BLaqq!#x}v0<uv9uS+nA1WBvI+e9;j0KQFeQkjxmf=Nr-i%?4Bwm*;O$eWn)t5 z$li+$rmXWS9oeHZ6ob&CZa7@Wv6tN(>quFWR2|8#kLf70TBRe0qZ-0d7)l#X4iz%r zf$Y*;p$5;>LG5sQC{?HhQwroGsY)_|T|7{-Y-S661aGHv5auG_`xc6?w%{&}@1$<> zcLwwE(PD%p2ul%~5a3TkSF#yTH8zZWxjUi0+zr(DJ-(m=zV>0)&RALbp}d)N4R*N} z0dLiGJ(loVO*dd^BSI2ZTe0*QLK_Y}XY8S$Q4dYqvFV?%r_I=Y9QW66kMo}U@;LS0 z7^mJ($Eo-0aq4|IPQ9C`H*0La{yEOCcweVm*t)Zp@OCUZ5q2QB5CjCgnNtx<9RT); z{524rjRGHnAE5^UlZyrrf(X3`yAk#v^Z~Try}vimPqEv6d@z78Z7<^E2>TF12w{Y; zAPgcrfv_Kd4WB5U-arpv{UE|2gu@7`n>q|2O;qP>{yrpMgI9FzOl|6ynIu`K*G?m; zWG=gLa!Q1rEGMkxR4H5VbRoNZYDS_qapG-lqV~2vnSFf9pN2(kqA@BeX6sH`nD_K> znKm(%%i^CWl4SVJgkLlK(&G`^lOO3;;ajhb@Cp^)Cu!&~0DO_W01SukxOc)oM)XBL z`{^QNgOj&&Z`P${HwF&OA8{5>9y{bgBYXMG>e|>`l_w(hk5g*EEWej&bI6leHEVIM zRgXQu0i*gI5TBvrFl)%j$XV+nThWef2o3}#+w2zgn;?ADiLeuazxVX8D`#`{#ZYJ0 zj!kY!86z)a`Nkb_PrC6eQsoZ&@a$Br$H<bO-qvyohOiU<eaPJp6WxXJ^B{C1cop#7 zErIS=p$xHp7Dc>F;9Kk0pDqsb_vm_RL^4`<+Qh$Tu`h*JpS|6F2tKxGLAZ_ZzX*C% zj(zno4P{jb)d;f?<{>m9EJSERSb^{u!fFKmUo1(jSlo=TjS0`3AP)BVGlk2xqo51n zD8d<p(+EQd=Mc^#@P7w*2}`dcypHe#gkK>1lC_@OUV|^l=y3#epFAzOe>vcLRmnUT ZzJ%}fh>hrhz*pEu=bkW3G>0{w{|CWWc18dI delta 5929 zcma)A3s98T73S^><c%y(p`bkU2LweBhzg3xLqG))agF>e{6Dw|%W`)Y1#LAGUx|-u zPMk4`c{VSNFS3c5q_&Aon^zl6X4+2rC!J}UCLNn;VmmcW)HXfm{<_(XX^<Jd|J-}e zJ?GqW&OP_u-TR5*qvs6KtD>U9L+~&ET0&35s)NyK?2Ci>nGwB;Q88_2HjC1Cu>DoG z9#Yv<=79MuC8A#`S1NEQPuT!ntSWs#X;7A8yI2WP*uWgy9A!{huB^bG62%E;nQCS$ zL!=>Jq2ae|dieYhXXF;6Vo46!Vo<Q<2~k3~816K%5T{9rT8X{L91W7`Bz$4&VM$;! zUu7x2c1wz(EE4VH76i%6qlk_sh$V<2h(nM<`DCKw39JMO@MKsPON6(=G9!|xLqIZI z4m-$FVb`RqsN~M@te~;+@CFtISHq{U7)XjJiw&5E5;QBY=y({8$YS|$DB^6hFlHLb z&La2$0a+wjcn*FvHp-_{-wXnYdZI_=0f$qSo!&u}J9>1Rt{e7HWHl><4<jF7Q{abD z6}8`zPAk*QZVz|3bR}k?gy)j*U^PKvuSK=8S+G3%*dh`rS+tlA+3Qxh+{+!RQyCZ) z5;RkdqsPM&Nr`cTI%*5uB#+n!ylRlF+hWRCDJ-hC!p@kU_%dQ<8-h5l#T2vof@5*) zaH&|rd@@kD#jG1!K^?^e<pj481b7-Q#+I@LkP&xpxj)9}QL#>ntj*XVJ8WTGb$bUq zvO{A|KJVKiK8>qo3!!-O$MYyT^sMm<(+p0RW*SuOPRXP%o;8b{(O7?wA+7OwYzaIv zoD7HJ6B5WoiD}Fp#Pf1|Dy#Qt@#k3T5>gecPcve`_#${dLCO;@n4~L=?vP2pTeiDp zKD3c9#;F=xre|&qgeA5G<z-)D9czVCiN&S0q(fL@)V)_tGbg(}cBf+Jima$34!g%O z<P0)0F)5$5`Kptm4O>M>gptDBR+1+?vy>>YpB9nGNh4~HXNWt-RNhAIP`lgCxqVb) zZBn=%j24<fmh%+|Hfx7`-3(8F8DcNi(0CR}gbOM2f|iz$TElE$OTEMzpmEBH3}GKx zz-eW=I~$2=B3KSdX<4iV=A}IwD<lWz&41Dsuyww9>7TQDnV5wrv8-%rb|PrTUWZ2u zb#YapbQgM7)1X-Ra-zsLQjEUB0^k{U+^oo$xq>--ZJC#hOoJua&zk#jjt#D5pGhQp zjxx=#VI(L3Z{#$x60qjp&eC8wcelQ`9muO0?cHuJjHIfjS=>Y1qbi!&;ZX<OoQjKP z-pH|~8<uk2Fzn|lR82p~tnlvims3lGEZnhyYN;<B{*;prug^Hbc7r0VOQT{c8N|x9 z2oX_P9roG>a4YPBKT5&1GAwU4+b?!=mthjD&TFi>i>8}&$K8#z?l|EyGv7rWdkFR- zXcpIiy+?KPebf^es88~0*a2UD{)>!7!p8-#M2JX<ER2KGGqYkvG&a+;{RB(lqnVr8 z8juU8CeT84MS&6z6^^pQ5L0wp7;TWFjK@GrQB_c)Jy0}*9T97Jujn$H4d-X|2aPYD zU1oWTgg*!^i><zUXTNPIAiFf<7*<>{a+rq2?uh6aa`xCgsuTZp7aW0oCCL##A&x@? z_rvLuq=d(aEFgHC;0b~!;e(P^_5c)>RtFidrBt>YCx(siVX3b(jmS+1N6jJ)^mN`r zy&_$N&qFnnV)xj^Nno2a<WimT;E<y79mFP%ot;Q&=9^3TKj&7kaa3f5g=P0wl8I6n z@1SX7Q-}!Y5urZPsF_8&@Nwb|4ambBNG_ifw3PPpx$Ff|IG-qghQ&ckMRw5mwu(ab zlJ8W-5+jTBU7p{~X1GX;i0H7N63t|4x)IJ8knq6P$~=n~n`4PEUTK9_E03^l=&JHn zi5wE?B5XfE^Tb7Aj3~d$M6uJ14yQ*-&<`PTuoOV+!r=&!z?8fE$8dh(QoKE+EZQDq z`O}LIv-6lm`x@$qjS-w65aBWtMKR+i5%9W_L-Z*E5fKUoKTQyryh)2I*act9;x7%% z2TN;fEZxX)(d@go*2*j!iMtL?)(y<0?(g@}BqMTokZr6M3Y$w{bG?;$eFy3pn^8I8 z<ajaJ_hLgF+xoqcNWY;)iqnq{N=1Da2se*XQ)H1S+#)c~Q6Ht3X7LOSINTo1<Qa9T z`kjd~O3!hT-eV!q(72tQf%A>UtOi(9u7$j3%Y_R~nb6$yZeT=wQuFVP%y&=A++1OF zI&xxt%OsKI1Oc9==2W=7<y?`U^{CFOg{lMUpz8G8#Ex^yjBv;9Oc-dLR!;L!x>%vO z?)~+<RA65@`p9iU!V+Q#;ob0B>qb@wl`HpV3Dy5E$(w|0;qNP#GcPP?d+hrI!To`V z{mwuL&x<`EqT!DL*U0Mk3B)39@;@$evKFbx9niTdhvmTbRk;|BXIAAU&`Hk!Lhvzx zh)a%$OL%+GPVwE>zKq2W5)<9dG>c+)uU8dx#g*0TBde*)<WV<yu(&%rdf5*6T}N<@ zFs)gS#bI!bokc~G6f**rohW$UR*EGhZtVv_Y4GLR(?*Nfgb%?<xinpD76VNT#ZAgZ z`jeb1ER)Z@r>i2vp8`CCxI|Ncs5n!hqiffMJpb*g&z?XI%KnV<Ck?v7r%fpEb$k7U zJcZq}**nnHom%lI3dhTs2=g>rL>56d!LJCY5Ne@Z73VNdp{`VdAAqlWW{MR_Tcq1N zIB4gia<5}R<<HaT4EU;hcIsn9<`GL&kC$`Y8rR<gGohv@H^}wgo+-wyXNmvk1iv77 zmEe~M6f*p1aSpufcB^=WL`kk8tiO7RSWS!~M@8ADQX)+bEX*|i8o}!bTDa;|dEcnq zXLo7w_=-Y_@=&krgqXgZh&PDsO@g<es;|)UYa(}nyKh>cz3@oi<6)EvxRINoX?^BR z7d+pV^;1|_H?c(WIC$7GuTmU^!a}i?+DURACYBcJR5#i;IozCfm!x0s`579{rMx32 z^A<?%Z(&u?-#<Ul5Z`#ei>(mRqh;gTHo4?MJHGHX>DyW8D<&~QsnDRmSajhnBwXkU z$X?&@fYo#h=jnYWoa})Ut~@L?@3}TdoFi#JB{&P6!^N>bBT_{4Wujie^SnqBiiW8j zppu$&L?0I-k*MX}zAuMYF-0s+M7M;NK}WGRNfobOx;Y82(%SX&S*%xNE)`fQ!4@qN z1=Gdt5N{gsXw=VZnxv-%jJv%Sdbsl6K!ImG<835uQG<BHw>xD$T>_1TYo7OW$au-f zkKsoP?HTeq(U_Z#3%KSz#_ofsMx+d4)MF_WefwbXeLk`-I*w|LWVlGbLtLb#NU&~4 zGV6np9h<{QA)Phw)s7532d<ZyteuUSOVBr(1-Ib_w4#n2<wN!{L*@+rDG{)LXYZ^A z>K9I5N>r1-sS85BtLT3JnKK62yVR_SCxybc-F3IX7f*Z{6Uc)tyBlvoR>3XFT5;E{ z$f_n;TPLs!ozsNphu=AT3VP3R>Fck*)-3YS2-XnIAj?-wg)V2`Sg4dqU72GBsbI_` z6=a5w84-~z%naxMLRnW>kz@^cUYcP0-AODKj@-@JF^JhyI>#2~aN-M7mA|1%{C%Z< zYObFuv%$taYw;y~de2nD9Pxpqz1i10O7xCx{*F?;<Ko`*xi%|4X1zVCBD?TO>*e_4 zl6_FMMcrt593HIfB5_2{P`YTTu<k^vuYKPo19SRbdHT=BCQ9BmtcaLHA^c$keC1W4 zm+(cp-p<uc*T18D5hY$VLf>ZV$+{26wpa1R)Kx=({~^2{-Z@d3J#k3hG{cG$&2yS* z;xdAj1Z@O=Lpft%dK@}ru^spd8i*hTEu>)f#0vfp6!Z35H0u*HJbE&5*=kbPL9m8^ z;?8YIN%4V^r=hh3w-bnZ)<x7hf=&XNzz*h9g_5Wu<<#yWPzY3lUV_g^LmyGi@Q;(p zdX>;a23t?%8_t>G_^Hli!^j~qZb0rEpHSXUb2ktS5Dfakd4odUgGgh9AEYipGkj`x zoSwE-9EK)tA>AamR@|AS8qJKA+Jzyf8O;P=5d53KM9kk@De|eWkYE-;DZzY#1q2HT zmJrkvv=cNDh@YP#+K99ftOL{dUe*Z*$J6V?Z#eWD3Excs1p5gN5F92rLhuy9ae{Gz v7YJS=I8Sf^E{}K3bdt5?xqy>EYzeU&!sg?n**l<C(&F7ef?dyUW1as4sniiH diff --git a/kernel_ridge_linear_model/best_R2_exploration_summary.csv b/kernel_ridge_linear_model/best_R2_exploration_summary.csv index 048ed84..08830dd 100755 --- a/kernel_ridge_linear_model/best_R2_exploration_summary.csv +++ b/kernel_ridge_linear_model/best_R2_exploration_summary.csv @@ -219,3 +219,10 @@ google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,Fals google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,33,False,0.8999417647627684,10,10,base_Y, google_pixel_4a_5g,google_pixel_4a_5g_format,False,False,1000,0.01000000099,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,33,False,0.8999417647627684,10,10,base_Y, samsung_galaxy_s8,samsung_galaxy_s8_format,False,False,1000,0.013818650598825628,True,dichotomic,321,1.3113569409874378e+18,1000000000.0,1e-09,1000,0.1,33,False,0.39797093085645974,10,10,base_Y, +samsung_galaxy_s8,samsung_galaxy_s8_format,False,False,1000,0.049940597311979425,True,dichotomic,261,1.5116273928917486e+18,1000000000.0,1e-09,1000,0.1,33,False,0.7088418470972842,10,10,base_Y, +samsung_galaxy_s8,samsung_galaxy_s8_format,False,False,1000,100.10000000099859,True,sequential,1000,2.297177661826967e+19,1000000000.0,1e-09,1000,0.1,100,False,-2.220092887403283,10,10,base_Y, +samsung_galaxy_s8,samsung_galaxy_s8_format,False,False,1000,0.050000000950000005,True,explore_all_values,5,1.5116267365279708e+18,1000000000.0,1e-09,1000,0.1,100,False,0.7087583090653924,10,10,base_Y, +samsung_galaxy_s8,samsung_galaxy_s8_format,False,False,1000,0.049940597311979425,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.7088418470972842,10,10,base_Y, +samsung_galaxy_s8,samsung_galaxy_s8_format,False,False,1000,0.049940597311979425,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.7088418470972842,10,10,base_Y, +samsung_galaxy_s8,samsung_galaxy_s8_format,False,False,1000,0.049940597311979425,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.9292726781781174,10,10,base_Y, +samsung_galaxy_s8,samsung_galaxy_s8_format,False,False,1000,0.049940597311979425,False,----,0,1000000000.0,1000000000.0,1e-09,1000,0.1,100,False,0.9292726781781174,10,10,base_Y, diff --git a/kernel_ridge_linear_model/kernel_ridge.py b/kernel_ridge_linear_model/kernel_ridge.py index 25f61ac..6447eb3 100755 --- a/kernel_ridge_linear_model/kernel_ridge.py +++ b/kernel_ridge_linear_model/kernel_ridge.py @@ -19,6 +19,8 @@ from statsmodels.sandbox.regression.kernridgeregress_class import GaussProcess # WARNING !!!!! THE VALUE OF ENERGY EFFICIENCY USED BY THE MODEL IS OBTAINED WITH FORMULA WORKLOAD/ENERGY, # IT IS THE INVERSE OF THE ONE COMPUTED BY THE AUTOMATIZATION SCRIPT ########### General option on input datas +phone_name = "samsung_galaxy_s8" # can be "google_pixel_4a_5g", or "samsung_galaxy_s8" +input_format = "samsung_galaxy_s8_format" # "google_pixel_4a_5g_format" # can be "google_pixel_4a_5g_format", "samsung_galaxy_s8_format", or "generic" energy_gap = 10 # in mAh, this parameter and the next one is used in the function utils.remove_aberrants_points to remove some "aberrant_point" # where the energy measured on a configuration is not in the correct interval regarding "similar" configuration @@ -29,28 +31,49 @@ convert_X_to_base_Y = True X_format_in_model = "base_Y"# "base_Y" # can be base_Y (for the base representing limitation on some phone) # or base_Y_N_on_little with the previous base, but only the number of cores on little socket has been retained, # not the state of every core as on base_Y -base_Y__X_meaning_dictionnary = {"X_0" : "frequency level of Little Socket", - "X_1" : "Core 0 state", - "X_2" : "Core 1 state", - "X_3" : "Core 2 state", - "X_4" : "Core 3 state", - "X_5" : "Core 4 state", - "X_6" : "Core 5 state", - "X_7" : "Medium Socket or core 6 frequency", - "X_8" : "Big Socket or core 7 frequency"} - -base_Y_N_on_little__X_meaning_dictionnary = {"X_0" : "frequency level of Little Socket", - "X_1" : "Number of little cores active", - "X_2" : "frequency level of Medium Socket or core 6", - "X_3" : "frequency level of Big Socket or core 7"} + +if phone_name == "google_pixel_4a_5g" : + + base_Y__X_meaning_dictionnary = {"X_0" : "frequency level of Little Socket", + "X_1" : "Core 0 state", + "X_2" : "Core 1 state", + "X_3" : "Core 2 state", + "X_4" : "Core 3 state", + "X_5" : "Core 4 state", + "X_6" : "Core 5 state", + "X_7" : "Medium Socket or core 6 frequency", + "X_8" : "Big Socket or core 7 frequency"} + + base_Y_N_on_little__X_meaning_dictionnary = {"X_0" : "frequency level of Little Socket", + "X_1" : "Number of little cores active", + "X_2" : "frequency level of Medium Socket or core 6", + "X_3" : "frequency level of Big Socket or core 7"} + +elif phone_name == "samsung_galaxy_s8" : + + base_Y__X_meaning_dictionnary = {"X_0" : "frequency level of Little Socket", + "X_1" : "Core 0 state", + "X_2" : "Core 1 state", + "X_3" : "Core 2 state", + "X_4" : "Core 3 state", + "X_5" : "frequency level of Big Socket", + "X_6" : "Core 4 state", + "X_7" : "Core 5 state", + "X_8" : "Core 6 state", + "X_9" : "Core 7 state",} + + base_Y_N_on_little__X_meaning_dictionnary = {"X_0" : "frequency level of Little Socket", + "X_1" : "Number of little cores active", + "X_2" :"frequency level of Big Socket", + "X_3" : "Number of Big cores active"} + consider_automatization_summaries = True automatization_summaries_folder = "/mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only" #automatization_summaries_folder = "/mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/can_be_reused/GOOGLE_PIXEL_RESULTS/summary_files_only_0.89" -phone_name = "samsung_galaxy_s8" # can be "google_pixel_4a_5g", or "samsung_galaxy_s8" -input_format = "samsung_galaxy_s8_format" # "google_pixel_4a_5g_format" # can be "google_pixel_4a_5g_format", "samsung_galaxy_s8_format", or "generic" + consider_exact_values_of_frequency = False # considerer exact values of frequencies of O and 1 populate_inputs_to_considere_thread_combinations_on_same_socket = False maximum_number_of_combination = 1000 # Maximum number of combinaitions per configuration when populating X @@ -60,8 +83,8 @@ standartize_inputs = False ########### General options of the model alpha = 0.01000000099 # [ best value for Base_Y format 0.01000000099 ] #0.44930060152149415 #0.730902889668161 # 1e-4 -search_ridge_coeff = True # MODIFIED before integrating experiment automatization -search_strategy = "dichotomic" # "dichotomic" # can be sequential, dichotomic, explore_all_values +search_ridge_coeff = False # MODIFIED before integrating experiment automatization +search_strategy = "explore_all_values" # "dichotomic" # can be sequential, dichotomic, explore_all_values #ltolerance = 9415743.8 #1000000 #9415743.7# 9415743.7 #0.001 9415743.7 -> R2 = 0.39128379283199 ltolerance = 1e+9 # with exact units of mesurement (workload and energy), the energy efficiency is aroung 1e-11, and error is around 1e-21, # and when using the correct formula of energy efficiency it is around 1e+20 @@ -69,7 +92,7 @@ lambda_min = 0.000000001 lambda_max = 1 max_iterations = 1000 sequential_gap = 1e-1 #0.00001 -dichotomic_progression_ratio = 33 # progression based on (max_lambda_candidate - min_labda_canditate) / dichotomic_progression_ratio +dichotomic_progression_ratio = 100 # progression based on (max_lambda_candidate - min_labda_canditate) / dichotomic_progression_ratio # when choosing the next value of lambda. # this ratio is also used when exploring all possible values of lambda #default values if not modified @@ -94,10 +117,13 @@ elif search_ridge_coeff == False and X_format_in_model == "base_Y" and phone_nam elif search_ridge_coeff == False and X_format_in_model == "base_Y" and phone_name == "samsung_galaxy_s8": print(" --- New tests on samsung galaxy s8") + alpha = 0.049940597311979425 + energy_gap = 10 + number_of_neighbour = 10 do_gaussian_process = True # ADDED before integrating experiment automatization generate_plots = True # MODIFIED before integrating experiment automatization -compute_marginal_effect = False # MODIFIED before integrating experiment automatization +compute_marginal_effect = True # MODIFIED before integrating experiment automatization # parameter regarding outputs files output_data_folder = "model_output_data/" @@ -335,147 +361,300 @@ if compute_marginal_effect: print("linear model parameters = ", linear_coefficients) print("*** Linear model R2 score = ", utils.compute_r2_score(y_test, reg_pred_y_test) ) - + if phone_name == "samsung_galaxy_s8" : - r2_score_as_string = repr(R2_score) - marginal_effect_exploration_folder = "marginal_effect_exploration_automatic_experiments_" + r2_score_as_string [0:4] + "_" + X_format_in_model # Can change depending on the r2 score - - os.makedirs(marginal_effect_exploration_folder, exist_ok=True) - linear_coeff_vs_kernel_ridge_margins_file = marginal_effect_exploration_folder + "/linear_coeff_vs_kernel_ridge_margins.csv" # Can change depending on the r2 score + r2_score_as_string = repr(R2_score) + marginal_effect_exploration_folder = "marginal_effect_exploration_automatic_experiments_" + phone_name [0:7] + "_" + r2_score_as_string [0:4] + "_" + X_format_in_model # Can change depending on the r2 score + + os.makedirs(marginal_effect_exploration_folder, exist_ok=True) + linear_coeff_vs_kernel_ridge_margins_file = marginal_effect_exploration_folder + "/linear_coeff_vs_kernel_ridge_margins.csv" # Can change depending on the r2 score - X_meaning_dictionnary = base_Y__X_meaning_dictionnary if X_format_in_model == "base_Y" else base_Y_N_on_little__X_meaning_dictionnary if X_format_in_model == "base_Y_N_on_little" else {} + X_meaning_dictionnary = base_Y__X_meaning_dictionnary if X_format_in_model == "base_Y" else base_Y_N_on_little__X_meaning_dictionnary if X_format_in_model == "base_Y_N_on_little" else {} - #Capturing linear coefficients and kernel ridge means marginal effect (not pointwise) in a file - utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) - + #Capturing linear coefficients and kernel ridge means marginal effect (not pointwise) in a file + utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) + - if X_format_in_model == "base_Y_N_on_little": + if X_format_in_model == "base_Y": - ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). - # plotting histograph - - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_number_of_little_cores_actives.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,2], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_6_frequency_level.png", 3e-11, 3) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,3], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 4) - - - d_X_2_coefficients_file = marginal_effect_exploration_folder + "/d_X_2_linear_coefficients.csv" - d_X_2_ols = sm.OLS(pointwise_margins[:,2], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_2_reg = d_X_2_ols.fit() - d_X_2_linear_coefficients = d_X_2_reg.params - print("X_2_d linear model parameters = ", d_X_2_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 2, - d_X_i_linear_coefficients = d_X_2_linear_coefficients, - file_path = d_X_2_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - + ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). + # plotting histograph + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_0_state.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,5], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_big_socket_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,8], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_state.png", 3e-11, 8) + + + ### Plotting marginal effect plots + ## Regression of d_X_6 over all other variable including X_5 is the frequency of big cores + d_X_5_coefficients_file = marginal_effect_exploration_folder + "/d_X_5_linear_coefficients.csv" + d_X_5_ols = sm.OLS(pointwise_margins[:,5], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_5_reg = d_X_5_ols.fit() + d_X_5_linear_coefficients = d_X_5_reg.params + print("X_5_d linear model parameters = ", d_X_5_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 5, + d_X_i_linear_coefficients = d_X_5_linear_coefficients, + file_path = d_X_5_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_5 over other variables") + + utils.plot_ten_marginal_interactions(X_train, pointwise_margins, 5, 0, 1, 2, 3,4,5,6,7, 8, 9, X_meaning_dictionnary, marginal_effect_exploration_folder) - # plotting of d_X_2, regarding to other_variables with - _, (d_X_2_over_X_0, d_X_2_over_X_1, d_X_2_over_X_3) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) - d_X_2_over_X_0.scatter(X_train[:,0], pointwise_margins[:,2], c = "blue") - # Add title and axis names - d_X_2_over_X_0.set_title('d_X_2 over X_0') - d_X_2_over_X_0.set_xlabel('X_0 : frequency level of little socket') - d_X_2_over_X_0.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") - d_X_2_over_X_0.tick_params(size=8) + """ + + ## Regression of d_X_7 over all other variable including + d_X_7_coefficients_file = marginal_effect_exploration_folder + "/d_X_7_linear_coefficients.csv" + d_X_7_ols = sm.OLS(pointwise_margins[:,7], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_7_reg = d_X_7_ols.fit() + d_X_7_linear_coefficients = d_X_7_reg.params + print("X_7_d linear model parameters = ", d_X_7_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 7, + d_X_i_linear_coefficients = d_X_7_linear_coefficients, + file_path = d_X_7_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_7 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 7, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + - d_X_2_over_X_1.scatter(X_train[:,1], pointwise_margins[:,2], c = "blue") - # Add title and axis names - d_X_2_over_X_1.set_title('d_X_2 over X_1') - d_X_2_over_X_1.set_xlabel('X_1 : Number of threads on little socket') - d_X_2_over_X_1.set_ylabel("d_X_2 ") - d_X_2_over_X_1.tick_params(size=8) + ## Regression of d_X_0 over all other variable including + d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" + d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_0_reg = d_X_0_ols.fit() + d_X_0_linear_coefficients = d_X_0_reg.params + print("X_0_d linear model parameters = ", d_X_0_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, + d_X_i_linear_coefficients = d_X_0_linear_coefficients, + file_path = d_X_0_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_0 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + + ## Regression of d_X_0 over all other variable including + d_X_1_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" + d_X_1_ols = sm.OLS(pointwise_margins[:,1], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_1_reg = d_X_1_ols.fit() + d_X_1_linear_coefficients = d_X_1_reg.params + print("X_0_d linear model parameters = ", d_X_1_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 1, + d_X_i_linear_coefficients = d_X_1_linear_coefficients, + file_path = d_X_1_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_0 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 1, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + """ + - - d_X_2_over_X_3.scatter(X_train[:,3], pointwise_margins[:,2], c = "blue") - # Add title and axis names - d_X_2_over_X_3.set_title('d_X_2 over X_3') - d_X_2_over_X_3.set_xlabel('X_3 : frequency of core 7 (8th core)') - d_X_2_over_X_3.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") - d_X_2_over_X_3.tick_params(size=8) + + + elif X_format_in_model == "base_Y_N_on_little": + ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). + # plotting histograph + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_number_of_little_cores_actives.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,5], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_big_socket_frequency_level.png", 3e-11, 3) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,9], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 4) + + + d_X_2_coefficients_file = marginal_effect_exploration_folder + "/d_X_2_linear_coefficients.csv" + d_X_2_ols = sm.OLS(pointwise_margins[:,2], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_2_reg = d_X_2_ols.fit() + d_X_2_linear_coefficients = d_X_2_reg.params + print("X_2_d linear model parameters = ", d_X_2_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 2, + d_X_i_linear_coefficients = d_X_2_linear_coefficients, + file_path = d_X_2_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + + + # plotting of d_X_2, regarding to other_variables with + _, (d_X_2_over_X_0, d_X_2_over_X_1, d_X_2_over_X_3) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) + d_X_2_over_X_0.scatter(X_train[:,0], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_0.set_title('d_X_2 over X_0') + d_X_2_over_X_0.set_xlabel('X_0 : frequency level of little socket') + d_X_2_over_X_0.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") + d_X_2_over_X_0.tick_params(size=8) + + + d_X_2_over_X_1.scatter(X_train[:,1], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_1.set_title('d_X_2 over X_1') + d_X_2_over_X_1.set_xlabel('X_1 : Number of threads on little socket') + d_X_2_over_X_1.set_ylabel("d_X_2 ") + d_X_2_over_X_1.tick_params(size=8) - #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") + + d_X_2_over_X_3.scatter(X_train[:,3], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_3.set_title('d_X_2 over X_3') + d_X_2_over_X_3.set_xlabel('X_3 : frequency of core 7 (8th core)') + d_X_2_over_X_3.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") + d_X_2_over_X_3.tick_params(size=8) + + #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") + + plt.gcf().autofmt_xdate() + plt.xticks(fontsize=8) + plt.savefig(marginal_effect_exploration_folder + "/point_wise_marginal_effect_of_frequency_of_Medium_core_over_frequency_of_little_socket_number_of_thread_on_little_socket_and_8_th_core_frequency.png") + plt.clf() + plt.cla() + plt.close() + + + - plt.gcf().autofmt_xdate() - plt.xticks(fontsize=8) - plt.savefig(marginal_effect_exploration_folder + "/point_wise_marginal_effect_of_frequency_of_Medium_core_over_frequency_of_little_socket_number_of_thread_on_little_socket_and_8_th_core_frequency.png") - plt.clf() - plt.cla() - plt.close() - + + + if phone_name == "google_pixel_4a_5g" : + + r2_score_as_string = repr(R2_score) + marginal_effect_exploration_folder = "marginal_effect_exploration_automatic_experiments_" + r2_score_as_string [0:4] + "_" + X_format_in_model # Can change depending on the r2 score - elif X_format_in_model == "base_Y": + os.makedirs(marginal_effect_exploration_folder, exist_ok=True) + linear_coeff_vs_kernel_ridge_margins_file = marginal_effect_exploration_folder + "/linear_coeff_vs_kernel_ridge_margins.csv" # Can change depending on the r2 score + + X_meaning_dictionnary = base_Y__X_meaning_dictionnary if X_format_in_model == "base_Y" else base_Y_N_on_little__X_meaning_dictionnary if X_format_in_model == "base_Y_N_on_little" else {} + + #Capturing linear coefficients and kernel ridge means marginal effect (not pointwise) in a file + utils.capture_kernel_means_marginal_and_linear_model_coeff(margins, linear_coefficients, linear_coeff_vs_kernel_ridge_margins_file, X_meaning_dictionnary) - ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). - # plotting histograph - - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_0_state.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,7], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_6_frequency_level.png", 3e-11, 8) - utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,8], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 8) - - ### Plotting marginal effect plots - ## Regression of d_X_8 over all other variable including - d_X_8_coefficients_file = marginal_effect_exploration_folder + "/d_X_8_linear_coefficients.csv" - d_X_8_ols = sm.OLS(pointwise_margins[:,8], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_8_reg = d_X_8_ols.fit() - d_X_8_linear_coefficients = d_X_8_reg.params - print("X_8_d linear model parameters = ", d_X_8_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 8, - d_X_i_linear_coefficients = d_X_8_linear_coefficients, - file_path = d_X_8_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_8 over other variables") - utils.plot_marginal_interactions(X_train, pointwise_margins, 8, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) - - - - ## Regression of d_X_7 over all other variable including - d_X_7_coefficients_file = marginal_effect_exploration_folder + "/d_X_7_linear_coefficients.csv" - d_X_7_ols = sm.OLS(pointwise_margins[:,7], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_7_reg = d_X_7_ols.fit() - d_X_7_linear_coefficients = d_X_7_reg.params - print("X_7_d linear model parameters = ", d_X_7_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 7, - d_X_i_linear_coefficients = d_X_7_linear_coefficients, - file_path = d_X_7_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_7 over other variables") - utils.plot_marginal_interactions(X_train, pointwise_margins, 7, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + if X_format_in_model == "base_Y_N_on_little": + - - ## Regression of d_X_0 over all other variable including - d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" - d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_0_reg = d_X_0_ols.fit() - d_X_0_linear_coefficients = d_X_0_reg.params - print("X_0_d linear model parameters = ", d_X_0_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, - d_X_i_linear_coefficients = d_X_0_linear_coefficients, - file_path = d_X_0_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_0 over other variables") - utils.plot_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) - - - - ## Regression of d_X_0 over all other variable including - d_X_1_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" - d_X_1_ols = sm.OLS(pointwise_margins[:,1], X_train ) # warning in the sm OLS function argument format, y is the first parameter. - d_X_1_reg = d_X_1_ols.fit() - d_X_1_linear_coefficients = d_X_1_reg.params - print("X_0_d linear model parameters = ", d_X_1_linear_coefficients) - utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 1, - d_X_i_linear_coefficients = d_X_1_linear_coefficients, - file_path = d_X_1_coefficients_file, - X_meaning_dictionnary_ = X_meaning_dictionnary) - print("Plotting d_X_0 over other variables") - utils.plot_marginal_interactions(X_train, pointwise_margins, 1, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). + # plotting histograph + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_number_of_little_cores_actives.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,2], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_6_frequency_level.png", 3e-11, 3) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,3], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 4) + + + d_X_2_coefficients_file = marginal_effect_exploration_folder + "/d_X_2_linear_coefficients.csv" + d_X_2_ols = sm.OLS(pointwise_margins[:,2], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_2_reg = d_X_2_ols.fit() + d_X_2_linear_coefficients = d_X_2_reg.params + print("X_2_d linear model parameters = ", d_X_2_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 2, + d_X_i_linear_coefficients = d_X_2_linear_coefficients, + file_path = d_X_2_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + + + # plotting of d_X_2, regarding to other_variables with + _, (d_X_2_over_X_0, d_X_2_over_X_1, d_X_2_over_X_3) = plt.subplots(nrows=3, sharex=True, sharey=True, figsize=(12, 13)) + d_X_2_over_X_0.scatter(X_train[:,0], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_0.set_title('d_X_2 over X_0') + d_X_2_over_X_0.set_xlabel('X_0 : frequency level of little socket') + d_X_2_over_X_0.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") + d_X_2_over_X_0.tick_params(size=8) + + + d_X_2_over_X_1.scatter(X_train[:,1], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_1.set_title('d_X_2 over X_1') + d_X_2_over_X_1.set_xlabel('X_1 : Number of threads on little socket') + d_X_2_over_X_1.set_ylabel("d_X_2 ") + d_X_2_over_X_1.tick_params(size=8) + + + d_X_2_over_X_3.scatter(X_train[:,3], pointwise_margins[:,2], c = "blue") + # Add title and axis names + d_X_2_over_X_3.set_title('d_X_2 over X_3') + d_X_2_over_X_3.set_xlabel('X_3 : frequency of core 7 (8th core)') + d_X_2_over_X_3.set_ylabel("d_X_2 : pointwise marginal effect of frequency of Medium core") + d_X_2_over_X_3.tick_params(size=8) + + #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") + + plt.gcf().autofmt_xdate() + plt.xticks(fontsize=8) + plt.savefig(marginal_effect_exploration_folder + "/point_wise_marginal_effect_of_frequency_of_Medium_core_over_frequency_of_little_socket_number_of_thread_on_little_socket_and_8_th_core_frequency.png") + plt.clf() + plt.cla() + plt.close() + + + elif X_format_in_model == "base_Y": + + ### Plotting X_1 distribution plot (Note, it is the activation state of the first core! because we are in Base_Y format of X). + # plotting histograph + + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,0], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_little_socket_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,1], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_0_state.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,7], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_6_frequency_level.png", 3e-11, 8) + utils.plot_marginal_effect_histogramm_graph(pointwise_margins[:,8], marginal_effect_exploration_folder + "/point_wise_marginal_distribution_of_core_7_frequency_level.png", 3e-11, 8) + + ### Plotting marginal effect plots + ## Regression of d_X_8 over all other variable including + d_X_8_coefficients_file = marginal_effect_exploration_folder + "/d_X_8_linear_coefficients.csv" + d_X_8_ols = sm.OLS(pointwise_margins[:,8], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_8_reg = d_X_8_ols.fit() + d_X_8_linear_coefficients = d_X_8_reg.params + print("X_8_d linear model parameters = ", d_X_8_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 8, + d_X_i_linear_coefficients = d_X_8_linear_coefficients, + file_path = d_X_8_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_8 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 8, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + ## Regression of d_X_7 over all other variable including + d_X_7_coefficients_file = marginal_effect_exploration_folder + "/d_X_7_linear_coefficients.csv" + d_X_7_ols = sm.OLS(pointwise_margins[:,7], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_7_reg = d_X_7_ols.fit() + d_X_7_linear_coefficients = d_X_7_reg.params + print("X_7_d linear model parameters = ", d_X_7_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 7, + d_X_i_linear_coefficients = d_X_7_linear_coefficients, + file_path = d_X_7_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_7 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 7, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + ## Regression of d_X_0 over all other variable including + d_X_0_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" + d_X_0_ols = sm.OLS(pointwise_margins[:,0], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_0_reg = d_X_0_ols.fit() + d_X_0_linear_coefficients = d_X_0_reg.params + print("X_0_d linear model parameters = ", d_X_0_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 0, + d_X_i_linear_coefficients = d_X_0_linear_coefficients, + file_path = d_X_0_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_0 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 0, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + + + ## Regression of d_X_0 over all other variable including + d_X_1_coefficients_file = marginal_effect_exploration_folder + "/d_X_0_linear_coefficients.csv" + d_X_1_ols = sm.OLS(pointwise_margins[:,1], X_train ) # warning in the sm OLS function argument format, y is the first parameter. + d_X_1_reg = d_X_1_ols.fit() + d_X_1_linear_coefficients = d_X_1_reg.params + print("X_0_d linear model parameters = ", d_X_1_linear_coefficients) + utils.capture_d_X_i_linear_coefficient_on_others_X_variables(d_X_i_indice = 1, + d_X_i_linear_coefficients = d_X_1_linear_coefficients, + file_path = d_X_1_coefficients_file, + X_meaning_dictionnary_ = X_meaning_dictionnary) + print("Plotting d_X_0 over other variables") + utils.plot_marginal_interactions(X_train, pointwise_margins, 1, 0, 1, 2, 3,4,5,6,7, 8, X_meaning_dictionnary, marginal_effect_exploration_folder) + + diff --git a/kernel_ridge_linear_model/kernel_ridge_prediction_on_google_pixel_4a_5g.png b/kernel_ridge_linear_model/kernel_ridge_prediction_on_google_pixel_4a_5g.png index 72e24c7892ef14c6a977ee8dfea2f72db5df3d3e..5811c0a16f850a83a259bf9e6e5090df7e570664 100755 GIT binary patch literal 86669 zcmeFa2T;}dvNgKZG3P7@V!(tL5fmh-sJIQF2ofZi0LhXhD8bReQ4tgs6a++&oO1>v zC<2lZ1XOaCti*5i-Z*FG-E+TptKNI{)vb4_nmQa{|Np<(y?XWP_U18ZshQI_r!g3e znaqRxWEqU#A{dN`3#LrMPx2~SuHk=#P4_FBo-oujH9upl!8m%x^rD`jsh;-P<(D*! zO|%US1U3n7+RDHDf~o066OqlE_5b>VO@_u=o6F90rQ#t|FCJ7fVK8Q&q5sAONcd|r z#xWSoeS73Ap0rk4UO8GiGTPbyZn??XgEO>?=jfdLZ6l}TdS#PSa@uc9ixpLr4LUXs z$ZwrgXJ0T)Up{BJNnTKJit>rQx&euT50^VHk#rs&e6^~fZ~M)yYqfa#d#{LgS@eXY zmX>>^<_Q<=(hb+&I^)$G3<O`NWj8r)Vt>m>SUR4c{p};paf{gB9l67p&i>BtfZas) zcPCb5jAwmk7dZDcMvkwHqA6G_`Z}%in<D$WErS2^xc^x@)>-(UgYrMO;=j2?$?$#o z>Xm%d`FA&(cj*+ZQ{s2|ys>evpkCRrnM;LCO*t-(U%JEK!JD)B1<wz6Bvq$acAt+_ z?5QwJuRD6iwrgE=-e+e^4<UokjUPoAjI8NoBt@6seq*dIG32w&TqWH`)#t#SZ&vkJ z9UNv%oH$YY<@KqKn<m=MTe$GKWp}-B(hLTJ>wQi>Oz;=Iv>)H5yO(;|jwF_Zo^pMj zy7!N1PNq+UP3qUJT2<pcFw*TcTJ-(vE1sqwnnuF|W_Ol}DLX%Up`o?wQtQVzw-*;b z+do~(^>>Mzw{FRvKK&H)(l2i*4G+fz)~Tmmaa=!xVJEr|);?oGbHVf5IW1l`1I(6^ z(CmT{h0<_!*ZBB;Yo5%?%3<&3`@B1L>_|-PEFG$;FOSvj>g<fH_)%@$?{VnCI`2ad z`98HRF~9HP()ZCjG<wSn$sLAO4_sYKS2@*v`?gX>CQl^*-nP4D(Ow3l_34>c_CYF% zQI|TZLI-+VvMVZ1jsD1#;AM_>j1Ei0UdZ43;>C-u@86FdJox8G$LNSmQ&W@BxgoPV z9@RF3M;G1Re}B!<g4R#b3+K&SIeYf(;vo6MyUg2Tn%pZn74h5Q!T!=6)mMDpKirW0 z>Xqa}KKX+FYFn@8BX^eW2-3`P>+0!|!;{5-*5042tgs<keDmhb#bK(aA|oS}`V!4r zT*QBTned0bJ>T->yT!%Dr%j)J;>Zz)9O20mCo-K6I4#pp6*DOcIPUC=ZBhFA^(&uh zQjDmWn0(BI<7ORIs;-+<ql8NyZcx~M;p6g${7SORmM!B`Nr+Ip(z*Z5n>Ur+D!EUD zecCINgAd+YS)was-u{`tH2ZAih0bqp1{!^wdTQ^>ye}*~fzg)a`$$DQBw7z%5;Uw* z88>cRS6|=BYm;Win6;dAx84@se|5s-p0`U419o2>Z#D9>VRdC<u_1;wZPqN8`1p8E zK^@--lV=5-f9G7HB$DaG<BCK3VEu_GF58MY{U}9#<%EmgM+bxCgF~Xj?PqX2!|8gr zWkyTixCxW8&PF!YI7!6Cc}Uo*VNnINa%19F^YR8rIW6Op_5BkQ?)@N;cVT4cr%>iV zcY|efQD8}4HwF}C%_Do_L~)eH;fcTfb^$N?)P8?GA0Lj0yz`A4H-5i%tvFm=V)g3P zpIYZHT^iiiR?!mZ?@7P9wRm&bi))ix-riZN^fr4a*TTvw$hhvka^%@Js!pR?s}H-# zWxH&Q)y&~64pBOxrlvN4rQ&7g=jU5}{bR9Q!o@R|78U_#-`o-^-5NbQGCUZoUAU&D zLBeFsS!vzV8<nE=d3$?zb#>8INHT4DhB<vU&tWhg%}sa16_DPfn&j)MX2lFoA4#I$ zuiSs@U{dt=nDB5~ot5h9>cih(%^vu2ZT16a=Vv$PudOoq9G*6CNFhw+ct=&LMx^5Q zGcSKj?RvjK#AfJ+n3lf&r>OneuA3FA)2!<n8vLCkMilY)LDHV0fmmv$^S7Fs;uK4h zg&R&D@sV;mX=RlpKJ;Bu_pa$?FYCU?R{iavNoFlNAD`~Q^AeQf4MKmPI6cUs^IOTV ztgLKLlfPHc34iJ4;$YV>mBeRx;)6$W+yo09xp&EhDhrZjssHe}xzOJU*VSJ^&2qo9 zT&#{fvjERD9r|Hp)>3kG|LsM^SSP{DeR^%x>FN^0J@*AKULI_Vk2P(Q?d_;m$IyzN zA9jt=$X>)PYH>_ZrzopaCD%(LyutHwF6Rinq_?@aIp607MnnhReK_;Z(zS~hFP_OQ zBKPjyJGU)oeit!s4{582Kh^*9>kXcsg2S8FZ{IGrO3LxU?c28nv;MquN4~8*R{yPD zbz16smyN-Z=Q5RF`OaN+-~ue8PI1sfH$h#$)XV)rO3|80mfe1_>P-dD<-^s)HY!H! zzBYMw9EZt^-zRo;cb{+<(ht#Z$n`jJ<w^>zBvV#V@sZz=$IoCAf^m|Z+pmjn+O+A` zojb)DS0{w(7kE^B;%&ll(<zJac3dVFgtZ8k3zSukI)4+k^5KIAzUEbynSL&fjTb6Y zEKk@DR#ex1{pyWv(46XS@HxR-NWc6-X_%^Vx=kvLwC1u9JO)|eqi)-edx=|{Hhx@@ z^F;Ur>{Agecxd%KoZ?0pJ=&LP3;BGxcU`(L(9<MhJrLu<uXL8%5KCdzTdW`-d3OK) zeft{WW134s-94{#z2nmT5iEIQRv_(pWpcb#Z}W4^iRrAF`y>#zD-auMY+_OvUu_ed zW<AKaYL(>hK<|CtqaGsi6DG~Li&I=>J8I308c}lgfTIaK6>os6@3L~`O4E@c%cJf> zNAVMREL~Sao^7?+1jcDT#6uRmc#6QtfPxMT&kW|<5T)p-R$KgxUmtrSl#-fy$9;#P zaz)amHk}9Sj=vljcztueJ+IF(@4W}ko_!WOJUW~{s&#N%+Hl_~-HNPxtD=i|-(|UO z_A=^eJg!?&m3nz5^KDO4VW@tna_lyG9ImBeg(H{n*@VPI4UX<`gUTe01)EgL0#1gy z-E(u((f1O&9Jk`#g^y3K#%|oWF-Mc<)fNX_v!(lQE!di5-eI7heDUk=E8Z;;Ha_oC zqhY>r@g|iE2e%0sR_W<apE6|&R^Pm|Ji5?FYPOGJ<k`3IlltZAw!>ztmM_n+8hZ2y zVbyW(y%XI{+=TSqR=oRB=c+yfuYkMu(fbs2AX+nrzIX3lCm-~n^V{vs$`#wHUrBq2 zeBv7XoM>Y2?(Uu+r+>=5@3_wa4rhlj)nw%gIGg#B&PLzA?9r_VJr(bek+Iu-7!MU6 zY!!Hwot<qZJ$33-d)`%ieDAl+cy;j5p=~NEDh{xXG^xnGr8_S^Jsxp-Ps`6E9wNne z&tLgj=PHyLa>C#7YfFo+udnYC`_AgT==AjTdw1`iK5@9dR|QAdsP6qjpFP(m9e}-? z%fn+Bt!`=>v*O)Oqi@$^>#zLm;=rB@78DkS4(2@C`s(ia4<5Tp>)l4>_wBoWCQ{L% z+IF<E{3J{Xt<nKmS?5@N98P;)_YN&-IQ=u&)6tPZ{)(tzZ`{lSxRm<keDXo(yDQ&4 zu=F^4_Uw#TKRWuuaYk{&c7zNLH%N?b<>lbH^8JNa3+!!3!XF4tcXh(i#~V~e#f)0E zxo=PiYy9@+HhgYjZ%b)!OL#hLEG$|OJX}fXnKNgc+dpr+w3%)fTzIb;e1Ba>hhdw$ zr)L;G5UgJj2j>^puHbisBNe8mpUW24^U%SAAA!&Gqa#c$EE2|#AFtPEW@Z-Ke*fM* z@7J&QJ%9c@5V)Y<OxNrD<&B0_DS@{aZ*ER(@Vw9Kz7>}t9LB2!c%xr1%v3A%nMSrt zpnUMjZ8IbnZ&r&L*{)l11cpwjxfS;`$8xkc^;5K#6VC6m9aR>Rga#bV+sXw64L&R4 zqU1(RDx#ruTfMTMdFb%r6YvfC<&$SDxm(92V%oS|Mn(o^Eu%aRUQRW|Vr#aWK7lN_ z^7E;Fd-m+%Q%_65N#<vkCz%DSsHy^%ZXp*f<;Zo<RBKX6cb<fyM_XT|d3E50{AX~= z_s#Uo&CO?W?L4Lsu2$@K)LqYUusJxqerNJ#VPPelfMU42Ac989u{xjHUA1ww;UQcm z&E(`=>^eGPXb`TJTHDbPjwvfuj0}BBywv8lNi8J+e}uF8CNuM}^T>~y*=?VqrBstI z#r_-uX1yJx82L?A_h+>1^Fx6+97^S*Dw4*=QS>=Hxba74%^_*&w2n>z4V%${zBb)x zp_8{4ZIny9V(H#JnUV2n&gmCnm}Ur$-};?93Ds3!>CTzp6lu|U76Un2RaM1z{Ml>k zO0@|L&F`=0%bXuHjUX$JAxxVx<t}c*@4x>Za^~gmkWVk*MU<rnho)-Um7iA!HT&{f z-S6Ig3Je@@<ncD8zU;8JaGTL#bEfR4C=LDc%F0T4cz^!EJTD1#yz8OAzdu>(r%#u| zLN%w2c6vT~6ac><g{yhb)zuX*k_(bs&x|WIhQlh4H}oPP1E;GCDAqq?Xp>69Q(s@+ z98a-R*gzqP$1l$B-TV7dugj@B9(&8+ct$(?gfHh46co%()bf<^`=C2i+V6Av#qUBd z{7ly-=)$q24K#1it$^R@!CV{vSgaNiSD9vgilBN|&x?qNEiD^=2Y!W%^wTK`3B(`r z2??ECzkYprvU#{*Kz2wtESJzY=bmbRW6ct;!k@#Rp6<C8W6~fUs-8ZQw#X%qYghN8 z)FVH;>Q2x_cC_xQW&UyFMleRv)!Qq7?ATq-?H86erF(fi5zqU?U1MM@k_kf=#Js-- zp}=v#z=aDIoLAk@ab|qTlU#M@_ptDF<r5fRjwnu;e#s0MK&<<NKyy`UvRS3`<VdSt z9kce&N`?M13Wa`0&0rS+BMt-7HCLynbMsBI`+UFh#9L=)=c1>3Cj1;6Y<V?Xf<QZ9 z=fcH{{rjsfccgh{)HgS~=_hykzlm$h-w|&Oqd0B$Yz070x)lpIsVIhph28q|&yPS9 z?Ya)LxJ3w#ati4^g5O&MIHz&`d;mP5P-ztWD%qS{3pd1EYEwS?WasgkOsCSWx@?mt zN-m$$54&z^#)ifXo)3HTut}|Shsg)Pzxti-S*4|=^}Rmgq3xmZRRzwg569?N2+0S^ z?uQ|hqpLmMZ{w-Bb*oqJ-<&=ab+o#{%T~>#{zHCeP3A&?Uu>Kb|01!`p>ALj`HL4L zwr$&{H$G&tS$wx{q2HafkpW%YOlbrfmM+Iy&ph|{Z+Wv=T@HQ~3n2Dzv$`4r6cLkp z2cQ*`VdkHoJZdo4q6DLJ^t*fa?(wOmBw!Z)9chEoC;X0BwtBst!pOL`GUInuGLPn| zb-aRt@*U};X^S?g1mKj)hp8xG>ha>L4YxO^9m9Hs#>+g|q^i8?fWt>zTVVI}K^x9R zj7M)^)y<j;R&P{K`<&Dm%j>bz=;c-UVTG?R|EOzfdfaxuJ4$yjc;4zm2a^N}8^Z;z zNI%)>t>tO?wmc5t@*y4xpB?|R`$}!rJ)v{;JzB$c*{-o?UQHtS1SfGdR?NhukPzq* z>%l&GEapSpS{OpaNaF81I|6YbfByWrUQA3C?jSMqakbZniXFql!#q|WKImQnx^RCi z2J`#=(jv9)`Wzfj--*)~HGb0aDkj%b?`~M$8m&{zCm*7iUmxgNU~70)CEmc}Qv2t? zudi+#PKrJ~_~Eg@LM|?T9v&WqgXKm2Fs>U`t$MZQ;`<aaq3Dr8a`S@v<#GrD0Y9_5 zuBWBH=NkOzEh!{00@U(+{#t3p@SoWEXRmI|*2NvMY6*=G8N|KWRM8nVc!V1kKP_+7 zE`+tAh?!!I>khd;zHDnVP0Md^c+^9}Yt$><_ObqK<F;{(ElUknT$dzFE-~`Mhfc=u zP<NgVFtghZLxW+SH$_Eq?t)ytyVBo?S`Tb5{4#Fm^A8*%ww|4)EhQWG@82&R#Jd#t zL8rj?X4=pCrS84Y2=NvND^y3@B5t7dfu(K&N-gQbrO>d9Qn^%mcCfE)pfi(4zpuNm z&&7AJd2^+uPK6f^qE;ez@Wrn$;cZXq=;$~$d~0qFQc$;+M}$@g_!*^_e(~#GM{ARL zoSZ>-@6N#%G2wu$1Gd8M^6%IY&wnP@fkPmwvN|UR2-U0rULQfODDKYc><^JRubZ;l zt`&Hks`j+_HudP^ZTsU5t52p{_3~CujRPR?LsY_Y(e4$twrdBvvNyK?dnw0UxJQ`q zC=81$0B^5Q>R@llDZ?g&vL!&SJ-9ZNX4Pwsx)J>`@T0~_UwkpeTF&?Hhc-N_)XLm4 z11>Q~GX+s(ARMBbgl$@m)`iL>Gm(p5GA4Lrs%t2aBYWoK6W!WUQ**zr+sgy-Nf4F- z|KpOQbs2_C#NzwuxQ?w1M(*z%iqf@!aR`B)gsG>8;mj`NSNxd2TFm+WS{XhO5#_Zq zo-vyih?+JYvmPDpzvbvyQWkj*@vXqjWul5WSUN=k_h_Tu-Cv6{8PTk6dtwGdQz70! zb>X^WyW#FAltJj(1H-Vhc2U|B2Ts95x}{<ASgRs`86Iqv?pp^A;#>M!Kbe%KwYRr( z3TQe|bh%i~Vh;k4BG|G8+}s`-GecZ9p3;F2&?yb`z*>6a0AIkm!J9ujnov_$_Z$XN zC;!=gtAQqedEim97GOF~0y79A^d*-hBiebrBuv#^L#P73Au^*mwp6W9AWw7^EH1o_ z8gVrv9?tiTYTmA2v*rNe))0zi@MylRTaOzV8BsJfZ~lCq#`2_ugvLS{iQ>bXQ++AK zL4acQ?dDq3`VSm$Ucb(&u2#p@X;aNy2S%dGvVr@kr>GKc*Gb&>So03GP_<O$t5>gn z$}M>}<0=5@cAFs!cm1`}Pd<WXFnLnBV9_E!pdV%VAi2n}NO_+FGk^a0(Fi`xs^-oP zy}r?k>JdK~@t^y!4dtnq;}5y;2jbZ2!0Wn+m<0_D4K1s6W+rt{4}b7rK`O8?kViz= z{9XmPdCsk8uY)TJt<P}}Mqq}Ee)rk4XL7+OH?}C7z|bkcnc2_c4nnX))4;9CzBK6+ zkT)$md5Owoa|PIWKN+tu%v@vX-l}kbH^9Fu6ll`!1uKN>fJ!26i2#_pwWOq^ph^9a zI~)QBG~Pcr4nrLMA;P)+%II4s9*Uv@5epC^r1)LC&@T|Y5T~fccgfP}47*pt-|}xH z*a9&ekdu3GJl)3nRbgS_MI)oF{EKdX{r2swXm8Pp19_fecW_{KCVd!O`3_ORAH8Pv zt30f)T+y@n{P{C^*d_Kx4MsJ%zF}XRnzR#=k~k+$TM!|>X2{>m#`xo7hFz%5@BoMH z@P=3lOr9Tl7*%PD^?YlRC#Gd#X~_ZR?`?8Nnl3Ku+q>sqzkaRQ-%=hMeEiwIsVyxy zj!T>!a9TAvPB?Ehu07b&a&MKCW+2l!A8v`?`Y@sr)3)+rKYf7f1GtEHD9Tx}V#Qm$ zU1w;x!*&M%gh|4*IP8T3uqg+)xdSkMcXHf!ES<@@eG5R&>B_aR@k@4H3Za+2!dHM= zYEq}y=+N41%cb^b^eW<Vrp%lv2)C+b66P=CB?M%kRh#EkJq5uf;Gf|WvCAczUa-gK z$|BCZ#mPVS<L6Hfcxu-7`}XgzEKPhOVO!N$8t!#G#lq+nAm=*en1Fov?Q^)KCDs%? zG2a4C=nZJ5X@TGpYU}Lme7hk$<?I4JxvcNszi*)k4D7-SyyBXf*N6V^FaMaXq=Se; zV5B$PmIKU=U`k4g1FrasofhAp9uGLSqNXjrI=4@hVzh*Wge4eyoVM52bM|xR%sKrz z&3adb&FDyf`b_2l5Epvo?%TD`9*he7nO7QuYezBUz0K<4J~)g@VJ|Ah^MqCN%&V<S z5jG-tM9})DqoWWn2QF8Zu`~|&j?a~qcfg=6u^#Bzx=B4vFFFt8paV?rlC-omdR%_6 z!sc_}%|4~k@fYBe3pj0IVX*`bf4j?Ob<ehj?YmYVda#9TdRrW92`9j~AolML)`b%o zWk-FkhkM<VT#sE^F&FY*e(&xU;8jYOdR*F+XKS#;{tUlzOcre&Zts}|FuIL!5H9`P z42IUZtuy8izh5l0a@DHdd?}vwyuAAW?PU?&lDh{Tyn4+Vcvfp7iik<p^0Gb&kCNB7 zURV>6am?8_(_-~2PCDbYD+$I9_IKn(HHO0B+*-6z$JztIs7XWa`gQ9LE)~-In7uhY z<ofmNTs+A$8ClkdP>FIgQ8_owkqD;o6Q^Ck3R=PVN9!TfN}9HaKLCk_vY7Otu54iM zVtB^xAUOuZZt~lW*Vn`Wv+Gx-2xn#<K<ID^W}*}@g<R*Gw{P7<G6sS{2yOr<0-?}< z#p+&ga4>mLW&zHJyuUQ}%MFYOANb%hQQ<bQF$3+%9mZEUdAdr}t9hEzb!|1or_|+L zYAb&(cDe6DRf?rj9KiJVd!8$&Fc^0iKe{?GImxOws5ej^$U))!d0!%#5pFai$dU!x zB5InfFn(M5$MnT9z;p7U%JLhPV<;a%v?3)^kR6Z%7onNw847nBh}X>$-^H-FLSPTu zMT|N{WW<~W1_s`8axxE6cM%PPG4%&DQPPqjW_9}FO>zhxh!1YD0Zu6dr!HvObsk~! zagg14T^AQ1C8?D$gMY1gbJ6-cT*9*06*JTIpKxJaDWbL(JD)X&DT{Ta_1iBcrHh>y z7_1%*gIQj;Wy`TVvHmB@aeCTq0=6Sph|#n^69A&8Ji%zy*M*ESCGs<XIUc*rrC~|H z#yY-r<UVYnF^}R#@IY&hJbDV>(DJhV+*^mpPlgDs20$UhZ3=HxNx1tRIgy<kHBSpC z61{og4(A~m8FSP1?4<go7c=<ppGq{YQ;p}5un~3QW9Q#5&d@yl_z9R(*yZ*<A%qW_ z?99Af<|2WJBVn-0w~*}t6&h8Urj@r0$hF=`-rN;bN3>Sn`@B4vMYrGN*RkHQ%*6go zBhn<4FTfLhvafQ_IsI7W!i4~&W<1W>nT3B+a=h5rs<d#k+UI-?)@MdCpNN<pf>-qQ z$+n|E{~U4V6^w2ySG?=`69=|#-D;_rp9)|O$2j>0;_z$1tbvQRgCUlKwQEV2>iltL zCVy=bRt718b;81r*~){{=0m%BIy3KhvloC=1+1MzR;6<6?ToUS<6Q0^K60dJ=w~;# zD(N+FF)AbeOnw)tlGqhi;lv~1DfN*3fSr@ZxxAx`3i`nOly3Fe$l5de*}t;9eQL^4 zS}WzWD~SlYqK0qYzHMT9ll|LE`|UK0kt=}HH+QV)5ZuL1?q_^5n(qA$ck>8NOt#VG z$J;a(%%6Y%#zOYa)NZ`}qKCUS>aS@jjf{*qZkkNb{Qjt>+S^IOV8w5&H`oOlO<zIW z>gpTe@8gE!jW%{A%)@U)!*Ib^f5G^N^g`Gh0mKGyoxhf$c4|q6@!o}ea)e}hdkSTC zCE>82)(Y8*CBcdJKflD@=P>(8Spxr$bQ;3mh_+?^n6}W^l!N_1%a_Pbet7|UdS}wu zd_-T(_;-Sm>{<k-W=Kp*xw6;j%a-31*YpFbHo{7kl)^V02eFtVuC1+Ysj`su_}x`2 zGPVi7+M=hn8T|gun>R~J8}htd)6;F$T-j@LS8GbdlMm_>HZmz4Fk$RsWG($o(P`Z6 zH{Tj*CGpj2&&Zy71zh^A+qVlr;c=^y;D^E3?P+3SIxZm@!8h3iWN+>zCnpya6l@2g zfZdV-sdxf}htFa5<RUhV=f7VOqkW&Z2?mpZ;J0tz7J!AY9jf6ubm-8xzCEnxelJ^< zVLT7)pgee_-hr0zQxz2Q0-~=M7q7bdaNG~|6UIM+^eSwZmacT#KnwCc{dY$8O=QLn z0SU>%hW#3&UFDq9!dF2<>a>4OqyP+VMwlrJ=q(TA4`L>I7F)Js5i%E75I&GX2FuHr zgF(m;I$zDiqLpUy*oFXRYXjmCHFRymM8=~%m*OpqFR#VhpK#-T%v`c%Hx{Rqczymd z_{}PtL4Eom!pxcpcZgU8kKF_(R+MPcuz-sz<ooxF!^k_IKV!j~_GvzBX*|$2Fx2LX zWABj3{Ql)dkXq`%1gBj9++@VN8}bw|!x-JtO_X**CX;jL#nT24X0e`dcf%AIF3^?b zk>_p@an#lakQspV=xovUIQ@zuzoScIFBmn%Im7eo0M_E~GFKI|FXi0|eAuAzqxS%z zb-2S|Ot>VX8TO$Z&<H6oA1sO3_XNDS7$mOQkMC#1hI<N$7>m>U^eihY>$5ofT-izO z#l1%?a{}mu(nbLR>kvL2b_UP75MeA_PaudQ3<@E_L!<x!0keyX<&mDI#4W84*PyST zADFye&vX91zM>b!SQBIjugEYSk2%R@I&zy0_UV(0a$c}x$vSiM{u|3okoi@PIDM5! zK7=C7%YCi+VCQJ9kv!0>Si5rNUgQUD8qcxCSfVpv7{9f*hapI<d#?zrTZjSCi975Z zBp3J$#J%d=xpRdlDH3UOcZFoT@TEhCZh@8b++fCj1Ws2X@<`g?Ufd9mP3TRw8BRjV zL9ZNheF);{91k+<NT-U*d9bH2JG-tbIpYK3GC|vsp~>x~LGl}{d-A0aBtJw9wj)$A zaxXqdkt25y`{Gzwe8||A2;^2}HVDFtN9S`>p?{0|=zuFI-{9-lf15aYa<F+v6=hVH z>4>u5a~Zck5u5)0Y-H9J2d@4|MgG~MVP0Nde$pO6$bE_LHDmu_UnbCyLWts45Kt-{ z92}oUUcY%GoV1Vq+vJsa%*T(%+Nx4_Ww!OZd9b(mOKZX(A8YMrF7-o*T$hjv0{GU= zo9|xTVt=Y@5pKjEfBaEtmh9x@gka#VR5AR^4f(&_+dT&F+pX)wCNh@yvy3=>656@! zsl2?r7YcltpA6u8-Euv}+%tbU25#)vMNnk~jBvc7wRylnA}IF(gxMLejs5Pyb2ItZ zB5O8L|8v4|O8(<N%JEYES2@KZQb@1tDR@hfzh;OtHLvddLqH&R7UQ=;K^mG31!xrj zrN1;5upirc>(msFgNQZ}`T3m7bPNQg&ZiLe#OE;kBt-1O;La?ur-V1DKQQ<LZ^;`) z-jb7%7ZFa{&VCHm(|A0rbaPpxPn=<O7%uw;e*Pl>lK9ITJ?}S!H-b5G+%%W<=NSgD z&>5g<Olz~|0+&+K+SwP;z&Zr{l%Unq3%Ryo%)Ig}GBO{J+bOT2@&usf=w;kKyu$N2 zcYk>8cll3oqe5Z(mnpD^YrNO4j@Niv;FNGich;skt7p)@+DYLou*XTDVg4@5uG$H0 zwqOZ%$+JK9Whac(Nkreh?Uko+;6E67)z+TRc`P7><5?1=k=+#mu?{^d<prnWnoD0Y z#?j%n>U^^pWM&`^63%KiR2i<D)k_e^#MqA76bBraoWJG>;rrG`XSRPc<^~1}!7ko% za46!j9rET7&<p_eo@CMa3@M?N%;wLD(WHC9@9q)&!<T5>qpNklAz14v*9~t1Sz_`F z0$Mt9{2PU3{2a{5Uk*o-UqAhh?pM1*c*tqP5C2B0iNpRH(gow{!2<^llt+?dG|6sv zk-b@QXdJ^r1?Wu?`QDtCgoK@x1XD>gcJ>9*AfpEO<G5}%jgPThhW-%esyBVrs#T<9 z_}SeMjEtPKFDTq#M2FzcP2_%or%X;o>9bw6@4&oA*ef{8J>5NyC<*XgmriT29?0n1 zk6i>FG=(weZ$p0eBesF-82j+-u3C<h4MceYX~CE)KaD-at(6h1(l!+#X-fhN$4%^^ zWf&+<$Yy?U6FdyVT)fmU#k(Tj@USz;2>MI#`1vo2**jA<8^G~9^fRD0)<{1Iz*S&6 z@7=q%wx*`$%X`L`5#i>o{f;7=zNhmgcW_njfOB4lL+k)M5OgxMxpC~4cFn+JgfD)v zBM}E?{wW57EZ?(moYP{>=8PFXxahpa;e)SX@t`W&H4JJJQX6CoogowBWx`oF^8XsV z#We5x77ZTels|&FCJRa^#FC|mbL68nkHQe-=hux5f2IJQ2?a?2kIj!gAhnE*jP3!m zdm=ReAa>zP##IWF{z9+_9@gIT^xPyNA;BcQ3+&MbCQ@eC!O_%a{bd_KPd-C}mYg91 z`{xws;z%DuqHH@fAt33?|1|(i{0CCFfv}t`9aJbK=U@W>4GW&_zs;qB&>CNM!*DJ) zkxx|`O~%O|=q*)$h=dv9Tt%;a2qN+Iedk%&I%h<`U^Roa@;sYAMf=z1d4(fuBHCl2 zmHXs4LP<GL7M7Nlq-{XJrm*QGgmLuYMp|7s#s%}{JzIamZyiWOphR3aIfPfp4)tf$ zAk(J=`sY4y-N|sZP>7%|;6U;nduqoW#KPkY3yaTt8+j+qUKRqgr3)I(*d)0-jxGU) zLxvyO$D!RdcX%Y!5VtBISd9&ZG9*!1fHjES2B#;v+%H2MNr@O;i`7g60|Tr6N^_p( zxOALl(wPxAKW*`*5FlN8fqC0~H@Bb%4;~B-u(vd8<8O-6FG2o+0{&27gAf%_lh}6) z#I6+5%g5;{g(^iK07lLS#Y<k7YjEGbee0Gl|KcfuLD_z>VvU7i{Bq-U>1R05q{9Kh z;)~SmA?G-Q${+~sNG>v4RPDe4drAxfI302hQV0)2N<|yYE-R~LeZXOf_X<h-&nB&i zUG}np{9RpIW?$xg5;uZEUk_H@xfY;9+<M@`=L91>6S^!p$W+|pkRH7N%q!f7T>jk~ zH!>&iu(8>f<8&0j!D*MrXpbf0c$whipkuQM=)}VK<Jx|T;TFH52&%`TR(Z^d&c|8n z#9ak4US|0OAx<#pOHNR7;8C9fM_m9*<|cOe(k8j7tR=X686dFLro{dI0uGL!yUzif z9Nus;<l~=nSM@-11W+VPj4fFBp{E+(Ry^QJ<E!YaejA%rL$;H_*dhV1aofo$zU2qf zb)+(Dvzo!^Kk$_GcylQ`jk5@B9XGLum+_UB27F2}7FREx0zxp8A8KxWPruHwm-Rp? zV<UtZ60~=iWpvDJkooF1Kc7$FWBVftR;15DwnTg^VCY%>rCUzhE!wR1A=IArfG?2; zU?PbO1_+Hcs8mii?>GrcDi-z-)OP?D^&d9yW=iMVr3gl3LHjR2Du-wlfE&k6*oln5 z$dXkIMm<eK(tgIfI599&ka8V^DU98S=r{cR*r-mxOD^K!@zST*79zK^l?IWDT~X{4 zVJC{P_$+@e8?<MvY?uCu%!bbAgh+U{Z;i67aWlHOV5sbH@oYwZY9Z{KfBK#h{U&2{ zC4ff$^TUg+`#x!L?l1rX8Hb^DX47vQBr#hG!OYuLC`Uj-Jt#~+<(`<rTJwyWTa0XG zYel>a#(kF;2c}GOsmxe3?IeIFznDLj{g<PB_<v+uNDw!9_Ob`OgsF*6-@V)J+J*`A zIz|M~VyVS;gV6{`{<wbq!utp74;?u|c~ww?kd;1zLzHr5TZ+>=KENG8XLb@iwV+lm zS7KtNWd+7s6s;u#&iEiy9hWZt!FnvCZx7}HI!j}|8q*mBP?dGRDk8H&M1SU)HO;IM zI?+^qAg5jX?mo#mjt=4&)iyLVJPl&(<Q%sGPqG`G7;?3aSL9M_z%nr_L`M5X%$gs7 zd3sLi3NUkW{?Z;?s>@g}wX56$A9w@_Ht-yVsl6^38!r=S9@3a0N!#$HnLW7H8+dVT zwyO*v;|Zi1fX~)2r%j!D4_eW`7G^Vo-Ca-!QPRP>t*tE-bn(uJmFzdAya6~`jP)U1 z$L0R^0jQr$2YR%nT-jLeuK%N}8paYs->*Uc8~^}I(Hf~q4!Le(Wt;AB3d%zLEa!W0 zu9WN4wHbx%q2*#pYLS=^05U)1YybrgXi}vKp}-j}IAgR*eI3;uWqVl*$Y{Nes2S?e zW(XlZA}JdV>Wp-VqzCPRW=P~O)Jky|9CU$<#IP@fT?DNG5EKw_$s@%9*^?x8@Zw)y zQxfst=9KTh6T+n_Qo;mMI||G|O@7FK&VGOGR4meMWb9!9dtOf88~{5Dn0^&@u(mOZ zz1Uq2w|%B(R6^&f4Pym^SAy(0=;aWsXMpYKh;ou?Ae13r8t0A8=@y6LnueMhAIcaZ z(scHPGrRyxg!m-?`qcS|F0~$RJarNzfyu?^?058$mj{0F0RbBXr3N`TKp#`cDWt}@ z5<0!x5+PRuo;nP)E(aJ#o&iq0>E>F`W7v$I4%^XF*cfBe$Lz;mqGiC+m&WRr%0bnP zD|Zm$f#V1?aW}sGiY&T*L$HJp@dAEMLPEOF^mTDc30{dzVi1xLR$cGb79$NwsW@ze zu_?<KFc_8~XKIl}C0+wm=rJ1`8}hp2Crs#tI;k0(O4+Z!Q!s14eEaqcoXyckTlU<T z#a)1N(c2oG*L+__{5X^o&5*St&~Jk0blk*dl9rdwJuU2wO=*N2su+IW45AiDQRJbN zA?dTvVYV^IGUNZ&UQ4bTmyHC@kmIvvlCcSHMK9~_ivCo?^XF?<aqGhIQD%>oYxEH5 zz4vy^a2{nFPQz}IO`D_<CQ*dN+k~jx*vw4+!iC0F+*$~G=zKzhTP(#nnPHcy`tECR zl>Vr`%5BlG*CQjYxft~$o^dWWVc!);cWv7yi$$RX^t1)*mNS#C{EWg)@{5RwxFP-) zG*vMU1O+f)mMv@D*h_D`6pr(esAUu~u(~tDc>@8`DcK7lV^I3&aK~&xgLIqWB2)zk zY8PB*w2bR?*IsVe=|Sr-Vvg0i2>_s)aB;=qL6G;Rh%Rq%cH=^wL}&(Kgr)kR{}{b7 z_#E_x+!(#_i9*paz`h*}JgMoOV<1~6*BGAC^?rgAG4QF~xw~)(Jdnfb2$q2XLV|QS zBXc}M>rKdJj39%H{3?j3?Z}3w!k;Bs561DngFrycs^=qQr92iXu;Uw6tk{Di84*XR zZ7}d|NMS)eQP<q8Q>gX&&$<1*=U-zQ;H-zP>W=NtEUe4F2mjs2YDk)gWXtWN!1I-) zK}!YWsq}IK6Ez3~XC%4Vc>T*6tPls(AjoL+-plNS;utFw?VuWP%$vWBbz&Hfwci@Y zUmQJq?p!fk9RPw9(Cj^4YXp+zQ5v`ZGP68zQjvO}wh2N#2-y>`d%XC}El}hE#^pRb zrw2m?;Fj|+lKoiY>6pM0>?CmIbCiE%A!S&u1`RYS3WOuZVv|9{=<{$jWQk*lnG9+j z>D-R#V@t3Kh~pVtiHKFt1(!a+oB-3Nf>{A<M84dRkeXVmRg;H#RX(m36a}Ur{z+mD zh$fGW;J@5Wf^ZV!vlm1%5W`3kQvp2<nNzX_AmTWIWPGy6{45F$*CJ)sGcwqri&Q0E z9uTIM8iZv3dq}5#8Pu|c<6Pz^g3Kk*fItY<Et0q|(FVGeNwE|D^4WM+=Wu^@OU{mJ zQl&@fMJw`C%4D}ZdzJb!0ZPth*o|xc=zWcH;t+V14b4$wT@JfU4y@r$+mRG1bpRK! zlPGh15w5A@RlD3K$O^c|LeyGeFzoXLG(Q}J#U-s4>^7~s<{-d0w;Y=ax3i`@gR7#0 z(~r86BDh<uTu24~qUlrxWjBAl@D=&EHiYT-G9RL#hjqdSJJQ2Z*`fR6`&VP5uema; zQG8Fo#`~K2ImzrW@GWl&d(%cu4oW`Rhin6iVpjg*(C;=NtY`Y-@I!8>9Ibf=@u{1} z-2SYrgOlai8IjZK*z9kv>NdyW6<0GcgXm9v4HGNJG3qnMqvC<FyPdA=-!bh9==4|v zVfej;SLp<725mQ)=gQq*>6F@ybY_wJbT5S#rvz#E+WLAwXnRonnX&3j4i%R^qBZ{0 z$tkbE1^g(OVz`jpald%5nRq}wq@<X9FfwFT-8nnBRcD>%{J={)WS2SpcEYYi@G`5{ zuH8jtQ1q3227%TOQtGHJwf6=oEvbH`^A9zvrqz?>*;e|rEn#UuIH7P=6%_)%2o7~% z2xbLMV?82cgzO5&%caU*Ry)ZEJT$?m#vYm+1M6XIh%SJ*a`L6n3Bl|?i9kfKHXp>Z zHR@`dp|Iv9qXrJ+BnYzYP+3e?7=worc>79NeG(`8;#3CVjt$_H_Wo?}(o*`u4vN1R z5pRXJu>$e}#IwDi%(C9R*-t4(%60zZdCvgd2cS?hh1H}O5NQ4(FA)UQ)z$wXG=6|O zC2L7_MkJ)cELJt;>QT(OD}l{uF$Rq&-60X4+UG`W!7#E3R`rjyLfUY3PbOb#<5K+F zVZMh*o@OAVkDa@8OpvvJ49jZ(TzX{@dyvmQ2JtG%6ytIr7vCe#c06T^$v%l$#ZcJ= zRp-39webF%vqq-Ou?HZ}!J=tkuM6D`)0+MY7Z%8@Fr5dxD+`U)uY}%iPs*eK<`zLw zR`(b6!WBP9<R;Lz4geKtgmCWpplx<<1MfU5h<#o%(rB;qBt}CZlVLi;l4(WXp@WaF zj2Z`w0-BQAW()A+l=`z7?o}X;fx=4(n-t_iU4t{(Q?if?x!NnC1FQ^a0cNymEtEyl zq(Z}wNYE<fI(FHvfkok6zn)1#vRTVS*D*;iW!2N@ZD(gUd07iiSG=Vd63nDXr7#ZW z+2pwzYhmm@?`8)K&tcf#WoIA8s=M%#+zo!97{>&nq&rfa5^xO8auKIraP>2f9+lV8 zX%@>o#AI6fDzle&geEovF(!ssg7U!H`b!P^hoLTqU`G&DIS>r|^v=x9$^w^sO%85@ zGSHdBDE-)uao!Lg3+Y}F@rDx-H8q^&c1gwq*5K#CbNwx)GO!|rKy~d&)d;J%pU=8` z+0hl39P$JS*`tise{i)KYCk+D;6_ixvH0HKUkaW_p2XdKaBA=J@;baTQE!w^<%<_^ zA_ydQB!!~{OjJ~K*}xd*Is2MF_M622fMlcsq4)=%Zz4c~iBa@Dd0F0;86=9NXn(fE z&{LrHPu@E0wUx?*A=|25z>6e#DrA5V$K2;lOim7#@e)S>`gwvA_;LwrWC#arQF@4R z$-wE{=S5OFD?59Gg6<eqw193ngjZA!Le(;@Wm}oDVAN5p!lRS&SU~HLGh&wuh0D0P zLm|zPS`Q$HujLBl9RB=s%EI-s`zZbdn-S6m2|_U(1}PE6K3dqHslD`zHwE!5{S9dL zU6friD`rKZiSh3JtY@)qAoB@y2Dn(+1<PRMU<zOT!?Kc;NWU^k@bDm@E+UOqyIbtf zc1_Y{J9lktKVd30i?0)z1&FnJp#EqE{7=3X{3|Yo+1m>Bv}%$m6C6=74iqob)6>(c zBej3~+1FG4VWwUp*EjT|bD%VR<T(Q5_c*^ue?G)M{({z&J6&7T(h`g`5v#HlBeD~H zwX&T(vj5x00d>5nD+)rg;g>(K6P3b+fn2lLmpPx}A-X5n0xs2gtVizlq%(|Sfjd-X zNn90zXFjDUU-B3mRg>g!fiIa_vR{utr*0qQ`#8*V+A5P3C^Q7|(F4oNhpGcisRa5m zF4dLnM~A^G?X?~1yn*%gN5bMAXmXNu+x)Cs3>EQl#7IWJ9-T-*K15Zg5W$_mfAY|h zQ3WE3s0vUY0yggo@f^tTmfYa6X>62b8y(|^?uZ(P*Pje|1RGlvcw%i^S)?Qq(%Dfm zumlezY)3@HXR?Nq;YpSb<(x%n)|V}<tm+eFpfEQ3_WGu1$lv`Q%i6LRhrvZ=cm~Hd z-ik}N-=Hj4<{=~-`sFdl!9;Z@Y|9WoG)w)V{-9xva;?#7M(fQEkr9VHoQ$lgY`3m} zH~<AhWIdP#0D!>UK}dpbKzXO_=wNj$$^=PH{i2xdL~ECMf@B5v=L1%<5y@9do>TS% zVk(x99V`ZEIUy=n$6{YH4P@^NYw?aigg@GEJG$1^)>iivxElod&!^5`LnJxL!||N9 zjIrFmF~X+%2c@M?g3x#ALspFx_XQsQbE=ZeHiVCbd91TYE}g1$$zC8EX$JCwGM5N2 zNbA0uNrlr;oVNX<8jLxBNp6w|luiRIPgqRMb{4fm2NU%3K`M0!2ft8sPh)J>A~^FG zk>y4CDHV$qV2`Nak|_&*x(@YPmEpJzvx3-tIWlapjlcLZrZY5Tly3O)>*~&;tBb<a z#^^k8lfMKQ$O}oY1R+bt1m$c<PV*rw`8SRbN^CjET3MT=9|t=q^<a#tS&P^10~zp3 zB|=d<d;HYGLHJ%-nIhEv`^}n*@^QU*nS{DPRDMIQg!RQDllV`?QO)UnRKcK@^`V;^ z9}{&wq+sU$M>b&VxwoVvb`#KYge)+$4XE@4j?!Pq9;DM+Ba})~W$@w4*lSdNbfqn4 zy~s|Kpc903LCAq?YF8tQ0-MzKFXM)-Z$u3&#pL?cX{sQ>K;ajI5+PvJ+f<nOR|?|} z>vD03UrC_L1+}Frit!P=xWZzQ7#DTVJCnxp(8&al@hqy1pnNf2-V9VluKkL&HMc4! zdvL0d1l@lJ%>v)akO27WhC>#;#HXOl^8pHnJgxhbaD!JZ9!rU5iGfU9Nvc3R^8xA^ zsE|+}+i3lzbJ0d+U$F4BP*$Kw1<jh}C_1Eo4lJ5Uupax3QZLD?A&8^O19}ot0cJnD zG~B&z%;n$+L<~oHDH<mr#cD&tjvLcnu|COY{R7A5EbYS%L(eMIQ>k!tz?9LYL<ZoD zzKN01ag^5gKrCPX9_n@aGM<3tg?7S)s!(-nNVtFu7FB>By?k%weq!4oP(Td{bb9?< zy9lR%H|}cuqg?4gbFW@ShyNw19<w+rp6B7w#qKB6wSxO?21HJ!Iu(?DYR(D74+qy- zdxTaEHnr&W))(Q2)(_J9#MdyE2Y--|nEC4B#nlmuZ@)-xSwIf+=fFTS^aBcE4(13> z#X4WlFOSoA2k1SgZ;Rv$)qCRzh#mHVWJSBDF+b7x3VRk6zzU>A7fG5?HjXlBa4A&v zOg5Obdf=;b`XB|F%()q|Ka@#`AWl3w2oels{rP%>4okM~1$Ca-PzI#|QN`YS|3G47 zS->VKCX;y_d?GH&dK4<Tr~Nf0siwoJ^=+7z_#yRXK|`AQ@d4Rz%R$!kU9EB|*t5+& z8NQ0c-Wzn^x}7`A@}Fl&|6d_&e^w0?wKAkggQNvh-q0ldourjOJ`xq;kRF1mNC@wQ z%w{x8P~`XY^ij#taczI5<(};DVXyw?UblGm$O21KXu<#O=rA(Jd2{A~lsqj(pl8jR zHKmzc+s^+<#*WGyKy6bZ1p$^HAamWo7(KDfg++FzLa|!1KYz70Xfos?qSDe#o1Aem zejGbz-daXys{jGzQy_C~;I{#A0@3`fZ0z~vAgPET<#b;=3W@nimhKBg8WKJqC7r6% zZEc6~=ZB6SEgs|j#AQ=iTgym<_M&!V;O@a?oUCjOW2AHrTM^0XRdgg5LXxwQ=e5}Y z=ZE@>6H|`nZkYiM6?KPjHtnuInmXK9fpo(?UiaQ#6T<Y@fd5o*F9i~M7nOI)F!iBA z9s7;7!bJZ%I$koJIyxVSm2_h*M|MQ_|2pS5(*L_v{_6~2|0lM-JNsR67yH4FmfTKY z5A(l6mnDlCRBA$MQjM|;D4+)hZfxB4<u_3O>u$e!hETZ5EFDZX6k&}hO3!wGIl?O{ zsshXSp}S^8soo4SS|7<4#AS1-rIf{Qi*DDY*%;UGJOL~(4LI(zY|u7kB>ag#$NBT; z*CAzv%=AUm^*`<-BZljnM_S0!d<LwhR$6_~6qcoopd<>(vLyaCNFyz3S@s=<+r^h( zz<uOro~;fj7pE&T1QIGNSDF*DLItlJ3QxIIr;YFe#2~MZ3c`48R1>68c|Wpj!hT!O zkL6D&RPCfbg3@y@r7j6Do376*t3bBb*1uJ6adHQr{w^~!)1Zdz5aroPWgma;^HF7G zH#i$E<JOe3OYD)^SigC5xYV+2ME*e4iN_Es<lZ=iBv(W<TmjYUBT8_F=eV_C{WBED zw*X!V4H9_|KTEna=tM{@Kp4iEn$D2Q+!;~ag_h8pK#0x{hB^OtO;D&5`#&~8(M3c} zi6HoK2)IJa%F6f$iHahewO3Md;hZ_ksR-_mKTxpqHYqPPw;LrYCs9icPrMN@a^Xg0 zIYc<6*mFHcGnAcEUW{BI94qnai`B1CVNbuPD}>bnNF0#^>2(8xup_&d8j(QXBtFo% zN(?<&s69)~+dF13-~8tc;Lx$xl)6K-Rg7X#L^#EoULRVlA<-d@m~tLOYcS2lB{6?l zqyp$K1CFoa-g$91#t@TRAdL1IP!>Vb=Un##Fb~W`KGL`P<qDz78Xneyfd4oz2kp-& z#?OZG5ndnioXFTVXb3SlH(?XM*o`2a2_(Yj)j|-2I>rOAw(-IxhUvp=aN3c2(1stP zMZ}zEaqYa@Hh35Legw>X=p%!dW?%9;a{Tyl<f5HnGf3QrN*EBd?=-!DwPFpc)nvqa zAK+IclBVJ>M5tNY)auROLUu$dC2*$gRzngS5X?Z69tdm@01uCTCIxG~uB>EI>Dctm zDNivmGHl3K#UwgD9`5g`4hMatBr*C}V6KVs1l@PetEbJJ`4C%;WDAkh9^jMHbSE(~ zIKBsiPiPH+B##gRWg8%MY6f#g6gvQ3EX4hYpNW9SBdI9Zel|}SR;dN|yAUUJH4~*z zv|eaw;R9dM^iV<V9xu`5VVP9`Zm8=B10*FCI<2spb+5dKsHH3vB+k63B&WO=+{Gg* zoa*T@wf^z-M#=IfHENPTx-C+0g1;avO&M`ibIQT-hEghms>D#;;8BE{64gZG{Y1sU zU-^-a6kxkwG!GwcLI#dt3}H#siqoMlPq$4cYDf1=UtfixE&w_eAQP5D$*(rzHk9%` zr4qavs@PE@vQBVl`m|{UfP%$P7~$3EL$OC_&<SO_Xf47iVj6(pl#1b~Fa!Z*e0w)) zmm8nEs>woEf54GzJ({EF-kl3Z8E~<};S-{_u{bu?o=JjDO7=lqN!SlJ1wx=4@=?0! zXay1sbVo{2=vMRu>H%?)Hugsk62%HAfc<~`u%IP#_N6QtC?rUU6p)};T{+bn(#{2V zBeqky!gp7EG_wG9peW*uB)6EA9M(c1Q1*Gu`FHc+6*qv%>PYE!Jh~BeM<lQw>5ET) zhZBYM{xDCdGQmg^5o10eK#a|>6++Vunf-dGbms*7=eAw@8DefE0VL@ZAZ4UIY{N9) z>xrgQ#JWJ3c=u9knK$V`(es1)teB;M@@g(tP?ra@v2gBOZ!A0kSmK0CLcWGWujC8j zClH4cYwik$ZY`6Z4g2Z~E1Zq&5S7o8q7()cU|z;~JCHLem{Dg$Wi_jrDAa$~srcA7 z4(oat%pZX}s3!eDZt#hVs{!SucO;?2RuIm&){Rx5Hqs&}Bvf+uJU^N-Xr?0wsPePM z0PT6tfg%!iwEp^Xq9m1|W${;FPql}7!_AlnAe(Z4yHT#_Yp>KjxDB;?2KrRJ|Fx}6 zAFSNl@=K6IzRJnjnEl8W=W(MCszwhWALxKuG2KDL$EdvmK@g%3;3G7M5+;?jE1#&g zF(36IgCcoYMJ?@9$Xu>?SC(QK9lH??OHf2st*V<R?X*nH0eWB#>Pew(JKS4($Igz? z(s_<5$qwLx>E)6L$DX$aSphVK+ybZM06`rm+=>9c*UR;RNaihSzAxx!Uzxqjtogi2 zE8-Fk=$a0|dg+%--Qm<YxQ*Jp=nn!(qdpC~oKSsGx7%Py^!o(R?gRPQ87QA>5e8R{ zN<BDgREDjBjiW+BDvevPUiNjlA;fA2z&M092w<lqojcKBrJO4oyKIl}_a0;?nEDfx zlixiLnZ!~QG6}_=SIdJfUjniIR;tnaZPFx8RKy7lqG)HSvjY`c>*gW~%a74Mu}Vy= zGN~HH#TX(=zVyR>szV{S1VH5nX!%fm99aR_Qcd2~tCcD!QF?G2is|lYIHZ%`M!y%r zrFz+6_OPxT@Mv+`=n3SUW4`u8y&016TW8dySEu6~BAfm>qP-u5ftl#Y^8Ll+{*c9} zH+n%*)Utd?)fdc}^OQUvt4+vtdwa@wSq-Yx^WPjDYLEaCcPWfJ9gYJ|BQh;aIW}l$ zc-V|Z6rdASNw|7AWYFND%97NHltSO6N|Pa~CV=^c*NMw{S%6w8syY2sT3lS5Bm<2X z<k=5hT>N1As!Btxo%KrQ(ha7z8)(=h?X34U%S$4i)D5Twswzz=@QA$y59J3X9~ytT z_Xnc_907c;tQNLaFLxKzea<1J<^by=#<hP|S=7uVG%QkuD@)-s)uCl`9%Bur1-agJ zpd>&V#%l9yIlbG(1ZLnGa=o#qUyRqSz>rK~t@&G`tbvfor1rW^nm92K5UU(#nO7U? z8YIh$shSAwh`5D~_Z4_>D1ymPF^j7}rJ+A%CP4p|L?R0(c=5|_)l@5aBx9n4+k?Z? z+-h3WkU655IDKRwnB*r2Gc=Ob{a_OC=u@OFP*E8fOpk>^${BS@n6rldV7FES%rMDw z;Tbl(+OmL$XESpE5pWD@r@-<T*LM#><PwCdWgc3WM<Pia3k~g2lbLAxLZ8EfpQ0LZ zgRt<=w9LE*KZjc?;=^;w6;bkb45ifixjZ-&Qg#!QX`1jw&%b;*4I;)G$*<X>Z^53! zJql9g#=e{L+;$qBZC^Z%aS4WHF0x>(3j1l(qJAc#=5F4+dAv*jtB;s&5K?Fx5UCP( z2W=wK-)I2{{2=ENM?%ZeYHE1{6E6qM!#}7|+NY2{I+DyANL@hMAPwTfKDrE}L?j%_ z4eB-r3n2@Cjzux69<`7`fz_^#6dz<s!Gs^CzBA}`#QVu%D;yiDMPx`52~dhO{5su$ z2lt6_gWJHN%I#8vWjpE|(xKp&u2zk~9CYp-(6krF!OhuLk2>6-qM{=H22V@z$J@d? z)vKN0#gv^~*F)Zj4f}tw(aBoF|L+=|_)_VQkf7+F|7dmc;XkxG;lBT0X?22n3vZyd ziVuJOjQ;R=9pEQ?U@=LSaI;S8mV_MdZ?B}vMwG3{pd!>dpe8vfNwdOWNZY$Tr3==R z4{;S0mg4eI8@$A%BtF!Ppx7iid@D&N@jGo~-ziZH@`~OEl~Kiq^OPrl`SK+dw1%oC zpM)7L0!D(yu!~E}MWe3+Jt1N6-P*)$RZUv|*7l?^yrb>EThkMte>FXsxcWb7dZPcY zrY9%<L(>zHMU0)eR)3OZM#F+ig)N<*P4b%1C#q12$J&=V0iqDJq*UED)Klzod0k!# zLGi*ufr_;abOWJqy=$uFm#?n%1I}%4o@lp2tUeGY?qUppv4P1Z^u&wd5b*C#f!2r0 zJ#fieuFV#Yh||h79tegB3N)-vYleA&DIi*xN)&`gQjzlJh0Yst7^?p2-`PEQ-*V88 zNFb-jmUjRQbOfRsfF6}R&#z}vG=+=4h+pw3sl6%GMutE;IuC|`)V#<f7x;+@JR+ga zf2kJ=3B2{2(|K^l<dGR&xNI46-0A!>jf24-B4=}poENAemQe(n!d|ygsNqGf{D>g2 zcYKvqc2YH>j41BS$$3;p(mp5})r}%`6i~^74vTr5*x%rPQ8TH!W56qKG_N}SL)_%V zKBx@1<LA8e9_a4~M-*`!t=nQrH$ov4W*0x=bWTSnD93G9fk(BDr?|D7b|>S>UeKry zP|G$tm_C{vMQ!5-dSX$%p!Im+L*a94yM^`|8X7X+cfF32`ii6m<twl(kxHAJ8}ogX z;WESqQ6hJO!W*>t0L7r8@3q5F%|%2&Ys2tQQDl|EFqVAH^e4Fj$s<TT#0@K1Sy{PM zL{j|w<;$1kD(9yEgDp}f{~v3SVxnH%jWzqvI;24M_+ROe!u4P6kn#~7QcTbxr4U>J z1&x6F<><$T+%0JZ2v!_+;Rj4Cq-q;&WXz~q8aZ#OCLqNn(uQ6A{qa@xb^mF*6B}Pn zfZ^u=L8x-HB9$$2VuI)1&OlyF3B`Mfy6Sip)w}?<vtn{2u_=s3h>remClOYXj2oYq zrn-0tQ_w?>pAu(lJ||XK!oH|eT@n0jFS>nQfS;wylVe0(J`w86vXmT_^&DWsb)Y3E zPc-rG?YR5I0U;<9J(N3uJa98*B&jX}#ji*ap#<Z{?$Q#_PLMJLQZkgKicT^soG&Bl zP37*W%tF2L0K(u7kpo2S=kDsDstFxPus{cdVJ<qz+f17=<HMymY0W7pefB|(ONAb( zg&})*RMQG^;udR!9zn9tZ<*Z*MTvb@W~S7Q**qnv%sCT1T0PRY!y0iNIJQz0>&r)- zXHrTQ(Oxl9ohU5oU+#LOz(f5aMfAYxMEjU|1f)+xz)hM1N_wCXE{PmqEf%0*GVqkr z;;_xo2P5-G`5urNGz}0WN^t^Z$kvnCks54K>oF=`v>q_U%-2`U>9QfPNDa?|PlgsH zn;R0IL~kzYo6?KI*|OH9sQE<hO9xE>_)hpa;37ZKuzzUUFt`I{t%Py_#*R@6bF6(P z0+gaJFRt+<LECX8bL(u0*TWELY^7c!*ny?s`|MG%12x<XPyjV(n6S;NuT{IXEb>*p zM%7~GTLdK`;Q~CJtu;00x@+p|HL1VH7KdF<JVYwa1kd&gIDZ`ouinV7#6n)n{f%La z<07#tIb97&FMR|VoKO?mqg?X%^Fs@3pnDZW<&Q4nDHKO?pwH4aPpjtj)YN1h+Q#Ig zN$)wR%Y<tF-qhsaHi~HR5eF{eZP`YvIdI0ZWe?w+x0-rcmdEIqMZBQC8q^MC6)*4W zA3!B{NL_00@84jJVkY#D!3wiFr=aLK(z08V)rFEG+d)vdOOUb`r1mA$?E@!u2gyK| z03Xs1jno?~k(2eo|2=@qNkOa+LW;M@nd|pK`yz<EnWiXO$<Z9YVxj1Jw5%zz_Q*yY ze}{s1fKyiY5d;jJz`#OiGofF(7R)8Wd8Me=ejT`R2#SH5k6uRkTPKuQOMrj3fqQd6 zzp^E0%e4jW7mZ-L#Zu7T!Nm=VdI#I#7WD%V6U;<_TLa<w7M%GD)Q!ag{c@wloDdpt zfB||7ZbQFZ>%*fnzy0>x68MGOxN0npp`>#@WYF$?)Bwd<PiLfC5K)Qy+$BpcK#`vp z0Nsj<?p;fLl%_p;ZYy2dO<Tu{>cJ0at+E9|X>>`&u%n)wz=@p+^WuZ@Xlm3#olh%T zO~8gyoihc{^vs^-;_Nb<>9~$k1o;loKrf+IH()UCAd{puD4Zir`-zm}`DA@?L<bNQ z(*g5APoTGefOk;KtSRhI1OQCb7PLB=!7S-G&I*7dIn1#P)Lv&MYJ{mzA(eDSr*xp1 z#je|DcAj3S@Yxk&L_#MBZI9!6$t7RXrvggE5->^BA`t@FUdT9E?byHsMO*7QDk<_W zqFg+H#6w=Z^&p`sv`UHQ|GfnY66~h3I*4)V^F;=M<SRfEAR|{~W?r1YSf&b^A{NSe zuF^-ppM&oHm-xBLc66A(0^O3r5NhZ^tS;0>sto|)Sd^uv@PUH=at~?Tn{A&HPf&}_ z&aDNo%_j+TL+A%cAp^m<->is{AizH8O%?X;eJSRpSqpc**3)9Ia}3T1#7H+#&uN^G z1E;s>u>`{9w88ddF0Z#YQhH1Kr3O06)gR9m{~3*gP024<R5cfU#LQQG{ih)BzH_`l z#AyX|NQ)JJL$9H7HqhD7eC-iK=OyaSPO^Qfm&0$9(BO8g9+*V-6o$HNQVqhAGy~WZ z6AUtmvY`+yR=m)f%y4o7dR&hv0enUY*sL(vH9}e7P^5da?`5J5b@z5i)LL2tp$xtN z6R1-j6Npstxk^AzYf2HXk?{<nzNk1IO3Umq<S!1WTdgHg7DO`Cr@(R3>QnHfRNxU3 zeghq|nJ6y{#(@0MKbhPiX++GR_n0_o67_B)T}-GoK|xq^^b#etG)NVQU+q*%&=;HP z0!WYrLLJn)4{F!usXg9@lUfJeDU=`(dAv!A7<{z#oL=84lv9xQ5Jb5&qEVKB)@kPd zv{w25VQZCt_b=7(e`BSYEtdbI;mYU+oZ#!Tc*H{>>iJ7vP0E;K@CTG<_{R_Lo>}s% z1aNuY-*e3D?CszGJ)9j<paOA4Mjrm7)G%w;e^RAAl}ZkX9rt0C!+m+3z`f8;01}kF zz_0&$>BZ?Q*zfwsKh~pR3?48E4IJ1XMg`6iB&dnDGVN`aZ)pJ|4|WE5rkI!*(J;0) zY<UN2x}Tg`A{4$Dksz8Nx3nOim0eve5uVMK0a4o+>H6@iF1%=cUO4U{`^B|0$A@Iv zk+PSaY-f;$?l&rsLM1{Ia`V4xXO`zBQkj4%I<Nyy1Oi$^J+BI4n^V}>7filC*dF9A zv+`H7Uq>YX??7iUovCL4+BTd*!jQnL#7O6CSaYMn<urmva(}Cu`R$?&#`p}R7T>A3 z5H+;$)~$e(q&6eSChhurUBp>xu!1B9iRGkR*{?jk1E2l^1`aJS!fb{*rKpdSGgUl6 z_Nah04Y|fvm@m^MaRM4|QBJ0+s)~AOdfE(VGYbGYdZDMLx*$^GLoD0$1*P>U;L{H= z|BcZ{l~icHPBjGhYzY7KIEdJhEIWlCend6*kKHwX5b`5^Lh%_DL%~gMfSo3WSZN8n z!0*vCEDh-sA(hP*l0!-oZTlin#XFKw<A?%fpm%DAM6EL^Q4AsV2>|Cwv$!5Dea@B> z)K0^J*nk#ulzc&+PAl0O<PeguSreR+(Xp14Y8#b5Kh8zla3+~u$lxq|t;RHoC@OkK z&9A8aeaz*41Juiuah{~E(<DDaVq?2@f$!vHpp27Hlp9C)2|S-Nl2^qbmr;@XxWb=( zdcGe-K^0W+Hi#mMAd4dik3=8S8C}YdXQnP(W{n@eUd=>-X9D$$f@YY=EVMJ@vF^D? zT{O>8W4-5oepMzYR(>!!jIGgKz7|{g6u^@DQy^&^3Qu*&8F`7i_V$sF=RklfPG7|T z5pr^z13q%V#0S&AMFCH*M`hI)kZ+!CeS|emyBjFu+y|u^VyH+J4k}#X#DM64F=dgT z?}4Oy17eFzhAzqsIJce863dik%YaOtOS7j6Mcd!Hj#)po0n_3N_<z(Lb49|%xV7f% z*A=s8JKYGH&-%odGl`!sFMgzivNyQI(Tri@ik-v<4gx<FfC%(MMt2>G!m!2Bl4G}V zwiAj5<59q$Y#@PuazgUXE`&G0siU%E?Q+32QxJ?i{tL-FV+9MFN!o(WwIHE6?C;fx zLw0dBv$wmu5HT1;XGKy0Y)MYW2=z)qP~r#3h*F<b6<!Hc7R#;}I<0`mEJlQcynjQ& zuv&C9d)`mL&A9!Wo?vrXzusL%eOXY$mTb_Ew$TU)x&p?ObSeMn;j#8E#Bl($8p*H; z+9Hr@EmIg%E}FwWX8^}gr5VWmJU?sNAJj%sIpxz|@<b=Wh$p*Y#bb<W4p4y?k~JTR zeMU*AHu4Z8q#~i^U*(smM`S(#ctA!$7V-m<xRN>$0d>$Z@8AEWXEs=2x)P9+dc7g4 z_roSp+YHA|Y;%~=j=^0&vxM*(<(0{xk${ibCl{CcU!{|+PzO)-MY92%*zz>%WNLMe z*qO>x@s|bY^Y{!w@xPkcz!8imWh#IcrEy`h4m*=T1SPFxvj9(Lh5eF~D!#6qS_JzA z^9f5K)CNrpUUAvw5^DqOGD*stwcd9ntHdaZ?;rI^#uHf0Mevs-KswTj3gy``5DsXy zjuqP5)le%CG)ts_8F*PB)0)!VsEQ`;19&d`RWth>km&qz84}Kj0(hFB&LKG@X-Uvw z5rGDEXqY^U>m%?z^<AZ+P6FjVhuJk1S!O6(jl@5avK}X%B-ffB9(f~@X~xtk6~!Bf z(1cJanQgQ*q_6K~XD7ML{|-HbZg{F+soLe7{O9bk)C!OF$iuY88mvi&ptX!rxy{nj zmvC)%!(0BUemd}P{_(rWNiH{Ma%`(j>%ZgR5OZ!d`>~F&?q?|r8D8`48@AUE7m?`< z^T)5Cpn$%6BG1@bQajN->;?iQqmB*^4-mK#=4GWu&=@lWW)p2RJ{<q$2)Rk}3!o1R z^O94IDSLJN#O<0NmY{jiCzO%1Ud<}EIml$@qmm#hMm^!;9wbJM{!uFcCnyb1K&lK9 zIeVao3byA2*kEeb^DmhzI`OUD3i^o*ykSbGJ&fl@CjK1}`pfM`-}e1e@DJ@ZG%QF{ zJ;UK=7muSs%3oEDq~oP}WLBRdRzZ%P$3L1abVHrLjrJY$1B0^By${szu7H*71!Wa5 zqWy&eqKF=})q!p=Ys(C#^P98xc)@P(ilX%tefwzUc*e!;BrPY+FYNIlq=>1)8iy(N ze{uKTaaEt&wl_((+il|3L{021f{Gmrf{GYpl%-+;dy9&Sh}b(p$xShKU3O74iUsU~ zSW&YRAw&TM1OXLe0TBcXh=RcT9czJ!_nvd^`~Lg-IXfr8#ah4h`#sNm<{Wd3F+m%o zKcbG9Q^v)ghdEu7XY}+QL$x0OhYB{t1H{C#*(JTgifk9;mb#@hf8WuP(<86D0!u|E zT?c4u^)`Y{P^DC|KT&3g#9~{2K(5N!w+~XiXUJF_>c$385n25cpx)6LSc-opyA5MN zsr*fYrJ#|@MD(4TyqhL$LP;w!8mW`8A~g-aX!40UY3Z^W$D3vJu06o!<eLJ96i6D9 zNk_V}!yWc2(#YzfGXVq%h=Yc+amA<RJfMrH>Bs*o(*s5xc#y$iKZ3)Ne70rv0XUP1 z+Ho6#Vl>EOmzw<xEb7&h5KFEcJVFzv`&RaOaTatrjCTm2WOlr^fTpN~_Mg_R>*Xb1 zvm*&+iPqZMWZg1J*h|hE!wN4oO1QoB?33wW5pt>nA~;I-M71s-5Ix#tt7c^dKhV5V zOnTT-VNr0%P8=!GN>}c32S8Fay9hPvn}LtCr&AoY)6p@aE03CH`RVljTvYwj=G4k} z`waNok4PG%*W$d963iF?!pKOVaa5ggAFPpeCII#nfI6cxS5MAXH38Ha^V+F7MN){@ z>1<{7!^dU`<%3$>=KoQ6B;PUtzWWXn;{;Z&_5pojw$L-_p)Gvv-`O=53$RW6A0$ZJ zr3|^wdjYi$0oSQ_W{BxF`QGZ``)~quxWQySz3REkmv7{$BY2b^)G!26K;>(|V>><? zY+hXt>S2U(ZfD-UwqNz^+4b5@$SJX808;*lTBI(peAr+cIZocH&+v_~I92o4s~i?B zFgZMO|J2kZ7Z8My%u@b%J<@s!+RL0GEtbwUIipacU!9pkzw-Gpvo^)|yi~a2jj`(7 zJ?fL;UU>7oPx(Qmr+!C~q5*KEiNXE#a<c8%OBOB1oZm9?-=>&&$qgQ`fz8yN042;? zIup2NvNMOZF_8aP_pM<DexX$t;_*!e8NkgGhf?Q0G>bZ;k?rbxjmB5;Cf<1`yefbA zp$qm1<f;?BR;*lk_23E9D=eN@(^rd#a8DV-v>71lVW&p6*mS-HYv684@ch*40|%AV zj@bF{3Wk4${Wzw3)qi|D;2)NQz8Dx(ZQ!C$Jl<ay<no{D8UGj*(7UR~hvUnys}XQu z&KDnNShcS(w#t;pMMb}iTXLj=Rnk=36*-Ca_DjRs<wpkx2m3`W-72=Q$MW}wbP9iv zWxkZY_p+-<axOww=XqC?2AY2yTc=!$>USAfg#nUXXY<MG>pI}ltWS7VJo{@$U2|M$ z5M@(-(~6&{wm{kFjWmYIeg!(~B>VYg9xKg19M<X{=(a+NWd=<#+bgF_tI-A92lAG; z)|oSqH$(ZahHN%jEa)&a$i9QQOh>5G?CndnruW+{JGbH{2RP7Tds-*JV$LAZuFyC6 zNeFh5?h)o|n^7a0cSn6=a&?DGa^_sBPZAcKW&SH8L#NK1)!qD!BX;>d{G2E6<$B&| z2}%mU))#*N-0^Ko|9&@re_~Qp5HUT-M20}N`-jnL#d?zfYt82IjV?H!D9R0}Uhm42 zdw(wQ^3DC${@AD<)Ni8u$;E<S(5MiOI9&kc$}dUJ%x_-j$9Bg?{l@J>86dk3;;BJg zPucJ@{~$6lqx5x4-`}+2_boPiBx%sB5lpk!T56UB3bKCv%+KlWuxiI*<<S_Zfo~Bk zP0=K`Zz<L5d)bs9(h1L){Uk&OskDe8TiKQASx)B9@L1lCUsrn+L^A;lPQxW+90bcm zRwc5_pefNDS!48SbMAV#jXsg>APtEz0GGT+oRFcPg$P=NqN<=ub~<a?0P{zb|JnCp zcj(9((c%CK9|UPyy>UpK8PIm-%qu-9m-4#zaWt1!q#2XnbU|bfA}VM?ARwcHQg9=4 z1hT7G?$DegWa%;k)gT=j#6gh%m;(3%vzT(SCYOG}|HTG41tIle%+9aXh~dl{gf}V& z$d#ny=GVlo^b7vr?k|$LqPN2n-yi`u`4sYva#D@zjDW@b_Oq+GkKH>PqxMDFXVP<N z?i-90t49E&HL;F|b6wOM9rkR5e*Mfy%H0~<zkN9Vn{U3^(9XTz!>e0e?Pon$i=Kp~ zpOsZAWv%pU&0!g%5Kb#7aXL2V?cjzc@~;}BApIM*Za?!-a<aCVuf5Wj?=|0X#oyta zIOAV`{k2{rHv%2aJok5QLpqFPboeavsIslUUAHG62uL0|1Mr%ZKdhQ(?1(}9=Z?B2 z72(?GYPFwv8K3NL61Fzn;2VG0GCSiIOA6_i6^6<#!%s|*73qe~^QUQEj3#DC`t07z z9F=D@B`REkf+?ApWNw0Ppw+_*x(1>w>pwkWRd7%)gZG#paX=@2>k;lV*NFeJ3EAP` zJp@A1b#g&1Q}<rxo$oaF>bDQ?Jx_}|SnA6Xz1sW+cRyyO9=~+yQm-)`;l~~E(sU8X z6Y=s%<M=;UYRlr}tk=;#O6qb4hdW{he5jg+SQ4;}4Zr*+K`!Ow4gvD`oJ%k@`o8(z z+r7^kY|*}bd_fKc^u$P`2swjsxw16SOE@KBG=5A03&a34v9X}WN(ej8-Mn|5ya>pj zYjgu>)QA;BjT;*Es<aBE2Hj)-XQ%0>#fhmcL1WKS#9>fG&0(!RM}h$Cv@Dt48Lr8B z)mEKhK#h<e65>Sxd3*NkA)6|?mPbp`WkV_QVO@>*q!#AkksY0Pb{);}x!F<=LB1XI znASUt0fPe#GC2p56t0PPM<hxMrT5EF^Y_jA;=L<hG5u{Q5~u4bKH2RCBWqYm5z48? z-schHKcbXS^gr1W&MZOqI!-N&4LOXS^k!~NR(+$}HEs9?)Fl1pH8#DoZ-5RPVwc9X zO3=oTpzcQ2Zxc+$s;x@oyppWP7E=FQR~+OzeDmsQkINXZ<mOT?x-Snkf5){hd`CGk zLd>3=Z>L3xPI~L)EGloSDdyMAXq?^sQFrx7h%Hh$XvJB2@TQW8tzU00oa`!bA|7YN z6aF_nK=Raz%A4kkfdGRly9Z5m17d?+JSk|U8Tnf~qUqQ(Kao{>(%%sCns9#T37Am= z+Ke4r%n9wK<9ZS64{N>#1HDm6R{P|WbuYg)-`v=L@sW(_J4im<WJ)R*Ln-m+_dU#i z>+v0Df#i#NK%B~&yUM{VZvxqr0NvVkE=^T`J>9vpMZG8*;Svt2*Ta6%urms4y;kbQ zx3ATGhe#%Brj(6*w#KT;mZ+_JbXHmPsPxr)SAL+M)=MQBD32yAvDAleCQ{s57HPi3 zIy$b%hQHIAr;XNl#H8cH;7R6uKgj%o)e)B2tz^3*^IvgIvG(<=zkI0aZ|~0R$>Mqg zNeIjjJn!}Py5?Kkz*$)X0LgVur*{*PEo9d`wS%PLLFC7X+l~z{X3njhb!qnCre6h8 zmfwna8pKg1=nmTqr1hafuG8k_t6tegzKmNx#_7K0tJe4J{xPaPkKq~YhUO%D(CpXx z)gHRo6i$3gDm81^3awjD7#I5&n6IvQ_JJQy|Ag>%GJVeI)#lZ+HtqEH*S`8KBEl25 z5y{tN0M=vu>GI{vcYf#6M7HE!w=hUP5Orcnzei?B?dfUG!p}iLcGNY$<0b1YWxzv5 zEq7KC=G6`}UXxzMH8r2g-IA5E@TA>e*fG)#x`8$(IZ{)z$PL?nEor)RJ-o<#)o}xp zdidA+B7GUg8LRnDs3Pq<n@=s@Us)kDS@$#==gc#&V~eGKR_R{-8Q&|Vi*2~(Fe<B% zxTeWobKsrPg~&ag<HL5%?OV4tH0fVY8evxc9G7P1wGgp~tEDISFw2~%SoHg)4v8a; z0ix!nyl2#>a!--d&ay!Buhdz?`a-7vL)YS0ZUz^8p=3}=8~q@yO_i7H<Nm&RNe$H~ zG=?A+lpYkrFC9x&ou8K8V>{hr%DBBW`<;wp0(1AI6M#_}0=?({gE{68Ui~F2a|6yP z(l$eb%!P6y_i&S~ZF6#ie*Mg`<*ps^=QkdTNh!pP3eL9y5a+FKJJi-(*}q<w9bL({ z7c98iN{G~!72U$qo2D~u%jQiQm!`BWxQ)LhCJsfRVCzM|p6^l$f`$-@F(mxHDI-Z# zh?6ozo!~aumwHP0npVE%3t^xLei;Pr&&s#!Y%Zd@ZBzcsT$F=wQ4WwimYtYu_nrRe z=M_Iu2Z7yff1CAd8_8yc67R1c&aCkBiqo^xR|}+)jU=68(+;eMr9{Al(pyL1_^J*9 zE2-5i84Y}GQq8JoP2UcmB^Kl-wQ6k(y07F`!^_d-^%un%da=L+cF+2t6!SwpR(<x^ zqF!RQnrv1;JTzok<M1Q`L-<mb4IKN06Veh|E2U#R-UC(!Qazzm8>lxYtkL8+zX-Tp z13Ao3Lf$6v2<Sb=bh*Cq-MHK=dP*b;ayw*!wK7Q5qyZgt?1N|u%v)8zW=(6uA6wg{ z`y?(~y?V%;Ik{g(zz#dn++5XPa@6hmp9>MgvzuU1>Mck|2U+X+g-qQ9o|yF=t<SY} zF8BP#Z$e>)p>@E_Di*%MdQVJYLao6;*w}>ieUui-9p+)wCL=$R&nMqzYES_{ZsoeI z%?E5~b92++l7mivw)b50&?M*y`yAlxb3htMGfL;6%jye9>dK=M;dw(svc6+3al7@N zQN4Th>tMrqkFI}7U>`!BAT}^LM_yKvD>N9VmkYvcC{ZSlh?Ds+F`;vV4(6L$WcR_9 zulh1Jm~#dcS{`wh(h14*6yI2*!x+ATsKpx0s2YoCYH47?vmc0rYX`ID)z?91Ct{7q zbU@?a$YEen!C(X<ZA-qs`x*ZIjSM_4f9FCzn{Lfe@7<+YWHZGgG8s(_P<aW-Wmrme zMD*BB{kwkGF2nEFbaUzax%pzhY(s&&1=7Xt3b(8zI#AEAYN_{Pz`uE`doX1G*y*@r z_scE|pDXzFb1H=%Y;}no%AQn#BCn(#0lT$p_=)MAyCsjU)S~)z2zL}AP9X8Bt}HcD zh)r*@I(jGER0L*)<)LwgpH{8f$RPP1Hh~?G5I5Oh8Xf9zHL_L#;DbW9K{YhwRN<UF zz3A1Y_2B@Xd|z&l<OA*zrfacqYS-7?=(g~kv+8~GW44IxU^)|dg;Qebp<&TrwBocp z-&q}H&_K6s`XLUeQcvpR#6kpG+)>wj6g6;GR-s_231aeA;cS#%Pe+7os`&QNt4l*B z#pEa_|1Jv!ph|3~ek007<q+IGjflYAbW2&~WiAQ0=>-}Qj$p1Ssi-I@i?PNMr-RaG z#=KHEeUO6BZ{guGU6VsQ68(WDQ(3khJ)m7cud;0_Ag0jyv2*WbKGK~Ao1*i2$0duA zCmkR?7IRXN*5n;3g<)=b_?LRCtkWZxcRSmUM|3u)69lwGQsLM((1rNpdtVzDLfx!+ z=2c>`U!j+d<NB$mhPBX?d4!fXARkf^wp(RNKYj0i`nO`s!tMj}!QE8}K5YbX3{A+& zA8Q+a$2K|0N1CkekO2*%9o1xi>GyEB^~1HVgmi&Q#gc7Hs-p3`aAo4K2@$sUh;xC| z@EUdMj=JV6ZZKF^%$abbq&VMkV$`-9$#iFJCAO!s9f(jw{7T*@Vwtr$G`lEelBWa| zvnEsEdJToz7jSNV!<EaH88S=jaHWu@i;@19Gky*|Z1tpw7z)nuPz(*RAQJ+Z)Bjoe z4JN8S5-|u6ITQVYId;GgP!&ipur%N!bOToXgR7<GaNz3qH+`g0@u;<B5-jUhe6u%L zZfrWRJ4r?85hRROO{~lhV}`cSC1MeI?OMx;(c6d9Je@PEG!}&XN=hQXY#~&^Zl>pH z5nwNviKdyHrjS%xVmre$z?&^9SE@A6<?rwjyuSmi8Yd%T8K(qa<@9az_tW>k%kH?B zCx9#FVuSz{AfA0?WuPMy$J5=uy|j>+sbxoXVH>Lj(Mh3ah1oBrTra!uIW@omtcC z{{LH*T(<hYRbzZjRjw%ZH@kcgZ?6Hc7v(gAcI;<X*uL()%{wt3aHSQ)H+s;Pl}jq( zh^d?44>nD@UpfF%v0lH$I?<g~0})igZ^Uu)I?wu#YH!K{GJzooJjAmmgHK6oVkL$E zp`AX5GucKQr4o)w`>K8Vt9jAX`9X*uKRt<dRt_M8!&hL}i~K{L5S|!7`)NKJ&fivp zL(Lzyww9hTjawyzH^R@&dbnKHIdqNuUUDo6IqQ3(KipI}pY=P<W5SxHHB;e>ckzkG z)_v^LJo06)*V!9mFGSzm7hG_5#GS%C=a_}A%^aS5-7A0Y$@3Y%gslv((WJ?@dxlj! zdZbSccnef~he-YR{;_~b3j+{d=3%dUkP<oJCC0^!7+D-k&0Hm~CI;)cVYy5!G<~~( zP+HP7l73IJxoZK&^*JT*9+oYWiJgU(Pzq1oMCsGS^E`K;IRTpqG#95PmlR~SCNXcE z<j!;%ioS0iDJN35gjCsT#bx86QPEW(esH2{gb3X(=X{^hEsr{w{}Ji8xbW<VG2R8n zjzur|LN9ZzrWZWPoU-sqMxQ&mDTz0pC&%%RPU~%YLa7)Enny)hsr&z)k7hq>JLzgu zHZke+0iua9`!jzy;_(-klvozx9gXPi#kz2aAm?t^+|iI^-@4d$UeB+GUh(X2{>Sru zsTYoHO7y?*!1>~TcV%2&w2>f+zV8D?R~%XbyH29RsFRg6PE1aTmE~xyilm?vaB=w~ zD(StaW67>h_FLYHCF!iPC+`_+jXwIBYO9!}>doIeqb43g??y%s9^@0t8qX_3J3bti zaVtM{$@JOj7okEvqOq6|LG)s6J1vjMLBuZqGkBM!aNM!xa@fWAbIKmyjnPGgjo003 zZ;o1T5(ktTKXp6X6U-4$Rd@r-l1(qSC~kiGqj8<wR}KW6XA+9F;VhMbh%m%PCu7tb zs_jcN#S!6~dT`<;fPS11T1sj#d&H3?y_?<N)5)hGL`W{Y?1T7Z1nQ8zR8L?t8R5+? z+1N$xo-1z8keP7TmaBAu{g4nrwgW}U>8y1fs|X7H9d#St(9C1mhN#O3q|~`H0dYaa zftPxx<DH+C^{<i&{F1mJd3{gi-YHuv$#I*{XPi2E@Zrh*(-*~bCMUogc+~vtTMTec z5qo!HjQ?m(U=RQKuz-Y9Y-%ywc%via_D(%#o!UC)Yd@-(;Uw`Yubtn^oas<0?pNC# zH%uS!_PzOla&;odpFWJ|r&D_Nj&F(Ntw_&qBo~)D%HcXT00`Zf<xOFexi|mivGnKX zm&kHJ+|{MGhTj~%`C}+3&Lk%kx%&sfKbkPTHVvh5TYlqRPaoooI~l33txVin?QBGQ z2bkun1Y3Rz1{Z3^NzvN_LF>e~mcW4_n|Z92l$9PUuS4G*%wP?H;gDw%>1kK-;%cIJ z<`Sqn7ZM8MQBgnqechKJ;o9hGQ+Qrb1dc69J@9a6M|Z=MmHAcC>Z1pMc{lYBc9B;6 zPe1+CBU82;V5)=ZLq2%;&<f~UUL|5SA89u)YnXTjM$;U?*;*F?=iJwKoP4btO@oc# zSTwQsV@J_t))1E8vOf5t_<kgPiKR6JhlEi0M*{9*kj_cJk4vh-$S7PdhxM7OI^Ma) z9g~tq0#(p;xq4a31xn7Ia=_+Srf@5!FtLDkM7?e4&;hQYct1e0<cTI-!!{`_#Y@*b zmB%>0E1lH96%Oh?@s2Iq)^d}cgrv|JBmT1*tO-Wd>iT)VeE%3I4e$m#3X_ok0mj|( zE<l|&m;y<f6<}w<+e%%a*Ke|X7`eWeu|3=w4QmI&+D!eY!QOdKQic*SsfSa)d_l3} zWF$T4*6GxOXX6`1PE8Jp{C??DKVow*h1&Y&LtEX)UVseCeWlGlz`LHtnmCj@m+*<T z43l{Lwojnx9rL)z(HKe7Y2lwgRPW0gnHweno>N;=uH&JwRcaX;gLv0)>q{MH&DeNr z=z^~yx_O1Zh&fJv>~1XhFzu(6hSxL|R$8{3_(wI*k-U_9zIxpRcHdO5i=;QZi-G0Z z8?TaD9`YjD>|nggE2<pc8DE3i+eTA9#`Yt9UUIKWcb0Wq9goyo2XI1IM47k|?3D}e z2cRA@{3wnQwrd=5{~&%l%ifmQIKJpve*RGE9+}=5=q#+~S+*a0$-=KsA)6!j+El8v zI6l*OzG|vt#Mzx8zc)3c`sD9`&gb=VAV4WE_U)0m$lH5liBEcTUD<^Q8M5?XZLA3i zTe4ayFW=$-5xdjE=K&N%^*xlJwNfv%)qScHO`3sOc!UF6Q#NMJ4lXLOqur>}avu@b zP4s<mi1l^y*@ngdC=5<UFouc2UHbcX`D0z9h!28qpWFT{5`-YP$%gQnIe9S%^V!Z* z<7g&t?U6Z#ekkz<C~xE3!u&2%o_X-K6xd`o30mI#dJUj$?*Jm^r6sk?wa~pJRhl-t z`hNmA-5NKWLXFdO`knJ2$qS7>*-?oP`exX;iCDwo?};>DMl^~afVB?!w`QYkT`;*s z!GxSZbXroM!L;ZmUfnWKw+{l=GbiQBPSuX-Gkq!1Ns|L)VlpcB<#a%*jdSv+9zZ}d zEQS6>)!P-?1bR8elHpTM?kPMn|KgPjai8B0D^{9@^>WnkVZBz@IX*lGIfAk-`EXKz zcoxF*ulL$sIx-0vMA<}!J}f0?bS28rrw2@cX_uFLt_)9@>0Ht$qy_%VbexUZ(Z?Us z?ylVRRk!dOnP@Ykzj<V<k$6;=o~)UKXW6gQhY{9{)O=bPvaw+i^H*+O%zsJ5o@{LJ z7#2yDi5FAnW#?}<)@lR;4L0fGfJ1!w{2BkGs$P&Kg0RGW02X<i&4HkXU}V?0^jvsA z8DJT%5DEm4LL2KLUA5wj0uY72yo+b0M;Bf4I(_Dh2j?`j;jL5@0W3J_;0t&{^pzWG zAiPm^h#^*!txyiBD%LiMv)p4TF0vXC^aC`4Lq#%&)WY5Nht=Qq^|g=%3>A5^VaIj} z1Z6W?)p~Jf_9Em;d611|5+qM4V784mZawvO`bOlyAvD<^M)?iJx8j?CL{8XlyTyqs zZUnH{oXa6p_1BycGeOoy6%7{>dPK4~%#=OI6LA<COm!;qW!TgId{p^%PjZ}Uutj(6 zYM>^S2wT|aGw=9NW(ZzBqC=A}<+34uudxS<68osOXV09;px+ux|IzgG@y8EvN^I-u zbC$YbYH+rADeQakQrd<e;0fryil-Dj2HHw4qO1Op1aE+-sb9j^*H#rvTdXlX7SLCT zH-TC9phk3T4~_7W!)GsYUi`<Ls{79Q-k!CtKWmQ+{9BS_#se)fYH8o;Pk^U3h5r2S zFMN8FGk=Sc-?S75&O6yqIs0u&O9|DKFTCPI_)gW<*l;oqZ?UP@h(vH7h(>0NuHJOh z+ZJCQfBfc~2~pbyQ-|DuJ?=O8HYaT0l9FOkD`-7yo(hkkA4bV@yU()j)M*4$+>{zW zV1NrD_7NxDf(OOmuc9w=Ebmp!<<(~?KcYH`(g4YYlx-u8%7@WAM)I#@`F_SaFLXvS z!h8?+&YJxSu(GP(&aPg;(d4S?=mE1fRZJrV5G9_9tJC!bT%B`nt)ds{oUFzGlDP~8 zO|3M*7xhzFt@5d+i?nk>0^8#eMo|K8A9B6wuOk8v9iIM0%3{Q<UI}3U>GJ1S)^_L4 z9jzR4Y~~0|3BJR@cjMIbuSHn-_1F6sE~k<{c9~HKWN~Wv5>+Z+U%bF(J507HHkr6q zyJw~|6_nI32n`*1PkzgSukp2{DKvnl>qg$7@UycypFYjWj{_C8jMyB2{m4)bacp28 z_$0n(@g`rbI17u_^7A=!=GhWkk0+X&z*gK|x6x&pe#-qRyoS`Ml9b}%B(o%Pm*39b zfmC~vrnd$YgGy+Sfl2-w=<*fLC7#<#KDh(RDL4&wv?L4iWs+2t;zGXd^={55WXJ^o z!@UFar-ioQ&g?I4fjWpJea2isl_@OjDM=^xDl;Q-@_F+tLfT-B5?~!gbxPA{a}<CF zIG8YQGSXC*D|N<JcYi?PLIp2FETr7s(kl=sZ{P^hh(k_J5#s7<z(Tol<%UOOktngq zCak|*V-M~Jqp8zfsWPn$05tKw?|mSjDI{ObD6-Tv)8i_lRMZ5Vs2UfGUiwK60=4Tg zi5EcE84aGmYcA=~=0WdGMujKuY1z$qrVyM4Q7$4#aiyz27?~P^zr{qcKJvyy=A9Ru zaW3bA$&Z2X5CqvJzoqX#|M3sYGew|zlS_(=;Pw4{@(FRpg`7@P_A+a(lO&q@;}D0w zfXRfpT=*ebR<U4c;*2+@Y|38j&&0psQjtKz5joZJ%oyNJ<JB`X9vDG-Ym#G89BEy9 z98#!_Zgu>?;;!Q#ERv;mjBZ*t0ovT-V_vtA(losPV`;Y4KFMeLt<&qWx*CxfyBTlC z47A*efHf&Z9{oLy3mHA&CA@hWSb$gZYTzd9bfUQS$4?KHgaBamh`2?vyNaVYaCmUq z2ZcR*_3~q(`w{)uuU$LVi&FgPD$5t#^pPo&t1^w*t048v><D@$3DU0a3!{a;57DP> zp*$Mf;r7(HO`B`U^O%$~n^VQ_0+D(jY#dDJUi=)PAv(MtuHhq6c&{i9_o|0eNO~JZ z)`54H%<Qn~{@*+|xI*ck4FXtxT61e$^V;CO^!*P%3{R2Gh2_@i7hZ=?x=l7*+c1fo zD<M=Z=Tj-@nAdMVnju3e8W=Xp_nZsCGd&g4Ia4^HSFP#*&vPFgDcel{u0F{HXA57w z+M>R~nZuY(%|`Czw$cXkx8Wxoo3K45a}-X2(Y)iqb2^ZI<cC{;D7TT5IX*uPcd>p6 zG#ID(*`q&yk<(|Taogq$a<@epdpAGG%xsR%S2S8JbyC2?nQy!+9rC_UqjfZ$m_ODx zSwrBJQ5&9VDO1~F%ESX1Ow5G`(^zaBXzRU}r{8EB{)m~Lt~5<G5n^PD<Ld`i6|JCB zQ|ZLBlD0oOw1$<I!QmGVbR^p-qHV_EQ+G~m_4GsqO~6}Eal`?+kH~8E$5VJ&LF`C+ zRr}=!d2-5Nx!6Z8ZWUV+Gh5<yQ#^&Ra>)I)Wry;#vO+ZKkf7g`4%w7D=g$x}H$S)u z6>Es}l+<Y$h;XjwTzE0X;g90rM7aWh>SU7O*goMnb>aHGl8F?1xp|p%ECRRvIgY;5 z9@roHe!-y{qriz$K;)@+y1zhDtncyUxHGB##aH)M{IT6W*kri`<?K8G*()xUc9g;j zn`RCp!VMDL=5p-^;4!fr(Z|Pf7311Xg0Cxx-_NGyXX;1?f@<Iz`25=#IkFMI7d_lK z^pF>CGlXh~^~f_ZoLK0iq=#;u<ohCrQ&wbqZ~gNkj$xiO4#YX5V>H2Q&GO|&OSlg) zlZrU4`WR_W9roglf){SDBWn>cz(_)G>~o;?CT<r`;$#$9H6Pe7<S>NEuCd$avSJ4k zmR&czAk|d%!|Ffm{-Q_|6V$0@3U<4%?xRwkKC1h_EM^QxS0WV|8@mHJjA}+cTq8fA zj{FRS;&7~l$Z6sYA)M9pQ`!hOE-qQ(XFp$hI#9?1AZL0HCZipdUkQ&iGP-vC`bSA- zJUPJS;9_$6pP%kslRlC%W|o({g5>M@{`>ETOi%3!^l`hB=1JuNt(dTQIyGL!ZJ6%( zgT6XE7aGi(kT(TVEiurVMu0&hf+gzyw8gLiB2&Q4=~|TQdJ^_82+zslaXaNlgd%OP z;$cm<>~mv)+VWW8rj<z(S}xNg@_%(yu`XLhxP3=S4&l>EOqXyas@U4TFs2?1g#wCD zc|%;AyUIogqp^kmn~|*OlXqXVDQQ)!D22mn5Zwi}H1<J{du+@e^ZC%zGyW`0Tf1Sx zCzsi1)K0F5wm)bc5r!i%oy7n)n8Tc_+Gf=1oRCK3;PvhH<=#!Nhrot<P;<Impm$`S zyYpT6`Ho9AYXj17r(NC@Xj)!X5T}bS?T(T+nUIfi0fgN%Wb|MM%2HWf0T6FBd~C4J z8j!K2lYFX?nQW#7&C~IU(*!4U9m7#fyD;$--l+Pe5<hYzc?3=EY|ob23m>3Iq2X-d zYde;TI<pE(FQ!^pRKNS6-6blr3G9%bMtjZ~=faDvJ;6S9uA6{sW^nn{L$z_PjLTk? zN>9(P&t5r4qE{OWCvv6D{MH#W=g;p*3oxYSbh6H#u|BPjpGn`j`Qz~L@NGoQ+VmY? zz={}|Xix4MNna{zV*l_OFL)xg$prjf5={Xa2+oFSO+aYU1Vg?gV#YeP)!sRIm|}7t z6dv2n)u>0eP|j{8y&IlVFR#jfFomyS*ay;;KYCsaM5RfVTX~Ynhw{;<Sf2g<7|Xjc zovAc7MnWjDwWdDNW_@sp@k?U{lTIsCuG|rhge~23TUOAmMqgJs%S5e4ku64@e)@Cf zozC^@KTID-cX+z`@dt`{(1v=QORCkYH;pV@@8DcW#pH3jm~1pVrG(HQ4r0d4ok-I` zcEUYon$D2mZ2n&Cvvm_lv3yc(s9L7bKhVga*{O3^zAm{^2lI`hOL;5Lcn3~6GwWer zo`*9du1|)M+$ZFVHA;y$+zrCtM2aS7mjBeQ&5NI43fdODGK~tjUr5%THC@}%@;kM# z?zuS`<Aa|p=@V`BJ-As1GMDxec7|kug6aeahwF4|2gl3{bX8quTrEGk`>XzuVc%b4 zJkW!fovARCnvAdo30n^~JsWR$x0Nt^EV_NZ{o8WHp8V)zraTOkFLQYPHIEg(&nQ9Z zBua#EV{)fvG*rNom1jC%gj%MmWX<^<G%l35YQ!V{2Azo;F=w+htq(+rhwnane@75M zHIJ39W*$Cu=n3D@w(5iuS2m%_3%~S6k&7~<yHp4OjGHOxa@24~@S*FZL2^^c{Kw76 zXY6&yIXjp^)6bX-`Ris#Wg6^MQ^&flrc$Rm(c$}P(*c)~$G~@x$4ddfa@Z^K_L9is zfV${duNB;+$^|&5Uby=~VG#$gSSCD-K$3<ob2{^xhJ?}Y*MGobx81zr_UxQlhuJ=< zr>3)}F;D0$f13VXo_){C-HSll6P6o={(z}dvwRBiuIfXS+sJMv{!Z|kk7|m1Mow+w zYtRr?!&HopEnBvfpLBNqzJ8$mU76WbzH1Jt|L<HI&(-_xA|q{yB})2azw<D=xa8{} zNDLbqWY|W{QPqI?W0+!=hgvEXDj3?&JU=JDZ5X>|2uG;%^QjlfpVe(p&s_etoOX}p zpu^Xob_iLT<^!oN0h6D`k-^)@BGrzS>X+9I!2?BHAAny8q%{7*EB|Hv8-gq8EMrA% zcYXLbEW{gPK+#9Dj5+ZSi*5jTb~icQ<hH8rGiX6P;edwkl?kh!X>dK`$u#dx^)<>Y zVNR<nRJ^pe8daQ(wkuUiAeX?kx2|}}R4(5<dib4DrL12>{&Gh#Z7ns<k<LxOVr$0e z+5WJ5=~kp?a^?oRPN{Y@;N0v5HQn&T4zw)1b1pZ>pS#d_+w=_or4BoxJYK1>M}q)R zR~uH(<Vdgf=`s2c#n<Mt#v66)c&f+dyR`Ef5B!lw-XuB4<zC|FX9`=}Yw9i++#E(A zcv&os*EyW#OUHE2XVzy^@a}}y2kJEjs7bJ2mqo?u6*e_zXZGml1;^|+sj1Doc_Ily z7mQAkz(x8NN5*!9@6zOPRZ`?I*Si3!UdvY-+tZ5>07;xX{@E!=T^d0-S@CqW_3f6` zrZaL24*zjjWPyc~E`XXz6C((mD6{D93qQR0<>ZF>&JsQOs1x3Wim0|vn7X)Jc>)2> zKJxtpw&q;u0hS**adC;lqJ&Fp@`0t!Y(lNvoW-J{N9WMy#jh>CzA#GZDO-Ez<l)p! zd7QjL&lB#45`ly}lrmOto_z8kZNr8Kix)A-TpW0;cN;`Kx3Cyhxm*joc#=x|OZsbC z?6S0p3#w68B@z#VgwavXB>=b+L|Tg-2A)yLsbT|%)2TiFV{ksu1uZjV^TC>%tX!_+ zodsVCNdtMG(r)W4m+YaV+Em{1tF@I}hoQAAM^U#p>cM4-7V<*yARmgTqKKmJKK!_{ zcUOLD)P#)#G~5hF{03crG%#S!a}RH;`6X7pP~sgbCv2t}eIa#Z6eu3#gkWT&(4y(p zq>xoVot2%gSkbZWg0<zNKDD~t^2Z&HOS%p$q`764@$*(z|31z?7mXl+!l=Ae=IBZ$ zR4sP-^#B`5d7cK_Yc$vO=ORB5`(r6w57O`B)_&6rOTaM;AAU+UVYTooMYd+hsz!%C zlY8l^C^%q+8z+o=u#-;JZth_w1lvRk^!1Zphxxq7sgOuZr+G%nN57PW@<GDSTVHrJ ze)mLv><S6@(B*^PGW7zmd@Pa2L0=KbpkWWjTx`Vd@m_uVuKcXkC}F`#)kZsX>5@x! zNc}z>Db<<jUvxPsqaJ!l>o8Jv7Gf)b1v#!O9p+=9RG7U$9@XEW0NZwN+5Pt{)>Qs* z*o*^wR@caqPtG?1q7pZG$dOTjlnL^E7cnre;tyPEApc9~<0{3aoMng~YK1hq-LkxI z=9&3v0|=tdg<<V>7fU=Rb+!OKbq0e*p9>ZF5oScn#`|~bUdJ6_+Uy^%v%qo+Bc{3t zpb9H4$P{Vl1`2qBU-Y63k<C`xG^6E#o4wc2J4>yx0S-8~<Wl3gjhF4w(_`V79N2~r zH6hlmfz`#^;$y0=dX^I!a%+i@Q=X$d(@f>d#qZd|d-(2BO3|cnJ+ZtBSki@@i9eUT zJa%siID*hnYF58xw{muPxRNRNO74g4+9CH`+=?fYEvpW#a=0U=X2{%zfo1odlNNhX zmCA@Z%nKEMsOfM$z6w`sjyNN8^!705mrg=meMZ<mFG-!hL+g>Wbr3-;4|-MOGpl)O zgpIWaEEXI+V2t1Em7g7?VZWBGZ@)1m*ykg{!+RUiOJtY)R__;@auZh?PAr&Dd5xy& z_WVL_$eM39f90*_vc}ajO0i1I&Jgb5Ug)g0JbQlFS?_u2=rPW;YiQ9e-?4l>rw>F( z<XUzUb~5;zDJh|c{k^m8iTr(IZ@-^-ae8nT@E@4%?flBaEso^ev6@7%Jsx`7@7%+k zpi@<f-W!H+$FwPG4xZIv>dgUI*@_|TT!<FI=rDxaA@(8;WnVzeI^qBC8)xTwPW*i> zos=(@Ew3701CO^35BuN!TA~t8O9?*`+RZA)8L7*S(2X0sOMW)dpF>ItE5}jU(zxiU z8P`*zf45_X0P3dc!P7=$JCccpy-xF!lcfT(r)<O|StV4Ntmg&jADWpH^=)2L$I1dy zd*p1SYSnY(06li*gFi|1^0XP|TxE$jqkTc88tQ?NRb9$`bmsa{I`j>1w@Lpg+a<8E z5Rb3J7M+v}b6COSgPfm>AK4)nNq8Nb-Ld=~j$)G^7SjeOF)rp<?SccNVpY94pC!Fx zp;K8JgaB5}TX=1Bo@F5OUsX?mKu_{}Nsimw2(bR<TKcO7WLcVYkbAXVjOB<;uqM?Y zXZZw2cWit+?7?$>YY6S9xU8#@-m`CoJ^!QmvQ65<6g8uF@8ncJ2(qgB69LJ(#`f=7 zWYmV-z7|;t-9`flkAmT-;z5s*;Y}e~#^2#kUPzIqACatS8ia_sBvpdr)N>~Q9OXdw zL?3F*E<T#R=T@`YzM0mXLfX^Hwj>_pSSQd1^|%});hSvju>>nsHcJTtvF=Nw`wGjU zL_q0+)rsJIN}L_zuwNWS(BD5mQ%}UakHT~>_w5ihwTR#vhajOM4Gw)4<+w~7L5e?P znf2zz#9=uwX~&AD2w47HDwNiwFnfHX4-L<29JPD3GQ`g#uW<DmSuzB&8ZDkL`2Itn z_;AsCF}$#h38@7KM~58;whZ&N&so|UUGx}yF8Iji?M0^~aR*<b3N<8HzA1?ZE?!m7 zVFcQ?(CCa;oGnbyzTl#{0Z6qn|8X~;iG|O;b=#L#N2^bB&O|qr0|QWZJhWFC1o&0R zu#%}l0h!y>50}ucQR`0L3`~5;BxATn@zH@BAeGr!=Bj13XH1|HebVC|yVKv`{XQZl zR3olK(ATIf0P?N=tbhTk*0?kuxFh`pjFY^$@SG3NZhRZ_#g>`Fzt2B}vXXKmzhwhq z<~)?mm&XsJg{F2|Qj4Ro5Fna1&B%VZRmX+~M99#b$~B%lDu;0iG1FeB26Ng`6EwJf zYhHdX#AUY55blH;MT+EdP1Knq>s#%_NL7r6SP&Dd$VH!d;A>ZPbnk`GuEk;i*l>Ct zte%@vIUO<%@YEmQIuoo}7*rUnl~&h1Uvl)0OfAuYH{-7F+(It?RQCQQX&5iBh2C&= zI&1-BmC^o8jy}psl*tY5*S=)Oocy%+3{h(q9X+-K-#HFQ8~0lUAFpWz+3TvmLyFu3 z<ur&5B-QH7*|Xa*#lVIz-X3A*oOxG!eI9v;<E!8mHnlcJm8Vf_;1A>txkhlFgj`3p zEJHefp<?)TQDFg#@P;AgAKgaSL8l-kUiU0Fw>>#=J9YA2b1Y1qmb4huH!jS3{{8fH zcW}kN>?ddTL=-V-YIrmF08uUfB+Z{{xs?<!=@9NO+a7It%43^EiXD!-{Q_@q6Ua*U z$q!(8E8T#iZ)5&Mv)$9UmDuL2AqT50+c9v(GleA{MQ6#as0Cx>4rP#Tfv){DcSqsv zA;pVRY|^sbb7bw7+;6+xIMDg2AT+C>bXe2RT*v_q>hD?abZa9tuNsX+iAbHF<Opvn z<vdei8UsdzBVeYpauwv+YHK^VJoFZlCS2We{nhK&TQS!8{X8L@yVU%8XuXLg>Nj(d z+}sa#uD6+=KN9k~an!t={A*!8u7tHl85bNqo{;)YBDFVt*F}rAv2VAMd0LLh8I!$4 zSzTXnH)m3^zBKW#s*qyw$Mx{Z2@B0He4Rcs*e#+`)sH_Oi@p0eZtzvt{tgpKSUg2p z3_qWL;e2Wg@L|=53)qFuoK4O+RTvBJ-I@8##hpv)&*sUd;RoG@mXR%Xj{6`@q|tW* zOSD-QUQDXK%Cc&W8e1NOmYf;G-sww!#B|4aay41O4A@R<<WABvZTHMx41BZP${Azs zm33rccH~UzNPBG`FokVSo;Rr2^WO`*+D8;p!mc!R5ggm3U%Z|3qLRha)QL8YH@XLX z6;y#Tj?A?=__12ZyiZx*5g<@H+2pfx4_<h6?;}_MU&@EbC+9yK>S6WhckW|4cq6dQ z4uU7MVe-A()JG|O2MNKXAz)2YQSOnPo|<kq?PSGE)__)JN=ik6;QMd(hfux1s5&ub zihmtKN*uWgBNU!lrZ<N;)2#p|X~s=hN+C?96vs01p)OF)j?iv2kCU6>oLKJAl7l#T zu&eb^5U<j|&EzrvvS?&J$D+i9)s9*OEK`-Ztx4LQy)E<4P5oEk{nWx@FrxyxA!_1P zTg83|B4HRPXPp^efVC_Y&tdMg^;}eQ=800X4rNOXrovUvT$LEsmxIsDnn(+wIe3fO zff9zQ55@9UF{3n+(n4JTMdm?ai{>_Q>}*j|PA<mGm=IM<{APl>zWWW@WTFj3ug)KK z1x5*t=O7pvkGQqUlYpB+<hyPzs0^pf;--XGAE9Muo5_X5y_X?2titS)!`yz2X2DTF z0bh+ni7C}Zm9H1Ml#*^5b(%1k0kLeejpzgMECbJW8P*ndv4F;8XKfg(HeL409Jd-@ z;lYDZ8zA_;Ljvc=zH8S8C>;PFlI4d^d`J*>oh5~etpQ#76umtl<gZ}nmFbx7eth-Y zjnQg$R31gNifrGTd(EG_b++?!GD8g;`=T`ip8l+8?#(~Fd9UK3IjyMH<#i!)_k-sQ zjB&;!*kk+SU)XtbnB}6LG)<}`=rsIUWAC<7*f&Cj-=m_Ul4jnufURf`^#PzG{X)4z zOLy#eSW#qJc37!&@oD|4pM55%)4uaR>-ZwRR^m>h^2LQKJgUHJ*RHkin>&Lx!MZv5 z-!&qq=-1CA_gHZ2tFOKaWG5$F?Dg!`xJoSo&QcYqU<3LtWffG4Nd0+@W2=g0_Pl7C zS1!{aRZU$cO_X?l)Gc!OkU1GHWpa=iH5$+CpN=`-!SbyfL8WS0nTZWED#0EdMFs=^ zAa~c9mn}c*Q>(H0Mmmig)qP8}H1!|{XSh4YH%UmR%XAuc)lf!9r>1@_o9mqC+z0bD z-F<xe`!+jjGyMpv>%!EBBo>1vPoDhOyMFd-MrWsq2o$CNp`Es|gXa);^Q7%AX|Fox zK12VkTkku;+V)<GWlI14iyE$4Z}I9V>Kgt0zvoz7DW@4m971KcVr^p>*1P1)N*lLK z+vwXKWnH<NZre+Rmkpx+&U*d-K<F@Ci<lqPDYa&p+y-n+KeLGa{#@_}4PN8m`>0I( z=z$}I`7ht)g*4xhNm5G*|1hhD`S1Hl?oYL|6>w{u&n+Ayr~+>us#?AJ=I~OTWNanf z`x<U97I18fQIhvenI-ArzPaXm<l7!a<K;K!c3Bw!F=lo*6MTIU6=vFuJwB}LyI&f| z4e}+}Oa{+EX*YLXHPc1-wolK_vRH5okYO@SGr_XdMb)ZT-w#xO0K*<p#@KZCvwkvP zG}@2mI|>O)mIj(eaWt1?+#xxOk_w{r>2E$Zy|T+ok={Z60~s<T0@GnHgse)t6pr4J zMIOTLLbW*h-^{G0rJuvsDn~v6$E>A^kwAblsAEGe+7gIp<3jUY#slWu$NOdj+G*5o z9&PXD+){Kf1Mou>GDEETnyqz%58hF?R6#e+?t|t#YPT8dE5$KAy~f*)mGT%wN}^sh z9-4`#RR<V4@-A1eh=%ko4wc88z2n9&FkR!?BLg5Is};x6w;Wz((kKN()=bd}0MjOG z*aIbth#I1Laczq*p>b){$@CW8f_6d8rWH7aLP4}z;}xEwv}#t~x7dxtspqb7JTx#! zbEPbn{4;r@j7C=vp8DG<L+DQb-0roSyl2tii7rN(a9q%w*{TDTZC?(8U(yHmopkJ^ zbepnfGMs8JjQ&hO3PDb~d;o20J3G6RJI(RHcXU%MF-QVkg(PFtB5x}KvN3@2_;&(< z6qnp^qeC|A7x_7IpPP{~t8x*dMe8*0f)59e$+_V8p542RJ4z*Di?s~Ns1CyAU>V-v zthF@o1U4;Q+G}~l8{}KE$rsWD=#j{YFCv0mopIOeWAtI89oV&NSGDQp2id@ixBHmp zB*DvZaJVM1G1c~GxMahPs>W1T03V*8{+{PsT>|l_*{IVqf*wHZ<PQq2dk7%qwkG|^ z@FJd)RmYAU{X+S&O&d1+^MVi1IW+jKySJNu!NMB#(`AxjXI7;1y!SLeX%SxSI^sp@ zRo@Xu8*tU^T><>YrTeQo_jup;z8=qCVR?CY(cSMVw`Z1)n7@+!!Xl8t9#vhZufWbo zCt6m!WpTR7UtxQ~$}>5gK3idxbbk^@7vNAlNBk3~(mT6gTIH|HMQ?y?<pYNVYNyk4 zclLVpYO^T&F51Drj<YNE=gouE$RFQ>_pAJ8&NP5}rbeatY~GAEnl_HdThkd4?df{G zxb#reaB`<wdrc=wmu8LsDDP5v^T*~zV^SBsFK;`D=~id5B<)0}7Hjv3>0`Pj%Mpg; zFGwP9+(2!gi0=+Fo#7$bZzaYNsI>0NB?J^p&PL?+Bjo}Liz7e{TDdS%7rs53DiV{C zvDK88SS%ml;5}TT#0cu(1n)5)es<M1e|+|1(pA~S;k+{d$UwFr?!C+xKf_M)%Nl#s z4xxTA&EY}eet@Tp9qsJ5t~SW>-v=R+p{!sq_Uk~v0D&nQGNHZ-80tG0cZ~8^U>6r9 z>XMa#IPS_&Kw4399P4D?(EJqSjr0*P;wG%+ny<J#KF%Ne6+WZUK#|V0ioTcZsA%~h z(o*veR{ve>nQ@a$e*MW}c6Qy;ao?8~vW?xKdZ<A~mT;u-NL5(Q(5xScbwVi?*9Lt7 zf6%j50Wd)9drjL{g)*KYjKnad^)Lr7mK2YaBcsUe<ZC8o0Ii4MMy7PeBA`?BrQQ*A z5j5vY<D#j)#bTSoR8W0+V=m~#6yQw}MVgK=Jrg_(fQKw-HmfB?yK3g!6R9*UpvnD? zcGaA9{5K+3DONtKQRCI`ng7I?p^aI*>idFC7eTaff3ZNv-ij5j_>x!}psWlgQa;GZ z$ysR*<rW_D&iSlXttmzG*}NwvL~538GoW8%fWExEN_f)SKQ*uBOMh;W4jL$l=o0eT zQA^PzB{{(VCHuDtrkiT9S}MsNUwtK@aiBMrL!_74e|a>>00BaQl4A5<qXZNY2Zf_Z zn$6mnSE_xrSW1Ri-39@q2&`)Ikfd7~fI%PA&lbn*9kuZUR31P~2^8ROb=9zzO7(_o zxBcBEqgw$P(&bmLULAm5^){E9L{Qy=Pw|&DGzPPvouw7ovB4Zi%*H3+PB4>(6wq!Y zpPaCAoh3FL1{WaFcBa^cxqZd?4d;A9v8j2TDzT(KVFAU0S&F>G9J!=-O|%3P3&YcC zfQXJcyTT$TqxRN`Dc*|7g6NXl@(M(tXjzQV^lr{!WDF2(32m9=wCaSickS%8w%1-5 zFy{l`h>r*p&p@fB(9}|*Az>hF8j(7r*^oI)R_Q{(gXzjw=U+s3)(|~Qxx|Su&9lcS zwiQg*<aZpsCd0+aO9k1F<**K9k7*$!bbjmG$emnEuS53A`1EbE)ByoGZU9{s*Y<bV ztbm6zG>}~QC{ik>6O5O*yMvo{){I>NX@%pDw6<7NyQ6#gOM8<3OYb!GOz1^m*rS!o zM&~SDDpM{!LfnUj!U?Oh)@&%#;GqQk6`3?E43y64gY3om6R{|EWp}DI1qf<2{J!`p z1n&fZiNju$qWy1NHLvNwZxw||rF7k%&w3l7HmK@@zS24AzG}1}W*RE1q6!KkB9M3d z@<CybUcH((Yxa2EV)MJWd?ecwlGw*UL(&~Mdt*burZZ+egKZQ@-qe&qcS<N_8L1{9 ze277?WsF(v@F%4?wzsLH-m8I6pDA5CEVI9{wySjN5Q~N)KyL4q+@84C$0(yIiI2>- z20$sgI*QH)h9GKx@zq#tcTV{V8-=afbxsy_*r%;V*(I5b4lOK<(ir}aeg_ok$oK61 zLREaQ0K%r%$Le+=at!a0=5PB_B5@F_16W`7S2GiXC`$vJMh+|2<>3cuVDW^;$IZ)q zq`qN%_964{1ui2*L}HtPNBr1)JDE^GA`!QWXWS3aN(SH^C~^lmnZw=MMGE+9+NQ=k z{PN2$k+sf2U=Sd$o-kB-naW9+h+^!<gK%^9BQvjzn^17-bShSdn9-Hje@-!f{;}$% zj#x?Npl7i?S_;O=WT6XFCvti_|7vM|rN;`c^bxdrR^846KH&F)gtxCXM~ntudNlMW zhO+%ba31$ef##M=2{9|seEKaoBq3$%^H2X5^s2)g{hq8wu~52}yqS$mNv?f=nGB#K z@2*BE#gYmXu`*@5tRZG)CUAA+l*n<gWr8<Nhe3?RA%#sz{;W=&?L&^6uQ^s#?NpQ* zhESzEWQ7S2$*o$tnKOm}Yi>-9^}*%?j>EZ+gy^Kypg1<}z05CinvF#EeZu=3MzNR+ z@Os|wczu}tLpTHFyhsn<()_EwB^8%%>sBC#5@z%Wf);4bDA0#Yw+Y^U&YV;EMtn-# znh7#3M8r6U_2D=1)(@rSRWz~XU)fHkd%U1VtA)SaUyfXU89i%0YVND2;|wn38aIG; zseYm&Bh6pCPK4<hQjW9~`x99jO_Vqm6vL@o@DmET#CO9oa2}IFX15%6tXp>W{I8|Q z6CVwtx<dK(?dHq5WW(kB1pNhuhGis7Np6)Zd(iBc<r}u;)W0n1t?cu!(WS;ENj;vF zx-h<D$g!KUK&RS}qhk)Eb_4M6;7#N)3$lLqZH)dEvG{my84Z6EG=J}&r2%kM$_^Sx z58gcw5i^M@uhN0t=VYX*Bf4&rCgx{517n_yTZqR@0>%3fZURAc`t>z$khP&(C>39z zKHwPB&7}R%m$Q2IJoDQ3ZGRb?zgzN2A)<P6P>wh=YcKM&LA!fYAfR>=04Rk4K%{#_ z>87ipoL=6APyr3GRCLm3jr?c?1;t<}Wb%Pvd)aqvYI<hA-?4uhl90(|#Ge^pY6OW= zL5R(zpV-NSo{`DR-swGXVNK^lDHo&*k_87-pCEopaDap<G3gWY;;r)|dn6GbM`g0a z_@U%DHz+_<dvP$$FHL#{qBP%;0-!6lCV4nxpcaWpOK^W!=5^>1Zqha*$I@{st|h|A zgH&w-4K=e*JftpNZoU0%IaS)%uU}s(G#M{i8Z?v;d4@XVoXn3j99kJ9i@!+|bLKar zB5n;f6d|HO&q})*SjT>r=1Xv}&YM>X7%lx%z#qJ92!aU&65R$4g-rfcnkcmt)i~#& z%%9iSyd$ux+!(E1XUFMxHZV#_ui>=O*M!7VmiwD;!wcrrBU>Z&Ni*RTGiJWC+bxVs z?NK;u{;z_W$e?me;qgPEm|1#_0&IYN=y$3Hp#E(}1|znju-46E78ykT0clA48{%@M z9ICNEk@eb6T+U&!n}~7%$X-240TaF`zo3LM+jagtvq78hpkCl74$pq83Y~FF>Ga<q z7MP%UB6vob9bDjQ!>!Sy0Py5>O6K`%nVV!CQ$}2tQm33e41-2gG+Ae(HTFmxX1;$M zQ$srO0bTtfz$T@v<6LWG5DN^_X#)V%bD_bAqFIgo!Jk4r>zIG97s$tIg8PV)x^?Ot z!naFM2{Os0mKjn9k`N67FRC^j1ySuqBo=D;;iq^fyDSx1#fAR{nBIYmK&c1~mY?O1 zLBH6#-YH7VMW|kBQtgTVsq}n&tmNl^%gFtA+YE(oO9F*^)95uJi%V@7&W;&0XwY&f zP5NW`!{4%X6|iC)2k;OkQ#Zqro_iufm^uW9JVZ~ZaWdBx^fg;RMV2}*nN5#KH>S`_ z5_=s}|K^5S^XHoq7JMWotT_eqP90i&vyX?06b)J{(`kSdSy%dXC9VA?pmU?1X7D(Y zNpSkJwi?Cj=dj5HcFU=`EXqB&e}Db%XHpEME-AUakCI}VlC2*r*Y`iLz)BcAo{N32 zzcjszg$u{W3Q(Sb5bU4SYr>+`IQFWmcF>vV@kFn=`^VpF2Y%t)$7k2_u0ilngy!QA z)Y>5XIQDVcg9+xhH5slQLOulTQZ`(w#=>fkr2$SJwzgS{hMKdSwl*s}cyaS<HJ+}4 z3_KvLGyvW4^oBBd5}5HF)bQT#>l%UcImP?KcqJJK@M&QBNZ<BK+Fn7g2VKCs$tz_a z?U28`o0N|6{PuqPLHQ|!N6rw9)<ULoL_9GX@PDNmCi9?n7-7pi2woJ$+9pEj1H4zo zTYwn)*K5JzzrQ^GI?B+)5aspR>IBiB*$+z7xhzJ1Nv6{fi0?X|K8LD^H+}@Nl`xU* zG5@V&vE1x5>x&(qflzAMCaNn<w`o{rL}Y`Lat+~^@cU_ZH*47Nm$aq#%ztaPW@a4x zW}Jyk=T2F=;>tDlph+meqO4!wG#kU!&uQxH<*7}9)}WA0N;7rSMS80JdjHdOPvuNJ z>Nmd3Nz|Rvdvefm;}Rx*w&I6U7-GRxC2{J}N!80eJ9B2{!zQNRewDMU%DvAy6a}1= zc|<xco$}KPzWWN!`X^<OxW{Ux2$YfZQg;&u#t<?3wqNE=O}^e}KDX>XQ!xh{T`qja z0Mg>*7KQ2GXPZ8WN=cgmQTyAZ^?&`P=bZV^O)F~P-}=F3iiA$9jOJenXsH#)CbnJU z=H@0x7uXLB0$B6T7X#Mo6aN`lC!txT?_W+~Kmk9XLl{ht3`N|A;63KI#niY(_38jF zunEg<_KX^>D2n-B7oyzUR?0S$+$;lz^89za6wzIedvO!@!iCQt45aFjvCKPmjQ1$+ zqgR_h=WaDUz-i3CVSf*=zZ1w)&>&HB#}>2i<E3ZH%~1V4f_%NnQh77$UvdSpUMaTB zwK5q5Amyx26ve4`Ee$lR)^Q-xzT888V|V=@O#9QHHC5AinJQMg-j)U&aYZxJfHt)X zA??nbC3L%i$2*6kZ}a;V0qdY``_Rdkoi@n)Q7*HOQK%u+U?)?_UUnJKA`{^5V25F& zHZmE+2DIjfSc9G4zHSD#g_BXIDk~E1#5D8`C&SpNl4?{f^MBQXxrew5lDc0g+o`j) z+3~AeGNAx}nC_YbOMSvv!CxjNA@13}q4dTb*NsD=0%^4$&wMb&9&pF@cf8T0H&#;? zkNUTDfveoQe#3d2itR0|lBPGKUowRN`_~WUE(&_l3!=IB?Hb3taKVEA%7Utn-7d6P z2BSoM!7D4=Hf@JX_g50O|Ml;GJKuPw3|COnlH%9<H2{D{i3)iEFE>m9oc8Yu`(wp> zR4$PM^`|#*aPg}@%U=!;528R6;!%c}-n`4hs)8;F7~nC|FJl0^O<FIK(~&14G)gDx zK5Y-#4M>DZRCKW_vzt+bRl|c^{CAW%wBI*ds??CT91ony1fQM@U&B}wON`Q9T*wqW z(5X|w&u+9ulQx!i7kBD*K}R|WEUoUvt=l;lrb?YqI&gwSJYYc<P6qPeqku`k9(ZAD z-rEj=U~#9_Z@t}P?J8JYO457&pGC@(TIWa?<l9ONe0eEP1v5_5OIKGnTNb5kG$#;u z>nXUfEyP{pMtH{6qyJ0l60qPFl%z~(IoAbmVZB)XNG8rX{rksMn{H|}x-4(^+_%IQ zzv9nD8WiIj+K9%1fP6^s!@>w6>5r@zQ^UlZCmt0b4j6oX!OZdj<{*5mzF-sJbsF9W zSa#r<>n&L<I<p`OyPSxiD%d&X(6FDy{-o`E9Sqab010mWsZ;ZVCYc)r$I7!E)}j8_ z_&H5=fos#yK&ndyvDKyh9VFV82CgmG1A+8$dX7{2m!*^fG?mr}!-h{Wm=23)A^Qb+ z%@O#>O+34}^_|kIw8;6Ff&|AzpZ4FLGvQub@!am8D}Y$2J$dD;Q4j&BH2TN;BRgjM zUazps^tTqV|Kt(}VnpGUdck2JkvC;9uHsEB&0xJ#Z3R4?;IxLU@yBHWthL1QX)+9` zMK7W{?s&&CO@}d?UT^{@kfnh_N`t+4#u@L_iO^F@Wm&O&mr_xBWL#Wa(slDy0V;sU zz-2I{|251%^!U+m%X}`q+wJ`?yUU|`5X?nODLW6GX6r;I7vkUupjGN2`2@6!;6~>6 z45+|@gNu6M8u#f24Pu#_5kBIm7fm<!=_z)jH)rW!D-`eJP|>)~O{=5-m@5Bpt)Z zc4p7(VY+a0eV~{rS&xE%D6^7gayqHD^FaJrmfWlj(!PPoX_A3oc(q#?D_Y&Y0s#mR z;vazE8>Fdbf2U_1FyEZOKW+;!QsKxx755R;3N&V8mBX&^^eMU=qJm3L^(s7aTFw=v zG~yBEk8VN_ldkljTKh_SH1Z+djitk12cK@<*s)`cPtfV}JMx;;iN*@vH?ytz5+Z2X ze9i*ePlDg9Yu7R2uUm>d06A&^JEH?r#zgA{vh?F<Nq-Phdg)6^Zgpmg4y^nTGX5Tz zc#nwHrfJ(he_0+8z?k>mdryP;-rC%o3`%L26{MCF@8?V#k)j?nWcevnMf~4-(HMCj zI~yz02X%XVAOGbt!^N{*+Mv_~i!x^4`JoNdi)%j9tM0D*yJJ5+LD?44tsKB6JUQ)l zClG{w>K~Av##6;f-C+!&@wBnk=;SkBm~XI4O$85PsR!_!+VP)OuinH|e<;D=#v5F? z9eE7yvTxVed}%>ggTAj3BiJ8B;S`S_r)D@=86db0z&_=0CY4I0p@R7XWEuX^Qw&ka zY%LAg?hRp~?$}<60X~rzt7h(?FnIJ=wg;NrgNl*+9KhO(q_<3cZ+qpt@4nlyp`z(3 z%>4$kJo)t+1IP-JTVPif{Znc2BjU$Tu!`J!nO<%&<HNMSxprLnVJi9t3bjF?_;XR2 z8De=J0wLeRKeCM+PkkX-EvKf)3CM-}7$K~50Be26q4odYb%~8Yc6hpf*+L6=;t!m> z>t?6;vB6UTE3Iq2pv;X|hl!aHnpIptGaH^-Ui?qyz_+&9mfvoF^^bDp1U&24!8vlt z_fp;j{6;YT6oXhcySON*oc6~D7^+hE+HZ_ALvjIiv{qFs(-L7bxdyGO2}S@S6G)Dm z;Pnl5Hez+r>t8pe%u`y&+9%AXmum0v0)oeN>chicxEs*zS%-zvW=m5a!jx$A>e;im zQ4<xK2sk=aW%qQeq~fNjVJ^vuHB;sc!41&+B2Iw$194l#mhkL|JGpnq^mJRfe*L9^ zEq)xDXjQR(*HNtT1j2*M#PirwA7CbS0hzq)B|HlmazRJh(SwM)tY9T}s}u);Cwxpx z)MX?`KG@KMtQs>cw3Ag10_D>OZOnYAfdHAN9Z=VQTp4L$5v>cce~8PNDc*ZJDzKs1 z6I%AolG|jP?GsHG`#*Rn{@u22ZsWIvH@nUs*7=^p%?>Uz?OjWQQlZ=TWeP)>6qkKs zTrqv|$i&2skzLKW!8ZZV=rT^5-edpoU=+(8ckQ_TUs&(8UKlt1zq3}v{xNt0&~(x# zce^Q)!yOA+y_v)Wrvx!0N$|+{uWHH(cGQl8Pni?Lv6a;e`woR;d?)L(mQr(qJ0?V+ zv4U3l(53x6d}1V!Bl%J0Do_}LnnzgkhNj!!ZP6tmwk*a{A4PTf6Z+)R*JqT;I<pTW z<V;Uo<V5_DNfUhErbx5`KQZ^q8w?hiqu6Kt@9`HrCeTwnGr^342Y5>9uRm&259#Di zZ}j-EDksem^3Bj075*>2iu%<xjRX%9m8aI5PqX2=DZC%F(_b+IYBg^wS2*`xulhgD z&5ei0dC2|j-h8uf<^RpR@~y2V-kR_AI<Y1Gf{Y9GXYF#6+o1mS|Aog<NlkEO>uhft z{3NQ)qY4bMU`#u9FMc^y?q}RLm*t@z{n<LnjrOL@4PPwL$(&bD|E!jGvdK}0tjO&y z(F;;<p1Zx_guCC%^R`D`o=uMHxHqTn(89jK`;R*0)b=jex8Y#Xn9%fdD;&1Zt+;=K z!_Gd@c8#+lJ!3rGVxD2|w08I6=z=%+cY0r#o`gN<g^L#RY%VRiL>BJx&x$q1!s=OR z6OKu2mszRkC{n7?TSF=I$I99rqyH?*&O_!KB1JgcxZjDweG|^*oPV)eOmh#+0>zzP zwsK|P;PciQe%Puo34N->&$EFCup0p<tCV`A-OIQzFM3|7=Mk8tvDPZZ=(SL%Cjqg( z{ynAls;e*0AJI1r9_{Xs7;oo4Dr4@+`HoikVQw+Dt86$#+eK!(<;-(UPP~)v+`Az8 zMbd*Q7dJn7oqca*{&t6>s~i?SdEIw*xXn1g>3U189sHqZUgeXb^gljmYI5DJi8uJY zqHA|@HbuW0^}%)knR=cQ$xApu2G|~GsUzwhry(Vf>9+Dq+h|D#Gt`$+gyn*PRjYpb z>BF^)!)vrdeffeBNZgU=Eg(4w52E}MzkyoZxK*p@aSIa}NI~#+CnbmiXmy6B9R-Ul zisnJxZ5{Xe5XU^^1QUlwJMQ9=B@`4jXG3~fIxXhTlTL2vFyi{}BZ!CBaDzxZUXG$t z9?Yi0zjRu=y$jdW?L0|7O7b^!B}?qJXmQ}WB>%)4HCYa!nTOJ+#5{X2<>)~NAJ>9A z$KCyuZa#bdye&D{nmJi}6Lc5-xr>Fmi@mvvMgPZL?0;v&v^f9!8HC$3R3;tBoNNhW zwrE<~B7bQMI5cC}n4wvoG5KG57j(*;{qGr#TQ&U6EeeAra)dbQ(T6!XM}b-%(-$*Z zx?TOCura24c-nH8hhp~tspROTOWleXPr)>+2%o}$fYh)q2t^72U*b<q|N2vFmmbQq zCESD4fvZW|8(6fVvs3Vg)j=s1M}xE)rKO%h!-Y?Lj);7t)K=xaj64*SNK74a<2}7k z`6Uz@jD)yA+N9P9n2CZKhuRn^33T@d-xj%S8){S<DtZ%1u53fQ7ChRsbXw-l&7TFd zpWS=RQ13Ng8u~4~xG%Rxzerox`zMd@KiZC;j;U?^I;XDpsf8#-eJHKe-htzpONYs^ z{hqLtlkC-t)3Y-Cj4_S9Pi3r3z4G##`Rihf9h&TYbJAeA6aT7jaQYU8%=JlFe4^vg zFcx%#EA@^j?!@OHDpyUl!0!GK|Jlj%=)t_OQzfE_?e|~QEGhL=cAj(O{0{C#Vei@D zc-Uo#pd#@B&>39^h?g8ozI>cXaw!9w+sAVNOc+5gcVH?=kOz<LEH;?XNyJnH$r+KD z5g)i7Qr}5ZWT21UXT5K~M#!lV;!HsN1Kdr*cfgo>H~Sm0Jkl5yo_I6nP;fTOpb(sE z%4m0h{IiSlf*9o6BBNx<@O|xbF6OVZBp&tw13Uf_Pm|-az@@6sASMPH@fD`ab?Wu| zr=`C0ETS?KQ$-Wk5-#qYa}NE=b%GbRPLndoU5o*2Q#zpbQynE27aKyp02-WS<f~Zm zc=dB5^ja(N+EA#4ruBZ3*Z~!V?0ziesFr}a&LOVAD*06G?S)+mUOv&Z6A#WTG<CnE zGko&eRcoKoPwY2w?<Pgf$Z6N0ZQIyCa}qanO_U@7AYO_L*h^}27ryk8>3-$g`xKfY zc58_^_Hli#-I)K<72MV`5EY<`a1<3y!d@nO!Z=9tDOoT-d~xrL96#?u;)H8K(u5e> zCktctCgePPp!E{r-OB!AN0)7h{xR*nSJT7(SLQ3Drjg#fd2?yKsxKcnN5zCZsM8;M zyzT7IB_JsGVYO@YY%L8O&4c7RNJ{S)<K*tMxbvPIC7ZGWln3gC)wFeji;rx`F7dhI zpED)!_3&-CQipasd+(>Xvli}ZKP;rr5k<y!l{0D@$l*kj<};eu>`YY^1)?)GSvGC1 z_{g<GR0dDWU2a#9|0l_ij((?HLcB)Lr^t{TfB**!HCdCZ7<e$5jC3NKcN|tBXG3X$ zz|`w+ELv$ZiPrW$p58uaBWW<>Lj7HeX&*pQ`(ukbHfOUT==6nd{v^6E$0wKQsgM^5 zTINR;>W524baHDnPOl0JNA|Z0<y`e?(s#>P>ZFNiFvrnf8Ow(drT3AWrr|!2kXM|4 zv1BVHdTqDjC1ZZvFl|0f^nCyilbC6~Z%Ik9L{2r_uChxc1oK*bFh03IZ_p0+nKsm5 zwu+aO&^F;Uu=;9wKPP885b$^ogjF`-Si&VTkSwv&ny;o@IKp!wyxp=XiAQv;Fkh9K zuyGe?aiM#*f?t)hg)yooYc8EiunJt!xdg*eDV)?VBXdg3am@^JJ3g#0tdT?ZD{UIn zKmOUYE~!Cl(^ib5S^Wavm@PCyYr3sW!U4ycBi(+%)4M*WJd`CIf3!03hW`a?pPZY) zQA=|6^NS<%e{}##ZeLQETGAJ8n@w6t`unp?i?cR93c10N{$9y1{QDeEy%PC4dwk!5 z1u<6X`8|8TNPe+(QjCoa7Pz`5gkn=$9bR<PW?cU}@o)O}iGJ3ezj1{KWIFsXHy}x1 zL)!9)+X0Y=Ebd7hx`H_K#v4TI^U~*@yrA=j_C|Zu_uByVR?+TWZWF!*49_vQ@MnkA z8!j(`+n>33)HnA>PW0OF;M>BEIN25KFeC%}y`+<#n@>KWd6Y&p?nrUo2HIs?H5ZoQ znFa$W4Hu%5M`W$D1>3*4QRn7Gt*qyeoL2o8qFG<6wW}Noed(`8DZ}ShkW-{#!PT}f zKc^$v0E#_V4ZA8L=uTaE22W;!$<)zfVDGhq%EHlJPOnkMFnqI|OypCO(0YDk6jj>j zs`cvmKj`}SPT0BE?5nG|jF>hAP45Y#$FO@cCj_yt4XNCnEnrC70Q9!fNZhI=Zpu3d zG;+zYg}l`U?~sJW=$>U;m&W2xXg%CIX&OA*nt(5JyDkTtdLc1t{uK$5WSueSc7N!( zHZ(HYLd6eh)!ZfEr`OO>NeQp+bWDvWYkNadnjmr5sl_w<MJ1kOpH2dRvwhK|j^pB6 z8=4LNBkR_gxNnFK35HRQP?7X(GZ)brwP_ueYkW<3y-EYlxm&kx#;vZ;&)z8<zcbcN zv31h5U0+P1P)?&D><C_by!aVgkudC>mw(V9;wcQ<Ns0<Pt`*YA>Ifp;k&Lo2fDiiB z)Gl~W7)VnRCxP!+cl|7`VD8EM7niqe2%9e(&P3bw$^A>Z*1K3z?CnZBWj3$|tBo+% z4x6Tgk<<6SUfeq}C&F7vbmRPBsh}r8$FWYHv|z!4<*Bo+i^9H{e$M)J_VZuL*WW^j zt+wPsK<<LmsmF5<T<n+?$zdMiy=2S&+>=Snsn1A0d2l%R`@(z6np{O2eK_;>>6yP) ztkwR}g`K}z7gg++;rU`$Ovuu@{Rv1%pzCb(U?iN3sfhe5`C2yc5ceSM%um8hW2EC6 zEUVEsC@xt?d&Z<2g9{c@&+p^ZODLLwIkPKhWiThC+tu6mrjiC`7rqVL+wWI!T66mQ zk6STB;A+~2Y-p&cEk-58#eNMTOb903O&0(qOJw5Ti1Be}QD#d4-HW(-9Vi5_X5<bD z$Hgdz9GS_I9)t}F>48SJ62SW?kz+5$?{luL;u6U0<jX5iPCl&OszpY&^;4r>XmZws zxPlLjwd!P}jE$PXCr!8@iXXvtF54q4FJUC^{6Fa`WKaP0b1faU4)^z@iT)pdXm~p? zIv7I_V<81rd9sHzWC}D0fz=pO90uU_phl1=P^=}#CB+lck)!RGiCxr|?eO+q4#ss; zU^QBH8SM)L71;;nikt_83W}A$<{a67ZZRuXvIzM}Eb9G@lhf~wyymky60U;x$4Qq6 zX{m14Z-#Mz$`n}dk~vX>q+@xL!-au(YbF$JFnT30j7?6ZaH5!Kv<GmPntkM&jY4QR zew5M)=LC;5Js!7~fo`e(iE~+mwwv1`#SJ86FGAZ$W@SklW0>E%!&8jd>Ec-4c6buT z@({BH?&4vvg=TPYf&GRMFQsn4ey+{%qn_-2IVEKk6~^SRLJ7@bdjKCz0YpJ#!p_R3 zkOwhLLv(uwg?&vE;UFh7)S|wTi;o}##Q1$MizSyGD&qoW=Nel?vsO$u@;uSG$xEl+ zo<ye;Dn%pcN?d3@jl$GMVYb|{^*l-~3eKW`*RgxLZp~NTV-h9nf1Tckoy$#ZmASZg zwD*28E|Pk^y!)45uJ`Ez;rjO)>nA(P<c0buA%7H^lZ=3TeJwOxkIPewV(vxzMUFn~ z4co1pq=EFAh85n<$&XS>M{7-EeG~3K9Jpkt!(;DOfie5MH;;uN0}wt&l}Dp=AJ!*x zH}|8WvMO}g9GiNDL*iK1ME!T>xhpuw?2#jnAaOsxktde)8gg)mGX}|(>^EiSd&|j0 z4-)3;mP6+`m4>oX4li8)Vk_L7(JZ0<h|>+vW^UnYa?14~x(x=<AB;nw^Nvn876tC% zsqma9-tJGt)GUd^IerfwcmcD@+_Pwh|MtYRfnDS3&FjK&f-l%=*C{TkfoxPEDZnz= zvzbAc02G@?sCq=PDf<l>d4TcX$zL$zxAar(3OJrd0q+mN&PUQ%vccY@hXc5$({PQF zCoH4Ti~*Q#1Zl2vYE7(g2eWh!Urf(>UCIAeOb73a7jJd;_ni}&^lAGBXXvGSsW^3| z_a+&*eD4WHah`k+5B=rneBjUa9H4EL;ZWP9f%SC&xdtWZqChqYK2`XZb0r))I9oko z09gEaa$)j9<%y8J#>(~`#}JQ%BcuJAa&OM{<+A%~AjpX|EcR_govn1%wo$11(Hh*w zDOKAo+yBQ=oSc3(V-{stwZqJUt2*~wcm@t|j!6sWKS`cgd^D`E;(>dUQ~$ZxEn-+V zAlQM+|8=0+FL%mSs~tM*SjVieUT#^pZ;o8K?YA0kN0%M{&A*2Cim>MMR_)#upILP2 zT<uCO(f;4fdj95UYLg$@Wo2D;$j{p91$_DY=GOJ)e%h`z@x0Nf(W4zF?}4B4o<(-* z#WiGmmu}p+v8!Np?T(c~Lqq@h|Frk!Q9bY78~4{d4;hPy2$@47WGIw`3MGz^q>?B@ zbrk1BiZV7S2~CntrVtH|CZ$4y5F(9Vg;JqG&+F}8zqOwKp1+^9&ROeT_c_#e_<Y`< zy{~;;*WTNwm0Y`un^{kL)4UF1iX|!6G-3nf-0KQrzb2WvZ{NO$=(m0N{J9KqIgMP} zPQpX0#k5_6x1Ukr^ciGdn(5OcCnrbj2X)%_8QI!jeeZZw1b0TZ2{{N0Ne@VouU|iC zUNcP^PO$nL`9Qyj6EX&dcaMgGj7&QV3k%?nUWEnFW+@?Ileu}AQT5Qgn9OruSv0+w z4#&rVYEzC4Q2raaALQR<LCL`GJi%#{rTI7K?5kctw>4*`hnAMsCTQy`t0Vgn<Rc<Y zt@E$6Te@_q_?XBc&mTA&4gqa_^UA3}Q}*IJnemAKpvKD&9y(`Zy4TR76oY0Q5UGWj zrsZg=w&SH_MD3j$z{Shl_8*{<-B^85kr}~<2+{()^Pjr8J)x%Ogb5RvXduThs7@Q> z9sU9@ap=2OH4*{)Fi7V)o3~oNCiju<8yJ~-`BE#B&-G~R8$msK#Uxfb_Q@0msu&gN zJb4*+;O8{X;UN^ZO}HAYik1hdtG=CeewulAxP`-HBk6(3Vg6macYj1q%5O_@ZXN{B zvlO_$3QV{%cLi&<79a$FC@J}y6CWA8?*1NS`C-HMW-0~Q0`d;yYypEV{I)@81leXQ zGW3WJnlxUWVjv*S*FO@L(E)v=>cxIY{&6&A1SG|J&ep6bgM7M3?3t>jcJ$V*Tj6GY zpw-KS=&rqcr=hZ|R^-yG!b`U!5*H3gHZfEF8Go9@kUje{Li+W)cbB5oeW<R!rW{dI zoTMP!&!=Xs-m)m}vKZJkPXBU8F>J+t!UtM5x)Hm@of9KlRu@B<J$&+{2U)d~M9(=y zHA2ZNf}Es?$G#FA>y-Kdmqt4YCIq%>E~GFM-s}e3^Rsrhr#Nzpj-G@E@h@)g!J92X za^`)8sUPM)lHa_Mho4Z8Un+SB();lF^9i;Us*X7`Tw%O@l&{&YupJz%=TJj>j@kYn z{m4-l$s+3MQ?$a5^)RjvzD1utoq}B#lyvMbFYig&+g>~V%|5J+Qi~YVq~1e^4sE#E zi0q~~dUQvWf|qw}hN5KEA`*|9Jh?ZNl0S;5Nh3na^;@?zmoM)L_&JPbHrJ`XE5zUe zkZM75wvTHd0?<X8L9HCkWvqd)SZjLWpZ}XG<svs=mSf#$h#OZv+-APK)j4s!($kj) zb*1b)1Ycrx^$TkI`?9hl5HBC#%6>2m;54Iz8XjK3S1miwY0p)g(CVm>4XS%g37y@H zjErtu=5;0%{2d&uzyyJ#OeelfNj!@%Z?Y5jz^;A!*0#Yw7AL=ZHyn(U&i_;}eD1xR zxc|#=aa6Ingx&i?$rt{97Yh`KG73b6HARc6G$jx%V|MJ=f#TT#tN$>vy6jwsU2Znh ztIA$8ieV|=qM)rf>7W8vZAoh4rB)|4*|AFFGQ5<#r)LUqceACX2YpcOB={)Zg+cJ{ zta*-g9nm(Ex##&Vy?XU3$d3^(#xZ`*z*P}v44d04oM5Phf++UXpKe)qV@oGCH%D!} z5HoSB+>m5yIfLLBpFMN%93Ku094aimj-~^3+TL-%H(OXl{Hi8kthL=7x9dZDgr8%0 z;UTiG+${~wSAz@e!XS~U%o><`;78wLm*z>FvWRkz(5G*;haV?aO}%2;Zp6fiJxR;S zxS!{*b7|MF!VBWJ{j-DBY;cuO&MzPW>66^zU0O|Avq+z-K%p}}uJZ6;!$;-7{*xz9 zmbOK$j{F;MQwhL5I5Y@<=Sir|m#<%62GPtq_-pPNyWPA0rH7}WZETQ2yX5lmX627L z;>mB{4#N-dFHvMFxsyt2S?l>*x9qPr=uJ2{A$N$q+vlh=Nut5J;tN0`IW=|hH-E~@ zj<k1g-nsJxFeqDPN7ng&4mcJDjPjlQM|Uoz){-SwnU>3ng^yjcWYz2(U2W}EC%<v* z+<=^s2S<$=)0rY|I?-Q-_Vvg_`aGwqCvDHRL>@A}zNsA${~7+nJ(bVe{qxU1+Ml^H z__G4;UkQ_)vAr+0?~|CuU2?^f>tjrBvR=ciEnGqMyTu7Et?H?9Yl_Xj5*q&H%P}SB zA+bcYOx3KY+o7B!kL7Z<BSYJImf7f0yPbrPIqt5_?}qU(+0~XT7DH~tbVXsjB3OF4 zyT75amHe;F!RyDiKgy(j?6%pqZCfr~ucC-*se3ZTjuF|S^dbT;ac-!lFi~Qpi1VDs zaL-``&s;b*Uf?w4b0*_=3W^F~E5kUgcIZYh<7Yq(Pk5qAY1qPx-4~>y{{+{eF|AgL zv|miarO8Cy!7`@_rMf(YDOp*|aT}MxP~|d3E#VUrah#P`T|9&qrpc8a1LQkR;84a! z+yZh|RJ_S7CB9L17n`lywuQgg&!ZL~4TP0-ZH%Qk=L{nsIKzJn6yU;abRL8wrIbt1 zW8=!p%X6u*#O9(QU4Xm>j3;&cSr_K?XC6m&EBuoIlN3Epp7aCkYC{^oEGp6ki*H3n zQoeJepDyp~gBNERr2yR&Yl!-z6czdCMtA=t<#g-by&tA*G1!ldT8o6ocymz;6;Qs- zJcq9fs7=NQR-N%hPbe}*YiPW?_;Rp}YcuT7wKEu!gaQOpV2Uk&64}OpN?Y7UcX#1{ z5}qj@;xk}}3?NAuA&ci^P^>A;adf2Vuwlc>DC|Y%!lZTlT}>d@!4YDh%g1o?(M_1< z*;vT#Cjg)zYrLqYwTV+(DgFA%$yq*g5Zf=9uD={J*GQ7Le$f)GP$Dqq1zo*nI6Fgt zf|vW~#4&TK!rIV!e6hGh&8JV(iwXbQT3WE%VVqT7Oj%UlB=<GqBcoHdT(q4yabhS= zzG<jEH)3Ob#Qmgik}S4JOA9f%Y2idCN5>2<N>6Daqn`jqwx#%wfUNSn_w32{Htksx zNHNk?!U;GSDvGtV6?CsNcxoh$!I6E2&pk!)D6O|PHa5Px+kud(ItJn*+Gx4h!H3)e zy`#3p#%7Y3%q1qn<~gYD$q~n_r|i@P&c|Oc?Q=YdZS5z*<6Jq4<}Tm#tjtyf$7TAv zWHaGL4EYkLi3MTj8I-L}{wf1#DJo7A-Ef}*4Sub#%@TGa_^oZv;y2J{!`F!lNV-K| zukyj;qZ8$B0L}vJBcazl8SVy7EM@eqQ~ItYSyfc2XUY0j7xHeIKN%ycBM7HYL3vtQ zHGu#Ob7Ofngsp;w3msko?p>ahl@$u{Rr3D*2p%IpU@5`FORR1&>`ll_66=5MUG!zo z<Z%%u3D2eQqzEx_9h;umX`6{%Pf@Wgaqnm7E?=hHyZiX~FnU>2?A{?0`4E>fnMj-R z@4p{H6cmO8=Jm{;!YA~FG*$KGJNim@r;v<7Ieg;D7k5*jK;@k1rs1v?Y#gHnX9|_C z3|@MHF=nnE-Kut4=SlUz8JBOrN%(WHFpK9r73%`N^-Y0&7aw_Ekr-Dhq9q08xYbws z(nAw*A!s|QhEvAGQw}-~q-Qa6S@Mv&>^Y4@2&@BEtXLr(x{#;RjUi9VCVj7bK8k90 z6Fvw@zhd>u&!2k_9y}OGx(R!k^qgmX=00hDH)_9yWS><OON<3uZs-hg?=C=IYHBAO zV;v<yMVBe^JRz#9-h}(!_PQ1wEtuGbUW<U-|1ya(H=5#l3JBSg_V(@X3I*&cDjEvf z?{dna$G=oj1$GRrT#C*oKmxhsQC?nuo{&@|HaF_d<n;6|{B+^${*85Ix=2C28yg#? za;9bD|K=IJ#Q(0x#vVyXNH9?-)0^5|$(PUX%B@x$KfZgHKEuW0=K_~j|Dx47cNpH+ zA7Jbn6f{hj6fd09i{4T9(rD);*(w*h@bo|HXf0eV5LtO*Z9~HmP$OOA|D<W<I&|;T z=P2{sns%*{yo|LTjDSs2HW%CK6H4d7g2cEW_$X0&$>4^GboOa_{qp4|7)z^H;N{4> zTP1BL2)({nEOH5i?@LPBgRj^fr_;KF;<El&8*r&I<$B%Mx1cnaT{BzBfa74y%bnK@ zUjTIXqV~Foswi$Y;W7MO;|<o(z*)0{Cth;O;ZqKsh0kx8EydX^Y9KK29FehYY`l14 zO|qv{m314TG6;+uV}IN?@#9|Dw60ydE)WK@yD<Pf{BI$5Vtj8d>p6B<3_xz>{&(A- zU+#n?*@fwvs(xb<+Na?cuBh>mJY&I#>Ttn<8JdQ*<sSC{gFfUq;Pss90A^_@46t)R zYSV{u50YKc)LyhgMA?orOv_^WhX;Tq>RTF<y7GqE>r`CjKa&d!2ZR59kN{>hST9&0 zk(ZZ$FO^=^n5B-c7hMEnqTyigYhcPm0%B-axWU4?<(R|YS5~@H2wDaB4OO-3NN+FA zgG=5TIiLK4zTAubT@U?=n-QiGVcXLp?R+Au{=CQOw-+N9Kg~wnWe%O3H_X~l&5wO0 zpvj}6+|9}9&0N?Qt4%>Q#_QH?reVpddHn2=35f(Wd2a9Cy5otp-g6_A`<ys={CG0) z_Zg_5p-l4_Yd<d%gU0c5fSx1VK<i^&%(i4aJHIU}UPe~dosR7gIP#abEczVEHxt`A z-A|rex@XS}Zj?UH7oToX-kX3IHv&dF>RHcGn(s2QDdt1_LFYmt@q|$+p|ynjA^id+ z;YNd@H2%H=R2M*L$f1-DPa!15LrJy1giGkuSlw+z?TE}bZ#E>fc9U=j!+aUJGUj|x zkUqcxF=#Ly%k3os%k0{}zcB8+6FQUhmOL|7jsP2z)6zOqLoB~rjq*@X<U$yJhEmk< zQ?KcT+RT}QpcogC62<od5(Z7_dyGT#DZX15?f7bEP{6LedsC6o`||f(+YZ|C=HsH9 z(o$01vtZ?LP*Bjn%_e+haexWTT~7UYy^#PIq`t2zw-Z;ci=>6R!XN#eqab2WY)+>2 zg}+iPmhN~LzpnKl8c)83HXhE-1hwsN@2hecR`IpY&--)G_b<gu0nmFlj*NF|uxc2X zOuAaa#hza^bJVC&AKt$|L|MK$H&n;TXHAKkhQ@G;+QUST@<hk)pNH{ai&I5;e~}2W z{lzu8LkE){w)f~_mKl{j5NC}nJ$6kyCYF7JNa#f_H>@edJ$;D_{P^tHK4Q6Dq_f$U zEmP@pfBEXwW-39pr%uL1e3;;Up4rr?yA8#dBvZ~=@9ER0iw^b(7eeXsTS1U%_`(MZ z16#!Tn@CzJyX@`r92cvfl1(=G9?P+k976ehn4H`J9_A6>{~3DcjP1`PoWnGljoyFw z@E3y7nuNuhVL6#uGKl-ucj(aLR7V#%dsZ&b)mB22Ttsywl$;8$bwZ(_;vc4X`J3Bh z=hsFanwm{x!eo1Q>(=g+?A^%hp;Xke)3$aclkOShem2S^cD$G#7!;h!y(H~y&%Yug z&^tp<8)kadZz&;QZ+~{NT~>CsK6G|=93!aSQP>|2mmjX6a1!DuIV-Ctq2kB;K_eG4 zsc0%(S;M3U3rYsR12|nG=s2C6t)!N4ux&WanbWVBg0a|Lx@^R_aa|z?7sK`Jwd*Gl zNt6aZ*PN%KG!<w6)vI-1TB1GUxD0}lpq$Q|F=g!N(VLi^HFf%QP2%i~VGkHfF^aqZ zzc3pPv-^U!4FNCwb;rlb{>ry+0<5os#A72^7jn3GjA%UUCAsI^Jd-=ES~kP^WbN&= z4@_1P4?Qns2Cf=se0>DvLS$s3<STSgi1CdrR?V!Ga_O6_+@QzfEeuc3ZhR$$sQ~Kl zJ$Mkp(xM;q*h?zkjS0_E&<WlxtDw+l?AWnb?s^f=UJU4ymUd?3>|Rq3yjyi5<n7zH z`ka`AEs-2Dt0FeRc0iUbn0ps@%Yj|jwk_Y7XV>EL{qr9UKX+=it=aHU@vPYTPQ)0* zhPg$A`0IGSf^^g<I|aS^)BzU1pUBQUdN=qhaN3pN`Fkq+!b}ttzPrOJ`-+j5VLml? z?V2jiq-Z~_{>)G7BdG|7CpvCBf_j9;b{XyXgYgjiQaL{&hvj4lkK>eILsu6AOCyX| zI2vEI8zIcPkPMv`loSksn|es_66Ib)busZwg&7r+haBLqg75FYrLKudp&?XCoohY; zANuy|_cxr(j+fWli8Bv#Q44T^JFR+CbdW*0T+gUJYl78mhl|k`h83a5yJn32#c-4N za4hNKqC-h|D$F0gpk(1&inHe^{0+s3mI^7k;N5BFfs&~^-^|K3_p#U^`&td$+h4eO zG&a-|x2{u_1<Qn0f1-jAMZLu1>3ID_dBF2U{GRGvRzNC?(bnR|N4$(#CO_W%_HEk( z2j*gb{fo3H(T;Z#W+2)5E_20&<Vy!lvCD+}DDOo-iyOtC8O7Asy1GZe^8Bab#!#57 zQ27NRcbrEl;$Dm-Kh=X3U7dk?(t_a}9aRTYpClE`@q2eG5s9gF7E$H(9X|X7seTBs zHwBZJWb_GV2sBuTsRal8H(q%8VE>e~lL~_Mw;UeBL!@bJEGx1C(aOy128|EoL(9*B zx3~O&JCz*blSRz3CBlp;uxa1s@?nm{*AXJEAqfjok|k;bB%5%cD3{0n_~8)L$-Pvi z-RKjAfbGbJ=lkQic7+$^nfR7u23chc|48j$5Y_9<mrrnHA}hc}n4zD&O!!kxB0Hm; zt8;^WwbXcFjz2}Sj$>cDU=8PdC#<GDX`WuW`$FFSEPR0j_=5R!rzp(X*HdgFSeQPU zI%v6SQmCJ9-Vl48X4U^a%6$Ik#Kyfje>OKxx_0ea{)E58Xz&^AYA{@pS0VfK*(^$j zv0}|!qla%(_>060vsqz@D)q(=L{7F!Oaz#pq$m^LR>ZIS7sFe;xHr<ddAhHX1fnq- zV@+B((Wh6oWm=Z-04zeUS541Fk1@=aX_9ySG_-$Hx$30!FIsIq?j2e@Ml{4EcsoI8 z)2eVQC;Bh}UVtzW1*xVG-!>D{00rqhYPGmvqk`Wi9h@(Y!HQ{g9_-q)Cj~Febw;W) z@uoNLrn!3c0HW`%l9X<-*Xj<Xad+NhArT>oaUEV<J3#`@n>9W3n%xMi?aqed2Ln&P zJ$w$L5VR$t=t2m8PH3+UbT?N>cz;bn({c?8JnA?JkuM6LIXk!gnuk30yR);56LbU~ zN(6tVlgts<cDg4kX@{}-Ir_8ivc0|OoO=3WjF@ml?cIrZyky6Yi6qwRcw>W}+?=yl zDwx5M@Si+}>NjRUe-KL#=Gu&}wO+o?Y|9VM#w=>^A!;H9ty<L=?K14!;uxY{WkJ+n zc1IsWq2El+{sZx}odkkHy2d!O7!mAAm)5Iq8aHik9^VknCS<4eLr?v1i{PApKqckQ z4#V|zLbM%u4jr*uf7R@V(MB=Dg;-#3E}S)+Y;0N=_GCs+#Qm5IB*04)aJ%g69);?h z^?Y5(MPshiFd=vj-UF&Q0ZI_rg?VlZSVGiyz<|Rv;{Qvh#2;U0j9!U^+@CO}x;=hK zUZNWtAKZMV>?fmgClz)~k3ITo?bX%YU|Ph}FC4mCHa62w#NO2jdu!Dkm(Q9r#|)IR z#LGz2-T`75dbfjwa;^&oqQ7Va4Z9bE|Nn8&95veAj)UwiGW~TUy+rZav2*9EMqcrx zP}mXwd4JBN1?_K01CgAUctPZwo1OS0H*-p4S?+C+u}Vv1#h$Rl%#xM74HiNk&nur@ zZ|;h;U6B`IYhXRrx#XFDQ~1E-%n~OnXS3~d|G2knVTFwynSC*fe7fB2&f`9quP~45 zdsF_6>niC-)5>R<H5K?9PusJTpl0V*q3T@ZQF*Y_;Omb|;dms>u|q7n+O)W%cD#)( z)q?01ZEE`NO#wcTM&E@PfSh9Uu?2|?l^<o)2fVcQ=`z@^4#J|TY$`^!|NWL)3^SFm z#?xOpHT>G82ECZ`B|QBi<-;N0fa&U!xgp7A82SGZwWrVp?%lh0rAxN(jk$fXM!SB7 zYoMVGE)pkseA79I-Vj*wD+E7L<$PPL9IZZqJ@-xx;|0z{_!3R?^W6P4oYjT4{cS%V z;i5*d*dk+@mK*UpT*Z94dT+KpPJzOT>M;f)P^e6tE-%u?X1=Y|!pFjo`mY<BSkwE9 z2jJ!`8<{YtcRvQPw)J8VGgS`Jh9S}3@I%+;%{UupsLEOD>Y}k;y^9+y6goG8a*K>c z)IRY{N}3N!&M&kWdOv2_JUka3=wv~uZZM1?KvVRP--#Z3S3QlTUk+T+p0rYS`o>;1 zre;sZ_{?zg@n;hCwqs`V!feKy;}??|IPeG&;Sz$ZG<ue0tRZ<fKecO_?PxC#&ml1; z_71tu3A;ab7EA(+9Hzv63rhSRgS!bQa^u!slSSe0Fv31<gNY42E9QIWuMAS}1k?p* zwz?+jM0-IqE30hXIJ5L+s{aNn?Vf>;&i`}U12!(F#$<|V;_o3=fUTx6qo}qTcyRDa zMBQ0$^>gth)eGLn?fcnkerMcA%tM3Mq7PpvCw#{1%x610YtYQm5lU~za`>Ko{8DN@ zP&qqVVR}qe-irSP;d4^xIBD5UotU~+zoJJs3H^lgBrW^gM?qtClJVHq4F;L7{IG9G z<8RK4wj=c%#TS?(mrC^x2CWS7RlS{P>0_8VKE~@sMeYaw7-4F{+nVsZF~>qJE=k^V zi^gH~$nohWy0YR9xAN2(vkN&~{m(!D{K#E#XsnjQgdREk_GmBVIdkR+L?vzeUj3@W z*s&3NzN<#tyi0T*ilxdJ=A}z>z`L1-$DEy?Bnql~Lf)bJ=5m-+t8<~v0WDt$TD_r* zrC)s32Qw$(*T2zfI-R<734xnZZ*T%;2niS()Y{5)MC}>puwmXebre!|qOodB=`5l6 zj?kDeCc$Nm6o6pcuudn#@~u(X!u!Oy7x6K$Cn+f12CX}Il2q{gH5|_%eN&qsV;EOR zUB^>D&X0`#*ud*sC57*aU20Ney}Vd<NOGp@PQ$Ys=Z?GkT&Z~DvKnC*Y;au01139j zhw(9$&DHUz&!0(dun9qi;0*>zHIEhp<B66Zuu<nLM}6_vouH=Fy3WLGa$NmuqTW&- zwkEDcK&aVgo^I*%C$~KVA=M&-SKbe9lBbRJdEATym57wD5dnGZ<v2owbUroe%-uYU zn$O^78@``Zm_KuTgxrv$O~cQIuQt^zFM~;Guf1bz*<W>ODTY=6vT%(&gIa091dLak zNYi8XPCS1;F+J?i=AWIk+h(ap+eoM14KFn-RSgSr|5a$7QGItrZkryISYKpjVf>>O zTTr2zie?~%(bVawU*_{&kd|N#U2f)R%;;j~j!W-DLNh9Q%=Bf!GNMr-W>22Rl(!7* zOr+*YS36!r@yw4QO(a`wdWj&$j=2j7C-wDf6H$1+A<XoOwlygeW{iFN_LWptjuS`0 z`nlowz&EJLVQduX{3Qy;QwSUts>zC%cjiIj;8~gsC%N{Z5qV!3dH0%0>@r@_oaJwJ zOs7it6i={l{M8ayU;WAuC43xRdfs5ct9#c>gkJ?(fGl>%$eadV9}fu$!Mhe(q?SS9 zzLG383dKs0-nw|VhTPJ55_VgUbG_PZe!@+(+*3qA9a6W@Lil>GKay2rcUU<aURgDA z_r86;$Y~7SIszbw`bgLR!e~vRNvA{c2Ywm=A+~~Cw^&<GfNbysy%V1Q(5N($ISt(^ zBZGP1ST)NUk+?^5o%|qNbh&V3Xic$PNx3(?gE=h6O|<zw(g})ZkU!7Ov<cYr<=r3R zcN7(g0RyPR64K7sWmZC0KBf!|#kzHd5m8m#q^m0D-z7F8xKLJah23-d5=C%;Gkr|W zXpW84uI0z>hVMEb9cY}miH9BKorOxIpFbu}nv_~tXk_p5iYY$>u+h{MhMG-Fs0~1y zfNS)@AeF&(*Dy*0EBTVPB)567jd1ZX117A^dY^cMYF0j(g1A36176`%7w3SD&e74) z=IGOkiv8G8Yq(K4&|uCQ)O#!!DR1A-OZ9(z#c@;|cO#R#U2io?<}^#E7QIV4I0cyQ z!;y?~7HuVZW;v*QnAi-m^ekg{V*?nC0DO}V(x+)m!uhq=H!Wm2g*TPg6Y)AbLttx< zgOP+{K&)d<!1PF8J&m1k)DwkpM8_aoJYDav<N&uHk!|J&#ruR_sND0T7JEJktMZED zI8|1EN)O1(&dN&RqJU^dik+MGT2?jn^;L$#*SLc<9o5y<o|%?J*nIh;f>h@SE(2%R ztB=t$DOOy3OdF}USAZXvA@%9gl~7*FqGLMTLCl>Kzkf#e^^#?6zbMWO;38yXs_^Ft zmJMb{2?F#iwxfXj8@uePhWUjLY_lx$3#~o%ZujjMvu>lk5F2%uFVE^?|0zAonoqpE z;k#Cwp+>n>R(}~0=qT0D2LhAi5TxHFA`x9B^Yfpc*Ki&}8q`-XV65pp7@$i$gu9Sp z0iC-(ruCv+HRCap*7T9=D$kN*XGrho&z}p1L3l_QZj1mkxW}N0+PB^i344yHz4?RJ zkBljuM8ST)XvS}ZvoQz86x8c<SDylaJqZGtkHTTVpLMR`NUCw#KGf8B@dY0}f39Cq zkO%JF_#XBJaG%cn8z|M@_#?Y<5RPzy!_~jMiR<6Hckk=BZ;K|--EF^|2e3=lx%VM4 z&qTWJ28Pj#kOyDCeRGY9ny`!!`f)*YvkP-a!;1j#617+xCkF?yDA^LnwmE#-X`UHj zlp#i>L#%8<I#299Ct+57W24*Aqg~L||7LsT>ZrB7Ks>1&^@5w&Y|=O^wT(6FA*loz ziyAD78J_c?ZAoJe`a8lqo?@nuFoqB?3*?WIzz;`6SOhf8!`9m5d6LY1nGY(Rko1-* zrBb7^W9Rt<$+@}x1`QfSSKbT<Q-%s6>0=K13j<mS{HEj(aE}|*`{hmZ<0g$f%Yr`# z3W<`G_Ju*>O>W(q4*#oK;YXDrEr`iT|HRbej=H+Kvu4i@8+tUOs4z3LJ7yAW5ij1T ztzElT6p`XWDZ5cd_T&e}hvos1CflFYwFyMM`is{Tqs6{m>%ZW;r^7PGXb#Ib)}<~D zRy&hsNIVf2v4xXWb?0>5T~c`;_?3j$YGEoBI61gfpL_z(+^GdqoW|-$i{z-ci5ZV) z=1zO6Gz^w@=JlI5{|*aN!jk1LJ#hB*jpKsp_nUGO+T~#W2CGW{Cs$@W6II|j7GfRR z1#!ElsEU`9NC<;MG~%1jsFYoqVaZU;0Q<8?j&vd~hNSH?Ne|WeWNl&5#oF3B;m)~u zXXgV4Hkp~Z65Xo`R_J`pc>Q_^UBXM~Cd<vz#R6v(^PbL^+1T(rfu{#>kQ=iVEn|3( zp+M1$DQUx(j-B+WtgI6lNpSp(*ZCRhIBCQP2@>jx-G6GeSyMs>zo8&_j>g*XsvUCk zA{c_HOb3Tg>I~L8boT67r>EbM<OJb`4BC;}GmXNpAc+ugP}s2q`Az^l37|;M$mm8$ zhiZm*dh9b{u+UYEW|!%jZQVMWdB7(`v7ex4mN_QImO8Z8c-~Mw;Vxflg~TJKd*k=- z>9j6de@&chd|krNu6;sBS4TV(MhaJ2cy=#xo+=At6eRCY&j0n0Go_C?9}O+*z4~3N zf@Kx!`Z9{$r)fWruL_oZYLd#iCrikovl!3zZ_(=EY3DY!gx}V4Hk%)IQ^)kr12DBr zPaS}UyXxRf8mCu(+=X>k-8L-Fp;l28#k}_@z&KLT;j?G^<D}|3qIR}W?*vnvTT@7n z*%p=|JN#;yjgvsUDaoZLr)>JH-VM<)b`n{HCLH;jsQ#V4N7b2ELz6CySP{fE_Fw+0 z5J)wW8^WRu6sHN9e5L3A{4ocXy*t&XFofj{4kQtupR+&beakcmD%W)D-1T+2$C68H z9$=JmZ5GD+&gr`#w`3rL2||jPCMx2l5(3#tKIMINb<4jq2TwFU1YiB0)`TVKn9l*G zK}Xw<_44q3&G7L0kf%d4K1QMuJH?)^+jj#UTGZgi3`Eg4TT%SRJKn2^?u(tpTlWmL zJXdk%WFS!FlWKA3o@zS;i<1{jJ>~4>W=GtG<&4>9u%f-FMsd^_KiC)juk$VLvFpcO zfCQ)PC&~qd{*JWQy$bkfNt%@wjmvwYi|=oNmR3i4`npllcr!Hki*e>Pv(08{Q6qn* zzIyfQ%EwCY%zun;C>qucdETb9;o;?zJ28R_!gm*ZrNpC;V*?dG2s{5N_eD6Y9&w#L zfHPP7Eac)%2JnSmSYv#5=P=?^__y!e<>TO!_cYbLytjK4qf&O!;nVOPYM%cN*;wY? z^be%ryjAOAl9o;h+%x}UNlE>?r=d1`s2cTbyl*EiE8hOf=zVd;bdhiX^Bul^k$XsD z`M>~^1r83ggzF5Kn#-yRqN?T9ZxqTma6({5?j*3R{d(^X_h|MO5^!`8CBU9LahsDn zXWs}-`6Bo{b_6NAVCr#4-@fv67|Eh1q(s#IYOyiZW>hMr;wl`wYzXc_!IDPWl;Nns z<Xth3z$65{xny4d7Lr&9)*1DK7RYW;WYY;Ae?u$$F)8Y{<%SLNqO3GEEuPW57fw;k zd`*8twC{_{-7;&EX`(y@{REo6x{s(`r-{+ksQ?%gC$3PrOQ(w$^j2zXKf4{Xtc6$Y z2lEzi2cO3dfoGjRrxNmn<Er7D=7N&IBXowjLoRlrq%{hje}^_)VHWFLHpbkvp~lEO ze$22ao#1XEE9Hl%=lqo-yOBWldU8|RSE9h43z{M4<6z^55&AvEw&Y1|@YS?`E*=}9 zWYfP)8UjBkM1q$|2a}r4QC~)>oSu6Wp<;W^2e*`6xibxNQa;Ve@ww?%+BGcE#NM#Z z*dXy`Ri0X!r+wHpyVzqRYlaRUe3WxP0(czrv-6MrS?zvo{h8{o;#co=%fwDAcONST zp5?Egnc`oZK{LMV<vOn!)Hbjx^#ce~g~2VL<e`uf0p;e<KDEAyMIC<y`T3j=4+}b@ zVXt>?Y(us#W5bf6%X=MDGE09GAs>@gK3MZ)$l3HuzBNO>Id{<Z?C*Tx<l_1yH*Ap4 zt3eMWh_2nb{fjuVY3I&=TxN48?&kzrb8&=|v*ApQP_Do&P*OPkrgF61_>&PZ*toF_ zi{G>#t&x&T3MIZhMB&5++(}4+cav$V3ju6N1CO5Z>u`w5Ls&4S{~iVQHKqBAROWp% z)8$2!(aJoR@iw#rgv5DyzAdC#sT*h^H!gIxy7~~Xjdb0}5w%(Rh)MakGScclQSZI~ z^5rB)Ul{VRVp=&1fe$b1ulHx1G>ddRis4eNPZTr7RB`ImzOZe=s|F~|??Q>)B}9~; zzIyMLoH%hp+HQh`CcD8D?U*SPF^jp8hT3Z%kl66F3Gd<Z3v=bDC{mEC+Ko>1ombUi z3E8VVbz{T83e=A!u$M%~9-<hr$-`k$^+x?nys4L*JtdDTd0PyNY>et>1a8nT-r;ND z+{;VJtg*nq_CD?6j8qf`Wl(l!l)8M^GQQkpDlF+=wgfBazsncis%?uWYRU2YDo&=c zDVJ2B@_I%LI{Gll^r7FR^_|7M{|h>zI~u{yeZ@vyF%DBWdtsvsg4vy(Rw=(zd(K<9 z39#rw%39Tv_GWg6FU2V*7%z*m_4H8Ev_Dwa7<=bV8qZ~Z(OC)+gCJYUCVn({Zqn8z z8Z*L!JZHP;Y+PH6i}dSArV&0v;#nT#7kk?fcOP)=h;mt&=QwNa<+6dM8f)dlWB)KK z-y>1juy<+w!Cr%}SB5y$m39-~=UZkeIKop_rTv1Enr>jbALNVtVp_VEw?5+A&lJA4 z)<2jg_>8Mcpcu-Db`?p=JPuQfz~gkOj=e@OAa53)lL(_ay#i?HWv+tuNk>T+E_e|L z7L*L#A+G-lSy;#wvE1qXy(U{fcDXSB;Jf!Tr-dhyHOU#HgmjF#{i@%J2^dFCp!!y} zT*De8HUG}z_L9o4T>Z=I*d7!!Yx{&EN9*H%nuzPqVm<B0M#W8g8>`nf)J$@_EjCkn z9V_P2hroVIzYwdB;0CMam$A0I7|@J3uSIs;`_K60G}Smsi<{89o@3f;*e`tg%qQJV zeZj6Ug~u=oISW@I7u;Zg4m`gcQqm8aT6dut3ef>fARM)*{`&NJ2HA{nZK{4Xoh_9z zIFP4q&kD<rp&}vYFV?nd(2ESJ_d2NgeW3OMy?wbybe->FsL>U)EQfgQ!9u7OKy0T4 zTdHZ!9fTmUy3ZC8@==&{IiJ93cE3-aWA-W8cfh!-ar5K2NSn~WW;r*_zzFCeXhdLW zWVxz&t?ul=f8x9Uv2Jt`t-uRaHZPwer=HWxrZ``a)~8M4N=>C_zW0*2mV0{cEQWf& zB$zyV>7o3Jz^unp(yF6W8d|B!dhU$yoZI+Zt+$@}#us;k45WeR#Z~bGpL*9BZ1Yj| zX}SDmpVzrOk8v`^i?rp&(5CNfFMMJgu0=w&y1Q+hZRh?nwO_xU;;uZw?p2D5!5c#A zF|17rrKgq_<&2_0xowR&LWL#Ij=AH4$l%FbhCH{Gapt+u%#Ka<kq%h+7@rsl4I!+b z>ll~wCf?CdOH0_*P)5W+MCu_wJWx77r82<k7F*jX6uW21Fw1Ce8O>)DMKiecECErl zLQ3pa5&EqSc*St|e3yy*cz>c)!V?By#2|I96mJcMZ1s9&SR#LESX7Bn>*S{zny6D$ zSWvJA2B=K9+;Eyd=1c6kQw+NEICks|?~iAe1{hjdOtClTYY2$Cu{r8?9$kK7INCI@ zB%22Z$(&~Jvo_Zv1vOslm-ELQFpCmw^)%Ymsu(e~m0`|?6M>w%q6SAjm0|LuYsp=J zhN7Y!LswPQ)ci0?$jDf}y&nrEe$1ncxo#noaVJA*t-P_L&LxQPnDGv^i^P7U>F+R? zhr)LDV`dg)dOw-d9DnWAtG%1fahE;VK_~2b(DdVYo_*Pp@)*?qn?E8zFM~2FrMa%8 zqGBvo8gaeWvC~&PH8*)yXwM8oMcF7E4>B?!!E-3T?(C-)wJ~{PG}tZo&n)HL#@JW~ zG}C3XMoUXrhli=}IR)Cz6mKQiFzO6l-l}Jg47q{|orTZt?(&Q}%k%$}mAnv0?qOkJ zxM9|a5!Z>4Vq65@3oVBB8gcK0Gr9ir+x2K{lQ8V{C!=P^W%xS_%VmHoL2f*}dH$T< z?c5<|$`i%x6r|r(=mIlRzan0XD@3I^ERrP)O`Q#tdLy}n8Ll*!?}JNHFnnM!Z#s1a z`{+IS5A}k0UwA3}uRh!v79AK0wkwyONYM$+nC1)+Yh>PvrqazMFuj`4(lKGCD{--6 zJ=4AG<-J?9psVh;%#eZYxxHlz(|EUR+cpN1R~<S?xPP8lrGu?fna<12)9Bl`WPUnC z=rQ-oc@_t<8d>*xk!n_x+cg?xjhjl}fDR|yTzm|n>n4IRvuK)etG2F_zZ8}zyqJ`M zSM3X^5ch6Tj^1ZbUdC07Y$yoOHJsC^GpRS>HVny1@yslXz|8n-wsXV0lTPy3(yaSH za*DzwC_bNQ`r;A=_-QPjD7XH_GqcyBDm%urMY?9m(xpRHBl<sY^ULV5y?*`{`eVL+ z|BhF8-c(lkN!l*Nt-TPril(0bIh61K(4pu_aC->#fZ8RiYBk_c%F)gE0^frHq%-l( zU)8Xvg2@zq85j;P!g$sB(+0wug?}N1^O+yayfZU!FB;+BK0X75Dg;$gm2XeBsVq*K ze`5H&W8n5j%s_ctPBpQLIS8E55d?#ZeLW<y8V4M%nrkjvbPCrrbILc9(Vf0n)HRJ4 z1OB3n)@gp4gJ&PT@G@7%s(Fmf6WEQbwl(_jSSHT*?t6Ll!jde^8hWh(w}ZSB^;wEA z5<DgPuSlVLTtvY4KX>jD6XgTUB59U~LSp-Cm$VbZdMs%B5se24OQ`66Y8Z4F<}mri zi$N@6(ZB16*;CZBq_ZV}dvUc;)srE&V_X`(f5#Ix(UW6;iHbn<x1qd=d@b=X(tv*+ zCer1Tod{^qm5cawLDsmmI<3BDEW?9r7@R6{9W;LB?FweT|AhkFPWwRZ-)Lnt%AK0` z=RR>YIAYq9qgDLY%8&U{$N^}m0Glr*pY_U=$$Z(ZXV2Ba4Q7uM#~Zz?dXUY9c?3Mg zHMfXU-tK_xN@R~h$FEk47PS|SJaqAYG0joH7oHF7`L+-yMEJuo*QH~GlWae(2?Ye1 zwAQ}Zo6HDWE09kXZavm<zNh{9L|~}*tkpZ8>%Vp(tn+J2aqno{JGSt&!A8T|JKqjb zY>yMOA?v|N$CuCE)RVv4OXw*$4I2ibII3W#L7Ladny9^5N?snsri(OIGKN}$l+;6V z4=->)nRlY{hI>;P`DpuWR@;D@p^(NK2Z}p`GprL<?q?ohoVx>OTDCk+44)D4X+5#o zRCtmw*<lRmfNN3Nan8AO=lGs!7e5Z3l&+!k@jAC0gfUi_z%YhN!quik<gcL0TQU70 z562LA);!10`p~u`6mheOnnE?zRprLk<?A$0S{kZ<R*P*pbKrq!Ogvb;oy}D_4oa7` zFfoO^q4|gTL87Q&q|pr^ogkz@S{)?~$1Az`^tWC1{SzE{D5d!!Na-YM=Le$sIF`i$ zKHMmgE`rgefAu@{Ly3$eM<J~V3fydM-DCawqCOYoF7Eio&*Q6D9X$Qpk6N>abG<<M zqM3?GzV7fvA0Q8`ewIF6aO3**Rl%;;@yXCZa&VPt*`46hvz`WPUp*z=RK^CwAb?=@ zTy03$`)LrA&T|ZLV$ZkhP0oPI)kJCtH&@pVGy?A3IadEpyU`jIwBoe7{`pH`p3`A^ zb}m7kLb@1K<iFN&bQ>hW^WR=T{kAp;amhn`AMY7$ZW&04Z}9OuOrKM_ErmOo-jgaN zgj_d^s{7ZkW?N2m2U2dkQ$KbbqZ_^Qw%76FJ@!?<ywn(FXC0o{dUfvTJvevZLQ{B( zzm{h77dCMIgjqnE!dba~wvX#*csP0WJzb%KgpAHkL7SdKXZFN-J<FwK)}fU3!+F<; zozwBsy?F6r*8b1(hf<0raR@jMV`80?ewGgnO4QLPr$?>*h=y6qqfC9)k2IJNxN)L# zvk3>g=PM)Uw5Wdl#WUp5t!&L}1SpplS<;;}*_h;X1l8pdRi8K!<!`n=PNdUzkO&nB zy{i~f43DwGUj78|9|#8DD!I;FRluy}iOot&&(C!<_(ETyB`^nZn4VMDcaD=rj%>#Z z2=18~smD;Rw;B(hIa*EGbmxOTRe$3s346ID?RLz_hQ0gtrJ;5_r_ILL#N-hX$ztOP zx(Xox4R(w&&tl-_VBoCkIA0C(=HYW4`YtH3*#yPCLd6$KT!kII4Q+C#O+8-~Vl54w z9T8zv3^4sSJG&PRV9)0G_LiS@2t*KqJ4URP3wK;GyHRAFa5Dv(VXJA3<na-sqOQY6 zWq-4yKAv9{k4IqPn+N;*Ff~!w6yE(@pJ4-nJVHZ4)3ggKWpv$qRqOp{CVX@;%$kzf zBK`Q$6=$w%qOD}r%13=qPoBK#^g`;D-XnIm+e({?^eMX^h2_o+JA!&}F~q1_?_tMy zUM`V`wnNntQdMxq1=We5$YZ=4ZHw)U?T{Lgv*#U3u_(b#)e%S98dK$Byyv(M*Ht{} z@%2lG-b8p03@4YVW9dpz;idLo*j>j2olCS`Nq<S&hHsE~m|hK}keggjm-Gr}w+^R% zm`4yqrT;E5fN5Oww0`UqzZWhS5LBQHC{UK)NF<L+qx`VEcU`}Jeb7w~kI~r0lN#pH zpT_+=!b5hMUp2n7Lk@oQFT`b+uj>{=0(@m>$p^-<kc7RPI{l%WH2!JeF;CC@s6^pf zq2uXy$Flg|gx+J#S65D?kx<LNg@tt?LY|hJW**$`B1ckvuZZWcC_*6-Mq28!drTr+ z*m^YuHN4Zfswm&@HAP3EUAADXq9uvE*y%dtC+MbxLv_V8NrV2B!vtFKdRB2rG?#hf zd;4mJFbH!nV!{WC4Cxn=_AaWb0Yz$##i29H>k;>oSmm+NK8Y)0;-#e7xaMd37$ujp zC*pv~1I!jVzH=)<imQBeYpi$!yeJ`*M3^{^l)nir9jw``%A~l9vsV8zWa{l8iH*tu zhG3|=#ing0gFb_x;M;7^u@)VSVmi@R2i4G^+$VaXZSPP@T;Zcfi!9D}!B=E!kQXqD zF&6nZP3$dkKHdLjXH|P~Ls;0}^AV~~ov$^rGEIZLWat?dYGzNwRZvQj&0Qf%Zt%Nm z;axtI)n~QQzWj_=K*jCya70DX9g91l^V278<(g*YWf(qP>+aeOJU24kSMGGu`~sEe z#Prrkn{V9lb2npz39_<zNnMny$2fCRg&tUWDmGHuG5V2F*A~BTKl*|rMmnq;Y8XU1 zy)Q0pAz>;K7Liw`Lg5H3A^bPu`%yOSy(736jMws#>of|ijy4%cC?d*sK^Ogs7d<LC z0gaAMj9LzHm~k;?*O6%8be=4RAkQ}%kWS+T_7`EEgYJ+aw`%-Q11P}=32IwtBjl4y z;8<vY3D`fnvC=8X<^T&p@l-+SA{Pqu0<QhtWIxI8!2Bp2HuT#8JC@mm<V)8_tQZ!X zNKL-#$)ItoB*fhSX;gL8g9mdEc)CiYQ71WiUC`S5Y&4AC5WS0ei0)m5Tyy8_rPiw} zo$2b788oOfiVeUh^g)cJO&(q~`<6lIEd+LPa-g0&j@Z3ifIPw_Ejb2H>)Su102C~| z(CV1pumI?*`rVqxN^o@KiF#>4kEE8m9^ms1w6z2|4`Z*5Q;(12PH|Nc5W7%mA{d>O zNRVk3urb193@^{*0_h|}L1Yl8Z$LMbT1SyCG4#i7bPidSwgKL};e@7H^BRvfEZ|p; zFE(k6C8W@QzLY%PaH6=>ImC83a!k%3nV<t#RMnJ*#ki5?dYA#qU|=rnbkPY2>}fN0 zk_r{JJ=L!`0$*!upAR^SRRYz=FURI_Q+X^$Q&UR_i<CN@;Z6*T2ZXO2J~K3^K3gxd z;1Z;;%lg~f{{o<f@IV7Ft}LAWC^vW7+u8t`Z*}Y~x@h^&GMn>54PN*+_UhX85MHKm z<4pIKEj#8YWgj*96v)cZJ<@y~`-ua`ts3$6<0R)3ro1%8{t@I<pyCnuP^$}mlO|2t zj5o(JFkEBGC;J^gl|Mc^WoBab?YQz6>t*&$@O!jyhvighdCw%CkD>ftf^h!3iTc&e zPAGoAS>?rTXt<2OP3vN$#YT{SA3bW%W03}VaGkCpB<PQX805)oIYn{5TE4BMZTPB1 z?ozKIov15Ch=<B?1NytPweD|d3=|=Xr${O%pNg2K&kP{GN;k6MBSPwj^78PFXCAQ4 zuc7)2FUt@2rU^;7!l;h_X7~Z!)yHuXZ6Y4>xTJERX;ZjlzqX7XAYt9Y9E$t*!>3O@ zI7__y$ZWfe@AljTa2XMr@@&pci>LqG5%J^s9h>#8()Fxi6g3B^URu2JD!Et~YMo{- ztNMiKMkjzAe4tfOuNougPdy}zP5Ii`xCGiH_if?rJCRB*LaU^AoM)J$+{5_xb{XXH zf4=$pBa&Yv1*uyUdheruTHnl6H|aB!8^?DknPE2}6TzS_c-Z~Ki6v-4H}K-_or671 zU<{|mog8Fl?oJT>0585#<{_*;|5<mF$^?(hl{PGaF=8h!1^;{0+kmERyat+jp8V0Y zMzJNc*Xu%PrH9-w(mXgcH2jC&J2jInm-(y|R{0agoT&&8{aE1dvZln;G5HOJNB&El z;YTy<&#KgfD!GXn7N91}92sG|C25QDfbz~N(;AI#Dbj~9ZxMtnhs31aK6@#y3i%tw zdgc{p;J`DQPZH9smt;S|2$TQkKg$yJCVktmB-R#1R4iUl_8pK`I@qjH)lwthpjgzM zd{9W2M^u6{QgeZ5t1fGK^qftXiCPf&6*XM&$Jh>3%Qi{y?)s@0Z_hZ&*^b!1<7XtU zQZp0HZ%=R%>$#X3HYL))mOjAD+ub0o)5P5Mm{Hlsa1w4SYJM|qN+OmteDLPM7a+df z=nGYbId&USsL=O~o(NFJqwokB?fRC~?vNNJt$*;jslX2l;Zj{){jCi}d<dj~fG;o* z$AOORC1McGt!&CMQ4Ts#{B>y_ggC{c{*ezR>1TU-dE#3>*kuxz&~vFD_ei7S+pE#k z&J*?G!TFoPkh}Nxf4NZJ^zPnn&4g(WPc=b+5293jw7=N73o=H7&+~^#cT3*f-`hi| z1xlYXr$->^9p=kf7$-^dR%ABzQjS_VF>FwhFhRf}=i9-AF5R?gglNxoX~)j4aXd&p zM$~Q+W4<MuRwwb*%Uo;5Cz-}t4a9}LCvg`*5v#$5hk#3z*#`rD3uV#{PCgS>Fd{O) zVg^k+f*LSv#=LmK)3c?twW&ONsO$Fzj;gxF?gp>od@Miyt8%WGGLi1$8}Apu08?VS zZbQ2?WgA0}<WiL#JLXjNPd2eP$(_{#nPcGPQD66(ue)dXKQZR<Ltd|ND-Bn0`O!|& zbEoNuvf1-O>@4dXXIB+;b=#45%5n0j*J{xl0!$_fw0~&#&(vqmdJ`1Fjf&BND&Ks* zrsO-V=?6N$Sit03VXk@ir)hwn;hZ}y19orEQi)diS(bD=Ci8o*vYAU2b4`7hJ9koS zjS#G&ur&#``QS{}pVB$+N7wyv?UD(hock&KyC0|UIBcN1`@Q@3mth7T&6sX<#!++= z`f)&X$l9sQ7scZdhJQrRf5^qhDUBBc7e)hUBX@p7$?y9=j+4oUr4a7;&+co(UN6>4 z$;i;L2qeax<v8k+;;5dqTmOW;I>W74c3N?9eqp}Jx^>Ri-@@QPQmstEiU&0kMr~l_ z3`IPi62cb}UYF@e@5;PeXH1{opNN><z_hS?guAepYEAjyZ#~sG%Wvy~til9=jD{(Q zNq2V&bv<x)7>G|0&2lVUr%Of$jbO1>D5VA-u~VCY0dqXujn}Uqx_V}`@v<o{3Gwlv zl+9Lgm6hAYyaE1E;eBOJ^V%8A!W+Y7Im_dHjCO2ycl}lq<`eX}(@d?*#DdfCbMA1N zg4Gbdb1_{`T(I-!&zFkNNm(1&st&=_u=gq9_YCFGV+QbyV*kl$Qp_@>xKP9b7`Ysp zP*h`Wxk_4E!hIGTZ~Cn?!|ZF~YX%E2m#F-QUbHQ(rkFX8xl^YeUl^zS(?Ru)DUg3M zG{YH&wT8+a%`kiUa$oLPx7hOAp}V(l-h8Qlf0H^Bo<s2+JL9A;$~g7L8}>&=#<j@E z!^1NtEHe8Evje7D1-fO~%RNubu#eQZkq;*#qcS;3mM(yAmwcO;tYg5^_?@dJn%CDJ z*NDr=&dz@C`0AO>FTe7#{1cPrFP0x-zubDc%g-q_QFYFv7;v{pYlwMc_aUu!#fTu$ z42k5E9}KJC2S-guiReUy^6;PQXm|CXrsI-!ryO)ILrw`_1`8j!ahn1EPByn_;g=jz zIM^a15EM+-rNWs)F$WFNTh#LvI~FS@O|i7u&l&96vu6rtPqn}(*zVk#;!u>)qj33G zEUbKP`DacV(DdTfGnaz9iE^*hOg;{lh-yQ0eznoZD)dDre;q=;uPj*7)M#x|<ovTv zi3wQnHYS^3&?9|$K;?l{|1^q?jrzFn1$l=*>j%@M_GkplIh*ZRr}=%&B~_QRPdxn} zySoI@lLdNa8u-P+nbYqF<sSRs>E7kx*Z6JAi?`;_wb-$9*_5SQ_e?IZ*!XKo#V=2H zCFgX#ZBMJ*a@6GZwp><Kv&{Zi?nbuv9qVJ?ZYtg?S!KO^YyIvd<u4OtEYnF4rBJ7p zcy62asf?)gGC>E?0`<{T6!I?Z^oHEKHshG5;f~HA2J*KyH|@Ly+>-SBvUue$lgj!# zuV{-$)t_$+;qTPrY+_L>|5ecZH8x)@f$L}bzF7AK80Q%5`PG=9lgExd5_pzpdF6|k zrhK)K<|V;DI{mVVAT?a=v#Is-gD=9BvE$9XTG#b`2Bg(nTNSl_II57pe!-dfca<Dx zhne~mg$j}JSL>g`4p33E<XBeaP_rjP?#H;L+1Ay#Wcoj@bg^Nu54?ZwoAUJS5%pVM z`a5Xf*NbK{Kw?Jaf$ht8=8pY;U$bLM&S`qvva8(Ea?@wIJRhqj7vSpkYMWJ&YJubI zTP4q)`TvkjZw<d6qZK-A@OAB5B$r2wXX4>brDsDQB1Ozt_*P6R=}u9XdmzZsq)48z z9}A1F8AkLLeGP>bz1|jj?g&|_Zz_>mM`&tl3OO6|=N34@&IPah#hE(yN=;-tq_Jm+ zM$|F-&eoR_Z#P;mD~jF_H|>PN{0lqJmA0BNM+Cxc>|48Y&(+d=88vh^w_lQuv(*2w zr;FZ3Q?nwSVA+{>66H=8_8b<o?A6NCeFnOfx_f4YHRU{MOMMfpe<RfV&DQesJGCb& zH7K7nJyU2@EPsBT+2<tRr0F01XO24Atmka%p*>Wv9SC1jMB5>^J(asyKiTipsY4)9 zQs4k4!U_MGj%}WQ&96df)D`-Gx(}LoMWcGP!nx-$Y2K>a0*OO^ojWJT8J<xSaii6$ za^FC=dh2cVUN_9!)iejJb2h8q_t(mzm~#ay($YG7wKP+_Rd-2cw&HZVs)LihPte%w zlHoaf-YvU;OU(gtH*ERgwza>?cekY%PnM}V+QWG3fHH&alSJnmHO&m$)~T^JL+<~f z`NVv!^WaG)!jCiL_S>vVBaVmx{9<olTWhJ!)~tPARYoK1o6?@$bo*?*t-(vBDBIH| z``W(tJx_*ZxqD<iKALtX=2DSr_=ashty5CZlo*yLXJuM;kLEMqXfqA;n?9j;+mvD7 zEmHP*jI-G$IrXZ~nX!s_Jg6hq-TYb>+GhQ0O2dTjK4;A4=r8#hlbU-lI<d{~x~;o= z&*V-MIh?=$nP$16Y3%>~$5{~D|NT3E@$motUGe|(FGfjD;ilDvB@q*DaxTo9K!^S* zI;*zsE68Ohz<8L~$JJJSp$Do`drGD~=m$}urI1W9V2;&Tn5;$K!WSu~>hOEoH5l5q z4i&>ZX6$@p4B0k9*v`ou%aAYyRA5M9;K-t>zBt##R1*t*HY@Mv4~LS{GUAW%PBK-> z>$e#lg1)IVyJuf<g28U<&_T9R;EPc>LKkDUlb%rH=(ou@RU`D<9X2*$LhFA@Bt13q z;G9VkCf97dX+FJrR}O9XbVN_TxAymk?_xU=v-#yV9g<={Tx7FdTJAABX*t*<H91*R zD2qbmlQ}JL3A()yN`(deClRWQ<S#82K{o}_M{I{;@QXLagf6VAnBGF{fQzeQOet*P zN+jhJ9Kc$ouIszPG>?Wr8EkKF|J(Jy?$#0r4Rcb5;+cCd!{4}EVV-~wNF#%zr=?X& zu_shJaV3R{&Ck($Jj(7{xt>_VAg0+sE{wwWbCdm_4PR(=*Zll0VFJ|F0KSxf5vRRv zM{dBG2dkxnDjW(psAE23Wy?G6HSH>sp@qZ<7ZUn$4BOeyCX0iUJ9O}Map@1{K<b-Q zcjZDp{A7l(#*YMG2%Qt!T$D0w8+LG_^unA3SL?FfH1gXkU<J;z^;@}q*!+7lar)wN zChTZwiGeMg89&-hGV$J(!r>{uh(KbmV>;n%wyO}i_4&;)D2b}ui)r8;$@AvJClJbQ zDY8yK)^LNm&VpjJ;Y`DTadwb4GBU4N5RNpln*Q1;0*fFDhW*%&`Y=(nDG1*@$y<rm z4<`DJCPNqgM6mhz8$JR~1y(%l=9bAj^?E&6e1GTKL5ujmreJ#v<LyRJ2}ZhX!#`k0 z`5EWje1~C6$K4;(A36m=)s8mH+Hc=DEHqMxsWnY=qv(0d0FiIy`8b0?JA*a?G4lq8 z`T3H4)PRbdD<2_~6ZW;Vwo>yzplx}UC`ObDYOihZxK#^;f$!HrLOPuQ+g`DQi@?2< zqdh{*c0y_mH(4rknoi?oT<S1rV?{-&j}_O(8{YS7@F&E6L@N_5EgZiS0ikEP__|!S zUau8?f5)%gMZjnZ4tYAqiUBec#Y~qHA9r_#tRP@M=H?azW89L?^?du{#oD|AL*BxN zyvfk1lTFj%$!|~&H`|U5oA|df8rK9(x1OhY`aC!w7*m(>lGir=6&54zANs{!m$h`F z1>NZ@1H|!c`XV-@;c>M1TCi0-kxeB7jrqU&`RQ~*@W@OnUC1n7i^88ts9l^l+1CAM zS<O&;eoO9=yO3uC<_EU;KE|Z_n3{JhkfWr!`giXGB$J1SN5(Vt@fwT&6fsLFeZv3F zvKYfOnn5v8b>o<ouh8-f&!GYR^l=B<5|O%0TYplHmhy)spFdyNyjPhPGH5sid5ipD z#yV?46w;&!>8Gfu{xo7)(}M4}g@XXE;yCdXLB;68W-#!0j(TtgyPD~siTJr6GC+y* z*!teqV(WVGf#jH5`1`Ah@wWXG6sFKKaFflkaW1X*MGr8saV!wko3pA-0VHfCVm1=W ztsnSD7jbp|J-w&097+S|$SP(p%FlP%Kx`OA5EY@N!RrtvchPXs@S&P)>kWJOsp0z{ z8#ZjEI<mvy#PpT(%oZ$nop71>Q%1{izv06t<DOYr`$dd5f>T$5zVJnNctSm7&aVld z%*P=jAdl;?tKD(_|JPU_IyuBgL&*`%DaRusB06^L_*fi#SQQbum`gAa(KV7$a*&Wq zng22pzSrKZ@b?5T=vW=NZ)nLexhR+7DZ!zy+nNOxH+u5q6^vyu$G9+!`2h*P;5Kii z=H?pEXgXSWB}9v5g^kB(jUTOC@siTg(2X@d8(2V|#Wps4Ov*f(H*uk_W92-7G5LM# z7>;}9xNXlWlq1BE^WKbdG=ftvf@dUs7~71F^0gk9?*9GtDn~WLI+qc4e$QURB!c|5 z9L`)!(^8l_Ac&uJ*GReBm$6<l&RfY`)2#Bx#jymL9AG3qr5FV}I7a+feai1MDE`&` zacJ$x&*J^XKU;J0)c@~ac}~54AB_M0;=fDs-(mRQL-F79@%uXb7a7E5`0p_McNhe6 o`u)#;hvD~S`2Tfe_@&VHa8B~0=lMItW<{OFE42PuwCV5v2MzdNp#T5? literal 78350 zcmeFaXH-?$wk^EXQp;Sygd%8(8BkGFBpFdeMFloFC_yqxl#DqM6ciK`R6uf&93)sO zh=3?Lqas;AvgFst-dN$@^S$<dyw}?I<I>J)$0IweHP@VD^wE1C!|TV69+)$8$xH@= zF-P*?z7q__Ptgp<)cHS8!`~ECwOz#j2$}C!FqbjWF}FHts?9iZ()^5}iMgTPspXd1 zre=C3##{IW`8V?}*EKgkW43eSMx(!8z;9xDdSm&??lgSJj57xn%@~Y%C+WYFg2jXM z7?T(b$$h(J&pr5BW33|FH<sNs5IyHj<7EED#=7g1t|)eRH@YXwDLtL4uO^dQ9M{{w zA<*EnyYhYSrytwB?<<!X`{eH5pTCUHtJ>_y@n6sEKi@O_a=O_=#scko9QLBz^SIm^ zZPS}<#hUV*y6~rLt;JVX;7ah5xjVT$mHkJ?N6Vja$Mo~@{r~*wf7alC_QC(01y(rt zpLp;eV&a)&w{PEGFCSSg+AeJR<>39pPe=Hg#RQEiWsmr5i?`x9GdWB?$}>l+@X7w0 z##I})ZDX$XkaQgBI`Cq?<;~&2vAm6nWqN(BC6*CW7)}><IZb8k;=+fd4t@4|J94(+ z?E)80A@?>#hQO9B3l=X9K3ktvkvhNnRArpr4Hp-DK7&zy*C%ZjLU@JUV1pMkYJ9N3 zQUCRg1r?QH%m^Fx?E8WSo_KSoUfuX`#&}Wm$(J2%-(5eyy}RMYjT`PfI%g`%8}ofE zI;w@@jjBp(13xY-dU`}=*Dj|&R<4YwT)N#j95?Xx<;$01mnSifIZ;M<<KIz}s+?Av zbk?64u5deIG%8Xh`N^KkGi&<JR@c;YhKNa;nwfd{EFI4i*X37F=QS}g@o^b{IZr&; zup(yWtXZ)Yn~m3qijMm3RX%-k@s&u`)YTg|Mh$c2zJ9&m*VlLO*a8N_)lK>5NsQ?8 zPmlP7D#hzpCK&lF!NuTPS~?xaQ+ZnI#>W!zw_%SSEx(_ybNSMxX72ItR|NzF!n3}& zEfK~VUp>6qLu~B3X8r>qnH4Km2>9gNjC5tkYv(Quvo}+klB*@q;<CN=ePW$Mn0`rU zj^VZqyu63SM|))whUBBvB6eD|z9}lAcMgs86!gSJGMV;jYHFd%iIJb{>tp+p9Y#~c zzJHu@`Rdi&x;pjR+FJeM;M<=+e-3{qv}w~Z_xTGJXeW!BeR*@+JwV-YR1O;@^w{GI zBBG*lF<O#+Un^vq3j7jxmcG8ZNbt<ZU3WLgAJvIf#Q!TRk`|9>uS%@zQaS1?65=ar z8@liMZ=MF*PQQC#SVouaW0L;i0JnX>0WRx(STOzC=gD)qMD7{oVbg_Jw3T)b49Gv; zbGbM`^7jb!jM`A?(!Sc*({5@GgW3z$o!B>L>9#xOJ<N>TD-Wz+yY}GanF~(D>g30r zF5tpNyc3XW`u6Fi!2QGCTlG#P)SHw?@5Y|(X(~w6A0Hd;<cp1(HjgX()ax5Ln`Y<s zZ?ChH!LR-7x~~Ve=iT2z?-R363FO<n`FNU5--+wLt@_f^65=grpx;rQ%*;;d>k+Z; z*2-<NF7Oo<N}s2vr)Se&ak`<iGYXgWrF>0poL<rVg$q~5R)pix_I1{&=j7xt?Xlz~ z$!4eTu9K0#D!q8|V#!wBTajvM-bT;EJ2|AKrRBnyN2I*?)7raC<RVpsM2Ek|4h=T> z$psx<W^HZV(o-Pr#q;{rtLBg(-xFP*Uu$pkS+Hb@zQwZG{<<{V#L{p@&B2k=`TO#W z=7e9KwP?MFhzcI|%%6WgHqcRH(fuVSH4=yIz$-r;?8@6%jWDdWO-rCxahk2w-L=Q} z6y{$JvbVF_dhVOX;P>y%8RMf-v^xTyKGh%j-etu(5EhkQh^Jc;B+Y&Q@M@Q(+m9BA z4m_C4EoPUksN7Z>QRKc#syIqrd~j%})k9kB1FkqqGut&p;n^wofJ>KtiZ`xN3Osc8 zgskix?DF1ESGkog1PI?3wM`i6ZSf!KYcu$md48we_vp$*lPH9n^*eTy7j6_3lvB6s zx}0L!9$K4b+xGeOO>evdCn_-CXFEcK(#+Yji+fv&N)k=fEn15u>6&;#BwUub2Q1jY zY{pJ#{osG~kSA|QO{$eaW8VErtkyQ;YTX&tYL258d`fW#O`dmM*|T@A#n^~-gmU6h z+kuV}O*c``w&VvwW)jk3g8{2XX5mZR#K(fw(rnh@il$7T8`mnXleaiIDM|OutrdqP zB|jvctuKyH-fmPGms8k8tA`lp|Lxlum&Kd+@bmL~E?+4oriQ&8za-YI>0PL7h`WRv zm(dK5EAzM`5f(#KQ!R0d?^<?Lhv2SSD&q}2N7u^+KbkgYiEiz4YuYX)_j(%hJ))wb zcA7V9=n2~o#r^i%Z?uqy+?NRI2S|FX*2BXNWkz@h_&j#IdGjVVouEc0L(0dz$8wuw zicMdr_co)@i__<|B5)iV>~4rZ^J&k135oSWLW(A7eV%gI^_#KO-ediV83-t0x*wiY z{P`3SG<5IPxs@pvVa!OCkZf*8k+K0p1O|lQ6E_#~6=Usj-ldCzq{}?{l;a#mZE^?R z{CRnn1rk7CdzC!mc@d&?UrUf*>#OU(D<z$Ito^(p*Q*U1TwYf<_=&$it$ttghrMnh z-3KEDM@rJ|hl}G4<ojBR4y4%*FdN?9T_uUnmse1@hyAf}`}Xbj12tByWl?^}4ka0m zj*^96ay<GPeN5hFXCLTH8}Q{(bnyJbgN!9=)BC>OO+2!>S@$8HsLa#DAF$i*-n#V& zmsn>}!(i-~KZU`l_8J=<Ug|iyCLRlUg-0{XnWJJzJ=t`Xva+9;y)z;=M_Ht5Y~22R z`xa~Gdd5E&GyQUHMb27g_`TbA?r7<a4`hrR9TZ3(?hux$y7ueJm=d0xZ{NOcLS)m` zt4cNtT9Na;w@8}LsJ$|N%ghDqwH}CA7ZzH6%$)QxKcBDao}<O+kcI!buFnz?O7YHd zaa*N^5s&6bN_eb3!fVvh(!#W#{c;n(N|MH%wa5Q#u80i^Z2wvjiz|I~?bixducG(| z;*RMnauiZ6BLeg5>gt;7a6twIl2K}D&L;v7aWuVq7_0AyBR|{G(J{BH{`2SAk`g7M zauM(J-riYvg{K~wWDC9m3+i&{?s^Vfh5-H?@y_3FusaJu-AFIjW?rggyS~L&Jc^~p z#>NuauFE1S54dvb9TfQEk3V>g{2a%USLBqZT15r6W0570h~>mzZgQ@OJ-rn1$kXi5 z;lo>bIFO_1o7_D-<}6yY$R7tn0)duyc+TQYnQN8ef*b5sOZyrg6d3D^a#UOvi(_}i z&CTt$x3~V{tZ}gd2L}g<Q>UKD@hO&>efslq7Q&Lt>LcEZCrz3pv1iW(xr}@F7VmXG z`{m8AQu$n5ToSpSd@jz;v!yaZWP+BsI}4dLDya5k+;DZ>h7^0YxB0k~GOal+5`wj7 z0=DK-_waOaGnoWK#l7xbxOeR;PnkKiA~=&8B?}iW)ags}Sk<=k_3PIhSGqDfGjMo0 zkapvHhYK9XG!F_OcwQ7PoyBnS|GaPygJJjz$LW9@S4E|X>Tn~%*iNgC2XtyT$VWC0 z)H!C<Cv8ms{^Z8|b*HRrf{(A1+-|~=>ambdX)O=WtL_v8wC<js*sngfZ$Czo3q@d^ zIdf)AZ<xZfCkQlV*<FdoHKDIw?MoXQYGcllIv^qO7F!@RDl9B4P+CXlsk^)T9bex_ zfP(6h2z&Rw_~$t0?;Z*Vt?{!v;U1o~RwXHVn^9$eOwiGqlBB}?_!|p1s)bv&S0YP3 z6t;TTjg7J)Fd#rHEEadcY#J>a(80ssdFG=NrR9g>j<o`{Shter)@Bi^soScS9E-{r zODSnXURx(BsyaH<ht1cMzdiQhUN3%C%Bj{pjf#~HV}qyh`TSMhM&cviE+WtBBtJcW z{(R_(z#FBJsv9JgG91!WR8<Adn~%}yoj#ZImbuw9=F2N{_+o1uzJHp2msjxwf@i#Q zdq+p)q$$&y3j?K;Vs%_f&SEnTs+=CcRR`n14vh}f#oP4ZImvCvc2J~9)>alpNyqf; zVBL6Qe@BfnHr5bf1fxU;OCY~+Y|Idc(IJ7^duPm;;T|A9J|ZJ*`SsYoeV0m_1`y4d zy1LCq2FY>=rTEw|!}i3|Tkh^p=xqohl*~??IMHD<!mC*4NGqVUG|Z?ff$ptja0=t2 z;m^?;G6rRlayV4;=g;Ty$O$mX7~NK&X@`Zv=XoMb1jK0P)|RvjGCux%$cz7BebEcc z&f18h4|nDOwBdS@|Kcvqu<DUAxG$g`u6Fve;v#;PH$CZ!!>8MQ?%fNf;0>@-G1O4p zFONremq#vCHYc>Erbczadf7Lnj(|0x$NjGmt_xS#JayW%*5S^Kj5hUJ4|n(8Qe~46 zfVb}M?h_gskKTH1+?X?@<ci#nD?V}NOmu5$L>ORL?dEU7w*BEa&w^%+hw&Lo_S#cD zu3x{-9IkFj%b979;1J_7_<E80T0TC$s^rrTr9Hz9M#={KkztrGo|<n-!ZJKeA8Oqo zRrTDuM>fS=PqeRC#xns3UYE)NU$JtWid?=6U0q$FGC{7b#UcI#5|C6wLP9DLURMR@ zhDPBCGbg$CW(1k)l=xK**68E$R>o-G#M8ExpOt&s<)Ot*wT1KM&65j0_M){MJ6J|b zE8xaLzV+PP+_>&gJT~{Sfr^~=o(Dxh`H5yK*ndiKx+_owEZ|pBz}EDP@9tQY`L=yz zRS3dlMWiT$@$Ql!o}|}Cb!NV|U`gz0>D-i6)?G+CK-<Pci25Zl+EVQ`sq)BWo?c#F zwdd;RER~(j7+ez+<h*LlnlOAV&UevOZinDow|=p<vC$vyZ?{2)>ujB27#SHUl(00B zH^JzpeNR=!Sl>qEYzhHOcA5v@ShSH}US59xfdg&tAMdpil)&kVJNa_joMk&@<Mm72 z5jQDArdSw+8B_#HEfUl(J_wvy(%q0N=rD55WtlKj%9A(8LPxQ53=m0v-@bjW_A#ZO z-<k%s`3N?C@2WR@c;ricy=LE#gCBFCH7rUWA-6L6<i$|=s7Rcv5cLcP=A@z&i?%!7 z-l3;`t+Vv&uFP4g4@gP}fPgQa93Z2hVfisUJ;bdO2uN~HcjXg>Gv+Sa+1wVDQF?E) zW-kKg7Ui{;Q3MaMW*gS6lk7|%js#Zv1FQc~#QFqkkijvYR}bEG;a;h1!0(=1|9uUx zq5=Z_5U|izy~2R$V|vaE#+L<?78-^E<|d{!@bK{+AyCj*;1~7fixz=xtY5r{YE$mU z3|VXgzC>x+;A6XAUY%D~{!9~qVm#Gh$wJ1C8zo`#Z6kv{N-<j3wLch0?nKgG7B=LE z2%cM1v?Y5@6P+t8!(DT;rytZ$f9Di3-6v>J8W%^<5-03EU~#yEuiN6yf9mH|JCv#? zo!JfCN-&u4wUlisZ&1d1xzIaEmqCa%>ri;OiT2+U8*27f8Gnf5eFumSOHz#OF8pAy zCMU(dsGy+JH#;vSYx+E{IPVIxv5`T})1L@nV|#jUH}Um7_j!hDvg!V)=iN8t{5mtn z)gC{7%#=>MGiEjG%Z&va;!s4QTsd5rKeZ}I+Ak87inXon1`(0!&~&Qx?%%)9JTFt) z{!Fp2&c$_^a42r@hO;xS#3W%&@2Fg9Ikso4cb63)%Q7L;SEl)n!|mJK>oU|4`btnK z=(i*y=x}D|wrq(vsY_24b9-Qi-F!$&stEBcT&JUEX#P81tKo6sMBnj<I!8q#>*Rg_ zu_eYUE~%z<Wi1_Q@KW#XD^qVPQ+JdDa-j{JJHGa5V4z~er{y&x8yfN0?@gPRxlTL( zeX>PXQD0jbXp613ceP%Zl*nQ6sW3K(S1W#Tae5z4V(r;+B)_$&Y`5s-y~nHh+Mhjp zR^iJF;8Y%`=ixBeuqey{wWNDMYNdM0U~z)7ww9Jw>as9EGTO6BN=lJUpIci)oBSNr zZZ6u0?35Z~ByQVp7&+Xy8ub=c+TZKlELsW!ZI{F%yMaZ>UD$Z|;ZDKqF@UAk%J{JK z!N#Spv$8^M`dTY=Tt~mXoL6DYeaE<Vh>3`I#CxmccH`<}7pKkPshORCqY<$G=E9bo zHGX$|s>a7w59MtsXhyB06s>VSkPk`K&tWLU&d!cEv85(LUfo`fs#u-8dylQ^><1F; zl@YZN>Fm36)-e5U0)cH<wd%F0tB}3r?3eHFtdj}P+JJ3`d>EK))}&;A1!Tx$QQQ76 zEh1y<gO(t1&Hw#(kBF$mM5}}X$D<T*vFQx}i<y4y+>Rs1Q7GkiiB4l=DsGyRd%Zg8 z>|Si8QlOLhV0y4wD^ml8O~00Jrm7WZ%JcGttFt+t;F={-Wh@c3iK8lR_r+=J1O!eX zY!=}`37-7(C&}%Ln4@j#Hzs9%D2Y;6-+yENapc=+vllN%dfb>XQplh9tw9IXhf=y- zGRmSyC>7SPT)7v>MGgTk4(Gb6qYYT#xW7b*w4azwYe-P<=bIZ_-`rk#<NEcSglVO* z1!7^Vq&$Q17X7M(2v<&_CmdUJ)^6QeyuP{%sSYK{LSBVOpeSVV0O(U?Ba{RMjjI*v zvs{W$`ci)4Q%@JEGEBfuXuW-a>%**#&mRH3Q1t;wSByG{cl_xWJdMpaZr&{VU0UQZ z>emfhx5`RNN>--ZrxN}M2nY~SRR#jK?|QvRzv!vUpMU;Y?0;b1U4B)iHPXJaDk={~ zMn-yTtm<kkoqt<(s5v6Bw(!!7-;2}jZRxZNTXnF?QYR-T&eLsLmv@~#dv=MiWq3)# z$^)*towaGn?~IAmNgo?Bkc(2QiODKOWxE=|l#VLaGDdDZW3=6b2%-fX93j9aAu7qH zNO!kOqtv5vJl5ovm2KbXg*YL84opC6+CZ&GMn;DA!{7|6yHQ;)Sg;_lG(tJdez+fX znIGt`r>GCBV@g%-u9utt+iy=+?7h;A%8arbwvX9^7Ymmyi%2l43O)JqN-K&O0MlL| zsr9_PyxG5W8^;?~oIoVk2O1z+0GUb;iDbRn^Q5tn9_g_3PoF*!KLb1*h&UFCvss~| zAh|tbJj-=i7?-F`Ffu6}w094L{MX4m4aV(YkGvNx0}`*PsQ+*^$rgAa3nYzmmdnzm zV4tp_P(CSee>N2&hwlqy8APS&7}h?osMW4rAejX)$rlyN)$+By-Kejju~EmorSSD8 zXCJqvj!h4(W`nqSSyEE6_C&z7hRvS<R^p28Go0f8QAtWDC@8p&mPM(Xhzx%5xPs*W z>-_mz&wJhpXBCK#qs9T_#ybjp<cz?mq{fYCdP~chTU@N_p1bp}D<u@vkUIWQKH~0- z4?SI#2ntdH=RvLt_|O?F!BQ%44j#OQ9i+Y(=rQ3_OUwOSIRf)rsc^eeVYm%vS2J8S zwN$q-;Q9xUYEpiAd51N7n?FcY#AwfntuQQ(RIU1s^y|_7e9p^F+YHM!E?vD!pUiBs z`TS~zKMslnvi=+tj#R8=p^ge43J47304*ShOt1HSXlMx-L<yW@7rmmVH6=uzWT67h z_?45>Fex>4DbCwgq$cCM2SP=KYxw!!-O}P!NqVne7e2tddUaN)=!z9D&UGX=IU{dy z=)_j6RZa;10KB3JVC^ZU*!c+oEVcwSjPY~OcoI48tLALnxUn8|m;jKw!Tb%(ymO;{ zWo9C7(b1b;qAc5S_VXpV;o=Y(x@w%;r9vG86{r0;+?^3Hl;RV0Km2)1ORguPEF7qq z3RP^ald@52qE&)PHBCZ^ZG-QGI~Th<Q_Xng<YL4ul*ou774Hc4T}e$%J^p0h41Z*| zED&ztL#V~Gfo3m%0#^Fzr=J!B>TLs?bH9E#{#@57f5cgO6d;;huoPdu3*}2<@m+8d z8k3ChC+uiJ+D`u1u~`V0E~rwqgoCKi#<3K%v$vlk>DlQY-e%rbfM?`9b=Jbg@djnv z@^oU4$LSvT2hgmjwPG+Hxa4f&Y?e-s7C8HPpMCF#12bpLI1aQfn`o>$b?Vfd+*~P& zK=B4%KxTdIiFK{l*Z95<@^kR6moeqM45}YnzT}za0m;G(Q)dyS)n1z>T=gVTOiXOO zVoX4Tg@nYFqkdu$nVGv#4<9NJ>2dz;_utLzziwkJAGi2gemvEx^PPpux^j6_(-_pV zPY{P&5IAxZ(ojyWM|BT=OS@zY$?Oe+Wu0Bmk==J8Sl>Eby{9=d!LZ^9ZmV&qycvix z^mKtQ9rsh3nhUtOJKs+#RWFHDRp#K}0FUszzUU?@Lpj7^$wELhL^#nuH!z|fqvTN% z6>85sKZO9Hsr?e}nWgG=+%1j<j@qI>H!!hOB>*+^moD`&QU(>#*|zQiw2`UjITWHp z5OEZJl~9ox9eJ?hIQFy5hbQ~xo*w3~=&V&m!B~d)D~sPg6t!g%j>BUsPB2nN4SN(+ z*a>``MSG<na-J^8Myf+mA{jKrPH~zpA95maKB6p&y5{B&{&Zi3g@t!+-TEl&$ZLHJ zuwebRZKVRX`ZXyQ-k@@n5)4C7!d4WTfOjGRVfEpAk8t{05OyoLTqi@>oPF<n!xvX> z@kj&;U4*=T{#6HXcXFV^d7}Uhc_nXLyLQabF#Oc1Q(N_m*QSm3SM9X!4wyW7a_<)p z=~kSF_^(^6I#lLx2<*FZlK4%fG#kNB3mD}JpmYTt$Lt=8*(-suhQ?Ebi=Gk1xes^z zrLplTNK0^`B{9*%!N>i>hY0R+JA8i(F)4hor|EY!*a3oG&*nu5)pS&}zg+X}n>W!` z>)2A<wimN`r&B1aG8VV{erA#!ZU#RZ+<BR%XTX+%g-@xe(h|6T@BCEOZ@3ibH=vIT z5xI*W@4d>I*jfH;FOKX~m6CRC9UX)?neM*6yE$4hRzma^r|Az)E>1bu_2j~Z3tv8e zKGkWeG36(Px%>cXRS8D9f|)5rUwLhJShU``aPeZhD)}QAA6J--d_ODN{bpr9|CDXJ zoEkn}nY%1B*K1=_N*clv68VPA8y$INW%7mj+?*)BEhAa)`}Roc$Pqb|!wmz+Mb0Tq znKj4{mUwJz48-t?OxC@Xb7ou>`<}FUK79{^G1rBWo3l*ZK?Q&-j$|<U*|yiI;S2KN zRy+_}FRUMaG`8@5?)V5aVOiCFbsjhWqeHB}W_-QK$bCVl4dO+jvO%4ezygi^>|ag2 zsr>UY6>PRRt(@PmG>zZm?T0OGy?$o>T0`a^t6(wwQ0FxJi*^VbuP{G@cwPb)$E-%} z*{S^qqJMvAuGS{|>4Us~-PdhDKfknG)_X-hei!Y1kv*H2k#wNpioIXZn4`0vfj{d? zKfcIXqQJhcGrB+h<4^NKz{sT`l&@D$e~ur*3XUW7+#(--VZD3@XKAMCp5cK`d0_G{ zjh3Azb%=_B_Cx0R4~6AVo;*o(v`ugG3Pg9%hReCb*gGXj{3nH@!HBk%AR)OB0ByN6 zK^C>Xe|)hrAuT!BJlV8iEB3Wf?Q@}ww?DDI>&+s(XRWw#Pndc}y3V@?A)~_sZBVF6 zK#&1v?L;KlTxL&))zi~5`<aZ4OlPVX>zz)#KPk)$0hA$G0L02|@NHDS;>{sAh{+wl z1MLI{2Tu<Fjs1E?+vC3c?R7-y522QZQuK70u%#|&3aT-v_#U3kEv5pFKE1viNM+{S zx$ipNS<9Tc_XeYF1rcFXx@}DBb>|5|9kJ7<mk4yTInhW3c{*mhJ!i1KYWX7DMU3Gj z(}o)=D&chw;0Ul6DntHYU&n*ZQ`%M_mI_mfSTFO`8PF4<=n<+a3cCILb6Bs-oH?m< zZ!7rE5|Bbs6Xogd-Md?hg50Qlwe?~h0EWh8M(&KX;f~bx%<yu1mrreNVL*=t(47Wl z*jwJo<rfX1$Kc>?y;z^jIHsZSY8m^FI1P}1>1VDB?OjkZ1SCPZLoG&TxM=z^J)<q1 zcGXMTRa`3A!yTyHi=n#kPGZ)j+b_U6gU(kT3J40y&38%s&GoW+GwUM<FXJN-3z$(& z`947b0X(^FTTZ`wQ&14~D3={})^5V%Z;U$c$paoSf9_q@+Zgj_PY$2%MDc{Zo~+~f z6H!z~b?K_8)BcKPQ(f<7EK~89aM^n5)z7NW&mHgR=r|-TT?P@L_|fhu05DRh%lr9% zWqokw)1RX`t5GWONP^6K4*(E{<4K?CI6ho=_rZg_c5-PU8l6Aj)W8F3AOLs+w7ptP z9BS=-6yHH|FWUgk0zc7wlX=%L)9tM9Zd6x87E1Ul#v+>hL<}#0M6;K=!-tllpjDE< z9<pE}f%bEDvQOj3^I0-KFRMm~>23CRBkAroAU=uJz)YkJQ&mYk3&gR?)WfVVW%!(& z=6TT;EG3DW`S&)jth&&C<zzDo_A-dOA?gl;ua7QZuWtFmNuC!;|3DHqv#Wdrgz;$i zMM|N<vh2-sY*W(Z_b-UY_1SLn&SDr+k=&Dg*C&UwBi190%~Nt;P=<0GuBwYOs@f)K zQd|8SljvY%;KFdl*xs&e?yBU8&{(wssRAch9+(cQKmhRQI@E{mUr@V4kfZV&N#2?( z5l9P%M>nA#`?>`+VQOazI~I1&n&kQWIUwpjsvEHkMAq}HTfTf3p6q}~BNcZi@9{v$ zk&+f4jl*y4>iXDs`(+It$7fWZU?LlGi7sSDWjk~DgVht%E96nnn$B9lHyaVwS(zL1 zcx~BY)CXlm>_JxFk{z^6M^Z{kMqj^G)t-GpUl!q0z3$uzK&6gX*EtMFfNRA=w61da z@ZkgW@{D@<GiScpm#{a*nGF=oA$z2@_k+@^8`!K<;2VLGVC~wq%?YEVIilLGJNvx2 zSauID>xyofU|Xty3DXw1ueDer(%#srs_r4DsEsU@vmmiL%F7J5<r;3Q>v_iB107Qn zf7zLY`_uy%f18(=*JS`!Xh6{6@L^}Ll92>$WnQyiJ9rc63Qhw9<lbcCjH0jMRXKTi zvUnvbpD&GBS|Y61eY|&&kFy%wo&^|nl|=b)h2tn`2e$UZ?}23ZY}nz(3f2pq_<q$8 zN&;rCu}n=&OoY^LDy<1X(d~QMguP_*=NqqJM|Y>aD>F?egN!D2#;kgq_S^XncUpux zZJ0RyJ8=3x0zZ0hI(cDepwpy83?UXE=Mdsxyo@&c1`@KDC>(u+v;uq-k2)q2AhY%6 z#`O0<nXG`0Q%*E`niTs>qdD-zjwhRHM<~WhK&qC9f=O~Ha%u=Z<*)dPVDR7|%D2{% zupmJCVARo}D#<ZvQn<Kt8h4iVkE#xgY93Zz%EVuc-4Kj^aOvdY*4ngGXxPEv8Fdl+ zS_=bj78Vt?t1e-$%@LfJ8Hj^z;Lw-|6=15uK7Q1QP)k!HUd*gOGzhdt4ooq%+LN7% z-sXnSx_*BV-n(nJ<}}aW%b#1v&gI<k===9`Q>RatazAuu?c=1R9RvhH-&#hp^K+&p zu;)(@V51=Y!qlM{KmDhlbOC=WD%lT!iwBVHx8%#Rm*iQO^>OzB*n?O<S0$VpGJ(K7 zgT_E}#2sJ7{_B23tV}M)k+Y=wDkm7`#7iGKbVDcKI}j_T2h+n;1$M&N^+MxUtLX_a zd{FkX8EOe?fS!c2O$81-FHk_<<6Onr4j2>iL@ayYYu(6U>ouG8MYlR}>6xGpo+8_| zq6#ktc$5n{v5G)E2~0fD>5pKi7J(w!bB=w{ECf0k8m7&s%ZqydoVBr>QWJihCKK{u z{p{E}`R_l4UoA%pEP=fOMufw7W2jnMN`i5XerF8()#1_8kXw<o^xr=^k9_cyNHqiu z($q)?>@1vk-7gxV0Yq=$8KSOGsDun-l6`~yOH*1(7+UPg?AIK9a4+bY7oYM|6j&iB z6sY=uW)y+&7Gl*|o7~~y>G?D+E>76>p|`hpkP`b7jIT0s&#&U)QAn!=Erop~hg~aK z2)3bt6)?YvxY>XIcJhdym?}_7DSS&-s8{z-nKt{@)vH%=d`+v@?A)nz{P=Neadw7t z8U}REBwk}&6h$ZuA>^I$v<QWG{fIakRD{-C!dte;z_IZGRmCbvlzhaeZiVWuG9~=e z%d2%I;n4_A*nmyRt63N7^Z)?j`i$RK>moKVZ-y^|69_r?1fpDDf0ap--gAVab>Q$q zBj}huKX*2A_+Gxw{rtw~3+86F-2L}aVthQ=aH@0i8LJaAG8X+`D-7Fl+DjlL_lT&0 ze~mM#6AMc~5(z_*GN7`OeFc1U1(4oCz!;DqaP+~B$G@*Rs*A0O^Xuhn+mS5dwq5uA za--^`<NgQSN{M?ekyqD4DcA}wWKJkM`X^bT)a4<jme?_z(o%4WJd(r_<72Yixc!>C z=p68=rpS^aL9!6^8iG@(CY2q$=CZEmj5>nHJ{YC8g6nbN7FWAEcbPj6tYmMhs)l{D z?chu5`x;x&D1RL<A6&h$ty41m#dJpIMOPFb=WK1m5I<4qoY^t*gq1et@gru%;#2{V z9!5q=)Cakd_HaErPO^Z;S?mO|*<_6N`#?LN{qhzMlpV<v-~>c-CjbeDFK({Zrj3sf z3BoQE^IN1@;u(ix@hE_%{q<TMtSHdJ{_)XH#|6LqvK%ZNOf|tk)R5;(ohD5IDAnlv zjU7@9FK{Rvg|TmMdV0EhfRhsgar}_GEJS+5paS1O_N&V0Z^5z<6^zQ0u0dL)>k^Xq z8j#`SrGqFFZDq|`K^CUt8S5M$lZJTb$+Lg|ewGmjoGFC|1myDMo$OZ<s`w3rN6d&7 z%FtfGVbZ6-PCpa5&W?y5ckgp**hd;DGyxL(+zH*Iq|PZQD0p{w;^OAsOcK5hD7Bu4 zXCIs$pxIIJxo^cefh4)RD$ykIuWNgW>UlGE6BHCRRP^pXRr!fT`$whqdrzCo8H@$3 zOx`nbdCPHmfQIoiqj+-i^N(~s?;(v;Gy5%me<tefoZ+#^;jzt6Bj#+F#K?ShcGhE$ zZ=htKX=ca7bE6K$idqK$z+2$+C7*x)e3Nz~IS`45cPCp9iHfAPn_0ZM`Ftc$?sHTG z>+9)Uz#pZ6Vl*m!C=@|tl_a22YgJ+t^a9PMR`x|2BGgEpJ9kbOeiM4UsN;DgA)C++ zdH7E}D-(Qd1rgS@6WMqE;>o<zx1Ia;F||V&E5%BN_(%=ZdUJU}9O`JgaSEM42x1yR ze<+3EWgM%?-nP}V@YaQk7M(8Ydim#{ai$H2at*d`7h|8G%&uDsJFbJS2!s4AWV{r5 zD(m!ZuBon;jnT>(=9_c$QFU}@XG$lxW@TkGyNK(?`H}2}uL-;#(`TDec;)mtO9Ehb z81kJQ4sRGh)<F=<&_{hyn1MUGuQD7I7`Tp)uidr&>C>l;$qN}y?Z4{ayksf@$6SY2 z6oLyF0t4$0>GY6$El4pw#h5R?#)5XAude}96$S*<hEydB-H>b}cnUe-=Ckeb4Y3hE z@ZB1B|8`IEk`9*T&9X_J9=Z@VsEF!suQGsuPOiBzoUsl3{72oyhID<iQ!Q4@1LgF- z`dylQtwXR*6$8|84seLseODFb*o=x6K1J)uiE?rcVA2;t6rlA;b|L-`*apch&+FN& zMf~9;mw<E1i+8Iq^sF#^=T*<%^3|wNrh8Ty2H_o)j^RP`4mA4w>iU31IDmKy;GRvx zUHJ|JPS!4Q8ljX1XPc>E6x=O{&wN!!R?GNia|vi&18*4wo}Ad8C7VxO0{v%ZU$}z( zzBKH@Xj{bxqs9++oZW*3D#3##*D<NlAb`m!QL&kQO&wE#@KHQoQA#w9fc6uN+%YK7 z2(j_u#(LJrG0MGfrp?NHn4FqQ8YIiBOuw+)jiM~YsxuONbX6)FPyhn(T{`*)j;2{- z-UmFX1zcSGP+7v-2ZrZQ9MA*%@jeisf!SQPhuz~G#~s3q2D*Rz_B4H};o!a>FUAu5 zw@3m+L!O@hgGhoDpbIG8&p(fKE15dLJ3KHF2GC}JoMLL0I+zd$fEZt<Rs;YWZ`rOS zEI+{yEyZ&_1@e#i=`K%la&pT<tJ>p;vtJe1ER~bd|2}q5C|IO!N9I`~kj+7;5zhrx zIbO}ST@d7GNo~VKES!x3;{Rscm~I8j7b1RbcgnHHdkAkW`vLM5!p}E++_PtoEGlL4 zE+gjzB7L9ibZ0;9nMfL()u_PL2`1wll%gUaM;=9GY0<tr1keCQ$qm!b|NF$cQpp6! zTN0-yBUy-WOvVeTM}pw*Y9NP#5BdPBdAssj*2`H8$giOI$=RY`9{u<S<^#!_>@YrR z^%t44g(?#G0V-ip2aJk?YYDzmNt{Og>ZE5+k3I}VU0a^IkA3MrCjo{Bie;oj4&MHQ z9Fd^o$)&q&r};tbf+DJq-)@KshPX9g|6sFb)*CGWJrGU<>RVYKuuJR|ius#vZbVS` z(&wOJ)`wJt6zCb1T@L$<*!YMUxj59b*<kq1JfdUamGc%ddrBrH<PoxB!z@v@)a3bN zlC7bK3<!<|N_mln03KZmxiTjxl>O+t=V7@YpmL-02S_93&ad`77_fUC;uFrQ4D4*O zK;$T~+kCS+ft|=J4?CQ0aq#g$#hr|$Yqx(LPVE@ZzL&5q{HM&9JR8Mrc^t+7$49`L zXgyC$lY=U<fKN#lUwhlf#|I*jt+b{+BqCB@Av2iDj}}cZdJZ7k24vZXW!F)9s4%Di zs)yo!C}0xp4_1_v29#Wf{p|bi<JoyOopl5Co>*%mwSgIaD=4T*wS9u_6X9m_Ssxv6 z9FhR>+W_B4J)uVqg_2enx=eD^*+iqNr?Bl&T=Yx;BMR>vlay>FC2s_`h<*g)B!c%W z)^PzRr=5Bqdj++K<p42H3<&HEzESntOlnmKm&qx+af!+X9$G+rT*aSZ;Ywfy(@WWJ zJA*Jjw*$Pt9O|2fPoEwmB!!^pBr}bOh)9Qlin_Ww>@oSF`BhcQNF2GP>{O{C&EL<@ zNL=*$@BYxF3}86{-Cly=0o3-0ED_@)P2zW9g#8Pw-2f$+1S|)%PZbzqPY}#FEhIPL z_2fArMIA-YGqed<t7j_$7{d1XKzu(NNPhVpa1<UUxipBSWCKLS`1IPfpI>KZ)7Sqf zp_kV^o95}U0SYn5&_KW~7H3F1+Xt9PgP7E|bfEOOlm9F;kzc~q0B==ctfhjRM{j&= z)YQU4?%cT~(YNdiSo;gX3rLmSb$CD7a2nq|4EtmMjf3w0sAT%rPw;w;3a@G;58vCg z8;p$Sw?pm|+Lzv+mu6UovlB&T0wH#N{m^&5qCOF$I3lD_ESo^sYZv3(Kf%){%ep78 z;uCypGx?>TpL<64*5qsZ?(f)XfIy4PMgDUew9Z)6XU&mx$3~}DcGYKB{R_B)Lnq~A zD;!@G7Tm$Mlc!2peuBPL#y4l-fx{gZ{X>qJdIfC5K|8zWl<n}TEs*iu$$@bK*&)_! z0-7bDXy+lXD2h%J7h#ly%g2KUu1j4g%$AW8NDFP54_;v}pv0R^(E#w!v!BfE2vPr9 zo>yf3Mrt-}CjsT?QU322*l}*=&ww>+afql_B*Gpl8TF(5d+|`_+O$O^;#OCqE}`-O zmieMvEB2B{-PVg;eraqm##XjET^@ZBw3RGgLCg$oMx3X;S7v_zg{jxs&Hh%yD*$`< z4zGrSX-j@Pe0eZX3kpqHD55_$Vdhg%nAcTOEsww-`X2SG#Za%_C>-H1{^iC2UWvGo zbb%PU7qSt|5HiS*y*Rg(kMvpJ<1|cYpPa@mcjeVS0J+2(ZMlCKqS>3Gb1=nU1CI6w z4-7jl=^uEA$H44>wC@fxocMq&`T(FfVmF7-eR22xeZ9WBW!Q;?nqbV6fF+~Q-%TtO z0Pr9#p3=+TB`L8r=+OD_@x?`AU+uVsQD_0z6;tGchun^voApJkn09@U+PU4xl1y+{ z=`Mp+CK(|(dDJ=pKT@1|%ZbZZt~6GP!*z!S87t21f`Wo|`e4Q?{!1BtY!ht@pgH1^ zaj?U%&rGeX5-Y_tGMz-+6hTF_L+4w!ZXKCYKsLl72dnH2hmL?+twv^){g4I_Yb5jh z#MPnIc?AUpF{9M@JaV)ubOi2qtjp~F_U#xV*(yoMg=7W=Ab$cVEs{M(#Wn7?bB8g` zBy_+YmA{j~gIBhlX+gokYe{Y4=TA_y72mR@Cn51?Zz2_Rd^ne~zI*w09G%Zd);8da zd-$F&LBOWg4*~7B%`m)>$V2&i6c(F70k&wg%i&qREZ3J*#4<jG=;d`;Qil&0!!#EP z<QRrpfUc2z(W0ZhMT3?T5OX9Gj~D*O$Ix9{5I>o~?lF9y#m;_yCE~K(w*Tu0?+>&` zOA05*Q#^Jlcf@z?`1aDNHSGA$wH2592Vz?7L^Ld)YM{aXRpw*xhLU#QKV40%8GA9E zd;YPBmrMnDE6J;xQry}Hp28d$3%GC{56`6u)kY+mq8h+eLINlo@}?q&{asB)gH!Cm zjz{HE>o{(2>%}h2GzjJJuUfSq4;L&1YcVr*aEv7F$gvhR=jD3<qY#QW06))U<k*io zfkY9&AFaMhwA+C$gTnnDig>#$y6*6U!U};A{-^R(HWSN8)tJM(=4@Z992}9ayN5`6 z7qO1<+^BAx9m@VpLpR)@dGq_-l*3j@0@qNN9LeqQ;OWAL^zSH!Oh#ZxlA0n>B}y&> zNlx#K<@?4CcHfp0Ss)*&avM2=M-P0J4V*1dp`Vc39^?@UX!bX=q9-)7U_38owi|aD z_GLKag+uNDaScsPr~g$t+kJa6eF>@{?3181zUTHpl=m<<+r|V+YFA-XqfYHf6{(Es zhjc!%af@jQ0Xmc_A+1D$eW`dR!2af{KQc}KAT<c&eMBXh6oS~1h%s{-Y9qyX{kw?h zfxsq^4V8?1wwyldn?*%CqyS<+auMs{q9nI02*ZXEUUqr#F`csUH8ci+mjeg0o;X$T zvC%_s!+@QF9mmHg?2y+GZYlERr`Qd~{5uN4ph=zuHS31Eb{w6sro`ARLj_FkLx2`Q z;IrwR?ESJ_oTv&|v{i8_i51_mmD~f!diZrQ`z{AA;K@GkuQZ@@XeeL_Tu00a@=h?^ zhspg?|5ay!Zt@%K7DZ^ii3e9e0UMc$Sp{<ST!H2Q+WFw6DTFlz-LP!dbHI+1kvaZf zn0m$zF@TpYIGfRqrQ}ZKx+2B%0g(>E$Fy6N(5J&?{pEI5|FRz#Z!?r-!gvLO>=Ri{ zVeQrH*9~pwAg)0+E`~RUdKggSjJZy*n|5furJs)gu3RTTS(d>H8c13q0W_BAheQeo zf6R|fH;$D3@9J{N5)?}|=qL~`&?KVQy%-fuSU=imaGGmPLfDHrcqIt++JEP+pleN3 zoYq_go18f_evV?j!O0&gp~qr$u2D;$VysS1etTn;C)!ZT)NGG{C@DsSYFAmoez6f% zj`(n;%ku8zFR`k%J^-rmndT3m@ftPup9KZd(5P}t9Z*+-Sgw5h2m9R@sDM_p>)MYq zAvJ3u?|VQX3%rH^zfF6588wsro&Sk`C1ML0Aq_hNVyzbs3jHtu!X;aDoF9g<mo$1A z9wL&)V>k)d;%WcjSA$VqT1Ng8(wUpbkxYUTovgi{{iL}9-I0U8eL}QwYDXaS_>Mdv z2LjQs9To=f&6-#Kg<n3y-3!52HlZI}$tb$x{*I!wIuHQR4=biTjC8XAF2buf*bipr zGy;S0mr^%N3Rn$ao7Q!bg>VS=!o$`KlUKrzXU_^a<Z7W7P&oHf&;`sxnh81Wp$i)S zE8qb4P=f&Yv~<)@8(_G@#Yw`QSNj*&3QPu7=mVgPapy#6nK}Dr(nLIe{Oe!I<v;&P z=sL0>ik{NHsJ<Oo^V?{mL9s`y%n}%dsXnOFgg!u#PUhILTcDoPVPzWL$d+K1`%%oN z5K69DC}Qy%FD8QsJc`5t_ts5wRFt+$dQgLfD#kt)Lu;*F<U-ccEg#3a-o|3j;Sy0G zJ1r<PSy*4vy5DYqA%m1^bF8U|OWD&SOGy(1q>MTKn!W4;NE<WgDJeZWbr}(D1w0m_ zJ$YM(u;BA?q)_Npq_TxgC%Xn6QX7n`lO7}Hty{fX0#Jqcx2@=%P8;dY1t#?1A;KSy zAh-rD8lKpT8W5h7j&d}?maNX6juQ?VS4?_zd~s2!1i2KJi_?9R>;Wx>2rp93Q4kv1 zQ=N&jvnu=w8!1&7+A(hZyqvCEYa)RLz#Bj<3}s@VF-y_JW5|4oJSqs5Rk(k`&y?Rv z@4$!`(x1CPA|R;(``|x6{7GB_geMa3ON06)&J&Csx>Fxv(QEtep%tYN5(r-u*x4r# z6@uZ9gx4g`zKnf#ZgI1L!-WKsx=0kia*-;EENUz{B_$MKmzcs@hhZZ`g`;R-uo7$p zRZtSHxFxqO{1)#Yf9!#Sf6#%Qa~Z5quazGOkM}bXi%kF)#FH=CW*CfvK~iWbR<#$n zxUS?L>d?C<7boztA>7Aw8Xr^r5Fw+Dn($XWcjtkt2%`&55ETJ|r5A7rgsPF{gpFtU zI4%60JM&kqUaez*9)NJrl&fm&W`05*nw7%lRTw@<vA+>gN2_=|Ffq}R$RqE`U>PRA zk=$GEan?OLqG<K#=lijhDSuLw5Crp|)>|mW4o(1ExL*hc?mSQ`_ft=_Xf7Mzys^R~ z_y~c6JWeDkVc(HQ&^-Xm3@nz}g;B^smZ3j%TdcVg+^Y_wee#mj9t4N@$)+EXWG+P# zkX8oJ#D1W%N0|f+At)QbVyKjC8u;hSmksbk$J>L%wG9179DIc{+FP#aCh6YaS!WWT zuO(37&%@e5PLnA>gUtG>%7%YVs?pQfXOO|U1c2i@_$PEPlZlf$ecXHT#K;NxSDa-P zkiY;C+Bcvhe%*={yHQ)X2jD5VaEVsFD`Dr%^0|meiv{)X&`MCwL8n_`Eo?Y&*wncG zP+{On@hFF1orsBu8kk&w`KGF~S7_HHLT`XZ)H)IyABD|FlF{D%tQ%oWh4W6b7tMmy zF%3%vb?pJ~>QR$6u-Q<5yTM<zV^)6c)Q=srQ9z)hhA0-AG(ol+!)*psx5GfwuFAz; zpnOE48Tc&JnbKs#!<VC#WEBc2^b}<O9dN;!azM$#--jC4qzwM1W)GbYuFD7L;OhgK zuZwzia00sT8bb#D&sZ*78C@ha2>~2JGjTGg?rCYMksC5-K~xNTJv(NRng;Anc2oqH zmg;1)lrx_$l$532+i~`Z%|J&4Bwh4Q$P#SBS?O3edm?)-AaM^LzZOl{=tMe{?o9nc za5Eo4-IW+eIv<Ea>h$Sun80g;=drjGc&;F^i|k8?3z$#vXJ{IjSL)$3t6uY?tQ5u} zcSqNm&G=<8CxN2KFCmT&D%sCDw`9~NUJ!fguP$%P=`qm#LTGho!$q^hwYk%q?!6mQ zo1A%ZecS1PlZ!1Qe@ZwdaL(%CpQ)Yc8_)qre#Ak6T3EiR!@~%pBLF92<1&bVf|!n{ zeaFa;#!lcz-IY~u?Q#%y7)b(<`xPN^sRj;j5~^S_5mKKn6jpXQ%PP|rLEuD=fN?1+ zbQA~^jG)#({eIXahYlS&@$A%VSYNwky;dG%+e+c^<rfzhcWnvCuD>_$UDuAri)JFO zgC9BFG{tuO{a4Sgw%i*8K|mHXc=Y=Dr*7MWLq`XlJZSE5(3pm~3SPb>-z?zo-JO<S z*S6?<ivvujo-3ga&22syEYYbyg4|JO<<j5S)Fl5=Jc;{?rr7MJ@6nt+CwF9DZMZk@ zrH~kJw%y`)T_=SaU!HNDm%Ew!ikY2)>)@sb{%NlF)kj80+f^qUUYmfg!}q|#G10XE z-Nql-Ssy|+!G72`Z+B+1<3W-<i(edoEnH#Yey;%V)N6%=D!PZj!_S;ECoSk1V%~mx zOh6g>cyXR=7?Y2P0oJ&a%M-Qj*XuADQK8M09$O0709}<gs;H=lI?!yn#%Wl}2mb?i zVS<?8A(NtP*qgk2DLiV!ZF~Q))@6sQbLGGM1Got7@W{b2zZ1bWMSeW_0**OY3aKRy zS{K;{k5IQWSm#wa`u4o+13mp$eCW+<*P?A|&<kK_uV&v@a$!B2f_jvR1d;@NZR_>z z{brwh60@{Rmu8#4t3R7Jz3Cih&kG^0Y`ZhA*_*i^{QXz8FU=1x-*|YMTRi)SIZe_0 z)ruXK{^dPkUjgI)e}BitKxKZ1OqCo=nni&pQJFe>$9d#Kc!=}>))LznEnT_+aZr5h zyT8WF)cr7nqTZGNn4Kn9YC+}!)i&s+Tr|liY2Ip&mdNz(`bF<xQqx6G*u0UAQS)-G zcV0k)3)*?9R>Uz#yaylw`ytEbJ@++&GRmdA^pS3<ureye;$iMKY)5cQ>(r#SNeIdA zcZ_t3#z*VM^}rGi*v~$2CbehZSS74c6q8_WtDKl)L?c#kiE_4p3Kk$4tk0b*58A|F ze7y#C#A*0F{6Ar3D0PdWro_Zod4r*?uKs>{bhp`Hw>FwCs|-hAo8JvkD2Le=`L1V$ z!AOIajLUsC>joU`2qthxci8g68G*jw#=YP{c5suoEi(&^y@D7<bNTXRLh!2&-8qIy z73QD*oEqjpE>R%C`G`0`?c{<0uDruD3Zo>ol#<gy(fA0ORRaPZlx4ziZ&UBGy%)fh zrWIk-5XKyViyXZZk%dPS2I8Q*w^tTEH7G$nA`xNK=1oQukN^;E<Usl*h>?eJI=9^; z_^<|thjYOu1KyrM4_jct!*@N@$BA`<)V~}O7@0i@=z`~raJA_Aynhboj$^RMc~lrO z;il<B`!AUZtwg*$)<}~fdHwMxmm0kD?{8UC)rYGkwVF)UEoi;F4Z@Ecd5AGOOU)q1 z0XD=V0ztW30ng<=s5gnN9u{c>Un~6KgH@!CLO8-#)r`z0h=)i?{sThHxFTv8^Hkgk zt36G<!c3KzWsZ0;jRitWhTJelHJIGD2T0Z+SJ#!33JDp5jXrcm=%?T{0)cuP??V~K zX9VjD87NQ}uD~4ww#vYh6~D6-ipL7<Z}Lmv=D?s{gK-;h%cFky7Gl$BKYJz$c63<p zMI-iMpKV7_Dbf>xKO7nb48n#bYtZ%%Vugv8e=Q6G;^Yk9eQ{a~zO5oFcgVL3kBaOs zXjQA?8mHMQMbz;KDo7Cp^=-7Ek)9`c0`5yH6c=n%QvvZ!9l~Xs4aR9s4hVYB0>{$B zuc}KkX<7>bzJ`WCCnpAV!Jx=`-sU}tac0^`2q4_jHkiS2x=PTw2q*q7j05=qMwbSx z01fA2&;V9Kzal1Z@{}p)0pCPz^fcZI3dbLk)JFK9#`h$O_9IbH2LnDs8txQY-(JM_ zHV{rA%<l0J07PNHq^=q?Ap$1YgSzxw-g1<@u448>!SKB;*>UC(MihmEvZG-(aMLIB zqP8i4Lj4$6H57UQDKPX7U}QZ&Clt-4%L>fE7gP5-GSp)bUiv_$Bz2OF2^6T(<V0*| zRrLE55}Wh>{jrDQj%rXvico6w0sl7G@Dr5|FSXu`aojdFAj1x#b_ib$$t+^Xjbn=h z`dkPw!U43^xOxX!4&fz<=^ey;urRXfqElt1g!3)5C$4&P4d@tPI3nw7b#g3O!jZ_7 z{|tc8V1N)u-ICNyi!Fi6XHv}2&H(ri#;%}taL`>^f{mD~@CCknP?`#r)WC(AOtfO| z0RSmznwPA^WF)+Ob&F0jX2U#z{gcMA6t1p${_u!9MpaR;ZUtLTk%DA&K9wYz9tVjA zQzFu|<-lS)V@;n@M=ACzI=yrgqG?l7T|#OqqIfIfPeGsPQpBAnPoAKqeHP6JB9$7O zfJU3;4tSYw`2s@m27q)J;xauGnxJ5TK16)udx2V%@qO3`)JqGcZKvbdb9zdcCB{>> zWK5s@u;~A!=21M1Fw=&&?g1ddXf_(4trx;CP3WOb1++z`JRUuu5kle(_4WP)zTIUZ zf2g?K?Tc-|)yjj~nP?`}g>nAS!Gp)p3E7!q%wTZh3^2Nn;840Kk6XLAxozj+z}3dK z4j^<Y#%}~;eoG75&#JO#r~nNP3P?CFzHLOaft)kOV)_5yP6ujIeb|HrkBQIs6R*3a zMeU!3jh&q)y`6RA3Gqz<*o_i6I?jkmit!n!Gp}T1WHfw--TDd-H7hckw!$cl;WyBB zIMDxy)sg^j<&0y(fj={wj$;edqjNVQPCM-?5K#QieysBxOlI;&3pTSIi5`=Fe*N`V z&jgU#)wi_1)})pdTA~72xqNwMsNc!OSzyShi8EISWi;mUKoqBMLMcW)xgVei`2+KN zj-vNlV?Li!v8fp1<u)FU@u9Mea92fCiZ4+a0V4}ymJph_PaPCMyR<VX>oBF5$R=P| z7j$PYL0kQ1G`u-uzlS;e)yC=REh-}7461zzx(PiUP{9fEaKOIvETz#A%_K&kzUm<r zc+#vf4&1l^jD37YAZ_rFk*xE#WvSogQ!c%wHG<7qk<cK!7wOg+hfX0L`B>4uQ!6Ls zD6Qtnk<Q^Ld<Z2{zR|HBzi~8`&O`HzD_RCV@+MtI)wz^{EK(Nby*3nBo>7!UzkgRS z_RIBN)#W!nasUk{ZxZX#wYmp}InOc(wYSiLh1kX`36bzUAQClg!T_x}ggGw9!F(mx ze<u`xK}j^}EbMaN%9SfIr_Q9L3?0jbYd{&H5fto#JUFe6)>1J^X4}t%WHD`_2$5@@ zBvW%fLN$U?Aqt`neU+9*rTth?CKzzc-YprXauG7`kC8yEu|+W|bs&105#(5+G^Tpx zo};-aI2UjkRT>)XN}~xyQS#6hdV9@r4hup@!EEPQ&Q(n@r&JCO>$Ki5STziFOg3zb zp&<!qF}~m6Jq`0&zzPv@&ZCF32)Vw5dIcKuIF{`=v#T(lLjjUUT%P4H+CE8`A+wP{ z0=N$Bphr+e^^n(?+4f_DO=b^kyudNy@wXzQmmx?ITH+kmhT<3)sh$yee#-Q>uNxf4 zm8(*%Oa=!BTOfHP#?=f}B%^L22nY%`chhY6rVqMPXF3%l*y~KcI_MQj$fb!94NNGf z^7z=8_&TM%aI(|epj^>VIy43*w{^v8*^ko-=o^ItQPRCJo8~c`VpnEfI6_8{f3uw; zZe3U?>YgRM^460t41`sa<70-#N|@G<;R~qi0$gTT6baOrBjQdI6h(p9XiyuvVThSS z%@G(FSX0)OduN?TL<B5Do_&cBn+Uto03hXz2bE*3*!k|%cBB}O)eECWtf2zP&a~_B zh{zj@@39{r9k3eBwS|S1W%tDtLD<}p(Pg1{p%8M0RH+9s1zDGg<Ryp!qf)_leBdyq zfpciW%IjC7nQ!jAo${U;YIQ7UMZ=KJWihN|Mb-$KZ_se(*<Ky{ZjDr_;8@!*bvoyE z#n86I+7v<P(AI;n<x4L2AYYreg_dwZL?}G_qpE27QbB#K<o%m~lmL3j!6u70Lt@?l zUn7{_xSuQ(`@m-Btlx!!KVS00hs=aClnI8S^ME{jo%$yS!=J?(f5`m|1%M9rvSDBk z)O@liQz%(r2?$>nj*AH=+xwdB%xeE)=?b(d4`A@6y`B2eHelWeNih-nZ*Eq<Q+KDi zf9;hR{gj6;(QW8*(I#97+!+_H>Ar|c9-yA50N%2E$_d3tU?tdoH2)FBYxM5dj9VGN z{BrQNhjDC9eCvJvl)(Ks-4B0|-yAbP9+GNI?zZ1oAAS#-2^VQ5oo!`dk^ihFN&9if zh3+WFQ7Po?*79fmBm#g=%f+-5N~4fJRb8mzo>&j?Pjc`&W9*MV3MsTeR_d>o0h<f+ z)k@;15eCaJ8A#Cbs{(AQJZ1N_6^8+(RPo$|`Ul&*HLX(86*WOyh?Q0BbF??<9MH2M zWAH+Lm0%pvU}z+ulkVdTonEks*j*T~Y#Q&M4)4deKc<ckFhm>h=uknp=V+Y(0!ROM z6f8p|Mov|*wn**4xTA|S*un)+ilx3@J~cpdK&T@Nm49zXYA2nj?*9H#^kJY^>VBv6 zp1c;$c^IpL7!!uyd4s@$>Q6Q(s=>gn+I;lO`k9eA`Ug&6yk1dbLgFKgIiU9SBJdEv z-r>}Wf=(pQpmrKqOAFaxc>}vc_xra`G<yRbM2=<BAT?~^grR*@0@^us=4xNNZb?y0 zfB@I)){CBi5X9!8p|+^LN`t71FQ?T|^`MF6e!WMJss3;nTqB24go>J@w%E~h5|)As zL4+7xT?n?!CIPe>hHW+zE`UQr7l9Zjyb#5ghF*bpL$5sY)rky;Q5wgI)Y|$io2v-! z+&gU<)QAXKP!4{5z_YVgw`2$_CYlTl4%YPCQ!M)qbjRFc`_50?uU*p9y%;lhsE7u$ zX#*FsIZQI7i!kle$H#1me?+asY*&0irS1RGM4=)wX3LG&U>uA;(TQ)~9E66aW4otL zUE3v%S}r&osfq-{##=Um`8`GGLLoOLiFBS0aM`^%`}~2J4De!VThE&u%()4|phO&% zJpIPn2<cCGripcJ|DGtc^M5~4Xa{SePzxpsg|Q|IEyP42)J^*V3Wl=9$8H-b+t{Qu zv>4D(wQU>L8)O|VHM+!_5@aZCn97aOT>6;#05M8AtnUeVgHYXdxek|w$Q-~@lfZ{; zVyx%p;*!riU1}JpTtF2nah~Br4VJz_?Hg<C^s6G!GaOUnN(UPmyr$ptFiA-W++_Vi z+PrHt47;&e&GzkJ?qD4JfEg>~ovtamhu$)PTIGaIr$Md>^;?;l$spuXOB&Ixz#IkJ z%)X+5<c;O<BlDipM2HUt0Q;m8!o|J3MJL*#`TYv&-ltKg)zxDI+uxH{h-Ue~zss6D zN%$MFL^JtFr!hSWs>R61MFzvf_9~!wupZ6849|vC@_a>=A;Wu`<+a3WF1`Y<%_%`O z08L`-;9M$e-4b`|_00B)*fr8kUGhRDG%xSoy?ciCX=!Plt;5ejHPEydu=gkXD#if7 z;}KXm>ohUhVgZ=wH{?Kpw~A;QEHI6eNRvw02u)Z9<p&&sI*L2afm%mTm>=dB`J+yv z)Q(%dg~k!mj+Tj>JBIj(DT0qnGR8nWa~{FLFNR?jGt><5K~$<@4zvX(b5e;z^FnF3 z4_YtvVeG*wd%)^q4$gvXY;bdVR<ZimA^4$Rq#2}y98HYCz#x2Yd%8YxEHIlylIH+K zB!M+l$Mkz(hWdozl+;uM#8v93rfNJ5eHS!j3=<n-BF<C)jy?`NeJeR&X|4~PU?4=} zXIdFs`C>In;gy5HIfsS@QC!C133oNa<<T4iYF3kt)j0wzsS6%}oJ9?Fx2l~HGl5O% zR2L(`;4H64GYgte$`G(%;=B`N(1sEa6DjuqNFE0<MI{!tP8(DLj6v`K^h6nzTIEVJ zP}2HJm8p4>RDK9_1^|#lcyKU=-l{iz82-yzSZHb5TBRkdLuicIURH4gfxQqlbOex> za%s8E*Js(3F{$q!M<bziJTYVR2>GJ%&@kA08!8zZuThAML5vroMq`7!WXj<5NH~tj znuiwH#PHwy<gq8nfknk7q8D|}P;m)AU@w|Kl@~^0Lf{QNzO7nsej%9&kB>UVT(^{? zkD?^ONSTJzAsx#C(}-b|HlTdN;ytwy0E!qQzLx+QQEbp<=;1>rDZ@qTm25|?4p(d$ z{Eeg@gHaKwn!TZ=ae!tP5HCVFfdtz7TTWA1MYn@4vy>+A&u4b@TYq2C!Gr^CGtKM) zXu1N7^$9a8P=nAUo3&`q??Rg30Mtpax^K1L{Tb9mXrKo~Y;A3o?UR#}IRKtF&#rH* z&#tp>TJ{p8_ZbTdLDn=;!|y->?dGc)w^C^=k<e(*PLOviG3)JHceeoM%DCVeETw*- zv#rJJUT&JLi4~JT3~_;lZ81&a!Ex-uK3qcWMN3X27fZk-i$HXeRncMs`blSuD5^TU ziUZHDfGI_DZJ_FhCEx&Xz!kp@#$snQK-Z&Rb`$BjxW1mqceXf95<rTq0Yo7(*)+J8 zrW5%?zw{JCjhO`$>VizT1Q!vknwmg$Q1-QJ*ERwB+R8Us|G%D0gu{kX4S+eUAGKqB za+B{CWI7!*75by9r$LL(xI@Jut+cCPDD#;zNEKZeAIh3_gqYw=kd$WO9tW<jM{j&V zmk1o2G-;|Hwq9mC6`iR1aEOh+B-MfV(>W+W`e8{eLh4?3x%@=6Scq#h*Y*l}Evcu% zuxxo-C2Ks?Sh8vXJTlq0v@l_=WYg@I*REgR%)<fpEywaGfbC|)Fc%CBTMT!%ApFW2 zCAdgY37n$YP`aoFZ>~vAe1`g;vn~odc`5Ei5KQE+7%R>TP?uexcN7b4Kn?fVMsRa& zA))x3jm;7Sk}c>*HGqP(rb-BX!Iji(gqaTp2V?BGwN-<Xl6HihUBs)PL35=x`Q%F= zAi6-T)V8g|ez#oxGWzBE$fOOhHx~nz1Ym1mmmDP`8Qu;o90CwIrq%%fQmZ>nGqguQ z7ZMZ9K8`a%2oy!;9UizRccHK-f?gfVccBev6<nQ?+G#B<8k0xVB3WRdD6K`=UzUAl z3Zp|E0X`m+>r~3_U9hLgn<#+LPj#mjW>3Q^2xJkkE&$`nG23af5s2+xq|*7aWPuu> z;S}Wv1#w8pD%>koF;a=pHcq}g{A!q|v}|YQP#8>28-PPWdRp0e(?AeZCw!7bALF1M zKs)hZGycH5na7Qy6+>_LMoQQ3eKFKFymHi}Jt};<U$s7{#L8!yS3#=A8W~i^wb+a9 z2TPF2g>g7ODdsKi4eOX#u~KXz%4pQ(p#ApFagdbpXwo|Z3p)K4h=B}vWMPBm3WIGE zl?wE4JK%6rwj_~~Jb8FBmSVz;b7$_Xmpg>&fNa&ST%w^wn?Y&?jy>9!eS5kb%@NYn z<ckeLkPo7!Iq)Dfqn>XR>k)|WAgeo#N&qYIp#3Cuy}Y}Ij?E5~3M6o$3s$r9glU{b z8xvof*KPCd;|uoya`a>L5gak-<}C!<6akiJJ!UNs9`UvBSIiZ|9xZ`~8>9mkE(n+g z(}i}48Gz=ed7fB)=;>iFu)!;|_0!#ph{9K@tE-7s#n3vXg_hiSz;YSXl!AZ6K^EJW z1{+~i6ysYa3AQwxg3I>nX3Ts1(bUcG!7nbN609&v#Dx1Kr}b>1FnS&|?HxG4aE{e< z7=icCW6$?t%;UvxSkn*)B!HH1t+M)B{umR$Cr7sSqiRDHx(<2kEj$satWLMgDewN$ zYE93ceP$&TJqew1i@3NVv6c->G-~uLJw+eD!;Z$E2`|RCTSEU(o6+C!pC<NLHMX@O z`OKRO%~)8Tr4*ifkCmW_`rX58xkSRxU$*n|_FfN@3;3G}rPI*0ZZEf8_2QXqJ&}6! ze+;OAM92P1A2=gS!5VoBTScbjvi~lcW8qn=zh_M>`r#VxhvDNRDa_D1sv_b|1n$p_ z{$bXGm2Yk&`g^E}8cSm~LOnTujZRqik5xz+JsKO!{-OuVXx;>RMq9xECmU09Ap9hM zf2g*=z4VKAo`2mJM!Xc%Hn85yb!LQX=wm$%;-;Vf4_!3;sx0av@+gyDMpOonw)j}r zJYQXQZye`b=@sVxw`UR=ZIC4Q2JK{E`6l`M>}wo^b9F{Twvht}qB3%$qGOPZLNw}_ z&L2h>G^R*TSj2W%VpxcM8CzSvb(zKlL1@7vrwW+5T5w+&D7z9NmamLjMlrTg&Pk4~ zykopT9L*)gw@a(r_uWN`!Vt~5M1?>bgT4CASw9jQa9XW6h1p%9gQ{$=-?@XoVmJX& z3Fz3S88xscMX9O6;w)!wZXP)aeW3Uc{~H1J@%e(5dkt<fM&G>ISJjF60-zU!<=8%^ zTU&JSS=6gQ{RtG%fIHErL%q=mvqe8FFbXR&Z4OdCumS&s)?_Misrk%)sP_Yvz<<q6 zxCdJJtLjhPI#ilNX`$qe_yfbp#LoY3J7i_%p7i?ZtYv((yvw%vqTBvz_LcwpAJXEa z5k>IwocdvT{E9A-7xo|oSkc)6A_QBf6BSK!3S%$xTFe=l+Yx2(wE*jkGvrwYiRk2c zc6<4^U6@fKASAlA8~1M+%wCX38hA7ecpcNE*n5ICROA~C6aYk{3NB5GeRXTkP)AE5 z@aIbU_a+u?RJ#M-4sF<ipb20k+l53x1HAt}Vjj1Po*X)};~x`<a%o;)L;nj1X~Oc~ z#lgtXKf`k9(9BtRtPsME57Z@sHWGLa??N-!s8~t#1Q?w4=)(TnU9~0pR_DQV*0oK& zPGJRan@qeirb6~&ZWE<v_W&g8P-t{u)U=kd9Sh%f)vvoW*BD^K2I_7fCf~k+Hw*ZP z33Z+RjTPjCeZV#!a01#@C+0%rpPBXeqAhv`F!t^UW)Z!N(Xd_k@_(`S9#C1H+qW-i z+r(IQVnnf^QLJD?MG-_|i`Yd`j9qLfRxBtA7_&7ADvG@l6$^+Fdsm_nEC`CCScwHt zq^KyUDBR!tUNp(x|8vg0cieOD8RH(t*n33%_`dgh-{)D+T64`gSHtIkD^l(zq97Q$ zwfG*7bkpmLo+~H$E%4Z~cmURe?njKGR~E)OHg%gR)=fC^H?HMElP?v8*go_b{SS=4 zbF?q*_S#YJXmjRLk8(skSKR_puqSwTy&+2XMXph;Af4N~?Z$%@uejK?6aN06V3|TO zE}kO@fRzhyLh;h2l}u<IrA<5!(H|d)5o5BEb&9u||7(%z<OFQ7*>o{`Xlj61rJRv2 z!L&IZWM%oqdyKoj`}CJ{T@u8{qj=xWzvc~SU|L1aeq#PZY8TP?_<RJ?qh8FwrdB?Y z6vEGj&osR(;LXWuS*D{Km)5jd3ntRI!Irnsl_U}yry<J$UI;LE5@j5Nb&TJiM?==E z1y5lT2;?Q3fY4F7ay@_lLI*$GJd*pgG`-&J0AmsUv;cfEtBMCLaCzY3*EjCwcx_on zpC^@L=+@Tw-Pl2|w8@G*@8%A9a3gK%fw#BMQsIlKFS-1}Sr=r1mecZ`{Bod{hFp%N zro*AA(g~QReuM7E{QmnktYb0%9qZ&~oNbFvNcTx$0}{XdajwIKxWnrRP8hD#hIlz{ zT<2(ma<lNKD<^-G4+33{xGBE$iOZHNH?5n;&i;p7$t{m$Z!K?JZPJ&}f2iy)jXgk> zCWrUDCR172+0%0k-lOw3cmH}I)mnsGKcs->F=GWe&~hn$u$t*!1$+--|6@?Oow%P! zLD4%?1VPfA$+;PQ9o&jEe7;DWKSpj4F2)ASRP$brzr6Rk0y!?53uqi{Ce{5@H!PYX zmFQK_#Vbdrdy9QbXzl@HgLfJIE{uBp-0#zM?<|V=+(&APl0#(<_|mw#3s9LpJJnEw zgoHyQFux=TA5bz9^P5NhLWcbiYKvr2AgeXi-w+5uMn{$I)H3gux47u<Bb5A;A|c1B zvm@8|Ql*w#X-*NaMGGe1kZiwK4rE6Dc%;lWtowMl^^tugS|UlMnLd1saUl9El1k)( zx$74)r9>iBtnvqcp`Lz(WY2y5>k!7Vm{`@kBB}HT%RlmkYbG5vZZ|cqIe}?$pO#Zl zY@t{xH@HZ^^U0icw<;&CZ|Q4dqX0TBr*?-f0X^Re*2e(c-qB`B1}<KJC(U}{+!;m3 zr}J?Pmp%g5Tv@a0+HD#yK}jfiz+?uR>6-_eW(vWWJn`n)=h$-U$47o>pZU-f_*c1s z7lEb*XS<sI!K`?t#;~IF^Y`P*a;SLmV%JiL(oK+UpzITmoi~<h<jD%S7=k2=FrZ$W z9~0g{e$#2=)y3NQSSMrcN45@lu}B~{pn2IcWjs8s@os!4u|H$MJ*&u`9gqjndFcA+ zfgt>1B@kvsD5*Q(@Lu4Xtu!^#{+76mUO(D6#SSVgF30cX#SG3jbtYM6HC*t3TtOAZ zP0ex4B@vO3QgnUwRYVyO=LD-_BT+Hv?kR8E8uuY<4t&T{ciR0CryI=181o-aL^JX; z59BmiPkjx@wu$b9`wg`V0hQ&NcXndP(by<;u;{PRU4GWf6z?26|MhriegG5-&Qp%> z!;j`u@C>C6k~?`~wa1W+F0oOs0An~7a~Cd;xwu<D3QSyq@Ac1v`v+HIy0zhb@rRSa zMCa|+we+>?C)5{q)M>|{YcQDMFT{tBg>F!{-~No2*NXfaK8OAN-xm$nkH25CLX!?6 zp@FDOdGg0MFcJHR&mz0CIqAmT&r*8*-%}K)O+O0k+#lFEkq+hydaU92OG`^f&uV${ zW@C-qDn~hBOK^Pe?m`D<zjwRqyL?PU=UbJ{C&pJ%I?mEx@-#PBQ6R(cUo~@{O-!=Y zhQUx^GAGXVT$npIi%cucq*?nCYF6*9UDrLQQan4%w$9_YZjdw81CJc}&eZ2r&rjF= z4ku+Zg@QGGP^q8UfwH+s1eiy+y8mw`J5QC8oM2{`&d+=Is!`tw2c#`lq2b^FQqYV6 zrbzszm2Y0<%5M7(OnkFyQTq>nTI%flz4NGqw$A^2)b5{)MsMiQpjzc>Rr_ylySV#D z=2fFMyN~+$m;TEtlnJl8=$EP;8f>^`b>&J<!QFF57k;)Vs&maY$3yn*UcM)O{jre7 zOMZ%rpOyOob>}C`=X8Js%sQ>%LXmxq|J8627C}|*6+g;Y*LJ6i+Z5}uq4g(k!JCAa zgUv{#bcSvosYg$yDP>fCrw6S)*#1Wd2hIn^Coi|skQ3^5%~0X)Y=y;^WdBY&*ga~} zKZ%=73%vpCpOZU1V#A(WQY+|H*B^|}?N+V0dnqfVP?A_tidng+$BjDpK}yQ-v|+}J z_MfVmRca`C0tw_bpk_VD0ci9nV@2ab#rx;AxzA3iia(1i%RCYFPnuegKNccUFU;%Z zbV}?!9ru~BK)vRCxO`3$a{${t?HIgv-8%J?!K^MUJZpTcS74`4EB^qy4Z6;f@RoJ! zb_DX+-=^pcjs50>^WR|W1x)ZFfl5G}F~q&N`1jX<F^=xc_c!d|4;Q}?@eWN3Fq9Y+ zR%a2LLOHk$BQRsFp*V?}%8mV$MvW#cNGwD<zJ`mmc2Ax}dKYP-Zf*=n84Ug@SlBnl zxX?3AzKYx(iE01jypj;oh8X9lS^kEAW&c8Ncf%`#ccOEAapMj=J4j<sc-hr5{c6;v zUw92a*C)T>>5ZY4lo}Hk_r@q90wQA0-uYmW6G_IA>|IzwJ0`4*i;JV**R=3Kd`MxB zB14{}5}n3XYD<66WcGnZ!aNgD_cCwT6p*4s&~zqZiKIu4D7_R38Ljh6`MHdg>)F5m ztu`?W=w?kYouDrd4Bh0{aawZECEq1A{LIYPgVpO!QBU2!4G?41O}ZYT<Ebte*KZmD zEF+@;icn7;k$k8XaRIgO<k?ec5-0o~28DzqS6^4%^lhELgJ4-cx76(CeGg9#lWvnr zVDxX_e<E9Nd27*-XqB79Hr1K>6)Z>|?&j;Ys#`}Asp<YyXDnw-oYJGJzUN9=N7_zW z7<_;I)*awY=WgCylf9u^!}?!Ot_nB66_yvMUk#8^jDh<i{@8miNwzOy7SOx6eIUq0 z+`ScHYpCFzXY`0VcanIK;Fb6EX%9-GCb)ii_rrwK<ATcU%9!2&%1@7&Xgu_Y1t0b{ zH>V3d!k03Fx?_yfINMdWj=98AO$U;2Ok6g=`mMB#w(+4s%M49z)Q#GMhYtzbZSOmS zQ=vD|Cu+uPYR*$Es@wAH>C;`;*BYM_^!<m+KO$YbXub33Mvzsm>|9+BhFRUJd*66P z(&{D0KKkQs|Ni}-6VH<zjPx;JfObC&LUsKzDjUJP>g9=_ZJ5&mc{*GMWo@*r+>m*h z$5hFyUlbDhmi@%0*hHFT(j^5;9UkZrG^t!`<HNqywo7`p@ZF0oc=4Bb^{Q1y00|Cd z)olluHXRc0_RNqn(~9lFhmIpv^G1{xij#x<k-xF7R_)}Sr^dT`%`NL*YA6hCp4~DK zlm;WyP9*P#0QLfXj&fwc+Kjb8r~E|ODGt)xasLX7wCmUV0`H3^o3YX;0HXG5+bgXC zZ3(-vY2(JF4%5atSQ#nOnMz+pR%%OHLJrXYhDmEU;_A6``J!l0m0bGsqKHGk({e(@ zA=xSLM8{z6wz~0f(ay#_D!TZ2#53A7iHO2CLT%8B34V~B-2iouLoMS0MAj?r-uD*# z1+|8AJopz<xJwIvGTy<qobTY_6NxxF0cPZ8gu$^ext30|GQA+6^XcLdHd&-GJt%BQ zpqQ><E0+ambuu85jhEVzgMa%zcj0HIUm4t(*mRJvzn#iFI25GZlhBy@{Z%n$>4Ly{ z>&;lTt+VDB_a*659;p0o3F6_D&+@XA-zcFs9ZAIQY46hi4FM@;B<=g~<RgC7p<xD% zESNr`Mu<TW>@TIww6?|<TSF*3ts|J%Xxgb%VIqo>d$=Jnif9o}9BzVluUvs4675Y- z;uoDq)U`|BIytXp)3AS)Tw-Px@h`UA0nldTTOCO3WPGf5;>d~*_s+O;tRH2uvh9c# z^^N=0wE1-hGfNxJHxAJyq=fj<M6mQlL=}}-Lt9W9I9`2;KT(1*3{Ge3ZtER;cQm9S zgIjX@nv?j8D1j@j>=!nZZ;ZzAj$=V%cY1|(_yTJB-Ni9gNG@PuY+%dxYt+=Zf)^9m za3XL+x>(k1{J@m6OTHzBi=I<`!M>TVCNX|;6q)>^^eW}b(P%k1FE?<(f?1)C#*OpT zjiaqGhSOI_0tlM4m2`F=Q=9ar=h$S-RU1hQPu*|duAL{H@*BwUX%$_5v6eMRb}+(6 zH)B{yi|e=g51r#}=6v;=53B=ynW8f}KX)t$cDPu@5F4<XYCu^ZQ-KEkG0Ax#Hw_)v zsbj|kcHMLO0<uoBpY$NoCyum}Zt#<fyF5HRa5czte`Q>*Yxk&g_kil9mc_B)xA6OR zj3*=EKQQVs9ysE-(c5j{_Oxz|K;o~PxAAL^B|c$UgM+z=X$6YN2a5Pi60{iCq$*=> z!J*uG<IQbU5i}TmBf8u*QizBJNB%itq8iE6aM}zhaqAQ(+(<n{#Car7aRArM%0-?& zTZkEEwQAK;+Ni3W@`KP@Up*DA9hkswG=a#O#G3Stn9d%PG~)3OMo^9Xl62`IZcB*_ z4v`DLJge2Q0>9G7`+i%r&0FLG<$qHAtL~&yxbQXb{nohP$j{jS?#|B6hx7kYtk_MC zSp5XN<-VPyHD1s1+qP|KZuI~yU2G+HaPD_^ii^xIjO4FsPrZ_#*uqMjkKC5WG-11= zr?xVUnvzo#6NY`;eQbK;NPD}9)BdS`7LB+=J~dpXKYMVAffr3Exg2W#8Inp>gIfYt z;F9PEDd_gm>6c5r3rWR@2bXB1i`WPEF+mj!D1~WSD{2T%tdZG1rVlf-J7wu!sv16+ zkiGhl(qr{m)n(GuskpZsYceIhm&4YgPpr&c<j%H%Id~QBgmnEb!O)daJZ7$a7rl8> z<=J?m^xbJ>e1L69-@*2aKqtd_SW0CmMQgc0VA-jr=KC0{x4(x1uqWx%GJGz`!RoSf zgT)^KX20>b{21y;cO)A+Y$y}FeWA&H^~D!MVul$Xx&JiZ=^kggCjW&`#bXIp$w<Gd z`qvSs+rM3!b$n~heUapRKDN6)JpT=YbKsD9gx!!47~R^WuZ@-Gocc>ZN>#Dgv4|Z- z!;V&y(gOimEJ8{5a~B%$#^A>NTR*G{iGMSb?O<qjn3i>`2aAkpMO%d1U;O2pKVQlz z_5%VHx%rbIYA%<GH&`EAA#+`Ks9^dQ0bMxuKRPrmd%aA%<U$2eP@E;)cPe1|So4$z zN}O*=ErLn6Y1oQlA`$;T!i;5WS=u_X((k;pP#{w1dWnrdSotZjpbz0sgU$%M!9&Ww zhT|!s2De<r<kg>zF#04(b%An6&F6-D)g5g5bhq|_eS)c^JK_J{U!^pY)?R={5s~|= zEmAVUSTBw(dUMi?14|c?L}TykB=Gjvm;_HDg3&R(oPNLPm8JCP>CE@xe54b<!!8w$ zgm7e3Fx^lg2%Z8LJM{PDci(sIP4~%6zm1~Y<awuM#xbEzUUMfz^d*A&GBt*py&KJE zsiwIdTj;SQANUb)C^RZ6>f3Y1CVjF^nF&RiCuulxQC$qE|ErZ}hs_B6aJf3j%Wdko zpv(%F07V!$>$%IG!gpbHq7hbC-2L+uNU5qmme_l6i@13g?&QO(FMYJ_Ma*F_8n#<i zq<#0(XQTB1gu65P^mg&3s0hTX8h7Vt81{V{B`yioxtIFRUR#s4h1gyxyb@||*YQKM zRj2GaO&>f(A&r_U!p<}TmYhd(&V}x&>ZT<vgM;2{jC&qcLC;p6w-8~lvlz%S>bUPG z-w6{Y%#D^Px#{~dg;26fZ7+y$!J!`&E9G7(KW%Q7aqGKP;O1Aev5CE7Y#6hQ?^_mu zUyC+tXUWK@w4>A1jHJ$7sD2h5(sw0+>*v^&1evTVB_qRzCTMYY)4%`mQ#+E?w(Z+* z8O@pM#wjaC(4QG##_W_R7Q4pVp-xS5Fgm3H7f75Z@Qh_VFwKZYW^3+#*}B+Mj@<7Y z?Mk$fAGu6fAhuqwV}N)8nLS9ikxWPWWIT9aMcqNs&;_i2f6uz6i!r;oi2#7}g=e+_ z^q5WkO`(N5de}Q{;j5=~=XKOTnEh>GnDHxKL1dJpXp2kQ=%SiNGdg+UcHVq-<B<#3 zT{iY-QYmgNWZeynMC=euR#OMpKN-AZi#a^J<Q?Nx>#c|uzf%$@5q3!+!-LP^U~g~# zh*@J-c-zdsR>D8h&e7=DK4`@?Jr1TjK6!(V+o16HTO=O}eO4ST7R(m#=xyAU;DUh* zr0Kc&KGZh9>0p+Srkx4rY6_A@0mP}fEGkW@o7&kpUkCT&3V+082^v$q8+_SuTZ{6| zRe%K_eO9uh8*m#J5kY7S^Z?<Ez35J<2`sq`8A5}U*i}6>NJVKLY$x}|Mg<b(;Zd6V z!*k|KNZJm<kx1=n<7YdX#89A+=Ct!Sw7tF|nq6X>k6mO4`Tw}2)%ODytR$|o=68$c zC|Gy;J}Jj`=h+`>E{*J#mf0H*En+q`Of{%3x{wReK|lSp*ed11nrkE8B|F6x%|K1Z z5boqolNi$#$rZ&D8BaZBlE>fD2mh*Exx9-{;b-iyP*ia?@9uS_n?<_+XxGmx*7#si zWi2;W^kr0Fa>wJCbU}b-9y4dooGQ~ZG&dQr7mDG{kMg0Q)@j)A$>KEAGDxa&x<hlp zKKE!&bT=WgbPXe$<E>^n{T4cjbgD?rJ0!7PTr3weti6=QmMuom#i9(iv@c`&o>8rI z1xOitSB`I3LU^R?<A`*K778w=9Xxah+v*G9MK{HA?uWhYG`n709}R|{loq!G?McUA zG}bz!->s;Z{;YrwtaJ@*B$IOq)>#G)aQ5a+2jiFu?sdX%R$wmlk1)!apo+!@j2gW* zqq5l}*`5DenTcb8x{hoQ3)vYp@vmLfHi-EDL$z6|8m)8=&0bUxZh%(a`P4u1M-<C) zYUiSq!+}^>Rc@Hz+FM39pbY@2GGmbusj7MlN}vhdi(1WfU;fLN4|$KN9gG}vkv&oP zQ>ZBza<p`#qQ2>NaKezkMOjnc1G=c)Mcua43WDlr)ZHdKrN6}-<uIg_((zGTnoP%M zFy~jL;ky+QY04fEmm~Aj_R&~X+Rzj$t_*11^S(e8P={J@v+9sP6Ua41PDWKbZ3;j& z&QE~Nf)9(jN4uL8og8Lo5_Ggcr1AuO%Ux*1&qa^)m+%K=ElIwT0AEX@rWi|aUL~4w z@pAQTNQ|Jx7d$O0sNIE-JjLfiIxxBU$|{Y#B8*d6Sp;abrDv=PI{1k4_KjF;Tusyr zKJA|zBs7&ZQJ$Rfh)Dzmn_Uh+kwZ>R#*nkbf@@I5#1SKo?&~qs_)an3esKN+HLKJl zpdMXT{o7K?vNV5-G)QD`-<YCoyzWTfV$QFvtgJ@S)sZbD^CEwNXW|K<Bc3uxq?L;{ zH!Daqlr_VCECLSm0p4y5^D}+qqLzvWAoH$dCxQ!M`gIX6HgPNUrG~b8E&rOO2%*=m zqA<5^>wy~2buSduSo^a@P8P4$rR0@8<ES$VkokFZ#qnou-+p_1mRQtqdlN=jv=6e} z0nBPDk(U8AT$p5h+l+s4PBJGx@L2UTMmqHFk?ponp!2g1A^)N%c0)vl`sF*isa^6` zs^+IJ5gSCoFVEaM&;Ur39(s%{s`mb&l!R%vgbw+5pw6~(fsfe(j)aC3T!0!cn=OLu z7Ok`~v7k|ExuwR`X}4R8hZCcBD`SfVn2@v3h+lPwU;R3V1S1{3CQ@IMwwXR5)<!Ei zXhVK&M0(cXR6{R|qLglzJt#(k^Z*i@#GbZxkqAb59WpMM`lC32bqZDPY2-!jRg?`- z>_8viI{F0KTaJ+$Z)cS|`SRt<*o8$$ZBK4=TZoAoZ!V8)K)Xay46&n==Ndfm#a4K7 zjaQ%V9XjN0K>_xonDbzCk^v($tKkBk!2!4iivQOxw6Y=!@{<d1G_Gkpn?#m{8I(hb z_(jxa<<U-TEm7`g96sl7?c~-??O4?Oa^Ru@5Q`SPykFYIl|-FgUBjW4@x9JCDoQ~} zj3A!9!#SO|2&4Y5AWcrf%%y*+CVwR3+{U^N4h1Q6uY`MF?vF(wtd2G|b4Go?HC?n> z<mb6XG(hL&?LRm_+w1mWH}WP;gJ;9ryCf+4W4~RuHxS)`Ohrg3wq$}qG^)$0p|c$v zO0;0w+@-%^ge&3J>sCNo#4~5*%`uE@hBf)Og8aWxa+(EnZcR@6|45Y?ms={}xdl{8 zl&}CG)o&m2{+7IQ8NiGNO0kZwJG}EU($}MVBI7tj&l>=<9|3uY=f=|;p8dXyRpW<J z(X_01usvBsJ6w;d$4+8cbK10N0$Jo|UDmZ|nX0JlKt9I|RVn9yx%yS=$JsGArXL1u zBpsR|NJgp2n@BanB>eyIlj82ycBZEk<uQaO|0(iBXf8sWh*28uW!@^N8uR0!kM$57 z@@s#4Ia{1Mb${{CLyX6}|0LbEFL-mMaMYE(EgF!okxV2~fn69&I)>56F8S<ik2OO7 z;F8)ccqb2>@u<f31=A2$)~Hb<44~CKlf`%iJN#v--tW@3T^>V+TDf3m7F0zpV7-@A znpUgL+Z|7nz5CAUI_7P&F(cwvC1Pe2d)9Z=zO=pjmd>9$B+33WuhYYxWVQG~nst?` zD;s%4*xmt<G`VMh+6wVFG>danwj}_O%hK)d#{~6(2j-S)3NleQ&`Ai7^o<E98A;Z9 zi>j9d7aU}bHWI7Ny;5l=5MK1*ZTk?$q<jd><rZl8#D%o^mMy=7oL;&zRY6~rTYZkt zd<E)lyVTnH#{~-%a`^ySgQwS)YEi}8$v&r1+LFfq`5%L(uD-mQq2yG@$_0GCoxMN{ zNG1_185<WSB1L%wr2+JT^3^3DSFm|L?XFCi*`%Fw?5Suu%sX9sDRX^~k$aob`RQDE zYF*{j*ivaL2mFu!f7DL<9j9;Jym{w~!EN;D08SHQO5p86(AV&9u^IuIuaM|V&#^t; zNCuv4Qx;kJD)gD0Ef0g6V1)_Zv!)6zp<P(izM;D~sdpl5mu3*X+-?CXY?{qCl8mNn z)Ovb56IEXy%t=;$K(93CJ{=59L0<w913JsA0Y*J_P$$qGpNONzqP*H3ST;YeOSMCu zR;Ir>Gp=@#XOWVXWv8Jiuj;&|*I47_*FTx|b?m(or@B)FfDF}i!PR^H9mFD-%5)4q zT|fyOHB}`U*#8*Lq2N#?=%NmivWLU18L(&bHW;_G3<k%o`~tL2xcoi{<v4=ePQT8F zSQfLUb-*zeMwP>fvmASW1z&Q%HC4*h?(Pf_v~OBxFoe<kYO32=0)%L2oEPftv8b*) z44nIhGO$7`zoW-I+%=?Ej^%+4HAp?&%joUN;;%cj-hba1K)b5Xu|``x;$qfzi<=qy z>Ot(t1@<D;%h5!&4hL<Mk#Ut|38kT0v|+t$)80a<=>ufFZ2R^xb5q}dQ$t3#*>1ke zHT8UK;kcJ+_E~7TNjo%Uja(wE^Qy*so*Ww1_1jfJ_91Iu?Y_L$x&6u#<3ujneNYhr zwri1h#)xtLIDX2H1>hu{sORaF#}iNOlwBp}M1!wqYPDV=XY-mg@@~x8m(5rFvn$Xs zE*}CT=<Mt&5f1?Nq+$QooNtwS0|(V`fx5HQO13N7<1~g7S!;r=Wj|+C#}HCWaGgRE zhSps;8Z%KtPp_OiWE4CU@pt&*8bm3p%COW@rAx0sQcLC4E}s-p%r7+=WZsB4+3D4T zGTz6@HC=*F*H~O9V%<|eDWl+a;Z^jQY1^*Kf{wn)Rx!vu#wz?XoKu+---l#IeaYBa zjL;Fd*ddtGZk*FrQWclizD=j|ZQOow{s6U-hRg#;bUnO>$lk&DvPq`yIp3r40UBoE zY?*K*KLnx?$M;6^ol=)+D5|8qFVtG#ykuvs;OMu~)>_RGDGwloz4QlLQ<C?XIrB}M z94`oI5+0+Q4FyO&!)0RPn!v?x<B!tg2~^cAJziBeF{g3$O+(5n^-zu`2ikb2{0Q*q z9W3k3)17c{?9Le>8x@hY6e?w~%ux@mKaBM)<sPN*7P;Q}7rY4;u;Y@z0WZT8nvEUF zeO@y{Z7VRNHP4PIYCfX|vUyxI<8{$#beL!G47suQtOmD!QMT-G8#=dVRx}7%%>BBL zVFn%X_B?_TF4546Y}TKkz11do7d|<Gxx|&edj}n#d0pBs(#9cHwQ8-&f1B2-5M2-u zUE>3E-k5)`0qG4(RBzPil1bWyKBheG5|Jy@LOkU7(&2Hd-@Fz#s+a6vc<k%5D{Y7W ze5f9;-3DXi>$C1;qleytqlc|OK?8%2hJodM6I8yWOEeFs=ZkJ*=JV7lK#%nq+?8_4 z|K69aA*40LYSD(fftNxUbvjl03f))S5^ih+%zkTQ=?@W0i7Gvq2#)5}{^BySQtDvc z5-iL@gC791%~#~YzkI&oIt`F1&mOq&hbD>bQwu9S_Oq?N>3LqwXWV4-oyxkKjJo(s zuUWWycow8_T+56`{KFb9Way7pXNP$F{`>C|<7iZqhPfd`oxFet5mn;{{%=Suyj?c( z@;!U@6gRio210b^?Ad39G4>7)(hZr970(?ZP4Ta4FG@XVnjj_+Ex1>BuR4MEaoC4D z6aUek&HdxtWg;5Vz2?Zy)BX6*rPh7w2j=pAq3ON^e8IG={M1)HLl3;vG+2<Ou8fn~ zPO-RTbcylfvnMYg0`6|6ax+Rp>Tlnx|AXg5PCU0O`0w<d{oyBAB?UJLS+aZ3l9t0y z&xdlc1>|!B+i)8hm+m%M+Y20AG1YsuA-)wV5;CPw%6C*D?#LizrXlljR&MARWx+qG z%02TBP;oW>=_#GR7rfu!7p8^P+hY~NX(6ZPg1m<wE;IN$?+yt7L7Li-pL--Z<%d;^ z8>PI$1Vg=r({&^0@AP|qgrG#`rh!ZpQLAsVk5*@Sn>GWdn?^|y+nXNP+P@S{u0;bg zH2HhIkG_c1{K#rIw^$BC7J{FPfA+2v<f-gU2qG)<W7pc}Z15&wX-71cR^r0_%`em3 ziD<z~!@G?bwp4n5@xWLJjSi59Y1r$Yhbu$?xSriC{%u^H9gWc2LUP$Sc{m^2;kV*8 zgyG*=h3jQQL}OGqK2ZhTLZGBk@*37$Tsf;qTMJ!T3?P~K>$8YXNXgVytkQhmk|j$> zNH?iR$)nJ04@Dy$Zzna<so)xzpnWS(1QtqLCp|c`0gz%?$M!D52%t7>W`xQkwwUr~ zh*HZ&cas%!BIg)A$sWvsSnv1R<W|X9(Yfh}bN2GFRJkSAf%+w=Po-4n-Sl;UBgM6< z+x?dSbb*V0%_{|7xKZ%N?w??ch~q(jA<@4er;1j(`>vtsxK42$!?T(VIr%Z+-kPSJ z@&Xt=D*kaMaGbo5U0;{2%E_tG_AECM_VM9bnUC?L<gOx1ya3Y0H$|HB%eF1-?PbZL zu^Mu6AYoC6l#rID%J@su1b8Cc1|Y5hzZhw#NW)+m`yb{pfRozR$(2@|)G)xilJn9A zmF2<<+4b^B<a9u25mN?+u2T~fU(UssJk6eR*T{*S%}-hy(7y@5F;e&c6G+crU+A;( zD~#Z17sWrH-fdlr8o)W6UBh4B3bLkgLW+Y>HpnrW>YKs335nMLqTalG8ssP%>Fz4p z&{g|UTAH^)Z=^8fhp?sBEb@~b>?rlbWW0xd@&%4}>2#5&cBqdeSdJ7u={^ezRh<NE z)A^b=FtujBg-^J9l5Du=;%e<oA_#!pu-A7EPwAviH-9O2b-B#39b6JM)H`fo{8H!y z<<<n%ae=-qHWM;}U!{bEu-vh8=gx`a5n$**CY4xPtDB`veCQqY3isnw@5$?z!c~w7 zfO_40SB|0`y=Gm`_u~lCVgcBp%W$Yy<lt|}wmQSOj(oVnwSU*gBk7xmMdO`yjpWx2 zkc8E>oia(T3L26VKK^G8YYi3@iDOEJ-_ExXn}Wlk9QZ1n$$=1jp*JO+W_AWT)%jOJ z{#)cFX^SU)Xtui;SQR02wS1Cl)ha0LJR%?W&?cj=)b@?>8HO@sH)d&dPc@XKfLfYz zT>($jKrinT9A`2iH2IxT4artjl62Cfjhy%+UaxpeGiD5Fz7{Y*!Dc0cKt*^b_9R=c z^70mXXt6^iK6;iGzY_p^G!IRK$y6+=r4dY1)JmF6kzN^hsiQ+pG5Pp&3OtwO*)dh^ zTE1|<SZ^Ab8i%CuT!${0dvr|D)#6RA5sjKlh3~Rd0uR}0=BIZdI_W`QvNsP%r3vtx z=6m<x;_ySM!)ffD%*vI$qrwt^7k?dwQh^oRMP31?lh-^yUWNR$`-BOR%H@@|z>X33 z0Uo7}Dhi|9_m0X)SitGV9UMdEL1n)DQr>PdMN(M}_9=$~RWQI<%18?`No8ceLJPlV z<xV}QL1kUF7usRcy@@!*f^*daBi2Dk-*Pq63pu8@3L`X89f-LP3AP=Z#&E>w=<Ag| zvb`So2b`0R`%#eMCx(RLhSx&U#GAuzk@K_({=(dR`Q0>jg7vBR#lz-TY*znN{GPHd z(cE{N8<=;D>R=20FhcT$snwa0vN4klHy3>4DGqnn9Ur&i8(1f1-{PK?q;0r~z!cOZ zm8V{E<j9eml%($Gyoz2l%*H)3YGd}8oySHTJaVKWLh%`Ytdz8l{0VYomzX9cPSqxs zKfUE0Zvobox*xnYx#6nL(SY7IuQA6=xOeOp_SAQYYaf67vEzhsry82<(SqlL93<Xa zekZRwf~zyD8gG3HKeXR`Y2n)hH^P?EyWhEyIdG$AjoQNctw@h2nk?V)MzeM-<puQc zDgd-JW`uA^`pdUB3U{zx+d~JLuZ-&^8k6x40NEfM+-?(+49IheIUff}ovNpNY&Hyc z)zM}F1L_St%7(0yxY@xo^E{Yxk7EqjAl5EJbEctJ9A33+){MTDmh3xt^ZXOsOdx5D z$W>z?x!FM=7}{tgu&)XQs>Ab8J7@@9#PPby^g;EIZUH08mk9od?E!x#IH>hKDK$2X z=2bXB4C38xpK)Sy!GOk4qK{xG*jh4IbI;fZaP3G>=RDAEgQHKrr)R#d?kVouW*E%_ z_`bSM={Sf)!(R3eElf_6t)ZZ6S_B>g-GZ-Lx&y`uUq%0|<|oHe`tcRE|C%>%JFP=n z^ebSW(EjjEp0zI_=XJ|p6;6Rju2IC)yD<pN2M7D__NucD+3XrmHDdMMA!3g~?bJL5 zy90`I#Ov3bhgBXmt;1PNX#EP~xp6m9W>_glHlO8yVVCk&{9AnfSV@Jv40Q=3^Tu9o zR2r`t3Ziu0Z26v?!a>6>q9?PMyMajCF<5L#{xKZL(L6gv1HW~Fz`Oo`+)7CHA8FP1 zXxB%xTG30GoR>AAtd0A{p|K!kWVbF%uITI?2Pt>U^g5x>^OAoR-GKLTW7#Yt|H3-U z@ku3w(Hr@s(Ihsd?fc<1*62c~nmq-3vSWLL0>zFMv`>uCkSnJrhs5CkQz2T_nl>#j z=G<pyKD&E>nKu6c?t$W;hA-fhBzoF0VB{7P@BMIk#hH8y&VN5<BPtMxe_dFR*9t+? z#f|YIKafk3mdKL@G22pMsqFTV&Bx>3p`m4(9mGwRVI4VZP$ya<^gZh!LmNY{0uvQC zs-m9jVyIfF${R}n1;*2hR3$cMdHn(51Q3<eDlQ3;n}N_U9sTWA8hP>+XjI#HMxM|s zl<pA66ovuDTbxQ;dQV={oDoP@e=nBR_c9DoO&(UK7~-M^0m;lMy&TcD&%o*Jq{j!9 zLzT0+bgMVrDZFNdAGetP*79453yJ$2r$2MtyAwBHRDm2Mg%^*rKGAoLKI~^%lVnpx z3QU}KzUNX#7T)oHsG40pyUgShgT!v96-%~1Y_UDvh_K?*P|E}t+{u6F$4=bHoehV; zX1>Dz`p{S$nOt01?KZD@VD5-l8dZVyy(F~B=k53<)ym9i9Cc|u3xOM(jwcpAwR12t z{0K<m<~`RF92a$bJrp52Ew{OZ{!tv`ZLDF*2-<yM(@y1cN=gmzU4cuSdb^tYp-5SW zfhyZY`u}>cxB#WX(U@|Qc4|71rzt8B2cUSEVG9c{<8kwViSKmC1UxV_eAi2d>Tln! zzLWi8eo#<1??L;%VzEoms&R0p)%I*xF>|x1uPfpHLza96bE)lwgWI=65SiSv6=k!& z$@F&J_$4{NApB#Dc0XdbE6kMedtC<)9y~XD<qE!ek)TPA@Y4saAYGLQs}{*=OPvsx zNnUr-8R@ro5E%n*jT(b|sNV3+H@F=Nm)^5C!|NByAf5!R0k>fJ(a6T($h7R`oHwB- z`fP%0(T`T<dV2C}Hso~FS>Z`STsk9%Y~V4XfZiy91YNl#aDF}KgnC4#6#38r+k=!d zi`%dhnq}|EQQAmSw(sGJOV=7yCt=yjgFDx-gqVm`W<HrMlXSmpStB8(%euko&688} zat9#Yk~#aY)K`vAUXpV6V&+Y+%sOM!;zPP!bCl>*DV2)~OFeyp!}*y<`BwD361YG0 zawm4|+fL2S{DsHxdjitgQnzc;&{!xK9TH{@TC()oCbB%W`IJNiI<W;V6aO#d<iCEs zItY8HZ~1C_&zyj8CNjj(0u~k_e4jjqc>gswHExHZOjPDnJ46^dgEV15c^08hR!!2l zs0h|{%7o<YJ!^PECO@~PnZ`I;yD0l$#8lZ#c)+YY+n|a7{Cb$=K4H%amJs2^j|LJ= z2f|b9RRh7O8AqY{G)Gsk&H<;SPy%{~*ZKY}GH&cU|7OOWcvvvpE0g{{ao6)yothDf zb00$mbdi5il^LF$zmp42;Q31gu1(~BCeT0~2{G5RlaudFCj_0l=!ovoWXnwmP3KGO zPg?3j9WKLNO(@)z5Y6Hzx9Ygh_2h*Mna58r<U;#Jl+yRMdPF`QTyVT|I_z%^Gz=r8 zuTGOSu)-unBc~^wQsx{bmn@x`!;0<n+BfHszcSg=_qikxb{GD)E2;cpvMXr<+a=FG z?q{)!$vPxo+kkk1XI4|tONPVw?)YRnC-n+R=g6VNek{FiD|saJVh^HJDl0Gb<bzh5 z`_G*MY&dV>*Dj*rlD$bc(GqF%Vc)!8S&XqU4pY*txLI;mQ8$_(+=K(2=4t+h9H!7| z?4rCy>)jaJXv8`1ti08sm8MOa<cj9LEVmE>+hdLf^*1#|8_Z~{y+6?D-ii0y%doNn zc3et22bix|oL3#HWL?M$x@xiwPbA1xJH4<xwdtL#;VXLVBGyZuM5GtXkj^lD<*`{S zf>S8<b%^kN1d!^Mfw{u;PCc&W47alBh}iOh7t$~9=C0`kBRa@N@i{gm+q#7~$;I3z z>-!{5ZgF>|Ow!a3v=nkK?ceKYa{hF~GD`y=J50%0F#mzEpuX>dGO8WOY9dil^eA;? zxq!15%S-Aju_G&0IhPP;9EZKily_ck@|XMg<JurTL}z(oVvu9aF1_CW){I4zd*3;B zty4fSYZDy%uL%F->(+F*A03`=(+)bY5Ks<EDfZ1{z(A;)C|1Ingy0l5^yy2uZe6GR z<o5Htb@9MEShZ+iB{aEE`)E=iwWL}-Ut6#P(PQaMZ>lY5WXu~&-q<o_+_1vf3Eab8 zJC7`VeeBG`$1A>|X1Pk$D$hr9?J<m*f%6vkQTC|m_?pplXnp6-oz%BMmRlG&;`wXB z^smTTnhYwH*NwMnT%}u(|F1TJKc=VL1UIyD!9HBUn$vS={WCLAc!2+C!Z0x0uT5fF zl4__NQ(7^!Tit#OR!usd=i8;=)eKPxrJ~lrNU9>2U>N-y;TAFb&?@l_1-sgQp(p(N zC|Ll8kThlHfoMXN9MAc;S6zRq1MV3?H8zI5j#hHg>a+%L-yRZ4k2N)X;M1kHQ{}YD zsK2a!7?dUw^{I{<9+<_fKVsGRxq&%#?##*?fQ|DYS@Dv0)P9t`aVji34T6?MTSD@R zNr0WMvL2k39FKUZgX`)QrJcrgHH%s@??ZDh1u#t@yh7_fr=WoamV)2OwCy#nUV>G$ zxKyX1%IcXp;G?KUoA<dKunH_&wa%7qA-}S7ACrJyq;_aRfkB<-Nzv|kr&>WsR-gVp zNyERhP`%7E>nb>kEUlhh4SJ$7&?n!!9GjEfV0!7g&W;%~0flO~i0w^`y_~V8_odn` z6Z)0kwO^4%HK6zGYAKUUzz5xA&w_kwT!8?HdcyC*Kz#JB85!SX-8nX9;^o=JUZvIW z@~lIsUA_IGYwu&B%`Uf68w0w~6+&?ACpIp`pkD>*QcABWyuE&sOMi~f%ayECY%lNq zxy=6ZjW;*+Vdn%^>)P>VtGw+3K#>#=(ufhk_(FUUm~Cg1O`0@m#>0`-hqn`gb>Wi; z9<WSe0ca4Nd0pBG^f-edJUs{8SZPktO3Zo89cSd8ZP4571$Q@}Xg06g^+JUuxv^ur z<T=shK6x30_g{E>#^#>CmvClp>hgktDX+T8DMAf(br@LZ8maXv_)f87AymFSi2wC& z>{wjJ?8$=-0iUcPF!v4b<XoV!*=n|{_W(kwq2=<*-uc~2$nFd^tC*8g7exLdmmvQ< zVE#Xj51RQw^My;7wJE$4;4r-1l@s)zdLReAq8Sbv*2Vgi0S@$kOY4}%@s8CWWiRVg z*ni06%o|N}!nZv40ZD(M`Em#`66J#rvvy6NpI=gWH7r33?#=N*4<l*}uToh&`5`qM zOW~%oOEpsO0h=@SE#1f|LNRrXfZ@8}Y4-lunQw(p0zp5VQ`)IJ?hN$`W_f4dX^B?C zmDKeT;1>P)Lz9D!kW*~WoXzCP;ZhUX*<Bra|H;x>Y8S7~>R&kdM74hG2%G56*H=9B zJ26O=6X*H#WnI6Eupe=*xzf(sy_IvqV(H@T{hY?x>Od!0;u6h3T(<nK!~#f5<btOk zFTIm@pM{Y6s-WK2U*A1Gt->2o;^7+IUc1L2e7o!kn2OVNP7NP6hJFb+WNrGhfse8i zmoZOx`X7}GUF-Mk`gr$o|2wOCz0QAY0|bJ&WleZCwfSWFS55L3?rCq@t}P=6_fgD7 zJQYshd`wPvQ8$-5;q*}pPY~Vkes$B}t#akZvRCvoTUaCI%RS&$D{qQZ%}E*P2a_P| zc#@tc+t731{v|#5O2Kq7DAznLVSgPm(kBAu!x)+lRFmrz7zdUl^f)MS1i%gZxeNm* z*}Or19~QdOv=h8U1a7+1?A2C+ru*1m_lCZS55#Nt%Eq_JgPMDTS@VXENlg#9drr(q zY9u+p#_=PL`_YUMZ%>G?th`fm$u8u}sQ!k0Qv=UuC!AXCJ6Monn3FYyjTlezn%h-e zQatHjZPxp9sl7bbV}?arAuQ`b-grp=mvEy*b-1}nU>A%=&`2!;lYD+LC-Uk_Ze1UI z2n7WM-n&Qx4qAfc;jarh4>TY}&ZVjQA3l88Yuc?Pp%j%TFroHY39PdDB~qqIfsLwH zt2X)NlOZ|L8Ll@%E>n`-p6UJL(oX%k3p+UXWfW?jokL|WucREmA;6Otfv9@EU5a-U zos2~OaG~PMnCR#&uWybnKlhct`K|H8N0LtVmVS#wYt-r$_qIfA>Gb$*Y=^F9&bc%l ziUku9Knc@HE)jK3d^!BG=16cdPsZdtCm~OI4r*52A)WE;2NSc3PPKAXHJp)*z@`o! zgwun=`VY*;)F!>rT+9VfHN?<BSB8x2S+CRKaJ}1UrD=7szSSTRMy2)x^Eoqjd4FZ& z-ks%p2{e_kV=YOW25?D6pAsL^>Xfw;$Ll8XYH4;5?GmWRg!zL%YV<eHVkuepCW(%C zP#WE%w6|mxr#HLeYn-MH-s{NJv09}%dr+*4T=JI3-GX^~s`<BHcrjkUF}J!YNg@^5 zLmZ|sP#Cq^dWWzhg1w@YSd!`yv94uRPKgk5Xi)osCyEFRAlK)g46y1snI1ZKD3NQq zkl#%9rAi9qLk#^w1=W6^xK`P9SD25<n(el!eMybPssNi=^l@?9Ie9OVjP50u3p`G* zSJM{j75C?X_QJWY7okW85G}z(q6wjW@SSpX+mX{r9HV(R5MpVz=S)T%{1!7(PxD%q zdk-wG7lXqa_}1vnaLt7%h^e6YEJ#>y-urdAiXKg@P`5`603Nv<3AfQ9F!%2!y%}e+ z_Kpw`2`p&{lTdWziS6+@0Rj(u#Z5rBtY83uHI-8H+i(+V4E_D`z4pZ@qxx|4zewoR zK-7&EK2Lt(tJNx9I;dCnCCUh;)g1n-`_z-`mI|m>uE#0;w;n3z*>T9LkQfyG%xV2r z);t=UN6IEvApG6|^vU*<Bo56wLYr9AMg&}Qh;9WO0pf2rBV}11YTre@a%jtWQdp@y z+cR^?ic4$F0=#~AUT%(18cX4u+c?bcW@U|QZf|c<bII8WlP1~zY+i3PbNFt)1Om&b z+<1VM1(mHGer+*TO1j8G^>h#+PZQBA7*i#pL32w2JdhbzGGU&aL=}VQb163-bvARq z$sZRG#4182YLCi%fn3F-`HPY+?SZcFIR(x6Y!h);qcU_c52#G(FwfpagEVm0`st|_ zo2YwIW2kIwtt_bJ_dhIWZa$*XaeDTc2sEM^ICbsXHNm!*81Hi*4u5;FviT4V(q^Yk zpqCAXOIIZ@7x;iHW4EulsfWJ_=qdGtFA|}qlq!QOIn7MEC6c@BQ!lp+8uI4tw5g=+ z=3^Nl-HaM<G=#qjf_}-m#~wxS7EPgE<>hyw!+F(QtNZ*ZuVrpG)=*Q9Dz66!VxK&J z-h{p2*|uG~&8r$WX>!GfbD|`L^(nISm&~LYbCex3_s9|7@IyeJZ~2?XRu-Ter5$UX zdYM0^V#C4Ct7BXX)-8E<0|jIJqRGi2u~R`8J!r(uMWS&xHFd<%CnrCTrsi{f(dq2l zZfwlP;IJdukTDacPPKy#?S;<uH#SEr*OvZJM%xn=N-$AGb3Pt|&rYOu)}%2@#X>Ic z>MIl*aX?I$@_O_f{$A(^ECgE#l&J3HbZ28cC+vJavI0^@lO<}}df&KDKl`i^xoExD z<T<gNbK7NOT%AzM_dBA&CLY|UXfj&Y3+p)jiN?`nz@w-a;`H$DGW=3^wLLCy?M?uY z{=SWt&SF|%r><YWUYqF*8eXFDA)f2=DbP%-3h=u<c*p|kgo-S{=?}*&znZ*;Orrew zqfh6`BK8z11%8nYDXeECUsE5ZJ#AXkL>2kXQiFX_uH1^$ne^7U^&xZ$+w5s+Q_HMs zenX47%ckx8SK`OTiaqA$EoXfyu5koyrx$pROBNzbuph<mzQ!^{@lA6h^Nuy{*?X|< zDx0j<2T7?+MFC(y&#}>KL{YdfW=U|ctgb2frGtT>ca4+v&<<O(HGvBk_NH;rgpRP< z&AAJg?BH;1ub%d+-OuKim+dv#C=pk}j(<F&-??bj!5<oaev>&v!jBaOrXL0L#9(Zz zI^;A`#&CUo4+p#$55#(um_At(62f|>&7MVuG30n+K7<9u)1Uj8MPyN!gk?ppm~^(| zxeGN0S1k0)1Y8WKMc0=j(l_)evezbTIbI8U{L|ipf7?P0JN!=e0}hHlG_-VNs-r;L zKb;1*gwlwb9`mo)ICg}`(9{d#d{Yf5@E-K$F^^NHF9C8Zccb5}A)lH>41v!kr*<)r zAgp+jxN`efsaix#eAD4hnH?0W;*$xr62?Th#YVd)>!;1zcyWT0{s9NO9G)banL&>* zcVY0BrClZ$vIfWLt%2%wr)4oHm`*5{+~3I6R3B(M6E}M_h@fqWHXvtLKwSm-Cf)Ti zb9_X6ZURap4g;xSUH8aeINzJ10r+j^kr_##87<|eLEdqWmWh6wpkL4KXNcd<xk%!E zlgSKl?9Zn&HyW+)^;Q|Pmz{>Qkvco3+uG)fU0nDI{AA22>)v-Qga<$p%jb49^m`kW z#DH4nV()P}3u6KLoU%G54=SX#|D^C@ohS=vpDd%*!teOTm_Ehv?w^!U(1Pm@rMv<V z^!M2}+Krx1-tkW&=Iw~vJ&!@w=jHTiXnwDErZAT8b$0p459FNy_JM9aGvBg7-`%0C z2-`-NPKiE88>Bf(g^aZ(di#@56o2BYzRIt?9@_XP+x2G%jL<@gSe0H2@e6UPU&0`M znt0y7F-0$o^WdF&K;{XRZt=)pAdq`UI1jiG`IE2t0eXeSEL&k^S+j<54<k!+dHpHr z$xNUBaxAw?&7L)D77^F`_iw%Ov>M)Yz|cobTHOl5QtrYc(mPE2-3PgIqiKTYwJeBC z>}%Zpg$p}<y5}I2pNCYRc`XMbUZ6M{KD3(Yp95lt+qxhB$okJOCeNPi=K9BgT9uO9 zgv>NC@$|?4mc(VaMg~bl1GDc}lInBlq^it%{>8K=1~I;GscBzN)&MxAa}P4!JRF}) zaBm6+a~9{ikT#zFCM>N5t%K6;ANrkfZ82@op9lq15|8J~+cO?iMQvF9y*W&+T*wSA zv-M^A)YrO5Dc}Z2*!k+g*ld!*1SM8LWir7>Omjr^y+8i=Bj2eOg)t=s3}rjJ++8`w ztq;XTM-KEIwHpv1DCMOpQRPp&;6PUXJ1c~t9Zi>q&iDFNl*pUNZbktjn7#<Bm+W6$ z3&aflR>xbs6TVF~gl`d*4X*z%J+3gG$|wLtp;A_1RE;h0u)|m<t6vmMjU^0l7!h5h zEx?>5%87%bdaYXL547T5QZw)GS@aC|?)uPrjd(mxOs`kNKy?mL1Vc9IGT!?MIDcTh zM(B>>ABgfGjbI|GBpw()h=J}`?_4szmyO9Hwep7+jpe0L#i>8}#GYwOn-~T;{b=iv z*6*HHNw1D7W7+`4-6LBROfdbrZ5b^ZuY1sk`1!X*(^m}KDQR()-?<(|R@8Qs5Q31l zs!ARc*l_MKpM@l(vAv<mb550g#arK?x7_H5MBCID(9)rEiab)=qKF-waM<$!&`HK3 z<911FHseD~!QV?Uq~ICML&6WPJJhISn@m?{Hmn6ykf=E_av<-xOzakg48UEuEFCXb zcpRE>k^Q6bdb{Da2{(Fu);CW6lGCyW;=8fZpSIeC6{Ty|sBzu?ZsDIBDQU1t_b}Ld zX6aear2dqVHpz)AT+`UGYBxbY`pUw>^G}z6;x_J;myOp)IghyK`*2ARBG5lLuQdov zV5G<<!Qz>&7&ya)gnDEZ7-{@GX?wr^4}EWO^tmyiSot`VNljOh4}~bYWPENEzWdNM z`o<XdDAJ-n)Nd7mVw`~KG#a0@{$#@v#{mCdlP)}`_PJ4K$Y`6}rq>Uvd3>JJD^BXb zd{uiOw!M%L;Xj~;_<H|>=?+$qEciK7Nnr{{kaW6fN3x%aoq@O^_V>1?e>Phc$Z2p( zUUBsE#}KUK&vD4TXsY#SavK?+t}9X@p-GOg85b4s!MTuDC(s6MAP2T)Dn;;8v}od_ zaXzW<vFh%`KxpcmqFYC2C!e50wE9KTA!B1l{Hx2Y${l#>9Ef#Y^hV$%meV7EELH{% z37!nHE-AVQI>3}wtZS_?G_J-<j)<C6m84nIwcMiRspR7bX$B_2c2e!$7KZUt)OSh0 z-+mYPgPOKS<00-E-HOH+j#S<vshgLV*I`5CCJUP7bB^F&MD-OIQ{le!(SVsWrwgL| z{_1(<kz#y<m$h=SL;=;yiMp>@@z_#~*%ji}UM+Gce4<O{MfnlYNFRJ3`VhdL<>cJI z;h{V3yk&6dh+0+T2}CPEb4cf;&o6yABYTJ>1oU`4DGEzxK8F3@tl5EY*MDw$On>y4 z@YxXaKJ=_qHbS=XENI)dEfzNfURQ{vBJx<*FrAWSk@a<E@h%$5l5gpslpaycg|i!g zLPnML4tvTQmIlMR^s2Y}KaQf72}y#mX@gqk*Pm-FlKsEe%!+Jb7jIfp@0On7*ksnX z0!h&XQb4Y~-USa4E;XCz>`%t8+LqQogGP1<aT)-VI&xGMT;|oK<9R35F~V;^=B}TP zeB?u}TNYz=^y81%JFhikljxn!dg_6qh}wDB`;E_0^bI~e?E&9=tFXt#K~g99jskfz zD;pLSQCqN!nhn^wodwteI_*H8yPsft5PfH{adln`dGrlSw4uDbN&$g!@CY;=?jp1j z^8S1qq+|hvAwgpB6y%*FM;53ikJ&kz>`77o-j8O4Uafs5n1N#lGo4y4O6bUJl&6oq zeK_&GU!J-!L$d$r)BIFJa*TxA<COg=T)-+&>QmVy0($bp{i67D&#zs0MDL?U4iahi zS8eO?ArwbvyBC6fU9Sy4mmkA~M&DY_OccAv$A_R^Q=dXu7_*sH{G_CxAKQ6*a2zYp zcqEbeghohQNg`KdGbh1<{#B4S42?_Ne(4f?zb#sJEwWlaGz0nHPSN8+c72&Voi^eC zV5mW=6x7m$RGZ|m@sq3q(?_1^tXSM5>ifi}^Gr)?(W;l0uOFc6H~q8OFwd{vyG7vS z7R?jd%Kxn40jOMJ!t6Hm3`q`#wl?6Ctkx^L+@>+6lY-_f6Cl152aOU>#D-&=jNR+5 z#G=c3$G(~?Bc{CiT~j+7VR#XD^iMCJk)txmw71bARf~5otE1)H=a(g92Ep@APW%1z zX+Zrfq;t{HBWfF4HEPcP$oHqQV=j(061_+T+^X<ZkQ_s3DvD0UDbXoMPJ2woh<#bK zi5&m21Z3k_n?LT#)RiqlN9p9zZn8VLg3w9lC7RW7bECbnk>}eB?)1J1Uy3OjP_Q2F z^mO{W;a-Up(*mlx2@z>ZX6A*wi?zzj4F(i(-;h)P2<&n-=fT-cax$jCwWvQ>X)b5) zo>9K+t{1nbCEv~~l5?GRH}Z^tm<PkM%{qi6CAlMlso|DSbv7C8MTww3I3Td8l1xNB znE+baS2sQ1fO-;;iMB*>BMa_z80V3xCu(FE(Og;$3(N693~K2LN)>iW)?gZ!3&b+# zxv@@y7Pd4zFq+JKIYHx~pz8%&LHC34(23p+gshQsV@MpUG$n<?{Gb<AY#(RmsE@K+ zuN>IlS4?`dcZ+dSLo7Je|1jA^2K73)yXn8BQdxuPO#^Ayc$YQFE3#6oy21d!G?x19 zJuo`)T-Tz9=M_kdX-@xAv!Up7F+;sh$~luEDnyLkBa8fC*4(ZCL#d&7eaR<ImK^xV zNem>4Cw0UYfYSHsZVS0h06MziI2=fs*#P$|sxMiii{Z|Lha>9wK3EF0UJMNakhhbl zNjoXWIt2>~({ov0lxKSVOnS4C>QDHwy3pb*(=60<6jjnPJ~FhU?gMu9XtnuBc9=^& zuazGM9Fs^~G?j75$LncWbT5?iZp26O-fs9NM|vB%q1jFR<*E_}Mi->P8+t_dB!N0? z8C2z*b)OoWbA4NG<=?F$Ry4qBYKHo6ac7O^?KO`K;&;+DjQDn{5k(d%|3Nl~q)udk zMHgyDT}P%@qM}`A&dmhi(3Fffc{e3d03r~-Om}x(86%pS%6nNF2Hsm{1*v`vs!Z`G zDlajvEy;YvKU;hXsUKQSO*da^SPU=5&U=?g$@z3t@^QfA^v&SSwedE^e^3^~GxD-_ zAd|cCUU@73IE}lf0tW~bqr@c`(E?v%EBo#GdxI724<!_ga{CH9B7~uxg3)>~3vo!= zFymhASMBfP<Fk!=<z0!p$WvaFXg(ihRiyWM%F1|YZkrFRKM$NgfA96AB8h3ce#qbD zA$#2m6%aoXv|E49&z?swd3x6XvSWkRt$Q`ac!$106h2jFar{k9_JDEh6WVCqx^*cG z6)HFz(yDM%k^Oq4(t8Ppm;yUCJXcdE$X@+I8wvV>ODaB)YB>5OtBRQ%OaDC^`~TdY z^j$@2jfWcN1hzqpWWVMyQpePymSrox=y^DQ{pu?x=ejIPGzu}3Q|Z*qssG!l)U=TP zw^Ql=b}BV9`=8=eTJ?PGf42}_{?U)9Q^*a=f{}7kO2xpo6}v=jI!F)kcfK&9xYyh+ zxAq*QRaO_#hf+DU4iOWiqljrS^JS!F{L~+CcpHFoP)k{ul9o52;}KKZs3``wi=g;} z=@QOS8AfcA@ETBHD-GMeQx=K}1u#TEE!Zu_fFUFQ(VJ=y97TBx1o9@3JCsw4#{q## zgE6EV-W82bbh(B!D?O(ZvdeX}5q2L7ae-}{zO2tcag&j1)gN$dhMNv&81-U4F_w87 z*AwJe0MAs_Aa*uMKNmUuMa;wOc0SFvXQ>yq1H$Q>W8o<CcT3L*;=JUz6bD`V6r%D& zxzuv+ATO_s>P6*lhtDbc>m!7Pkzw+vW%dw!(A&pn^;3sO2t8WlFxWsAmd!Zz)Q+Yj zht_%huW28fe5x9r@;2_iW2vG{wt(X1FJ7gxq<!yInx_h!3PJ`q-u++}b55>ZyB7DX zkrO+gODb+7{tndN^XDJ$LQi65X5r>_rQ4${U-@X&{O$g|V{K>rB`E9e(=LPsn5aPv zi4&PR9ZDkBZ?F6>>DMJPS8heP&$8gt|K@IGo(D50oaTbYGm+G&!!Gki&g7t`<9N(H z#};J4apuvtyt?Iy@wBc+4*=oimmXors1}24vAETB(HhUl+;{Cc9*yZ7^?!wmD+PeZ zi)e~Hyhe}1>R15~vjNqVz)P)Tj^Zs;b}g?uB39E}fGMp_HIte9XH?kF!4c)Yq#0fG zEjH0a@uW?okAGkHRL1A!APRzQNE%qME8d}QNgwlkZK_tSdV3c3Dq~lw66*H-UyXdY z!|!qjpGr8=k+8@-&}1YnHVU-Necu{+Y(VFt45D$NH|-mJchTQi&Wo*7o3)(rygQu6 zjIv*t?p9PPNX<8$!3HRKQpvm2p4Vh-Dv`|hrq41Xq*8$`zpPiLI3*y1nTC<olY>cX zN_D8Bgcv+IoRV9<aj4R^;~JJO!%(tES>pXYc}7AhC{?cFAW<f(X)!w?vi{94?^BX+ zIRc5q`K}~D>$lf%j<+~eVt%J6v#R$g`2W+^l&7+rK0otx`_S>#&{h#FAESsexh0bt z8JFZbWDbIzrjb7#ne&o)*jJ$G$?^`ejE1;cvCv1st(@A`1O%83mYdG+@V(@tLObR> z+x6B!N-Sl)jf&uuvC7CbgMn(Y=RPLepa*M_^O3Oyhsp2uB&=j88=Vr5YjA7r9w-0q z4a-Coxi*7!FxfkSkJ*QKT{jFwZqKy8RV)DJfZqaPCIcjk0l{9Abs%zpVeegJh1UQ8 zs|l$ogJi>7K$zt*Aa?q@C7SdV8TKNC2%Zpyr7l6puuT*g&8va2Z0mScGJQ%f2Bc6C zbW$ITy)t%@;feakQ>FV6kQ{M!zXTE1wKB3zs;qMteKh2Q*eUHE3LLFTH7<bVky(x3 zk!0-Mpat?ON54KJ=Rz}4cI995X4qa_c42SzqMnsDMGXuQ08t8W7BQi!F)k@;lU$1q zBLBeVMk>nfLF=fxBtxd8l+Vx(CntT*V_9IAc+m<A>;=JQhKsC3%HT=oY2=Ug$U+jL zuO|8-Ene}4S^7uDzYEWkZ&7A%AFhpRW+o3>9de?=XkZMmNNw1Bf%oa%#64Llxh=<= zd~zwt#rei*CTCWlEEcKNW`@2oy^C4U&(tsO#0$j2RUu&LVmSJOuqXMp?qH-+;c(1@ zL)FrvX<(Wz4Kce(J~_Q%FVoCOl`Z0ou(ZgWWp<BJQeHMddfdsI8OK7_u6+~L>EqkC zZXs|Tv7`tR&XUVICwL#4fIE60tw5KCr@aNlGM&ovI|d8L7afn%?eh)ja&W!<eb0Tg zod~xE>$M^Kp6U>XL=Y~`1^~7I6-rCfoZ=gmj4yaKs;CSm#*Shgb40s_cezE#Yuw}x zY@i5}CnG%+;deiBKB&pO!iot$QTLKsHJfbgKc55@W#Ejt3yrrOT+XC|=MOYjSUvaP zjnDk!DRjvZu3ws75)doP(uje_Zrqzlu)!|04%h^cbx$-0`srrFt-_Pc)~z3HDT$&8 zWjEfN3=hWVGBqV-b5xY`0*l7ccY2t9$;@jmH!bj|pL&249`i8%E~x|?=tnXB?(IT} z1cm7M>vU_DQf$|-qTiDJC@w^EPkR6wNF~6E&<$VbT2$p)61XNpb9vva!8dEtKf#g{ zS?l<!0aF7Gk495GwX>1n4E7}^$#(1oM_b2W8ZZb?rwH(6i)qLHZ5ju|fj<>u6}*?k zM~w+W{p)Av8}uCe#As4Iu@X+e=_*!Qr(lWK0X6`=UD&l7fyu|FO*X#FeiIA~Z42t( zF<gxHvP7h#H&GG@5r40w#Vg}%h0NAS&<1y9>GQnN5r{VKytnd-xvt?HAQOjW;)W3B zp(Y9+XvU!rP_@s)@E$eO#1LovOjY_`>dlvR*lgTA(+Gn9(*G)2$PBwj<#ru_+8In@ zR3<1mdi7%Cw=FBmijC*2FCl9NI1Nb4hCE%;1EBjVsoh?z`8B{x=4-IDKwQTDiGs2E z<kU?MrZ+7)e5Rn(*jP3|=Y?zeMGz15pZ;{eqLuPbsaLoVFFQY0k(JEy?20Ua|LCEG zP6WCN?{KW`R2Z`wA<5|)MxvRQNr>5+l$132t??+_KiA4r=!U!qqi_juy_G2pF;OPS zF_&vsXNQ}ZIr}Y5RSbGxp2;zO*Ri-l1*r4?ZRb*4kruqJ)8=irE~AHRvT}Z{^N&6H zzlM!zCD-=#civBEQ8i~mxz_*H%nTr`|Ji1y&Qqh-JvK`!^S>y9^$lf$jMv06;`|yl zZV)Y2XgVA5O^aXns3>&J6U<9Yz=Gg<uS|8-ah9n3Wl>sVvI!^UrZw0-d@8zmtTKQ5 zTUv8BEp03OnysVBE{=%E_9u47JGW(MJcVBO8dg@@DC>elFJA1v0L6yfAlLoXlerP| zI)SFUa76T>vuJhp_U!=@0ZMW7x5z}oqdo)D$4lh@OR<5F*qHPv_pg49o%x>6vC4SI zMRDH3Xcgld|GfcX92O$A7@Y>A^>&G#o+dE8w?nN={FYH9CD?Y3I7#RzjPsH_m^ax@ zSqvNlY%ZR2G`I5WZhVlne5{Wb7Wfk4O%h%x(7lM0#K_L{>3X$peX{z3>G&F`InB|$ zeA#8=YTVV{qxrQdAizuvBo!_gp@*r0rf^X=8X3~+4NrBRtDissu<K|7+|8c6<e>e9 z7(0q)zb0IW;=y@828NV00`!-Myh|W^r+BHmz;F|p&`6a=1+PR<Qy$6U<#BK23Er<2 z#6OK#QlhB;I_d<u(wbN!Z`fUnNV5^1mr_>p-xqLI!bs!7UgJXKtXV=AY>kTb;)o*q z`A~I-bzt7{xnB}Nc=Cbxp50n*M!9jr<`k_Z)65L9`RVcQ>1&)|i;gLFl7sG=_Aypk z;?@;C9%nlpS+~ZgFaj|c9;5CREkcuq%QA=m!ew>ktEadEXy78M%03j5vod0h$8^=1 zU&i~qF7-MjpSnG_%(r?3VfNhO>ZUmybmJe>oWT+Orb&Xa;1Fmw65gmc%{O=8&6}b5 zO-fHQ-t0+j<vB|eHJ`&ac}hcMJVg86Kqnfg$dD-)j`+(Is+XINAYB?>er`PvBeiq1 zt0i|?M%ueUELyA?6lh>%2nQ5VjgkraN^g#WeI7;BoX1*Tu(V(brkD!29^^TpC$d|Y zuTmxC`uqL^H(Hu2Y572G9^*bCmbo0LXaI!KUk(mcTNNSo{_*b?u1vriP0Q*J&Ac-b zsqUsZU<?kT^0_?UqOp~W>U&9se2cg{ku6vPRWU7A`cM22ivfaXhhWkEs7F@iBQd|; z_1!!(GSiPHOq_U$eE(~cl2&c#w6?}AT&0NA7Cp&6_~!4sL6dc`A}$k6#BS^jrOf9p zU%q_LhkAIOEX4RpGFO(xf%un!Oi-pR7aMPE`-wI&wB*0~${YV=axq@S#s9xJFGKk& zd}enn9J(ZCWoGU`lo4CnC_fgtu#7&%njV_2ja$B!9zB>pt)i70DzYM;7Al8H4D#e_ zaP`%!BS(*aKawfhlzUM~%57N2SJ(|~1IU1Ub(y?P19AQ=;(3TChuJ<Nh+PwV5HX87 zr&LKj38xwF`~O^9dHB&(K5_2@WJ&Jrmk>vZ?*op{>`P*49%Ej=|H}>@ad?TT)Tcf8 z0x7pif=Eo+@r7xgq*+v5ffXM!oR2Pz;3QV*6g*P`L%!VwF_&)cC@9Hrnl8%C0l-E> z(0g|^LeG<jLNTz2-RtvoDD;}sqdk}wvz>HWwl32bs%uUxq@3OqVQ2hG)P2=<L|3u? z`%XE^_8g67Bh`+~U3S%|bH=QW{|PpWY2w>LxzdAseOF8U^N4EpSzYJ8?sxx0+V0nD zuf86CHFkaD?I(WCUAZLBc1*nIm^v0EPepovne_A7KW<O?R0o*qS=6BJ!;jJ+)GVT_ z)ahdKdgl{lM2_GIS|@r-)<KfG-3Y1y`^2!sYK`_&MNLLLh-sx7hHO}LKOIfOHZ18w z<&;3t+?%#*n|zAF$3zx6oPh0J@b0U^NAuvymaRd9Ep_t6S1WVQ8eWe7`5(ADUWGQH z*%x$^ZaNhA`hn0PM!EzZF0whZ^gT+q&l+Z)>=@eR6Eh%ctx5G}kP(&V@?W2Zplgp= zFlrhK(NzWW92{a-RgP<P<bVACmj-%&7YOO}SoNs63ZR(QY+v~Awx@aL!dP7rtA@V^ zK8cx8bI>~7I$Gzj6)qDlAi}9JvXub*we-y31QqZ*Xy(&@$^IM(?;|LpsYkvvPTFCg z2zSPeVEn|i6YvMp5tuX?v{7CMh&5X!B$3&O65WJBxgw_VpI6EMg+q*KYt*ih<k@|1 zof!Y6XXcvrr7AUF)af6lXym*+T3&kkQFIwTkxhzsjGJLq?L76j8b9=1JEXk0(cC^O z7wZ4Z4%tVm;{oBaJE=+$MaiWtUZ<+aPm7DcHT^R9OYF}@V8A22EeFl+X+L<yKwy@v zVCM{vt}$y(ex3jMjP*AS94>q|?1!_Fxnnbpt2476`hOuc8rBKNM4x+UhPx~z_Hb&- zC1Ktp%3Z(fJslkr=SA(FX?tU`z3}cGaHo^+nNt4OGAAy~ecAunz<U#i&C7en20jcu zq)e+?gX?`2xhQicieJfJG*1o(V#meaBj$O>*7x?~@6{`o|5A|C>oci2E=<l@jW44H ztr1gPg3&UBtbFA<Y+if{=>${l+%y!Ill3y4{NXwFnNJ<oT<7ibY>&*WpV?^ZvA9c? zA)W4Ydb~R(&GyKfdXd+XUvT)C>UAJA@X(Mm_8)Aw4e%NU8zmaYt)Xk3X5Em;dp;;{ zc?46<ATfokwBK{ee#8oU%tA(Cs&(eag$wOq_<E4vU0T`7|M(ZEcb2>=ajKzTerB^x z)OPKG-WRZkDgYfdg3DF-d+ds84m0aB1JaB6c*zXwJ;=>`imbFe{F^2VtF#)o=RYpL z<-5z@Q*`+;*^fb;7qIOsQoTk4kjy7aRHQ0zTEG9nCv7i$=3db{a#6kVb2Y=RG9DmG zu+bmMOjT(fIu>Dqr{dYE?81)cp4)?(mxYgyn2J#n{eYp}oSg&wUZs>HP@PZD+1wnN z6ynJp{EI1=b3RD!zouT(_>5QUpU0=PD%|;!jROZ}2Oc*fEJzIn@d--h(Cu-r;tw^> zpJulwEw+Ak%94UZdt=t-w)oa%)oY8p$M)X#pEoQwEy2=z#ELxEV9=*6ND(x&u%MuT zrpO`y2`TDZ_VE4?AK=fsiQ!ngVZ-hKE^hD(VLj5(*eWxsTO-lm$o2u4tH#?x{|x(c zYp>s}l-V?m6Q(JW0%j|u1C$a<FVSFnftc#XusGaPL{WGRXe<c^1Q0Z~y(`*zHOzw~ z6UbH-6&p94yNlCaZv{a3Ze|aRWe+4(A5N=5y)KM5?k>u4xqjcY9mGMd;`efcWPL9F z<@#}flkvoM5$jgtmPoTZ0xJ7Oyt2xF6E`Av?W(uaoOj3juBz;`B6sCw%QPSPB4;zY zD%gZtqaROox>~?q`p)0!tW(JOj3)=81{QXC#RaD$U}@&>v}w~Op5O2+Mz)rbA+Urg zKzVQ6b6m*TCSkUyi8!wk;z<P_f)m-TDRbs4yFvFqN&1bQxq#Efg8R`7Li*t2&xcah zwTI9!pLMe)pM{$&c~s?baTya9=C1a}H>y1ioCScP75FN)X#Tz6-jPmM;B>Gf9u7{l zFU&hpXkn6YfnFn`1}NGzR~D~KLcAc|k9JPh5s<4*5H5n64*Ho;Tmc%fEwqo}opFU{ zcO(ISJmt|>WXCkg%f|z8KDt3Zt30_zsm38gh6Tl^NOHs@ttjG5BfRc5k>f^loGqZa zvWYi~2K}7RMvx0EmIX9z)^i;%+`VtyH!aAF6CceT5|U@j#w1v@jGG9VVlKm$DIi8Y z^__^ZkhD_Ke9VQhS6}lGZlqSqe0nIhl>g@$PX}UYd|?|_*ZO3SKcZ$!{3Y=my2t8( zK+)837iP6-(`Et5t5fdgKzdH?F^igysZWLMqd5zoG83!<OUe#=^!c2$6=4PLNlg3L z_VZ6{9DBGHw3C3TBGCQjL&t!OqCwv0lT=jXsA?udmz-Uo(-p+C)JM+K>REZu#cx2* znHbEP0ubEcirg_pF$w}tEA(W5Rnas|7eMChJ3MZwcZpJ^?8LG6_QmRYKCH282Vns< z;s6Y6U;#MYh>qfTQu>r0-Sk-8nOoI^F*DM9MH6}!C`wXL>_E;_auac=J;CEpHV5Z? z($fks(Wb1#Njhy3t45b}AqaJ-*HJudqFF=p!3E-^c-#dfm-Cd+*6*u9wkIu5?8#l( zxN%{rH$6ujUorRT1AkL2FED?@4T(lfxB#P`3iJXRBUbXPKNZ>I{PK-XZlhoPYS%ue z6@}OC%qrI2ZF6B2|BV|5^}gP&?N?uY+S<AG_{BBbg?-ba!;&xC9(E1w&~I~{c0GEm zuJ*^dd*4s~XW6zt|MIEpS09I#3+vdns&j`|Zwk(g&l+KN8vy@MRQ`*gxY!!q;?_>; zw%#|}{>tXU$F>*W+LmuLe%aw$_$jg2QX=}4Cl>J~qyi2O<uM~!8X7moWk$xX7`oqI zhj?^!d3;BfC)3}?`xo?7wjtLSf)f&lE7^@^JAXa<Uu#bCcSi@VU_?mat9bvl*Pwq1 z)O$gmE>A*@Dg+69j@eNd!E#`&5eK46w71wPH?n}4JJ0TX$m~+Ps*QF|OW_#vbH#=i z!&(oaD8ZANP)HoyQYV$8Ljf;s3jG+-)*W_o&~F3pQ0F~3l#Llir}Q;Kb|~ph1z9)^ zdVxVEFvj=d!d_U}=+tz7nrc7KpMQlMOO(gq7glpf><C`^eBFUjmrico?mc^9xre!B z=KD>jO2g|YW_nA;T;Rjfmu<xyM+U)4dz#4bJQr6G3pW~i>Y33W?hg4>mRg~8M>M?Q z^^3<pW>i}Aea{uH6J8IWG`q#O$r&EM=_`<dq`hE&)^HKoR=PA|nQ!GmSll+r>y+B> zQM2UYlTVarAKPz3{h&(r_sU+o9HWs|Vo<TF(~-k1aU2H<ENn$H_&6;3(4{^WH>=Kq zRgM-d5gqG_#D)yzt+#Viqzfvu2Y)@!pFjKf^UrK<UF7WjMV%9g-w?ixh+kjNh2m?e zrEf-~ogSF`L?8v~(DC)Dw0+kGUM9!>l}6~179$#-^I>X+JkPbut?X+>VSpQk2J+FD zIRpeXm~q+J#O-w`GaqHm$2MEiO5Y`*$w)~iYw|my{@c#42(+<!M6))hPAavR?kS?E zFls+#P@$pL!`Z~oS|I*A&LBqIm|Wti?M1<sJR+>_rmbrUEZ2xtYpur>b(oJX+)n6j zd`OZX{$UFdO`fHz5ps{YKYi#wcEA02)1ZOWf9e6Fkz@|iCz^Q0)4e2Y37gZ*TZb;& zPvtBXYgOWYp<}Y{5uuN8)6A{WoJ%7<s@(YE{eZ959xl<Iht=v(+34@L=bwSXkp1En zsKEv%2fM1HjrB*?(GvhNA^A0Oc03=m^S9=M?qqm;(=h!R2)mvpC)6g6gvS`uO|U%n zhI=g&RE+_WGar1z^|NyO;?gCmikf1wg-G|CKBaTFS@rtvZVR}Q({VyKUJmatIFw@R zb)_<&+I{JMaDzrIivg(}JNCx^(cZcL^?d*T-wc~KdvC@pHn9nlXvwLQY&PT+l}L(7 zC8<#8pb|SVWQmFnJ}VLOLMk0-_NJ8dBI+d_9HN&>C7l%2_j<SY_wxDe`~3&D%jJD} z@3JkuUeD*_aX;K{xBKlr$)x$#ObO89_W+@3My%bs&yM{Zz){tkuU!v2H9KhEkZ0Zu z0$4Do0!8uGTe`NUi@+ccN^#1o>(?|mVG#!73~-wPoXNnV&O0{BfS2yd=|}ZUs8FN2 zSHi}F>pg0*U*~`u*$O1f)?hTUV;n*0TGHumct4Epg#cCGgV=xDv|+5?6g}qm@S(KD z2_jjg#2bsYMA%HS^#wK#;)uA2$~oEdxs3AjE7dI`tM;fchBCi6C3;XKxA&a0{DwVy zLbYVlT>v6dMQC{VGvmhth7B7(w)&(eG2@bE<BO+fF0HyyG9$Zx_OubbFHhKcTld(X zZ3k=}buOj{he9zSCum(4MonYMgY?1;&+O&gHSLAE5gzTP_Fs2AO`JHmSL`LcY!-tU z9MBRMWH7Yb)DK>=UFM~sxfuQNG?90A)PzIt%PotG%jwCcwr8Iszp<z8xY_Q%ZExRR zpJjaX_-CzLY8VeHt`w$7Z!=lv#Ct7fN5Bzw7ME`+bt_J=9ODOj!xWx_lT!++AR^e| za_aa3rCC?^*j+;g4jgzZJZM5}gbh1MPlGiOKMY>O(yfQ3DRBPKq<KFdGPk3xp+OZM zZ2a<9diI;y`-Zt<ad;LWd>Ihncx*!P^>k61w5^!2n%%$G<zqRS+1`8LqmC+QL?mz? z)W`QySYbG*mzV*FZHRQbpdF{V#Ikt<FP;b{LdkAzcAsIjo0Qm&Pi-QWjrMx(8RJ`K zwh}4oU|drn7vYcYJogBEePl1GaiUZHT43u73|ZwGOraE#$x(V|RJ?0Hoc`)40rz@W zYid@fa#}~XQFAYC`%OXXO|NM9857!8@xb-<lL(o%9A+K9N*7b{rM#8(yviwLuMF@3 z`CwQHJu7lDHVQfR-P!xk=>*;#s=vQ-dq~~t%?v?pFFIyJ`2M;hH}UJiD-^+4VCD<y zPFZloa|KsZ-W_29B;GMeNQ-uz$^Kf)p7!_3pOM`!yM5v^^|KkusGUXjyplScWK&^5 z_4WM_rAu?tN;zB#=ANIggL<l<k#biU@a5EWQEe7RXIAP~VeaD~mds#qB_dNHI;0@G ziijvdc%F#Eru{~X&jxPzX~d|4?N+5p&cVXgNpq1l(E^-Yj6n+YWH$mPg2`Uh7G@TF zYVi3J{8}-JFKBu_7ITPmuEn2%+U(}14^Plz{8wF8T<0?wf56?<gBz52&(aL_aX&yZ z^7ydbnP|WIv`N?I+ZQ}px`$f6h%K?=SCKYRz?hC>kqNu1OMV(nS0a%FY(TtVaZa9o ztx-IXWsI79Rj?$LrqC!gVV+DKiPx2cJd47^z1g&|h{$h+=a$T-CTLf--~oE4w)F*J zL>9RsFir$lwz|0C2U$QWn`#;1OTb8V$`aG=n%>)85d)lQjQcY+X4M`O)CHDgYDf*8 z<EGf!l+p$rNSaRc4U;+syken<i!kF$0QeGppV+Sxsv=K@Us;<ZC9YT>F+MkKa|vaM z{L1Q&CHiX#v`KWi1x^|D{UfFcPYZ@)YiB?HQqDVLr>PaTKj_R^Fg(K8=e+0aYsk6= zF~vdLk^#Gf-9t|6>F%!^qfs|mLw#e_)&9+81{!tD&XmgvE->}Sp+!lRF**F$U4}y? zr;`wFktvh0UKHOY8RnrOx-&jrU2uvZFQ&3GG)q6(LLn8eJ^JA+t+N|udLwH&Xc`y* z{`kF2$xuLzGUF9k5`d-sS1(h3nQBp3mrm5#Qas5lfu>j{hiJV;BcO7YaQwg_``R@Z zh5)sh)|OOAAUnaTwU7|aUGIAhIUt8xz*<Gyw!J==HchAgDo|5|ET{f%>iFqX`whi9 zeb?l3?&i)ttRpaljpc}Ajj~4>`tB5el9+EN^=P7^JE-R{OVRhK*xyhu8gvuQlk9D^ zkKd(AmmS=kkU52c9{mDw4V1M+3WpeSB+C$HSrqmx61<V(J*u?8(z0OoaDOXa(T3vx zc*}pxEL~Pk)7Ac7ulqLNJAkDR;Ye)sJ6OdbrVO>YV`4(J1cs2se4MB%<DM6A9WrUW zIuJ<ck0yPB-XRXgx+LJ8B@E$B+VF4&zil4z{|>K8Om#a<oQ~$a6D$%-jON8dLcB4L zNBhq0H(2Kur(J9)vs8}!NB=z}`z;>Kj`n`scT5!^Q8Vk#j~O~0y)lGJ^mOacJxz{M zP1fu5KEAR5Cv=de6SHuOMQU||NGdL*viJZIjKQa-S}sHnaRksB3$??ADJD(aF^N}i zi{RTL^i<5A8T8pOYQT@cNFVEbr8#U^B1f_YTd!MGq<=sd8U6P0Tr=f)Q(hrrv?iCR z_sqoT0N0?n)C%8uoIn+=P^41U&mcN={;M)LTxJWn?vdlPDJzy@?XNXzd`dg*@axGH z-P*Cu57gakH;k3TPs8r3j@l}NRWXmvRJzXG&M2iKU~nMM(3iPcSs@m4quO=8@?iaw zeyifI%Fr1ZQ2pALn=gzFZ5x(<Q`~Bj7uEbdz?;B;Ta4;UzN|QnoyMI?42SFortq2) z=tV`^71bu@76^r%H!jZgbNe||1ENxdto(5<6a>BxgWi)p+EHw^BV5SRj5kBg|Fuxg zN)m@a1_9|04~Aa&sE)1a$AL`<Sl0K%*^b9HYSe;-;!XAD)keP86_=zCY$|nKNNXV> zc{U1r6Je_u++KGles9w+Kbx+mLwMoMlZZT332iBqtvC|$VX8rStzb4ft;4QpychQ{ zGRys^b2DBh27A}sQQ1}Zv@4iFXuF_V6{)*(fc`B{=dsf|DYt$X;x#Vr0|OZ-7P6te zn@c)vt7_Kl+2YR|^H=?sJ$mSQn0@z+)xz^7VGTv9@aWBhf{uL9SLb4d&>w&ne7Xe% zeyl%UM8zY<{q%h1q?{t2#)S=!z7-2}*O2<(z@d!BR8U{na<><)SP|LO&Y|$)k{vgQ zcMgf#_D7nyQK4ysBJvu224?VsIYYYF|7DAbi(`KHVmU@=mO^Wm1uiMz9NTT3dPK+r zJ}CAa7AGrvkBbkTv~f<?Fh0m!!t|DaU_>smWK7^wX$6?GR+QHGi>X;Bn+gwUA%}dH zm|C%E`n>t`?~?vEv&hfD_GBRTMiNw&Zxv${mDT7mH&uMb3NJBZ0XcFdKL+gm^mKav z;(L{5)+n>T7sEK52qG^JrAG$amT6M4D8;fP((JTi$89HFyYx6xu#d^mR8p&OGkDz; zlUHO90|9jE0==C@Ta3@;;I~P-HVV{W!1e7iru|>cq#Qj#2iB1|;a!t|_o{redEDOK zK{X?Dd!LUCayPwl*rRvHwjrm(qb~-98~M?+5Pb>p3wbmlcj84Ib>hTVw6rsUM`YQD z;GMK+r-%ZW8haf6*y+lzeJ>8-#U6HkK}(awNqEv?L$?q$ZjS6q5FbN=vG{}s?5Z;` z6H^DoN77xWt~%rD5D?6od3(A`bAD|RbqP)+Rc{8oq>Jwzw<o&6m}wa?&H|f}VJ@*~ z2-r2&E-Ny6@{oY8c4sk>4mN2GPwH&nJJd2nY_)k<)wDVV2UBT_?8TCj49X#o-W(zV zd<hQBqT9!0F_JCnXR!5?Xx!s`7DUmUo#Y7FHx8#mJ#I|9_rf*vNzcV$S3dU(F~XRO zG22YdPj>IyS4>K5`R@{vmwx%p?n%)N(nE^4K;=w|EaK^FjaqQ4v)sJr<bQi-7c;W@ zc2pQ^$)*w_N6}?}KRE%Eo6BjB9@I>{RXJl*(DcAgoBSg`=)6B`c;D7=feEgA)6Mm% z{e0MoG|#W^pE|xC(MMYRN;;l08{JKO6~Qq@ja{|TL__bL)R95GRdWJrUluL>AmB~o zY*FCWt}6t40cgGH_1oCawz+ngpT2clzc$w_^OQg!+!J%pvaFX`dExiJA3f?po()W^ znb~i*M?a{zm#Ejh)L6MBM~sxg))p2i7w*dP-6KmY>HV{+_N9{zWwV5trLi(l#Xc6` zuW7ay<`ohtmv9r+Ed>3?mc~<y9DVniy!WA|m*%{A_F>W8ZErM11H*f-+7^H?Fvg)z z>`lzf6bp@-ug<@Gy_pE8KCRLkmDsegW%+`H0d!r|#VVa;kt@IqWxa_}?lI}?P{7-} z+O=!%ublC9!OEaBN>g@%rf;p8Q$2NXuk_$K^^qQS;}h$~gf}J5h$f)jSwI?Hrw}A= zwNKuGZJ9R_I*4nOx`hMFI+Kb?*D@<IM_h8~IrWdb4Y~h*RU*rF5uQkER12>fG0Lq` zCl_O$d>xk~jSQ|Wr~i{SAU~gXvz{7=g8|~Io~E3VF5gm+9)Xi7(X-fVJ<0B|T^+9l z7AM2%(1ctXll9DKZUJ6Zv{A}mO7ZMYnutvKUVgr8hIt(BGS->wM<I`UZ-TbxQHS_R z6~nfc{Xksbf}mIiXx$(+tl{OHjh^1^pi*|D4z(|hI}))ppL&a~fGL6X+|Lw{MOlTi zo^0sk)C!(u%L<h@A1f%=tzkO-sEMPLV%;XwB7|XEI&10e$L@2kI+H$Man6}sHhAbz z@$yNc>d2!#eYD;oYXAO+Z?c?^ye2{0Vt=t7Yb5zR5|2;H%SAq4%H44W8aWS*y&T-k za<q9q5v2s|G?Ba{A5CB1h>?0+Cr!)qypu2NF@e6m05D}k7MERYDY!YS_03=F>3;@a zB{mpS*lnw?UyAKBV1F6Vv4!P#`u*NaTQxYcY3b2gPbL?vndFxjCrK+mq+l-{<wE1Y z;NC&?Bc1A_J?w6(=<1~sI(9^Pn}B$Hsh=42CGy#bx1YMQy23L0i9>os2^#tJ(D5l` zDn6-i^9iv0{~X`gsi^9mo3%7ByO;agpn~vsaz#!lwyPvC(cGYWmcdXa{x<F_K~61z z*x2er&j5@iq=J*}P@Va#Yo7u0+s@-d<Wk}OW=Y?7>CDSlMv^=aQeUyEZZ2@rB3>N{ z>x|X448*u1?d1Vg(>C3v#8mi2n%>aZv#HNWr*)4Z?q$P;FGQkf%$KmT<+$A{3M*On z!rc5?3T`w9n^S@oPH5k8Go<;hrFk_JoE4=zyYZg2c?)ty;FonnQeWVwx`ad2g0%K{ z`koNK+QJwIrQkQbW!YX6BGdZ-x=RGn^33OMh(^PCKpXP#nn%A37bTGYI#U`Sx=|}o zFqSMEN-#vkCPv=LU@+=%uC*(MZy_P|uVft%wm^xjOj}D&QEfddaIXm;YB9Ggvf()M zpt4v5rNy()o4|ulaf~P`@4$03v)&FiViSv+Pms{|pY#sWe9zdubz>(nSe(*j7KS$2 zg$@p_Q_kd;%7$|zZux(=se9YFTk5reS81_d&YCv+y-oGc6|KJbyh?>86gX<zMBb4$ z69fhK*J?spY^h%q!0@RINy!ikul~jI-^LxYn5g?=>->kaX7}v(4f0zpUfd0zPSjL_ zX-e=Hi8;Ajq*?{TdsDrMeYvWxx%!hk`d_@_3keem0u}F?Nikz(QD|laSW!FW(Oua+ zK?rK*O|W&W(8ufh5U??6k!TE*9*&_qEDL7j%y-EYSLhJ&TkU+%-5EnZuJjZhBY})L zO(9KXj;7yyLhFH0tF62p8Ett>@zG%8muSUh_t$ow`#9OH)LNFRXjOx;-j;o5fYB>N z;h}sQNe4Ra?NK1YDbVE`)Y>3%pFxgLkqy0gbfVq@Aub}6YK=0fkcB+)Eq+uvVLCRC zlkeQ6H%6s05<YMVPeH~xm@BJ&^9UkYnC|xGi<{QvJyV`jBN~xTu4#55dbSoBr2@PV zNtdiNm9JhK97Di!4(hu5ujXkFH;&s=3q-xStDBE2cAd>^8JyN2DvAb&Z;rnH^+|oZ z_0gQof!F>9RMw^zM0J+fb9@&#k1;h9o65)sbgJLTv%m~8DO&)4K%j?OG24DG^a(O0 zO&ET>?EMp1;n>1PZ9TI|_DRvJwHj85qa2pwr-+HJfMfQy1s&)8eV04LPdQ^szKxm* zLHMxczUNOh;01yUu!Ui!Itl66S_G9Y+OdNoH}x@$H@&}4*EYhh{_^i}G8BhIF{CS_ zbta9ryl)EN`69BTAh@)p!-g1sGG*ODw@kRdV`-f$%AM3VkEm<Xn;oAI;j!{|p1!%A z#t;#sg7d*{HtdT)dnvp!3^13;ZDIZ?)nEUzGB|cOwFC%O{L2gM#)(6$=C&8#C@4aP z2m<da6B|7L!shZm4$p^7b&teN;aS=34qzuB!{r^2C{YfgR6uC&LMSsNTnc=v+*a~| zHuy&9g{u4D*pJ`ny@`SKi2qDw;#fv-jOz}Fkp=<$y!q-t^Am_xh8laHmD4T5A;G<+ zV5B0c*EyL*+vKQ>F0a)HY#oqmx;bL`)cXea!&(oQ$w&|NyIHm0<^I_Q9kU{hjvqR{ zvWtbVm<zfW2C8<hXFBjevsCg#;Y+JK3bzz;TPKg+kOb$n{T^P0fCI<ai*ku_F)zv} zRpvkFa0S~IKHu{>aZx$|AG>#2M)m#ZS-8vIus0tDhj#Ew<ew+Ne%NP(nsuAxvb4=l zd+{GXQXXu(ne}0ITg^NJAbt(U&^Umf6Ceb#{|}b+E3<S^Y6jfuT7LagEGuSf`dm%B z^Ox$P%U<=3?`o9ynQA|cn)%uD5u?*$C-_&7WDaa8)L#)Dte6{%Y%?j`iy0)i|C-M~ zqyGjKROIw_4-N1EVHVq6!q6SL!Cb}~u0yCaHs0fV1>(*R8D?0T^4g+cRp>?ny*4{~ z#mx|ENt-DEu)_UXV&~0y{mt{2S^<ynGgTP*ZcDf^Blz7AY2kQ4xn^Z+cr7+-F4H9k zG=y0^tZnjjY}N_a88ym2c$m>>Gx6#L$;~V{a{2C45SmYz07O|tTwaJ1_tptt3jtWN zV9`tS;q6JA;^QZH{Ma}~!{Lh98?su^+vG1WVPUKcwtAU$nXK$n`MH1W&8W^IT}6eJ z*qjOtN67TLnbmfzvzLQ?kFwKqR(&x-I06~Y@WI)~S-h2~N$+x41nXDilnHhTztZ^g zZkP%|oVgd1{5!l%TJJg7A1FK}%1YV4E1f=Bz%ImN=_#$6iI?&&0+fr`fE;xP_tqs; z96V*&dPdV7NptXgGXtGZqh{YkK4WPY6SQwk=jI~|IDPVs&YnGc<c|rY^t#MwRKWlW z$8fh<!Dq7~V2d}3K@4={y>Zo#ep?kPTfSs+G)g54+NkX>aGU)>Aku5kWMp>TI>GQT zL~yld=8P~s2vQiPVw#`GHsSPSACyI5%2P4cBPmCk21rj9pX0UTw(f_(i<A(qT-K0~ zEsxn3dB$=pi;<fBvO;^>#;C?QFwdBIUtPo;OI?w<|E_jSBn)@`3^*d|3#8PIi~BJm z>-BXWfk#Jrf3Hjm$lAZXn@`lI*G^DxbPYxgC`<F~8`@)6_HoeJ?_QrC+LgJI-ZQuM zB7saWSbqKCVbF?7y<-pa`)xn+NybNC+Fi}g_N@z`gE559e-No6*C#`@-$cyoMr)sp za>E7<m>b-1F>5)DaN6TIryDwPWzbFMmfZHBX5GRQ-5$C)1ah`W^cCd1Bu>;ltS{?m zHtlo#w&+%4EG@a3uD<rU_2ZI9TF3NE+>7}_Llh}I>~V;s`NpM)8y$H*7X%U)>YaO- z#5XQwpH+VTbEXOojhZ+3w_kt#Iw>xFzKg#vS%1`s#;&DD%CiEqn)E3g+>v>lN61mO zp>rY~#I7{X(T#AuSl(Gdem+)0Oq~3Xf^NuJmCgV`3C=#|wJ@73uPKEJJx~J^qbBXu zG3l})`yh{@gkmvDNi*xl2*?HC0#=zkJq-X_oZ@CHmH%nxS-0SDK8`>AWS+*Jb7T0$ z;!IWH*N_atyo?Gxa+pB)PW)~sr$bzgTJAev?gm%XiRSn$$e;YN7N6*+&1k(rRcJ$2 zlub}n6>F$XQ;;Ps1LAN~Mw>{nY=kg~iY*UxZR5;+wPVLtGQ5zVA9;Du@Zlcly)H02 zI}ZCbbH~s%1eFv@%H@Qxh=_9Npe=w{%fYm7=AWj;m#@K1iBkGMsR`#ZFq14qNJf47 z4H>^M?QA|EPKOXqwUdh(slQJnwU*{}ihg%w%*~!t$GqR1rWNj)msJzSh15^#E;y39 zzGU@~iEGYsYHg_o$3vGSKvnv@v*E`33oH6hO(N1upUJV0Vq^JNV_kl@%c~TXe8EO= zhK<GlzPPRZyomW_lAA+zhw)asVImJAR)^F39p#A4nVbIYz!MYyJ#^Bu!%A1SyON;| zGP1nghk^Mk#exZ(Dy_@!gIW2jIG{;`cjs^$MZBPBlRa2K*YoBsf2NO6p9*=YShOM8 zwkpq_&d8SlBn1a=P@cxS8jpSIHl^Lcm;r*RR#}lOsN!YDJ4gFu`}BH9<Czz2k^!Qq z{yY^7O+K*%n*Zx(N7Ul5w4|p$FWy8Gk|C*2QUHLEnQ*<KU(D>INHGrV+9s&A5Urqd zvOQd=4qoN_B?j=E2ULz+RISdfpSP6VgdZKI=p93AEAE8wZ{H$jC?wAQ4%GcDEVtAg zL^m_9O?=2@*g7lVt>F!6VP1M;c1!4?b4&_K{)~&;{B~r5ehMtiUS<)Mj`O=-oeph& zWiE-)>cmk#hGFo#I3~R=o87fE9|Zovpv^<}oO@W)<oVLm3Q=`r`4=Vx@Q|v2A<qng z2EFn$JF5=uKDBZ*5VF2-phKr^c=&;yZV&fST4x_F6#=zFut~h&v9kSxS<KVqb8{r; zOHtY~7-6fvhXw(4fkD57xtl_C-S<Sm2A^&(q@tD8Lt;0t>HY8>sfpn%L=r(``04(M zOvk*ocOAxA`W|qsphG9R<tL78O>+FK<*O@nHV?_4h$p0sd4~~dHs7oir+`~$fA~+N zO0Y5dgNElTw$$7mEB3%Dy91AuY^C}R;${(-4OykB0Hnw*LPMK>%||EHIaK+duql50 zfLecQ+YK-ZS)PkvVku`<4CHYlGfzkUkc{-)%mRtMNEQ@<n3-24ThCorJf?5eD;5H4 zQ!vOf19AG7X%iyT*y+>lr9WtTwP(yX`)L;yrhP0j_Ir<b{d8r~G3P5=%+EiPqlY@% zGMeicpT1r*s6H&PC;<PrXP<{{^B-=O7io~BGSqR`RNb+drL=CQoNlXbj58hQ@Uqbz z;8<F@Cd2lj+b>^;HT|vHC$go+G~FXEy}xy4mZ7O%w$vlq#>QnfuSzQk=hLHf-!&QY zesS8>1#hqWar2l%TK+F{$1tqyx!a+)6a^<K3T}pY7_e}0kwSgdlyfYWld^w`8duCB z<Of1Ry1d=)oqaU<KyIkG&PSSR3lmCpeB3o(#z!m)|Js|YGNn?~mCZ_OBVh{8J1gtM zCUzCIA>ds><#4TiXO3r)8$GwIwM2FsNB(J_Ty@hbEND*{*+MO5`cf+j!!m1+#-rqg z*HDegid_uG?)oUG{$1`*@F6wH8EW#CKZ@PF5LmHr#qE>rmzS;wy|(;BSEI8qY2IS) zv;-x^PfPfI50_LyPRQ*O4?%vL6%+noxB5kTJ8c$@bxGX!q%=aYBFzF=T5PS5B^fy8 zhI~&qV#O5~1uP@BIj*yhg}$GCuPLjhFv<RC4sk@JH9~6ea~84{*gxmsY<ca;F%ojx zkqLgbk+-*wC2i(g!_%uj@65`($5o5T3qRbrFr=$R5$JOD*8y^y5!WeXyv1*R@Mj4V zcIpkDqcSz^ju3K7k@<2rN`v;Woc53PP1L=Drib-%xO}iU06?YIDyM&TW{-;pfB$ob zlGz5qk3RWo(G2m*!i`Us837=84^v%mu@psWh}3jr(pYd3<k~f3j#>T}Gk-pTB%A%B z^37%GgnB@az?@9OXy=U;<g&Hk*J2MyL2!y3WYEvTT%0K#=jXO{aAk}fo5iIbRlx}| zSNy#EBMB4k7}>wP2;Uby{tpOX*<iYk++v@@a_jG@Q0@?t<%Yf`y@!pq9O%KXplJ27 zCmo-J3@8}+5jFp=A=jsTwkKc+B!S=rgnlZS+kD2T2cx)gAX(x`?0JmcrK}VLAd|^6 zY)<dIU6vevWr8yy3O09Q;<9t!l9bvEF@z5&h#eq%z<4P#R4qF_iZ%~<b}lC@Jv2l! zwtwHgV&lARXahB&WnlmqWc>v(;S<yR_O0lS=2*^8jg0NI%f7pBs{}N@J5rJ=&(~&d z`8=(%4Fp`DIqM3P(HRa?JSt9;-K9<Q88qS2>OPxvUZ~QvG@24uHQ!j3->=91KffI+ zruqdFrgPz!a+vA!RuIIl*X9+-x<=?(qpd3d87v6J&FNnr{+Rr~L`2*iJc+5y%~^w3 z2~A1u=u<c7X>j<`oFmA*H2s?wtEW_fflPB<v#q6QY2N-Xb~b5jS2%`RbX{`4clH~D zO;0xDO#_=jr=V9f@W|b(nKl&kl|K3G#M)Z6@fTpCjpZ#?Qack7R(c+66#9&@gS!w? zRz=P)y`x(OvUBJUqPWk3-4a3g>|fn%H11jAL?)cdaTW@iicE}D#Bz|Wp5BRz5!VhO zDm+a$_2WfAEi7Cze`=`bUqANEW77uhuJ9frD>P_j2f-phzDOfOikTDScwf8Dg}dNC zToP`;7;EzvFK|yl#Nk$n&Qdf<ABl>A;TKt7TE3yucSPP-?b9n{S`?Gm#`Fw56Nid9 zn<EZS>=<XiPN|GGij`)akGj&+d8O~w=J)R|dl*b^tg<CeUkU%T$DD6__M1+{wOf|E zP;(kJh^H=lX#Ph8kiy*gn8FGZon%kvwu<7Va}U2zEKkn!K^EcRiXvE+-qLhU`edxd zRfV2n-_(FN-m;P^eM}_B%Y=4<zHsH?yk|Gse5p{?5Bg|V?X?f99%ddQl0srlE!h{b z*iV@$Gh63J0-qdZCdPTOk|SW46Sw8kFIl@)j8Qm0TB`iy3C*VgK;p;Bk+<BYXmoBO zV~Isvq>2EzglKhv-6U!?7s8%&iAr<!pJWaHePhy&M@GjOq0FT5^0#;W#h5}zRW^SA zPy|5R66PuG7Dp%lWHEACXJJ@t5{RYQ%l32ER|VGweHE*4vko!eHE!i<KC8-RUiB>L zi+f*=j4^Q?Dbl~=n+toIjCmn7=>OgTt+es?GDbYkmeMMNLXzrE>7(GDN@^cR-BXSf zp%|5yEn5l2ES(x9)rK>-?f%?*qR6&BHusYZ^aCg-%YkPc7*RS$RJ<P>JbfLPK9#Ec z)%dESMwuq&yC;Kc2-odd#&BmMt7lqo&HT^?yrs};*2>GOUo?HMx2Fc}_K8(F`sV2C zXHW&Y0bduhPE0CqivI$!s^;HR?laP1Up95F17Ke&H)1($0^_t!1zA~iqlJSSM0l7I zU(c=$@u;m}#cf7iO6hv={MPFugO{<Ee%n6vfM*irY*;wuirZn6A$z?*1f~BdP?jSn zE{6^xz?s&vQPr^^vPA9eR6kY?0*Hufy>tXLS!X5N2!O_-q+}`M4v{xwDtkLTZ#*`E zE_t1k6CKg~&6%rO=B>OR?Cjc+)!o?;u&X-T(`)&SXRb#k>&N8$csDzf(^_}sz2WmM z4c@g23)1Yj&A@c3OX1c0{I_zh*?07vmRI%C{5$`ALTujS^Un5e-FrhOm0gsbE#gg! ztJTH|Kh7GE;|F#KLg`hP@MIJvDaFH$l@asIQa_me-FIJ2nKGq(_2}TKScsauygo7{ zWN^g?AAZ<&Ur#%6N8_c6lbeV9>a9r+Co+quaf#96ys$gI1@-f&?V|i+^c<1i$UYX) z%0NYo<aa+%)K2Jis<YSmm80ovCV~+D=`)OdiX_0V2>Rj{^+r=U{^=gL%)qXu;R1q) zR(R#=UY^f?@3}H8=y{mtm9?gku?Dk`TYr5+<5`pES;Pc7??0Kg;Z)ST?Y7XqubxBY z2<NRT_<_-rB1Tf`jE6p{9j^?m@=euffbFFY-=f*@!a3jcw>F^_fQD5d?@^`uJ4b0e zs7+iER{e?cKTT_Ifz?~_;+;Ep!@sYCDTi4~Zkl7~d$q~9bw4~d9knZPsC~cd9W#%X znt$DKtocDhD}uu<gSERMuw-v0SH_$!rrFha>cJ+C{U%LUvo4Jvmh<-IJJDtEmE4D@ z_)d05YbR<r_HS-CSf=-Gx%m#g2kA=+M)jZ&+=~xLqHrnv*~Li3Pm-h8QDeRHTNa+T zuqP%9N;Qs8k!Zo7=?kyD1NStvSf9Qz<66`Dgfi+rp|er;Si@wzJ6OT^BI9j->DLbI zC=KXYq-!E_Y<kR7Al5<`lNmqXfANZrGlXVlie}sKRVh(3iqQk2=yo@a4v&oWC=1W+ z{l|ozi?e6M#O#!28`5g%d+rB4`))WjGU%sC+{^|M^i<<RtD?NVV`2|oC#4#naV}}^ zF0ww4lir#^UG_T%G+8Ii3#RiJ2XXO^?REWIjXg^Ob}R{luCrij89ZU&{_xbf20QgC zdZ+Kv<RI|SQu8hr7#RBZs`NY9Gw^bMulXI09es<_dR<&XvGu^)J@$hi!G8cA#@o5S zw`C@*dHbb4BdZcE!lZD7P3Spz>aE6*epavh&a%tS$w580_?^8zr$R0N_59wzJrnzY z0>yTgX;-FSH88x?>--+xRq9{MHk_h5h|&$RUGl3|Z@({mdR#0)rF`ElwYPhvYDUhx zFS2gyzSGusR@NE@Qy=XAuj|eBQ@?loJ(tMe{qH~f|Nq^bcg>0^zHfw#`i&91dnDD< zU{u8jbXRq+3zYrAhgdbbs#`pv#(w;z*_EzQ{9WOH2tjU0V_Ff!-3KJqAsks_b1M*y zq_cosjR+cSsL9<(i*ExS7Vjhi&qKue8vr;fSH~^Eh#VXFJL3}2g^w~~*EYrcc<(HY z9zACKt9-!omHeg=CZ8L6U8lcYg}^I?-?W^-DWO-kd&z*L07AMOQ9ybS(^I*fMhz72 z*K|!^E9RW1JI$#4_k(y(frOB@bhM{306J&5@waRiai5FvL^35>DRv2B@rN|pgClvK zvs;QV0wfEd!#XR#KZ6xY&v8)C5XWlCO={;%B%tzzWgtn1<xyRY!GX&lCh90rot!8r zjQp6Fs^bqB{PD-DX>y&MRL0+Wvrh|JXCFeH+mbto&gaSF5-{_1#+Fq1yt!3L)h9n9 z`<?WYxLCHFP}y8$4Uw5aYGLR6<`k0eDbP-n7k|FH1ugM1Cbgb}XnO^SE5>t#lf~%y z`t|L5j<2Vm(KYf%xbE|m;`gJrR=8kbb5`amYn%ADN6_$3UVrbFsD5oAdc@U0r7cfM z@8e}XdOVCDIBb}kC|kI^H|vS>uG5vYtDMQ@yxsAJhWB}~4&qGAwxwl!q0D^(^5GnP zizTt^fXI>&eceMO%=4s$Oc6AXVrD%Q%vo-aU0WNL;CmSXDHA-CNBCCqOGK)(EV1{k z9)-bRC|KnU*?xvn^Q`1>$^l8LbR>>^tYkQ<@Q4zgd>vHl+g|{6_?((X)tN?;ILpw* zJ(k(670EA9lMP~B#7}v(7Xjn$%f>LI6S3dVnzbDMMu%^7{5&TwZcy+?J$r0FQb2N_ zA7aw+EH=<LA4I~9Ze|OF!VTJ@h=|VGmEGs5w@RS)PeW+~8zQBK#@SGuB=MZET8OI9 zrTbNmsSc3Y79iYGM1kJr(_~#538;|1Zw)z(w++g)oL6A($lPJLkk&p?;HW&?@FvQ_ zM=2O1*rFJeYUli#+|{y#0u6t)dEjjQBvAQsLYy;ada}M}y_FyMi71&1HVV*7A;c4c z`&fsfFjY`Y9>6wjM&oD9-N2ss9v7?Q)&w8shi%XeL_IkeVMAjf6$eH1)67qY4y{Sn zAi0-VZf?5^M894-gtwKiE(Y>jphM$dIcurScKEEoC<gVZ1N_bf(q1VOLk_6gH`V_+ zH$nb*iTM?$g!te3gOfF4WOX<Ax%+E`X7x?wYb4BE8}|3X!?FPeGQj493BaViV&=Es z>cA`9G@Y7O>OL<$KHRu*@TZ?{Eq71^Xq`unp8|Fx-+DZs=nzs@SEhNO*sm$FVrP%I z%varhYUAHu74x-gERuDhqdOZO9_~8b6dsikh+A}0>!=eqS3JNZ9S8MdG{2p#8H2uB z^e5f58}X*VkJq0h+cA9v;W`rGlW2Z$+c#}l=dsI@B2n&=i0Va6k3#l(Z8+22cVMi$ zUaHwId5dZ;@TRg=y_IS4hvWXfVj`HHH)qaS2rHoRXi?Df*d66n(bd|J(oU08i%GPl zSZt%QxJ@VGKs$7~O7GGI@8;XHd7JAbj!P($n<0aX#5}Jpz48Iofl`ZYBK@hurg*=2 zIH>atbM{A=Rz|gTGvL*u_aHu=PTu+*q``fTP#rZFeM^>Io4UEKR3*+a5<Orj@Rg}t z4<KC(qIAJu#@z#E^kibaEL79y$pHCmU`RzGlN`6=;#oPsLJr6e6KGiW{Chd(pw<ZJ zWwb)-z9|3>S=|%5J5*WEgWl6TOX{%!NvXppEJ*}1-Ej8?IrEvL;PEHI|B{%@5x{)6 zJD`=%@?4O6LcT2_F%js%zSb>b)c7|6Oyb<2mGn$i6`@02C9I_^jI>4{EY0zPnCayR zeI9#?W8Rxl-;K3-I!L}t6A^S7$G?vMzW_r!@m>}dG}~+6Ce%63!UT&AlDu6BUhuOe zB&78~{VJW^@?W~1>-PmW$`JeUBxb(v^FO)s4CMK|W)^nA%YTv3e!BSXe=Ud3WPe%D z@8z!zljR`%^LPI|gMZG!KX>7uc<@go{3jCrKO<ps_j|Q%|Kq0n>Ta1lDYNeves|{E HRXhF<C7Ipt diff --git a/kernel_ridge_linear_model/log_file_for_samsung.txt b/kernel_ridge_linear_model/log_file_for_samsung.txt index 2c9ec57..1c7bda2 100755 --- a/kernel_ridge_linear_model/log_file_for_samsung.txt +++ b/kernel_ridge_linear_model/log_file_for_samsung.txt @@ -1,236 +1,367 @@ + --- New tests on samsung galaxy s8 --- Getting data from folder /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only --- Maximum input size = -1 + --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/.~lock.summary___06Sep22_09_42_02.csv# --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_first_results_samsung_interrupted.csv --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_key_experiements_first_part.csv --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_key_experiement_second_part.csv -*** Total configurations in user friendly format: ['0303-1010', '0033-3000', '0303-0100', '2222-0220', '3000-1110', '0030-0000', '0020-0010', '1000-1010', '0020-0202', '0010-3300', '0011-0111', '3303-0001', '0022-0030', '0011-1100', '3303-1010', '0003-1001', '0000-0000', '0000-0000', '3000-0000', '3300-0000', '3330-0000', '3333-0000', '3333-3000', '3333-3300', '0000-3000', '0000-3300', '0000-3330', '3300-3000', '3330-3000', '3000-3000', '3000-3300', '3000-3330', '0000-0000', '1000-0000', '2000-0000', '3000-0000', '1100-0000', '2200-0000', '1110-0000', '2220-0000', '3300-1000', '3300-2000', '1100-1000', '2200-2000', '3000-1000', '3000-2000', '1000-1000'] + --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary___06Sep22_09_42_02.csv +*** Total configurations in user friendly format: ['0303-1010', '0033-3000', '0303-0100', '2222-0220', '3000-1110', '0030-0000', '0020-0010', '1000-1010', '0020-0202', '0010-3300', '0011-0111', '3303-0001', '0022-0030', '0011-1100', '3303-1010', '0003-1001', '0000-0000', '0000-0000', '3000-0000', '3300-0000', '3330-0000', '3333-0000', '3333-3000', '3333-3300', '0000-3000', '0000-3300', '0000-3330', '3300-3000', '3330-3000', '3000-3000', '3000-3300', '3000-3330', '0000-0000', '1000-0000', '2000-0000', '3000-0000', '1100-0000', '2200-0000', '1110-0000', '2220-0000', '3300-1000', '3300-2000', '1100-1000', '2200-2000', '3000-1000', '3000-2000', '1000-1000', '2000-2000', '3000-1100', '3000-2200', '1000-1100', '2000-2200', '3000-3300', '0000-1000', '0000-2000', '0000-2200', '1001-2220', '0200-1100', '2002-0100', '0000-0001', '0101-0200', '3330-2220', '2002-2000', '0001-0200', '0220-0020', '0303-1000', '0110-0020', '0030-2000', '2002-1001', '0101-2020', '0202-1001', '3003-1101', '0220-1001', '3003-0002', '1111-0101', '2220-0000', '2020-0022'] --- Getting data from folder /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only --- Maximum input size = -1 + --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/.~lock.summary___06Sep22_09_42_02.csv# --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_first_results_samsung_interrupted.csv --- Converting [0.0, 3.0, 0.0, 3.0, 1.0, 0.0, 1.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 0, 1, 0, 0.0, 0, 1, 0, 1, 0] + --- Result _ samsung = [2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0] --- Converting [0.0, 0.0, 3.0, 3.0, 3.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 0, 0, 1, 2.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [2.0, 0, 0, 1, 1, 2.0, 1, 0, 0, 0] --- Converting [0.0, 3.0, 0.0, 3.0, 0.0, 1.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 0, 1, 0, 0.0, 0, 0, 1, 0, 0] + --- Result _ samsung = [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0] --- Converting [2.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [1.0, 1, 1, 1, 1.0, 0, 0, 1, 1, 0] + --- Result _ samsung = [1.0, 1, 1, 1, 1, 1.0, 0, 1, 1, 0] --- Converting [3.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 0, 0, 0.0, 0, 1, 1, 1, 0] + --- Result _ samsung = [2.0, 1, 0, 0, 0, 0.0, 1, 1, 1, 0] --- Converting [0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0] --- Converting [0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 1.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0] + --- Result _ samsung = [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0] --- Converting [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0.0, 1, 0, 0, 0.0, 0, 1, 0, 1, 0] + --- Result _ samsung = [0.0, 1, 0, 0, 0, 0.0, 1, 0, 1, 0] --- Converting [0.0, 0.0, 2.0, 0.0, 0.0, 2.0, 0.0, 2.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [1.0, 0, 0, 1, 1.0, 0, 0, 1, 0, 1] + --- Result _ samsung = [1.0, 0, 0, 1, 0, 1.0, 0, 1, 0, 1] --- Converting [0.0, 0.0, 1.0, 0.0, 3.0, 3.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0] + --- Result _ samsung = [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0] --- Converting [0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0.0, 0, 0, 1, 0.0, 0, 0, 1, 1, 1] + --- Result _ samsung = [0.0, 0, 0, 1, 1, 0.0, 0, 1, 1, 1] --- Converting [3.0, 3.0, 0.0, 3.0, 0.0, 0.0, 0.0, 1.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 1, 0, 0.0, 0, 0, 0, 0, 1] + --- Result _ samsung = [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1] --- Converting [0.0, 0.0, 2.0, 2.0, 0.0, 0.0, 3.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0] + --- Result _ samsung = [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0] --- Converting [0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0] + --- Result _ samsung = [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0] --- Converting [3.0, 3.0, 0.0, 3.0, 1.0, 0.0, 1.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 1, 0, 0.0, 0, 1, 0, 1, 0] + --- Result _ samsung = [2.0, 1, 1, 0, 1, 0.0, 1, 0, 1, 0] --- Converting [0.0, 0.0, 0.0, 3.0, 1.0, 0.0, 0.0, 1.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 0, 0, 0, 0.0, 0, 1, 0, 0, 1] + --- Result _ samsung = [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1] --- Converting [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_key_experiements_first_part.csv --- Converting [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] --- Converting [3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] --- Converting [3.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] --- Converting [3.0, 3.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] --- Converting [3.0, 3.0, 3.0, 3.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 1, 1, 1, 0, 0, 0, 0, 0] --- Converting [3.0, 3.0, 3.0, 3.0, 3.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 1, 1, 1, 2.0, 1, 0, 0, 0] --- Converting [3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 1, 1, 2.0, 0, 1, 1, 0, 0] + --- Result _ samsung = [2.0, 1, 1, 1, 1, 2.0, 1, 1, 0, 0] --- Converting [0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0] --- Converting [0.0, 0.0, 0.0, 0.0, 3.0, 3.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0] + --- Result _ samsung = [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0] --- Converting [0.0, 0.0, 0.0, 0.0, 3.0, 3.0, 3.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0] + --- Result _ samsung = [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0] --- Converting [3.0, 3.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0] --- Converting [3.0, 3.0, 3.0, 0.0, 3.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0] --- Converting [3.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0] --- Converting [3.0, 0.0, 0.0, 0.0, 3.0, 3.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0] + --- Result _ samsung = [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0] --- Converting [3.0, 0.0, 0.0, 0.0, 3.0, 3.0, 3.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0] + --- Result _ samsung = [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0] --- Converting [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] --- Converting [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] --- Converting [2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] --- Converting [3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_key_experiement_second_part.csv --- Converting [1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] --- Converting [2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] --- Converting [1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] --- Converting [2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] + --- Result _ samsung = [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] --- Converting [3.0, 3.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0] --- Converting [3.0, 3.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0] --- Converting [1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0] --- Converting [2.0, 2.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [1.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0] --- Converting [3.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0] --- Converting [3.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [2.0, 1, 0, 0, 1.0, 0, 1, 0, 0, 0] + --- Result _ samsung = [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0] --- Converting [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] in base Y array notation --- Processing little cores --- Processing big cores - --- Result = [0.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0] -*** Total Configurations formatted: [[2.0, 0, 1, 0, 0.0, 0, 1, 0, 1, 0], [2.0, 0, 0, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 0, 1, 0, 0.0, 0, 0, 1, 0, 0], [1.0, 1, 1, 1, 1.0, 0, 0, 1, 1, 0], [2.0, 1, 0, 0, 0.0, 0, 1, 1, 1, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 1, 0, 0, 0.0, 0, 1, 0, 1, 0], [1.0, 0, 0, 1, 1.0, 0, 0, 1, 0, 1], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [0.0, 0, 0, 1, 0.0, 0, 0, 1, 1, 1], [2.0, 1, 1, 0, 0.0, 0, 0, 0, 0, 1], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [2.0, 1, 1, 0, 0.0, 0, 1, 0, 1, 0], [2.0, 0, 0, 0, 0.0, 0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [1.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 1.0, 0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0]] + --- Result _ samsung = [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0] + --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary___06Sep22_09_42_02.csv + --- Converting [2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0] + --- Converting [3.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0] + --- Converting [3.0, 0.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0] + --- Converting [1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0] + --- Converting [2.0, 0.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0] + --- Converting [3.0, 0.0, 0.0, 0.0, 3.0, 3.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0] + --- Converting [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0] + --- Converting [0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0] + --- Converting [0.0, 0.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0] + --- Converting [1.0, 0.0, 0.0, 1.0, 2.0, 2.0, 2.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0] + --- Converting [0.0, 2.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0] + --- Converting [2.0, 0.0, 0.0, 2.0, 0.0, 1.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [1.0, 1, 0, 0, 1, 0.0, 0, 1, 0, 0] + --- Converting [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1] + --- Converting [0.0, 1.0, 0.0, 1.0, 0.0, 2.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0] + --- Converting [3.0, 3.0, 3.0, 0.0, 2.0, 2.0, 2.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0] + --- Converting [2.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0] + --- Converting [0.0, 0.0, 0.0, 1.0, 0.0, 2.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0] + --- Converting [0.0, 2.0, 2.0, 0.0, 0.0, 0.0, 2.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0] + --- Converting [0.0, 3.0, 0.0, 3.0, 1.0, 0.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0] + --- Converting [0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 2.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0] + --- Converting [0.0, 0.0, 3.0, 0.0, 2.0, 0.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0] + --- Converting [2.0, 0.0, 0.0, 2.0, 1.0, 0.0, 0.0, 1.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1] + --- Converting [0.0, 1.0, 0.0, 1.0, 2.0, 0.0, 2.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0] + --- Converting [0.0, 2.0, 0.0, 2.0, 1.0, 0.0, 0.0, 1.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1] + --- Converting [3.0, 0.0, 0.0, 3.0, 1.0, 1.0, 0.0, 1.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [2.0, 1, 0, 0, 1, 0.0, 1, 1, 0, 1] + --- Converting [0.0, 2.0, 2.0, 0.0, 1.0, 0.0, 0.0, 1.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [1.0, 0, 1, 1, 0, 0.0, 1, 0, 0, 1] + --- Converting [3.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 2.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [2.0, 1, 0, 0, 1, 1.0, 0, 0, 0, 1] + --- Converting [1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [0.0, 1, 1, 1, 1, 0.0, 0, 1, 0, 1] + --- Converting [2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] + --- Converting [2.0, 0.0, 2.0, 0.0, 0.0, 0.0, 2.0, 2.0] in base Y array notation +--- Processing little cores +--- Processing big cores + --- Result _ samsung = [1.0, 1, 0, 1, 0, 1.0, 0, 0, 1, 1] +*** Total Configurations formatted: [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 0, 1, 1, 2.0, 1, 0, 0, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [1.0, 1, 1, 1, 1, 1.0, 0, 1, 1, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 1, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 1, 0], [1.0, 0, 0, 1, 0, 1.0, 0, 1, 0, 1], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [0.0, 0, 0, 1, 1, 0.0, 0, 1, 1, 1], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 1, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 1, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 1, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 1, 0.0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0], [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0], [1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1], [2.0, 1, 0, 0, 1, 0.0, 1, 1, 0, 1], [1.0, 0, 1, 1, 0, 0.0, 1, 0, 0, 1], [2.0, 1, 0, 0, 1, 1.0, 0, 0, 0, 1], [0.0, 1, 1, 1, 1, 0.0, 0, 1, 0, 1], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 1, 0, 1.0, 0, 0, 1, 1]] ---> Creating X dictionnary, from userfriendly values to x values -*** Total Configurations dictionnary: {'0303-1010': [2.0, 0, 1, 0, 0.0, 0, 1, 0, 1, 0], '0033-3000': [2.0, 0, 0, 1, 2.0, 0, 1, 0, 0, 0], '0303-0100': [2.0, 0, 1, 0, 0.0, 0, 0, 1, 0, 0], '2222-0220': [1.0, 1, 1, 1, 1.0, 0, 0, 1, 1, 0], '3000-1110': [2.0, 1, 0, 0, 0.0, 0, 1, 1, 1, 0], '0030-0000': [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], '0020-0010': [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], '1000-1010': [0.0, 1, 0, 0, 0.0, 0, 1, 0, 1, 0], '0020-0202': [1.0, 0, 0, 1, 1.0, 0, 0, 1, 0, 1], '0010-3300': [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], '0011-0111': [0.0, 0, 0, 1, 0.0, 0, 0, 1, 1, 1], '3303-0001': [2.0, 1, 1, 0, 0.0, 0, 0, 0, 0, 1], '0022-0030': [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], '0011-1100': [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], '3303-1010': [2.0, 1, 1, 0, 0.0, 0, 1, 0, 1, 0], '0003-1001': [2.0, 0, 0, 0, 0.0, 0, 1, 0, 0, 1], '0000-0000': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], '3000-0000': [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], '3300-0000': [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], '3330-0000': [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], '3333-0000': [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], '3333-3000': [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], '3333-3300': [2.0, 1, 1, 1, 2.0, 0, 1, 1, 0, 0], '0000-3000': [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], '0000-3300': [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], '0000-3330': [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], '3300-3000': [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], '3330-3000': [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], '3000-3000': [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], '3000-3300': [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], '3000-3330': [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], '1000-0000': [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], '2000-0000': [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], '1100-0000': [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], '2200-0000': [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], '1110-0000': [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], '2220-0000': [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], '3300-1000': [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], '3300-2000': [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], '1100-1000': [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], '2200-2000': [1.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], '3000-1000': [2.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0], '3000-2000': [2.0, 1, 0, 0, 1.0, 0, 1, 0, 0, 0], '1000-1000': [0.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0]} +*** Total Configurations dictionnary: {'0303-1010': [2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], '0033-3000': [2.0, 0, 0, 1, 1, 2.0, 1, 0, 0, 0], '0303-0100': [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], '2222-0220': [1.0, 1, 1, 1, 1, 1.0, 0, 1, 1, 0], '3000-1110': [2.0, 1, 0, 0, 0, 0.0, 1, 1, 1, 0], '0030-0000': [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], '0020-0010': [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], '1000-1010': [0.0, 1, 0, 0, 0, 0.0, 1, 0, 1, 0], '0020-0202': [1.0, 0, 0, 1, 0, 1.0, 0, 1, 0, 1], '0010-3300': [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], '0011-0111': [0.0, 0, 0, 1, 1, 0.0, 0, 1, 1, 1], '3303-0001': [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], '0022-0030': [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], '0011-1100': [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], '3303-1010': [2.0, 1, 1, 0, 1, 0.0, 1, 0, 1, 0], '0003-1001': [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], '0000-0000': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], '3000-0000': [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], '3300-0000': [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], '3330-0000': [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], '3333-0000': [2.0, 1, 1, 1, 1, 0, 0, 0, 0, 0], '3333-3000': [2.0, 1, 1, 1, 1, 2.0, 1, 0, 0, 0], '3333-3300': [2.0, 1, 1, 1, 1, 2.0, 1, 1, 0, 0], '0000-3000': [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], '0000-3300': [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], '0000-3330': [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], '3300-3000': [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], '3330-3000': [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], '3000-3000': [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], '3000-3300': [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], '3000-3330': [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], '1000-0000': [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], '2000-0000': [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], '1100-0000': [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], '2200-0000': [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], '1110-0000': [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], '2220-0000': [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], '3300-1000': [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], '3300-2000': [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], '1100-1000': [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], '2200-2000': [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], '3000-1000': [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], '3000-2000': [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], '1000-1000': [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], '2000-2000': [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], '3000-1100': [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], '3000-2200': [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], '1000-1100': [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], '2000-2200': [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], '0000-1000': [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], '0000-2000': [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], '0000-2200': [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], '1001-2220': [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], '0200-1100': [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], '2002-0100': [1.0, 1, 0, 0, 1, 0.0, 0, 1, 0, 0], '0000-0001': [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], '0101-0200': [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], '3330-2220': [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], '2002-2000': [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], '0001-0200': [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], '0220-0020': [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], '0303-1000': [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0], '0110-0020': [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], '0030-2000': [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0], '2002-1001': [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1], '0101-2020': [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0], '0202-1001': [1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1], '3003-1101': [2.0, 1, 0, 0, 1, 0.0, 1, 1, 0, 1], '0220-1001': [1.0, 0, 1, 1, 0, 0.0, 1, 0, 0, 1], '3003-0002': [2.0, 1, 0, 0, 1, 1.0, 0, 0, 0, 1], '1111-0101': [0.0, 1, 1, 1, 1, 0.0, 0, 1, 0, 1], '2020-0022': [1.0, 1, 0, 1, 0, 1.0, 0, 0, 1, 1]} --- Getting data from folder /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only --- Maximum input size = -1 + --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/.~lock.summary___06Sep22_09_42_02.csv# --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_first_results_samsung_interrupted.csv --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_key_experiements_first_part.csv --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_key_experiement_second_part.csv -*** Total energy efficiencies: [8236960890.90969, 6957102505.948323, 6956231392.081026, 11285968381.230984, 8096707069.234942, 994906080.8659663, 3998672440.749671, 6501654671.113798, 8089829466.394849, 6532788063.289651, 8964027358.211496, 8321129010.784183, 7249844128.351241, 7650055845.407672, 9340120487.55429, 6806147312.252427, 0.08333333333333333, 0.08333333333333333, 1016987763.6032282, 1980229389.772511, 5377240292.736961, 8296551953.00833, 9400881802.713095, 9963434196.49885, 3307720550.5370083, 5789616901.049658, 7665772326.561901, 5072151352.996373, 5822958761.806049, 4149980287.5936337, 6611133148.221605, 8224428196.629629, 0.08333333333333333, 997516184.7000968, 1014996574.3865615, 1010122436.9405816, 2018619748.5607243, 1998856653.9939156, 2905397356.669485, 3029054692.61153, 5058399218.983161, 5026691733.102776, 5947637003.818383, 5035525633.343237, 5326600510.288329, 4059018123.5159216, 4062233415.93208] + --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary___06Sep22_09_42_02.csv +*** Total energy efficiencies: [8236960890.90969, 6957102505.948323, 6956231392.081026, 11285968381.230984, 8096707069.234942, 994906080.8659663, 3998672440.749671, 6501654671.113798, 8089829466.394849, 6532788063.289651, 8964027358.211496, 8321129010.784183, 7249844128.351241, 7650055845.407672, 9340120487.55429, 6806147312.252427, 0.08333333333333333, 0.08333333333333333, 1016987763.6032282, 1980229389.772511, 5377240292.736961, 8296551953.00833, 9400881802.713095, 9963434196.49885, 3307720550.5370083, 5789616901.049658, 7665772326.561901, 5072151352.996373, 5822958761.806049, 4149980287.5936337, 6611133148.221605, 8224428196.629629, 0.08333333333333333, 997516184.7000968, 1014996574.3865615, 1010122436.9405816, 2018619748.5607243, 1998856653.9939156, 2905397356.669485, 3029054692.61153, 5058399218.983161, 5026691733.102776, 5947637003.818383, 5035525633.343237, 5326600510.288329, 4059018123.5159216, 4062233415.93208, 4153496621.1304984, 6443423519.784533, 6519117311.516021, 6448575832.027497, 6539495281.754154, 6473246073.976255, 3145168392.3157244, 3331046015.069652, 5724131219.984087, 9166575000.916658, 6540008502.011052, 7245431755.278297, 3321398441.599851, 5549420363.04308, 9229945635.620207, 7263008047.412917, 4385426351.149858, 5040602049.508794, 6928278461.367919, 5821399464.43125, 4809102669.532892, 8795770993.306417, 8367150566.874451, 8895689149.038376, 9428892010.8998, 7282684688.88371, 7595205906.032112, 9080672696.233337, 2991522026.5766816, 8754497623.153894] --- Getting data from folder /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only --- Maximum input size = -1 + --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/.~lock.summary___06Sep22_09_42_02.csv# --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_first_results_samsung_interrupted.csv --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_key_experiements_first_part.csv --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_key_experiement_second_part.csv -*** Total energy : [61.00540758755291, 53.35616382684589, 53.38267358149647, 54.74622776577034, 49.41467631934382, 29.623247258891045, 36.82601141845538, 42.85376093977719, 66.44909360627778, 42.64544340651106, 50.74428137607953, 59.94594005320708, 42.05401520354165, 43.82652071469574, 67.3857084084629, 54.44253148500697, 30.299284062105812, 30.027102694886654, 29.060137396486432, 30.277288658122774, 32.51205394198035, 59.045602086542516, 66.34289826476824, 75.09852863759252, 35.59789292409111, 42.05795824330537, 48.682465076838824, 36.711179058531826, 37.40635012737015, 36.1860248822606, 42.19510352720739, 49.410116578739654, 29.957415812958512, 29.543907709942122, 29.02206558996354, 29.239529117166907, 30.059275323795035, 30.07061597004587, 30.668041259477853, 30.508250558695604, 36.78276420172299, 36.9852979298838, 36.68430426428569, 36.93355197432356, 36.46450751429702, 36.96583597689362, 36.86022362180361] + --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary___06Sep22_09_42_02.csv +*** Total energy : [61.00540758755291, 53.35616382684589, 53.38267358149647, 54.74622776577034, 49.41467631934382, 29.623247258891045, 36.82601141845538, 42.85376093977719, 66.44909360627778, 42.64544340651106, 50.74428137607953, 59.94594005320708, 42.05401520354165, 43.82652071469574, 67.3857084084629, 54.44253148500697, 30.299284062105812, 30.027102694886654, 29.060137396486432, 30.277288658122774, 32.51205394198035, 59.045602086542516, 66.34289826476824, 75.09852863759252, 35.59789292409111, 42.05795824330537, 48.682465076838824, 36.711179058531826, 37.40635012737015, 36.1860248822606, 42.19510352720739, 49.410116578739654, 29.957415812958512, 29.543907709942122, 29.02206558996354, 29.239529117166907, 30.059275323795035, 30.07061597004587, 30.668041259477853, 30.508250558695604, 36.78276420172299, 36.9852979298838, 36.68430426428569, 36.93355197432356, 36.46450751429702, 36.96583597689362, 36.86022362180361, 36.241340818491324, 43.3608751201712, 42.79271109577192, 42.80059101405426, 42.61363347008094, 42.474892742303716, 35.44774676664167, 35.40657570372512, 42.51731520413714, 50.735447078258076, 42.722378810206706, 42.016301664202444, 35.588916806469584, 37.334916995372765, 51.28077619994492, 41.829225389075674, 36.59285860316189, 36.67117347490831, 53.6166443408558, 36.31061849927073, 35.93660318178646, 48.71596839606954, 43.37670883350873, 48.8428586507307, 67.46193459835338, 43.18443043197562, 65.80063109114849, 45.44863666563364, 30.63396781022152, 65.93701913313123] --- Getting data from folder /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only --- Maximum input size = -1 + --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/.~lock.summary___06Sep22_09_42_02.csv# --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_first_results_samsung_interrupted.csv --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_key_experiements_first_part.csv --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary_key_experiement_second_part.csv -*** Total workload : [502499000000.0, 371205000000.0, 371343000000.0, 617864000000.0, 400095000000.0, 29472300000.0, 147255000000.0, 278621000000.0, 537560000000.0, 278594000000.0, 454872000000.0, 498819000000.0, 304885000000.0, 335276000000.0, 629393000000.0, 370545000000.0, 0.0, 0.0, 29553800000.0, 59956000000.0, 174825000000.0, 489874000000.0, 623684000000.0, 748237000000.0, 117748000000.0, 243499000000.0, 373189000000.0, 186205000000.0, 217816000000.0, 150171000000.0, 278957000000.0, 406369000000.0, 0.0, 29470600000.0, 29457300000.0, 29535500000.0, 60678300000.0, 60106800000.0, 89102900000.0, 92411200000.0, 186062000000.0, 185914000000.0, 218185000000.0, 185980000000.0, 194232000000.0, 150045000000.0, 149735000000.0] ---- Size of X before removing aberrants points from the dataset: 47 + --- Getting data from file /mnt/c/Users/lavoi/opportunist_task_on_android/scripts_valuable_files/experiment_automatization/summary_files_only/summary___06Sep22_09_42_02.csv +*** Total workload : [502499000000.0, 371205000000.0, 371343000000.0, 617864000000.0, 400095000000.0, 29472300000.0, 147255000000.0, 278621000000.0, 537560000000.0, 278594000000.0, 454872000000.0, 498819000000.0, 304885000000.0, 335276000000.0, 629393000000.0, 370545000000.0, 0.0, 0.0, 29553800000.0, 59956000000.0, 174825000000.0, 489874000000.0, 623684000000.0, 748237000000.0, 117748000000.0, 243499000000.0, 373189000000.0, 186205000000.0, 217816000000.0, 150171000000.0, 278957000000.0, 406369000000.0, 0.0, 29470600000.0, 29457300000.0, 29535500000.0, 60678300000.0, 60106800000.0, 89102900000.0, 92411200000.0, 186062000000.0, 185914000000.0, 218185000000.0, 185980000000.0, 194232000000.0, 150045000000.0, 149735000000.0, 150528000000.0, 279393000000.0, 278971000000.0, 276003000000.0, 278672000000.0, 274951000000.0, 111489000000.0, 117941000000.0, 243375000000.0, 465069000000.0, 279405000000.0, 304426000000.0, 118205000000.0, 207187000000.0, 473319000000.0, 303807000000.0, 160475000000.0, 184845000000.0, 371471000000.0, 211379000000.0, 172823000000.0, 428493000000.0, 362938000000.0, 434491000000.0, 636090000000.0, 314499000000.0, 499771000000.0, 412706000000.0, 91642100000.0, 577244000000.0] +--- Size of X before removing aberrants points from the dataset: 77 --- Actual line: ['X_0' 'X_1' 'X_2' 'X_3' 'X_4' 'X_5' 'X_6' 'X_7' 'X_8' 'X_9' 'y'] --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 8.23696089e+09] --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.95710251e+09] --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 6.95623139e+09] --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 1.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 1.12859684e+10] --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 @@ -245,28 +376,28 @@ 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 6.50165467e+09] --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 8.08982947e+09] --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 6.53278806e+09] --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 8.96402736e+09] --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 8.32112901e+09] --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 7.24984413e+09] --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 7.65005585e+09] --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 9.34012049e+09] --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 6.80614731e+09] --- Actual line: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.08333333] @@ -282,37 +413,37 @@ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.37724029e+09] --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.29655195e+09] - --- Actual line: [2.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 2.0000000e+00 - 0.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 + --- Actual line: [2.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 + 2.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 9.4008818e+09] - --- Actual line: [2.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 2.0000000e+00 - 0.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + --- Actual line: [2.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 + 2.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 9.9634342e+09] --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.30772055e+09] - --- Actual line: [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 2.0000000e+00 - 0.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + --- Actual line: [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 + 2.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 5.7896169e+09] --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 7.66577233e+09] --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.07215135e+09] --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.82295876e+09] --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.14998029e+09] --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 6.61113315e+09] - --- Actual line: [2.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 2.0000000e+00 - 0.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 + --- Actual line: [2.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 + 2.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 8.2244282e+09] --- Actual line: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.08333333] @@ -341,58 +472,148 @@ 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.05839922e+09] --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.02669173e+09] --- Actual line: [0.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 5.947637e+09] --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.03552563e+09] --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.32660051e+09] --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.05901812e+09] --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.06223342e+09] - --- remove_aberrant_points: do we remove value [2.0, 0, 1, 0, 0.0, 0, 1, 0, 1, 0] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.15349662e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.44342352e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.51911731e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.44857583e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.53949528e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.47324607e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.14516839e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.33104602e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.72413122e+09] + --- Actual line: [0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 + 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 + 9.166575e+09] + --- Actual line: [1.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + 0.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + 6.5400085e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 7.24543176e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 3.32139844e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.54942036e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 9.22994564e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 7.26300805e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.38542635e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 5.04060205e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.92827846e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 5.82139946e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.80910267e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 8.79577099e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 8.36715057e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 8.89568915e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 9.42889201e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 7.28268469e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 7.59520591e+09] + --- Actual line: [0.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 + 0.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00 1.0000000e+00 + 9.0806727e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 2.99152203e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 8.75449762e+09] + --- remove_aberrant_points: do we remove value [2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0] --- Computing the list of the 10 first neighbours of '0303-1010' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -402,60 +623,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, first computation result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0303-1010' --- Neighbour 0 in the list of neghbours, And at position 0 in the X datas point @@ -474,13 +725,13 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 67.3857084084629 --- Workload: 629393000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 65 in the X datas point -------------- - --- Configuration: 3300-1000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 + --- Configuration: 0303-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 -------------- --- Neighbour 3 in the list of neghbours, And at position 2 in the X datas point -------------- @@ -490,15 +741,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 53.38267358149647 --- Workload: 371343000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 4 in the X datas point --------------- - --- Configuration: 3000-1110 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 8096707069.234942 - --- Energy: 49.41467631934382 - --- Workload: 400095000000.0 --------------- ---- Neighbour 5 in the list of neghbours, And at position 15 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 15 in the X datas point -------------- --- Configuration: 0003-1001 --- Distance from that configuration: [0.76130039] @@ -506,80 +749,72 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 54.44253148500697 --- Workload: 370545000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 19 in the X datas point --------------- - --- Configuration: 3300-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 1980229389.772511 - --- Energy: 30.277288658122774 - --- Workload: 59956000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 40 in the X datas point -------------- - --- Configuration: 3300-2000 + --- Configuration: 3300-1000 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 5026691733.102776 - --- Energy: 36.9852979298838 - --- Workload: 185914000000.0 + --- Energy efficiency: 5058399218.983161 + --- Energy: 36.78276420172299 + --- Workload: 186062000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 44 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 70 in the X datas point -------------- - --- Configuration: 3000-1000 + --- Configuration: 0202-1001 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 5326600510.288329 - --- Energy: 36.46450751429702 - --- Workload: 194232000000.0 + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 5 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 4 in the X datas point -------------- - --- Configuration: 0030-0000 + --- Configuration: 3000-1110 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 994906080.8659663 - --- Energy: 29.623247258891045 - --- Workload: 29472300000.0 + --- Energy efficiency: 8096707069.234942 + --- Energy: 49.41467631934382 + --- Workload: 400095000000.0 -------------- ---- Ordered by energy, Printing the list of the 10 first neighbours of '0303-1010' ---- Neighbour 0 in the list of neghbours, And at position 5 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 11 in the X datas point -------------- - --- Configuration: 0030-0000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 994906080.8659663 - --- Energy: 29.623247258891045 - --- Workload: 29472300000.0 + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 1980229389.772511 --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 44 in the X datas point +--- Ordered by energy, Printing the list of the 10 first neighbours of '0303-1010' +--- Neighbour 0 in the list of neghbours, And at position 19 in the X datas point -------------- - --- Configuration: 3000-1000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5326600510.288329 - --- Energy: 36.46450751429702 - --- Workload: 194232000000.0 + --- Configuration: 3300-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 1980229389.772511 + --- Energy: 30.277288658122774 + --- Workload: 59956000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 5058399218.983161 --- Energy: 36.78276420172299 --- Workload: 186062000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 70 in the X datas point -------------- - --- Configuration: 3300-2000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 5026691733.102776 - --- Energy: 36.9852979298838 - --- Workload: 185914000000.0 + --- Configuration: 0202-1001 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 4 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 4 in the X datas point -------------- --- Configuration: 3000-1110 --- Distance from that configuration: [0.76130039] @@ -587,7 +822,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 49.41467631934382 --- Workload: 400095000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 2 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 2 in the X datas point -------------- --- Configuration: 0303-0100 --- Distance from that configuration: [0.76130039] @@ -595,7 +830,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 53.38267358149647 --- Workload: 371343000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 15 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 65 in the X datas point +-------------- + --- Configuration: 0303-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 15 in the X datas point -------------- --- Configuration: 0003-1001 --- Distance from that configuration: [0.76130039] @@ -603,10 +846,18 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 54.44253148500697 --- Workload: 370545000000.0 -------------- +--- Neighbour 7 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- --- Neighbour 8 in the list of neghbours, And at position 0 in the X datas point -------------- --- Configuration: 0303-1010 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 8236960890.90969 --- Energy: 61.00540758755291 --- Workload: 502499000000.0 @@ -620,53 +871,53 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Workload: 629393000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 41 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 2 in the X datas point -------------- - --- Configuration: 3300-2000 - --- Energy efficiency: 5026691733.102776 - --- Energy: 36.9852979298838 - --- Workload: 185914000000.0 + --- Configuration: 0303-0100 + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (61.00540758755291 mAh) is far from the median. ---- Median :36.9852979298838, the gap is : 10 ---- So yes we remove this configuration '0303-1010' ---- remove_aberrant_points: The value [2.0, 0, 1, 0, 0.0, 0, 1, 0, 1, 0] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [2.0, 0, 0, 1, 2.0, 0, 1, 0, 0, 0] +--- The energy of the current configuration (53.38267358149647 mAh) it is NOT far from the median. +--- Median :53.38267358149647, the gap is : 10 +--- So No we don't romove this configuration '0303-1010' + --- remove_aberrant_points: The value [2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 0, 0, 1, 1, 2.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '0033-3000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -676,60 +927,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0033-3000' --- Neighbour 0 in the list of neghbours, And at position 1 in the X datas point @@ -748,23 +1029,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 66.34289826476824 --- Workload: 623684000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 28 in the X datas point --------------- - --- Configuration: 3330-3000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5822958761.806049 - --- Energy: 37.40635012737015 - --- Workload: 217816000000.0 --------------- ---- Neighbour 3 in the list of neghbours, And at position 29 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 67 in the X datas point -------------- - --- Configuration: 3000-3000 + --- Configuration: 0030-2000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 4149980287.5936337 - --- Energy: 36.1860248822606 - --- Workload: 150171000000.0 + --- Energy efficiency: 4809102669.532892 + --- Energy: 35.93660318178646 + --- Workload: 172823000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 12 in the X datas point -------------- --- Configuration: 0022-0030 --- Distance from that configuration: [0.76130039] @@ -772,7 +1045,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.05401520354165 --- Workload: 304885000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 23 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 23 in the X datas point -------------- --- Configuration: 3333-3300 --- Distance from that configuration: [0.76130039] @@ -780,48 +1053,64 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 75.09852863759252 --- Workload: 748237000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 28 in the X datas point -------------- - --- Configuration: 3300-3000 + --- Configuration: 3330-3000 --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5822958761.806049 + --- Energy: 37.40635012737015 + --- Workload: 217816000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 29 in the X datas point +-------------- + --- Configuration: 3000-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 27 in the X datas point +-------------- + --- Configuration: 3300-3000 + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 5072151352.996373 --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 6611133148.221605 --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 4059018123.5159216 --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 31 in the X datas point +--- Ordered by energy, Printing the list of the 10 first neighbours of '0033-3000' +--- Neighbour 0 in the list of neghbours, And at position 67 in the X datas point -------------- - --- Configuration: 3000-3330 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 8224428196.629629 - --- Energy: 49.410116578739654 - --- Workload: 406369000000.0 + --- Configuration: 0030-2000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 4809102669.532892 + --- Energy: 35.93660318178646 + --- Workload: 172823000000.0 -------------- ---- Ordered by energy, Printing the list of the 10 first neighbours of '0033-3000' ---- Neighbour 0 in the list of neghbours, And at position 29 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 29 in the X datas point -------------- --- Configuration: 3000-3000 - --- Distance from that configuration: [1.] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 4149980287.5936337 --- Energy: 36.1860248822606 --- Workload: 150171000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 --- Distance from that configuration: [0.83375292] @@ -829,23 +1118,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 4059018123.5159216 --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 28 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 5822958761.806049 --- Energy: 37.40635012737015 --- Workload: 217816000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 12 in the X datas point -------------- --- Configuration: 0022-0030 --- Distance from that configuration: [0.76130039] @@ -853,7 +1142,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.05401520354165 --- Workload: 304885000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 --- Distance from that configuration: [0.76130039] @@ -861,18 +1150,10 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 31 in the X datas point --------------- - --- Configuration: 3000-3330 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 8224428196.629629 - --- Energy: 49.410116578739654 - --- Workload: 406369000000.0 --------------- --- Neighbour 7 in the list of neghbours, And at position 1 in the X datas point -------------- --- Configuration: 0033-3000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 6957102505.948323 --- Energy: 53.35616382684589 --- Workload: 371205000000.0 @@ -880,7 +1161,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point -------------- --- Configuration: 3333-3000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 9400881802.713095 --- Energy: 66.34289826476824 --- Workload: 623684000000.0 @@ -894,53 +1175,53 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Workload: 748237000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 12 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 28 in the X datas point -------------- - --- Configuration: 0022-0030 - --- Energy efficiency: 7249844128.351241 - --- Energy: 42.05401520354165 - --- Workload: 304885000000.0 + --- Configuration: 3330-3000 + --- Energy efficiency: 5822958761.806049 + --- Energy: 37.40635012737015 + --- Workload: 217816000000.0 -------------- --- Comparing the median energy with the energy of that data point --- The energy of the current configuration (53.35616382684589 mAh) is far from the median. ---- Median :42.05401520354165, the gap is : 10 +--- Median :37.40635012737015, the gap is : 10 --- So yes we remove this configuration '0033-3000' ---- remove_aberrant_points: The value [2.0, 0, 0, 1, 2.0, 0, 1, 0, 0, 0] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [2.0, 0, 1, 0, 0.0, 0, 0, 1, 0, 0] +--- remove_aberrant_points: The value [2.0, 0, 0, 1, 1, 2.0, 1, 0, 0, 0] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0] --- Computing the list of the 10 first neighbours of '0303-0100' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -950,60 +1231,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0303-0100' --- Neighbour 0 in the list of neghbours, And at position 2 in the X datas point @@ -1014,13 +1325,13 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 53.38267358149647 --- Workload: 371343000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 65 in the X datas point -------------- - --- Configuration: 3300-0000 + --- Configuration: 0303-1000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 1980229389.772511 - --- Energy: 30.277288658122774 - --- Workload: 59956000000.0 + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 -------------- --- Neighbour 2 in the list of neghbours, And at position 0 in the X datas point -------------- @@ -1030,15 +1341,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 61.00540758755291 --- Workload: 502499000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 5 in the X datas point --------------- - --- Configuration: 0030-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 994906080.8659663 - --- Energy: 29.623247258891045 - --- Workload: 29472300000.0 --------------- ---- Neighbour 4 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 11 in the X datas point -------------- --- Configuration: 3303-0001 --- Distance from that configuration: [0.76130039] @@ -1046,23 +1349,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.94594005320708 --- Workload: 498819000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 18 in the X datas point --------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 1016987763.6032282 - --- Energy: 29.060137396486432 - --- Workload: 29553800000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 19 in the X datas point -------------- - --- Configuration: 3330-0000 + --- Configuration: 3300-0000 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 5377240292.736961 - --- Energy: 32.51205394198035 - --- Workload: 174825000000.0 + --- Energy efficiency: 1980229389.772511 + --- Energy: 30.277288658122774 + --- Workload: 59956000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 21 in the X datas point -------------- --- Configuration: 3333-0000 --- Distance from that configuration: [0.76130039] @@ -1070,72 +1365,72 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.045602086542516 --- Workload: 489874000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 35 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 57 in the X datas point -------------- - --- Configuration: 3000-0000 + --- Configuration: 0200-1100 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 1010122436.9405816 - --- Energy: 29.239529117166907 - --- Workload: 29535500000.0 + --- Energy efficiency: 6540008502.011052 + --- Energy: 42.722378810206706 + --- Workload: 279405000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 58 in the X datas point -------------- - --- Configuration: 2200-0000 + --- Configuration: 2002-0100 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 1998856653.9939156 - --- Energy: 30.07061597004587 - --- Workload: 60106800000.0 + --- Energy efficiency: 7245431755.278297 + --- Energy: 42.016301664202444 + --- Workload: 304426000000.0 -------------- ---- Ordered by energy, Printing the list of the 10 first neighbours of '0303-0100' ---- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 5 in the X datas point -------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 1016987763.6032282 - --- Energy: 29.060137396486432 - --- Workload: 29553800000.0 + --- Configuration: 0030-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 994906080.8659663 + --- Energy: 29.623247258891045 + --- Workload: 29472300000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 35 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point -------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 1010122436.9405816 - --- Energy: 29.239529117166907 - --- Workload: 29535500000.0 + --- Configuration: 3303-1010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 5 in the X datas point +--- Ordered by energy, Printing the list of the 10 first neighbours of '0303-0100' +--- Neighbour 0 in the list of neghbours, And at position 5 in the X datas point -------------- --- Configuration: 0030-0000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [1.] --- Energy efficiency: 994906080.8659663 --- Energy: 29.623247258891045 --- Workload: 29472300000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 37 in the X datas point --------------- - --- Configuration: 2200-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 1998856653.9939156 - --- Energy: 30.07061597004587 - --- Workload: 60106800000.0 --------------- ---- Neighbour 4 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 1980229389.772511 --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 58 in the X datas point -------------- - --- Configuration: 3330-0000 + --- Configuration: 2002-0100 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 5377240292.736961 - --- Energy: 32.51205394198035 - --- Workload: 174825000000.0 + --- Energy efficiency: 7245431755.278297 + --- Energy: 42.016301664202444 + --- Workload: 304426000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 2 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 57 in the X datas point +-------------- + --- Configuration: 0200-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6540008502.011052 + --- Energy: 42.722378810206706 + --- Workload: 279405000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 2 in the X datas point -------------- --- Configuration: 0303-0100 --- Distance from that configuration: [0.76130039] @@ -1143,7 +1438,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 53.38267358149647 --- Workload: 371343000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 65 in the X datas point +-------------- + --- Configuration: 0303-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 21 in the X datas point -------------- --- Configuration: 3333-0000 --- Distance from that configuration: [0.76130039] @@ -1151,7 +1454,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.045602086542516 --- Workload: 489874000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 11 in the X datas point -------------- --- Configuration: 3303-0001 --- Distance from that configuration: [0.76130039] @@ -1159,62 +1462,70 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.94594005320708 --- Workload: 498819000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 0 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 0 in the X datas point -------------- --- Configuration: 0303-1010 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 8236960890.90969 --- Energy: 61.00540758755291 --- Workload: 502499000000.0 -------------- +--- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point +-------------- + --- Configuration: 3303-1010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 -------------- ---- Median at position 4 in the list of neghbours, And at position 19 in the X datas point --------------- - --- Configuration: 3300-0000 - --- Energy efficiency: 1980229389.772511 - --- Energy: 30.277288658122774 - --- Workload: 59956000000.0 +-------------- +--- Median at position 4 in the list of neghbours, And at position 2 in the X datas point +-------------- + --- Configuration: 0303-0100 + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (53.38267358149647 mAh) is far from the median. ---- Median :30.277288658122774, the gap is : 10 ---- So yes we remove this configuration '0303-0100' ---- remove_aberrant_points: The value [2.0, 0, 1, 0, 0.0, 0, 0, 1, 0, 0] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [1.0, 1, 1, 1, 1.0, 0, 0, 1, 1, 0] +--- The energy of the current configuration (53.38267358149647 mAh) it is NOT far from the median. +--- Median :53.38267358149647, the gap is : 10 +--- So No we don't romove this configuration '0303-0100' + --- remove_aberrant_points: The value [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 1, 1, 1, 1, 1.0, 0, 1, 1, 0] --- Computing the list of the 10 first neighbours of '2222-0220' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -1224,60 +1535,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '2222-0220' --- Neighbour 0 in the list of neghbours, And at position 3 in the X datas point @@ -1288,31 +1629,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 54.74622776577034 --- Workload: 617864000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 39 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 61 in the X datas point -------------- - --- Configuration: 2220-0000 + --- Configuration: 3330-2220 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 3029054692.61153 - --- Energy: 30.508250558695604 - --- Workload: 92411200000.0 --------------- ---- Neighbour 2 in the list of neghbours, And at position 6 in the X datas point --------------- - --- Configuration: 0020-0010 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 + --- Energy efficiency: 9229945635.620207 + --- Energy: 51.28077619994492 + --- Workload: 473319000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 8 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 64 in the X datas point -------------- - --- Configuration: 0020-0202 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 8089829466.394849 - --- Energy: 66.44909360627778 - --- Workload: 537560000000.0 + --- Configuration: 0220-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 12 in the X datas point -------------- --- Configuration: 0022-0030 --- Distance from that configuration: [0.69514393] @@ -1320,15 +1653,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.05401520354165 --- Workload: 304885000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 20 in the X datas point --------------- - --- Configuration: 3330-0000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 5377240292.736961 - --- Energy: 32.51205394198035 - --- Workload: 174825000000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 21 in the X datas point -------------- --- Configuration: 3333-0000 --- Distance from that configuration: [0.69514393] @@ -1336,7 +1661,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.045602086542516 --- Workload: 489874000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 23 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 23 in the X datas point -------------- --- Configuration: 3333-3300 --- Distance from that configuration: [0.69514393] @@ -1344,64 +1669,72 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 75.09852863759252 --- Workload: 748237000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 39 in the X datas point -------------- - --- Configuration: 2200-0000 + --- Configuration: 2220-0000 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 1998856653.9939156 - --- Energy: 30.07061597004587 - --- Workload: 60106800000.0 + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 38 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 56 in the X datas point -------------- - --- Configuration: 1110-0000 + --- Configuration: 1001-2220 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 2905397356.669485 - --- Energy: 30.668041259477853 - --- Workload: 89102900000.0 + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 -------------- ---- Ordered by energy, Printing the list of the 10 first neighbours of '2222-0220' ---- Neighbour 0 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 58 in the X datas point -------------- - --- Configuration: 2200-0000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 1998856653.9939156 - --- Energy: 30.07061597004587 - --- Workload: 60106800000.0 + --- Configuration: 2002-0100 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7245431755.278297 + --- Energy: 42.016301664202444 + --- Workload: 304426000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 39 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 60 in the X datas point +-------------- + --- Configuration: 0101-0200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '2222-0220' +--- Neighbour 0 in the list of neghbours, And at position 39 in the X datas point -------------- --- Configuration: 2220-0000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [1.] --- Energy efficiency: 3029054692.61153 --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 38 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 64 in the X datas point -------------- - --- Configuration: 1110-0000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 2905397356.669485 - --- Energy: 30.668041259477853 - --- Workload: 89102900000.0 + --- Configuration: 0220-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 60 in the X datas point -------------- - --- Configuration: 3330-0000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 5377240292.736961 - --- Energy: 32.51205394198035 - --- Workload: 174825000000.0 + --- Configuration: 0101-0200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 58 in the X datas point -------------- - --- Configuration: 0020-0010 + --- Configuration: 2002-0100 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 + --- Energy efficiency: 7245431755.278297 + --- Energy: 42.016301664202444 + --- Workload: 304426000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 12 in the X datas point -------------- --- Configuration: 0022-0030 --- Distance from that configuration: [0.69514393] @@ -1409,7 +1742,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.05401520354165 --- Workload: 304885000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 3 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 56 in the X datas point +-------------- + --- Configuration: 1001-2220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 61 in the X datas point +-------------- + --- Configuration: 3330-2220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9229945635.620207 + --- Energy: 51.28077619994492 + --- Workload: 473319000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 3 in the X datas point -------------- --- Configuration: 2222-0220 --- Distance from that configuration: [0.69514393] @@ -1417,7 +1766,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 54.74622776577034 --- Workload: 617864000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 21 in the X datas point -------------- --- Configuration: 3333-0000 --- Distance from that configuration: [0.69514393] @@ -1425,14 +1774,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.045602086542516 --- Workload: 489874000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 8 in the X datas point --------------- - --- Configuration: 0020-0202 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 8089829466.394849 - --- Energy: 66.44909360627778 - --- Workload: 537560000000.0 --------------- --- Neighbour 9 in the list of neghbours, And at position 23 in the X datas point -------------- --- Configuration: 3333-3300 @@ -1442,53 +1783,53 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Workload: 748237000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 6 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 12 in the X datas point -------------- - --- Configuration: 0020-0010 - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 + --- Configuration: 0022-0030 + --- Energy efficiency: 7249844128.351241 + --- Energy: 42.05401520354165 + --- Workload: 304885000000.0 -------------- --- Comparing the median energy with the energy of that data point --- The energy of the current configuration (54.74622776577034 mAh) is far from the median. ---- Median :36.82601141845538, the gap is : 10 +--- Median :42.05401520354165, the gap is : 10 --- So yes we remove this configuration '2222-0220' ---- remove_aberrant_points: The value [1.0, 1, 1, 1, 1.0, 0, 0, 1, 1, 0] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0.0, 0, 1, 1, 1, 0] +--- remove_aberrant_points: The value [1.0, 1, 1, 1, 1, 1.0, 0, 1, 1, 0] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0, 0.0, 1, 1, 1, 0] --- Computing the list of the 10 first neighbours of '3000-1110' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -1498,60 +1839,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3000-1110' --- Neighbour 0 in the list of neghbours, And at position 4 in the X datas point @@ -1562,13 +1933,13 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 49.41467631934382 --- Workload: 400095000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 14 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 48 in the X datas point -------------- - --- Configuration: 3303-1010 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9340120487.55429 - --- Energy: 67.3857084084629 - --- Workload: 629393000000.0 + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 -------------- --- Neighbour 2 in the list of neghbours, And at position 44 in the X datas point -------------- @@ -1578,15 +1949,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.46450751429702 --- Workload: 194232000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 0 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 49 in the X datas point -------------- - --- Configuration: 0303-1010 + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 14 in the X datas point +-------------- + --- Configuration: 3303-1010 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 8236960890.90969 - --- Energy: 61.00540758755291 - --- Workload: 502499000000.0 + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 18 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 18 in the X datas point -------------- --- Configuration: 3000-0000 --- Distance from that configuration: [0.76130039] @@ -1594,7 +1973,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.060137396486432 --- Workload: 29553800000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 35 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 35 in the X datas point -------------- --- Configuration: 3000-0000 --- Distance from that configuration: [0.76130039] @@ -1602,7 +1981,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.239529117166907 --- Workload: 29535500000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 --- Distance from that configuration: [0.76130039] @@ -1610,7 +1989,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.78276420172299 --- Workload: 186062000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 --- Distance from that configuration: [0.76130039] @@ -1618,21 +1997,13 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 2 in the X datas point --------------- - --- Configuration: 0303-0100 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6956231392.081026 - --- Energy: 53.38267358149647 - --- Workload: 371343000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 15 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 0003-1001 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6806147312.252427 - --- Energy: 54.44253148500697 - --- Workload: 370545000000.0 + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3000-1110' --- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point @@ -1646,7 +2017,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 1 in the list of neghbours, And at position 35 in the X datas point -------------- --- Configuration: 3000-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 1010122436.9405816 --- Energy: 29.239529117166907 --- Workload: 29535500000.0 @@ -1662,7 +2033,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 3 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5058399218.983161 --- Energy: 36.78276420172299 --- Workload: 186062000000.0 @@ -1675,7 +2046,31 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 4 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 4 in the X datas point -------------- --- Configuration: 3000-1110 --- Distance from that configuration: [0.76130039] @@ -1683,37 +2078,13 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 49.41467631934382 --- Workload: 400095000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 2 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point -------------- - --- Configuration: 0303-0100 + --- Configuration: 3303-1010 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6956231392.081026 - --- Energy: 53.38267358149647 - --- Workload: 371343000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 15 in the X datas point --------------- - --- Configuration: 0003-1001 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6806147312.252427 - --- Energy: 54.44253148500697 - --- Workload: 370545000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 0 in the X datas point --------------- - --- Configuration: 0303-1010 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 8236960890.90969 - --- Energy: 61.00540758755291 - --- Workload: 502499000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point --------------- - --- Configuration: 3303-1010 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 9340120487.55429 - --- Energy: 67.3857084084629 - --- Workload: 629393000000.0 + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 -------------- -------------- --- Median at position 4 in the list of neghbours, And at position 45 in the X datas point @@ -1727,42 +2098,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- The energy of the current configuration (49.41467631934382 mAh) is far from the median. --- Median :36.96583597689362, the gap is : 10 --- So yes we remove this configuration '3000-1110' ---- remove_aberrant_points: The value [2.0, 1, 0, 0, 0.0, 0, 1, 1, 1, 0] is an abberant point. we don't add it +--- remove_aberrant_points: The value [2.0, 1, 0, 0, 0, 0.0, 1, 1, 1, 0] is an abberant point. we don't add it --- remove_aberrant_points: do we remove value [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '0030-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -1772,60 +2143,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0030-0000' --- Neighbour 0 in the list of neghbours, And at position 5 in the X datas point @@ -1860,15 +2261,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 21 in the X datas point --------------- - --- Configuration: 3333-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 --------------- ---- Neighbour 5 in the list of neghbours, And at position 35 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 35 in the X datas point -------------- --- Configuration: 3000-0000 --- Distance from that configuration: [0.83375292] @@ -1876,23 +2269,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.239529117166907 --- Workload: 29535500000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 2 in the X datas point --------------- - --- Configuration: 0303-0100 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6956231392.081026 - --- Energy: 53.38267358149647 - --- Workload: 371343000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 15 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 67 in the X datas point -------------- - --- Configuration: 0003-1001 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6806147312.252427 - --- Energy: 54.44253148500697 - --- Workload: 370545000000.0 + --- Configuration: 0030-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4809102669.532892 + --- Energy: 35.93660318178646 + --- Workload: 172823000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 --- Distance from that configuration: [0.76130039] @@ -1900,7 +2285,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 34 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 21 in the X datas point +-------------- + --- Configuration: 3333-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8296551953.00833 + --- Energy: 59.045602086542516 + --- Workload: 489874000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 34 in the X datas point -------------- --- Configuration: 2000-0000 --- Distance from that configuration: [0.76130039] @@ -1908,6 +2301,14 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.02206558996354 --- Workload: 29457300000.0 -------------- +--- Neighbour 9 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '0030-0000' --- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point -------------- @@ -1949,15 +2350,31 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 39 in the X datas point -------------- - --- Configuration: 3330-0000 + --- Configuration: 2220-0000 --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 20 in the X datas point +-------------- + --- Configuration: 3330-0000 + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 5377240292.736961 --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 67 in the X datas point +-------------- + --- Configuration: 0030-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4809102669.532892 + --- Energy: 35.93660318178646 + --- Workload: 172823000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 6 in the X datas point -------------- --- Configuration: 0020-0010 --- Distance from that configuration: [0.76130039] @@ -1965,22 +2382,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.82601141845538 --- Workload: 147255000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 2 in the X datas point --------------- - --- Configuration: 0303-0100 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6956231392.081026 - --- Energy: 53.38267358149647 - --- Workload: 371343000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 15 in the X datas point --------------- - --- Configuration: 0003-1001 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6806147312.252427 - --- Energy: 54.44253148500697 - --- Workload: 370545000000.0 --------------- --- Neighbour 9 in the list of neghbours, And at position 21 in the X datas point -------------- --- Configuration: 3333-0000 @@ -2002,41 +2403,41 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Median :30.277288658122774, the gap is : 10 --- So No we don't romove this configuration '0030-0000' --- remove_aberrant_points: The value [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0] + --- remove_aberrant_points: do we remove value [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0] --- Computing the list of the 10 first neighbours of '0020-0010' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -2046,60 +2447,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0020-0010' --- Neighbour 0 in the list of neghbours, And at position 6 in the X datas point @@ -2118,13 +2549,13 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.623247258891045 --- Workload: 29472300000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 10 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 64 in the X datas point -------------- - --- Configuration: 0011-0111 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 8964027358.211496 - --- Energy: 50.74428137607953 - --- Workload: 454872000000.0 + --- Configuration: 0220-0020 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 -------------- --- Neighbour 3 in the list of neghbours, And at position 16 in the X datas point -------------- @@ -2166,21 +2597,21 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 0 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 66 in the X datas point -------------- - --- Configuration: 0303-1010 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 8236960890.90969 - --- Energy: 61.00540758755291 - --- Workload: 502499000000.0 + --- Configuration: 0110-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 3 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 75 in the X datas point -------------- - --- Configuration: 2222-0220 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 11285968381.230984 - --- Energy: 54.74622776577034 - --- Workload: 617864000000.0 + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '0020-0010' --- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point @@ -2202,7 +2633,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 2 in the list of neghbours, And at position 32 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 0.08333333333333333 --- Energy: 29.957415812958512 --- Workload: 0.0 @@ -2231,37 +2662,37 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 75 in the X datas point -------------- - --- Configuration: 0020-0010 + --- Configuration: 2220-0000 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 10 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 66 in the X datas point -------------- - --- Configuration: 0011-0111 + --- Configuration: 0110-0020 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 8964027358.211496 - --- Energy: 50.74428137607953 - --- Workload: 454872000000.0 + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 3 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 64 in the X datas point -------------- - --- Configuration: 2222-0220 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 11285968381.230984 - --- Energy: 54.74622776577034 - --- Workload: 617864000000.0 + --- Configuration: 0220-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 0 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 6 in the X datas point -------------- - --- Configuration: 0303-1010 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 8236960890.90969 - --- Energy: 61.00540758755291 - --- Workload: 502499000000.0 + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3998672440.749671 + --- Energy: 36.82601141845538 + --- Workload: 147255000000.0 -------------- -------------- --- Median at position 4 in the list of neghbours, And at position 16 in the X datas point @@ -2275,42 +2706,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- The energy of the current configuration (30.299284062105812 mAh) it is NOT far from the median. --- Median :30.299284062105812, the gap is : 10 --- So No we don't romove this configuration '0020-0010' - --- remove_aberrant_points: The value [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [0.0, 1, 0, 0, 0.0, 0, 1, 0, 1, 0] + --- remove_aberrant_points: The value [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0.0, 1, 0, 0, 0, 0.0, 1, 0, 1, 0] --- Computing the list of the 10 first neighbours of '1000-1010' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -2320,60 +2751,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '1000-1010' --- Neighbour 0 in the list of neghbours, And at position 7 in the X datas point @@ -2408,7 +2869,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.68430426428569 --- Workload: 218185000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 16 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 16 in the X datas point -------------- --- Configuration: 0000-0000 --- Distance from that configuration: [0.76130039] @@ -2416,7 +2893,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 17 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 17 in the X datas point -------------- --- Configuration: 0000-0000 --- Distance from that configuration: [0.76130039] @@ -2424,7 +2901,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.027102694886654 --- Workload: 0.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 32 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 32 in the X datas point -------------- --- Configuration: 0000-0000 --- Distance from that configuration: [0.76130039] @@ -2432,7 +2909,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.957415812958512 --- Workload: 0.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 34 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 34 in the X datas point -------------- --- Configuration: 2000-0000 --- Distance from that configuration: [0.76130039] @@ -2440,24 +2917,8 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.02206558996354 --- Workload: 29457300000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 36 in the X datas point --------------- - --- Configuration: 1100-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 2018619748.5607243 - --- Energy: 30.059275323795035 - --- Workload: 60678300000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 6 in the X datas point --------------- - --- Configuration: 0020-0010 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 --------------- ---- Ordered by energy, Printing the list of the 10 first neighbours of '1000-1010' ---- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point +--- Ordered by energy, Printing the list of the 10 first neighbours of '1000-1010' +--- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point -------------- --- Configuration: 2000-0000 --- Distance from that configuration: [1.] @@ -2489,22 +2950,22 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.027102694886654 --- Workload: 0.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 36 in the X datas point --------------- - --- Configuration: 1100-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 2018619748.5607243 - --- Energy: 30.059275323795035 - --- Workload: 60678300000.0 --------------- ---- Neighbour 5 in the list of neghbours, And at position 16 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 16 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 0.08333333333333333 --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- +--- Neighbour 5 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- --- Neighbour 6 in the list of neghbours, And at position 42 in the X datas point -------------- --- Configuration: 1100-1000 @@ -2513,15 +2974,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.68430426428569 --- Workload: 218185000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 6 in the X datas point --------------- - --- Configuration: 0020-0010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 46 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 46 in the X datas point -------------- --- Configuration: 1000-1000 --- Distance from that configuration: [0.76130039] @@ -2529,62 +2982,70 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.86022362180361 --- Workload: 149735000000.0 -------------- +--- Neighbour 8 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- --- Neighbour 9 in the list of neghbours, And at position 7 in the X datas point -------------- --- Configuration: 1000-1010 - --- Distance from that configuration: [0.69514393] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 6501654671.113798 --- Energy: 42.85376093977719 --- Workload: 278621000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 36 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 16 in the X datas point -------------- - --- Configuration: 1100-0000 - --- Energy efficiency: 2018619748.5607243 - --- Energy: 30.059275323795035 - --- Workload: 60678300000.0 + --- Configuration: 0000-0000 + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 -------------- --- Comparing the median energy with the energy of that data point --- The energy of the current configuration (42.85376093977719 mAh) is far from the median. ---- Median :30.059275323795035, the gap is : 10 +--- Median :30.299284062105812, the gap is : 10 --- So yes we remove this configuration '1000-1010' ---- remove_aberrant_points: The value [0.0, 1, 0, 0, 0.0, 0, 1, 0, 1, 0] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [1.0, 0, 0, 1, 1.0, 0, 0, 1, 0, 1] +--- remove_aberrant_points: The value [0.0, 1, 0, 0, 0, 0.0, 1, 0, 1, 0] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [1.0, 0, 0, 1, 0, 1.0, 0, 1, 0, 1] --- Computing the list of the 10 first neighbours of '0020-0202' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -2594,60 +3055,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0020-0202' --- Neighbour 0 in the list of neghbours, And at position 8 in the X datas point @@ -2658,23 +3149,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 66.44909360627778 --- Workload: 537560000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 10 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 76 in the X datas point -------------- - --- Configuration: 0011-0111 + --- Configuration: 2020-0022 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 8964027358.211496 - --- Energy: 50.74428137607953 - --- Workload: 454872000000.0 --------------- ---- Neighbour 2 in the list of neghbours, And at position 3 in the X datas point --------------- - --- Configuration: 2222-0220 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 11285968381.230984 - --- Energy: 54.74622776577034 - --- Workload: 617864000000.0 + --- Energy efficiency: 8754497623.153894 + --- Energy: 65.93701913313123 + --- Workload: 577244000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 5 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 5 in the X datas point -------------- --- Configuration: 0030-0000 --- Distance from that configuration: [0.69514393] @@ -2682,7 +3165,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.623247258891045 --- Workload: 29472300000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 6 in the X datas point -------------- --- Configuration: 0020-0010 --- Distance from that configuration: [0.69514393] @@ -2690,7 +3173,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.82601141845538 --- Workload: 147255000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 9 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 9 in the X datas point -------------- --- Configuration: 0010-3300 --- Distance from that configuration: [0.69514393] @@ -2698,37 +3181,45 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.64544340651106 --- Workload: 278594000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 10 in the X datas point -------------- - --- Configuration: 0022-0030 + --- Configuration: 0011-0111 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7249844128.351241 - --- Energy: 42.05401520354165 - --- Workload: 304885000000.0 + --- Energy efficiency: 8964027358.211496 + --- Energy: 50.74428137607953 + --- Workload: 454872000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 13 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 0011-1100 + --- Configuration: 2000-2200 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 55 in the X datas point -------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 2 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 59 in the X datas point -------------- - --- Configuration: 0303-0100 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 6956231392.081026 - --- Energy: 53.38267358149647 - --- Workload: 371343000000.0 + --- Configuration: 0000-0001 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '0020-0202' --- Neighbour 0 in the list of neghbours, And at position 5 in the X datas point @@ -2739,23 +3230,47 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.623247258891045 --- Workload: 29472300000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 59 in the X datas point -------------- - --- Configuration: 0020-0010 + --- Configuration: 0000-0001 --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 3998672440.749671 --- Energy: 36.82601141845538 --- Workload: 147255000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 55 in the X datas point -------------- - --- Configuration: 0022-0030 + --- Configuration: 0000-2200 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7249844128.351241 - --- Energy: 42.05401520354165 - --- Workload: 304885000000.0 + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 9 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 9 in the X datas point -------------- --- Configuration: 0010-3300 --- Distance from that configuration: [0.69514393] @@ -2763,15 +3278,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.64544340651106 --- Workload: 278594000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 13 in the X datas point --------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 --------------- ---- Neighbour 5 in the list of neghbours, And at position 10 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 10 in the X datas point -------------- --- Configuration: 0011-0111 --- Distance from that configuration: [0.69514393] @@ -2779,86 +3286,70 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 50.74428137607953 --- Workload: 454872000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 1 in the X datas point --------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 2 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 76 in the X datas point -------------- - --- Configuration: 0303-0100 + --- Configuration: 2020-0022 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6956231392.081026 - --- Energy: 53.38267358149647 - --- Workload: 371343000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 3 in the X datas point --------------- - --- Configuration: 2222-0220 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 11285968381.230984 - --- Energy: 54.74622776577034 - --- Workload: 617864000000.0 + --- Energy efficiency: 8754497623.153894 + --- Energy: 65.93701913313123 + --- Workload: 577244000000.0 -------------- --- Neighbour 9 in the list of neghbours, And at position 8 in the X datas point -------------- --- Configuration: 0020-0202 - --- Distance from that configuration: [0.63473642] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 8089829466.394849 --- Energy: 66.44909360627778 --- Workload: 537560000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 13 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 55 in the X datas point -------------- - --- Configuration: 0011-1100 - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Configuration: 0000-2200 + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 -------------- --- Comparing the median energy with the energy of that data point --- The energy of the current configuration (66.44909360627778 mAh) is far from the median. ---- Median :43.82652071469574, the gap is : 10 +--- Median :42.51731520413714, the gap is : 10 --- So yes we remove this configuration '0020-0202' ---- remove_aberrant_points: The value [1.0, 0, 0, 1, 1.0, 0, 0, 1, 0, 1] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0] +--- remove_aberrant_points: The value [1.0, 0, 0, 1, 0, 1.0, 0, 1, 0, 1] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0] --- Computing the list of the 10 first neighbours of '0010-3300' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -2868,60 +3359,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0010-3300' --- Neighbour 0 in the list of neghbours, And at position 9 in the X datas point @@ -2956,7 +3477,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 48.682465076838824 --- Workload: 373189000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 8 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 8 in the X datas point -------------- --- Configuration: 0020-0202 --- Distance from that configuration: [0.69514393] @@ -2964,64 +3501,64 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 66.44909360627778 --- Workload: 537560000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 0022-0030 + --- Configuration: 2000-2200 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7249844128.351241 - --- Energy: 42.05401520354165 - --- Workload: 304885000000.0 + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 13 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 63 in the X datas point -------------- - --- Configuration: 0011-1100 + --- Configuration: 0001-0200 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 12 in the X datas point -------------- - --- Configuration: 0033-3000 + --- Configuration: 0022-0030 --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 3 in the X datas point + --- Energy efficiency: 7249844128.351241 + --- Energy: 42.05401520354165 + --- Workload: 304885000000.0 -------------- - --- Configuration: 2222-0220 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 11285968381.230984 - --- Energy: 54.74622776577034 - --- Workload: 617864000000.0 +--- Ordered by energy, Printing the list of the 10 first neighbours of '0010-3300' +--- Neighbour 0 in the list of neghbours, And at position 54 in the X datas point -------------- ---- Neighbour 9 in the list of neghbours, And at position 23 in the X datas point + --- Configuration: 0000-2000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 -------------- - --- Configuration: 3333-3300 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 9963434196.49885 - --- Energy: 75.09852863759252 - --- Workload: 748237000000.0 --------------- ---- Ordered by energy, Printing the list of the 10 first neighbours of '0010-3300' ---- Neighbour 0 in the list of neghbours, And at position 24 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 24 in the X datas point -------------- --- Configuration: 0000-3000 - --- Distance from that configuration: [1.] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 3307720550.5370083 --- Energy: 35.59789292409111 --- Workload: 117748000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 12 in the X datas point -------------- --- Configuration: 0022-0030 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 7249844128.351241 --- Energy: 42.05401520354165 --- Workload: 304885000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 25 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 25 in the X datas point -------------- --- Configuration: 0000-3300 --- Distance from that configuration: [0.83375292] @@ -3029,23 +3566,31 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.05795824330537 --- Workload: 243499000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 9 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 9 in the X datas point -------------- --- Configuration: 0010-3300 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 6532788063.289651 --- Energy: 42.64544340651106 --- Workload: 278594000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 13 in the X datas point --------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 --------------- ---- Neighbour 5 in the list of neghbours, And at position 26 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 26 in the X datas point -------------- --- Configuration: 0000-3330 --- Distance from that configuration: [0.69514393] @@ -3053,86 +3598,62 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 48.682465076838824 --- Workload: 373189000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 1 in the X datas point --------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 3 in the X datas point --------------- - --- Configuration: 2222-0220 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 11285968381.230984 - --- Energy: 54.74622776577034 - --- Workload: 617864000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 8 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 8 in the X datas point -------------- --- Configuration: 0020-0202 - --- Distance from that configuration: [0.57957828] + --- Distance from that configuration: [0.63473642] --- Energy efficiency: 8089829466.394849 --- Energy: 66.44909360627778 --- Workload: 537560000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 23 in the X datas point --------------- - --- Configuration: 3333-3300 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 9963434196.49885 - --- Energy: 75.09852863759252 - --- Workload: 748237000000.0 -------------- +--- Median at position 4 in the list of neghbours, And at position 25 in the X datas point -------------- ---- Median at position 4 in the list of neghbours, And at position 13 in the X datas point --------------- - --- Configuration: 0011-1100 - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Configuration: 0000-3300 + --- Energy efficiency: 5789616901.049658 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (43.82652071469574 mAh) it is NOT far from the median. ---- Median :43.82652071469574, the gap is : 10 +--- The energy of the current configuration (42.05795824330537 mAh) it is NOT far from the median. +--- Median :42.05795824330537, the gap is : 10 --- So No we don't romove this configuration '0010-3300' - --- remove_aberrant_points: The value [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [0.0, 0, 0, 1, 0.0, 0, 0, 1, 1, 1] + --- remove_aberrant_points: The value [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0.0, 0, 0, 1, 1, 0.0, 0, 1, 1, 1] --- Computing the list of the 10 first neighbours of '0011-0111' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -3142,60 +3663,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0011-0111' --- Neighbour 0 in the list of neghbours, And at position 10 in the X datas point @@ -3206,53 +3757,53 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 50.74428137607953 --- Workload: 454872000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 13 in the X datas point -------------- - --- Configuration: 0020-0010 + --- Configuration: 0011-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7650055845.407672 + --- Energy: 43.82652071469574 + --- Workload: 335276000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 74 in the X datas point +-------------- + --- Configuration: 1111-0101 --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9080672696.233337 + --- Energy: 45.44863666563364 + --- Workload: 412706000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 3998672440.749671 --- Energy: 36.82601141845538 --- Workload: 147255000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 8 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 8 in the X datas point -------------- --- Configuration: 0020-0202 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 8089829466.394849 --- Energy: 66.44909360627778 --- Workload: 537560000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 13 in the X datas point --------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 --------------- ---- Neighbour 4 in the list of neghbours, And at position 16 in the X datas point --------------- - --- Configuration: 0000-0000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 0.08333333333333333 - --- Energy: 30.299284062105812 - --- Workload: 0.0 --------------- ---- Neighbour 5 in the list of neghbours, And at position 17 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 59 in the X datas point -------------- - --- Configuration: 0000-0000 + --- Configuration: 0000-0001 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 0.08333333333333333 - --- Energy: 30.027102694886654 - --- Workload: 0.0 + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 32 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 63 in the X datas point -------------- - --- Configuration: 0000-0000 + --- Configuration: 0001-0200 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 0.08333333333333333 - --- Energy: 29.957415812958512 - --- Workload: 0.0 + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 -------------- --- Neighbour 7 in the list of neghbours, And at position 3 in the X datas point -------------- @@ -3262,48 +3813,32 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 54.74622776577034 --- Workload: 617864000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 7 in the X datas point --------------- - --- Configuration: 1000-1010 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 33 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 16 in the X datas point -------------- - --- Configuration: 1000-0000 + --- Configuration: 0000-0000 --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 997516184.7000968 - --- Energy: 29.543907709942122 - --- Workload: 29470600000.0 --------------- ---- Ordered by energy, Printing the list of the 10 first neighbours of '0011-0111' ---- Neighbour 0 in the list of neghbours, And at position 33 in the X datas point --------------- - --- Configuration: 1000-0000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 997516184.7000968 - --- Energy: 29.543907709942122 - --- Workload: 29470600000.0 + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 32 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 17 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.63473642] --- Energy efficiency: 0.08333333333333333 - --- Energy: 29.957415812958512 + --- Energy: 30.027102694886654 --- Workload: 0.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 17 in the X datas point +--- Ordered by energy, Printing the list of the 10 first neighbours of '0011-0111' +--- Neighbour 0 in the list of neghbours, And at position 17 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [1.] --- Energy efficiency: 0.08333333333333333 --- Energy: 30.027102694886654 --- Workload: 0.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 16 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 16 in the X datas point -------------- --- Configuration: 0000-0000 --- Distance from that configuration: [0.76130039] @@ -3311,6 +3846,22 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- +--- Neighbour 2 in the list of neghbours, And at position 59 in the X datas point +-------------- + --- Configuration: 0000-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- --- Neighbour 4 in the list of neghbours, And at position 6 in the X datas point -------------- --- Configuration: 0020-0010 @@ -3319,15 +3870,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.82601141845538 --- Workload: 147255000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 7 in the X datas point --------------- - --- Configuration: 1000-1010 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 13 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 13 in the X datas point -------------- --- Configuration: 0011-1100 --- Distance from that configuration: [0.69514393] @@ -3335,6 +3878,14 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 43.82652071469574 --- Workload: 335276000000.0 -------------- +--- Neighbour 6 in the list of neghbours, And at position 74 in the X datas point +-------------- + --- Configuration: 1111-0101 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9080672696.233337 + --- Energy: 45.44863666563364 + --- Workload: 412706000000.0 +-------------- --- Neighbour 7 in the list of neghbours, And at position 10 in the X datas point -------------- --- Configuration: 0011-0111 @@ -3371,42 +3922,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- The energy of the current configuration (50.74428137607953 mAh) is far from the median. --- Median :36.82601141845538, the gap is : 10 --- So yes we remove this configuration '0011-0111' ---- remove_aberrant_points: The value [0.0, 0, 0, 1, 0.0, 0, 0, 1, 1, 1] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [2.0, 1, 1, 0, 0.0, 0, 0, 0, 0, 1] +--- remove_aberrant_points: The value [0.0, 0, 0, 1, 1, 0.0, 0, 1, 1, 1] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1] --- Computing the list of the 10 first neighbours of '3303-0001' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -3416,60 +3967,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3303-0001' --- Neighbour 0 in the list of neghbours, And at position 11 in the X datas point @@ -3483,28 +4064,12 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 1 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 1980229389.772511 --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 18 in the X datas point --------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 1016987763.6032282 - --- Energy: 29.060137396486432 - --- Workload: 29553800000.0 --------------- ---- Neighbour 3 in the list of neghbours, And at position 20 in the X datas point --------------- - --- Configuration: 3330-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5377240292.736961 - --- Energy: 32.51205394198035 - --- Workload: 174825000000.0 --------------- ---- Neighbour 4 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 21 in the X datas point -------------- --- Configuration: 3333-0000 --- Distance from that configuration: [0.83375292] @@ -3512,31 +4077,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.045602086542516 --- Workload: 489874000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 35 in the X datas point --------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 1010122436.9405816 - --- Energy: 29.239529117166907 - --- Workload: 29535500000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 73 in the X datas point -------------- - --- Configuration: 2200-0000 + --- Configuration: 3003-0002 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 1998856653.9939156 - --- Energy: 30.07061597004587 - --- Workload: 60106800000.0 + --- Energy efficiency: 7595205906.032112 + --- Energy: 65.80063109114849 + --- Workload: 499771000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 40 in the X datas point --------------- - --- Configuration: 3300-1000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 2 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 2 in the X datas point -------------- --- Configuration: 0303-0100 --- Distance from that configuration: [0.76130039] @@ -3544,7 +4093,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 53.38267358149647 --- Workload: 371343000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 14 in the X datas point -------------- --- Configuration: 3303-1010 --- Distance from that configuration: [0.76130039] @@ -3552,6 +4101,38 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 67.3857084084629 --- Workload: 629393000000.0 -------------- +--- Neighbour 6 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 18 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1016987763.6032282 + --- Energy: 29.060137396486432 + --- Workload: 29553800000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 20 in the X datas point +-------------- + --- Configuration: 3330-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5377240292.736961 + --- Energy: 32.51205394198035 + --- Workload: 174825000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 35 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1010122436.9405816 + --- Energy: 29.239529117166907 + --- Workload: 29535500000.0 +-------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3303-0001' --- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point -------------- @@ -3564,20 +4145,12 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 1 in the list of neghbours, And at position 35 in the X datas point -------------- --- Configuration: 3000-0000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 1010122436.9405816 --- Energy: 29.239529117166907 --- Workload: 29535500000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 37 in the X datas point --------------- - --- Configuration: 2200-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 1998856653.9939156 - --- Energy: 30.07061597004587 - --- Workload: 60106800000.0 --------------- ---- Neighbour 3 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 --- Distance from that configuration: [0.83375292] @@ -3585,7 +4158,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 20 in the X datas point -------------- --- Configuration: 3330-0000 --- Distance from that configuration: [0.83375292] @@ -3593,31 +4166,31 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 40 in the X datas point --------------- - --- Configuration: 3300-1000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 2 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 2 in the X datas point -------------- --- Configuration: 0303-0100 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 6956231392.081026 --- Energy: 53.38267358149647 --- Workload: 371343000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 21 in the X datas point -------------- --- Configuration: 3333-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 8296551953.00833 --- Energy: 59.045602086542516 --- Workload: 489874000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 11 in the X datas point -------------- --- Configuration: 3303-0001 --- Distance from that configuration: [0.76130039] @@ -3625,6 +4198,14 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.94594005320708 --- Workload: 498819000000.0 -------------- +--- Neighbour 8 in the list of neghbours, And at position 73 in the X datas point +-------------- + --- Configuration: 3003-0002 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7595205906.032112 + --- Energy: 65.80063109114849 + --- Workload: 499771000000.0 +-------------- --- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point -------------- --- Configuration: 3303-1010 @@ -3634,53 +4215,53 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Workload: 629393000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 20 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 2 in the X datas point -------------- - --- Configuration: 3330-0000 - --- Energy efficiency: 5377240292.736961 - --- Energy: 32.51205394198035 - --- Workload: 174825000000.0 + --- Configuration: 0303-0100 + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (59.94594005320708 mAh) is far from the median. ---- Median :32.51205394198035, the gap is : 10 ---- So yes we remove this configuration '3303-0001' ---- remove_aberrant_points: The value [2.0, 1, 1, 0, 0.0, 0, 0, 0, 0, 1] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0] +--- The energy of the current configuration (53.38267358149647 mAh) it is NOT far from the median. +--- Median :53.38267358149647, the gap is : 10 +--- So No we don't romove this configuration '3303-0001' + --- remove_aberrant_points: The value [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0] --- Computing the list of the 10 first neighbours of '0022-0030' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -3690,60 +4271,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0022-0030' --- Neighbour 0 in the list of neghbours, And at position 12 in the X datas point @@ -3762,7 +4373,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 53.35616382684589 --- Workload: 371205000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 3 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 64 in the X datas point +-------------- + --- Configuration: 0220-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 3 in the X datas point -------------- --- Configuration: 2222-0220 --- Distance from that configuration: [0.69514393] @@ -3770,47 +4389,47 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 54.74622776577034 --- Workload: 617864000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 66 in the X datas point -------------- - --- Configuration: 0020-0010 + --- Configuration: 0110-0020 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 76 in the X datas point +-------------- + --- Configuration: 2020-0022 --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8754497623.153894 + --- Energy: 65.93701913313123 + --- Workload: 577244000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.63473642] --- Energy efficiency: 3998672440.749671 --- Energy: 36.82601141845538 --- Workload: 147255000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 8 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 8 in the X datas point -------------- --- Configuration: 0020-0202 - --- Distance from that configuration: [0.69514393] + --- Distance from that configuration: [0.63473642] --- Energy efficiency: 8089829466.394849 --- Energy: 66.44909360627778 --- Workload: 537560000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 9 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 9 in the X datas point -------------- --- Configuration: 0010-3300 - --- Distance from that configuration: [0.69514393] + --- Distance from that configuration: [0.63473642] --- Energy efficiency: 6532788063.289651 --- Energy: 42.64544340651106 --- Workload: 278594000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 24 in the X datas point --------------- - --- Configuration: 0000-3000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 3307720550.5370083 - --- Energy: 35.59789292409111 - --- Workload: 117748000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 26 in the X datas point --------------- - --- Configuration: 0000-3330 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7665772326.561901 - --- Energy: 48.682465076838824 - --- Workload: 373189000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 22 in the X datas point -------------- --- Configuration: 3333-3000 --- Distance from that configuration: [0.63473642] @@ -3818,24 +4437,24 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 66.34289826476824 --- Workload: 623684000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 25 in the X datas point --------------- - --- Configuration: 0000-3300 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 5789616901.049658 - --- Energy: 42.05795824330537 - --- Workload: 243499000000.0 --------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '0022-0030' ---- Neighbour 0 in the list of neghbours, And at position 24 in the X datas point +--- Neighbour 0 in the list of neghbours, And at position 66 in the X datas point -------------- - --- Configuration: 0000-3000 + --- Configuration: 0110-0020 --- Distance from that configuration: [1.] - --- Energy efficiency: 3307720550.5370083 - --- Energy: 35.59789292409111 - --- Workload: 117748000000.0 + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 64 in the X datas point +-------------- + --- Configuration: 0220-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 6 in the X datas point -------------- --- Configuration: 0020-0010 --- Distance from that configuration: [0.76130039] @@ -3843,7 +4462,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.82601141845538 --- Workload: 147255000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 12 in the X datas point -------------- --- Configuration: 0022-0030 --- Distance from that configuration: [0.69514393] @@ -3851,14 +4470,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.05401520354165 --- Workload: 304885000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 25 in the X datas point --------------- - --- Configuration: 0000-3300 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 5789616901.049658 - --- Energy: 42.05795824330537 - --- Workload: 243499000000.0 --------------- --- Neighbour 4 in the list of neghbours, And at position 9 in the X datas point -------------- --- Configuration: 0010-3300 @@ -3867,15 +4478,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.64544340651106 --- Workload: 278594000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 26 in the X datas point --------------- - --- Configuration: 0000-3330 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7665772326.561901 - --- Energy: 48.682465076838824 - --- Workload: 373189000000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 1 in the X datas point -------------- --- Configuration: 0033-3000 --- Distance from that configuration: [0.69514393] @@ -3883,14 +4486,22 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 53.35616382684589 --- Workload: 371205000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 3 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 3 in the X datas point -------------- --- Configuration: 2222-0220 - --- Distance from that configuration: [0.69514393] + --- Distance from that configuration: [0.63473642] --- Energy efficiency: 11285968381.230984 --- Energy: 54.74622776577034 --- Workload: 617864000000.0 -------------- +--- Neighbour 7 in the list of neghbours, And at position 76 in the X datas point +-------------- + --- Configuration: 2020-0022 + --- Distance from that configuration: [0.63473642] + --- Energy efficiency: 8754497623.153894 + --- Energy: 65.93701913313123 + --- Workload: 577244000000.0 +-------------- --- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point -------------- --- Configuration: 3333-3000 @@ -3919,42 +4530,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- The energy of the current configuration (42.64544340651106 mAh) it is NOT far from the median. --- Median :42.64544340651106, the gap is : 10 --- So No we don't romove this configuration '0022-0030' - --- remove_aberrant_points: The value [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0] + --- remove_aberrant_points: The value [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0] --- Computing the list of the 10 first neighbours of '0011-1100' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -3964,60 +4575,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0011-1100' --- Neighbour 0 in the list of neghbours, And at position 13 in the X datas point @@ -4036,70 +4677,70 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 50.74428137607953 --- Workload: 454872000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 16 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 50 in the X datas point -------------- - --- Configuration: 0000-0000 + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 0.08333333333333333 --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 17 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 17 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 0.08333333333333333 --- Energy: 30.027102694886654 --- Workload: 0.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 32 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 32 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 0.08333333333333333 --- Energy: 29.957415812958512 --- Workload: 0.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 46 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 46 in the X datas point -------------- --- Configuration: 1000-1000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 4062233415.93208 --- Energy: 36.86022362180361 --- Workload: 149735000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 6 in the X datas point --------------- - --- Configuration: 0020-0010 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 7 in the X datas point --------------- - --- Configuration: 1000-1010 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 8 in the X datas point --------------- - --- Configuration: 0020-0202 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 8089829466.394849 - --- Energy: 66.44909360627778 - --- Workload: 537560000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 9 in the X datas point --------------- - --- Configuration: 0010-3300 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6532788063.289651 - --- Energy: 42.64544340651106 - --- Workload: 278594000000.0 --------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '0011-1100' --- Neighbour 0 in the list of neghbours, And at position 32 in the X datas point -------------- @@ -4125,15 +4766,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 53 in the X datas point -------------- - --- Configuration: 0020-0010 + --- Configuration: 0000-1000 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 46 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 46 in the X datas point -------------- --- Configuration: 1000-1000 --- Distance from that configuration: [0.76130039] @@ -4141,23 +4790,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.86022362180361 --- Workload: 149735000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 9 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 55 in the X datas point -------------- - --- Configuration: 0010-3300 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6532788063.289651 - --- Energy: 42.64544340651106 - --- Workload: 278594000000.0 + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 7 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 50 in the X datas point -------------- - --- Configuration: 1000-1010 + --- Configuration: 1000-1100 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 13 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 13 in the X datas point -------------- --- Configuration: 0011-1100 --- Distance from that configuration: [0.69514393] @@ -4165,7 +4814,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 43.82652071469574 --- Workload: 335276000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 10 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 10 in the X datas point -------------- --- Configuration: 0011-0111 --- Distance from that configuration: [0.69514393] @@ -4173,62 +4822,54 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 50.74428137607953 --- Workload: 454872000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 8 in the X datas point --------------- - --- Configuration: 0020-0202 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 8089829466.394849 - --- Energy: 66.44909360627778 - --- Workload: 537560000000.0 --------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 46 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 63 in the X datas point -------------- - --- Configuration: 1000-1000 - --- Energy efficiency: 4062233415.93208 - --- Energy: 36.86022362180361 - --- Workload: 149735000000.0 + --- Configuration: 0001-0200 + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (36.86022362180361 mAh) it is NOT far from the median. ---- Median :36.86022362180361, the gap is : 10 +--- The energy of the current configuration (36.59285860316189 mAh) it is NOT far from the median. +--- Median :36.59285860316189, the gap is : 10 --- So No we don't romove this configuration '0011-1100' - --- remove_aberrant_points: The value [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [2.0, 1, 1, 0, 0.0, 0, 1, 0, 1, 0] + --- remove_aberrant_points: The value [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 1, 0, 1, 0.0, 1, 0, 1, 0] --- Computing the list of the 10 first neighbours of '3303-1010' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -4238,60 +4879,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3303-1010' --- Neighbour 0 in the list of neghbours, And at position 14 in the X datas point @@ -4313,101 +4984,85 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 2 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5058399218.983161 --- Energy: 36.78276420172299 --- Workload: 186062000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 4 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 65 in the X datas point -------------- - --- Configuration: 3000-1110 + --- Configuration: 0303-1000 --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 4 in the X datas point +-------------- + --- Configuration: 3000-1110 + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 8096707069.234942 --- Energy: 49.41467631934382 --- Workload: 400095000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 1980229389.772511 --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 21 in the X datas point +-------------- + --- Configuration: 3333-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8296551953.00833 + --- Energy: 59.045602086542516 + --- Workload: 489874000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 5026691733.102776 --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 44 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 44 in the X datas point -------------- --- Configuration: 3000-1000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 5326600510.288329 --- Energy: 36.46450751429702 --- Workload: 194232000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 11 in the X datas point --------------- - --- Configuration: 3303-0001 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 18 in the X datas point --------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 1016987763.6032282 - --- Energy: 29.060137396486432 - --- Workload: 29553800000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 20 in the X datas point --------------- - --- Configuration: 3330-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 5377240292.736961 - --- Energy: 32.51205394198035 - --- Workload: 174825000000.0 --------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3303-1010' ---- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point --------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 1016987763.6032282 - --- Energy: 29.060137396486432 - --- Workload: 29553800000.0 --------------- ---- Neighbour 1 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 0 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [1.] --- Energy efficiency: 1980229389.772511 --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 20 in the X datas point --------------- - --- Configuration: 3330-0000 - --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 5377240292.736961 - --- Energy: 32.51205394198035 - --- Workload: 174825000000.0 --------------- ---- Neighbour 3 in the list of neghbours, And at position 44 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 44 in the X datas point -------------- --- Configuration: 3000-1000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 5326600510.288329 --- Energy: 36.46450751429702 --- Workload: 194232000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 --- Distance from that configuration: [0.83375292] @@ -4415,7 +5070,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.78276420172299 --- Workload: 186062000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 --- Distance from that configuration: [0.83375292] @@ -4423,14 +5078,30 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 4 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 4 in the X datas point -------------- --- Configuration: 3000-1110 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 8096707069.234942 --- Energy: 49.41467631934382 --- Workload: 400095000000.0 -------------- +--- Neighbour 5 in the list of neghbours, And at position 65 in the X datas point +-------------- + --- Configuration: 0303-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 21 in the X datas point +-------------- + --- Configuration: 3333-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8296551953.00833 + --- Energy: 59.045602086542516 + --- Workload: 489874000000.0 +-------------- --- Neighbour 7 in the list of neghbours, And at position 11 in the X datas point -------------- --- Configuration: 3303-0001 @@ -4456,53 +5127,53 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Workload: 629393000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 40 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 4 in the X datas point -------------- - --- Configuration: 3300-1000 - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 + --- Configuration: 3000-1110 + --- Energy efficiency: 8096707069.234942 + --- Energy: 49.41467631934382 + --- Workload: 400095000000.0 -------------- --- Comparing the median energy with the energy of that data point --- The energy of the current configuration (67.3857084084629 mAh) is far from the median. ---- Median :36.78276420172299, the gap is : 10 +--- Median :49.41467631934382, the gap is : 10 --- So yes we remove this configuration '3303-1010' ---- remove_aberrant_points: The value [2.0, 1, 1, 0, 0.0, 0, 1, 0, 1, 0] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [2.0, 0, 0, 0, 0.0, 0, 1, 0, 0, 1] +--- remove_aberrant_points: The value [2.0, 1, 1, 0, 1, 0.0, 1, 0, 1, 0] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1] --- Computing the list of the 10 first neighbours of '0003-1001' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -4512,60 +5183,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0003-1001' --- Neighbour 0 in the list of neghbours, And at position 15 in the X datas point @@ -4576,15 +5277,39 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 54.44253148500697 --- Workload: 370545000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 44 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 65 in the X datas point -------------- - --- Configuration: 3000-1000 + --- Configuration: 0303-1000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5326600510.288329 - --- Energy: 36.46450751429702 - --- Workload: 194232000000.0 + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 0 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 70 in the X datas point +-------------- + --- Configuration: 0202-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 71 in the X datas point +-------------- + --- Configuration: 3003-1101 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 9428892010.8998 + --- Energy: 67.46193459835338 + --- Workload: 636090000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 0 in the X datas point -------------- --- Configuration: 0303-1010 --- Distance from that configuration: [0.76130039] @@ -4592,15 +5317,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 61.00540758755291 --- Workload: 502499000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 5 in the X datas point --------------- - --- Configuration: 0030-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 994906080.8659663 - --- Energy: 29.623247258891045 - --- Workload: 29472300000.0 --------------- ---- Neighbour 4 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 11 in the X datas point -------------- --- Configuration: 3303-0001 --- Distance from that configuration: [0.76130039] @@ -4608,37 +5325,21 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.94594005320708 --- Workload: 498819000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 18 in the X datas point --------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 1016987763.6032282 - --- Energy: 29.060137396486432 - --- Workload: 29553800000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 35 in the X datas point --------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 1010122436.9405816 - --- Energy: 29.239529117166907 - --- Workload: 29535500000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 44 in the X datas point -------------- - --- Configuration: 3300-1000 + --- Configuration: 3000-1000 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 73 in the X datas point -------------- - --- Configuration: 3000-2000 + --- Configuration: 3003-0002 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 4059018123.5159216 - --- Energy: 36.96583597689362 - --- Workload: 150045000000.0 + --- Energy efficiency: 7595205906.032112 + --- Energy: 65.80063109114849 + --- Workload: 499771000000.0 -------------- --- Neighbour 9 in the list of neghbours, And at position 2 in the X datas point -------------- @@ -4649,63 +5350,47 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Workload: 371343000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '0003-1001' ---- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point --------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 1016987763.6032282 - --- Energy: 29.060137396486432 - --- Workload: 29553800000.0 --------------- ---- Neighbour 1 in the list of neghbours, And at position 35 in the X datas point --------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 1010122436.9405816 - --- Energy: 29.239529117166907 - --- Workload: 29535500000.0 --------------- ---- Neighbour 2 in the list of neghbours, And at position 5 in the X datas point --------------- - --- Configuration: 0030-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 994906080.8659663 - --- Energy: 29.623247258891045 - --- Workload: 29472300000.0 --------------- ---- Neighbour 3 in the list of neghbours, And at position 44 in the X datas point +--- Neighbour 0 in the list of neghbours, And at position 44 in the X datas point -------------- --- Configuration: 3000-1000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [1.] --- Energy efficiency: 5326600510.288329 --- Energy: 36.46450751429702 --- Workload: 194232000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 68 in the X datas point -------------- - --- Configuration: 3300-1000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 + --- Configuration: 2002-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 70 in the X datas point -------------- - --- Configuration: 3000-2000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 4059018123.5159216 - --- Energy: 36.96583597689362 - --- Workload: 150045000000.0 + --- Configuration: 0202-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 2 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 2 in the X datas point -------------- --- Configuration: 0303-0100 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 6956231392.081026 --- Energy: 53.38267358149647 --- Workload: 371343000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 15 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 65 in the X datas point +-------------- + --- Configuration: 0303-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 15 in the X datas point -------------- --- Configuration: 0003-1001 --- Distance from that configuration: [0.76130039] @@ -4713,7 +5398,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 54.44253148500697 --- Workload: 370545000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 11 in the X datas point -------------- --- Configuration: 3303-0001 --- Distance from that configuration: [0.76130039] @@ -4721,62 +5406,78 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.94594005320708 --- Workload: 498819000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 0 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 0 in the X datas point -------------- --- Configuration: 0303-1010 - --- Distance from that configuration: [0.69514393] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 8236960890.90969 --- Energy: 61.00540758755291 --- Workload: 502499000000.0 -------------- +--- Neighbour 8 in the list of neghbours, And at position 73 in the X datas point -------------- ---- Median at position 4 in the list of neghbours, And at position 40 in the X datas point + --- Configuration: 3003-0002 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7595205906.032112 + --- Energy: 65.80063109114849 + --- Workload: 499771000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 71 in the X datas point +-------------- + --- Configuration: 3003-1101 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9428892010.8998 + --- Energy: 67.46193459835338 + --- Workload: 636090000000.0 -------------- - --- Configuration: 3300-1000 - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 +-------------- +--- Median at position 4 in the list of neghbours, And at position 65 in the X datas point +-------------- + --- Configuration: 0303-1000 + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (54.44253148500697 mAh) is far from the median. ---- Median :36.78276420172299, the gap is : 10 ---- So yes we remove this configuration '0003-1001' ---- remove_aberrant_points: The value [2.0, 0, 0, 0, 0.0, 0, 1, 0, 0, 1] is an abberant point. we don't add it +--- The energy of the current configuration (53.6166443408558 mAh) it is NOT far from the median. +--- Median :53.6166443408558, the gap is : 10 +--- So No we don't romove this configuration '0003-1001' + --- remove_aberrant_points: The value [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1] is not an abberant point. --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '0000-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -4786,60 +5487,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0000-0000' --- Neighbour 0 in the list of neghbours, And at position 16 in the X datas point @@ -4874,7 +5605,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.543907709942122 --- Workload: 29470600000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 34 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 59 in the X datas point +-------------- + --- Configuration: 0000-0001 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 34 in the X datas point -------------- --- Configuration: 2000-0000 --- Distance from that configuration: [0.83375292] @@ -4882,7 +5629,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.02206558996354 --- Workload: 29457300000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 36 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 36 in the X datas point -------------- --- Configuration: 1100-0000 --- Distance from that configuration: [0.83375292] @@ -4890,7 +5637,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.059275323795035 --- Workload: 60678300000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 46 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 46 in the X datas point -------------- --- Configuration: 1000-1000 --- Distance from that configuration: [0.83375292] @@ -4898,29 +5645,13 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.86022362180361 --- Workload: 149735000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 6 in the X datas point --------------- - --- Configuration: 0020-0010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 7 in the X datas point --------------- - --- Configuration: 1000-1010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 13 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 54 in the X datas point -------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '0000-0000' --- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point @@ -4958,7 +5689,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 4 in the list of neghbours, And at position 36 in the X datas point -------------- --- Configuration: 1100-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 2018619748.5607243 --- Energy: 30.059275323795035 --- Workload: 60678300000.0 @@ -4966,42 +5697,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 5 in the list of neghbours, And at position 16 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 0.08333333333333333 --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 54 in the X datas point -------------- - --- Configuration: 0020-0010 + --- Configuration: 0000-2000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 46 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 53 in the X datas point -------------- - --- Configuration: 1000-1000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 4062233415.93208 - --- Energy: 36.86022362180361 - --- Workload: 149735000000.0 + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 7 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 59 in the X datas point -------------- - --- Configuration: 1000-1010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 + --- Configuration: 0000-0001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 13 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 46 in the X datas point -------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 -------------- -------------- --- Median at position 4 in the list of neghbours, And at position 36 in the X datas point @@ -5019,38 +5750,38 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '0000-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -5060,60 +5791,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0000-0000' --- Neighbour 0 in the list of neghbours, And at position 16 in the X datas point @@ -5148,7 +5909,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.543907709942122 --- Workload: 29470600000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 34 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 59 in the X datas point +-------------- + --- Configuration: 0000-0001 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 34 in the X datas point -------------- --- Configuration: 2000-0000 --- Distance from that configuration: [0.83375292] @@ -5156,7 +5933,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.02206558996354 --- Workload: 29457300000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 36 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 36 in the X datas point -------------- --- Configuration: 1100-0000 --- Distance from that configuration: [0.83375292] @@ -5164,7 +5941,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.059275323795035 --- Workload: 60678300000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 46 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 46 in the X datas point -------------- --- Configuration: 1000-1000 --- Distance from that configuration: [0.83375292] @@ -5172,32 +5949,16 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.86022362180361 --- Workload: 149735000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 54 in the X datas point -------------- - --- Configuration: 0020-0010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 7 in the X datas point --------------- - --- Configuration: 1000-1010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 13 in the X datas point --------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 --------------- ---- Ordered by energy, Printing the list of the 10 first neighbours of '0000-0000' ---- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point +--- Ordered by energy, Printing the list of the 10 first neighbours of '0000-0000' +--- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point -------------- --- Configuration: 2000-0000 --- Distance from that configuration: [1.] @@ -5232,7 +5993,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 4 in the list of neghbours, And at position 36 in the X datas point -------------- --- Configuration: 1100-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 2018619748.5607243 --- Energy: 30.059275323795035 --- Workload: 60678300000.0 @@ -5240,42 +6001,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 5 in the list of neghbours, And at position 16 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 0.08333333333333333 --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 54 in the X datas point -------------- - --- Configuration: 0020-0010 + --- Configuration: 0000-2000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 46 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 53 in the X datas point -------------- - --- Configuration: 1000-1000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 4062233415.93208 - --- Energy: 36.86022362180361 - --- Workload: 149735000000.0 + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 7 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 59 in the X datas point -------------- - --- Configuration: 1000-1010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 + --- Configuration: 0000-0001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 13 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 46 in the X datas point -------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 -------------- -------------- --- Median at position 4 in the list of neghbours, And at position 36 in the X datas point @@ -5293,38 +6054,38 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3000-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -5334,60 +6095,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3000-0000' --- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point @@ -5438,15 +6229,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.623247258891045 --- Workload: 29472300000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 11 in the X datas point --------------- - --- Configuration: 3303-0001 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 20 in the X datas point -------------- --- Configuration: 3330-0000 --- Distance from that configuration: [0.83375292] @@ -5454,15 +6237,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 21 in the X datas point --------------- - --- Configuration: 3333-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 37 in the X datas point -------------- --- Configuration: 2200-0000 --- Distance from that configuration: [0.83375292] @@ -5470,6 +6245,22 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.07061597004587 --- Workload: 60106800000.0 -------------- +--- Neighbour 8 in the list of neghbours, And at position 40 in the X datas point +-------------- + --- Configuration: 3300-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5058399218.983161 + --- Energy: 36.78276420172299 + --- Workload: 186062000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3000-0000' --- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point -------------- @@ -5535,21 +6326,21 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.46450751429702 --- Workload: 194232000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 40 in the X datas point -------------- - --- Configuration: 3333-0000 + --- Configuration: 3300-1000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 + --- Energy efficiency: 5058399218.983161 + --- Energy: 36.78276420172299 + --- Workload: 186062000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 45 in the X datas point -------------- - --- Configuration: 3303-0001 + --- Configuration: 3000-2000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 -------------- -------------- --- Median at position 4 in the list of neghbours, And at position 37 in the X datas point @@ -5567,38 +6358,38 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- remove_aberrant_points: do we remove value [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3300-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -5608,60 +6399,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3300-0000' --- Neighbour 0 in the list of neghbours, And at position 19 in the X datas point @@ -5672,15 +6493,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 11 in the X datas point --------------- - --- Configuration: 3303-0001 - --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 --------------- ---- Neighbour 2 in the list of neghbours, And at position 18 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 18 in the X datas point -------------- --- Configuration: 3000-0000 --- Distance from that configuration: [0.91310072] @@ -5688,7 +6501,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.060137396486432 --- Workload: 29553800000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 20 in the X datas point -------------- --- Configuration: 3330-0000 --- Distance from that configuration: [0.91310072] @@ -5696,15 +6509,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 21 in the X datas point --------------- - --- Configuration: 3333-0000 - --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 --------------- ---- Neighbour 5 in the list of neghbours, And at position 35 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 35 in the X datas point -------------- --- Configuration: 3000-0000 --- Distance from that configuration: [0.91310072] @@ -5712,7 +6517,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.239529117166907 --- Workload: 29535500000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 37 in the X datas point -------------- --- Configuration: 2200-0000 --- Distance from that configuration: [0.91310072] @@ -5720,7 +6525,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.07061597004587 --- Workload: 60106800000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 --- Distance from that configuration: [0.91310072] @@ -5728,32 +6533,56 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.78276420172299 --- Workload: 186062000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 2 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 11 in the X datas point -------------- - --- Configuration: 0303-0100 + --- Configuration: 3303-0001 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 6956231392.081026 - --- Energy: 53.38267358149647 - --- Workload: 371343000000.0 + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 21 in the X datas point -------------- - --- Configuration: 3303-1010 + --- Configuration: 3333-0000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9340120487.55429 - --- Energy: 67.3857084084629 - --- Workload: 629393000000.0 + --- Energy efficiency: 8296551953.00833 + --- Energy: 59.045602086542516 + --- Workload: 489874000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3300-0000' ---- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point +--- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point -------------- - --- Configuration: 3000-0000 + --- Configuration: 2000-0000 --- Distance from that configuration: [1.] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 18 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 1016987763.6032282 --- Energy: 29.060137396486432 --- Workload: 29553800000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 35 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 35 in the X datas point -------------- --- Configuration: 3000-0000 --- Distance from that configuration: [0.91310072] @@ -5761,7 +6590,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.239529117166907 --- Workload: 29535500000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 37 in the X datas point -------------- --- Configuration: 2200-0000 --- Distance from that configuration: [0.91310072] @@ -5769,7 +6598,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.07061597004587 --- Workload: 60106800000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 --- Distance from that configuration: [0.91310072] @@ -5777,39 +6606,39 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 39 in the X datas point -------------- - --- Configuration: 3330-0000 + --- Configuration: 2220-0000 --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 5377240292.736961 - --- Energy: 32.51205394198035 - --- Workload: 174825000000.0 + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 20 in the X datas point +-------------- + --- Configuration: 3330-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5377240292.736961 + --- Energy: 32.51205394198035 + --- Workload: 174825000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5058399218.983161 --- Energy: 36.78276420172299 --- Workload: 186062000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 2 in the X datas point --------------- - --- Configuration: 0303-0100 - --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 6956231392.081026 - --- Energy: 53.38267358149647 - --- Workload: 371343000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 21 in the X datas point -------------- --- Configuration: 3333-0000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 8296551953.00833 --- Energy: 59.045602086542516 --- Workload: 489874000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 11 in the X datas point -------------- --- Configuration: 3303-0001 --- Distance from that configuration: [0.83375292] @@ -5817,62 +6646,54 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.94594005320708 --- Workload: 498819000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point --------------- - --- Configuration: 3303-1010 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9340120487.55429 - --- Energy: 67.3857084084629 - --- Workload: 629393000000.0 --------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 20 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 19 in the X datas point -------------- - --- Configuration: 3330-0000 - --- Energy efficiency: 5377240292.736961 - --- Energy: 32.51205394198035 - --- Workload: 174825000000.0 + --- Configuration: 3300-0000 + --- Energy efficiency: 1980229389.772511 + --- Energy: 30.277288658122774 + --- Workload: 59956000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (32.51205394198035 mAh) it is NOT far from the median. ---- Median :32.51205394198035, the gap is : 10 +--- The energy of the current configuration (30.277288658122774 mAh) it is NOT far from the median. +--- Median :30.277288658122774, the gap is : 10 --- So No we don't romove this configuration '3300-0000' --- remove_aberrant_points: The value [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] is not an abberant point. --- remove_aberrant_points: do we remove value [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3330-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -5882,60 +6703,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3330-0000' --- Neighbour 0 in the list of neghbours, And at position 20 in the X datas point @@ -5946,15 +6797,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 21 in the X datas point --------------- - --- Configuration: 3333-0000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 --------------- ---- Neighbour 2 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 --- Distance from that configuration: [0.91310072] @@ -5962,6 +6805,14 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- +--- Neighbour 2 in the list of neghbours, And at position 21 in the X datas point +-------------- + --- Configuration: 3333-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 8296551953.00833 + --- Energy: 59.045602086542516 + --- Workload: 489874000000.0 +-------------- --- Neighbour 3 in the list of neghbours, And at position 39 in the X datas point -------------- --- Configuration: 2220-0000 @@ -5970,7 +6821,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 5 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 5 in the X datas point -------------- --- Configuration: 0030-0000 --- Distance from that configuration: [0.83375292] @@ -5978,14 +6837,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.623247258891045 --- Workload: 29472300000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 11 in the X datas point --------------- - --- Configuration: 3303-0001 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 --------------- --- Neighbour 6 in the list of neghbours, And at position 18 in the X datas point -------------- --- Configuration: 3000-0000 @@ -6030,7 +6881,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 1 in the list of neghbours, And at position 35 in the X datas point -------------- --- Configuration: 3000-0000 - --- Distance from that configuration: [1.] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 1010122436.9405816 --- Energy: 29.239529117166907 --- Workload: 29535500000.0 @@ -6054,7 +6905,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 4 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 1980229389.772511 --- Energy: 30.277288658122774 --- Workload: 59956000000.0 @@ -6067,7 +6918,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 20 in the X datas point -------------- --- Configuration: 3330-0000 --- Distance from that configuration: [0.83375292] @@ -6075,7 +6934,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 --- Distance from that configuration: [0.83375292] @@ -6083,7 +6942,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.78276420172299 --- Workload: 186062000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 21 in the X datas point -------------- --- Configuration: 3333-0000 --- Distance from that configuration: [0.83375292] @@ -6091,14 +6950,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 59.045602086542516 --- Workload: 489874000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 11 in the X datas point --------------- - --- Configuration: 3303-0001 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 --------------- -------------- --- Median at position 4 in the list of neghbours, And at position 19 in the X datas point -------------- @@ -6112,41 +6963,41 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Median :30.277288658122774, the gap is : 10 --- So No we don't romove this configuration '3330-0000' --- remove_aberrant_points: The value [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] + --- remove_aberrant_points: do we remove value [2.0, 1, 1, 1, 1, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3333-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -6156,142 +7007,172 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3333-0000' ---- Neighbour 0 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 0 in the list of neghbours, And at position 21 in the X datas point -------------- - --- Configuration: 3330-0000 + --- Configuration: 3333-0000 --- Distance from that configuration: [1.] + --- Energy efficiency: 8296551953.00833 + --- Energy: 59.045602086542516 + --- Workload: 489874000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 20 in the X datas point +-------------- + --- Configuration: 3330-0000 + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 5377240292.736961 --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 11 in the X datas point -------------- - --- Configuration: 3333-0000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 1980229389.772511 --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 39 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 39 in the X datas point -------------- --- Configuration: 2220-0000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 3029054692.61153 --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 5 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 75 in the X datas point -------------- - --- Configuration: 0030-0000 + --- Configuration: 2220-0000 --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 2 in the X datas point +-------------- + --- Configuration: 0303-0100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 5 in the X datas point +-------------- + --- Configuration: 0030-0000 + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 994906080.8659663 --- Energy: 29.623247258891045 --- Workload: 29472300000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 14 in the X datas point -------------- - --- Configuration: 3303-0001 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 + --- Configuration: 3303-1010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 18 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 18 in the X datas point -------------- --- Configuration: 3000-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 1016987763.6032282 --- Energy: 29.060137396486432 --- Workload: 29553800000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 35 in the X datas point --------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 1010122436.9405816 - --- Energy: 29.239529117166907 - --- Workload: 29535500000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 37 in the X datas point --------------- - --- Configuration: 2200-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 1998856653.9939156 - --- Energy: 30.07061597004587 - --- Workload: 60106800000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 40 in the X datas point --------------- - --- Configuration: 3300-1000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 --------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3333-0000' --- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point -------------- @@ -6301,15 +7182,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.060137396486432 --- Workload: 29553800000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 35 in the X datas point --------------- - --- Configuration: 3000-0000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 1010122436.9405816 - --- Energy: 29.239529117166907 - --- Workload: 29535500000.0 --------------- ---- Neighbour 2 in the list of neghbours, And at position 5 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 5 in the X datas point -------------- --- Configuration: 0030-0000 --- Distance from that configuration: [0.91310072] @@ -6317,15 +7190,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.623247258891045 --- Workload: 29472300000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 37 in the X datas point --------------- - --- Configuration: 2200-0000 - --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 1998856653.9939156 - --- Energy: 30.07061597004587 - --- Workload: 60106800000.0 --------------- ---- Neighbour 4 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 --- Distance from that configuration: [0.83375292] @@ -6333,7 +7198,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 39 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 39 in the X datas point -------------- --- Configuration: 2220-0000 --- Distance from that configuration: [0.83375292] @@ -6341,7 +7206,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 20 in the X datas point -------------- --- Configuration: 3330-0000 --- Distance from that configuration: [0.83375292] @@ -6349,78 +7222,86 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 2 in the X datas point -------------- - --- Configuration: 3300-1000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 + --- Configuration: 0303-0100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 21 in the X datas point -------------- --- Configuration: 3333-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 8296551953.00833 --- Energy: 59.045602086542516 --- Workload: 489874000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 11 in the X datas point -------------- --- Configuration: 3303-0001 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 8321129010.784183 --- Energy: 59.94594005320708 --- Workload: 498819000000.0 -------------- +--- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point -------------- ---- Median at position 4 in the list of neghbours, And at position 19 in the X datas point + --- Configuration: 3303-1010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 -------------- - --- Configuration: 3300-0000 - --- Energy efficiency: 1980229389.772511 - --- Energy: 30.277288658122774 - --- Workload: 59956000000.0 +-------------- +--- Median at position 4 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 -------------- --- Comparing the median energy with the energy of that data point --- The energy of the current configuration (59.045602086542516 mAh) is far from the median. ---- Median :30.277288658122774, the gap is : 10 +--- Median :30.63396781022152, the gap is : 10 --- So yes we remove this configuration '3333-0000' ---- remove_aberrant_points: The value [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0] +--- remove_aberrant_points: The value [2.0, 1, 1, 1, 1, 0, 0, 0, 0, 0] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [2.0, 1, 1, 1, 1, 2.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3333-3000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -6430,60 +7311,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3333-3000' --- Neighbour 0 in the list of neghbours, And at position 22 in the X datas point @@ -6494,15 +7405,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 66.34289826476824 --- Workload: 623684000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 28 in the X datas point --------------- - --- Configuration: 3330-3000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 5822958761.806049 - --- Energy: 37.40635012737015 - --- Workload: 217816000000.0 --------------- ---- Neighbour 2 in the list of neghbours, And at position 23 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 23 in the X datas point -------------- --- Configuration: 3333-3300 --- Distance from that configuration: [0.91310072] @@ -6510,15 +7413,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 75.09852863759252 --- Workload: 748237000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 28 in the X datas point -------------- - --- Configuration: 3300-3000 + --- Configuration: 3330-3000 --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 5072151352.996373 - --- Energy: 36.711179058531826 - --- Workload: 186205000000.0 + --- Energy efficiency: 5822958761.806049 + --- Energy: 37.40635012737015 + --- Workload: 217816000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 1 in the X datas point -------------- --- Configuration: 0033-3000 --- Distance from that configuration: [0.83375292] @@ -6526,10 +7429,18 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 53.35616382684589 --- Workload: 371205000000.0 -------------- +--- Neighbour 4 in the list of neghbours, And at position 27 in the X datas point +-------------- + --- Configuration: 3300-3000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5072151352.996373 + --- Energy: 36.711179058531826 + --- Workload: 186205000000.0 +-------------- --- Neighbour 5 in the list of neghbours, And at position 29 in the X datas point -------------- --- Configuration: 3000-3000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 4149980287.5936337 --- Energy: 36.1860248822606 --- Workload: 150171000000.0 @@ -6537,7 +7448,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 6 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 5026691733.102776 --- Energy: 36.9852979298838 --- Workload: 185914000000.0 @@ -6545,7 +7456,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 7 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 6611133148.221605 --- Energy: 42.19510352720739 --- Workload: 278957000000.0 @@ -6553,7 +7464,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 8 in the list of neghbours, And at position 43 in the X datas point -------------- --- Configuration: 2200-2000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 5035525633.343237 --- Energy: 36.93355197432356 --- Workload: 185980000000.0 @@ -6561,7 +7472,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 9 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 4059018123.5159216 --- Energy: 36.96583597689362 --- Workload: 150045000000.0 @@ -6578,7 +7489,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 1 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 - --- Distance from that configuration: [1.] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 5072151352.996373 --- Energy: 36.711179058531826 --- Workload: 186205000000.0 @@ -6594,7 +7505,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 3 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 4059018123.5159216 --- Energy: 36.96583597689362 --- Workload: 150045000000.0 @@ -6610,7 +7521,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 5 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 5822958761.806049 --- Energy: 37.40635012737015 --- Workload: 217816000000.0 @@ -6618,7 +7529,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 6 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 6611133148.221605 --- Energy: 42.19510352720739 --- Workload: 278957000000.0 @@ -6626,7 +7537,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 7 in the list of neghbours, And at position 1 in the X datas point -------------- --- Configuration: 0033-3000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 6957102505.948323 --- Energy: 53.35616382684589 --- Workload: 371205000000.0 @@ -6634,7 +7545,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point -------------- --- Configuration: 3333-3000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 9400881802.713095 --- Energy: 66.34289826476824 --- Workload: 623684000000.0 @@ -6642,7 +7553,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 9 in the list of neghbours, And at position 23 in the X datas point -------------- --- Configuration: 3333-3300 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 9963434196.49885 --- Energy: 75.09852863759252 --- Workload: 748237000000.0 @@ -6659,42 +7570,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- The energy of the current configuration (66.34289826476824 mAh) is far from the median. --- Median :36.9852979298838, the gap is : 10 --- So yes we remove this configuration '3333-3000' ---- remove_aberrant_points: The value [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [2.0, 1, 1, 1, 2.0, 0, 1, 1, 0, 0] +--- remove_aberrant_points: The value [2.0, 1, 1, 1, 1, 2.0, 1, 0, 0, 0] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [2.0, 1, 1, 1, 1, 2.0, 1, 1, 0, 0] --- Computing the list of the 10 first neighbours of '3333-3300' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -6704,60 +7615,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3333-3300' --- Neighbour 0 in the list of neghbours, And at position 23 in the X datas point @@ -6779,60 +7720,52 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 2 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5822958761.806049 --- Energy: 37.40635012737015 --- Workload: 217816000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 1 in the X datas point +-------------- + --- Configuration: 0033-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6957102505.948323 + --- Energy: 53.35616382684589 + --- Workload: 371205000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 5072151352.996373 --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 6611133148.221605 --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 1 in the X datas point --------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 29 in the X datas point --------------- - --- Configuration: 3000-3000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 4149980287.5936337 - --- Energy: 36.1860248822606 - --- Workload: 150171000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 31 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 52 in the X datas point -------------- - --- Configuration: 3000-3330 + --- Configuration: 3000-3300 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 8224428196.629629 - --- Energy: 49.410116578739654 - --- Workload: 406369000000.0 + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 61 in the X datas point -------------- - --- Configuration: 3300-2000 + --- Configuration: 3330-2220 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 5026691733.102776 - --- Energy: 36.9852979298838 - --- Workload: 185914000000.0 + --- Energy efficiency: 9229945635.620207 + --- Energy: 51.28077619994492 + --- Workload: 473319000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 3 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 3 in the X datas point -------------- --- Configuration: 2222-0220 --- Distance from that configuration: [0.69514393] @@ -6840,6 +7773,14 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 54.74622776577034 --- Workload: 617864000000.0 -------------- +--- Neighbour 9 in the list of neghbours, And at position 29 in the X datas point +-------------- + --- Configuration: 3000-3000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3333-3300' --- Neighbour 0 in the list of neghbours, And at position 29 in the X datas point -------------- @@ -6857,15 +7798,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 41 in the X datas point --------------- - --- Configuration: 3300-2000 - --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 5026691733.102776 - --- Energy: 36.9852979298838 - --- Workload: 185914000000.0 --------------- ---- Neighbour 3 in the list of neghbours, And at position 28 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 --- Distance from that configuration: [0.83375292] @@ -6873,21 +7806,29 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 37.40635012737015 --- Workload: 217816000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 6611133148.221605 --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 31 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 52 in the X datas point -------------- - --- Configuration: 3000-3330 + --- Configuration: 3000-3300 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 8224428196.629629 - --- Energy: 49.410116578739654 - --- Workload: 406369000000.0 + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 61 in the X datas point +-------------- + --- Configuration: 3330-2220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9229945635.620207 + --- Energy: 51.28077619994492 + --- Workload: 473319000000.0 -------------- --- Neighbour 6 in the list of neghbours, And at position 1 in the X datas point -------------- @@ -6908,7 +7849,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point -------------- --- Configuration: 3333-3000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 9400881802.713095 --- Energy: 66.34289826476824 --- Workload: 623684000000.0 @@ -6922,53 +7863,53 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Workload: 748237000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 30 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 52 in the X datas point -------------- --- Configuration: 3000-3300 - --- Energy efficiency: 6611133148.221605 - --- Energy: 42.19510352720739 - --- Workload: 278957000000.0 + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 -------------- --- Comparing the median energy with the energy of that data point --- The energy of the current configuration (75.09852863759252 mAh) is far from the median. ---- Median :42.19510352720739, the gap is : 10 +--- Median :42.474892742303716, the gap is : 10 --- So yes we remove this configuration '3333-3300' ---- remove_aberrant_points: The value [2.0, 1, 1, 1, 2.0, 0, 1, 1, 0, 0] is an abberant point. we don't add it - --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0] +--- remove_aberrant_points: The value [2.0, 1, 1, 1, 1, 2.0, 1, 1, 0, 0] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '0000-3000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -6978,60 +7919,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0000-3000' --- Neighbour 0 in the list of neghbours, And at position 24 in the X datas point @@ -7050,7 +8021,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.05795824330537 --- Workload: 243499000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 9 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 9 in the X datas point -------------- --- Configuration: 0010-3300 --- Distance from that configuration: [0.83375292] @@ -7058,7 +8037,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.64544340651106 --- Workload: 278594000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 26 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 26 in the X datas point -------------- --- Configuration: 0000-3330 --- Distance from that configuration: [0.83375292] @@ -7066,15 +8045,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 48.682465076838824 --- Workload: 373189000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 55 in the X datas point -------------- - --- Configuration: 0022-0030 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7249844128.351241 - --- Energy: 42.05401520354165 - --- Workload: 304885000000.0 + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 43 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 43 in the X datas point -------------- --- Configuration: 2200-2000 --- Distance from that configuration: [0.69514393] @@ -7082,119 +8069,103 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.93355197432356 --- Workload: 185980000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 1 in the X datas point --------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 16 in the X datas point --------------- - --- Configuration: 0000-0000 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 0.08333333333333333 - --- Energy: 30.299284062105812 - --- Workload: 0.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 17 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 0000-0000 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 0.08333333333333333 - --- Energy: 30.027102694886654 - --- Workload: 0.0 + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 29 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 53 in the X datas point -------------- - --- Configuration: 3000-3000 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 4149980287.5936337 - --- Energy: 36.1860248822606 - --- Workload: 150171000000.0 + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '0000-3000' ---- Neighbour 0 in the list of neghbours, And at position 17 in the X datas point +--- Neighbour 0 in the list of neghbours, And at position 54 in the X datas point -------------- - --- Configuration: 0000-0000 + --- Configuration: 0000-2000 --- Distance from that configuration: [1.] - --- Energy efficiency: 0.08333333333333333 - --- Energy: 30.027102694886654 - --- Workload: 0.0 + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 16 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 53 in the X datas point -------------- - --- Configuration: 0000-0000 + --- Configuration: 0000-1000 --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 0.08333333333333333 - --- Energy: 30.299284062105812 - --- Workload: 0.0 + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 -------------- --- Neighbour 2 in the list of neghbours, And at position 24 in the X datas point -------------- --- Configuration: 0000-3000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 3307720550.5370083 --- Energy: 35.59789292409111 --- Workload: 117748000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 29 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 47 in the X datas point -------------- - --- Configuration: 3000-3000 + --- Configuration: 2000-2000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 4149980287.5936337 - --- Energy: 36.1860248822606 - --- Workload: 150171000000.0 + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 -------------- --- Neighbour 4 in the list of neghbours, And at position 43 in the X datas point -------------- --- Configuration: 2200-2000 - --- Distance from that configuration: [0.69514393] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5035525633.343237 --- Energy: 36.93355197432356 --- Workload: 185980000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 12 in the X datas point --------------- - --- Configuration: 0022-0030 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7249844128.351241 - --- Energy: 42.05401520354165 - --- Workload: 304885000000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 25 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 25 in the X datas point -------------- --- Configuration: 0000-3300 - --- Distance from that configuration: [0.63473642] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5789616901.049658 --- Energy: 42.05795824330537 --- Workload: 243499000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 9 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 9 in the X datas point -------------- --- Configuration: 0010-3300 - --- Distance from that configuration: [0.63473642] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 6532788063.289651 --- Energy: 42.64544340651106 --- Workload: 278594000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 26 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 26 in the X datas point -------------- --- Configuration: 0000-3330 - --- Distance from that configuration: [0.63473642] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 7665772326.561901 --- Energy: 48.682465076838824 --- Workload: 373189000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 1 in the X datas point --------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 --------------- -------------- --- Median at position 4 in the list of neghbours, And at position 43 in the X datas point -------------- @@ -7207,42 +8178,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- The energy of the current configuration (36.93355197432356 mAh) it is NOT far from the median. --- Median :36.93355197432356, the gap is : 10 --- So No we don't romove this configuration '0000-3000' - --- remove_aberrant_points: The value [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0] + --- remove_aberrant_points: The value [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0] --- Computing the list of the 10 first neighbours of '0000-3300' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -7252,60 +8223,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0000-3300' --- Neighbour 0 in the list of neghbours, And at position 25 in the X datas point @@ -7340,80 +8341,88 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 48.682465076838824 --- Workload: 373189000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 8 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 55 in the X datas point -------------- - --- Configuration: 0020-0202 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 8089829466.394849 - --- Energy: 66.44909360627778 - --- Workload: 537560000000.0 + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 54 in the X datas point -------------- - --- Configuration: 0022-0030 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 7249844128.351241 - --- Energy: 42.05401520354165 - --- Workload: 304885000000.0 + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 13 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 63 in the X datas point -------------- - --- Configuration: 3000-3300 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 6611133148.221605 - --- Energy: 42.19510352720739 - --- Workload: 278957000000.0 + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 43 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 47 in the X datas point -------------- - --- Configuration: 2200-2000 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 5035525633.343237 - --- Energy: 36.93355197432356 - --- Workload: 185980000000.0 + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 56 in the X datas point -------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 + --- Configuration: 1001-2220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '0000-3300' ---- Neighbour 0 in the list of neghbours, And at position 24 in the X datas point +--- Neighbour 0 in the list of neghbours, And at position 54 in the X datas point -------------- - --- Configuration: 0000-3000 + --- Configuration: 0000-2000 --- Distance from that configuration: [1.] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 24 in the X datas point +-------------- + --- Configuration: 0000-3000 + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 3307720550.5370083 --- Energy: 35.59789292409111 --- Workload: 117748000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 43 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 47 in the X datas point -------------- - --- Configuration: 2200-2000 + --- Configuration: 2000-2000 --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 5035525633.343237 - --- Energy: 36.93355197432356 - --- Workload: 185980000000.0 + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 63 in the X datas point -------------- - --- Configuration: 0022-0030 + --- Configuration: 0001-0200 --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 7249844128.351241 - --- Energy: 42.05401520354165 - --- Workload: 304885000000.0 + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 25 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 25 in the X datas point -------------- --- Configuration: 0000-3300 --- Distance from that configuration: [0.91310072] @@ -7421,102 +8430,94 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.05795824330537 --- Workload: 243499000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 55 in the X datas point -------------- - --- Configuration: 3000-3300 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 6611133148.221605 - --- Energy: 42.19510352720739 - --- Workload: 278957000000.0 + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 9 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 9 in the X datas point -------------- --- Configuration: 0010-3300 - --- Distance from that configuration: [0.63473642] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 6532788063.289651 --- Energy: 42.64544340651106 --- Workload: 278594000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 13 in the X datas point --------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 26 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 26 in the X datas point -------------- --- Configuration: 0000-3330 - --- Distance from that configuration: [0.63473642] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 7665772326.561901 --- Energy: 48.682465076838824 --- Workload: 373189000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 1 in the X datas point --------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 8 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 56 in the X datas point -------------- - --- Configuration: 0020-0202 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 8089829466.394849 - --- Energy: 66.44909360627778 - --- Workload: 537560000000.0 + --- Configuration: 1001-2220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 30 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 25 in the X datas point -------------- - --- Configuration: 3000-3300 - --- Energy efficiency: 6611133148.221605 - --- Energy: 42.19510352720739 - --- Workload: 278957000000.0 + --- Configuration: 0000-3300 + --- Energy efficiency: 5789616901.049658 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (42.19510352720739 mAh) it is NOT far from the median. ---- Median :42.19510352720739, the gap is : 10 +--- The energy of the current configuration (42.05795824330537 mAh) it is NOT far from the median. +--- Median :42.05795824330537, the gap is : 10 --- So No we don't romove this configuration '0000-3300' - --- remove_aberrant_points: The value [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0] + --- remove_aberrant_points: The value [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0] --- Computing the list of the 10 first neighbours of '0000-3330' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -7526,60 +8527,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0000-3330' --- Neighbour 0 in the list of neghbours, And at position 26 in the X datas point @@ -7614,72 +8645,80 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 35.59789292409111 --- Workload: 117748000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 55 in the X datas point -------------- - --- Configuration: 0022-0030 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 7249844128.351241 - --- Energy: 42.05401520354165 - --- Workload: 304885000000.0 + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 31 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 54 in the X datas point -------------- - --- Configuration: 3000-3330 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 8224428196.629629 - --- Energy: 49.410116578739654 - --- Workload: 406369000000.0 + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 3 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 56 in the X datas point -------------- - --- Configuration: 2222-0220 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 11285968381.230984 - --- Energy: 54.74622776577034 - --- Workload: 617864000000.0 + --- Configuration: 1001-2220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 7 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 1000-1010 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 8 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 63 in the X datas point -------------- - --- Configuration: 0020-0202 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 8089829466.394849 - --- Energy: 66.44909360627778 - --- Workload: 537560000000.0 + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 13 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 69 in the X datas point -------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Configuration: 0101-2020 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8367150566.874451 + --- Energy: 43.37670883350873 + --- Workload: 362938000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '0000-3330' ---- Neighbour 0 in the list of neghbours, And at position 24 in the X datas point +--- Neighbour 0 in the list of neghbours, And at position 54 in the X datas point -------------- - --- Configuration: 0000-3000 + --- Configuration: 0000-2000 --- Distance from that configuration: [1.] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 24 in the X datas point +-------------- + --- Configuration: 0000-3000 + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 3307720550.5370083 --- Energy: 35.59789292409111 --- Workload: 117748000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 12 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 63 in the X datas point -------------- - --- Configuration: 0022-0030 - --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 7249844128.351241 - --- Energy: 42.05401520354165 - --- Workload: 304885000000.0 + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 25 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 25 in the X datas point -------------- --- Configuration: 0000-3300 --- Distance from that configuration: [0.83375292] @@ -7687,110 +8726,102 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.05795824330537 --- Workload: 243499000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 9 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 55 in the X datas point -------------- - --- Configuration: 0010-3300 + --- Configuration: 0000-2200 --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 9 in the X datas point +-------------- + --- Configuration: 0010-3300 + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 6532788063.289651 --- Energy: 42.64544340651106 --- Workload: 278594000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 7 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 69 in the X datas point -------------- - --- Configuration: 1000-1010 + --- Configuration: 0101-2020 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 --------------- ---- Neighbour 5 in the list of neghbours, And at position 13 in the X datas point --------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.63473642] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Energy efficiency: 8367150566.874451 + --- Energy: 43.37670883350873 + --- Workload: 362938000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 26 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 26 in the X datas point -------------- --- Configuration: 0000-3330 - --- Distance from that configuration: [0.57957828] + --- Distance from that configuration: [0.69514393] --- Energy efficiency: 7665772326.561901 --- Energy: 48.682465076838824 --- Workload: 373189000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 31 in the X datas point --------------- - --- Configuration: 3000-3330 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 8224428196.629629 - --- Energy: 49.410116578739654 - --- Workload: 406369000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 3 in the X datas point --------------- - --- Configuration: 2222-0220 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 11285968381.230984 - --- Energy: 54.74622776577034 - --- Workload: 617864000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 8 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 56 in the X datas point -------------- - --- Configuration: 0020-0202 - --- Distance from that configuration: [0.57957828] - --- Energy efficiency: 8089829466.394849 - --- Energy: 66.44909360627778 - --- Workload: 537560000000.0 + --- Configuration: 1001-2220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 7 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 55 in the X datas point -------------- - --- Configuration: 1000-1010 - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 + --- Configuration: 0000-2200 + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (42.85376093977719 mAh) it is NOT far from the median. ---- Median :42.85376093977719, the gap is : 10 +--- The energy of the current configuration (42.51731520413714 mAh) it is NOT far from the median. +--- Median :42.51731520413714, the gap is : 10 --- So No we don't romove this configuration '0000-3330' - --- remove_aberrant_points: The value [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0] + --- remove_aberrant_points: The value [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3300-3000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -7800,60 +8831,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3300-3000' --- Neighbour 0 in the list of neghbours, And at position 27 in the X datas point @@ -7864,15 +8925,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 22 in the X datas point --------------- - --- Configuration: 3333-3000 - --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 --------------- ---- Neighbour 2 in the list of neghbours, And at position 28 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 --- Distance from that configuration: [0.91310072] @@ -7880,7 +8933,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 37.40635012737015 --- Workload: 217816000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 29 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 29 in the X datas point -------------- --- Configuration: 3000-3000 --- Distance from that configuration: [0.91310072] @@ -7888,7 +8941,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.1860248822606 --- Workload: 150171000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 --- Distance from that configuration: [0.91310072] @@ -7896,15 +8949,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 23 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 22 in the X datas point -------------- - --- Configuration: 3333-3300 + --- Configuration: 3333-3000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9963434196.49885 - --- Energy: 75.09852863759252 - --- Workload: 748237000000.0 + --- Energy efficiency: 9400881802.713095 + --- Energy: 66.34289826476824 + --- Workload: 623684000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 --- Distance from that configuration: [0.83375292] @@ -7912,7 +8965,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 43 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 43 in the X datas point -------------- --- Configuration: 2200-2000 --- Distance from that configuration: [0.83375292] @@ -7920,7 +8973,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.93355197432356 --- Workload: 185980000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 --- Distance from that configuration: [0.83375292] @@ -7928,13 +8981,21 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 52 in the X datas point -------------- - --- Configuration: 0033-3000 + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 23 in the X datas point +-------------- + --- Configuration: 3333-3300 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 + --- Energy efficiency: 9963434196.49885 + --- Energy: 75.09852863759252 + --- Workload: 748237000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3300-3000' --- Neighbour 0 in the list of neghbours, And at position 29 in the X datas point @@ -7972,7 +9033,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 4 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5026691733.102776 --- Energy: 36.9852979298838 --- Workload: 185914000000.0 @@ -7993,13 +9054,13 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 52 in the X datas point -------------- - --- Configuration: 0033-3000 + --- Configuration: 3000-3300 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 -------------- --- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point -------------- @@ -8029,42 +9090,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- The energy of the current configuration (36.9852979298838 mAh) it is NOT far from the median. --- Median :36.9852979298838, the gap is : 10 --- So No we don't romove this configuration '3300-3000' - --- remove_aberrant_points: The value [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0] + --- remove_aberrant_points: The value [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3330-3000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -8074,71 +9135,93 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3330-3000' ---- Neighbour 0 in the list of neghbours, And at position 22 in the X datas point --------------- - --- Configuration: 3333-3000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 --------------- ---- Neighbour 1 in the list of neghbours, And at position 28 in the X datas point +--- Neighbour 0 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 --- Distance from that configuration: [1.] @@ -8146,15 +9229,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 37.40635012737015 --- Workload: 217816000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 23 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 22 in the X datas point -------------- - --- Configuration: 3333-3300 + --- Configuration: 3333-3000 --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 9963434196.49885 - --- Energy: 75.09852863759252 - --- Workload: 748237000000.0 + --- Energy efficiency: 9400881802.713095 + --- Energy: 66.34289826476824 + --- Workload: 623684000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 --- Distance from that configuration: [0.91310072] @@ -8162,15 +9245,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 23 in the X datas point -------------- - --- Configuration: 0033-3000 + --- Configuration: 3333-3300 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 + --- Energy efficiency: 9963434196.49885 + --- Energy: 75.09852863759252 + --- Workload: 748237000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 29 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 29 in the X datas point -------------- --- Configuration: 3000-3000 --- Distance from that configuration: [0.83375292] @@ -8178,7 +9261,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.1860248822606 --- Workload: 150171000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 --- Distance from that configuration: [0.83375292] @@ -8186,6 +9269,14 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- +--- Neighbour 6 in the list of neghbours, And at position 1 in the X datas point +-------------- + --- Configuration: 0033-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6957102505.948323 + --- Energy: 53.35616382684589 + --- Workload: 371205000000.0 +-------------- --- Neighbour 7 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 @@ -8222,7 +9313,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 1 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 - --- Distance from that configuration: [1.] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 5072151352.996373 --- Energy: 36.711179058531826 --- Workload: 186205000000.0 @@ -8238,7 +9329,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 3 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 4059018123.5159216 --- Energy: 36.96583597689362 --- Workload: 150045000000.0 @@ -8262,7 +9353,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 6 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 6611133148.221605 --- Energy: 42.19510352720739 --- Workload: 278957000000.0 @@ -8303,42 +9394,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- The energy of the current configuration (36.9852979298838 mAh) it is NOT far from the median. --- Median :36.9852979298838, the gap is : 10 --- So No we don't romove this configuration '3330-3000' - --- remove_aberrant_points: The value [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0] + --- remove_aberrant_points: The value [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3000-3000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -8348,60 +9439,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3000-3000' --- Neighbour 0 in the list of neghbours, And at position 29 in the X datas point @@ -8436,23 +9557,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 1 in the X datas point --------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 --------------- ---- Neighbour 5 in the list of neghbours, And at position 22 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 52 in the X datas point -------------- - --- Configuration: 3333-3000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 28 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 --- Distance from that configuration: [0.83375292] @@ -8460,7 +9573,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 37.40635012737015 --- Workload: 217816000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 31 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 31 in the X datas point -------------- --- Configuration: 3000-3330 --- Distance from that configuration: [0.83375292] @@ -8468,7 +9581,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 49.410116578739654 --- Workload: 406369000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 --- Distance from that configuration: [0.83375292] @@ -8476,13 +9589,21 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 23 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 47 in the X datas point -------------- - --- Configuration: 3333-3300 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 9963434196.49885 - --- Energy: 75.09852863759252 - --- Workload: 748237000000.0 + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3000-3000' --- Neighbour 0 in the list of neghbours, And at position 29 in the X datas point @@ -8493,7 +9614,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.1860248822606 --- Workload: 150171000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 --- Distance from that configuration: [0.91310072] @@ -8501,7 +9630,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 --- Distance from that configuration: [0.91310072] @@ -8509,7 +9638,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 --- Distance from that configuration: [0.91310072] @@ -8517,7 +9646,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 28 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 --- Distance from that configuration: [0.83375292] @@ -8525,7 +9654,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 37.40635012737015 --- Workload: 217816000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 --- Distance from that configuration: [0.83375292] @@ -8533,86 +9662,78 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 31 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 52 in the X datas point -------------- - --- Configuration: 3000-3330 + --- Configuration: 3000-3300 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8224428196.629629 - --- Energy: 49.410116578739654 - --- Workload: 406369000000.0 + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 49 in the X datas point -------------- - --- Configuration: 0033-3000 + --- Configuration: 3000-2200 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 31 in the X datas point -------------- - --- Configuration: 3333-3000 + --- Configuration: 3000-3330 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 23 in the X datas point --------------- - --- Configuration: 3333-3300 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 9963434196.49885 - --- Energy: 75.09852863759252 - --- Workload: 748237000000.0 + --- Energy efficiency: 8224428196.629629 + --- Energy: 49.410116578739654 + --- Workload: 406369000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 28 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 41 in the X datas point -------------- - --- Configuration: 3330-3000 - --- Energy efficiency: 5822958761.806049 - --- Energy: 37.40635012737015 - --- Workload: 217816000000.0 + --- Configuration: 3300-2000 + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (37.40635012737015 mAh) it is NOT far from the median. ---- Median :37.40635012737015, the gap is : 10 +--- The energy of the current configuration (36.9852979298838 mAh) it is NOT far from the median. +--- Median :36.9852979298838, the gap is : 10 --- So No we don't romove this configuration '3000-3000' - --- remove_aberrant_points: The value [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0] + --- remove_aberrant_points: The value [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0] --- Computing the list of the 10 first neighbours of '3000-3300' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -8622,60 +9743,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3000-3300' --- Neighbour 0 in the list of neghbours, And at position 30 in the X datas point @@ -8686,7 +9837,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 29 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 52 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [1.] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 29 in the X datas point -------------- --- Configuration: 3000-3000 --- Distance from that configuration: [0.91310072] @@ -8694,7 +9853,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.1860248822606 --- Workload: 150171000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 31 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 31 in the X datas point -------------- --- Configuration: 3000-3330 --- Distance from that configuration: [0.91310072] @@ -8702,15 +9861,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 49.410116578739654 --- Workload: 406369000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 23 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 49 in the X datas point -------------- - --- Configuration: 3333-3300 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9963434196.49885 - --- Energy: 75.09852863759252 - --- Workload: 748237000000.0 + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 --- Distance from that configuration: [0.83375292] @@ -8718,7 +9877,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 --- Distance from that configuration: [0.83375292] @@ -8726,23 +9885,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 22 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 23 in the X datas point -------------- - --- Configuration: 3333-3000 + --- Configuration: 3333-3300 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 + --- Energy efficiency: 9963434196.49885 + --- Energy: 75.09852863759252 + --- Workload: 748237000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 28 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 --- Distance from that configuration: [0.76130039] @@ -8750,14 +9909,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 37.40635012737015 --- Workload: 217816000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 41 in the X datas point --------------- - --- Configuration: 3300-2000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 5026691733.102776 - --- Energy: 36.9852979298838 - --- Workload: 185914000000.0 --------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3000-3300' --- Neighbour 0 in the list of neghbours, And at position 29 in the X datas point -------------- @@ -8770,7 +9921,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 1 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [1.] --- Energy efficiency: 5072151352.996373 --- Energy: 36.711179058531826 --- Workload: 186205000000.0 @@ -8783,53 +9934,53 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 41 in the X datas point --------------- - --- Configuration: 3300-2000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5026691733.102776 - --- Energy: 36.9852979298838 - --- Workload: 185914000000.0 --------------- ---- Neighbour 4 in the list of neghbours, And at position 28 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 5822958761.806049 --- Energy: 37.40635012737015 --- Workload: 217816000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 6611133148.221605 --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 31 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 52 in the X datas point -------------- - --- Configuration: 3000-3330 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 8224428196.629629 - --- Energy: 49.410116578739654 - --- Workload: 406369000000.0 + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 49 in the X datas point -------------- - --- Configuration: 3333-3000 + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 31 in the X datas point +-------------- + --- Configuration: 3000-3330 --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 + --- Energy efficiency: 8224428196.629629 + --- Energy: 49.410116578739654 + --- Workload: 406369000000.0 -------------- --- Neighbour 9 in the list of neghbours, And at position 23 in the X datas point -------------- @@ -8840,53 +9991,53 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Workload: 748237000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 28 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 30 in the X datas point -------------- - --- Configuration: 3330-3000 - --- Energy efficiency: 5822958761.806049 - --- Energy: 37.40635012737015 - --- Workload: 217816000000.0 + --- Configuration: 3000-3300 + --- Energy efficiency: 6611133148.221605 + --- Energy: 42.19510352720739 + --- Workload: 278957000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (37.40635012737015 mAh) it is NOT far from the median. ---- Median :37.40635012737015, the gap is : 10 +--- The energy of the current configuration (42.19510352720739 mAh) it is NOT far from the median. +--- Median :42.19510352720739, the gap is : 10 --- So No we don't romove this configuration '3000-3300' - --- remove_aberrant_points: The value [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0] + --- remove_aberrant_points: The value [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0] --- Computing the list of the 10 first neighbours of '3000-3330' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -8896,60 +10047,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3000-3330' --- Neighbour 0 in the list of neghbours, And at position 31 in the X datas point @@ -8968,7 +10149,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 29 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 52 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 29 in the X datas point -------------- --- Configuration: 3000-3000 --- Distance from that configuration: [0.83375292] @@ -8976,15 +10165,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.1860248822606 --- Workload: 150171000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 23 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 49 in the X datas point -------------- - --- Configuration: 3333-3300 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 9963434196.49885 - --- Energy: 75.09852863759252 - --- Workload: 748237000000.0 + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 --- Distance from that configuration: [0.76130039] @@ -8992,7 +10181,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 --- Distance from that configuration: [0.76130039] @@ -9000,15 +10189,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 1 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 4 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 61 in the X datas point +-------------- + --- Configuration: 3330-2220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9229945635.620207 + --- Energy: 51.28077619994492 + --- Workload: 473319000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 4 in the X datas point -------------- --- Configuration: 3000-1110 --- Distance from that configuration: [0.69514393] @@ -9016,22 +10213,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 49.41467631934382 --- Workload: 400095000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point --------------- - --- Configuration: 3333-3000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 28 in the X datas point --------------- - --- Configuration: 3330-3000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 5822958761.806049 - --- Energy: 37.40635012737015 - --- Workload: 217816000000.0 --------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3000-3330' --- Neighbour 0 in the list of neghbours, And at position 29 in the X datas point -------------- @@ -9052,28 +10233,44 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 2 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 4059018123.5159216 --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 28 in the X datas point --------------- - --- Configuration: 3330-3000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 5822958761.806049 - --- Energy: 37.40635012737015 - --- Workload: 217816000000.0 --------------- ---- Neighbour 4 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 6611133148.221605 --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 31 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 52 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 31 in the X datas point -------------- --- Configuration: 3000-3330 --- Distance from that configuration: [0.76130039] @@ -9081,86 +10278,70 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 49.410116578739654 --- Workload: 406369000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 4 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 4 in the X datas point -------------- --- Configuration: 3000-1110 - --- Distance from that configuration: [0.69514393] + --- Distance from that configuration: [0.76130039] --- Energy efficiency: 8096707069.234942 --- Energy: 49.41467631934382 --- Workload: 400095000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 1 in the X datas point --------------- - --- Configuration: 0033-3000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 6957102505.948323 - --- Energy: 53.35616382684589 - --- Workload: 371205000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point --------------- - --- Configuration: 3333-3000 - --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 23 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 61 in the X datas point -------------- - --- Configuration: 3333-3300 + --- Configuration: 3330-2220 --- Distance from that configuration: [0.69514393] - --- Energy efficiency: 9963434196.49885 - --- Energy: 75.09852863759252 - --- Workload: 748237000000.0 + --- Energy efficiency: 9229945635.620207 + --- Energy: 51.28077619994492 + --- Workload: 473319000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 30 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 52 in the X datas point -------------- --- Configuration: 3000-3300 - --- Energy efficiency: 6611133148.221605 - --- Energy: 42.19510352720739 - --- Workload: 278957000000.0 + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (42.19510352720739 mAh) it is NOT far from the median. ---- Median :42.19510352720739, the gap is : 10 +--- The energy of the current configuration (42.474892742303716 mAh) it is NOT far from the median. +--- Median :42.474892742303716, the gap is : 10 --- So No we don't romove this configuration '3000-3330' - --- remove_aberrant_points: The value [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0] is not an abberant point. + --- remove_aberrant_points: The value [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0] is not an abberant point. --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '0000-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -9170,60 +10351,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '0000-0000' --- Neighbour 0 in the list of neghbours, And at position 16 in the X datas point @@ -9258,7 +10469,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.543907709942122 --- Workload: 29470600000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 34 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 59 in the X datas point +-------------- + --- Configuration: 0000-0001 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 34 in the X datas point -------------- --- Configuration: 2000-0000 --- Distance from that configuration: [0.83375292] @@ -9266,7 +10493,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.02206558996354 --- Workload: 29457300000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 36 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 36 in the X datas point -------------- --- Configuration: 1100-0000 --- Distance from that configuration: [0.83375292] @@ -9274,7 +10501,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.059275323795035 --- Workload: 60678300000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 46 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 46 in the X datas point -------------- --- Configuration: 1000-1000 --- Distance from that configuration: [0.83375292] @@ -9282,29 +10509,13 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.86022362180361 --- Workload: 149735000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 6 in the X datas point --------------- - --- Configuration: 0020-0010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 7 in the X datas point --------------- - --- Configuration: 1000-1010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 13 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 54 in the X datas point -------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '0000-0000' --- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point @@ -9342,7 +10553,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 4 in the list of neghbours, And at position 36 in the X datas point -------------- --- Configuration: 1100-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 2018619748.5607243 --- Energy: 30.059275323795035 --- Workload: 60678300000.0 @@ -9350,42 +10561,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 5 in the list of neghbours, And at position 16 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 0.08333333333333333 --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 6 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 54 in the X datas point -------------- - --- Configuration: 0020-0010 + --- Configuration: 0000-2000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 3998672440.749671 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 46 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 53 in the X datas point -------------- - --- Configuration: 1000-1000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 4062233415.93208 - --- Energy: 36.86022362180361 - --- Workload: 149735000000.0 + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 7 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 59 in the X datas point -------------- - --- Configuration: 1000-1010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 6501654671.113798 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 + --- Configuration: 0000-0001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 13 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 46 in the X datas point -------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 -------------- -------------- --- Median at position 4 in the list of neghbours, And at position 36 in the X datas point @@ -9403,38 +10614,38 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- remove_aberrant_points: do we remove value [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '1000-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -9444,60 +10655,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '1000-0000' --- Neighbour 0 in the list of neghbours, And at position 33 in the X datas point @@ -9677,38 +10918,38 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- remove_aberrant_points: do we remove value [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '2000-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -9718,60 +10959,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '2000-0000' --- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point @@ -9951,38 +11222,38 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3000-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -9992,60 +11263,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3000-0000' --- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point @@ -10096,15 +11397,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.623247258891045 --- Workload: 29472300000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 11 in the X datas point --------------- - --- Configuration: 3303-0001 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 20 in the X datas point -------------- --- Configuration: 3330-0000 --- Distance from that configuration: [0.83375292] @@ -10112,15 +11405,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 21 in the X datas point --------------- - --- Configuration: 3333-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 37 in the X datas point -------------- --- Configuration: 2200-0000 --- Distance from that configuration: [0.83375292] @@ -10128,6 +11413,22 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.07061597004587 --- Workload: 60106800000.0 -------------- +--- Neighbour 8 in the list of neghbours, And at position 40 in the X datas point +-------------- + --- Configuration: 3300-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5058399218.983161 + --- Energy: 36.78276420172299 + --- Workload: 186062000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3000-0000' --- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point -------------- @@ -10193,21 +11494,21 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.46450751429702 --- Workload: 194232000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 40 in the X datas point -------------- - --- Configuration: 3333-0000 + --- Configuration: 3300-1000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 + --- Energy efficiency: 5058399218.983161 + --- Energy: 36.78276420172299 + --- Workload: 186062000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 45 in the X datas point -------------- - --- Configuration: 3303-0001 + --- Configuration: 3000-2000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 -------------- -------------- --- Median at position 4 in the list of neghbours, And at position 37 in the X datas point @@ -10225,38 +11526,38 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- remove_aberrant_points: do we remove value [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '1100-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -10266,60 +11567,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '1100-0000' --- Neighbour 0 in the list of neghbours, And at position 36 in the X datas point @@ -10499,38 +11830,38 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- remove_aberrant_points: do we remove value [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '2200-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -10540,60 +11871,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '2200-0000' --- Neighbour 0 in the list of neghbours, And at position 37 in the X datas point @@ -10636,13 +11997,13 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 75 in the X datas point -------------- - --- Configuration: 3303-0001 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 -------------- --- Neighbour 6 in the list of neghbours, And at position 18 in the X datas point -------------- @@ -10660,15 +12021,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 21 in the X datas point --------------- - --- Configuration: 3333-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 33 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 33 in the X datas point -------------- --- Configuration: 1000-0000 --- Distance from that configuration: [0.83375292] @@ -10676,6 +12029,14 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.543907709942122 --- Workload: 29470600000.0 -------------- +--- Neighbour 9 in the list of neghbours, And at position 35 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 1010122436.9405816 + --- Energy: 29.239529117166907 + --- Workload: 29535500000.0 +-------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '2200-0000' --- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point -------------- @@ -10693,7 +12054,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.060137396486432 --- Workload: 29553800000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 33 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 35 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 1010122436.9405816 + --- Energy: 29.239529117166907 + --- Workload: 29535500000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 33 in the X datas point -------------- --- Configuration: 1000-0000 --- Distance from that configuration: [0.91310072] @@ -10701,7 +12070,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.543907709942122 --- Workload: 29470600000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 36 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 36 in the X datas point -------------- --- Configuration: 1100-0000 --- Distance from that configuration: [0.91310072] @@ -10709,7 +12078,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.059275323795035 --- Workload: 60678300000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 37 in the X datas point -------------- --- Configuration: 2200-0000 --- Distance from that configuration: [0.91310072] @@ -10717,7 +12086,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.07061597004587 --- Workload: 60106800000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 --- Distance from that configuration: [0.83375292] @@ -10725,7 +12094,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 39 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 39 in the X datas point -------------- --- Configuration: 2220-0000 --- Distance from that configuration: [0.83375292] @@ -10733,7 +12102,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 20 in the X datas point -------------- --- Configuration: 3330-0000 --- Distance from that configuration: [0.83375292] @@ -10741,70 +12118,54 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 21 in the X datas point --------------- - --- Configuration: 3333-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 11 in the X datas point --------------- - --- Configuration: 3303-0001 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 -------------- +--- Median at position 4 in the list of neghbours, And at position 36 in the X datas point -------------- ---- Median at position 4 in the list of neghbours, And at position 37 in the X datas point --------------- - --- Configuration: 2200-0000 - --- Energy efficiency: 1998856653.9939156 - --- Energy: 30.07061597004587 - --- Workload: 60106800000.0 + --- Configuration: 1100-0000 + --- Energy efficiency: 2018619748.5607243 + --- Energy: 30.059275323795035 + --- Workload: 60678300000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (30.07061597004587 mAh) it is NOT far from the median. ---- Median :30.07061597004587, the gap is : 10 +--- The energy of the current configuration (30.059275323795035 mAh) it is NOT far from the median. +--- Median :30.059275323795035, the gap is : 10 --- So No we don't romove this configuration '2200-0000' --- remove_aberrant_points: The value [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] is not an abberant point. --- remove_aberrant_points: do we remove value [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '1110-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -10814,60 +12175,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '1110-0000' --- Neighbour 0 in the list of neghbours, And at position 38 in the X datas point @@ -10894,7 +12285,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 33 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 33 in the X datas point -------------- --- Configuration: 1000-0000 --- Distance from that configuration: [0.83375292] @@ -10902,7 +12301,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.543907709942122 --- Workload: 29470600000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 37 in the X datas point -------------- --- Configuration: 2200-0000 --- Distance from that configuration: [0.83375292] @@ -10910,7 +12309,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.07061597004587 --- Workload: 60106800000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 42 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 42 in the X datas point -------------- --- Configuration: 1100-1000 --- Distance from that configuration: [0.83375292] @@ -10918,7 +12317,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.68430426428569 --- Workload: 218185000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 16 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 16 in the X datas point -------------- --- Configuration: 0000-0000 --- Distance from that configuration: [0.76130039] @@ -10926,7 +12325,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 17 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 17 in the X datas point -------------- --- Configuration: 0000-0000 --- Distance from that configuration: [0.76130039] @@ -10934,7 +12333,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.027102694886654 --- Workload: 0.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 32 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 32 in the X datas point -------------- --- Configuration: 0000-0000 --- Distance from that configuration: [0.76130039] @@ -10942,32 +12341,16 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.957415812958512 --- Workload: 0.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 34 in the X datas point --------------- - --- Configuration: 2000-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 1014996574.3865615 - --- Energy: 29.02206558996354 - --- Workload: 29457300000.0 --------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '1110-0000' ---- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point --------------- - --- Configuration: 2000-0000 - --- Distance from that configuration: [1.] - --- Energy efficiency: 1014996574.3865615 - --- Energy: 29.02206558996354 - --- Workload: 29457300000.0 --------------- ---- Neighbour 1 in the list of neghbours, And at position 33 in the X datas point +--- Neighbour 0 in the list of neghbours, And at position 33 in the X datas point -------------- --- Configuration: 1000-0000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [1.] --- Energy efficiency: 997516184.7000968 --- Energy: 29.543907709942122 --- Workload: 29470600000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 32 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 32 in the X datas point -------------- --- Configuration: 0000-0000 --- Distance from that configuration: [0.91310072] @@ -10975,23 +12358,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.957415812958512 --- Workload: 0.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 17 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 17 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 0.08333333333333333 --- Energy: 30.027102694886654 --- Workload: 0.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 36 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 36 in the X datas point -------------- --- Configuration: 1100-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 2018619748.5607243 --- Energy: 30.059275323795035 --- Workload: 60678300000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 37 in the X datas point -------------- --- Configuration: 2200-0000 --- Distance from that configuration: [0.83375292] @@ -10999,22 +12382,30 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.07061597004587 --- Workload: 60106800000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 16 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 16 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 0.08333333333333333 --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 39 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 39 in the X datas point -------------- --- Configuration: 2220-0000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 3029054692.61153 --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- +--- Neighbour 7 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- --- Neighbour 8 in the list of neghbours, And at position 38 in the X datas point -------------- --- Configuration: 1110-0000 @@ -11032,53 +12423,53 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Workload: 218185000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 36 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 37 in the X datas point -------------- - --- Configuration: 1100-0000 - --- Energy efficiency: 2018619748.5607243 - --- Energy: 30.059275323795035 - --- Workload: 60678300000.0 + --- Configuration: 2200-0000 + --- Energy efficiency: 1998856653.9939156 + --- Energy: 30.07061597004587 + --- Workload: 60106800000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (30.059275323795035 mAh) it is NOT far from the median. ---- Median :30.059275323795035, the gap is : 10 +--- The energy of the current configuration (30.07061597004587 mAh) it is NOT far from the median. +--- Median :30.07061597004587, the gap is : 10 --- So No we don't romove this configuration '1110-0000' --- remove_aberrant_points: The value [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] is not an abberant point. --- remove_aberrant_points: do we remove value [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] --- Computing the list of the 10 first neighbours of '2220-0000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -11088,60 +12479,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '2220-0000' --- Neighbour 0 in the list of neghbours, And at position 39 in the X datas point @@ -11152,7 +12573,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 20 in the X datas point -------------- --- Configuration: 3330-0000 --- Distance from that configuration: [0.91310072] @@ -11160,14 +12589,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 21 in the X datas point --------------- - --- Configuration: 3333-0000 - --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 --------------- --- Neighbour 3 in the list of neghbours, And at position 37 in the X datas point -------------- --- Configuration: 2200-0000 @@ -11192,7 +12613,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 34 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 21 in the X datas point +-------------- + --- Configuration: 3333-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8296551953.00833 + --- Energy: 59.045602086542516 + --- Workload: 489874000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 34 in the X datas point -------------- --- Configuration: 2000-0000 --- Distance from that configuration: [0.83375292] @@ -11200,7 +12629,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.02206558996354 --- Workload: 29457300000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 36 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 36 in the X datas point -------------- --- Configuration: 1100-0000 --- Distance from that configuration: [0.83375292] @@ -11208,14 +12637,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.059275323795035 --- Workload: 60678300000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 3 in the X datas point --------------- - --- Configuration: 2222-0220 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 11285968381.230984 - --- Energy: 54.74622776577034 - --- Workload: 617864000000.0 --------------- --- Neighbour 9 in the list of neghbours, And at position 5 in the X datas point -------------- --- Configuration: 0030-0000 @@ -11236,7 +12657,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 1 in the list of neghbours, And at position 5 in the X datas point -------------- --- Configuration: 0030-0000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [1.] --- Energy efficiency: 994906080.8659663 --- Energy: 29.623247258891045 --- Workload: 29472300000.0 @@ -11273,7 +12694,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.508250558695604 --- Workload: 92411200000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 38 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 38 in the X datas point -------------- --- Configuration: 1110-0000 --- Distance from that configuration: [0.83375292] @@ -11281,7 +12710,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.668041259477853 --- Workload: 89102900000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 20 in the X datas point -------------- --- Configuration: 3330-0000 --- Distance from that configuration: [0.83375292] @@ -11289,14 +12718,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 3 in the X datas point --------------- - --- Configuration: 2222-0220 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 11285968381.230984 - --- Energy: 54.74622776577034 - --- Workload: 617864000000.0 --------------- --- Neighbour 9 in the list of neghbours, And at position 21 in the X datas point -------------- --- Configuration: 3333-0000 @@ -11318,41 +12739,41 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Median :30.277288658122774, the gap is : 10 --- So No we don't romove this configuration '2220-0000' --- remove_aberrant_points: The value [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0] + --- remove_aberrant_points: do we remove value [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3300-1000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -11362,60 +12783,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3300-1000' --- Neighbour 0 in the list of neghbours, And at position 40 in the X datas point @@ -11426,15 +12877,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.78276420172299 --- Workload: 186062000000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 14 in the X datas point --------------- - --- Configuration: 3303-1010 - --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 9340120487.55429 - --- Energy: 67.3857084084629 - --- Workload: 629393000000.0 --------------- ---- Neighbour 2 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 --- Distance from that configuration: [0.91310072] @@ -11442,7 +12885,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 --- Distance from that configuration: [0.91310072] @@ -11450,7 +12893,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 44 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 44 in the X datas point -------------- --- Configuration: 3000-1000 --- Distance from that configuration: [0.91310072] @@ -11458,23 +12901,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.46450751429702 --- Workload: 194232000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 0 in the X datas point --------------- - --- Configuration: 0303-1010 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8236960890.90969 - --- Energy: 61.00540758755291 - --- Workload: 502499000000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 11 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 14 in the X datas point -------------- - --- Configuration: 3303-0001 + --- Configuration: 3303-1010 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 18 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 18 in the X datas point -------------- --- Configuration: 3000-0000 --- Distance from that configuration: [0.83375292] @@ -11482,7 +12917,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.060137396486432 --- Workload: 29553800000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 20 in the X datas point -------------- --- Configuration: 3330-0000 --- Distance from that configuration: [0.83375292] @@ -11490,13 +12925,29 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 21 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 35 in the X datas point -------------- - --- Configuration: 3333-0000 + --- Configuration: 3000-0000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 + --- Energy efficiency: 1010122436.9405816 + --- Energy: 29.239529117166907 + --- Workload: 29535500000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 37 in the X datas point +-------------- + --- Configuration: 2200-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 1998856653.9939156 + --- Energy: 30.07061597004587 + --- Workload: 60106800000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3300-1000' --- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point @@ -11507,7 +12958,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.060137396486432 --- Workload: 29553800000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 35 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 1010122436.9405816 + --- Energy: 29.239529117166907 + --- Workload: 29535500000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 37 in the X datas point +-------------- + --- Configuration: 2200-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 1998856653.9939156 + --- Energy: 30.07061597004587 + --- Workload: 60106800000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 --- Distance from that configuration: [0.91310072] @@ -11515,31 +12982,39 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 20 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 20 in the X datas point -------------- --- Configuration: 3330-0000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5377240292.736961 --- Energy: 32.51205394198035 --- Workload: 174825000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 44 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 44 in the X datas point -------------- --- Configuration: 3000-1000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5326600510.288329 --- Energy: 36.46450751429702 --- Workload: 194232000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5058399218.983161 --- Energy: 36.78276420172299 --- Workload: 186062000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 --- Distance from that configuration: [0.83375292] @@ -11547,30 +13022,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 21 in the X datas point --------------- - --- Configuration: 3333-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8296551953.00833 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 11 in the X datas point --------------- - --- Configuration: 3303-0001 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8321129010.784183 - --- Energy: 59.94594005320708 - --- Workload: 498819000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 0 in the X datas point --------------- - --- Configuration: 0303-1010 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8236960890.90969 - --- Energy: 61.00540758755291 - --- Workload: 502499000000.0 --------------- --- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point -------------- --- Configuration: 3303-1010 @@ -11580,53 +13031,53 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Workload: 629393000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 40 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 20 in the X datas point -------------- - --- Configuration: 3300-1000 - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 + --- Configuration: 3330-0000 + --- Energy efficiency: 5377240292.736961 + --- Energy: 32.51205394198035 + --- Workload: 174825000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (36.78276420172299 mAh) it is NOT far from the median. ---- Median :36.78276420172299, the gap is : 10 +--- The energy of the current configuration (32.51205394198035 mAh) it is NOT far from the median. +--- Median :32.51205394198035, the gap is : 10 --- So No we don't romove this configuration '3300-1000' - --- remove_aberrant_points: The value [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0] + --- remove_aberrant_points: The value [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3300-2000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -11636,60 +13087,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3300-2000' --- Neighbour 0 in the list of neghbours, And at position 41 in the X datas point @@ -11732,15 +13213,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 14 in the X datas point --------------- - --- Configuration: 3303-1010 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9340120487.55429 - --- Energy: 67.3857084084629 - --- Workload: 629393000000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 --- Distance from that configuration: [0.83375292] @@ -11748,15 +13221,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 22 in the X datas point --------------- - --- Configuration: 3333-3000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 28 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 --- Distance from that configuration: [0.83375292] @@ -11764,7 +13229,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 37.40635012737015 --- Workload: 217816000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 29 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 29 in the X datas point -------------- --- Configuration: 3000-3000 --- Distance from that configuration: [0.83375292] @@ -11772,6 +13237,22 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.1860248822606 --- Workload: 150171000000.0 -------------- +--- Neighbour 8 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3300-2000' --- Neighbour 0 in the list of neghbours, And at position 19 in the X datas point -------------- @@ -11789,7 +13270,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.1860248822606 --- Workload: 150171000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 --- Distance from that configuration: [0.91310072] @@ -11797,23 +13294,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5058399218.983161 --- Energy: 36.78276420172299 --- Workload: 186062000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 43 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 43 in the X datas point -------------- --- Configuration: 2200-2000 - --- Distance from that configuration: [0.91310072] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5035525633.343237 --- Energy: 36.93355197432356 --- Workload: 185980000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 --- Distance from that configuration: [0.83375292] @@ -11821,7 +13318,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 --- Distance from that configuration: [0.83375292] @@ -11829,7 +13326,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 28 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 28 in the X datas point -------------- --- Configuration: 3330-3000 --- Distance from that configuration: [0.83375292] @@ -11837,70 +13334,54 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 37.40635012737015 --- Workload: 217816000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point --------------- - --- Configuration: 3333-3000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point --------------- - --- Configuration: 3303-1010 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9340120487.55429 - --- Energy: 67.3857084084629 - --- Workload: 629393000000.0 --------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 43 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 27 in the X datas point -------------- - --- Configuration: 2200-2000 - --- Energy efficiency: 5035525633.343237 - --- Energy: 36.93355197432356 - --- Workload: 185980000000.0 + --- Configuration: 3300-3000 + --- Energy efficiency: 5072151352.996373 + --- Energy: 36.711179058531826 + --- Workload: 186205000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (36.93355197432356 mAh) it is NOT far from the median. ---- Median :36.93355197432356, the gap is : 10 +--- The energy of the current configuration (36.711179058531826 mAh) it is NOT far from the median. +--- Median :36.711179058531826, the gap is : 10 --- So No we don't romove this configuration '3300-2000' - --- remove_aberrant_points: The value [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0] + --- remove_aberrant_points: The value [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '1100-1000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -11910,60 +13391,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '1100-1000' --- Neighbour 0 in the list of neghbours, And at position 42 in the X datas point @@ -12030,21 +13541,21 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.93355197432356 --- Workload: 185980000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 16 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 50 in the X datas point -------------- - --- Configuration: 0000-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 0.08333333333333333 - --- Energy: 30.299284062105812 - --- Workload: 0.0 + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 17 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 53 in the X datas point -------------- - --- Configuration: 0000-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 0.08333333333333333 - --- Energy: 30.027102694886654 - --- Workload: 0.0 + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '1100-1000' --- Neighbour 0 in the list of neghbours, And at position 33 in the X datas point @@ -12055,15 +13566,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.543907709942122 --- Workload: 29470600000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 17 in the X datas point --------------- - --- Configuration: 0000-0000 - --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 0.08333333333333333 - --- Energy: 30.027102694886654 - --- Workload: 0.0 --------------- ---- Neighbour 2 in the list of neghbours, And at position 36 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 36 in the X datas point -------------- --- Configuration: 1100-0000 --- Distance from that configuration: [0.91310072] @@ -12071,23 +13574,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.059275323795035 --- Workload: 60678300000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 37 in the X datas point -------------- --- Configuration: 2200-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 1998856653.9939156 --- Energy: 30.07061597004587 --- Workload: 60106800000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 16 in the X datas point --------------- - --- Configuration: 0000-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 0.08333333333333333 - --- Energy: 30.299284062105812 - --- Workload: 0.0 --------------- ---- Neighbour 5 in the list of neghbours, And at position 38 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 38 in the X datas point -------------- --- Configuration: 1110-0000 --- Distance from that configuration: [0.83375292] @@ -12095,7 +13590,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.668041259477853 --- Workload: 89102900000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 42 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 42 in the X datas point -------------- --- Configuration: 1100-1000 --- Distance from that configuration: [0.83375292] @@ -12103,7 +13606,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.68430426428569 --- Workload: 218185000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 46 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 46 in the X datas point -------------- --- Configuration: 1000-1000 --- Distance from that configuration: [0.83375292] @@ -12111,70 +13614,78 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.86022362180361 --- Workload: 149735000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 43 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 43 in the X datas point -------------- --- Configuration: 2200-2000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5035525633.343237 --- Energy: 36.93355197432356 --- Workload: 185980000000.0 -------------- +--- Neighbour 8 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- --- Neighbour 9 in the list of neghbours, And at position 7 in the X datas point -------------- --- Configuration: 1000-1010 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 6501654671.113798 --- Energy: 42.85376093977719 --- Workload: 278621000000.0 -------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 16 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 53 in the X datas point -------------- - --- Configuration: 0000-0000 - --- Energy efficiency: 0.08333333333333333 - --- Energy: 30.299284062105812 - --- Workload: 0.0 + --- Configuration: 0000-1000 + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (30.299284062105812 mAh) it is NOT far from the median. ---- Median :30.299284062105812, the gap is : 10 +--- The energy of the current configuration (35.44774676664167 mAh) it is NOT far from the median. +--- Median :35.44774676664167, the gap is : 10 --- So No we don't romove this configuration '1100-1000' - --- remove_aberrant_points: The value [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [1.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0] + --- remove_aberrant_points: The value [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '2200-2000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -12184,60 +13695,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '2200-2000' --- Neighbour 0 in the list of neghbours, And at position 43 in the X datas point @@ -12256,7 +13797,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- ---- Neighbour 2 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 2 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 --- Distance from that configuration: [0.83375292] @@ -12264,7 +13813,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 37 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 37 in the X datas point -------------- --- Configuration: 2200-0000 --- Distance from that configuration: [0.83375292] @@ -12272,7 +13821,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.07061597004587 --- Workload: 60106800000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 40 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 --- Distance from that configuration: [0.83375292] @@ -12280,7 +13829,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.78276420172299 --- Workload: 186062000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 42 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 42 in the X datas point -------------- --- Configuration: 1100-1000 --- Distance from that configuration: [0.83375292] @@ -12288,7 +13837,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.68430426428569 --- Workload: 218185000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 --- Distance from that configuration: [0.83375292] @@ -12296,29 +13845,21 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 14 in the X datas point --------------- - --- Configuration: 3303-1010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 9340120487.55429 - --- Energy: 67.3857084084629 - --- Workload: 629393000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 3300-0000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 1980229389.772511 - --- Energy: 30.277288658122774 - --- Workload: 59956000000.0 + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 22 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 62 in the X datas point -------------- - --- Configuration: 3333-3000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 + --- Configuration: 2002-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 -------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '2200-2000' --- Neighbour 0 in the list of neghbours, And at position 37 in the X datas point @@ -12329,18 +13870,18 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.07061597004587 --- Workload: 60106800000.0 -------------- ---- Neighbour 1 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 47 in the X datas point -------------- - --- Configuration: 3300-0000 + --- Configuration: 2000-2000 --- Distance from that configuration: [0.91310072] - --- Energy efficiency: 1980229389.772511 - --- Energy: 30.277288658122774 - --- Workload: 59956000000.0 + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 -------------- --- Neighbour 2 in the list of neghbours, And at position 42 in the X datas point -------------- --- Configuration: 1100-1000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 5947637003.818383 --- Energy: 36.68430426428569 --- Workload: 218185000000.0 @@ -12380,26 +13921,26 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 7 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 - --- Distance from that configuration: [0.76130039] + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 5026691733.102776 --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 22 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 62 in the X datas point -------------- - --- Configuration: 3333-3000 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 9400881802.713095 - --- Energy: 66.34289826476824 - --- Workload: 623684000000.0 + --- Configuration: 2002-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 3303-1010 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 9340120487.55429 - --- Energy: 67.3857084084629 - --- Workload: 629393000000.0 + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- -------------- --- Median at position 4 in the list of neghbours, And at position 40 in the X datas point @@ -12413,42 +13954,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- The energy of the current configuration (36.78276420172299 mAh) it is NOT far from the median. --- Median :36.78276420172299, the gap is : 10 --- So No we don't romove this configuration '2200-2000' - --- remove_aberrant_points: The value [1.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0] + --- remove_aberrant_points: The value [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3000-1000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -12458,60 +13999,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3000-1000' --- Neighbour 0 in the list of neghbours, And at position 44 in the X datas point @@ -12554,7 +14125,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 4 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 4 in the X datas point -------------- --- Configuration: 3000-1110 --- Distance from that configuration: [0.83375292] @@ -12562,23 +14141,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 49.41467631934382 --- Workload: 400095000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 14 in the X datas point --------------- - --- Configuration: 3303-1010 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9340120487.55429 - --- Energy: 67.3857084084629 - --- Workload: 629393000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 15 in the X datas point --------------- - --- Configuration: 0003-1001 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 6806147312.252427 - --- Energy: 54.44253148500697 - --- Workload: 370545000000.0 --------------- ---- Neighbour 8 in the list of neghbours, And at position 19 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 19 in the X datas point -------------- --- Configuration: 3300-0000 --- Distance from that configuration: [0.83375292] @@ -12586,7 +14149,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.277288658122774 --- Workload: 59956000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 34 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 34 in the X datas point -------------- --- Configuration: 2000-0000 --- Distance from that configuration: [0.83375292] @@ -12594,6 +14157,14 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.02206558996354 --- Workload: 29457300000.0 -------------- +--- Neighbour 9 in the list of neghbours, And at position 41 in the X datas point +-------------- + --- Configuration: 3300-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 +-------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3000-1000' --- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point -------------- @@ -12638,7 +14209,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Neighbour 5 in the list of neghbours, And at position 40 in the X datas point -------------- --- Configuration: 3300-1000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 5058399218.983161 --- Energy: 36.78276420172299 --- Workload: 186062000000.0 @@ -12651,29 +14222,29 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 4 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 41 in the X datas point -------------- - --- Configuration: 3000-1110 + --- Configuration: 3300-2000 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 8096707069.234942 - --- Energy: 49.41467631934382 - --- Workload: 400095000000.0 + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 15 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 48 in the X datas point -------------- - --- Configuration: 0003-1001 + --- Configuration: 3000-1100 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 6806147312.252427 - --- Energy: 54.44253148500697 - --- Workload: 370545000000.0 + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 4 in the X datas point -------------- - --- Configuration: 3303-1010 + --- Configuration: 3000-1110 --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 9340120487.55429 - --- Energy: 67.3857084084629 - --- Workload: 629393000000.0 + --- Energy efficiency: 8096707069.234942 + --- Energy: 49.41467631934382 + --- Workload: 400095000000.0 -------------- -------------- --- Median at position 4 in the list of neghbours, And at position 44 in the X datas point @@ -12687,42 +14258,42 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- The energy of the current configuration (36.46450751429702 mAh) it is NOT far from the median. --- Median :36.46450751429702, the gap is : 10 --- So No we don't romove this configuration '3000-1000' - --- remove_aberrant_points: The value [2.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 1.0, 0, 1, 0, 0, 0] + --- remove_aberrant_points: The value [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '3000-2000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -12732,60 +14303,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '3000-2000' --- Neighbour 0 in the list of neghbours, And at position 45 in the X datas point @@ -12820,7 +14421,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.46450751429702 --- Workload: 194232000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 18 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 18 in the X datas point -------------- --- Configuration: 3000-0000 --- Distance from that configuration: [0.83375292] @@ -12828,7 +14445,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.060137396486432 --- Workload: 29553800000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 --- Distance from that configuration: [0.83375292] @@ -12836,7 +14453,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 --- Distance from that configuration: [0.83375292] @@ -12844,7 +14461,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 35 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 35 in the X datas point -------------- --- Configuration: 3000-0000 --- Distance from that configuration: [0.83375292] @@ -12852,22 +14469,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.239529117166907 --- Workload: 29535500000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 40 in the X datas point --------------- - --- Configuration: 3300-1000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 43 in the X datas point --------------- - --- Configuration: 2200-2000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5035525633.343237 - --- Energy: 36.93355197432356 - --- Workload: 185980000000.0 --------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '3000-2000' --- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point -------------- @@ -12893,7 +14494,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.1860248822606 --- Workload: 150171000000.0 -------------- ---- Neighbour 3 in the list of neghbours, And at position 44 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 44 in the X datas point -------------- --- Configuration: 3000-1000 --- Distance from that configuration: [0.91310072] @@ -12901,31 +14510,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.46450751429702 --- Workload: 194232000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 27 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 27 in the X datas point -------------- --- Configuration: 3300-3000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 5072151352.996373 --- Energy: 36.711179058531826 --- Workload: 186205000000.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 40 in the X datas point --------------- - --- Configuration: 3300-1000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5058399218.983161 - --- Energy: 36.78276420172299 - --- Workload: 186062000000.0 --------------- ---- Neighbour 6 in the list of neghbours, And at position 43 in the X datas point --------------- - --- Configuration: 2200-2000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 5035525633.343237 - --- Energy: 36.93355197432356 - --- Workload: 185980000000.0 --------------- ---- Neighbour 7 in the list of neghbours, And at position 45 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 45 in the X datas point -------------- --- Configuration: 3000-2000 --- Distance from that configuration: [0.83375292] @@ -12933,7 +14526,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.96583597689362 --- Workload: 150045000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 41 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 41 in the X datas point -------------- --- Configuration: 3300-2000 --- Distance from that configuration: [0.83375292] @@ -12941,7 +14534,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.9852979298838 --- Workload: 185914000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 30 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 30 in the X datas point -------------- --- Configuration: 3000-3300 --- Distance from that configuration: [0.83375292] @@ -12949,54 +14542,62 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.19510352720739 --- Workload: 278957000000.0 -------------- +--- Neighbour 9 in the list of neghbours, And at position 49 in the X datas point -------------- ---- Median at position 4 in the list of neghbours, And at position 27 in the X datas point + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 -------------- - --- Configuration: 3300-3000 - --- Energy efficiency: 5072151352.996373 - --- Energy: 36.711179058531826 - --- Workload: 186205000000.0 +-------------- +--- Median at position 4 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (36.711179058531826 mAh) it is NOT far from the median. ---- Median :36.711179058531826, the gap is : 10 +--- The energy of the current configuration (36.46450751429702 mAh) it is NOT far from the median. +--- Median :36.46450751429702, the gap is : 10 --- So No we don't romove this configuration '3000-2000' - --- remove_aberrant_points: The value [2.0, 1, 0, 0, 1.0, 0, 1, 0, 0, 0] is not an abberant point. - --- remove_aberrant_points: do we remove value [0.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0] + --- remove_aberrant_points: The value [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0] --- Computing the list of the 10 first neighbours of '1000-1000' *** START computing ci exp matrix -X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 1. 2. 0. 1. 0. 0. 0.] - [2. 0. 1. 0. 0. 0. 0. 1. 0. 0.] - [1. 1. 1. 1. 1. 0. 0. 1. 1. 0.] +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] - [1. 0. 0. 1. 1. 0. 0. 1. 0. 1.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 1. 0. 0. 0. 1. 1. 1.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 1.] - [1. 0. 0. 1. 2. 0. 0. 0. 1. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 1. 0. 1. 0.] - [2. 0. 0. 0. 0. 0. 1. 0. 0. 1.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] @@ -13006,60 +14607,90 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.]] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] *** END computing ci exp matrix, cached result [[[1. ] [0.52921334] [0.76130039] ... - [0.76130039] - [0.69514393] - [0.52921334]] + [0.40289032] + [0.57957828] + [0.48322508]] [[0.52921334] [1. ] [0.48322508] ... - [0.57957828] - [0.76130039] - [0.40289032]] + [0.30672056] + [0.44123317] + [0.52921334]] [[0.76130039] [0.48322508] [1. ] ... - [0.69514393] + [0.52921334] [0.63473642] - [0.48322508]] + [0.44123317]] ... - [[0.76130039] - [0.57957828] - [0.69514393] + [[0.40289032] + [0.30672056] + [0.52921334] ... [1. ] - [0.91310072] - [0.69514393]] + [0.69514393] + [0.57957828]] - [[0.69514393] - [0.76130039] + [[0.57957828] + [0.44123317] [0.63473642] ... - [0.91310072] + [0.69514393] [1. ] - [0.63473642]] + [0.69514393]] - [[0.52921334] - [0.40289032] - [0.48322508] + [[0.48322508] + [0.52921334] + [0.44123317] ... + [0.57957828] [0.69514393] - [0.63473642] [1. ]]] --- Ordered by distance, Printing the list of the 10 first neighbours of '1000-1000' --- Neighbour 0 in the list of neghbours, And at position 46 in the X datas point @@ -13094,7 +14725,23 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.68430426428569 --- Workload: 218185000000.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 16 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 16 in the X datas point -------------- --- Configuration: 0000-0000 --- Distance from that configuration: [0.83375292] @@ -13102,7 +14749,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- ---- Neighbour 5 in the list of neghbours, And at position 17 in the X datas point +--- Neighbour 7 in the list of neghbours, And at position 17 in the X datas point -------------- --- Configuration: 0000-0000 --- Distance from that configuration: [0.83375292] @@ -13110,7 +14757,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.027102694886654 --- Workload: 0.0 -------------- ---- Neighbour 6 in the list of neghbours, And at position 32 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 32 in the X datas point -------------- --- Configuration: 0000-0000 --- Distance from that configuration: [0.83375292] @@ -13118,7 +14765,7 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.957415812958512 --- Workload: 0.0 -------------- ---- Neighbour 7 in the list of neghbours, And at position 34 in the X datas point +--- Neighbour 9 in the list of neghbours, And at position 34 in the X datas point -------------- --- Configuration: 2000-0000 --- Distance from that configuration: [0.83375292] @@ -13126,22 +14773,6 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 29.02206558996354 --- Workload: 29457300000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 36 in the X datas point --------------- - --- Configuration: 1100-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 2018619748.5607243 - --- Energy: 30.059275323795035 - --- Workload: 60678300000.0 --------------- ---- Neighbour 9 in the list of neghbours, And at position 13 in the X datas point --------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 --------------- --- Ordered by energy, Printing the list of the 10 first neighbours of '1000-1000' --- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point -------------- @@ -13175,22 +14806,22 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 30.027102694886654 --- Workload: 0.0 -------------- ---- Neighbour 4 in the list of neghbours, And at position 36 in the X datas point --------------- - --- Configuration: 1100-0000 - --- Distance from that configuration: [0.83375292] - --- Energy efficiency: 2018619748.5607243 - --- Energy: 30.059275323795035 - --- Workload: 60678300000.0 --------------- ---- Neighbour 5 in the list of neghbours, And at position 16 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 16 in the X datas point -------------- --- Configuration: 0000-0000 - --- Distance from that configuration: [0.83375292] + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 0.08333333333333333 --- Energy: 30.299284062105812 --- Workload: 0.0 -------------- +--- Neighbour 5 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- --- Neighbour 6 in the list of neghbours, And at position 42 in the X datas point -------------- --- Configuration: 1100-1000 @@ -13207,7 +14838,15 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 36.86022362180361 --- Workload: 149735000000.0 -------------- ---- Neighbour 8 in the list of neghbours, And at position 7 in the X datas point +--- Neighbour 8 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 7 in the X datas point -------------- --- Configuration: 1000-1010 --- Distance from that configuration: [0.83375292] @@ -13215,29083 +14854,13067 @@ X = [[2. 0. 1. 0. 0. 0. 1. 0. 1. 0.] --- Energy: 42.85376093977719 --- Workload: 278621000000.0 -------------- ---- Neighbour 9 in the list of neghbours, And at position 13 in the X datas point --------------- - --- Configuration: 0011-1100 - --- Distance from that configuration: [0.76130039] - --- Energy efficiency: 7650055845.407672 - --- Energy: 43.82652071469574 - --- Workload: 335276000000.0 --------------- -------------- ---- Median at position 4 in the list of neghbours, And at position 36 in the X datas point +--- Median at position 4 in the list of neghbours, And at position 16 in the X datas point -------------- - --- Configuration: 1100-0000 - --- Energy efficiency: 2018619748.5607243 - --- Energy: 30.059275323795035 - --- Workload: 60678300000.0 + --- Configuration: 0000-0000 + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 -------------- --- Comparing the median energy with the energy of that data point ---- The energy of the current configuration (30.059275323795035 mAh) it is NOT far from the median. ---- Median :30.059275323795035, the gap is : 10 +--- The energy of the current configuration (30.299284062105812 mAh) it is NOT far from the median. +--- Median :30.299284062105812, the gap is : 10 --- So No we don't romove this configuration '1000-1000' - --- remove_aberrant_points: The value [0.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0] is not an abberant point. ---- remove_aberrant_points: Printing all 14 removed points - --- Configuration: 0303-1010 - --- Energy: 61.00540758755291 - --- Configuration: 0033-3000 - --- Energy: 53.35616382684589 - --- Configuration: 0303-0100 - --- Energy: 53.38267358149647 - --- Configuration: 2222-0220 - --- Energy: 54.74622776577034 - --- Configuration: 3000-1110 - --- Energy: 49.41467631934382 - --- Configuration: 1000-1010 - --- Energy: 42.85376093977719 - --- Configuration: 0020-0202 - --- Energy: 66.44909360627778 - --- Configuration: 0011-0111 - --- Energy: 50.74428137607953 - --- Configuration: 3303-0001 - --- Energy: 59.94594005320708 - --- Configuration: 3303-1010 - --- Energy: 67.3857084084629 - --- Configuration: 0003-1001 - --- Energy: 54.44253148500697 - --- Configuration: 3333-0000 - --- Energy: 59.045602086542516 - --- Configuration: 3333-3000 - --- Energy: 66.34289826476824 - --- Configuration: 3333-3300 - --- Energy: 75.09852863759252 -final_X_user friendly : - ['0030-0000', '0020-0010', '0010-3300', '0022-0030', '0011-1100', '0000-0000', '0000-0000', '3000-0000', '3300-0000', '3330-0000', '0000-3000', '0000-3300', '0000-3330', '3300-3000', '3330-3000', '3000-3000', '3000-3300', '3000-3330', '0000-0000', '1000-0000', '2000-0000', '3000-0000', '1100-0000', '2200-0000', '1110-0000', '2220-0000', '3300-1000', '3300-2000', '1100-1000', '2200-2000', '3000-1000', '3000-2000', '1000-1000'] -final_X : - [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [1.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 1.0, 0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0]] -final_y : - [994906080.8659663, 3998672440.749671, 6532788063.289651, 7249844128.351241, 7650055845.407672, 0.08333333333333333, 0.08333333333333333, 1016987763.6032282, 1980229389.772511, 5377240292.736961, 3307720550.5370083, 5789616901.049658, 7665772326.561901, 5072151352.996373, 5822958761.806049, 4149980287.5936337, 6611133148.221605, 8224428196.629629, 0.08333333333333333, 997516184.7000968, 1014996574.3865615, 1010122436.9405816, 2018619748.5607243, 1998856653.9939156, 2905397356.669485, 3029054692.61153, 5058399218.983161, 5026691733.102776, 5947637003.818383, 5035525633.343237, 5326600510.288329, 4059018123.5159216, 4062233415.93208] - --- Actual line: ['X_0' 'X_1' 'X_2' 'X_3' 'X_4' 'X_5' 'X_6' 'X_7' 'X_8' 'X_9' 'y'] - --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 9.94906081e+08] - --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 3.99867244e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 6.53278806e+09] - --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 7.24984413e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 7.65005585e+09] - --- Actual line: [0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0.08333333] - --- Actual line: [0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0.08333333] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.01698776e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.98022939e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.37724029e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 3.30772055e+09] - --- Actual line: [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 2.0000000e+00 - 0.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 - 5.7896169e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 1.00000000e+00 0.00000000e+00 7.66577233e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.07215135e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.82295876e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 4.14998029e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 6.61113315e+09] - --- Actual line: [2.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 2.0000000e+00 - 0.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 - 8.2244282e+09] - --- Actual line: [0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0.08333333] - --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 9.97516185e+08] - --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.01499657e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.01012244e+09] - --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 2.01861975e+09] - --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.99885665e+09] - --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 2.90539736e+09] - --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 3.02905469e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.05839922e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.02669173e+09] - --- Actual line: [0.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 - 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 - 5.947637e+09] - --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.03552563e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.32660051e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 4.05901812e+09] - --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 4.06223342e+09] ---- Size of X after removing aberrants points from the dataset: 33 ---- Number of abberant points removed : 14 -*** Ratio energy by wokload : [994906080.8659663, 3998672440.749671, 6532788063.289651, 7249844128.351241, 7650055845.407672, 0.08333333333333333, 0.08333333333333333, 1016987763.6032282, 1980229389.772511, 5377240292.736961, 3307720550.5370083, 5789616901.049658, 7665772326.561901, 5072151352.996373, 5822958761.806049, 4149980287.5936337, 6611133148.221605, 8224428196.629629, 0.08333333333333333, 997516184.7000968, 1014996574.3865615, 1010122436.9405816, 2018619748.5607243, 1998856653.9939156, 2905397356.669485, 3029054692.61153, 5058399218.983161, 5026691733.102776, 5947637003.818383, 5035525633.343237, 5326600510.288329, 4059018123.5159216, 4062233415.93208] ---- Size of X before removing duplicates: 33 - --- Actual line: ['X_0' 'X_1' 'X_2' 'X_3' 'X_4' 'X_5' 'X_6' 'X_7' 'X_8' 'X_9' 'y'] - --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 9.94906081e+08] - --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 3.99867244e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 6.53278806e+09] - --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 7.24984413e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 7.65005585e+09] - --- Actual line: [0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0.08333333] - --- Actual line: [0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0.08333333] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.01698776e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.98022939e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.37724029e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 3.30772055e+09] - --- Actual line: [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 2.0000000e+00 - 0.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 - 5.7896169e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 1.00000000e+00 0.00000000e+00 7.66577233e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.07215135e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.82295876e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 4.14998029e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 6.61113315e+09] - --- Actual line: [2.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 2.0000000e+00 - 0.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 - 8.2244282e+09] - --- Actual line: [0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0.08333333] - --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 9.97516185e+08] - --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.01499657e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.01012244e+09] - --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 2.01861975e+09] - --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.99885665e+09] - --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 2.90539736e+09] - --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 3.02905469e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.05839922e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.02669173e+09] - --- Actual line: [0.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 - 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 - 5.947637e+09] - --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.03552563e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.32660051e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 4.05901812e+09] - --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 4.06223342e+09] - --- Checking value [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0] - --- Retained configurations [] - --- Answer : we add the configuration, it is not yet present - --- Checking value [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] - --- Answer : configuration is present, have it been processed? -1 - --- Answer : the configuration 0000-0000 is already present at positions [5, 6, 18] - --- Position: 5 + --- remove_aberrant_points: The value [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0] +--- Computing the list of the 10 first neighbours of '2000-2000' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '2000-2000' +--- Neighbour 0 in the list of neghbours, And at position 47 in the X datas point -------------- - --- Configuration: 0000-0000 - --- Energy efficiency: 0.08333333333333333 - --- Energy: 29.623247258891045 - --- Workload: 29472300000.0 + --- Configuration: 2000-2000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 -------------- - --- Position: 6 +--- Neighbour 1 in the list of neghbours, And at position 43 in the X datas point -------------- - --- Configuration: 0000-0000 - --- Energy efficiency: 0.08333333333333333 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 -------------- - --- Position: 18 +--- Neighbour 2 in the list of neghbours, And at position 45 in the X datas point -------------- - --- Configuration: 0000-0000 - --- Energy efficiency: 0.08333333333333333 - --- Energy: 29.060137396486432 - --- Workload: 29553800000.0 + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 -------------- ----------------------- ---- Ordered by energy, Printing the list of the 3 duplicates of '0000-0000' ---- Duplicate 0 in the list of duplicate, And at position 6 in the X datas point +--- Neighbour 3 in the list of neghbours, And at position 51 in the X datas point -------------- - --- Configuration: 0000-0000 - --- Energy efficiency: 0.08333333333333333 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 -------------- ---- Duplicate 1 in the list of duplicate, And at position 5 in the X datas point +--- Neighbour 4 in the list of neghbours, And at position 62 in the X datas point -------------- - --- Configuration: 0000-0000 - --- Energy efficiency: 0.08333333333333333 - --- Energy: 29.623247258891045 - --- Workload: 29472300000.0 + --- Configuration: 2002-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 -------------- ---- Duplicate 2 in the list of duplicate, And at position 18 in the X datas point +--- Neighbour 5 in the list of neghbours, And at position 29 in the X datas point -------------- - --- Configuration: 0000-0000 - --- Energy efficiency: 0.08333333333333333 - --- Energy: 29.060137396486432 - --- Workload: 29553800000.0 + --- Configuration: 3000-3000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 -------------- +--- Neighbour 6 in the list of neghbours, And at position 34 in the X datas point -------------- ---- We append this Median as duplicate representant at position 0 in the list of duplicates, And at position 6 in the X datas point + --- Configuration: 2000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 -------------- - --- Configuration: 0000-0000 - --- Energy efficiency: 0.08333333333333333 - --- Energy: 36.82601141845538 - --- Workload: 147255000000.0 +--- Neighbour 7 in the list of neghbours, And at position 41 in the X datas point -------------- - --- Checking value [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0]] - --- Answer : configuration is present, have it been processed? 0 - --- Checking value [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0]] - --- Answer : configuration is present, have it been processed? -1 - --- Answer : the configuration 3000-0000 is already present at positions [7, 21] - --- Position: 7 + --- Configuration: 3300-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '2000-2000' +--- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 29 in the X datas point +-------------- + --- Configuration: 3000-3000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 41 in the X datas point +-------------- + --- Configuration: 3300-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 62 in the X datas point +-------------- + --- Configuration: 2002-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (36.86022362180361 mAh) it is NOT far from the median. +--- Median :36.86022362180361, the gap is : 10 +--- So No we don't romove this configuration '2000-2000' + --- remove_aberrant_points: The value [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0] +--- Computing the list of the 10 first neighbours of '3000-1100' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '3000-1100' +--- Neighbour 0 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [1.] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 4 in the X datas point +-------------- + --- Configuration: 3000-1110 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 8096707069.234942 + --- Energy: 49.41467631934382 + --- Workload: 400095000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 18 in the X datas point -------------- --- Configuration: 3000-0000 + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 1016987763.6032282 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 + --- Energy: 29.060137396486432 + --- Workload: 29553800000.0 -------------- - --- Position: 21 +--- Neighbour 5 in the list of neghbours, And at position 35 in the X datas point -------------- --- Configuration: 3000-0000 + --- Distance from that configuration: [0.83375292] --- Energy efficiency: 1010122436.9405816 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 + --- Energy: 29.239529117166907 + --- Workload: 29535500000.0 -------------- ----------------------- ---- Ordered by energy, Printing the list of the 2 duplicates of '3000-0000' ---- Duplicate 0 in the list of duplicate, And at position 21 in the X datas point +--- Neighbour 6 in the list of neghbours, And at position 40 in the X datas point -------------- - --- Configuration: 3000-0000 - --- Energy efficiency: 1010122436.9405816 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 + --- Configuration: 3300-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5058399218.983161 + --- Energy: 36.78276420172299 + --- Workload: 186062000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 71 in the X datas point -------------- ---- Duplicate 1 in the list of duplicate, And at position 7 in the X datas point + --- Configuration: 3003-1101 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 9428892010.8998 + --- Energy: 67.46193459835338 + --- Workload: 636090000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '3000-1100' +--- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point -------------- --- Configuration: 3000-0000 + --- Distance from that configuration: [1.] --- Energy efficiency: 1016987763.6032282 - --- Energy: 42.85376093977719 - --- Workload: 278621000000.0 --------------- + --- Energy: 29.060137396486432 + --- Workload: 29553800000.0 -------------- ---- We append this Median as duplicate representant at position 0 in the list of duplicates, And at position 21 in the X datas point +--- Neighbour 1 in the list of neghbours, And at position 35 in the X datas point -------------- --- Configuration: 3000-0000 + --- Distance from that configuration: [0.91310072] --- Energy efficiency: 1010122436.9405816 - --- Energy: 59.045602086542516 - --- Workload: 489874000000.0 + --- Energy: 29.239529117166907 + --- Workload: 29535500000.0 -------------- - --- Checking value [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [1.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [1.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [2.0, 1, 0, 0, 1.0, 0, 1, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [1.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present - --- Checking value [0.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0] - --- Retained configurations [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [1.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 1.0, 0, 1, 0, 0, 0]] - --- Answer : we add the configuration, it is not yet present -final_X_user friendly : - ['0030-0000', '0020-0010', '0010-3300', '0022-0030', '0011-1100', '0000-0000', '3000-0000', '3300-0000', '3330-0000', '0000-3000', '0000-3300', '0000-3330', '3300-3000', '3330-3000', '3000-3000', '3000-3300', '3000-3330', '1000-0000', '2000-0000', '1100-0000', '2200-0000', '1110-0000', '2220-0000', '3300-1000', '3300-2000', '1100-1000', '2200-2000', '3000-1000', '3000-2000', '1000-1000'] -final_X : - [[2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 2.0, 0, 1, 1, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 1, 1, 0], [2.0, 1, 1, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 1, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [1.0, 1, 1, 0, 1.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 1.0, 0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0.0, 0, 1, 0, 0, 0]] -final_y : - [994906080.8659663, 3998672440.749671, 6532788063.289651, 7249844128.351241, 7650055845.407672, 0.08333333333333333, 1010122436.9405816, 1980229389.772511, 5377240292.736961, 3307720550.5370083, 5789616901.049658, 7665772326.561901, 5072151352.996373, 5822958761.806049, 4149980287.5936337, 6611133148.221605, 8224428196.629629, 997516184.7000968, 1014996574.3865615, 2018619748.5607243, 1998856653.9939156, 2905397356.669485, 3029054692.61153, 5058399218.983161, 5026691733.102776, 5947637003.818383, 5035525633.343237, 5326600510.288329, 4059018123.5159216, 4062233415.93208] - --- Actual line: ['X_0' 'X_1' 'X_2' 'X_3' 'X_4' 'X_5' 'X_6' 'X_7' 'X_8' 'X_9' 'y'] - --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 9.94906081e+08] - --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 3.99867244e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 6.53278806e+09] - --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 7.24984413e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 7.65005585e+09] - --- Actual line: [0. 0. 0. 0. 0. 0. - 0. 0. 0. 0. 0.08333333] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.01012244e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.98022939e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.37724029e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 3.30772055e+09] - --- Actual line: [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 2.0000000e+00 - 0.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 - 5.7896169e+09] - --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 1.00000000e+00 0.00000000e+00 7.66577233e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.07215135e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.82295876e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 4.14998029e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 2.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 6.61113315e+09] - --- Actual line: [2.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 2.0000000e+00 - 0.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 - 8.2244282e+09] - --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 9.97516185e+08] - --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.01499657e+09] - --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 2.01861975e+09] - --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.99885665e+09] - --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 2.90539736e+09] - --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 - 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 3.02905469e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.05839922e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.02669173e+09] - --- Actual line: [0.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 - 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 - 5.947637e+09] - --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.03552563e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 5.32660051e+09] - --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 4.05901812e+09] - --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 - 0.00000000e+00 0.00000000e+00 4.06223342e+09] ---- Size of X after removing duplicates: 30 ---- Number of duplicates points removed : 3 -*** Ratio energy by wokload : [994906080.8659663, 3998672440.749671, 6532788063.289651, 7249844128.351241, 7650055845.407672, 0.08333333333333333, 1010122436.9405816, 1980229389.772511, 5377240292.736961, 3307720550.5370083, 5789616901.049658, 7665772326.561901, 5072151352.996373, 5822958761.806049, 4149980287.5936337, 6611133148.221605, 8224428196.629629, 997516184.7000968, 1014996574.3865615, 2018619748.5607243, 1998856653.9939156, 2905397356.669485, 3029054692.61153, 5058399218.983161, 5026691733.102776, 5947637003.818383, 5035525633.343237, 5326600510.288329, 4059018123.5159216, 4062233415.93208] ----> getting userfriendly values from X values ----> getting userfriendly values from X values -Train set Configurations : [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] -Train set energy by workload : [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] -Test set Configurations : [[1.0, 0, 0, 1, 0.0, 0, 0, 0, 1, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 2.0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2.0, 0, 1, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0.0, 0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 2.0, 0, 0, 0, 1, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0]] -Test set energy by workload : [3998672440.749671, 994906080.8659663, 4149980287.5936337, 3307720550.5370083, 2905397356.669485, 2018619748.5607243, 5058399218.983161, 1010122436.9405816, 7249844128.351241, 1998856653.9939156] -Train set Configurations in user friendly mode : ['0000-0000', '3000-1000', '3300-3000', '0011-1100', '0000-3300', '3000-3330', '3000-2000', '1100-1000', '1000-0000', '0010-3300', '3300-0000', '2200-2000', '3300-2000', '2000-0000', '0000-3330', '2220-0000', '1000-1000', '3330-3000', '3000-3300', '3333-0000'] -Test set Configurations in user friendly mode : ['0020-0010', '0030-0000', '3000-3000', '0000-3000', '1110-0000', '1100-0000', '3300-1000', '3000-0000', '0022-0030', '2200-0000'] -Size of X_train: 20 -Size of X_test: 10 ----> lambda exploration - Start, findind regularisation parameter - getting loo error of with lamda = 1e-09, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1312605228.4652383 -error 1.722932485575513e+18 - y tested = 5326600510.288329 -y predicted = 4051791870.193298 -error 1.6251370688609428e+18 - y tested = 5072151352.996373 -y predicted = 3594012339.5118017 -error 2.184894943185142e+18 - y tested = 7650055845.407672 -y predicted = 6070903437.041872 -error 2.493722328847506e+18 - y tested = 5789616901.049658 -y predicted = 6764942629.36081 -error 9.5126027630568e+17 - y tested = 8224428196.629629 -y predicted = 7969760094.188414 -error 6.485584240100944e+16 - y tested = 4059018123.5159216 -y predicted = 5054319914.268138 -error 9.906256546745686e+17 - y tested = 5947637003.818383 -y predicted = 4069847482.987872 -error 3.5260934845408804e+18 - y tested = 997516184.7000968 -y predicted = 131729768.12286858 -error 7.495861191296379e+17 - y tested = 6532788063.289651 -y predicted = 5298139005.47945 -error 1.5243582959516163e+18 - y tested = 1980229389.772511 -y predicted = 3722742923.0070443 -error 3.036353413505497e+18 - y tested = 5035525633.343237 -y predicted = 4721401771.547748 -error 9.867380054931166e+16 - y tested = 5026691733.102776 -y predicted = 5389424632.187269 -error 1.3157515607824144e+17 - y tested = 1014996574.3865615 -y predicted = 958216612.1003389 -error 3223964117224858.0 - y tested = 7665772326.561901 -y predicted = 7014797203.394785 -error 4.2376861098244205e+17 - y tested = 3029054692.61153 -y predicted = 5462433954.478843 -error 5.921334632085908e+18 - y tested = 4062233415.93208 -y predicted = 5888432824.667502 -error 3.335004280465607e+18 - y tested = 5822958761.806049 -y predicted = 7715479853.663633 -error 3.581636083125822e+18 - y tested = 6611133148.221605 -y predicted = 6266623031.96833 -error 1.18687220200845e+17 - y tested = 5377240292.736961 -y predicted = 2801927176.5588965 -error 6.632237646358775e+18 -error squared vector [1.722932485575513e+18, 1.6251370688609428e+18, 2.184894943185142e+18, 2.493722328847506e+18, 9.5126027630568e+17, 6.485584240100944e+16, 9.906256546745686e+17, 3.5260934845408804e+18, 7.495861191296379e+17, 1.5243582959516163e+18, 3.036353413505497e+18, 9.867380054931166e+16, 1.3157515607824144e+17, 3223964117224858.0, 4.2376861098244205e+17, 5.921334632085908e+18, 3.335004280465607e+18, 3.581636083125822e+18, 1.18687220200845e+17, 6.632237646358775e+18] -Total loo_error 1.9557980653471084e+18 - getting loo error of with lamda = 1, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3623318490.9389453 -error 1.3128436886176188e+19 - y tested = 5326600510.288329 -y predicted = 3773768759.891983 -error 2.41128644503898e+18 - y tested = 5072151352.996373 -y predicted = 5139430263.44134 -error 4526451790661926.0 - y tested = 7650055845.407672 -y predicted = 3738863091.743912 -error 1.5297428756311904e+19 - y tested = 5789616901.049658 -y predicted = 5425147628.237742 -error 1.3283785082404642e+17 - y tested = 8224428196.629629 -y predicted = 5102482513.241801 -error 9.74654485002389e+18 - y tested = 4059018123.5159216 -y predicted = 4917058836.350411 -error 7.362338648815195e+17 - y tested = 5947637003.818383 -y predicted = 3389068855.082254 -error 6.546270971727024e+18 - y tested = 997516184.7000968 -y predicted = 3281390872.3212776 -error 5.216083588756745e+18 - y tested = 6532788063.289651 -y predicted = 5410414200.352123 -error 1.2597230882053082e+18 - y tested = 1980229389.772511 -y predicted = 3563256312.508275 -error 2.5059742381062625e+18 - y tested = 5035525633.343237 -y predicted = 4874538443.042926 -error 2.5916875440788576e+16 - y tested = 5026691733.102776 -y predicted = 4771703677.115547 -error 6.501890869614592e+16 - y tested = 1014996574.3865615 -y predicted = 3537140152.218662 -error 6.361208227199708e+18 - y tested = 7665772326.561901 -y predicted = 5027745351.943652 -error 6.959186318813512e+18 - y tested = 3029054692.61153 -y predicted = 3668540334.6492686 -error 4.08941886372419e+17 - y tested = 4062233415.93208 -y predicted = 3718087657.6934724 -error 1.1843630291362602e+17 - y tested = 5822958761.806049 -y predicted = 5120607206.416364 -error 4.9329770735831066e+17 - y tested = 6611133148.221605 -y predicted = 5438049949.388372 -error 1.3761241913848102e+18 - y tested = 5377240292.736961 -y predicted = 3148711008.2782016 -error 4.966342771690272e+18 -error squared vector [1.3128436886176188e+19, 2.41128644503898e+18, 4526451790661926.0, 1.5297428756311904e+19, 1.3283785082404642e+17, 9.74654485002389e+18, 7.362338648815195e+17, 6.546270971727024e+18, 5.216083588756745e+18, 1.2597230882053082e+18, 2.5059742381062625e+18, 2.5916875440788576e+16, 6.501890869614592e+16, 6.361208227199708e+18, 6.959186318813512e+18, 4.08941886372419e+17, 1.1843630291362602e+17, 4.9329770735831066e+17, 1.3761241913848102e+18, 4.966342771690272e+18] -Total loo_error 3.887991009085607e+18 -iteration 0current difference of loo_error 1.9321929437384986e+18 - getting loo error of with lamda = 0.9696969697272727, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3617687454.0810056 -error 1.3087662514812158e+19 - y tested = 5326600510.288329 -y predicted = 3773902517.262821 -error 2.41087105754544e+18 - y tested = 5072151352.996373 -y predicted = 5155471713.033496 -error 6942282396715758.0 - y tested = 7650055845.407672 -y predicted = 3747931792.1129003 -error 1.5226572127301618e+19 - y tested = 5789616901.049658 -y predicted = 5450708695.521458 -error 1.1485877177434475e+17 - y tested = 8224428196.629629 -y predicted = 5125760280.879448 -error 9.601742852099572e+18 - y tested = 4059018123.5159216 -y predicted = 4928109157.810704 -error 7.55319225891575e+17 - y tested = 5947637003.818383 -y predicted = 3386839044.6587996 -error 6.557686187635888e+18 - y tested = 997516184.7000968 -y predicted = 3268938220.9667897 -error 5.159358066837931e+18 - y tested = 6532788063.289651 -y predicted = 5441606339.797748 -error 1.1906775536827604e+18 - y tested = 1980229389.772511 -y predicted = 3559232355.428972 -error 2.493250365551898e+18 - y tested = 5035525633.343237 -y predicted = 4885194737.917983 -error 2.2599378119358616e+16 - y tested = 5026691733.102776 -y predicted = 4782999219.0184355 -error 5.9386041420746296e+16 - y tested = 1014996574.3865615 -y predicted = 3525995886.549158 -error 6.305117545681034e+18 - y tested = 7665772326.561901 -y predicted = 5052283575.134501 -error 6.830323453837549e+18 - y tested = 3029054692.61153 -y predicted = 3669748477.1556425 -error 4.1048852555345786e+17 - y tested = 4062233415.93208 -y predicted = 3718660438.2791348 -error 1.1804239097331107e+17 - y tested = 5822958761.806049 -y predicted = 5142073536.784878 -error 4.6360468965213146e+17 - y tested = 6611133148.221605 -y predicted = 5461798710.752588 -error 1.3209696491522217e+18 - y tested = 5377240292.736961 -y predicted = 3143607439.126741 -error 4.989115724726937e+18 -error squared vector [1.3087662514812158e+19, 2.41087105754544e+18, 6942282396715758.0, 1.5226572127301618e+19, 1.1485877177434475e+17, 9.601742852099572e+18, 7.55319225891575e+17, 6.557686187635888e+18, 5.159358066837931e+18, 1.1906775536827604e+18, 2.493250365551898e+18, 2.2599378119358616e+16, 5.9386041420746296e+16, 6.305117545681034e+18, 6.830323453837549e+18, 4.1048852555345786e+17, 1.1804239097331107e+17, 4.6360468965213146e+17, 1.3209696491522217e+18, 4.989115724726937e+18] -Total loo_error 3.8562294202323323e+18 -iteration 1current difference of loo_error 1.900431354885224e+18 - getting loo error of with lamda = 0.9403122130991736, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3611693798.1425123 -error 1.3044332090939136e+19 - y tested = 5326600510.288329 -y predicted = 3773885964.0846176 -error 2.410922461992598e+18 - y tested = 5072151352.996373 -y predicted = 5171071195.08918 -error 9785135159665836.0 - y tested = 7650055845.407672 -y predicted = 3757001792.536639 -error 1.5155869858575573e+19 - y tested = 5789616901.049658 -y predicted = 5475886104.352688 -error 9.842701279611552e+16 - y tested = 8224428196.629629 -y predicted = 5148789078.705235 -error 9.459555983706749e+18 - y tested = 4059018123.5159216 -y predicted = 4938869840.464651 -error 7.741390438176273e+17 - y tested = 5947637003.818383 -y predicted = 3384524841.643471 -error 6.569543955888954e+18 - y tested = 997516184.7000968 -y predicted = 3256084912.406728 -error 5.101132697774348e+18 - y tested = 6532788063.289651 -y predicted = 5472606781.009898 -error 1.1239843512963407e+18 - y tested = 1980229389.772511 -y predicted = 3555024182.419512 -error 2.4799786389481103e+18 - y tested = 5035525633.343237 -y predicted = 4895618396.629623 -error 1.9574034884839084e+16 - y tested = 5026691733.102776 -y predicted = 4794064352.766923 -error 5.411549808192143e+16 - y tested = 1014996574.3865615 -y predicted = 3514491104.824848 -error 6.247472907690912e+18 - y tested = 7665772326.561901 -y predicted = 5076554755.230862 -error 6.704047631689406e+18 - y tested = 3029054692.61153 -y predicted = 3670934418.5211644 -error 4.1200958253382765e+17 - y tested = 4062233415.93208 -y predicted = 3719131230.3000307 -error 1.1771910978548907e+17 - y tested = 5822958761.806049 -y predicted = 5163276061.58825 -error 4.351812649666467e+17 - y tested = 6611133148.221605 -y predicted = 5485201488.02809 -error 1.2677221034261266e+18 - y tested = 5377240292.736961 -y predicted = 3138397146.045197 -error 5.012418635488681e+18 -error squared vector [1.3044332090939136e+19, 2.410922461992598e+18, 9785135159665836.0, 1.5155869858575573e+19, 9.842701279611552e+16, 9.459555983706749e+18, 7.741390438176273e+17, 6.569543955888954e+18, 5.101132697774348e+18, 1.1239843512963407e+18, 2.4799786389481103e+18, 1.9574034884839084e+16, 5.411549808192143e+16, 6.247472907690912e+18, 6.704047631689406e+18, 4.1200958253382765e+17, 1.1771910978548907e+17, 4.351812649666467e+17, 1.2677221034261266e+18, 5.012418635488681e+18] -Total loo_error 3.824896599972153e+18 -iteration 2current difference of loo_error 1.8690985346250445e+18 - getting loo error of with lamda = 0.9118179036416229, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3605342950.3640513 -error 1.299849778913887e+19 - y tested = 5326600510.288329 -y predicted = 3773729811.3769403 -error 2.411407407537545e+18 - y tested = 5072151352.996373 -y predicted = 5186225743.539274 -error 1.301296657773431e+16 - y tested = 7650055845.407672 -y predicted = 3766082495.9960995 -error 1.508524897893935e+19 - y tested = 5789616901.049658 -y predicted = 5500672977.8463545 -error 8.348859075611646e+16 - y tested = 8224428196.629629 -y predicted = 5171569989.958892 -error 9.31994323003687e+18 - y tested = 4059018123.5159216 -y predicted = 4949345403.497808 -error 7.926826654799452e+17 - y tested = 5947637003.818383 -y predicted = 3382138975.0035877 -error 6.581780135852601e+18 - y tested = 997516184.7000968 -y predicted = 3242838034.867201 -error 5.041470210837826e+18 - y tested = 6532788063.289651 -y predicted = 5503410026.570281 -error 1.0596191424802244e+18 - y tested = 1980229389.772511 -y predicted = 3550642370.601934 -error 2.4661969303575537e+18 - y tested = 5035525633.343237 -y predicted = 4905815329.8454485 -error 1.6824762833488386e+16 - y tested = 5026691733.102776 -y predicted = 4804904446.802315 -error 4.918960036452258e+16 - y tested = 1014996574.3865615 -y predicted = 3502634347.7826934 -error 6.188341691627265e+18 - y tested = 7665772326.561901 -y predicted = 5100555900.260429 -error 6.580335313766894e+18 - y tested = 3029054692.61153 -y predicted = 3672110140.694916 -error 4.135203093097243e+17 - y tested = 4062233415.93208 -y predicted = 3719511629.364893 -error 1.1745822298780437e+17 - y tested = 5822958761.806049 -y predicted = 5184213413.832768 -error 4.079956195575077e+17 - y tested = 6611133148.221605 -y predicted = 5508255868.493022 -error 1.21633829414152e+18 - y tested = 5377240292.736961 -y predicted = 3133092150.0826526 -error 5.036200886178784e+18 -error squared vector [1.299849778913887e+19, 2.411407407537545e+18, 1.301296657773431e+16, 1.508524897893935e+19, 8.348859075611646e+16, 9.31994323003687e+18, 7.926826654799452e+17, 6.581780135852601e+18, 5.041470210837826e+18, 1.0596191424802244e+18, 2.4661969303575537e+18, 1.6824762833488386e+16, 4.918960036452258e+16, 6.188341691627265e+18, 6.580335313766894e+18, 4.135203093097243e+17, 1.1745822298780437e+17, 4.079956195575077e+17, 1.21633829414152e+18, 5.036200886178784e+18] -Total loo_error 3.7939776374381076e+18 -iteration 3current difference of loo_error 1.8381795720909993e+18 - getting loo error of with lamda = 0.8841870581070282, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3598640243.494825 -error 1.2950211601500717e+19 - y tested = 5326600510.288329 -y predicted = 3773444644.361225 -error 2.412293143863772e+18 - y tested = 5072151352.996373 -y predicted = 5200932492.3521 -error 1.6584581853759228e+16 - y tested = 7650055845.407672 -y predicted = 3775183159.1006327 -error 1.501463833508833e+19 - y tested = 5789616901.049658 -y predicted = 5525062563.783109 -error 6.9988997366543016e+16 - y tested = 8224428196.629629 -y predicted = 5194104340.322496 -error 9.182862674104132e+18 - y tested = 4059018123.5159216 -y predicted = 4959540346.509266 -error 8.109402741048745e+17 - y tested = 5947637003.818383 -y predicted = 3379694056.08284 -error 6.594330982824711e+18 - y tested = 997516184.7000968 -y predicted = 3229204579.7655964 -error 4.980433092670024e+18 - y tested = 6532788063.289651 -y predicted = 5534010504.136309 -error 9.975566126683081e+17 - y tested = 1980229389.772511 -y predicted = 3546097329.4653554 -error 2.4519424045579136e+18 - y tested = 5035525633.343237 -y predicted = 4915791369.760334 -error 1.433629387574007e+16 - y tested = 5026691733.102776 -y predicted = 4815524805.478546 -error 4.459147132225655e+16 - y tested = 1014996574.3865615 -y predicted = 3490434022.156737 -error 6.12779055782292e+18 - y tested = 7665772326.561901 -y predicted = 5124284167.159747 -error 6.459162064381349e+18 - y tested = 3029054692.61153 -y predicted = 3673287333.8694615 -error 4.1503569606217094e+17 - y tested = 4062233415.93208 -y predicted = 3719813098.087683 -error 1.1725167407265758e+17 - y tested = 5822958761.806049 -y predicted = 5204884201.644392 -error 3.820161619190262e+17 - y tested = 6611133148.221605 -y predicted = 5530959595.16894 -error 1.16677490471442e+18 - y tested = 5377240292.736961 -y predicted = 3127704267.3833137 -error 5.060412329363887e+18 -error squared vector [1.2950211601500717e+19, 2.412293143863772e+18, 1.6584581853759228e+16, 1.501463833508833e+19, 6.9988997366543016e+16, 9.182862674104132e+18, 8.109402741048745e+17, 6.594330982824711e+18, 4.980433092670024e+18, 9.975566126683081e+17, 2.4519424045579136e+18, 1.433629387574007e+16, 4.459147132225655e+16, 6.12779055782292e+18, 6.459162064381349e+18, 4.1503569606217094e+17, 1.1725167407265758e+17, 3.820161619190262e+17, 1.16677490471442e+18, 5.060412329363887e+18] -Total loo_error 3.763457692706875e+18 -iteration 4current difference of loo_error 1.8076596273597665e+18 - getting loo error of with lamda = 0.8573935109219668, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3591590915.2214427 -error 1.28995253017026e+19 - y tested = 5326600510.288329 -y predicted = 3773040911.937791 -error 2.413547425627086e+18 - y tested = 5072151352.996373 -y predicted = 5215188685.382635 -error 2.045967845617798e+16 - y tested = 7650055845.407672 -y predicted = 3784312884.128424 -error 1.4943968642680048e+19 - y tested = 5789616901.049658 -y predicted = 5549048253.150802 -error 5.787327435188383e+16 - y tested = 8224428196.629629 -y predicted = 5216393706.115382 -error 9.048271496123305e+18 - y tested = 4059018123.5159216 -y predicted = 4969459147.168399 -error 8.289028575493706e+17 - y tested = 5947637003.818383 -y predicted = 3377202568.966538 -error 6.607133183872125e+18 - y tested = 997516184.7000968 -y predicted = 3215191440.272373 -error 4.91808353917756e+18 - y tested = 6532788063.289651 -y predicted = 5564402576.197403 -error 9.377704516108904e+17 - y tested = 1980229389.772511 -y predicted = 3541399292.0291023 -error 2.437251463711855e+18 - y tested = 5035525633.343237 -y predicted = 4925552266.298877 -error 1.2094141459073562e+16 - y tested = 5026691733.102776 -y predicted = 4825930665.165652 -error 4.030500639925424e+16 - y tested = 1014996574.3865615 -y predicted = 3477898397.3818216 -error 6.065885389713376e+18 - y tested = 7665772326.561901 -y predicted = 5147736876.115232 -error 6.340502529706157e+18 - y tested = 3029054692.61153 -y predicted = 3674477383.972559 -error 4.165704505237143e+17 - y tested = 4062233415.93208 -y predicted = 3720046956.365502 -error 1.1709157311070926e+17 - y tested = 5822958761.806049 -y predicted = 5225287012.929135 -error 3.57211519405589e+17 - y tested = 6611133148.221605 -y predicted = 5553310575.426192 -error 1.1189885955155068e+18 - y tested = 5377240292.736961 -y predicted = 3122245096.748953 -error 5.085003333928997e+18 -error squared vector [1.28995253017026e+19, 2.413547425627086e+18, 2.045967845617798e+16, 1.4943968642680048e+19, 5.787327435188383e+16, 9.048271496123305e+18, 8.289028575493706e+17, 6.607133183872125e+18, 4.91808353917756e+18, 9.377704516108904e+17, 2.437251463711855e+18, 1.2094141459073562e+16, 4.030500639925424e+16, 6.065885389713376e+18, 6.340502529706157e+18, 4.165704505237143e+17, 1.1709157311070926e+17, 3.57211519405589e+17, 1.1189885955155068e+18, 5.085003333928997e+18] -Total loo_error 3.733321992731264e+18 -iteration 5current difference of loo_error 1.7775239273841556e+18 - getting loo error of with lamda = 0.83141188940918, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3584200108.250939 -error 1.2846490415388674e+19 - y tested = 5326600510.288329 -y predicted = 3772528916.4871354 -error 2.4151385186597827e+18 - y tested = 5072151352.996373 -y predicted = 5228991686.107982 -error 2.459889009056032e+16 - y tested = 7650055845.407672 -y predicted = 3793480611.363389 -error 1.4873172535843715e+19 - y tested = 5789616901.049658 -y predicted = 5572623598.358003 -error 4.708609341303228e+16 - y tested = 8224428196.629629 -y predicted = 5238439921.67639 -error 8.916125978158222e+18 - y tested = 4059018123.5159216 -y predicted = 4979106258.927223 -error 8.465621769246456e+17 - y tested = 5947637003.818383 -y predicted = 3374676861.2043667 -error 6.62012389548034e+18 - y tested = 997516184.7000968 -y predicted = 3200805410.6865525 -error 4.854483413347996e+18 - y tested = 6532788063.289651 -y predicted = 5594580549.805708 -error 8.80233338357723e+17 - y tested = 1980229389.772511 -y predicted = 3536558306.769762 -error 2.4221596978818365e+18 - y tested = 5035525633.343237 -y predicted = 4935103683.51369 -error 1.008456800756804e+16 - y tested = 5026691733.102776 -y predicted = 4836127190.522383 -error 3.631484488887435e+16 - y tested = 1014996574.3865615 -y predicted = 3465035603.175804 -error 6.002691242590536e+18 - y tested = 7665772326.561901 -y predicted = 5170911524.439333 -error 6.224330421967664e+18 - y tested = 3029054692.61153 -y predicted = 3675691361.0763993 -error 4.1813898100334554e+17 - y tested = 4062233415.93208 -y predicted = 3720224372.0371017 -error 1.1697018610595702e+17 - y tested = 5822958761.806049 -y predicted = 5245420420.137871 -error 3.3355053609682976e+17 - y tested = 6611133148.221605 -y predicted = 5575306888.990076 -error 1.0729360393135832e+18 - y tested = 5377240292.736961 -y predicted = 3116726007.9371524 -error 5.109924831783992e+18 -error squared vector [1.2846490415388674e+19, 2.4151385186597827e+18, 2.459889009056032e+16, 1.4873172535843715e+19, 4.708609341303228e+16, 8.916125978158222e+18, 8.465621769246456e+17, 6.62012389548034e+18, 4.854483413347996e+18, 8.80233338357723e+17, 2.4221596978818365e+18, 1.008456800756804e+16, 3.631484488887435e+16, 6.002691242590536e+18, 6.224330421967664e+18, 4.1813898100334554e+17, 1.1697018610595702e+17, 3.3355053609682976e+17, 1.0729360393135832e+18, 5.109924831783992e+18] -Total loo_error 3.703555830265243e+18 -iteration 6current difference of loo_error 1.7477577649181348e+18 - getting loo error of with lamda = 0.8062175897604169, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3576472871.03551 -error 1.2791158196656904e+19 - y tested = 5326600510.288329 -y predicted = 3771918803.9954195 -error 2.417035207881833e+18 - y tested = 5072151352.996373 -y predicted = 5242338987.221143 -error 2.896383084302397e+16 - y tested = 7650055845.407672 -y predicted = 3802695111.7190347 -error 1.480218461512917e+19 - y tested = 5789616901.049658 -y predicted = 5595782331.050898 -error 3.757184052660428e+16 - y tested = 8224428196.629629 -y predicted = 5260245085.880176 -error 8.786381514052307e+18 - y tested = 4059018123.5159216 -y predicted = 4988486108.782527 -error 8.639107356355625e+17 - y tested = 5947637003.818383 -y predicted = 3372129134.868243 -error 6.633240783024091e+18 - y tested = 997516184.7000968 -y predicted = 3186053186.6122737 -error 4.78969420873874e+18 - y tested = 6532788063.289651 -y predicted = 5624538686.249706 -error 8.249169308934476e+17 - y tested = 1980229389.772511 -y predicted = 3531584230.3181047 -error 2.4067018412842445e+18 - y tested = 5035525633.343237 -y predicted = 4944451196.167845 -error 8294553106814452.0 - y tested = 5026691733.102776 -y predicted = 4846119470.934019 -error 3.2606341864742124e+16 - y tested = 1014996574.3865615 -y predicted = 3451853627.9879 -error 5.938272299686597e+18 - y tested = 7665772326.561901 -y predicted = 5193805799.912397 -error 6.110618508875611e+18 - y tested = 3029054692.61153 -y predicted = 3676940008.7343664 -error 4.197553828475879e+17 - y tested = 4062233415.93208 -y predicted = 3720356351.9144707 -error 1.168799269013004e+17 - y tested = 5822958761.806049 -y predicted = 5265282985.130403 -error 3.1100227189078586e+17 - y tested = 6611133148.221605 -y predicted = 5596946795.311624 -error 1.02857395842885e+18 - y tested = 5377240292.736961 -y predicted = 3111158130.705461 -error 5.135128365077359e+18 -error squared vector [1.2791158196656904e+19, 2.417035207881833e+18, 2.896383084302397e+16, 1.480218461512917e+19, 3.757184052660428e+16, 8.786381514052307e+18, 8.639107356355625e+17, 6.633240783024091e+18, 4.78969420873874e+18, 8.249169308934476e+17, 2.4067018412842445e+18, 8294553106814452.0, 3.2606341864742124e+16, 5.938272299686597e+18, 6.110618508875611e+18, 4.197553828475879e+17, 1.168799269013004e+17, 3.1100227189078586e+17, 1.02857395842885e+18, 5.135128365077359e+18] -Total loo_error 3.674144565667279e+18 -iteration 7current difference of loo_error 1.7183465003201705e+18 - getting loo error of with lamda = 0.7817867537373739, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3568414159.1239395 -error 1.2733579610441476e+19 - y tested = 5326600510.288329 -y predicted = 3771220554.503451 -error 2.4192068068573696e+18 - y tested = 5072151352.996373 -y predicted = 5255228220.057601 -error 3.3517139252954476e+16 - y tested = 7650055845.407672 -y predicted = 3811964979.639121 -error 1.4730941493895985e+19 - y tested = 5789616901.049658 -y predicted = 5618518379.469066 -error 2.927470408706436e+16 - y tested = 8224428196.629629 -y predicted = 5281811567.739046 -error 8.658992624623379e+18 - y tested = 4059018123.5159216 -y predicted = 4997603095.083224 -error 8.809417488519944e+17 - y tested = 5947637003.818383 -y predicted = 3369571437.920951 -error 6.646422062066048e+18 - y tested = 997516184.7000968 -y predicted = 3170941365.920162 -error 4.723777018361473e+18 - y tested = 6532788063.289651 -y predicted = 5654271210.643125 -error 7.717918603839585e+17 - y tested = 1980229389.772511 -y predicted = 3526486720.928589 -error 2.3909117341539164e+18 - y tested = 5035525633.343237 -y predicted = 4953600286.490089 -error 6711762457008526.0 - y tested = 5026691733.102776 -y predicted = 4855912517.112752 -error 2.9165540614167136e+16 - y tested = 1014996574.3865615 -y predicted = 3438360318.2966022 -error 5.87269183529769e+18 - y tested = 7665772326.561901 -y predicted = 5216417593.524561 -error 5.99933860825242e+18 - y tested = 3029054692.61153 -y predicted = 3678233734.2516184 -error 4.214334281047438e+17 - y tested = 4062233415.93208 -y predicted = 3720453733.179434 -error 1.1681335154249933e+17 - y tested = 5822958761.806049 -y predicted = 5284873264.135572 -error 2.895360028032848e+17 - y tested = 6611133148.221605 -y predicted = 5618228740.272021 -error 9.858591633257139e+17 - y tested = 5377240292.736961 -y predicted = 3105552344.607959 -error 5.160566133674557e+18 -error squared vector [1.2733579610441476e+19, 2.4192068068573696e+18, 3.3517139252954476e+16, 1.4730941493895985e+19, 2.927470408706436e+16, 8.658992624623379e+18, 8.809417488519944e+17, 6.646422062066048e+18, 4.723777018361473e+18, 7.717918603839585e+17, 2.3909117341539164e+18, 6711762457008526.0, 2.9165540614167136e+16, 5.87269183529769e+18, 5.99933860825242e+18, 4.214334281047438e+17, 1.1681335154249933e+17, 2.895360028032848e+17, 9.858591633257139e+17, 5.160566133674557e+18] -Total loo_error 3.645073631452385e+18 -iteration 8current difference of loo_error 1.6892755661052764e+18 - getting loo error of with lamda = 0.7580962460786657, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3560028837.1227393 -error 1.2673805320552145e+19 - y tested = 5326600510.288329 -y predicted = 3770443972.8785377 -error 2.4216231689232317e+18 - y tested = 5072151352.996373 -y predicted = 5267657163.831264 -error 3.822252207020794e+16 - y tested = 7650055845.407672 -y predicted = 3821298626.264606 -error 1.4659381843140143e+19 - y tested = 5789616901.049658 -y predicted = 5640825885.279986 -error 2.2138766373770616e+16 - y tested = 8224428196.629629 -y predicted = 5303142011.046812 -error 8.533912978077005e+18 - y tested = 4059018123.5159216 -y predicted = 5006461585.380367 -error 8.976491134296854e+17 - y tested = 5947637003.818383 -y predicted = 3367015655.869266 -error 6.659606541490719e+18 - y tested = 997516184.7000968 -y predicted = 3155476450.473757 -error 4.656792508657924e+18 - y tested = 6532788063.289651 -y predicted = 5683772321.40439 -error 7.208277299689795e+17 - y tested = 1980229389.772511 -y predicted = 3521275232.720565 -error 2.374822290067478e+18 - y tested = 5035525633.343237 -y predicted = 4962556341.092014 -error 5324517611644336.0 - y tested = 5026691733.102776 -y predicted = 4865511257.858087 -error 2.59791456001038e+16 - y tested = 1014996574.3865615 -y predicted = 3424563378.737093 -error 5.806012184628033e+18 - y tested = 7665772326.561901 -y predicted = 5238745011.555806 -error 5.890461587785694e+18 - y tested = 3029054692.61153 -y predicted = 3679582599.891866 -error 4.2318655815053395e+17 - y tested = 4062233415.93208 -y predicted = 3720527175.1362324 -error 1.1676315499882966e+17 - y tested = 5822958761.806049 -y predicted = 5304189812.806073 -error 2.6912122244653987e+17 - y tested = 6611133148.221605 -y predicted = 5639151362.195066 -error 9.447485923673403e+17 - y tested = 5377240292.736961 -y predicted = 3099919269.547498 -error 5.186191042660703e+18 -error squared vector [1.2673805320552145e+19, 2.4216231689232317e+18, 3.822252207020794e+16, 1.4659381843140143e+19, 2.2138766373770616e+16, 8.533912978077005e+18, 8.976491134296854e+17, 6.659606541490719e+18, 4.656792508657924e+18, 7.208277299689795e+17, 2.374822290067478e+18, 5324517611644336.0, 2.59791456001038e+16, 5.806012184628033e+18, 5.890461587785694e+18, 4.2318655815053395e+17, 1.1676315499882966e+17, 2.6912122244653987e+17, 9.447485923673403e+17, 5.186191042660703e+18] -Total loo_error 3.616328539450035e+18 -iteration 9current difference of loo_error 1.6605304741029268e+18 - getting loo error of with lamda = 0.7351236325914333, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] +--- Neighbour 2 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 40 in the X datas point +-------------- + --- Configuration: 3300-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5058399218.983161 + --- Energy: 36.78276420172299 + --- Workload: 186062000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 4 in the X datas point +-------------- + --- Configuration: 3000-1110 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8096707069.234942 + --- Energy: 49.41467631934382 + --- Workload: 400095000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 71 in the X datas point +-------------- + --- Configuration: 3003-1101 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 9428892010.8998 + --- Energy: 67.46193459835338 + --- Workload: 636090000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (36.96583597689362 mAh) it is NOT far from the median. +--- Median :36.96583597689362, the gap is : 10 +--- So No we don't romove this configuration '3000-1100' + --- remove_aberrant_points: The value [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0] +--- Computing the list of the 10 first neighbours of '3000-2200' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3551321681.2475753 -error 1.2611885683107217e+19 - y tested = 5326600510.288329 -y predicted = 3769598679.908061 -error 2.424254699807505e+18 - y tested = 5072151352.996373 -y predicted = 5279623754.658532 -error 4.304479745146422e+16 - y tested = 7650055845.407672 -y predicted = 3830704272.8559217 -error 1.4587446434753528e+19 - y tested = 5789616901.049658 -y predicted = 5662699219.836755 -error 1.6108097804460076e+16 - y tested = 8224428196.629629 -y predicted = 5324239338.025906 -error 8.411095415569168e+18 - y tested = 4059018123.5159216 -y predicted = 5015065914.318469 -error 9.140273782984315e+17 - y tested = 5947637003.818383 -y predicted = 3364473503.6739717 -error 6.672733668478328e+18 - y tested = 997516184.7000968 -y predicted = 3139664848.597699 -error 4.588800898238283e+18 - y tested = 6532788063.289651 -y predicted = 5713036199.605766 -error 6.719931180132022e+17 - y tested = 1980229389.772511 -y predicted = 3515959010.687194 -error 2.3584654685547556e+18 - y tested = 5035525633.343237 -y predicted = 4971324648.0369005 -error 4121766514304422.5 - y tested = 5026691733.102776 -y predicted = 4874920536.975964 -error 2.3034495973763228e+16 - y tested = 1014996574.3865615 -y predicted = 3410470373.033928 -error 5.738294720006044e+18 - y tested = 7665772326.561901 -y predicted = 5260786386.93669 -error 5.783957369794958e+18 - y tested = 3029054692.61153 -y predicted = 3680996315.0192494 -error 4.2502787902760966e+17 - y tested = 4062233415.93208 -y predicted = 3720587151.3111854 -error 1.1672217012941022e+17 - y tested = 5822958761.806049 -y predicted = 5323231191.368071 -error 2.49727644655845e+17 - y tested = 6611133148.221605 -y predicted = 5659713497.147137 -error 9.051993524506636e+17 - y tested = 5377240292.736961 -y predicted = 3094269257.0830817 -error 5.211956749634548e+18 -error squared vector [1.2611885683107217e+19, 2.424254699807505e+18, 4.304479745146422e+16, 1.4587446434753528e+19, 1.6108097804460076e+16, 8.411095415569168e+18, 9.140273782984315e+17, 6.672733668478328e+18, 4.588800898238283e+18, 6.719931180132022e+17, 2.3584654685547556e+18, 4121766514304422.5, 2.3034495973763228e+16, 5.738294720006044e+18, 5.783957369794958e+18, 4.2502787902760966e+17, 1.1672217012941022e+17, 2.49727644655845e+17, 9.051993524506636e+17, 5.211956749634548e+18] -Total loo_error 3.587894890413175e+18 -iteration 10current difference of loo_error 1.6320968250660664e+18 - getting loo error of with lamda = 0.7128471589068445, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3542297382.443786 -error 1.2547870745077715e+19 - y tested = 5326600510.288329 -y predicted = 3768694103.7137947 -error 2.4270723716459786e+18 - y tested = 5072151352.996373 -y predicted = 5291126094.351319 -error 4.794993735146556e+16 - y tested = 7650055845.407672 -y predicted = 3840189944.4594073 -error 1.4515078183208331e+19 - y tested = 5789616901.049658 -y predicted = 5684132999.808023 -error 1.1126853421154872e+16 - y tested = 8224428196.629629 -y predicted = 5345106751.944416 -error 8.290491981824142e+18 - y tested = 4059018123.5159216 -y predicted = 5023420381.568687 -error 9.300717153372736e+17 - y tested = 5947637003.818383 -y predicted = 3361956517.8877854 -error 6.685743575322292e+18 - y tested = 997516184.7000968 -y predicted = 3123512878.2610874 -error 4.5198619410322647e+18 - y tested = 6532788063.289651 -y predicted = 5742057018.174392 -error 6.252555857090701e+17 - y tested = 1980229389.772511 -y predicted = 3510547086.4644456 -error 2.341872252808508e+18 - y tested = 5035525633.343237 -y predicted = 4979910394.050641 -error 3093054841572699.0 - y tested = 5026691733.102776 -y predicted = 4884145110.355529 -error 2.0319539656645884e+16 - y tested = 1014996574.3865615 -y predicted = 3396088725.711416 -error 5.669599833100824e+18 - y tested = 7665772326.561901 -y predicted = 5282540289.836741 -error 5.679794940873153e+18 - y tested = 3029054692.61153 -y predicted = 3682484229.1704016 -error 4.269701592475419e+17 - y tested = 4062233415.93208 -y predicted = 3720643941.889808 -error 1.1668336877647576e+17 - y tested = 5822958761.806049 -y predicted = 5341995969.867264 -error 2.3132520722955152e+17 - y tested = 6611133148.221605 -y predicted = 5679914183.509864 -error 8.671687602388076e+17 - y tested = 5377240292.736961 -y predicted = 3088612382.4888616 -error 5.237817711566585e+18 -error squared vector [1.2547870745077715e+19, 2.4270723716459786e+18, 4.794993735146556e+16, 1.4515078183208331e+19, 1.1126853421154872e+16, 8.290491981824142e+18, 9.300717153372736e+17, 6.685743575322292e+18, 4.5198619410322647e+18, 6.252555857090701e+17, 2.341872252808508e+18, 3093054841572699.0, 2.0319539656645884e+16, 5.669599833100824e+18, 5.679794940873153e+18, 4.269701592475419e+17, 1.1668336877647576e+17, 2.3132520722955152e+17, 8.671687602388076e+17, 5.237817711566585e+18] -Total loo_error 3.559758385913468e+18 -iteration 11current difference of loo_error 1.6039603205663596e+18 - getting loo error of with lamda = 0.6912457298793644, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3532960550.0522466 -error 1.2481810247636644e+19 - y tested = 5326600510.288329 -y predicted = 3767739471.486086 -error 2.430047738295609e+18 - y tested = 5072151352.996373 -y predicted = 5302162458.961539 -error 5.290510886731886e+16 - y tested = 7650055845.407672 -y predicted = 3849763463.806752 -error 1.4442222185653991e+19 - y tested = 5789616901.049658 -y predicted = 5705122102.134376 -error 7139371043733982.0 - y tested = 8224428196.629629 -y predicted = 5365747738.674636 -error 8.17205396069377e+18 - y tested = 4059018123.5159216 -y predicted = 5031529249.80542 -error 9.457778907568686e+17 - y tested = 5947637003.818383 -y predicted = 3359476048.9914446 -error 6.698577128090691e+18 - y tested = 997516184.7000968 -y predicted = 3107026770.9459743 -error 4.450034913483426e+18 - y tested = 6532788063.289651 -y predicted = 5770828950.930665 -error 5.805816889068937e+17 - y tested = 1980229389.772511 -y predicted = 3505048274.849517 -error 2.3250726322874834e+18 - y tested = 5035525633.343237 -y predicted = 4988318661.865575 -error 2228498156092801.8 - y tested = 5026691733.102776 -y predicted = 4893189643.203271 -error 1.7822808007535424e+16 - y tested = 1014996574.3865615 -y predicted = 3381425724.550376 -error 5.599986922745034e+18 - y tested = 7665772326.561901 -y predicted = 5304005537.431957 -error 5.577942366237165e+18 - y tested = 3029054692.61153 -y predicted = 3684055326.0481095 -error 4.2902582980232064e+17 - y tested = 4062233415.93208 -y predicted = 3720707626.4820223 -error 1.1663986485948501e+17 - y tested = 5822958761.806049 -y predicted = 5360482733.514173 -error 2.1388407674462883e+17 - y tested = 6611133148.221605 -y predicted = 5699752665.815408 -error 8.306143837109533e+17 - y tested = 5377240292.736961 -y predicted = 3082958437.557636 -error 5.263729231005088e+18 -error squared vector [1.2481810247636644e+19, 2.430047738295609e+18, 5.290510886731886e+16, 1.4442222185653991e+19, 7139371043733982.0, 8.17205396069377e+18, 9.457778907568686e+17, 6.698577128090691e+18, 4.450034913483426e+18, 5.805816889068937e+17, 2.3250726322874834e+18, 2228498156092801.8, 1.7822808007535424e+16, 5.599986922745034e+18, 5.577942366237165e+18, 4.2902582980232064e+17, 1.1663986485948501e+17, 2.1388407674462883e+17, 8.306143837109533e+17, 5.263729231005088e+18] -Total loo_error 3.5319048423492367e+18 -iteration 12current difference of loo_error 1.5761067770021284e+18 - getting loo error of with lamda = 0.6702988896102927, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3523315715.995374 -error 1.2413753633992776e+19 - y tested = 5326600510.288329 -y predicted = 3766743801.5370526 -error 2.433152951836365e+18 - y tested = 5072151352.996373 -y predicted = 5312731307.061485 -error 5.787871429797146e+16 - y tested = 7650055845.407672 -y predicted = 3859432445.436196 -error 1.4368825760411312e+19 - y tested = 5789616901.049658 -y predicted = 5725661678.269702 -error 4090270520833785.5 - y tested = 8224428196.629629 -y predicted = 5386166067.170037 -error 8.055731915524497e+18 - y tested = 4059018123.5159216 -y predicted = 5039396742.7296505 -error 9.611422370114176e+17 - y tested = 5947637003.818383 -y predicted = 3357043253.897771 -error 6.71117597712774e+18 - y tested = 997516184.7000968 -y predicted = 3090212676.167903 -error 4.3793786054016655e+18 - y tested = 6532788063.289651 -y predicted = 5799346181.452797 -error 5.3793699403238566e+17 - y tested = 1980229389.772511 -y predicted = 3499471171.0545893 -error 2.3080955899931423e+18 - y tested = 5035525633.343237 -y predicted = 4996554427.688956 -error 1518754870148237.0 - y tested = 5026691733.102776 -y predicted = 4902058707.43474 -error 1.5533391087169198e+16 - y tested = 1014996574.3865615 -y predicted = 3366488523.7565665 -error 5.529514387951947e+18 - y tested = 7665772326.561901 -y predicted = 5325181202.807836 -error 5.478366808596319e+18 - y tested = 3029054692.61153 -y predicted = 3685718218.4248357 -error 4.312069861335622e+17 - y tested = 4062233415.93208 -y predicted = 3720788077.2062373 -error 1.165849193376053e+17 - y tested = 5822958761.806049 -y predicted = 5378690088.132238 -error 1.9737465440788714e+17 - y tested = 6611133148.221605 -y predicted = 5719228397.839838 -error 7.954940837535626e+17 - y tested = 5377240292.736961 -y predicted = 3077316924.1386747 -error 5.28964750142449e+18 -error squared vector [1.2413753633992776e+19, 2.433152951836365e+18, 5.787871429797146e+16, 1.4368825760411312e+19, 4090270520833785.5, 8.055731915524497e+18, 9.611422370114176e+17, 6.71117597712774e+18, 4.3793786054016655e+18, 5.3793699403238566e+17, 2.3080955899931423e+18, 1518754870148237.0, 1.5533391087169198e+16, 5.529514387951947e+18, 5.478366808596319e+18, 4.312069861335622e+17, 1.165849193376053e+17, 1.9737465440788714e+17, 7.954940837535626e+17, 5.28964750142449e+18] -Total loo_error 3.50432020688564e+18 -iteration 13current difference of loo_error 1.5485221415385318e+18 - getting loo error of with lamda = 0.6499868020766475, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3513367339.455706 -error 1.2343750061368504e+19 - y tested = 5326600510.288329 -y predicted = 3765715895.6724763 -error 2.436360780144479e+18 - y tested = 5072151352.996373 -y predicted = 5322831287.745963 -error 6.284042968605866e+16 - y tested = 7650055845.407672 -y predicted = 3869204290.024581 -error 1.4294838483842738e+19 - y tested = 5789616901.049658 -y predicted = 5745747167.671624 -error 1924553506659758.8 - y tested = 8224428196.629629 -y predicted = 5406365788.842774 -error 7.941475734181446e+18 - y tested = 4059018123.5159216 -y predicted = 5047027043.143368 -error 9.761616252633934e+17 - y tested = 5947637003.818383 -y predicted = 3354669088.593167 -error 6.723482609387405e+18 - y tested = 997516184.7000968 -y predicted = 3073076666.612236 -error 4.3079513140753516e+18 - y tested = 6532788063.289651 -y predicted = 5827602911.759002 -error 4.9728609793930464e+17 - y tested = 1980229389.772511 -y predicted = 3493824148.678829 -error 2.2909690941886756e+18 - y tested = 5035525633.343237 -y predicted = 5004622558.788263 -error 955000016950256.9 - y tested = 5026691733.102776 -y predicted = 4910756779.224682 -error 1.3440913530715718e+16 - y tested = 1014996574.3865615 -y predicted = 3351284147.8028207 -error 5.458239625699233e+18 - y tested = 7665772326.561901 -y predicted = 5346066622.9591675 -error 5.381034551327054e+18 - y tested = 3029054692.61153 -y predicted = 3687481143.9406333 -error 4.335253918098363e+17 - y tested = 4062233415.93208 -y predicted = 3720894952.083277 -error 1.165119469026603e+17 - y tested = 5822958761.806049 -y predicted = 5396616665.71308 -error 1.8176758290094637e+17 - y tested = 6611133148.221605 -y predicted = 5738341044.954714 -error 7.617660555250442e+17 - y tested = 5377240292.736961 -y predicted = 3071697048.396892 -error 5.315529651522132e+18 -error squared vector [1.2343750061368504e+19, 2.436360780144479e+18, 6.284042968605866e+16, 1.4294838483842738e+19, 1924553506659758.8, 7.941475734181446e+18, 9.761616252633934e+17, 6.723482609387405e+18, 4.3079513140753516e+18, 4.9728609793930464e+17, 2.2909690941886756e+18, 955000016950256.9, 1.3440913530715718e+16, 5.458239625699233e+18, 5.381034551327054e+18, 4.335253918098363e+17, 1.165119469026603e+17, 1.8176758290094637e+17, 7.617660555250442e+17, 5.315529651522132e+18] -Total loo_error 3.476990575140929e+18 -iteration 14current difference of loo_error 1.5211925097938207e+18 - getting loo error of with lamda = 0.6302902323470521, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3503119812.0180717 -error 1.2271848416769675e+19 - y tested = 5326600510.288329 -y predicted = 3764664331.882452 -error 2.439644625413156e+18 - y tested = 5072151352.996373 -y predicted = 5332461248.343294 -error 6.776124161552494e+16 - y tested = 7650055845.407672 -y predicted = 3879086178.9196224 -error 1.422021222557299e+19 - y tested = 5789616901.049658 -y predicted = 5765374310.509513 -error 587703196097124.0 - y tested = 8224428196.629629 -y predicted = 5426351235.829068 -error 7.829234678562904e+18 - y tested = 4059018123.5159216 -y predicted = 5054424291.08082 -error 9.908334384262387e+17 - y tested = 5947637003.818383 -y predicted = 3352364300.8865156 -error 6.735440402583282e+18 - y tested = 997516184.7000968 -y predicted = 3055624743.847315 -error 4.2358108412350377e+18 - y tested = 6532788063.289651 -y predicted = 5855593370.801722 -error 4.585926515338212e+17 - y tested = 1980229389.772511 -y predicted = 3488115358.378591 -error 2.2737200943190963e+18 - y tested = 5035525633.343237 -y predicted = 5012527811.186485 -error 528899823953576.3 - y tested = 5026691733.102776 -y predicted = 4919288236.716719 -error 1.1535511035949738e+16 - y tested = 1014996574.3865615 -y predicted = 3335819495.903968 -error 5.38621903304059e+18 - y tested = 7665772326.561901 -y predicted = 5366661405.852723 -error 5.285911025724204e+18 - y tested = 3029054692.61153 -y predicted = 3689351961.7772274 -error 4.359924836676777e+17 - y tested = 4062233415.93208 -y predicted = 3721037688.7318077 -error 1.1641452425972248e+17 - y tested = 5822958761.806049 -y predicted = 5414261130.083567 -error 1.6703375417556608e+17 - y tested = 6611133148.221605 -y predicted = 5757090485.742094 -error 7.293888693350924e+17 - y tested = 5377240292.736961 -y predicted = 3066107715.7772946 -error 5.34133378828423e+18 -error squared vector [1.2271848416769675e+19, 2.439644625413156e+18, 6.776124161552494e+16, 1.422021222557299e+19, 587703196097124.0, 7.829234678562904e+18, 9.908334384262387e+17, 6.735440402583282e+18, 4.2358108412350377e+18, 4.585926515338212e+17, 2.2737200943190963e+18, 528899823953576.3, 1.1535511035949738e+16, 5.38621903304059e+18, 5.285911025724204e+18, 4.359924836676777e+17, 1.1641452425972248e+17, 1.6703375417556608e+17, 7.293888693350924e+17, 5.34133378828423e+18] -Total loo_error 3.4499022104287406e+18 -iteration 15current difference of loo_error 1.4941041450816323e+18 - getting loo error of with lamda = 0.6111905283668384, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3492577463.244267 -error 1.219809733617966e+19 - y tested = 5326600510.288329 -y predicted = 3763597457.3514833 -error 2.4429785434899005e+18 - y tested = 5072151352.996373 -y predicted = 5341620241.82369 -error 7.261348204582906e+16 - y tested = 7650055845.407672 -y predicted = 3889085068.8621516 -error 1.4144901182029414e+19 - y tested = 5789616901.049658 -y predicted = 5784539159.563493 -error 25783458600321.617 - y tested = 8224428196.629629 -y predicted = 5446127018.13476 -error 7.718957438425979e+18 - y tested = 4059018123.5159216 -y predicted = 5061592582.00308 -error 1.0051555448108197e+18 - y tested = 5947637003.818383 -y predicted = 3350139423.2358923 -error 6.746993681131894e+18 - y tested = 997516184.7000968 -y predicted = 3037862844.5725007 -error 4.163014492452475e+18 - y tested = 6532788063.289651 -y predicted = 5883311822.770657 -error 4.218193869986866e+17 - y tested = 1980229389.772511 -y predicted = 3482352727.212947 -error 2.2563745208831936e+18 - y tested = 5035525633.343237 -y predicted = 5020274827.461109 -error 232587080054342.75 - y tested = 5026691733.102776 -y predicted = 4927657357.894216 -error 9807807472949842.0 - y tested = 1014996574.3865615 -y predicted = 3320101347.0806456 -error 5.313508013097045e+18 - y tested = 7665772326.561901 -y predicted = 5386965436.524171 -error 5.192960842083431e+18 - y tested = 3029054692.61153 -y predicted = 3691338150.186631 -error 4.386193781776311e+17 - y tested = 4062233415.93208 -y predicted = 3721225498.357577 -error 1.1628639984849899e+17 - y tested = 5822958761.806049 -y predicted = 5431622182.689549 -error 1.5314431815460458e+17 - y tested = 6611133148.221605 -y predicted = 5775476812.882479 -error 6.983215107924188e+17 - y tested = 5377240292.736961 -y predicted = 3060557526.656355 -error 5.36701903865489e+18 -error squared vector [1.219809733617966e+19, 2.4429785434899005e+18, 7.261348204582906e+16, 1.4144901182029414e+19, 25783458600321.617, 7.718957438425979e+18, 1.0051555448108197e+18, 6.746993681131894e+18, 4.163014492452475e+18, 4.218193869986866e+17, 2.2563745208831936e+18, 232587080054342.75, 9807807472949842.0, 5.313508013097045e+18, 5.192960842083431e+18, 4.386193781776311e+17, 1.1628639984849899e+17, 1.5314431815460458e+17, 6.983215107924188e+17, 5.36701903865489e+18] -Total loo_error 3.4230415643633987e+18 -iteration 16current difference of loo_error 1.4672434990162903e+18 - getting loo error of with lamda = 0.592669603295116, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3481744566.647951 -error 1.2122545226802237e+19 - y tested = 5326600510.288329 -y predicted = 3762523381.789178 -error 2.4463372638941507e+18 - y tested = 5072151352.996373 -y predicted = 5350307533.894265 -error 7.737086097170082e+16 - y tested = 7650055845.407672 -y predicted = 3899207686.8889446 -error 1.4068861908263328e+19 - y tested = 5789616901.049658 -y predicted = 5803238091.292726 -error 185536823637843.84 - y tested = 8224428196.629629 -y predicted = 5465698019.658672 -error 7.610592189330207e+18 - y tested = 4059018123.5159216 -y predicted = 5068535965.063698 -error 1.019126272403281e+18 - y tested = 5947637003.818383 -y predicted = 3348004765.6246815 -error 6.758087773855995e+18 - y tested = 997516184.7000968 -y predicted = 3019796847.3569093 -error 4.089619078555676e+18 - y tested = 6532788063.289651 -y predicted = 5910752575.203688 -error 3.869281484383425e+17 - y tested = 1980229389.772511 -y predicted = 3476543958.6389966 -error 2.2389572890020966e+18 - y tested = 5035525633.343237 -y predicted = 5027868134.641336 -error 58637286369607.57 - y tested = 5026691733.102776 -y predicted = 4935868318.6144285 -error 8248892619322089.0 - y tested = 1014996574.3865615 -y predicted = 3304136365.7654996 -error 5.240160984474409e+18 - y tested = 7665772326.561901 -y predicted = 5406978882.185336 -error 5.102147824358546e+18 - y tested = 3029054692.61153 -y predicted = 3693446804.8503222 -error 4.4141687880512416e+17 - y tested = 4062233415.93208 -y predicted = 3721467360.0295043 -error 1.161215048553972e+17 - y tested = 5822958761.806049 -y predicted = 5448698568.500604 -error 1.4007069229302957e+17 - y tested = 6611133148.221605 -y predicted = 5793500333.329867 -error 6.68523419987787e+17 - y tested = 5377240292.736961 -y predicted = 3055054772.6592846 -error 5.39254558965843e+18 -error squared vector [1.2122545226802237e+19, 2.4463372638941507e+18, 7.737086097170082e+16, 1.4068861908263328e+19, 185536823637843.84, 7.610592189330207e+18, 1.019126272403281e+18, 6.758087773855995e+18, 4.089619078555676e+18, 3.869281484383425e+17, 2.2389572890020966e+18, 58637286369607.57, 8248892619322089.0, 5.240160984474409e+18, 5.102147824358546e+18, 4.4141687880512416e+17, 1.161215048553972e+17, 1.4007069229302957e+17, 6.68523419987787e+17, 5.39254558965843e+18] -Total loo_error 3.3963952986339533e+18 -iteration 17current difference of loo_error 1.440597233286845e+18 - getting loo error of with lamda = 0.5747099183770822, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3470625346.035715 -error 1.2045240291967089e+19 - y tested = 5326600510.288329 -y predicted = 3761449971.0838675 -error 2.4496962103720166e+18 - y tested = 5072151352.996373 -y predicted = 5358522609.770851 -error 8.200849670659398e+16 - y tested = 7650055845.407672 -y predicted = 3909460525.4071364 -error 1.3992053348009908e+19 - y tested = 5789616901.049658 -y predicted = 5821467816.055647 -error 1014480786718740.0 - y tested = 8224428196.629629 -y predicted = 5485069393.096228 -error 7.504086654495949e+18 - y tested = 4059018123.5159216 -y predicted = 5075258441.453744 -error 1.0327443838023662e+18 - y tested = 5947637003.818383 -y predicted = 3345970408.4599476 -error 6.768669073403954e+18 - y tested = 997516184.7000968 -y predicted = 3001432579.8222733 -error 4.015680918639459e+18 - y tested = 6532788063.289651 -y predicted = 5937909986.906654 -error 3.538799257611343e+17 - y tested = 1980229389.772511 -y predicted = 3470696533.1291404 -error 2.2214923054256712e+18 - y tested = 5035525633.343237 -y predicted = 5035312142.199006 -error 45578468664.99443 - y tested = 5026691733.102776 -y predicted = 4943925190.808064 -error 6850300523422204.0 - y tested = 1014996574.3865615 -y predicted = 3287931107.903022 -error 5.166231393651689e+18 - y tested = 7665772326.561901 -y predicted = 5426702196.3232155 -error 5.013435048127085e+18 - y tested = 3029054692.61153 -y predicted = 3695684638.042111 -error 4.443954841447795e+17 - y tested = 4062233415.93208 -y predicted = 3721772015.236956 -error 1.1591396536328555e+17 - y tested = 5822958761.806049 -y predicted = 5465489082.040247 -error 1.2778457195186531e+17 - y tested = 6611133148.221605 -y predicted = 5811161567.7919 -error 6.39954529495201e+17 - y tested = 5377240292.736961 -y predicted = 3049607433.6205196 -error 5.417874726838581e+18 -error squared vector [1.2045240291967089e+19, 2.4496962103720166e+18, 8.200849670659398e+16, 1.3992053348009908e+19, 1014480786718740.0, 7.504086654495949e+18, 1.0327443838023662e+18, 6.768669073403954e+18, 4.015680918639459e+18, 3.538799257611343e+17, 2.2214923054256712e+18, 45578468664.99443, 6850300523422204.0, 5.166231393651689e+18, 5.013435048127085e+18, 4.443954841447795e+17, 1.1591396536328555e+17, 1.2778457195186531e+17, 6.39954529495201e+17, 5.417874726838581e+18] -Total loo_error 3.369950307752262e+18 -iteration 18current difference of loo_error 1.4141522424051538e+18 - getting loo error of with lamda = 0.5572944663353524, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3459223982.179083 -error 1.1966230558306374e+19 - y tested = 5326600510.288329 -y predicted = 3760384841.2819586 -error 2.4530315218410726e+18 - y tested = 5072151352.996373 -y predicted = 5366265180.617372 -error 8.650294359787435e+16 - y tested = 7650055845.407672 -y predicted = 3919849837.432479 -error 1.3914436861934225e+19 - y tested = 5789616901.049658 -y predicted = 5839225387.469328 -error 2461001924850593.0 - y tested = 8224428196.629629 -y predicted = 5504246553.730538 -error 7.399388170365196e+18 - y tested = 4059018123.5159216 -y predicted = 5081763962.835304 -error 1.0460090518451085e+18 - y tested = 5947637003.818383 -y predicted = 3344046195.4679418 -error 6.778685097326905e+18 - y tested = 997516184.7000968 -y predicted = 2982775826.2210298 -error 3.941255844251823e+18 - y tested = 6532788063.289651 -y predicted = 5964778475.684614 -error 3.226348916112439e+17 - y tested = 1980229389.772511 -y predicted = 3464817709.3800006 -error 2.2040024787149896e+18 - y tested = 5035525633.343237 -y predicted = 5042611140.129316 -error 50204406415577.32 - y tested = 5026691733.102776 -y predicted = 4951831940.84707 -error 5603988496567435.0 - y tested = 1014996574.3865615 -y predicted = 3271492027.4919395 -error 5.091771729885245e+18 - y tested = 7665772326.561901 -y predicted = 5446136121.776959 -error 4.9267848815921e+18 - y tested = 3029054692.61153 -y predicted = 3698057978.565678 -error 4.4756539661744794e+17 - y tested = 4062233415.93208 -y predicted = 3722147962.723341 -error 1.1565811548419326e+17 - y tested = 5822958761.806049 -y predicted = 5481992573.544564 -error 1.162579415375665e+17 - y tested = 6611133148.221605 -y predicted = 5828461249.537191 -error 6.125753009902655e+17 - y tested = 5377240292.736961 -y predicted = 3044223175.162438 -error 5.442968870895738e+18 -error squared vector [1.1966230558306374e+19, 2.4530315218410726e+18, 8.650294359787435e+16, 1.3914436861934225e+19, 2461001924850593.0, 7.399388170365196e+18, 1.0460090518451085e+18, 6.778685097326905e+18, 3.941255844251823e+18, 3.226348916112439e+17, 2.2040024787149896e+18, 50204406415577.32, 5603988496567435.0, 5.091771729885245e+18, 4.9267848815921e+18, 4.4756539661744794e+17, 1.1565811548419326e+17, 1.162579415375665e+17, 6.125753009902655e+17, 5.442968870895738e+18] -Total loo_error 3.3436937425812603e+18 -iteration 19current difference of loo_error 1.387895677234152e+18 - getting loo error of with lamda = 0.5404067552645841, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3447544619.7808466 -error 1.188556390480527e+19 - y tested = 5326600510.288329 -y predicted = 3759335352.896777 -error 2.456320073573566e+18 - y tested = 5072151352.996373 -y predicted = 5373535189.643751 -error 9.08322169922934e+16 - y tested = 7650055845.407672 -y predicted = 3930381631.9843645 -error 1.38359762540063e+19 - y tested = 5789616901.049658 -y predicted = 5856508210.899277 -error 4474447333397724.0 - y tested = 8224428196.629629 -y predicted = 5523235172.123291 -error 7.296443755641698e+18 - y tested = 4059018123.5159216 -y predicted = 5088056429.872894 -error 1.0589198359500268e+18 - y tested = 5947637003.818383 -y predicted = 3342241726.563602 -error 6.788084550741518e+18 - y tested = 997516184.7000968 -y predicted = 2963832335.3592563 -error 3.8663992043430543e+18 - y tested = 6532788063.289651 -y predicted = 5991352525.888491 -error 2.931524411608832e+17 - y tested = 1980229389.772511 -y predicted = 3458914526.081168 -error 2.186509732340152e+18 - y tested = 5035525633.343237 -y predicted = 5049769297.118365 -error 202881957738904.0 - y tested = 5026691733.102776 -y predicted = 4959592428.083082 -error 4502316734125848.5 - y tested = 1014996574.3865615 -y predicted = 3254825483.5173707 -error 5.016833542178111e+18 - y tested = 7665772326.561901 -y predicted = 5465281692.783916 -error 4.842159029344637e+18 - y tested = 3029054692.61153 -y predicted = 3700572772.43571 -error 4.509365315307539e+17 - y tested = 4062233415.93208 -y predicted = 3722603453.5925984 -error 1.1534851131871752e+17 - y tested = 5822958761.806049 -y predicted = 5498207955.252025 -error 1.0546308635748957e+17 - y tested = 6611133148.221605 -y predicted = 5845400322.55511 -error 5.863467603031953e+17 - y tested = 5377240292.736961 -y predicted = 3038909346.866168 -error 5.467791612416999e+18 -error squared vector [1.188556390480527e+19, 2.456320073573566e+18, 9.08322169922934e+16, 1.38359762540063e+19, 4474447333397724.0, 7.296443755641698e+18, 1.0589198359500268e+18, 6.788084550741518e+18, 3.8663992043430543e+18, 2.931524411608832e+17, 2.186509732340152e+18, 202881957738904.0, 4502316734125848.5, 5.016833542178111e+18, 4.842159029344637e+18, 4.509365315307539e+17, 1.1534851131871752e+17, 1.0546308635748957e+17, 5.863467603031953e+17, 5.467791612416999e+18] -Total loo_error 3.3176130344514964e+18 -iteration 20current difference of loo_error 1.361814969104388e+18 - getting loo error of with lamda = 0.5240307930141422, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3435591374.698335 -error 1.1803288093328996e+19 - y tested = 5326600510.288329 -y predicted = 3758308605.5519147 -error 2.459539498461771e+18 - y tested = 5072151352.996373 -y predicted = 5380332817.854004 -error 9.497581528179509e+16 - y tested = 7650055845.407672 -y predicted = 3941061669.6318316 -error 1.3756637795939105e+19 - y tested = 5789616901.049658 -y predicted = 5873314051.074983 -error 7005212922361731.0 - y tested = 8224428196.629629 -y predicted = 5542041165.721843 -error 7.19520018358229e+18 - y tested = 4059018123.5159216 -y predicted = 5094139690.872748 -error 1.0714766592072536e+18 - y tested = 5947637003.818383 -y predicted = 3340566350.6736884 -error 6.796817390488306e+18 - y tested = 997516184.7000968 -y predicted = 2944607828.812193 -error 3.791165870571145e+18 - y tested = 6532788063.289651 -y predicted = 6017626695.782021 -error 2.6539123457233178e+17 - y tested = 1980229389.772511 -y predicted = 3452993804.209757 -error 2.1690350204326835e+18 - y tested = 5035525633.343237 -y predicted = 5056790658.795464 -error 452201307483846.75 - y tested = 5026691733.102776 -y predicted = 4967210403.559794 -error 3538028564200722.0 - y tested = 1014996574.3865615 -y predicted = 3237937747.2184043 -error 4.941467457871009e+18 - y tested = 7665772326.561901 -y predicted = 5484140235.990935 -error 4.759518578609042e+18 - y tested = 3029054692.61153 -y predicted = 3703234584.2697487 -error 4.5451852631628774e+17 - y tested = 4062233415.93208 -y predicted = 3723146486.6865444 -error 1.1497994558516672e+17 - y tested = 5822958761.806049 -y predicted = 5514134207.825139 -error 9.537260514150818e+16 - y tested = 6611133148.221605 -y predicted = 5861979939.096745 -error 5.612305307420774e+17 - y tested = 5377240292.736961 -y predicted = 3033672981.0068035 -error 5.492307744610119e+18 -error squared vector [1.1803288093328996e+19, 2.459539498461771e+18, 9.497581528179509e+16, 1.3756637795939105e+19, 7005212922361731.0, 7.19520018358229e+18, 1.0714766592072536e+18, 6.796817390488306e+18, 3.791165870571145e+18, 2.6539123457233178e+17, 2.1690350204326835e+18, 452201307483846.75, 3538028564200722.0, 4.941467457871009e+18, 4.759518578609042e+18, 4.5451852631628774e+17, 1.1497994558516672e+17, 9.537260514150818e+16, 5.612305307420774e+17, 5.492307744610119e+18] -Total loo_error 3.291695919676747e+18 -iteration 21current difference of loo_error 1.3358978543296384e+18 - getting loo error of with lamda = 0.5081510720440168, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3423368341.384993 -error 1.1719450800226476e+19 - y tested = 5326600510.288329 -y predicted = 3757311432.9646206 -error 2.4626682082074967e+18 - y tested = 5072151352.996373 -y predicted = 5386658489.435639 -error 9.891473887122722e+16 - y tested = 7650055845.407672 -y predicted = 3951895458.1859174 -error 1.3676390249616157e+19 - y tested = 5789616901.049658 -y predicted = 5889641038.830333 -error 1.0004828138767442e+16 - y tested = 8224428196.629629 -y predicted = 5560670689.403922 -error 7.095604057301313e+18 - y tested = 4059018123.5159216 -y predicted = 5100017540.539925 -error 1.0836797862443141e+18 - y tested = 5947637003.818383 -y predicted = 3339029158.4959774 -error 6.804834890677604e+18 - y tested = 997516184.7000968 -y predicted = 2925108009.3787317 -error 3.715610242567909e+18 - y tested = 6532788063.289651 -y predicted = 6043595624.734598 -error 2.3930924193943907e+17 - y tested = 1980229389.772511 -y predicted = 3447062149.8155575 -error 2.1515983459355016e+18 - y tested = 5035525633.343237 -y predicted = 5063679146.068841 -error 792620278790749.6 - y tested = 5026691733.102776 -y predicted = 4974689508.901867 -error 2704231321841570.5 - y tested = 1014996574.3865615 -y predicted = 3220835009.6353183 -error 4.865723202420684e+18 - y tested = 7665772326.561901 -y predicted = 5502713370.431524 -error 4.678824047695835e+18 - y tested = 3029054692.61153 -y predicted = 3706048599.3562346 -error 4.58320749769458e+17 - y tested = 4062233415.93208 -y predicted = 3723784804.2322154 -error 1.1454746276156558e+17 - y tested = 5822958761.806049 -y predicted = 5529770386.903955 -error 8.595942317773075e+16 - y tested = 6611133148.221605 -y predicted = 5878201456.628605 -error 5.371888645413771e+17 - y tested = 5377240292.736961 -y predicted = 3028520791.8247085 -error 5.516483293965502e+18 -error squared vector [1.1719450800226476e+19, 2.4626682082074967e+18, 9.891473887122722e+16, 1.3676390249616157e+19, 1.0004828138767442e+16, 7.095604057301313e+18, 1.0836797862443141e+18, 6.804834890677604e+18, 3.715610242567909e+18, 2.3930924193943907e+17, 2.1515983459355016e+18, 792620278790749.6, 2704231321841570.5, 4.865723202420684e+18, 4.678824047695835e+18, 4.58320749769458e+17, 1.1454746276156558e+17, 8.595942317773075e+16, 5.371888645413771e+17, 5.516483293965502e+18] -Total loo_error 3.2659304642829486e+18 -iteration 22current difference of loo_error 1.3101323989358403e+18 - getting loo error of with lamda = 0.4927525547396526, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '3000-2200' +--- Neighbour 0 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [1.] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 30 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6611133148.221605 + --- Energy: 42.19510352720739 + --- Workload: 278957000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 52 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 4 in the X datas point +-------------- + --- Configuration: 3000-1110 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8096707069.234942 + --- Energy: 49.41467631934382 + --- Workload: 400095000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 29 in the X datas point +-------------- + --- Configuration: 3000-3000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 31 in the X datas point +-------------- + --- Configuration: 3000-3330 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8224428196.629629 + --- Energy: 49.410116578739654 + --- Workload: 406369000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 41 in the X datas point +-------------- + --- Configuration: 3300-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '3000-2200' +--- Neighbour 0 in the list of neghbours, And at position 29 in the X datas point +-------------- + --- Configuration: 3000-3000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 41 in the X datas point +-------------- + --- Configuration: 3300-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 30 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6611133148.221605 + --- Energy: 42.19510352720739 + --- Workload: 278957000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 52 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 31 in the X datas point +-------------- + --- Configuration: 3000-3330 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8224428196.629629 + --- Energy: 49.410116578739654 + --- Workload: 406369000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 4 in the X datas point +-------------- + --- Configuration: 3000-1110 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8096707069.234942 + --- Energy: 49.41467631934382 + --- Workload: 400095000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 52 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (42.474892742303716 mAh) it is NOT far from the median. +--- Median :42.474892742303716, the gap is : 10 +--- So No we don't romove this configuration '3000-2200' + --- remove_aberrant_points: The value [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0] +--- Computing the list of the 10 first neighbours of '1000-1100' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3410879600.51094 -error 1.163409964861319e+19 - y tested = 5326600510.288329 -y predicted = 3756350398.2761316 -error 2.465685414274319e+18 - y tested = 5072151352.996373 -y predicted = 5392512876.782038 -error 1.0263150592227291e+17 - y tested = 7650055845.407672 -y predicted = 3962888248.5349884 -error 1.359520488742788e+19 - y tested = 5789616901.049658 -y predicted = 5905487676.971416 -error 1.3426036712710404e+16 - y tested = 8224428196.629629 -y predicted = 5579130124.985091 -error 6.997601887846311e+18 - y tested = 4059018123.5159216 -y predicted = 5105693718.863155 -error 1.0955298018954862e+18 - y tested = 5947637003.818383 -y predicted = 3337638975.1802325 -error 6.812089709495033e+18 - y tested = 997516184.7000968 -y predicted = 2905338569.7203107 -error 3.639786252784217e+18 - y tested = 6532788063.289651 -y predicted = 6069254040.245895 -error 2.148637905191289e+17 - y tested = 1980229389.772511 -y predicted = 3441125957.260408 -error 2.1342187808979192e+18 - y tested = 5035525633.343237 -y predicted = 5070438553.544346 -error 1218911996969000.2 - y tested = 5026691733.102776 -y predicted = 4982033275.38364 -error 1994377845851793.8 - y tested = 1014996574.3865615 -y predicted = 3203523389.379852 -error 4.789649619944676e+18 - y tested = 7665772326.561901 -y predicted = 5521003006.474248 -error 4.600035436389254e+18 - y tested = 3029054692.61153 -y predicted = 3709019626.3632965 -error 4.623523111320445e+17 - y tested = 4062233415.93208 -y predicted = 3724525887.7599797 -error 1.1404637458410976e+17 - y tested = 5822958761.806049 -y predicted = 5545115629.788872 -error 7.719680600911477e+16 - y tested = 6611133148.221605 -y predicted = 5894066434.232883 -error 5.141846723105834e+17 - y tested = 5377240292.736961 -y predicted = 3023459175.3035135 -error 5.540285548786251e+18 -error squared vector [1.163409964861319e+19, 2.465685414274319e+18, 1.0263150592227291e+17, 1.359520488742788e+19, 1.3426036712710404e+16, 6.997601887846311e+18, 1.0955298018954862e+18, 6.812089709495033e+18, 3.639786252784217e+18, 2.148637905191289e+17, 2.1342187808979192e+18, 1218911996969000.2, 1994377845851793.8, 4.789649619944676e+18, 4.600035436389254e+18, 4.623523111320445e+17, 1.1404637458410976e+17, 7.719680600911477e+16, 5.141846723105834e+17, 5.540285548786251e+18] -Total loo_error 3.2403050887693665e+18 -iteration 23current difference of loo_error 1.2845070234222582e+18 - getting loo error of with lamda = 0.47782065917178435, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3398129226.7228975 -error 1.1547282240942002e+19 - y tested = 5326600510.288329 -y predicted = 3755431789.7364726 -error 2.4685711484405576e+18 - y tested = 5072151352.996373 -y predicted = 5397896905.138924 -error 1.0611016474065507e+17 - y tested = 7650055845.407672 -y predicted = 3974045030.621105 -error 1.3513055510427798e+19 - y tested = 5789616901.049658 -y predicted = 5920852845.277368 -error 1.722287305733855e+16 - y tested = 8224428196.629629 -y predicted = 5597426069.718776 -error 6.901140174794148e+18 - y tested = 4059018123.5159216 -y predicted = 5111171910.1374235 -error 1.107027590701965e+18 - y tested = 5947637003.818383 -y predicted = 3336404352.9201584 -error 6.818535957116971e+18 - y tested = 997516184.7000968 -y predicted = 2885305201.1285415 -error 3.5637473705478743e+18 - y tested = 6532788063.289651 -y predicted = 6094596764.808191 -error 1.9201161406486765e+17 - y tested = 1980229389.772511 -y predicted = 3435191412.8743277 -error 2.1169144886685312e+18 - y tested = 5035525633.343237 -y predicted = 5077072548.027674 -error 1726146119795870.0 - y tested = 5026691733.102776 -y predicted = 4989245123.18047 -error 1402248594673279.2 - y tested = 1014996574.3865615 -y predicted = 3186008940.5711193 -error 4.713294694126273e+18 - y tested = 7665772326.561901 -y predicted = 5539011343.752316 -error 4.5231122780011904e+18 - y tested = 3029054692.61153 -y predicted = 3712152100.6514864 -error 4.6662206887090694e+17 - y tested = 4062233415.93208 -y predicted = 3725376954.294734 -error 1.1347227574683262e+17 - y tested = 5822958761.806049 -y predicted = 5560169162.248939 -error 6.905837363538664e+16 - y tested = 6611133148.221605 -y predicted = 5909576628.490626 -error 4.9218155037704346e+17 - y tested = 5377240292.736961 -y predicted = 3018494209.4254065 -error 5.563683085537601e+18 -error squared vector [1.1547282240942002e+19, 2.4685711484405576e+18, 1.0611016474065507e+17, 1.3513055510427798e+19, 1.722287305733855e+16, 6.901140174794148e+18, 1.107027590701965e+18, 6.818535957116971e+18, 3.5637473705478743e+18, 1.9201161406486765e+17, 2.1169144886685312e+18, 1726146119795870.0, 1402248594673279.2, 4.713294694126273e+18, 4.5231122780011904e+18, 4.6662206887090694e+17, 1.1347227574683262e+17, 6.905837363538664e+16, 4.9218155037704346e+17, 5.563683085537601e+18] -Total loo_error 3.2148085927256197e+18 -iteration 24current difference of loo_error 1.2590105273785114e+18 - getting loo error of with lamda = 0.46334124528779086, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3385121296.502704 -error 1.145904619147196e+19 - y tested = 5326600510.288329 -y predicted = 3754561616.7524247 -error 2.4713062827895905e+18 - y tested = 5072151352.996373 -y predicted = 5402811756.865771 -error 1.0933630268707347e+17 - y tested = 7650055845.407672 -y predicted = 3985370529.556859 -error 1.3429918464212572e+19 - y tested = 5789616901.049658 -y predicted = 5935735804.643109 -error 2.1350733987352372e+16 - y tested = 8224428196.629629 -y predicted = 5615565323.822116 -error 6.806165489113471e+18 - y tested = 4059018123.5159216 -y predicted = 5116455742.133526 -error 1.1181743172676699e+18 - y tested = 5947637003.818383 -y predicted = 3335333563.4495597 -error 6.824129264562791e+18 - y tested = 997516184.7000968 -y predicted = 2865013602.3656154 -error 3.48754660498738e+18 - y tested = 6532788063.289651 -y predicted = 6119618722.6120405 -error 1.707089040759713e+17 - y tested = 1980229389.772511 -y predicted = 3429264498.9904327 -error 2.0997027477461944e+18 - y tested = 5035525633.343237 -y predicted = 5083584667.111229 -error 2309670726712997.0 - y tested = 5026691733.102776 -y predicted = 4996328360.805545 -error 921934377260238.0 - y tested = 1014996574.3865615 -y predicted = 3168297660.879597 -error 4.636705569092089e+18 - y tested = 7665772326.561901 -y predicted = 5556740868.088315 -error 4.448013692831222e+18 - y tested = 3029054692.61153 -y predicted = 3715450088.1533914 -error 4.7113863902106854e+17 - y tested = 4062233415.93208 -y predicted = 3726344952.823556 -error 1.1282105964940619e+17 - y tested = 5822958761.806049 -y predicted = 5574930305.449406 -error 6.1518115162659496e+16 - y tested = 6611133148.221605 -y predicted = 5924733988.885762 -error 4.711438059369521e+17 - y tested = 5377240292.736961 -y predicted = 3013631654.87411 -error 5.586645792979883e+18 -error squared vector [1.145904619147196e+19, 2.4713062827895905e+18, 1.0933630268707347e+17, 1.3429918464212572e+19, 2.1350733987352372e+16, 6.806165489113471e+18, 1.1181743172676699e+18, 6.824129264562791e+18, 3.48754660498738e+18, 1.707089040759713e+17, 2.0997027477461944e+18, 2309670726712997.0, 921934377260238.0, 4.636705569092089e+18, 4.448013692831222e+18, 4.7113863902106854e+17, 1.1282105964940619e+17, 6.1518115162659496e+16, 4.711438059369521e+17, 5.586645792979883e+18] -Total loo_error 3.189430179133964e+18 -iteration 25current difference of loo_error 1.2336321137868554e+18 - getting loo error of with lamda = 0.44930060152149415, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3371859896.084163 -error 1.1369439158258727e+19 - y tested = 5326600510.288329 -y predicted = 3753745606.308091 -error 2.4738725489746836e+18 - y tested = 5072151352.996373 -y predicted = 5407258875.30295 -error 1.1229705150645282e+17 - y tested = 7650055845.407672 -y predicted = 3996869201.8836365 -error 1.3345772652422408e+19 - y tested = 5789616901.049658 -y predicted = 5950136200.375288 -error 2.576644545599126e+16 - y tested = 8224428196.629629 -y predicted = 5633554877.065017 -error 6.712624558031754e+18 - y tested = 4059018123.5159216 -y predicted = 5121548785.423682 -error 1.1289714074941439e+18 - y tested = 5947637003.818383 -y predicted = 3334434590.439701 -error 6.828826853288168e+18 - y tested = 997516184.7000968 -y predicted = 2844469488.520916 -error 3.411236506494639e+18 - y tested = 6532788063.289651 -y predicted = 6144314946.100317 -error 1.5091136277879795e+17 - y tested = 1980229389.772511 -y predicted = 3423350998.3202105 -error 2.0825999770572995e+18 - y tested = 5035525633.343237 -y predicted = 5089978317.84791 -error 2965094849765455.5 - y tested = 5026691733.102776 -y predicted = 5003286184.734947 -error 547819694398753.25 - y tested = 1014996574.3865615 -y predicted = 3150395499.621187 -error 4.5599285698931953e+18 - y tested = 7665772326.561901 -y predicted = 5574194347.432606 -error 4.374698442778587e+18 - y tested = 3029054692.61153 -y predicted = 3718917289.7823925 -error 4.7591040297532794e+17 - y tested = 4062233415.93208 -y predicted = 3727436561.045155 -error 1.1208893404217654e+17 - y tested = 5822958761.806049 -y predicted = 5589398482.990178 -error 5.455040384054751e+16 - y tested = 6611133148.221605 -y predicted = 5939540652.769378 -error 4.5103647994775034e+17 - y tested = 5377240292.736961 -y predicted = 3008876956.1559963 -error 5.609144894060922e+18 -error squared vector [1.1369439158258727e+19, 2.4738725489746836e+18, 1.1229705150645282e+17, 1.3345772652422408e+19, 2.576644545599126e+16, 6.712624558031754e+18, 1.1289714074941439e+18, 6.828826853288168e+18, 3.411236506494639e+18, 1.5091136277879795e+17, 2.0825999770572995e+18, 2965094849765455.5, 547819694398753.25, 4.5599285698931953e+18, 4.374698442778587e+18, 4.7591040297532794e+17, 1.1208893404217654e+17, 5.455040384054751e+16, 4.5103647994775034e+17, 5.609144894060922e+18] -Total loo_error 3.1641594781922867e+18 -iteration 26current difference of loo_error 1.2083614128451784e+18 - getting loo error of with lamda = 0.4356854318087216, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3358349129.3872275 -error 1.1278508874296224e+19 - y tested = 5326600510.288329 -y predicted = 3752989199.768082 -error 2.476252556597249e+18 - y tested = 5072151352.996373 -y predicted = 5411239968.234518 -error 1.1498108898412266e+17 - y tested = 7650055845.407672 -y predicted = 4008545231.973818 -error 1.3260599547751404e+19 - y tested = 5789616901.049658 -y predicted = 5964054064.655105 -error 3.042832404671342e+16 - y tested = 8224428196.629629 -y predicted = 5651401894.463166 -error 6.620464351640422e+18 - y tested = 4059018123.5159216 -y predicted = 5126454552.871421 -error 1.1394205307152178e+18 - y tested = 5947637003.818383 -y predicted = 3333715121.799291 -error 6.832587605298232e+18 - y tested = 997516184.7000968 -y predicted = 2823678599.8274055 -error 3.3348691664236047e+18 - y tested = 6532788063.289651 -y predicted = 6168680582.374869 -error 1.3257425765810803e+17 - y tested = 1980229389.772511 -y predicted = 3417456498.6307 -error 2.0656217624368689e+18 - y tested = 5035525633.343237 -y predicted = 5096256775.51464 -error 3688271629443155.5 - y tested = 5026691733.102776 -y predicted = 5010121679.223395 -error 274566685565563.7 - y tested = 1014996574.3865615 -y predicted = 3132308365.844125 -error 4.483009222245236e+18 - y tested = 7665772326.561901 -y predicted = 5591374826.837459 -error 4.3031249868630185e+18 - y tested = 3029054692.61153 -y predicted = 3722557046.332907 -error 4.809455146170904e+17 - y tested = 4062233415.93208 -y predicted = 3728658182.4074507 -error 1.1127243642101085e+17 - y tested = 5822958761.806049 -y predicted = 5603573228.044246 -error 4.813001242395148e+16 - y tested = 6611133148.221605 -y predicted = 5953998939.92507 -error 4.318253677135145e+17 - y tested = 5377240292.736961 -y predicted = 3004235243.1104956 -error 5.631152965552706e+18 -error squared vector [1.1278508874296224e+19, 2.476252556597249e+18, 1.1498108898412266e+17, 1.3260599547751404e+19, 3.042832404671342e+16, 6.620464351640422e+18, 1.1394205307152178e+18, 6.832587605298232e+18, 3.3348691664236047e+18, 1.3257425765810803e+17, 2.0656217624368689e+18, 3688271629443155.5, 274566685565563.7, 4.483009222245236e+18, 4.3031249868630185e+18, 4.809455146170904e+17, 1.1127243642101085e+17, 4.813001242395148e+16, 4.318253677135145e+17, 5.631152965552706e+18] -Total loo_error 3.1389865704999854e+18 -iteration 27current difference of loo_error 1.183188505152877e+18 - getting loo error of with lamda = 0.4224828429963361, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3344593125.928715 -error 1.1186303177452182e+19 - y tested = 5326600510.288329 -y predicted = 3752297550.0743036 -error 2.4784298105386435e+18 - y tested = 5072151352.996373 -y predicted = 5414757010.936476 -error 1.1737863685257058e+17 - y tested = 7650055845.407672 -y predicted = 4020402528.580821 -error 1.317438320035216e+19 - y tested = 5789616901.049658 -y predicted = 5977489818.183877 -error 3.5296232992521184e+16 - y tested = 8224428196.629629 -y predicted = 5669113701.119215 -error 6.529632170965642e+18 - y tested = 4059018123.5159216 -y predicted = 5131176499.293016 -error 1.149523582748978e+18 - y tested = 5947637003.818383 -y predicted = 3333182541.8829813 -error 6.835372133533932e+18 - y tested = 997516184.7000968 -y predicted = 2802646710.3817196 -error 3.2584962147476116e+18 - y tested = 6532788063.289651 -y predicted = 6192710899.458807 -error 1.1565247735923066e+17 - y tested = 1980229389.772511 -y predicted = 3411586397.6852026 -error 2.048782884100773e+18 - y tested = 5035525633.343237 -y predicted = 5102423182.469297 -error 4475282079073676.0 - y tested = 5026691733.102776 -y predicted = 5016837816.31282 -error 97099676103359.8 - y tested = 1014996574.3865615 -y predicted = 3114042136.35165 -error 4.4059922712053356e+18 - y tested = 7665772326.561901 -y predicted = 5608285622.493349 -error 4.2332515374188733e+18 - y tested = 3029054692.61153 -y predicted = 3726372343.83461 -error 4.862519067072733e+17 - y tested = 4062233415.93208 -y predicted = 3730015943.4408507 -error 1.1036844902846053e+17 - y tested = 5822958761.806049 -y predicted = 5617454190.583217 -error 4.223212879348031e+16 - y tested = 6611133148.221605 -y predicted = 5968111346.776581 -error 4.134770371336045e+17 - y tested = 5377240292.736961 -y predicted = 2999711332.781547 -error 5.652643955426674e+18 -error squared vector [1.1186303177452182e+19, 2.4784298105386435e+18, 1.1737863685257058e+17, 1.317438320035216e+19, 3.5296232992521184e+16, 6.529632170965642e+18, 1.149523582748978e+18, 6.835372133533932e+18, 3.2584962147476116e+18, 1.1565247735923066e+17, 2.048782884100773e+18, 4475282079073676.0, 97099676103359.8, 4.4059922712053356e+18, 4.2332515374188733e+18, 4.862519067072733e+17, 1.1036844902846053e+17, 4.223212879348031e+16, 4.134770371336045e+17, 5.652643955426674e+18] -Total loo_error 3.113902009455656e+18 -iteration 28current difference of loo_error 1.1581039441085476e+18 - getting loo error of with lamda = 0.4096803326328108, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3330596048.669111 -error 1.1092870038855193e+19 - y tested = 5326600510.288329 -y predicted = 3751675519.3476257 -error 2.480388727089575e+18 - y tested = 5072151352.996373 -y predicted = 5417812248.799776 -error 1.1948145488761096e+17 - y tested = 7650055845.407672 -y predicted = 4032444721.5427446 -error 1.3087110243511263e+19 - y tested = 5789616901.049658 -y predicted = 5990444271.029103 -error 4.033163253286107e+16 - y tested = 8224428196.629629 -y predicted = 5686697766.259558 -error 6.440075737226268e+18 - y tested = 4059018123.5159216 -y predicted = 5135718021.29698 -error 1.1592826698817413e+18 - y tested = 5947637003.818383 -y predicted = 3332843923.618589 -error 6.837142852260728e+18 - y tested = 997516184.7000968 -y predicted = 2781379636.711954 -error 3.18216881542366e+18 - y tested = 6532788063.289651 -y predicted = 6216401292.416397 -error 1.0010058878360482e+17 - y tested = 1980229389.772511 -y predicted = 3405745908.4096413 -error 2.0320973449073236e+18 - y tested = 5035525633.343237 -y predicted = 5108480547.105737 -error 5322419442093784.0 - y tested = 5026691733.102776 -y predicted = 5023437456.035769 -error 10590319228841.896 - y tested = 1014996574.3865615 -y predicted = 3095602663.604356 -error 4.3289216984901647e+18 - y tested = 7665772326.561901 -y predicted = 5624930314.856672 -error 4.165036116741045e+18 - y tested = 3029054692.61153 -y predicted = 3730365819.3235164 -error 4.9183729645003603e+17 - y tested = 4062233415.93208 -y predicted = 3731515691.3964543 -error 1.0937421332202184e+17 - y tested = 5822958761.806049 -y predicted = 5631041144.673983 -error 3.683237176565055e+16 - y tested = 6611133148.221605 -y predicted = 5981880540.279671 -error 3.95958844601726e+17 - y tested = 5377240292.736961 -y predicted = 2995309731.6227703 -error 5.673593197969765e+18 -error squared vector [1.1092870038855193e+19, 2.480388727089575e+18, 1.1948145488761096e+17, 1.3087110243511263e+19, 4.033163253286107e+16, 6.440075737226268e+18, 1.1592826698817413e+18, 6.837142852260728e+18, 3.18216881542366e+18, 1.0010058878360482e+17, 2.0320973449073236e+18, 5322419442093784.0, 10590319228841.896, 4.3289216984901647e+18, 4.165036116741045e+18, 4.9183729645003603e+17, 1.0937421332202184e+17, 3.683237176565055e+16, 3.95958844601726e+17, 5.673593197969765e+18] -Total loo_error 3.088896842723078e+18 -iteration 29current difference of loo_error 1.1330987773759698e+18 - getting loo error of with lamda = 0.3972657771287862, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3316362101.7552066 -error 1.0998257589405483e+19 - y tested = 5326600510.288329 -y predicted = 3751127676.905999 -error 2.4821146487257467e+18 - y tested = 5072151352.996373 -y predicted = 5420408199.516787 -error 1.2128283114834277e+17 - y tested = 7650055845.407672 -y predicted = 4044675158.646381 -error 1.2998769896471319e+19 - y tested = 5789616901.049658 -y predicted = 6002918622.690137 -error 4.5497624454792424e+16 - y tested = 8224428196.629629 -y predicted = 5704161686.5171 -error 6.351743281994785e+18 - y tested = 4059018123.5159216 -y predicted = 5140082457.306716 -error 1.1687000937945341e+18 - y tested = 5947637003.818383 -y predicted = 3332706020.5679617 -error 6.837864047163016e+18 - y tested = 997516184.7000968 -y predicted = 2759883246.1385207 -error 3.1059376592431053e+18 - y tested = 6532788063.289651 -y predicted = 6239747289.330689 -error 8.587289520246717e+16 - y tested = 1980229389.772511 -y predicted = 3399940064.2472706 -error 2.0155783992175767e+18 - y tested = 5035525633.343237 -y predicted = 5114431742.911776 -error 6226174127242229.0 - y tested = 5026691733.102776 -y predicted = 5029923346.815044 -error 10443327185323.924 - y tested = 1014996574.3865615 -y predicted = 3076995783.4475822 -error 4.2518407381682755e+18 - y tested = 7665772326.561901 -y predicted = 5641312740.902587 -error 4.0984366139678817e+18 - y tested = 3029054692.61153 -y predicted = 3734539766.9936204 -error 4.977091901759039e+17 - y tested = 4062233415.93208 -y predicted = 3733162992.198642 -error 1.0828734377610445e+17 - y tested = 5822958761.806049 -y predicted = 5644333995.828455 -error 3.1906807020550356e+16 - y tested = 6611133148.221605 -y predicted = 5995309351.5403185 -error 3.792389485589549e+17 - y tested = 5377240292.736961 -y predicted = 2991034638.010287 -error 5.693977426649558e+18 -error squared vector [1.0998257589405483e+19, 2.4821146487257467e+18, 1.2128283114834277e+17, 1.2998769896471319e+19, 4.5497624454792424e+16, 6.351743281994785e+18, 1.1687000937945341e+18, 6.837864047163016e+18, 3.1059376592431053e+18, 8.587289520246717e+16, 2.0155783992175767e+18, 6226174127242229.0, 10443327185323.924, 4.2518407381682755e+18, 4.0984366139678817e+18, 4.977091901759039e+17, 1.0828734377610445e+17, 3.1906807020550356e+16, 3.792389485589549e+17, 5.693977426649558e+18] -Total loo_error 3.063962632629641e+18 -iteration 30current difference of loo_error 1.1081645672825329e+18 - getting loo error of with lamda = 0.3852274202763987, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3301895538.1189146 -error 1.0902514144099279e+19 - y tested = 5326600510.288329 -y predicted = 3750658297.7109847 -error 2.4835938573831757e+18 - y tested = 5072151352.996373 -y predicted = 5422547654.819618 -error 1.2277756833140664e+17 - y tested = 7650055845.407672 -y predicted = 4057096902.66049 -error 1.2909353964266947e+19 - y tested = 5789616901.049658 -y predicted = 6014914461.404094 -error 5.0758990701660696e+16 - y tested = 8224428196.629629 -y predicted = 5721513168.513288 -error 6.264583637970627e+18 - y tested = 4059018123.5159216 -y predicted = 5144273087.770317 -error 1.1777783374388093e+18 - y tested = 5947637003.818383 -y predicted = 3332775258.941086 -error 6.837501944822744e+18 - y tested = 997516184.7000968 -y predicted = 2738163464.8740067 -error 3.02985295397683e+18 - y tested = 6532788063.289651 -y predicted = 6262744557.137641 -error 7.292349521487064e+16 - y tested = 1980229389.772511 -y predicted = 3394173724.6654816 -error 1.999238582175925e+18 - y tested = 5035525633.343237 -y predicted = 5120279507.636179 -error 7183219207663823.0 - y tested = 5026691733.102776 -y predicted = 5036298126.06058 -error 92282785659759.34 - y tested = 1014996574.3865615 -y predicted = 3058227322.6102867 -error 4.1747918904868844e+18 - y tested = 7665772326.561901 -y predicted = 5657436985.538849 -error 4.0334108420021796e+18 - y tested = 3029054692.61153 -y predicted = 3738896144.693716 -error 5.038748870941467e+17 - y tested = 4062233415.93208 -y predicted = 3734963128.723271 -error 1.0710584088973627e+17 - y tested = 5822958761.806049 -y predicted = 5657332788.3857155 -error 2.743196307143314e+16 - y tested = 6611133148.221605 -y predicted = 6008400769.200985 -error 3.632863207198568e+17 - y tested = 5377240292.736961 -y predicted = 2986889945.038439 -error 5.713774784742448e+18 -error squared vector [1.0902514144099279e+19, 2.4835938573831757e+18, 1.2277756833140664e+17, 1.2909353964266947e+19, 5.0758990701660696e+16, 6.264583637970627e+18, 1.1777783374388093e+18, 6.837501944822744e+18, 3.02985295397683e+18, 7.292349521487064e+16, 1.999238582175925e+18, 7183219207663823.0, 92282785659759.34, 4.1747918904868844e+18, 4.0334108420021796e+18, 5.038748870941467e+17, 1.0710584088973627e+17, 2.743196307143314e+16, 3.632863207198568e+17, 5.713774784742448e+18] -Total loo_error 3.039091475369114e+18 -iteration 31current difference of loo_error 1.0832934100220058e+18 - getting loo error of with lamda = 0.3735538621165079, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3287200666.893184 -error 1.0805688223875127e+19 - y tested = 5326600510.288329 -y predicted = 3750271361.254669 -error 2.4848135860931825e+18 - y tested = 5072151352.996373 -y predicted = 5424233681.758464 -error 1.2396196622653691e+17 - y tested = 7650055845.407672 -y predicted = 4069712728.5481377 -error 1.2818856834443444e+19 - y tested = 5789616901.049658 -y predicted = 6026433762.7135935 -error 5.608222596835564e+16 - y tested = 8224428196.629629 -y predicted = 5738760010.79528 -error 6.178546330069022e+18 - y tested = 4059018123.5159216 -y predicted = 5148293135.560065 -error 1.1865200518637693e+18 - y tested = 5947637003.818383 -y predicted = 3333057729.5873404 -error 6.836024781238527e+18 - y tested = 997516184.7000968 -y predicted = 2716226285.8096333 -error 2.953964411655953e+18 - y tested = 6532788063.289651 -y predicted = 6285388907.313594 -error 6.120634237766541e+16 - y tested = 1980229389.772511 -y predicted = 3388451580.7792892 -error 1.9830897392439311e+18 - y tested = 5035525633.343237 -y predicted = 5126026442.571029 -error 8190396470885163.0 - y tested = 5026691733.102776 -y predicted = 5042564320.964209 -error 251939045418911.16 - y tested = 1014996574.3865615 -y predicted = 3039303105.924029 -error 4.097816933625252e+18 - y tested = 7665772326.561901 -y predicted = 5673307372.220434 -error 3.969916594278944e+18 - y tested = 3029054692.61153 -y predicted = 3743436580.735036 -error 5.1034148207890554e+17 - y tested = 4062233415.93208 -y predicted = 3736921099.412645 -error 1.0582810327924101e+17 - y tested = 5822958761.806049 -y predicted = 5670037712.90341 -error 2.3384847197483428e+16 - y tested = 6611133148.221605 -y predicted = 6021157932.636501 -error 3.480707550046899e+17 - y tested = 5377240292.736961 -y predicted = 2982879243.5752096 -error 5.732964833742965e+18 -error squared vector [1.0805688223875127e+19, 2.4848135860931825e+18, 1.2396196622653691e+17, 1.2818856834443444e+19, 5.608222596835564e+16, 6.178546330069022e+18, 1.1865200518637693e+18, 6.836024781238527e+18, 2.953964411655953e+18, 6.120634237766541e+16, 1.9830897392439311e+18, 8190396470885163.0, 251939045418911.16, 4.097816933625252e+18, 3.969916594278944e+18, 5.1034148207890554e+17, 1.0582810327924101e+17, 2.3384847197483428e+16, 3.480707550046899e+17, 5.732964833742965e+18] -Total loo_error 3.0142760188889646e+18 -iteration 32current difference of loo_error 1.0584779535418563e+18 - getting loo error of with lamda = 0.36223404814328036, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3272281860.607087 -error 1.07078285747128e+19 - y tested = 5326600510.288329 -y predicted = 3749970550.898335 -error 2.4857620288460943e+18 - y tested = 5072151352.996373 -y predicted = 5425469623.507702 -error 1.2483380027711645e+17 - y tested = 7650055845.407672 -y predicted = 4082525120.869544 -error 1.272727547052354e+19 - y tested = 5789616901.049658 -y predicted = 6037478887.318885 -error 6.143556423732649e+16 - y tested = 8224428196.629629 -y predicted = 5755910085.186547 -error 6.09358166652252e+18 - y tested = 4059018123.5159216 -y predicted = 5152145766.562594 -error 1.1949280439927741e+18 - y tested = 5947637003.818383 -y predicted = 3333559179.9926443 -error 6.833402869017511e+18 - y tested = 997516184.7000968 -y predicted = 2694077775.9373 -error 2.8783212328613115e+18 - y tested = 6532788063.289651 -y predicted = 6307676301.411274 -error 5.067530533598709e+16 - y tested = 1980229389.772511 -y predicted = 3382778161.057774 -error 1.9671430558338012e+18 - y tested = 5035525633.343237 -y predicted = 5131675011.956411 -error 9244703007699566.0 - y tested = 5026691733.102776 -y predicted = 5048724349.492345 -error 485436184969916.94 - y tested = 1014996574.3865615 -y predicted = 3020228963.2124643 -error 4.020956933196437e+18 - y tested = 7665772326.561901 -y predicted = 5688928452.806866 -error 3.9079117012028145e+18 - y tested = 3029054692.61153 -y predicted = 3748162380.9771876 -error 5.171158674666e+17 - y tested = 4062233415.93208 -y predicted = 3739041617.239437 -error 1.0445293874218568e+17 - y tested = 5822958761.806049 -y predicted = 5682449113.53285 -error 1.9742961257858116e+16 - y tested = 6611133148.221605 -y predicted = 6033584125.000233 -error 3.335628742239616e+17 - y tested = 5377240292.736961 -y predicted = 2979005825.5557675 -error 5.751528559575864e+18 -error squared vector [1.07078285747128e+19, 2.4857620288460943e+18, 1.2483380027711645e+17, 1.272727547052354e+19, 6.143556423732649e+16, 6.09358166652252e+18, 1.1949280439927741e+18, 6.833402869017511e+18, 2.8783212328613115e+18, 5.067530533598709e+16, 1.9671430558338012e+18, 9244703007699566.0, 485436184969916.94, 4.020956933196437e+18, 3.9079117012028145e+18, 5.171158674666e+17, 1.0445293874218568e+17, 1.9742961257858116e+16, 3.335628742239616e+17, 5.751528559575864e+18] -Total loo_error 2.9895094793509586e+18 -iteration 33current difference of loo_error 1.0337114140038502e+18 - getting loo error of with lamda = 0.35125725883590825, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '1000-1100' +--- Neighbour 0 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [1.] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 7 in the X datas point +-------------- + --- Configuration: 1000-1010 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6501654671.113798 + --- Energy: 42.85376093977719 + --- Workload: 278621000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 33 in the X datas point +-------------- + --- Configuration: 1000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 997516184.7000968 + --- Energy: 29.543907709942122 + --- Workload: 29470600000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 42 in the X datas point +-------------- + --- Configuration: 1100-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5947637003.818383 + --- Energy: 36.68430426428569 + --- Workload: 218185000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 13 in the X datas point +-------------- + --- Configuration: 0011-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7650055845.407672 + --- Energy: 43.82652071469574 + --- Workload: 335276000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '1000-1100' +--- Neighbour 0 in the list of neghbours, And at position 33 in the X datas point +-------------- + --- Configuration: 1000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 997516184.7000968 + --- Energy: 29.543907709942122 + --- Workload: 29470600000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 42 in the X datas point +-------------- + --- Configuration: 1100-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5947637003.818383 + --- Energy: 36.68430426428569 + --- Workload: 218185000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 7 in the X datas point +-------------- + --- Configuration: 1000-1010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6501654671.113798 + --- Energy: 42.85376093977719 + --- Workload: 278621000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 13 in the X datas point +-------------- + --- Configuration: 0011-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7650055845.407672 + --- Energy: 43.82652071469574 + --- Workload: 335276000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (36.86022362180361 mAh) it is NOT far from the median. +--- Median :36.86022362180361, the gap is : 10 +--- So No we don't romove this configuration '1000-1100' + --- remove_aberrant_points: The value [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0] +--- Computing the list of the 10 first neighbours of '2000-2200' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3257143562.1228786 -error 1.0608984183735656e+19 - y tested = 5326600510.288329 -y predicted = 3749759253.6745286 -error 2.4864283485593897e+18 - y tested = 5072151352.996373 -y predicted = 5426259099.6874485 -error 1.2539229626663077e+17 - y tested = 7650055845.407672 -y predicted = 4095536271.3882027 -error 1.2634609402087549e+19 - y tested = 5789616901.049658 -y predicted = 6048052578.237411 -error 6.678899924349234e+16 - y tested = 8224428196.629629 -y predicted = 5772971317.611629 -error 6.009640829684676e+18 - y tested = 4059018123.5159216 -y predicted = 5155834090.459097 -error 1.2030052653414927e+18 - y tested = 5947637003.818383 -y predicted = 3334285006.3152184 -error 6.829608662853782e+18 - y tested = 997516184.7000968 -y predicted = 2671724083.358245 -error 2.8029720879293317e+18 - y tested = 6532788063.289651 -y predicted = 6329602856.437266 -error 4.12842282836463e+16 - y tested = 1980229389.772511 -y predicted = 3377157837.0809016 -error 1.9514090868994312e+18 - y tested = 5035525633.343237 -y predicted = 5137227542.514819 -error 1.034327832914476e+16 - y tested = 5026691733.102776 -y predicted = 5054780521.575933 -error 788980037889807.1 - y tested = 1014996574.3865615 -y predicted = 3001010735.8043294 -error 3.94425224935192e+18 - y tested = 7665772326.561901 -y predicted = 5704304996.707314 -error 3.8473540860868854e+18 - y tested = 3029054692.61153 -y predicted = 3753074536.160703 -error 5.242047338529695e+17 - y tested = 4062233415.93208 -y predicted = 3741329109.031797 -error 1.0297957418715093e+17 - y tested = 5822958761.806049 -y predicted = 5694567495.350147 -error 1.6484317302150452e+16 - y tested = 6611133148.221605 -y predicted = 6045682766.160122 -error 3.197341345734775e+17 - y tested = 5377240292.736961 -y predicted = 2975272687.4945526 -error 5.769448376633952e+18 -error squared vector [1.0608984183735656e+19, 2.4864283485593897e+18, 1.2539229626663077e+17, 1.2634609402087549e+19, 6.678899924349234e+16, 6.009640829684676e+18, 1.2030052653414927e+18, 6.829608662853782e+18, 2.8029720879293317e+18, 4.12842282836463e+16, 1.9514090868994312e+18, 1.034327832914476e+16, 788980037889807.1, 3.94425224935192e+18, 3.8473540860868854e+18, 5.242047338529695e+17, 1.0297957418715093e+17, 1.6484317302150452e+16, 3.197341345734775e+17, 5.769448376633952e+18] -Total loo_error 2.964785656062031e+18 -iteration 34current difference of loo_error 1.0089875907149225e+18 - getting loo error of with lamda = 0.34061309950754737, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3241790291.279191 -error 1.0509204292091722e+19 - y tested = 5326600510.288329 -y predicted = 3749640560.562966 -error 2.4868026830378204e+18 - y tested = 5072151352.996373 -y predicted = 5426606006.188354 -error 1.2563810116944707e+17 - y tested = 7650055845.407672 -y predicted = 4108748076.8939214 -error 1.254086071133584e+19 - y tested = 5789616901.049658 -y predicted = 6058157957.29442 -error 7.211429888905266e+16 - y tested = 8224428196.629629 -y predicted = 5789951668.457537 -error 5.926675966220845e+18 - y tested = 4059018123.5159216 -y predicted = 5159361161.693515 -error 1.2107548016658964e+18 - y tested = 5947637003.818383 -y predicted = 3335240245.4970307 -error 6.824616822887911e+18 - y tested = 997516184.7000968 -y predicted = 2649171443.831266 -error 2.7279650950156493e+18 - y tested = 6532788063.289651 -y predicted = 6351164850.062502 -error 3.2986991582954436e+16 - y tested = 1980229389.772511 -y predicted = 3371594829.316042 -error 1.935897786356163e+18 - y tested = 5035525633.343237 -y predicted = 5142686223.123322 -error 1.1483392002015574e+16 - y tested = 5026691733.102776 -y predicted = 5060735040.496449 -error 1158946778300171.8 - y tested = 1014996574.3865615 -y predicted = 2981654282.62557 -error 3.867742541375909e+18 - y tested = 7665772326.561901 -y predicted = 5719441979.360492 -error 3.7882018204371584e+18 - y tested = 3029054692.61153 -y predicted = 3758173729.457207 -error 5.3161456989076826e+17 - y tested = 4062233415.93208 -y predicted = 3743787715.171922 -error 1.0140766433262782e+17 - y tested = 5822958761.806049 -y predicted = 5706393531.613459 -error 1.3587452889851662e+16 - y tested = 6611133148.221605 -y predicted = 6057457405.563331 -error 3.06556828008192e+17 - y tested = 5377240292.736961 -y predicted = 2971682534.1977367 -error 5.786708129668259e+18 -error squared vector [1.0509204292091722e+19, 2.4868026830378204e+18, 1.2563810116944707e+17, 1.254086071133584e+19, 7.211429888905266e+16, 5.926675966220845e+18, 1.2107548016658964e+18, 6.824616822887911e+18, 2.7279650950156493e+18, 3.2986991582954436e+16, 1.935897786356163e+18, 1.1483392002015574e+16, 1158946778300171.8, 3.867742541375909e+18, 3.7882018204371584e+18, 5.3161456989076826e+17, 1.0140766433262782e+17, 1.3587452889851662e+16, 3.06556828008192e+17, 5.786708129668259e+18] -Total loo_error 2.940098944781819e+18 -iteration 35current difference of loo_error 9.843008794347105e+17 - getting loo error of with lamda = 0.3302914904618641, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3226226651.205884 -error 1.0408538404413428e+19 - y tested = 5326600510.288329 -y predicted = 3749617267.250247 -error 2.486876148822907e+18 - y tested = 5072151352.996373 -y predicted = 5426514514.487364 -error 1.255732502218899e+17 - y tested = 7650055845.407672 -y predicted = 4122162137.257963 -error 1.2446034016002302e+19 - y tested = 5789616901.049658 -y predicted = 6067798520.968623 -error 7.73850136607397e+16 - y tested = 8224428196.629629 -y predicted = 5806859112.536499 -error 5.844640276362896e+18 - y tested = 4059018123.5159216 -y predicted = 5162729980.624578 -error 1.2181798635222403e+18 - y tested = 5947637003.818383 -y predicted = 3336429567.492067 -error 6.818404275525853e+18 - y tested = 997516184.7000968 -y predicted = 2626426186.815919 -error 2.6533477949929677e+18 - y tested = 6532788063.289651 -y predicted = 6372358725.654944 -error 2.5737572373910656e+16 - y tested = 1980229389.772511 -y predicted = 3366093212.885172 -error 1.9206185362124406e+18 - y tested = 5035525633.343237 -y predicted = 5148053104.631303 -error 1.2662431794486498e+16 - y tested = 5026691733.102776 -y predicted = 5066590004.4664 -error 1591872057805424.5 - y tested = 1014996574.3865615 -y predicted = 2962165485.8287897 -error 3.791466769687112e+18 - y tested = 7665772326.561901 -y predicted = 5734344570.098869 -error 3.7304131784358205e+18 - y tested = 3029054692.61153 -y predicted = 3763460344.209129 -error 5.39351661098494e+17 - y tested = 4062233415.93208 -y predicted = 3746421289.680625 -error 9.973729908746485e+16 - y tested = 5822958761.806049 -y predicted = 5717928070.914563 -error 1.1031446029142916e+16 - y tested = 6611133148.221605 -y predicted = 6068911715.066373 -error 2.940040825729142e+17 - y tested = 5377240292.736961 -y predicted = 2968237782.6604652 -error 5.803293093554859e+18 -error squared vector [1.0408538404413428e+19, 2.486876148822907e+18, 1.255732502218899e+17, 1.2446034016002302e+19, 7.73850136607397e+16, 5.844640276362896e+18, 1.2181798635222403e+18, 6.818404275525853e+18, 2.6533477949929677e+18, 2.5737572373910656e+16, 1.9206185362124406e+18, 1.2662431794486498e+16, 1591872057805424.5, 3.791466769687112e+18, 3.7304131784358205e+18, 5.39351661098494e+17, 9.973729908746485e+16, 1.1031446029142916e+16, 2.940040825729142e+17, 5.803293093554859e+18] -Total loo_error 2.9154443493214833e+18 -iteration 36current difference of loo_error 9.596462839743749e+17 - getting loo error of with lamda = 0.3202826574478682, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3210457334.277558 -error 1.0307036294681485e+19 - y tested = 5326600510.288329 -y predicted = 3749691875.3820715 -error 2.486640842841917e+18 - y tested = 5072151352.996373 -y predicted = 5425989070.442784 -error 1.2520113028768629e+17 - y tested = 7650055845.407672 -y predicted = 4135779753.735955 -error 1.2350136448495436e+19 - y tested = 5789616901.049658 -y predicted = 6076978135.616775 -error 8.257647913193749e+16 - y tested = 8224428196.629629 -y predicted = 5823701618.716383 -error 5.763488101899046e+18 - y tested = 4059018123.5159216 -y predicted = 5165943494.85603 -error 1.225283777716438e+18 - y tested = 5947637003.818383 -y predicted = 3337857267.65567 -error 6.81095027128552e+18 - y tested = 997516184.7000968 -y predicted = 2603494740.9689198 -error 2.5791671231952927e+18 - y tested = 6532788063.289651 -y predicted = 6393181097.122311 -error 1.9490105002448892e+16 - y tested = 1980229389.772511 -y predicted = 3360656923.295713 -error 1.9055801753089508e+18 - y tested = 5035525633.343237 -y predicted = 5153330099.832403 -error 1.3877892324797096e+16 - y tested = 5026691733.102776 -y predicted = 5072347408.401351 -error 2084440686968948.0 - y tested = 1014996574.3865615 -y predicted = 2942550255.921718 -error 3.7154631951997363e+18 - y tested = 7665772326.561901 -y predicted = 5749018119.448518 -error 3.6739466904868547e+18 - y tested = 3029054692.61153 -y predicted = 3768934471.833653 -error 5.4742208770177766e+17 - y tested = 4062233415.93208 -y predicted = 3749233400.6992006 -error 9.79690095357826e+16 - y tested = 5822958761.806049 -y predicted = 5729172144.191315 -error 8795929643612456.0 - y tested = 6611133148.221605 -y predicted = 6080049481.766238 -error 2.8204986077567562e+17 - y tested = 5377240292.736961 -y predicted = 2964940566.134728 -error 5.81918997096521e+18 -error squared vector [1.0307036294681485e+19, 2.486640842841917e+18, 1.2520113028768629e+17, 1.2350136448495436e+19, 8.257647913193749e+16, 5.763488101899046e+18, 1.225283777716438e+18, 6.81095027128552e+18, 2.5791671231952927e+18, 1.9490105002448892e+16, 1.9055801753089508e+18, 1.3877892324797096e+16, 2084440686968948.0, 3.7154631951997363e+18, 3.6739466904868547e+18, 5.4742208770177766e+17, 9.79690095357826e+16, 8795929643612456.0, 2.8204986077567562e+17, 5.81918997096521e+18] -Total loo_error 2.8908174913583283e+18 -iteration 37current difference of loo_error 9.3501942601122e+17 - getting loo error of with lamda = 0.31057712240399343, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3194487127.6742516 -error 1.0204748008344074e+19 - y tested = 5326600510.288329 -y predicted = 3749866594.3157926 -error 2.48608984177809e+18 - y tested = 5072151352.996373 -y predicted = 5425034392.557194 -error 1.2452643960968366e+17 - y tested = 7650055845.407672 -y predicted = 4149601927.535292 -error 1.2253177631148093e+19 - y tested = 5789616901.049658 -y predicted = 6085701032.101366 -error 8.766581266064514e+16 - y tested = 8224428196.629629 -y predicted = 5840487129.286371 -error 5.683175012565712e+18 - y tested = 4059018123.5159216 -y predicted = 5169004600.73774 -error 1.2320699796153014e+18 - y tested = 5947637003.818383 -y predicted = 3339527259.3430996 -error 6.802236439226929e+18 - y tested = 997516184.7000968 -y predicted = 2580383639.0542455 -error 2.505469378053583e+18 - y tested = 6532788063.289651 -y predicted = 6413628753.550544 -error 1.4198941097500472e+16 - y tested = 1980229389.772511 -y predicted = 3355289762.110088 -error 1.8907910275731556e+18 - y tested = 5035525633.343237 -y predicted = 5158518983.59898 -error 1.5127364207131884e+16 - y tested = 5026691733.102776 -y predicted = 5078009145.880586 -error 2633476854208147.0 - y tested = 1014996574.3865615 -y predicted = 2922814536.3597183 -error 3.63976937602741e+18 - y tested = 7665772326.561901 -y predicted = 5763468145.917561 -error 3.618761195696936e+18 - y tested = 3029054692.61153 -y predicted = 3774595919.867316 -error 5.558317215380635e+17 - y tested = 4062233415.93208 -y predicted = 3752227331.3804 -error 9.610377245906314e+16 - y tested = 5822958761.806049 -y predicted = 5740126971.565834 -error 6861105474399027.0 - y tested = 6611133148.221605 -y predicted = 6090874600.866166 -error 2.7066895609639174e+17 - y tested = 5377240292.736961 -y predicted = 2961792738.355883 -error 5.834386887965532e+18 -error squared vector [1.0204748008344074e+19, 2.48608984177809e+18, 1.2452643960968366e+17, 1.2253177631148093e+19, 8.766581266064514e+16, 5.683175012565712e+18, 1.2320699796153014e+18, 6.802236439226929e+18, 2.505469378053583e+18, 1.4198941097500472e+16, 1.8907910275731556e+18, 1.5127364207131884e+16, 2633476854208147.0, 3.63976937602741e+18, 3.618761195696936e+18, 5.558317215380635e+17, 9.610377245906314e+16, 6861105474399027.0, 2.7066895609639174e+17, 5.834386887965532e+18] -Total loo_error 2.866214618399595e+18 -iteration 38current difference of loo_error 9.104165530524867e+17 - getting loo error of with lamda = 0.3011656944826603, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3178320918.5200696 -error 1.0101723860572537e+19 - y tested = 5326600510.288329 -y predicted = 3750143343.3789563 -error 2.485217199099926e+18 - y tested = 5072151352.996373 -y predicted = 5423655469.697645 -error 1.2355514405794146e+17 - y tested = 7650055845.407672 -y predicted = 4163629358.6642995 -error 1.2155169647465734e+19 - y tested = 5789616901.049658 -y predicted = 6093971799.845359 -error 9.26319044209414e+16 - y tested = 8224428196.629629 -y predicted = 5857223539.127334 -error 5.60365789050056e+18 - y tested = 4059018123.5159216 -y predicted = 5171916145.028334 -error 1.2385420062862413e+18 - y tested = 5947637003.818383 -y predicted = 3341443066.7679524 -error 6.792246837518425e+18 - y tested = 997516184.7000968 -y predicted = 2557099522.231183 -error 2.432300186704602e+18 - y tested = 6532788063.289651 -y predicted = 6433698663.622601 -error 9818709126376440.0 - y tested = 1980229389.772511 -y predicted = 3349995402.530834 -error 1.876258929707835e+18 - y tested = 5035525633.343237 -y predicted = 5163621393.187631 -error 1.6408523690112594e+16 - y tested = 5026691733.102776 -y predicted = 5083577011.292312 -error 3235934874700911.0 - y tested = 1014996574.3865615 -y predicted = 2902964307.570514 -error 3.564422161543753e+18 - y tested = 7665772326.561901 -y predicted = 5777700322.327921 -error 3.564815893172119e+18 - y tested = 3029054692.61153 -y predicted = 3780444220.129791 -error 5.6458622206411546e+17 - y tested = 4062233415.93208 -y predicted = 3755406081.1982718 -error 9.414301333985229e+16 - y tested = 5822958761.806049 -y predicted = 5750793968.972402 -error 5207757324723294.0 - y tested = 6611133148.221605 -y predicted = 6101391068.607545 -error 2.598369877292671e+17 - y tested = 5377240292.736961 -y predicted = 2958795877.9177794 -error 5.848873387570095e+18 -error squared vector [1.0101723860572537e+19, 2.485217199099926e+18, 1.2355514405794146e+17, 1.2155169647465734e+19, 9.26319044209414e+16, 5.60365789050056e+18, 1.2385420062862413e+18, 6.792246837518425e+18, 2.432300186704602e+18, 9818709126376440.0, 1.876258929707835e+18, 1.6408523690112594e+16, 3235934874700911.0, 3.564422161543753e+18, 3.564815893172119e+18, 5.6458622206411546e+17, 9.414301333985229e+16, 5207757324723294.0, 2.598369877292671e+17, 5.848873387570095e+18] -Total loo_error 2.8416326098384927e+18 -iteration 39current difference of loo_error 8.858345444913843e+17 - getting loo error of with lamda = 0.29203946134682207, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3161963698.5719113 -error 9.998014430559566e+18 - y tested = 5326600510.288329 -y predicted = 3750523754.6387415 -error 2.48401793969893e+18 - y tested = 5072151352.996373 -y predicted = 5421857558.26347 -error 1.2229443000231264e+17 - y tested = 7650055845.407672 -y predicted = 4177862445.0807753 -error 1.2056127009273657e+19 - y tested = 5789616901.049658 -y predicted = 6101795380.337635 -error 9.745540293055402e+16 - y tested = 8224428196.629629 -y predicted = 5873918674.75679 -error 5.524895012414882e+18 - y tested = 4059018123.5159216 -y predicted = 5174680926.708817 -error 1.244703490428228e+18 - y tested = 5947637003.818383 -y predicted = 3343607818.17365 -error 6.780967999689573e+18 - y tested = 997516184.7000968 -y predicted = 2533649143.687205 -error 2.359704467686488e+18 - y tested = 6532788063.289651 -y predicted = 6453387979.80045 -error 6304373258092024.0 - y tested = 1980229389.772511 -y predicted = 3344777394.8807845 -error 1.8619912582449687e+18 - y tested = 5035525633.343237 -y predicted = 5168638828.724216 -error 1.7719122784534832e+16 - y tested = 5026691733.102776 -y predicted = 5089052702.158581 -error 3888890461579094.5 - y tested = 1014996574.3865615 -y predicted = 2883005590.383565 -error 3.4894576838460933e+18 - y tested = 7665772326.561901 -y predicted = 5791720461.74605 -error 3.5120703920197693e+18 - y tested = 3029054692.61153 -y predicted = 3786478636.98798 -error 5.736910315147797e+17 - y tested = 4062233415.93208 -y predicted = 3758772367.6865716 -error 9.208860780226266e+16 - y tested = 5822958761.806049 -y predicted = 5761174754.537571 -error 3817263554151391.0 - y tested = 6611133148.221605 -y predicted = 6111602975.297783 -error 2.495303936613039e+17 - y tested = 5377240292.736961 -y predicted = 2955951292.7882485 -error 5.862640421272637e+18 -error squared vector [9.998014430559566e+18, 2.48401793969893e+18, 1.2229443000231264e+17, 1.2056127009273657e+19, 9.745540293055402e+16, 5.524895012414882e+18, 1.244703490428228e+18, 6.780967999689573e+18, 2.359704467686488e+18, 6304373258092024.0, 1.8619912582449687e+18, 1.7719122784534832e+16, 3888890461579094.5, 3.4894576838460933e+18, 3.5120703920197693e+18, 5.736910315147797e+17, 9.208860780226266e+16, 3817263554151391.0, 2.495303936613039e+17, 5.862640421272637e+18] -Total loo_error 2.8170689810552177e+18 -iteration 40current difference of loo_error 8.612709157081093e+17 - getting loo error of with lamda = 0.2831897807302517, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3145420568.432973 -error 9.89367055179697e+18 - y tested = 5326600510.288329 -y predicted = 3751009176.1845436 -error 2.482488052102947e+18 - y tested = 5072151352.996373 -y predicted = 5419646178.793012 -error 1.2075265395543613e+17 - y tested = 7650055845.407672 -y predicted = 4192301282.157923 -error 1.195606661967446e+19 - y tested = 5789616901.049658 -y predicted = 6109177060.112809 -error 1.021186952604666e+17 - y tested = 8224428196.629629 -y predicted = 5890580273.3201065 -error 5.446846129136171e+18 - y tested = 4059018123.5159216 -y predicted = 5177301698.934378 -error 1.2505581550506857e+18 - y tested = 5947637003.818383 -y predicted = 3346024239.373208 -error 6.768388976124067e+18 - y tested = 997516184.7000968 -y predicted = 2510039371.586534 -error 2.287726390869104e+18 - y tested = 6532788063.289651 -y predicted = 6472694042.252005 -error 3611291364473075.5 - y tested = 1980229389.772511 -y predicted = 3339639171.9593444 -error 1.847994955905254e+18 - y tested = 5035525633.343237 -y predicted = 5173572653.876374 -error 1.9056979878076436e+16 - y tested = 5026691733.102776 -y predicted = 5094437821.634579 -error 4589532511358908.0 - y tested = 1014996574.3865615 -y predicted = 2862944448.8400784 -error 3.4149113466972713e+18 - y tested = 7665772326.561901 -y predicted = 5805534503.069604 -error 3.460484759951359e+18 - y tested = 3029054692.61153 -y predicted = 3792698175.703091 -error 5.831513692682117e+17 - y tested = 4062233415.93208 -y predicted = 3762328628.613444 -error 8.994288145663626e+16 - y tested = 5822958761.806049 -y predicted = 5771271154.674936 -error 2671608730940289.0 - y tested = 6611133148.221605 -y predicted = 6121514498.461171 -error 2.397264221932307e+17 - y tested = 5377240292.736961 -y predicted = 2953260024.9587054 -error 5.875680338578345e+18 -error squared vector [9.89367055179697e+18, 2.482488052102947e+18, 1.2075265395543613e+17, 1.195606661967446e+19, 1.021186952604666e+17, 5.446846129136171e+18, 1.2505581550506857e+18, 6.768388976124067e+18, 2.287726390869104e+18, 3611291364473075.5, 1.847994955905254e+18, 1.9056979878076436e+16, 4589532511358908.0, 3.4149113466972713e+18, 3.460484759951359e+18, 5.831513692682117e+17, 8.994288145663626e+16, 2671608730940289.0, 2.397264221932307e+17, 5.875680338578345e+18] -Total loo_error 2.7925218855252736e+18 -iteration 41current difference of loo_error 8.367238201781652e+17 - getting loo error of with lamda = 0.2746082722535774, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3128696741.267796 -error 9.788743298298276e+18 - y tested = 5326600510.288329 -y predicted = 3751600675.9244275 -error 2.4806244782463176e+18 - y tested = 5072151352.996373 -y predicted = 5417027112.002073 -error 1.1893928914975774e+17 - y tested = 7650055845.407672 -y predicted = 4206945662.4857907 -error 1.185500773174035e+19 - y tested = 5789616901.049658 -y predicted = 6116122463.228604 -error 1.0660588213378989e+17 - y tested = 8224428196.629629 -y predicted = 5907215961.599534 -error 5.369472542173169e+18 - y tested = 4059018123.5159216 -y predicted = 5179781171.110669 -error 1.2561098088538662e+18 - y tested = 5947637003.818383 -y predicted = 3348694647.7142425 -error 6.754501370352142e+18 - y tested = 997516184.7000968 -y predicted = 2486277191.308401 -error 2.2164093347973714e+18 - y tested = 6532788063.289651 -y predicted = 6491614382.504029 -error 1695271989436269.0 - y tested = 1980229389.772511 -y predicted = 3334584054.258601 -error 1.83427655721523e+18 - y tested = 5035525633.343237 -y predicted = 5178424096.721729 -error 2.041997083593432e+16 - y tested = 5026691733.102776 -y predicted = 5099733881.175868 -error 5335155395131565.0 - y tested = 1014996574.3865615 -y predicted = 2842786992.3637643 -error 3.340817812049278e+18 - y tested = 7665772326.561901 -y predicted = 5819148496.327519 -error 3.4100195703894984e+18 - y tested = 3029054692.61153 -y predicted = 3799101590.846327 -error 5.929722254810318e+17 - y tested = 4062233415.93208 -y predicted = 3766077024.5986094 -error 8.770860812766363e+16 - y tested = 5822958761.806049 -y predicted = 5781085209.856166 -error 1753394352899589.0 - y tested = 6611133148.221605 -y predicted = 6131129896.138055 -error 2.3040312201078448e+17 - y tested = 5377240292.736961 -y predicted = 2950722855.2228756 -error 5.887986874559925e+18 -error squared vector [9.788743298298276e+18, 2.4806244782463176e+18, 1.1893928914975774e+17, 1.185500773174035e+19, 1.0660588213378989e+17, 5.369472542173169e+18, 1.2561098088538662e+18, 6.754501370352142e+18, 2.2164093347973714e+18, 1695271989436269.0, 1.83427655721523e+18, 2.041997083593432e+16, 5335155395131565.0, 3.340817812049278e+18, 3.4100195703894984e+18, 5.929722254810318e+17, 8.770860812766363e+16, 1753394352899589.0, 2.3040312201078448e+17, 5.887986874559925e+18] -Total loo_error 2.767990114907592e+18 -iteration 42current difference of loo_error 8.121920495604838e+17 - getting loo error of with lamda = 0.2662868094883175, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3111797545.9976077 -error 9.683283966758099e+18 - y tested = 5326600510.288329 -y predicted = 3752299045.893967 -error 2.4784251007942323e+18 - y tested = 5072151352.996373 -y predicted = 5414006394.247992 -error 1.1686486922914571e+17 - y tested = 7650055845.407672 -y predicted = 4221795076.025899 -error 1.1752971902882105e+19 - y tested = 5789616901.049658 -y predicted = 6122637543.26346 -error 1.1090274814049334e+17 - y tested = 8224428196.629629 -y predicted = 5923833235.113876 -error 5.292737176951668e+18 - y tested = 4059018123.5159216 -y predicted = 5182122011.079127 -error 1.2613623422595858e+18 - y tested = 5947637003.818383 -y predicted = 3351620946.5266914 -error 6.739299369716301e+18 - y tested = 997516184.7000968 -y predicted = 2462369706.9531384 -error 2.145795841657142e+18 - y tested = 6532788063.289651 -y predicted = 6510146726.800811 -error 512630118000882.3 - y tested = 1980229389.772511 -y predicted = 3329615255.0249352 -error 1.8208422133430336e+18 - y tested = 5035525633.343237 -y predicted = 5183194250.819167 -error 2.1806020587252604e+16 - y tested = 5026691733.102776 -y predicted = 5104942303.36683 -error 6123151746649699.0 - y tested = 1014996574.3865615 -y predicted = 2822539377.2768083 -error 3.2672109842803297e+18 - y tested = 7665772326.561901 -y predicted = 5832568587.751815 -error 3.360635947987279e+18 - y tested = 3029054692.61153 -y predicted = 3805687394.7702975 -error 6.031583540624292e+17 - y tested = 4062233415.93208 -y predicted = 3770019442.1781306 -error 8.53890064570737e+16 - y tested = 5822958761.806049 -y predicted = 5790619180.020085 -error 1045848550091055.2 - y tested = 6611133148.221605 -y predicted = 6140453500.354643 -error 2.2153933091616774e+17 - y tested = 5377240292.736961 -y predicted = 2948340308.0817456 -error 5.899555135458107e+18 -error squared vector [9.683283966758099e+18, 2.4784251007942323e+18, 1.1686486922914571e+17, 1.1752971902882105e+19, 1.1090274814049334e+17, 5.292737176951668e+18, 1.2613623422595858e+18, 6.739299369716301e+18, 2.145795841657142e+18, 512630118000882.3, 1.8208422133430336e+18, 2.1806020587252604e+16, 6123151746649699.0, 3.2672109842803297e+18, 3.360635947987279e+18, 6.031583540624292e+17, 8.53890064570737e+16, 1045848550091055.2, 2.2153933091616774e+17, 5.899555135458107e+18] -Total loo_error 2.7434730970947594e+18 -iteration 43current difference of loo_error 7.876750317476511e+17 - getting loo error of with lamda = 0.2582175122613988, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3094728429.9578214 -error 9.577344054673412e+18 - y tested = 5326600510.288329 -y predicted = 3753104807.0732307 -error 2.475888728036377e+18 - y tested = 5072151352.996373 -y predicted = 5410590312.415834 -error 1.1454092925292774e+17 - y tested = 7650055845.407672 -y predicted = 4236848710.6368 -error 1.1649982944850786e+19 - y tested = 5789616901.049658 -y predicted = 6128728574.857139 -error 1.1499672731251126e+17 - y tested = 8224428196.629629 -y predicted = 5940439437.381589 -error 5.216604652371402e+18 - y tested = 4059018123.5159216 -y predicted = 5184326847.394515 -error 1.2663197240372685e+18 - y tested = 5947637003.818383 -y predicted = 3354804620.111535 -error 6.722779769998936e+18 - y tested = 997516184.7000968 -y predicted = 2438324142.0981526 -error 2.0759275701015578e+18 - y tested = 6532788063.289651 -y predicted = 6528288999.148514 -error 20241578146065.918 - y tested = 1980229389.772511 -y predicted = 3324735885.1538496 -error 1.8076977161226094e+18 - y tested = 5035525633.343237 -y predicted = 5187884076.48984 -error 2.3213095198056548e+16 - y tested = 5026691733.102776 -y predicted = 5110064424.902197 -error 6951005737881293.0 - y tested = 1014996574.3865615 -y predicted = 2802207807.6493196 -error 3.194123992300589e+18 - y tested = 7665772326.561901 -y predicted = 5845801004.679314 -error 3.3122956124750525e+18 - y tested = 3029054692.61153 -y predicted = 3812453866.1256857 -error 6.137142650626625e+17 - y tested = 4062233415.93208 -y predicted = 3774157497.319015 -error 8.298773488476112e+16 - y tested = 5822958761.806049 -y predicted = 5799875549.581897 -error 532834686585266.44 - y tested = 6611133148.221605 -y predicted = 6149489710.78401 -error 2.1311466332919904e+17 - y tested = 5377240292.736961 -y predicted = 2946112656.7728124 -error 5.910381582348632e+18 -error squared vector [9.577344054673412e+18, 2.475888728036377e+18, 1.1454092925292774e+17, 1.1649982944850786e+19, 1.1499672731251126e+17, 5.216604652371402e+18, 1.2663197240372685e+18, 6.722779769998936e+18, 2.0759275701015578e+18, 20241578146065.918, 1.8076977161226094e+18, 2.3213095198056548e+16, 6951005737881293.0, 3.194123992300589e+18, 3.3122956124750525e+18, 6.137142650626625e+17, 8.298773488476112e+16, 532834686585266.44, 2.1311466332919904e+17, 5.910381582348632e+18] -Total loo_error 2.7189708922179676e+18 -iteration 44current difference of loo_error 7.631728268708593e+17 - getting loo error of with lamda = 0.2503927391928715, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3077494961.0015016 -error 9.470975234476716e+18 - y tested = 5326600510.288329 -y predicted = 3754018214.7061453 -error 2.473015076378531e+18 - y tested = 5072151352.996373 -y predicted = 5406785398.223864 -error 1.1197994422531411e+17 - y tested = 7650055845.407672 -y predicted = 4252105452.9874716 -error 1.1546066869348594e+19 - y tested = 5789616901.049658 -y predicted = 6134402144.816178 -error 1.1887686431913896e+17 - y tested = 8224428196.629629 -y predicted = 5957041739.420176 -error 5.141041346336838e+18 - y tested = 4059018123.5159216 -y predicted = 5186398271.677051 -error 1.2709859984678093e+18 - y tested = 5947637003.818383 -y predicted = 3358246729.3285456 -error 6.704941993622557e+18 - y tested = 997516184.7000968 -y predicted = 2414147839.789515 -error 2.0068452462013842e+18 - y tested = 6532788063.289651 -y predicted = 6546039324.02428 -error 175595911057111.75 - y tested = 1980229389.772511 -y predicted = 3319948957.907702 -error 1.7948485212443425e+18 - y tested = 5035525633.343237 -y predicted = 5192494402.314801 -error 2.4639194432448324e+16 - y tested = 5026691733.102776 -y predicted = 5115101499.713458 -error 7816286832155348.0 - y tested = 1014996574.3865615 -y predicted = 2781798535.475514 -error 3.1215891697077683e+18 - y tested = 7665772326.561901 -y predicted = 5858852040.3418665 -error 3.264960920753492e+18 - y tested = 3029054692.61153 -y predicted = 3819399058.414683 -error 6.246442165567882e+17 - y tested = 4062233415.93208 -y predicted = 3778492539.3845453 -error 8.05088850239632e+16 - y tested = 5822958761.806049 -y predicted = 5808857032.0054245 -error 198858783369830.9 - y tested = 6611133148.221605 -y predicted = 6158242988.615792 -error 2.0510949666777878e+17 - y tested = 5377240292.736961 -y predicted = 2944039928.423073 -error 5.92046401289724e+18 -error squared vector [9.470975234476716e+18, 2.473015076378531e+18, 1.1197994422531411e+17, 1.1546066869348594e+19, 1.1887686431913896e+17, 5.141041346336838e+18, 1.2709859984678093e+18, 6.704941993622557e+18, 2.0068452462013842e+18, 175595911057111.75, 1.7948485212443425e+18, 2.4639194432448324e+16, 7816286832155348.0, 3.1215891697077683e+18, 3.264960920753492e+18, 6.246442165567882e+17, 8.05088850239632e+16, 198858783369830.9, 2.0510949666777878e+17, 5.92046401289724e+18] -Total loo_error 2.694484186609364e+18 -iteration 45current difference of loo_error 7.386861212622556e+17 - getting loo error of with lamda = 0.2428050804597542, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3060102829.0352616 -error 9.364229323759593e+18 - y tested = 5326600510.288329 -y predicted = 3755039264.113102 -error 2.469804750479833e+18 - y tested = 5072151352.996373 -y predicted = 5402598421.948635 -error 1.0919526537914094e+17 - y tested = 7650055845.407672 -y predicted = 4267563889.874784 -error 1.14412518292447e+19 - y tested = 5789616901.049658 -y predicted = 6139665142.806079 -error 1.2253377155676182e+17 - y tested = 8224428196.629629 -y predicted = 5973647119.555168 -error 5.066015456916471e+18 - y tested = 4059018123.5159216 -y predicted = 5188338841.020356 -error 1.275365282984731e+18 - y tested = 5947637003.818383 -y predicted = 3361947907.8404126 -error 6.685788101059375e+18 - y tested = 997516184.7000968 -y predicted = 2389848261.7597055 -error 1.938588612809124e+18 - y tested = 6532788063.289651 -y predicted = 6563396028.730025 -error 936847548399152.1 - y tested = 1980229389.772511 -y predicted = 3315257393.4483595 -error 1.7822997705987213e+18 - y tested = 5035525633.343237 -y predicted = 5197025926.854348 -error 2.6082344804175084e+16 - y tested = 5026691733.102776 -y predicted = 5120054702.231022 -error 8716644004441873.0 - y tested = 1014996574.3865615 -y predicted = 2761317860.1734347 -error 3.0496380331923185e+18 - y tested = 7665772326.561901 -y predicted = 5871728038.603194 -error 3.2185949071572634e+18 - y tested = 3029054692.61153 -y predicted = 3826520808.5742536 -error 6.359522061086724e+17 - y tested = 4062233415.93208 -y predicted = 3783025655.548772 -error 7.79569734582627e+16 - y tested = 5822958761.806049 -y predicted = 5817566573.901751 -error 29075690395266.094 - y tested = 6611133148.221605 -y predicted = 6166717850.649913 -error 1.9750495671573597e+17 - y tested = 5377240292.736961 -y predicted = 2942121909.326416 -error 5.929801541223988e+18 -error squared vector [9.364229323759593e+18, 2.469804750479833e+18, 1.0919526537914094e+17, 1.14412518292447e+19, 1.2253377155676182e+17, 5.066015456916471e+18, 1.275365282984731e+18, 6.685788101059375e+18, 1.938588612809124e+18, 936847548399152.1, 1.7822997705987213e+18, 2.6082344804175084e+16, 8716644004441873.0, 3.0496380331923185e+18, 3.2185949071572634e+18, 6.359522061086724e+17, 7.79569734582627e+16, 29075690395266.094, 1.9750495671573597e+17, 5.929801541223988e+18] -Total loo_error 2.670014284734605e+18 -iteration 46current difference of loo_error 7.142162193874964e+17 - getting loo error of with lamda = 0.2354473507791556, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3042557846.977073 -error 9.25715825169467e+18 - y tested = 5326600510.288329 -y predicted = 3756167696.9856544 -error 2.4662592210977536e+18 - y tested = 5072151352.996373 -y predicted = 5398036385.571862 -error 1.0620105445672755e+17 - y tested = 7650055845.407672 -y predicted = 4283222309.9604764 -error 1.1335568055411862e+19 - y tested = 5789616901.049658 -y predicted = 6144524751.651654 -error 1.2595958241892901e+17 - y tested = 8224428196.629629 -y predicted = 5990262343.610951 -error 4.991497058794676e+18 - y tested = 4059018123.5159216 -y predicted = 5190151080.435543 -error 1.2794617662297262e+18 - y tested = 5947637003.818383 -y predicted = 3365908359.0690866 -error 6.66532279511904e+18 - y tested = 997516184.7000968 -y predicted = 2365432986.8654575 -error 1.8711963776463066e+18 - y tested = 6532788063.289651 -y predicted = 6580357645.370234 -error 2262865139321287.0 - y tested = 1980229389.772511 -y predicted = 3310664023.178191 -error 1.7700563137653066e+18 - y tested = 5035525633.343237 -y predicted = 5201479220.594043 -error 2.754059312141083e+16 - y tested = 5026691733.102776 -y predicted = 5124925130.771941 -error 9649800417628432.0 - y tested = 1014996574.3865615 -y predicted = 2740772127.410121 -error 2.978301259413773e+18 - y tested = 7665772326.561901 -y predicted = 5884435378.699992 -error 3.1731613218179814e+18 - y tested = 3029054692.61153 -y predicted = 3833816745.584381 -error 6.476419619050783e+17 - y tested = 4062233415.93208 -y predicted = 3787757675.6560864 -error 7.533693200005456e+16 - y tested = 5822958761.806049 -y predicted = 5826007358.619605 -error 9293942531622.074 - y tested = 6611133148.221605 -y predicted = 6174918863.627258 -error 1.9028290208415795e+17 - y tested = 5377240292.736961 -y predicted = 2940358150.346687 -error 5.938394575900615e+18 -error squared vector [9.25715825169467e+18, 2.4662592210977536e+18, 1.0620105445672755e+17, 1.1335568055411862e+19, 1.2595958241892901e+17, 4.991497058794676e+18, 1.2794617662297262e+18, 6.66532279511904e+18, 1.8711963776463066e+18, 2262865139321287.0, 1.7700563137653066e+18, 2.754059312141083e+16, 9649800417628432.0, 2.978301259413773e+18, 3.1731613218179814e+18, 6.476419619050783e+17, 7.533693200005456e+16, 9293942531622.074, 1.9028290208415795e+17, 5.938394575900615e+18] -Total loo_error 2.6455630991188777e+18 -iteration 47current difference of loo_error 6.897650337717693e+17 - getting loo error of with lamda = 0.22831258260402967, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3024865951.12782 -error 9.149814021788265e+18 - y tested = 5326600510.288329 -y predicted = 3757403008.1496425 -error 2.4623808007182935e+18 - y tested = 5072151352.996373 -y predicted = 5393106515.353301 -error 1.0301221624356194e+17 - y tested = 7650055845.407672 -y predicted = 4299078705.941533 -error 1.1229047789224667e+19 - y tested = 5789616901.049658 -y predicted = 6148988437.266273 -error 1.2914790104268963e+17 - y tested = 8224428196.629629 -y predicted = 6006893945.555794 -error 4.917458154685596e+18 - y tested = 4059018123.5159216 -y predicted = 5191837485.311495 -error 1.28327970645893e+18 - y tested = 5947637003.818383 -y predicted = 3370127853.9185257 -error 6.643553417817486e+18 - y tested = 997516184.7000968 -y predicted = 2340909708.7449136 -error 1.8047061604455516e+18 - y tested = 6532788063.289651 -y predicted = 6596922912.434859 -error 4113278874878633.5 - y tested = 1980229389.772511 -y predicted = 3306171593.88475 -error 1.7581227286460221e+18 - y tested = 5035525633.343237 -y predicted = 5205854728.121181 -error 2.9012000527873696e+16 - y tested = 5026691733.102776 -y predicted = 5129713811.04316 -error 1.0613548543154734e+16 - y tested = 1014996574.3865615 -y predicted = 2720167727.258029 -error 2.9076086605850097e+18 - y tested = 7665772326.561901 -y predicted = 5896980460.04437 -error 3.128624667058573e+18 - y tested = 3029054692.61153 -y predicted = 3841284299.0975895 -error 6.597169336524993e+17 - y tested = 4062233415.93208 -y predicted = 3792689177.519639 -error 7.265409646134272e+16 - y tested = 5822958761.806049 -y predicted = 5834182809.294103 -error 125979242014076.08 - y tested = 6611133148.221605 -y predicted = 6182850638.807365 -error 1.8342590787015846e+17 - y tested = 5377240292.736961 -y predicted = 2938747972.448222 -error 5.94624479610716e+18 -error squared vector [9.149814021788265e+18, 2.4623808007182935e+18, 1.0301221624356194e+17, 1.1229047789224667e+19, 1.2914790104268963e+17, 4.917458154685596e+18, 1.28327970645893e+18, 6.643553417817486e+18, 1.8047061604455516e+18, 4113278874878633.5, 1.7581227286460221e+18, 2.9012000527873696e+16, 1.0613548543154734e+16, 2.9076086605850097e+18, 3.128624667058573e+18, 6.597169336524993e+17, 7.265409646134272e+16, 125979242014076.08, 1.8342590787015846e+17, 5.94624479610716e+18] -Total loo_error 2.621133138299686e+18 -iteration 48current difference of loo_error 6.653350729525775e+17 - getting loo error of with lamda = 0.2213940195251197, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '2000-2200' +--- Neighbour 0 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [1.] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 30 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6611133148.221605 + --- Energy: 42.19510352720739 + --- Workload: 278957000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 52 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '2000-2200' +--- Neighbour 0 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 30 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6611133148.221605 + --- Energy: 42.19510352720739 + --- Workload: 278957000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 52 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 52 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (42.474892742303716 mAh) it is NOT far from the median. +--- Median :42.474892742303716, the gap is : 10 +--- So No we don't romove this configuration '2000-2200' + --- remove_aberrant_points: The value [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0] +--- Computing the list of the 10 first neighbours of '3000-3300' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 3007033200.9513764 -error 9.042248671122707e+18 - y tested = 5326600510.288329 -y predicted = 3758744452.780148 -error 2.4581726170650967e+18 - y tested = 5072151352.996373 -y predicted = 5387816253.837223 -error 9.964432962286358e+16 - y tested = 7650055845.407672 -y predicted = 4315130777.166868 -error 1.112172521078093e+19 - y tested = 5789616901.049658 -y predicted = 6153063938.231154 -error 1.320937488360082e+17 - y tested = 8224428196.629629 -y predicted = 6023548208.672216 -error 4.843872721391421e+18 - y tested = 4059018123.5159216 -y predicted = 5193400523.87083 -error 1.2868234302349627e+18 - y tested = 5947637003.818383 -y predicted = 3374605729.3154693 -error 6.62048993957009e+18 - y tested = 997516184.7000968 -y predicted = 2316286232.696573 -error 1.7391544394926275e+18 - y tested = 6532788063.289651 -y predicted = 6613090775.96845 -error 6448525663573694.0 - y tested = 1980229389.772511 -y predicted = 3301782771.686221 -error 1.7465033412475645e+18 - y tested = 5035525633.343237 -y predicted = 5210152770.534619 -error 3.0494637043657892e+16 - y tested = 5026691733.102776 -y predicted = 5134421699.749028 -error 1.1605745713602704e+16 - y tested = 1014996574.3865615 -y predicted = 2699511091.692984 -error 2.83758915901609e+18 - y tested = 7665772326.561901 -y predicted = 5909369687.14324 -error 3.0849502317568394e+18 - y tested = 3029054692.61153 -y predicted = 3848920708.087786 -error 6.72180283332913e+17 - y tested = 4062233415.93208 -y predicted = 3797820492.649658 -error 6.991419399875577e+16 - y tested = 5822958761.806049 -y predicted = 5842096591.322295 -error 366256518592890.56 - y tested = 6611133148.221605 -y predicted = 6190517826.801467 -error 1.769172486133663e+17 - y tested = 5377240292.736961 -y predicted = 2937290472.3568044 -error 5.95335512597316e+18 -error squared vector [9.042248671122707e+18, 2.4581726170650967e+18, 9.964432962286358e+16, 1.112172521078093e+19, 1.320937488360082e+17, 4.843872721391421e+18, 1.2868234302349627e+18, 6.62048993957009e+18, 1.7391544394926275e+18, 6448525663573694.0, 1.7465033412475645e+18, 3.0494637043657892e+16, 1.1605745713602704e+16, 2.83758915901609e+18, 3.0849502317568394e+18, 6.72180283332913e+17, 6.991419399875577e+16, 366256518592890.56, 1.769172486133663e+17, 5.95335512597316e+18] -Total loo_error 2.596727492849741e+18 -iteration 49current difference of loo_error 6.409294275026324e+17 - getting loo error of with lamda = 0.21468510987284334, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2989065778.2606173 -error 8.93451422627057e+18 - y tested = 5326600510.288329 -y predicted = 3760191054.049568 -error 2.453638584594211e+18 - y tested = 5072151352.996373 -y predicted = 5382173251.301913 -error 9.611357742897064e+16 - y tested = 7650055845.407672 -y predicted = 4331375932.71168 -error 1.1013636362931874e+19 - y tested = 5789616901.049658 -y predicted = 6156759255.045004 -error 1.34793508097244e+17 - y tested = 8224428196.629629 -y predicted = 6040231147.323331 -error 4.77071675019834e+18 - y tested = 4059018123.5159216 -y predicted = 5194842639.600878 -error 1.290097331339625e+18 - y tested = 5947637003.818383 -y predicted = 3379340887.6166453 -error 6.596144940496931e+18 - y tested = 997516184.7000968 -y predicted = 2291570471.7879963 -error 1.6745764979305718e+18 - y tested = 6532788063.289651 -y predicted = 6628860390.308389 -error 9229892018795296.0 - y tested = 1980229389.772511 -y predicted = 3297500145.7758904 -error 1.7352022446217147e+18 - y tested = 5035525633.343237 -y predicted = 5214373548.089483 -error 3.19865766090806e+16 - y tested = 5026691733.102776 -y predicted = 5139049688.2914715 -error 1.2624310094184998e+16 - y tested = 1014996574.3865615 -y predicted = 2678808691.4480057 -error 2.7682707608804854e+18 - y tested = 7665772326.561901 -y predicted = 5921609454.689485 -error 3.0421041236182354e+18 - y tested = 3029054692.61153 -y predicted = 3856723029.5171604 -error 6.850348759161325e+17 - y tested = 4062233415.93208 -y predicted = 3803151712.4003506 -error 6.712332910490283e+16 - y tested = 5822958761.806049 -y predicted = 5849752614.236887 -error 717910528085503.6 - y tested = 6611133148.221605 -y predicted = 6197925112.665898 -error 1.707408806478064e+17 - y tested = 5377240292.736961 -y predicted = 2935984528.353015 -error 5.959729707137846e+18 -error squared vector [8.93451422627057e+18, 2.453638584594211e+18, 9.611357742897064e+16, 1.1013636362931874e+19, 1.34793508097244e+17, 4.77071675019834e+18, 1.290097331339625e+18, 6.596144940496931e+18, 1.6745764979305718e+18, 9229892018795296.0, 1.7352022446217147e+18, 3.19865766090806e+16, 1.2624310094184998e+16, 2.7682707608804854e+18, 3.0421041236182354e+18, 6.850348759161325e+17, 6.712332910490283e+16, 717910528085503.6, 1.707408806478064e+17, 5.959729707137846e+18] -Total loo_error 2.57234981952328e+18 -iteration 50current difference of loo_error 6.165517541761715e+17 - getting loo error of with lamda = 0.2081795005130602, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2970969985.8097887 -error 8.826662656087454e+18 - y tested = 5326600510.288329 -y predicted = 3761741611.1876817 -error 2.44878337409449e+18 - y tested = 5072151352.996373 -y predicted = 5376185356.664684 -error 9.243667538658262e+16 - y tested = 7650055845.407672 -y predicted = 4347811294.918624 -error 1.0904819071234615e+19 - y tested = 5789616901.049658 -y predicted = 6160082639.064229 -error 1.372448630426809e+17 - y tested = 8224428196.629629 -y predicted = 6056948489.383602 -error 4.697968281323322e+18 - y tested = 4059018123.5159216 -y predicted = 5196166253.639366 -error 1.2931058698432463e+18 - y tested = 5947637003.818383 -y predicted = 3384331796.9272423 -error 6.570533583675235e+18 - y tested = 997516184.7000968 -y predicted = 2266770442.205197 -error 1.6110063701948227e+18 - y tested = 6532788063.289651 -y predicted = 6644231118.376441 -error 1.241955452707733e+16 - y tested = 1980229389.772511 -y predicted = 3293326231.965338 -error 1.7242233169767747e+18 - y tested = 5035525633.343237 -y predicted = 5218517143.077294 -error 3.348589263474963e+16 - y tested = 5026691733.102776 -y predicted = 5143598606.551032 -error 1.3667217059446658e+16 - y tested = 1014996574.3865615 -y predicted = 2658067032.2417884 -error 2.6996805294765855e+18 - y tested = 7665772326.561901 -y predicted = 5933706132.877952 -error 3.000053299302805e+18 - y tested = 3029054692.61153 -y predicted = 3864688147.0213003 -error 6.98283270128806e+17 - y tested = 4062233415.93208 -y predicted = 3808682694.521388 -error 6.4287968327882216e+16 - y tested = 5822958761.806049 -y predicted = 5857155032.951161 -error 1169384960230022.2 - y tested = 6611133148.221605 -y predicted = 6205077211.25975 -error 1.6488142394196992e+17 - y tested = 5377240292.736961 -y predicted = 2934828806.2012024 -error 5.965373869561816e+18 -error squared vector [8.826662656087454e+18, 2.44878337409449e+18, 9.243667538658262e+16, 1.0904819071234615e+19, 1.372448630426809e+17, 4.697968281323322e+18, 1.2931058698432463e+18, 6.570533583675235e+18, 1.6110063701948227e+18, 1.241955452707733e+16, 1.7242233169767747e+18, 3.348589263474963e+16, 1.3667217059446658e+16, 2.6996805294765855e+18, 3.000053299302805e+18, 6.98283270128806e+17, 6.4287968327882216e+16, 1169384960230022.2, 1.6488142394196992e+17, 5.965373869561816e+18] -Total loo_error 2.5480043235890294e+18 -iteration 51current difference of loo_error 5.92206258241921e+17 - getting loo error of with lamda = 0.20187103083084626, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2952752245.296117 -error 8.718745821609133e+18 - y tested = 5326600510.288329 -y predicted = 3763394707.929641 -error 2.4436123805278705e+18 - y tested = 5072151352.996373 -y predicted = 5369860607.857946 -error 8.863080043023315e+16 - y tested = 7650055845.407672 -y predicted = 4364433703.413976 -error 1.0795312859959245e+19 - y tested = 5789616901.049658 -y predicted = 6163042581.154181 -error 1.3944673856152533e+17 - y tested = 8224428196.629629 -y predicted = 6073705659.402202 -error 4.625607432137983e+18 - y tested = 4059018123.5159216 -y predicted = 5197373767.09434 -error 1.295853571266836e+18 - y tested = 5947637003.818383 -y predicted = 3389576492.3717613 -error 6.543673580222553e+18 - y tested = 997516184.7000968 -y predicted = 2241894257.85945 -error 1.5484767889597842e+18 - y tested = 6532788063.289651 -y predicted = 6659202531.509706 -error 1.5980617775359202e+16 - y tested = 1980229389.772511 -y predicted = 3289263476.027444 -error 1.7135702389772872e+18 - y tested = 5035525633.343237 -y predicted = 5222583522.941127 -error 3.499065406081637e+16 - y tested = 5026691733.102776 -y predicted = 5148069226.7362795 -error 1.4732495960751284e+16 - y tested = 1014996574.3865615 -y predicted = 2637292650.4040704 -error 2.631844558261807e+18 - y tested = 7665772326.561901 -y predicted = 5945666052.997369 -error 2.9587655923560617e+18 - y tested = 3029054692.61153 -y predicted = 3872812779.612924 -error 7.119277093802524e+17 - y tested = 4062233415.93208 -y predicted = 3814413070.0976033 -error 6.141492380951952e+16 - y tested = 5822958761.806049 -y predicted = 5864308248.3519 -error 1709780037605492.5 - y tested = 6611133148.221605 -y predicted = 6211978862.867172 -error 1.5932414351680816e+17 - y tested = 5377240292.736961 -y predicted = 2933821765.216288 -error 5.970294100631295e+18 -error squared vector [8.718745821609133e+18, 2.4436123805278705e+18, 8.863080043023315e+16, 1.0795312859959245e+19, 1.3944673856152533e+17, 4.625607432137983e+18, 1.295853571266836e+18, 6.543673580222553e+18, 1.5484767889597842e+18, 1.5980617775359202e+16, 1.7135702389772872e+18, 3.499065406081637e+16, 1.4732495960751284e+16, 2.631844558261807e+18, 2.9587655923560617e+18, 7.119277093802524e+17, 6.141492380951952e+16, 1709780037605492.5, 1.5932414351680816e+17, 5.970294100631295e+18] -Total loo_error 2.523695739422137e+18 -iteration 52current difference of loo_error 5.678976740750285e+17 - getting loo error of with lamda = 0.1957537268965782, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2934419094.7767253 -error 8.610815423301186e+18 - y tested = 5326600510.288329 -y predicted = 3765148721.326511 -error 2.4381316892520627e+18 - y tested = 5072151352.996373 -y predicted = 5363207221.694241 -error 8.471351870347022e+16 - y tested = 7650055845.407672 -y predicted = 4381239719.603785 -error 1.0685158864315535e+19 - y tested = 5789616901.049658 -y predicted = 6165647800.070934 -error 1.4139923701874942e+17 - y tested = 8224428196.629629 -y predicted = 6090507762.564116 -error 4.55361641892235e+18 - y tested = 4059018123.5159216 -y predicted = 5198467563.279084 -error 1.2983450257765852e+18 - y tested = 5947637003.818383 -y predicted = 3395072578.3527865 -error 6.515585146152511e+18 - y tested = 997516184.7000968 -y predicted = 2216950124.2709846 -error 1.4870191329773757e+18 - y tested = 6532788063.289651 -y predicted = 6673774408.81902 -error 1.987714962572673e+16 - y tested = 1980229389.772511 -y predicted = 3285314256.8407865 -error 1.703246510250618e+18 - y tested = 5035525633.343237 -y predicted = 5226572543.62342 -error 3.649892192760423e+16 - y tested = 5026691733.102776 -y predicted = 5152462267.288621 -error 1.58182272693929e+16 - y tested = 1014996574.3865615 -y predicted = 2616492107.924574 -error 2.5647879439422034e+18 - y tested = 7665772326.561901 -y predicted = 5957495493.347535 -error 2.9182097388969027e+18 - y tested = 3029054692.61153 -y predicted = 3881093490.4055066 -error 7.259701129462053e+17 - y tested = 4062233415.93208 -y predicted = 3820342250.857803 -error 5.851133574099109e+16 - y tested = 5822958761.806049 -y predicted = 5871216907.219333 -error 2328848598729600.5 - y tested = 6611133148.221605 -y predicted = 6218634829.083662 -error 1.5405493052611075e+17 - y tested = 5377240292.736961 -y predicted = 2932961664.4702563 -error 5.974498012601366e+18 -error squared vector [8.610815423301186e+18, 2.4381316892520627e+18, 8.471351870347022e+16, 1.0685158864315535e+19, 1.4139923701874942e+17, 4.55361641892235e+18, 1.2983450257765852e+18, 6.515585146152511e+18, 1.4870191329773757e+18, 1.987714962572673e+16, 1.703246510250618e+18, 3.649892192760423e+16, 1.58182272693929e+16, 2.5647879439422034e+18, 2.9182097388969027e+18, 7.259701129462053e+17, 5.851133574099109e+16, 2328848598729600.5, 1.5405493052611075e+17, 5.974498012601366e+18] -Total loo_error 2.499429309437284e+18 -iteration 53current difference of loo_error 5.436312440901755e+17 - getting loo error of with lamda = 0.1898217958088031, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2915977185.5088577 -error 8.502922945922162e+18 - y tested = 5326600510.288329 -y predicted = 3767001830.890381 -error 2.432348040779824e+18 - y tested = 5072151352.996373 -y predicted = 5356233583.241253 -error 8.070271354090485e+16 - y tested = 7650055845.407672 -y predicted = 4398225631.654258 -error 1.0574399739079576e+19 - y tested = 5789616901.049658 -y predicted = 6167907230.594226 -error 1.431035734269379e+17 - y tested = 8224428196.629629 -y predicted = 6107359569.5129175 -error 4.481979571921838e+18 - y tested = 4059018123.5159216 -y predicted = 5199450009.842674 -error 1.3005848873507953e+18 - y tested = 5947637003.818383 -y predicted = 3400817231.829227 -error 6.486290950994898e+18 - y tested = 997516184.7000968 -y predicted = 2191946331.754278 -error 1.4266633761918733e+18 - y tested = 6532788063.289651 -y predicted = 6687946736.06488 -error 2.407421373737073e+16 - y tested = 1980229389.772511 -y predicted = 3281480889.337986 -error 1.6932554651213972e+18 - y tested = 5035525633.343237 -y predicted = 5230483953.143366 -error 3.800874645928934e+16 - y tested = 5026691733.102776 -y predicted = 5156778396.830033 -error 1.6922540079688632e+16 - y tested = 1014996574.3865615 -y predicted = 2595671986.9551873 -error 2.4985347598989957e+18 - y tested = 7665772326.561901 -y predicted = 5969200665.528841 -error 2.8783554010204764e+18 - y tested = 3029054692.61153 -y predicted = 3889526695.3581176 -error 7.404120675107237e+17 - y tested = 4062233415.93208 -y predicted = 3826469436.8315444 -error 5.558465384131769e+16 - y tested = 5822958761.806049 -y predicted = 5877885901.457301 -error 3016990670268117.0 - y tested = 6611133148.221605 -y predicted = 6225049888.963026 -error 1.4906028307972733e+17 - y tested = 5377240292.736961 -y predicted = 2932246569.140262 -error 5.977994308427253e+18 -error squared vector [8.502922945922162e+18, 2.432348040779824e+18, 8.070271354090485e+16, 1.0574399739079576e+19, 1.431035734269379e+17, 4.481979571921838e+18, 1.3005848873507953e+18, 6.486290950994898e+18, 1.4266633761918733e+18, 2.407421373737073e+16, 1.6932554651213972e+18, 3.800874645928934e+16, 1.6922540079688632e+16, 2.4985347598989957e+18, 2.8783554010204764e+18, 7.404120675107237e+17, 5.558465384131769e+16, 3016990670268117.0, 1.4906028307972733e+17, 5.977994308427253e+18] -Total loo_error 2.475210761452766e+18 -iteration 54current difference of loo_error 5.1941269610565786e+17 - getting loo error of with lamda = 0.18406962020853634, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2897433278.2251844 -error 8.395119601283833e+18 - y tested = 5326600510.288329 -y predicted = 3768952028.0437794 -error 2.426268794238749e+18 - y tested = 5072151352.996373 -y predicted = 5348948234.730463 -error 7.661651373771573e+16 - y tested = 7650055845.407672 -y predicted = 4415387459.956801 -error 1.046307956383534e+19 - y tested = 5789616901.049658 -y predicted = 6169830011.431121 -error 1.445620093059466e+17 - y tested = 8224428196.629629 -y predicted = 6124265502.096288 -error 4.410683343509545e+18 - y tested = 4059018123.5159216 -y predicted = 5200323460.778917 -error 1.3025778728650004e+18 - y tested = 5947637003.818383 -y predicted = 3406807206.6389923 -error 6.455816058234665e+18 - y tested = 997516184.7000968 -y predicted = 2166891247.932765 -error 1.3674380385104067e+18 - y tested = 6532788063.289651 -y predicted = 6701719704.044014 -error 2.853789924796118e+16 - y tested = 1980229389.772511 -y predicted = 3277765627.261834 -error 1.6836002875979492e+18 - y tested = 5035525633.343237 -y predicted = 5234317395.39938 -error 3.95181646613861e+16 - y tested = 5026691733.102776 -y predicted = 5161018238.140095 -error 1.8043609955540936e+16 - y tested = 1014996574.3865615 -y predicted = 2574838883.7989426 -error 2.433108030232951e+18 - y tested = 7665772326.561901 -y predicted = 5980787701.148319 -error 2.8391731878801485e+18 - y tested = 3029054692.61153 -y predicted = 3898108672.0430098 -error 7.552548191656911e+17 - y tested = 4062233415.93208 -y predicted = 3832793624.330172 -error 5.264261797032685e+16 - y tested = 5822958761.806049 -y predicted = 5884320366.619409 -error 3765246545270874.5 - y tested = 6611133148.221605 -y predicted = 6231228835.4197235 -error 1.4432728688547005e+17 - y tested = 5377240292.736961 -y predicted = 2931674356.9985013 -error 5.98079274604433e+18 -error squared vector [8.395119601283833e+18, 2.426268794238749e+18, 7.661651373771573e+16, 1.046307956383534e+19, 1.445620093059466e+17, 4.410683343509545e+18, 1.3025778728650004e+18, 6.455816058234665e+18, 1.3674380385104067e+18, 2.853789924796118e+16, 1.6836002875979492e+18, 3.95181646613861e+16, 1.8043609955540936e+16, 2.433108030232951e+18, 2.8391731878801485e+18, 7.552548191656911e+17, 5.264261797032685e+16, 3765246545270874.5, 1.4432728688547005e+17, 5.98079274604433e+18] -Total loo_error 2.4510462845854116e+18 -iteration 55current difference of loo_error 4.952482192383032e+17 - getting loo error of with lamda = 0.1784917529597928, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2878794238.857312 -error 8.287456269198252e+18 - y tested = 5326600510.288329 -y predicted = 3770997125.842767 -error 2.4199018896984883e+18 - y tested = 5072151352.996373 -y predicted = 5341359864.026309 -error 7.247322241095509e+16 - y tested = 7650055845.407672 -y predicted = 4432720963.077349 -error 1.0351243745059475e+19 - y tested = 5789616901.049658 -y predicted = 6171425472.910542 -error 1.457777855464476e+17 - y tested = 8224428196.629629 -y predicted = 6141229620.09297 -error 4.3397163092843633e+18 - y tested = 4059018123.5159216 -y predicted = 5201090258.296518 -error 1.3043287610423096e+18 - y tested = 5947637003.818383 -y predicted = 3413038838.8862486 -error 6.424187857677345e+18 - y tested = 997516184.7000968 -y predicted = 2141793309.6153004 -error 1.3093701386042043e+18 - y tested = 6532788063.289651 -y predicted = 6715093706.481459 -error 3.323534753957872e+16 - y tested = 1980229389.772511 -y predicted = 3274170665.7322197 -error 1.674284025632239e+18 - y tested = 5035525633.343237 -y predicted = 5238072414.190518 -error 4.1025198431596664e+16 - y tested = 5026691733.102776 -y predicted = 5165182372.1492605 -error 1.917965710350378e+16 - y tested = 1014996574.3865615 -y predicted = 2553999402.4221725 -error 2.368529704701609e+18 - y tested = 7665772326.561901 -y predicted = 5992262638.984393 -error 2.8006346744157686e+18 - y tested = 3029054692.61153 -y predicted = 3906835568.436943 -error 7.704992659648296e+17 - y tested = 4062233415.93208 -y predicted = 3839313614.226486 -error 4.969323799246117e+16 - y tested = 5822958761.806049 -y predicted = 5890525679.721437 -error 4565288396584794.0 - y tested = 6611133148.221605 -y predicted = 6237176471.880154 -error 1.3984359578034522e+17 - y tested = 5377240292.736961 -y predicted = 2931242725.044013 -error 5.982904101159819e+18 -error squared vector [8.287456269198252e+18, 2.4199018896984883e+18, 7.247322241095509e+16, 1.0351243745059475e+19, 1.457777855464476e+17, 4.3397163092843633e+18, 1.3043287610423096e+18, 6.424187857677345e+18, 1.3093701386042043e+18, 3.323534753957872e+16, 1.674284025632239e+18, 4.1025198431596664e+16, 1.917965710350378e+16, 2.368529704701609e+18, 2.8006346744157686e+18, 7.704992659648296e+17, 4.969323799246117e+16, 4565288396584794.0, 1.3984359578034522e+17, 5.982904101159819e+18] -Total loo_error 2.4269425037820093e+18 -iteration 56current difference of loo_error 4.71144438434901e+17 - getting loo error of with lamda = 0.17308291199131423, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2860067033.7240667 -error 8.179983436918503e+18 - y tested = 5326600510.288329 -y predicted = 3773134768.939934 -error 2.4132558095431194e+18 - y tested = 5072151352.996373 -y predicted = 5333477292.68452 -error 6.829124675389283e+16 - y tested = 7650055845.407672 -y predicted = 4450221644.185995 -error 1.0238938915307966e+19 - y tested = 5789616901.049658 -y predicted = 6172703124.488973 -error 1.4675505458899667e+17 - y tested = 8224428196.629629 -y predicted = 6158255608.976908 -error 4.269069161967543e+18 - y tested = 4059018123.5159216 -y predicted = 5201752734.535347 -error 1.3058423912217175e+18 - y tested = 5947637003.818383 -y predicted = 3419508053.405987 -error 6.391435989913286e+18 - y tested = 997516184.7000968 -y predicted = 2116661014.069632 -error 1.252485149104566e+18 - y tested = 6532788063.289651 -y predicted = 6728069337.426588 -error 3.813477602854559e+16 - y tested = 1980229389.772511 -y predicted = 3270698143.6285377 -error 1.6653096046787264e+18 - y tested = 5035525633.343237 -y predicted = 5241748457.449734 -error 4.252785318245912e+16 - y tested = 5026691733.102776 -y predicted = 5169271341.93518 -error 2.0328944854801376e+16 - y tested = 1014996574.3865615 -y predicted = 2533160147.5292215 -error 2.3048206348172892e+18 - y tested = 7665772326.561901 -y predicted = 6003631412.648777 -error 2.7627124177039555e+18 - y tested = 3029054692.61153 -y predicted = 3915703411.737232 -error 7.861459511272486e+17 - y tested = 4062233415.93208 -y predicted = 3846028020.5048943 -error 4.674477301182566e+16 - y tested = 5822958761.806049 -y predicted = 5896507456.33345 -error 5409410466684941.0 - y tested = 6611133148.221605 -y predicted = 6242897609.173649 -error 1.3559741221793907e+17 - y tested = 5377240292.736961 -y predicted = 2930949196.2747583 -error 5.984340128630247e+18 -error squared vector [8.179983436918503e+18, 2.4132558095431194e+18, 6.829124675389283e+16, 1.0238938915307966e+19, 1.4675505458899667e+17, 4.269069161967543e+18, 1.3058423912217175e+18, 6.391435989913286e+18, 1.252485149104566e+18, 3.813477602854559e+16, 1.6653096046787264e+18, 4.252785318245912e+16, 2.0328944854801376e+16, 2.3048206348172892e+18, 2.7627124177039555e+18, 7.861459511272486e+17, 4.674477301182566e+16, 5409410466684941.0, 1.3559741221793907e+17, 5.984340128630247e+18] -Total loo_error 2.4029064531019663e+18 -iteration 57current difference of loo_error 4.47108387754858e+17 - getting loo error of with lamda = 0.16783797529460773, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '3000-3300' +--- Neighbour 0 in the list of neghbours, And at position 30 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [1.] + --- Energy efficiency: 6611133148.221605 + --- Energy: 42.19510352720739 + --- Workload: 278957000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 52 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [1.] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 29 in the X datas point +-------------- + --- Configuration: 3000-3000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 31 in the X datas point +-------------- + --- Configuration: 3000-3330 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 8224428196.629629 + --- Energy: 49.410116578739654 + --- Workload: 406369000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 27 in the X datas point +-------------- + --- Configuration: 3300-3000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5072151352.996373 + --- Energy: 36.711179058531826 + --- Workload: 186205000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 23 in the X datas point +-------------- + --- Configuration: 3333-3300 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9963434196.49885 + --- Energy: 75.09852863759252 + --- Workload: 748237000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 28 in the X datas point +-------------- + --- Configuration: 3330-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5822958761.806049 + --- Energy: 37.40635012737015 + --- Workload: 217816000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '3000-3300' +--- Neighbour 0 in the list of neghbours, And at position 29 in the X datas point +-------------- + --- Configuration: 3000-3000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 27 in the X datas point +-------------- + --- Configuration: 3300-3000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 5072151352.996373 + --- Energy: 36.711179058531826 + --- Workload: 186205000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 28 in the X datas point +-------------- + --- Configuration: 3330-3000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5822958761.806049 + --- Energy: 37.40635012737015 + --- Workload: 217816000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 30 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 6611133148.221605 + --- Energy: 42.19510352720739 + --- Workload: 278957000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 52 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6473246073.976255 + --- Energy: 42.474892742303716 + --- Workload: 274951000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 31 in the X datas point +-------------- + --- Configuration: 3000-3330 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8224428196.629629 + --- Energy: 49.410116578739654 + --- Workload: 406369000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 23 in the X datas point +-------------- + --- Configuration: 3333-3300 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9963434196.49885 + --- Energy: 75.09852863759252 + --- Workload: 748237000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 30 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Energy efficiency: 6611133148.221605 + --- Energy: 42.19510352720739 + --- Workload: 278957000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (42.19510352720739 mAh) it is NOT far from the median. +--- Median :42.19510352720739, the gap is : 10 +--- So No we don't romove this configuration '3000-3300' + --- remove_aberrant_points: The value [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0] +--- Computing the list of the 10 first neighbours of '0000-1000' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2841258724.202755 -error 8.072751137384722e+18 - y tested = 5326600510.288329 -y predicted = 3775362443.7535086 -error 2.4063395390666885e+18 - y tested = 5072151352.996373 -y predicted = 5325309463.632116 -error 6.408902898065917e+16 - y tested = 7650055845.407672 -y predicted = 4467884757.961241 -error 1.0126212829780003e+19 - y tested = 5789616901.049658 -y predicted = 6173672642.087315 -error 1.4749881222398368e+17 - y tested = 8224428196.629629 -y predicted = 6175346768.770755 -error 4.198734697996163e+18 - y tested = 4059018123.5159216 -y predicted = 5202313213.115429 -error 1.3071236619023455e+18 - y tested = 5947637003.818383 -y predicted = 3426210371.313387 -error 6.357592263105486e+18 - y tested = 997516184.7000968 -y predicted = 2091502909.7323759 -error 1.1968069545468513e+18 - y tested = 6532788063.289651 -y predicted = 6740647388.153806 -error 4.320549893298225e+16 - y tested = 1980229389.772511 -y predicted = 3267350145.791536 -error 1.656679840574986e+18 - y tested = 5035525633.343237 -y predicted = 5245344881.680199 -error 4.4024116972687624e+16 - y tested = 5026691733.102776 -y predicted = 5173285656.708682 -error 2.1489778438174348e+16 - y tested = 1014996574.3865615 -y predicted = 2512327717.241982 -error 2.2420005513647199e+18 - y tested = 7665772326.561901 -y predicted = 6014899838.781733 -error 2.7253799709094825e+18 - y tested = 3029054692.61153 -y predicted = 3924708117.202917 -error 8.021950569822798e+17 - y tested = 4062233415.93208 -y predicted = 3852935279.052929 -error 4.380571010108378e+16 - y tested = 5822958761.806049 -y predicted = 5902271546.949338 -error 6290517887185463.0 - y tested = 6611133148.221605 -y predicted = 6248397062.653531 -error 1.3157746777324926e+17 - y tested = 5377240292.736961 -y predicted = 2930791126.597708 -error 5.985113522503447e+18 -error squared vector [8.072751137384722e+18, 2.4063395390666885e+18, 6.408902898065917e+16, 1.0126212829780003e+19, 1.4749881222398368e+17, 4.198734697996163e+18, 1.3071236619023455e+18, 6.357592263105486e+18, 1.1968069545468513e+18, 4.320549893298225e+16, 1.656679840574986e+18, 4.4024116972687624e+16, 2.1489778438174348e+16, 2.2420005513647199e+18, 2.7253799709094825e+18, 8.021950569822798e+17, 4.380571010108378e+16, 6290517887185463.0, 1.3157746777324926e+17, 5.985113522503447e+18] -Total loo_error 2.378945547871359e+18 -iteration 58current difference of loo_error 4.231474825242506e+17 - getting loo error of with lamda = 0.162751976073559, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2822376460.9045844 -error 7.96580888659789e+18 - y tested = 5326600510.288329 -y predicted = 3777677488.8072968 -error 2.399162526473931e+18 - y tested = 5072151352.996373 -y predicted = 5316865428.502738 -error 5.9884978750934824e+16 - y tested = 7650055845.407672 -y predicted = 4485705317.960373 -error 1.0013114260556e+19 - y tested = 5789616901.049658 -y predicted = 6174343855.279901 -error 1.480148293112793e+17 - y tested = 8224428196.629629 -y predicted = 6192506004.038157 -error 4.1287077967457336e+18 - y tested = 4059018123.5159216 -y predicted = 5202774010.506071 -error 1.3081775290246236e+18 - y tested = 5947637003.818383 -y predicted = 3433140918.637977 -error 6.322690562387588e+18 - y tested = 997516184.7000968 -y predicted = 2066327586.3972285 -error 1.1423578123977873e+18 - y tested = 6532788063.289651 -y predicted = 6752828843.571805 -error 4.841794498717921e+16 - y tested = 1980229389.772511 -y predicted = 3264128705.0487766 -error 1.6483974517668636e+18 - y tested = 5035525633.343237 -y predicted = 5248860956.585043 -error 4.5511960142685864e+16 - y tested = 5026691733.102776 -y predicted = 5177225795.7765665 -error 2.2660504025076816e+16 - y tested = 1014996574.3865615 -y predicted = 2491508695.428092 -error 2.1800880435825595e+18 - y tested = 7665772326.561901 -y predicted = 6026073605.813071 -error 2.688611894825349e+18 - y tested = 3029054692.61153 -y predicted = 3933845497.0200925 -error 8.186463997422939e+17 - y tested = 4062233415.93208 -y predicted = 3860033656.662512 -error 4.088474264867124e+16 - y tested = 5822958761.806049 -y predicted = 5907824032.634977 -error 7202114192867297.0 - y tested = 6611133148.221605 -y predicted = 6253679649.536347 -error 1.2777300372233168e+17 - y tested = 5377240292.736961 -y predicted = 2930765711.872823 -error 5.985237874814361e+18 -error squared vector [7.96580888659789e+18, 2.399162526473931e+18, 5.9884978750934824e+16, 1.0013114260556e+19, 1.480148293112793e+17, 4.1287077967457336e+18, 1.3081775290246236e+18, 6.322690562387588e+18, 1.1423578123977873e+18, 4.841794498717921e+16, 1.6483974517668636e+18, 4.5511960142685864e+16, 2.2660504025076816e+16, 2.1800880435825595e+18, 2.688611894825349e+18, 8.186463997422939e+17, 4.088474264867124e+16, 7202114192867297.0, 1.2777300372233168e+17, 5.985237874814361e+18] -Total loo_error 2.3550675558348e+18 -iteration 59current difference of loo_error 3.992694904876918e+17 - getting loo error of with lamda = 0.15782009804102692, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2803427477.37647 -error 7.85920562044216e+18 - y tested = 5326600510.288329 -y predicted = 3780077105.2054815 -error 2.391734642469046e+18 - y tested = 5072151352.996373 -y predicted = 5308154334.663965 -error 5.569740735599379e+16 - y tested = 7650055845.407672 -y predicted = 4503678104.445094 -error 9.899692888824775e+18 - y tested = 5789616901.049658 -y predicted = 6174726734.355651 -error 1.483095837089698e+17 - y tested = 8224428196.629629 -y predicted = 6209735815.059534 -error 4.0589853923565814e+18 - y tested = 4059018123.5159216 -y predicted = 5203137437.205732 -error 1.3090090039580436e+18 - y tested = 5947637003.818383 -y predicted = 3440294436.0361037 -error 6.286766752213035e+18 - y tested = 997516184.7000968 -y predicted = 2041143664.9269404 -error 1.0891583174846308e+18 - y tested = 6532788063.289651 -y predicted = 6764614878.148413 -error 5.3743672087558616e+16 - y tested = 1980229389.772511 -y predicted = 3261035804.068171 -error 1.640465070900906e+18 - y tested = 5035525633.343237 -y predicted = 5252295869.879483 -error 4.698933544798017e+16 - y tested = 5026691733.102776 -y predicted = 5181092212.468261 -error 2.383950802829162e+16 - y tested = 1014996574.3865615 -y predicted = 2470709643.724252 -error 2.1191005402405606e+18 - y tested = 7665772326.561901 -y predicted = 6037158263.3183155 -error 2.6523837669947817e+18 - y tested = 3029054692.61153 -y predicted = 3943111269.1902747 -error 8.354994251868549e+17 - y tested = 4062233415.93208 -y predicted = 3867321260.208576 -error 3.799074844878331e+16 - y tested = 5822958761.806049 -y predicted = 5913171219.960799 -error 8138287606322496.0 - y tested = 6611133148.221605 -y predicted = 6258750186.446296 -error 1.2417375174953928e+17 - y tested = 5377240292.736961 -y predicted = 2930869995.0861506 -error 5.984727633228116e+18 -error squared vector [7.85920562044216e+18, 2.391734642469046e+18, 5.569740735599379e+16, 9.899692888824775e+18, 1.483095837089698e+17, 4.0589853923565814e+18, 1.3090090039580436e+18, 6.286766752213035e+18, 1.0891583174846308e+18, 5.3743672087558616e+16, 1.640465070900906e+18, 4.698933544798017e+16, 2.383950802829162e+16, 2.1191005402405606e+18, 2.6523837669947817e+18, 8.354994251868549e+17, 3.799074844878331e+16, 8138287606322496.0, 1.2417375174953928e+17, 5.984727633228116e+18] -Total loo_error 2.331280567436647e+18 -iteration 60current difference of loo_error 3.7548250208953856e+17 - getting loo error of with lamda = 0.1530376708579655, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2784419083.354768 -error 7.752989631286135e+18 - y tested = 5326600510.288329 -y predicted = 3782558367.2058115 -error 2.3840661396148536e+18 - y tested = 5072151352.996373 -y predicted = 5299185411.9755335 -error 5.154446393655284e+16 - y tested = 7650055845.407672 -y predicted = 4521797672.64924 -error 9.785999195429927e+18 - y tested = 5789616901.049658 -y predicted = 6174831377.272789 -error 1.483901926918613e+17 - y tested = 8224428196.629629 -y predicted = 6227038290.232796 -error 3.989566438175951e+18 - y tested = 4059018123.5159216 -y predicted = 5203405798.724108 -error 1.309623151168397e+18 - y tested = 5947637003.818383 -y predicted = 3447665289.568286 -error 6.24985857205057e+18 - y tested = 997516184.7000968 -y predicted = 2015959786.5365174 -error 1.0372273701215415e+18 - y tested = 6532788063.289651 -y predicted = 6776006851.36071 -error 5.9155378870754824e+16 - y tested = 1980229389.772511 -y predicted = 3258073377.0431323 -error 1.6328852558036797e+18 - y tested = 5035525633.343237 -y predicted = 5255648732.272518 -error 4.8454178682230136e+16 - y tested = 5026691733.102776 -y predicted = 5184885338.01374 -error 2.5025216634726176e+16 - y tested = 1014996574.3865615 -y predicted = 2449937093.3027744 -error 2.0590542928275308e+18 - y tested = 7665772326.561901 -y predicted = 6048159211.995875 -error 2.6166721884159985e+18 - y tested = 3029054692.61153 -y predicted = 3952501066.4388676 -error 8.527532053348593e+17 - y tested = 4062233415.93208 -y predicted = 3874796045.970718 -error 3.513276765803245e+16 - y tested = 5822958761.806049 -y predicted = 5918319635.2279415 -error 9093696179786140.0 - y tested = 6611133148.221605 -y predicted = 6263613487.151048 -error 1.2076991483059522e+17 - y tested = 5377240292.736961 -y predicted = 2931100873.644923 -error 5.983598057635934e+18 -error squared vector [7.752989631286135e+18, 2.3840661396148536e+18, 5.154446393655284e+16, 9.785999195429927e+18, 1.483901926918613e+17, 3.989566438175951e+18, 1.309623151168397e+18, 6.24985857205057e+18, 1.0372273701215415e+18, 5.9155378870754824e+16, 1.6328852558036797e+18, 4.8454178682230136e+16, 2.5025216634726176e+16, 2.0590542928275308e+18, 2.6166721884159985e+18, 8.527532053348593e+17, 3.513276765803245e+16, 9093696179786140.0, 1.2076991483059522e+17, 5.983598057635934e+18] -Total loo_error 2.3075929653674957e+18 -iteration 61current difference of loo_error 3.517949000203873e+17 - getting loo error of with lamda = 0.14840016571075443, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2765358657.596971 -error 7.647208504685627e+18 - y tested = 5326600510.288329 -y predicted = 3785118232.8544755 -error 2.37616761164266e+18 - y tested = 5072151352.996373 -y predicted = 5289967959.318711 -error 4.744407398978042e+16 - y tested = 7650055845.407672 -y predicted = 4540058361.472822 -error 9.672084350081096e+18 - y tested = 5789616901.049658 -y predicted = 6174667996.528312 -error 1.4826434612931146e+17 - y tested = 8224428196.629629 -y predicted = 6244415099.735566 -error 3.920451863872018e+18 - y tested = 4059018123.5159216 -y predicted = 5203581396.360251 -error 1.310025085544124e+18 - y tested = 5947637003.818383 -y predicted = 3455247482.5212755 -error 6.212005525871625e+18 - y tested = 997516184.7000968 -y predicted = 1990784601.6980622 -error 9.865821482056439e+17 - y tested = 6532788063.289651 -y predicted = 6787006302.683206 -error 6.462691324035868e+16 - y tested = 1980229389.772511 -y predicted = 3255243311.212919 -error 1.6256604998668475e+18 - y tested = 5035525633.343237 -y predicted = 5258918582.605859 -error 4.990440978025235e+16 - y tested = 5026691733.102776 -y predicted = 5188605585.360744 -error 2.621609555301538e+16 - y tested = 1014996574.3865615 -y predicted = 2429197536.429914 -error 1.999964361044344e+18 - y tested = 7665772326.561901 -y predicted = 6059081694.287257 -error 2.581454787839095e+18 - y tested = 3029054692.61153 -y predicted = 3962010445.1400743 -error 8.704064361761027e+17 - y tested = 4062233415.93208 -y predicted = 3882455829.0637197 -error 3.231998074021074e+16 - y tested = 5822958761.806049 -y predicted = 5923276018.00118 -error 1.0063551890519418e+16 - y tested = 6611133148.221605 -y predicted = 6268274360.473324 -error 1.1755214833622114e+17 - y tested = 5377240292.736961 -y predicted = 2931455106.786903 -error 5.981865175812762e+18 -error squared vector [7.647208504685627e+18, 2.37616761164266e+18, 4.744407398978042e+16, 9.672084350081096e+18, 1.4826434612931146e+17, 3.920451863872018e+18, 1.310025085544124e+18, 6.212005525871625e+18, 9.865821482056439e+17, 6.462691324035868e+16, 1.6256604998668475e+18, 4.990440978025235e+16, 2.621609555301538e+16, 1.999964361044344e+18, 2.581454787839095e+18, 8.704064361761027e+17, 3.231998074021074e+16, 1.0063551890519418e+16, 1.1755214833622114e+17, 5.981865175812762e+18] -Total loo_error 2.284013393515081e+18 -iteration 62current difference of loo_error 3.282153281679726e+17 - getting loo error of with lamda = 0.14390319102254975, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2746253640.319879 -error 7.541909056512478e+18 - y tested = 5326600510.288329 -y predicted = 3787753554.6462436 -error 2.368049952888915e+18 - y tested = 5072151352.996373 -y predicted = 5280511330.939119 -error 4.341388040830166e+16 - y tested = 7650055845.407672 -y predicted = 4558454302.584442 -error 9.558000099586976e+18 - y tested = 5789616901.049658 -y predicted = 6174246905.963145 -error 1.4794024067974938e+17 - y tested = 8224428196.629629 -y predicted = 6261867490.48121 -error 3.8516445253177825e+18 - y tested = 4059018123.5159216 -y predicted = 5203666527.773312 -error 1.3102199693689894e+18 - y tested = 5947637003.818383 -y predicted = 3463034668.2477508 -error 6.173248765923041e+18 - y tested = 997516184.7000968 -y predicted = 1965626758.7190251 -error 9.372380835272589e+17 - y tested = 6532788063.289651 -y predicted = 6797614946.130459 -error 7.0133277875179e+16 - y tested = 1980229389.772511 -y predicted = 3252547448.2214665 -error 1.6187932418553198e+18 - y tested = 5035525633.343237 -y predicted = 5262104393.134417 -error 5.133793438850909e+16 - y tested = 5026691733.102776 -y predicted = 5192253352.919488 -error 2.741064995633361e+16 - y tested = 1014996574.3865615 -y predicted = 2408497417.8666964 -error 1.9418446007798477e+18 - y tested = 7665772326.561901 -y predicted = 6069930785.659521 -error 2.5467102236696827e+18 - y tested = 3029054692.61153 -y predicted = 3971634894.252757 -error 8.884574365260166e+17 - y tested = 4062233415.93208 -y predicted = 3890298292.940868 -error 2.956168651800316e+16 - y tested = 5822958761.806049 -y predicted = 5928047313.96584 -error 1.1043603795041112e+16 - y tested = 6611133148.221605 -y predicted = 6272737608.363073 -error 1.1451154139614728e+17 - y tested = 5377240292.736961 -y predicted = 2931929323.0944424 -error 5.979545738254036e+18 -error squared vector [7.541909056512478e+18, 2.368049952888915e+18, 4.341388040830166e+16, 9.558000099586976e+18, 1.4794024067974938e+17, 3.8516445253177825e+18, 1.3102199693689894e+18, 6.173248765923041e+18, 9.372380835272589e+17, 7.0133277875179e+16, 1.6187932418553198e+18, 5.133793438850909e+16, 2.741064995633361e+16, 1.9418446007798477e+18, 2.5467102236696827e+18, 8.884574365260166e+17, 2.956168651800316e+16, 1.1043603795041112e+16, 1.1451154139614728e+17, 5.979545738254036e+18] -Total loo_error 2.2605507254613804e+18 -iteration 63current difference of loo_error 3.04752660114272e+17 - getting loo error of with lamda = 0.1395424882945937, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2727111525.273849 -error 7.437137270826939e+18 - y tested = 5326600510.288329 -y predicted = 3790461090.173236 -error 2.359724318031535e+18 - y tested = 5072151352.996373 -y predicted = 5270824922.646462 -error 3.947118727750887e+16 - y tested = 7650055845.407672 -y predicted = 4576979429.912119 -error 9.443798655474997e+18 - y tested = 5789616901.049658 -y predicted = 6173578507.52523 -error 1.4742651524730246e+17 - y tested = 8224428196.629629 -y predicted = 6279396282.395945 -error 3.783149147387551e+18 - y tested = 4059018123.5159216 -y predicted = 5203663487.3436575 -error 1.31021300893233e+18 - y tested = 5947637003.818383 -y predicted = 3471020163.9899054 -error 6.133630971321996e+18 - y tested = 997516184.7000968 -y predicted = 1940494892.0480351 -error 8.892088425115886e+17 - y tested = 6532788063.289651 -y predicted = 6807834664.371886 -error 7.56506327668903e+16 - y tested = 1980229389.772511 -y predicted = 3249987585.3171325 -error 1.6122858751527332e+18 - y tested = 5035525633.343237 -y predicted = 5265205074.934492 -error 5.27526458896708e+16 - y tested = 5026691733.102776 -y predicted = 5195829028.2236595 -error 2.860742460080899e+16 - y tested = 1014996574.3865615 -y predicted = 2387843126.1625 -error 1.8847076547230845e+18 - y tested = 7665772326.561901 -y predicted = 6080711386.564645 -error 2.5124181835049856e+18 - y tested = 3029054692.61153 -y predicted = 3981369844.2609444 -error 9.069041480610474e+17 - y tested = 4062233415.93208 -y predicted = 3898320998.9341097 -error 2.686728044611644e+16 - y tested = 5822958761.806049 -y predicted = 5932640667.129394 -error 1.2030120355359048e+16 - y tested = 6611133148.221605 -y predicted = 6277008024.112751 -error 1.1163959856075728e+17 - y tested = 5377240292.736961 -y predicted = 2932520028.102207 -error 5.976657172315822e+18 -error squared vector [7.437137270826939e+18, 2.359724318031535e+18, 3.947118727750887e+16, 9.443798655474997e+18, 1.4742651524730246e+17, 3.783149147387551e+18, 1.31021300893233e+18, 6.133630971321996e+18, 8.892088425115886e+17, 7.56506327668903e+16, 1.6122858751527332e+18, 5.27526458896708e+16, 2.860742460080899e+16, 1.8847076547230845e+18, 2.5124181835049856e+18, 9.069041480610474e+17, 2.686728044611644e+16, 1.2030120355359048e+16, 1.1163959856075728e+17, 5.976657172315822e+18] -Total loo_error 2.2372140326694515e+18 -iteration 64current difference of loo_error 2.8141596732234317e+17 - getting loo error of with lamda = 0.13531392807354542, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2707939851.4839263 -error 7.332938238803464e+18 - y tested = 5326600510.288329 -y predicted = 3793237512.727103 -error 2.351202082289948e+18 - y tested = 5072151352.996373 -y predicted = 5260918157.91626 -error 3.563290663966252e+16 - y tested = 7650055845.407672 -y predicted = 4595627489.499956 -error 9.329532581373112e+18 - y tested = 5789616901.049658 -y predicted = 6172673278.0120325 -error 1.467321879315409e+17 - y tested = 8224428196.629629 -y predicted = 6297001866.039321 -error 3.71497225985282e+18 - y tested = 4059018123.5159216 -y predicted = 5203574566.325096 -error 1.3100094507759913e+18 - y tested = 5947637003.818383 -y predicted = 3479196965.646607 -error 6.093196222049481e+18 - y tested = 997516184.7000968 -y predicted = 1915397610.3631113 -error 8.425063115771679e+17 - y tested = 6532788063.289651 -y predicted = 6817667502.441116 -error 8.115629485125349e+16 - y tested = 1980229389.772511 -y predicted = 3247565476.3948903 -error 1.606140756455327e+18 - y tested = 5035525633.343237 -y predicted = 5268219483.422179 -error 5.414642786456127e+16 - y tested = 5026691733.102776 -y predicted = 5199332991.496993 -error 2.9805004099938972e+16 - y tested = 1014996574.3865615 -y predicted = 2367240984.892078 -error 1.828564945743412e+18 - y tested = 7665772326.561901 -y predicted = 6091428215.087548 -error 2.4785593813339694e+18 - y tested = 3029054692.61153 -y predicted = 3991210676.11033 -error 9.257441365825436e+17 - y tested = 4062233415.93208 -y predicted = 3906521395.795223 -error 2.424623321510082e+16 - y tested = 5822958761.806049 -y predicted = 5937063411.392024 -error 1.3019871057138074e+16 - y tested = 6611133148.221605 -y predicted = 6281090390.698759 -error 1.0892822179328427e+17 - y tested = 5377240292.736961 -y predicted = 2933223611.986444 -error 5.973217535786777e+18 -error squared vector [7.332938238803464e+18, 2.351202082289948e+18, 3.563290663966252e+16, 9.329532581373112e+18, 1.467321879315409e+17, 3.71497225985282e+18, 1.3100094507759913e+18, 6.093196222049481e+18, 8.425063115771679e+17, 8.115629485125349e+16, 1.606140756455327e+18, 5.414642786456127e+16, 2.9805004099938972e+16, 1.828564945743412e+18, 2.4785593813339694e+18, 9.257441365825436e+17, 2.424623321510082e+16, 1.3019871057138074e+16, 1.0892822179328427e+17, 5.973217535786777e+18] -Total loo_error 2.214012552503825e+18 -iteration 65current difference of loo_error 2.5821448715671654e+17 - getting loo error of with lamda = 0.13121350604101373, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2688746194.690112 -error 7.229356099012433e+18 - y tested = 5326600510.288329 -y predicted = 3796079421.8190064 -error 2.3424948022493204e+18 - y tested = 5072151352.996373 -y predicted = 5250800473.938952 -error 3.1915508413556316e+16 - y tested = 7650055845.407672 -y predicted = 4614392049.706917 -error 9.215254680528316e+18 - y tested = 5789616901.049658 -y predicted = 6171541755.815028 -error 1.4586659468754925e+17 - y tested = 8224428196.629629 -y predicted = 6314684201.584921 -error 3.6471221266093225e+18 - y tested = 4059018123.5159216 -y predicted = 5203402052.790615 -error 1.3096145775821868e+18 - y tested = 5947637003.818383 -y predicted = 3487557763.4380283 -error 6.051989868950384e+18 - y tested = 997516184.7000968 -y predicted = 1890343484.4986455 -error 7.971405872655676e+17 - y tested = 6532788063.289651 -y predicted = 6827115661.063341 -error 8.662873481123118e+16 - y tested = 1980229389.772511 -y predicted = 3245282832.883186 -error 1.6003602139261734e+18 - y tested = 5035525633.343237 -y predicted = 5271146423.96619 -error 5.551715697378565e+16 - y tested = 5026691733.102776 -y predicted = 5202765619.1156845 -error 3.100201333568685e+16 - y tested = 1014996574.3865615 -y predicted = 2346697243.8872275 -error 1.7734266731485225e+18 - y tested = 7665772326.561901 -y predicted = 6102085800.290619 -error 2.445115552442349e+18 - y tested = 3029054692.61153 -y predicted = 4001152730.131588 -error 9.449745945503484e+17 - y tested = 4062233415.93208 -y predicted = 3914896829.2013326 -error 2.1708069789467e+16 - y tested = 5822958761.806049 -y predicted = 5941323061.51361 -error 1.4010107445261216e+16 - y tested = 6611133148.221605 -y predicted = 6284989479.231617 -error 1.0636969282225107e+17 - y tested = 5377240292.736961 -y predicted = 2934036357.3216815 -error 5.969245470028711e+18 -error squared vector [7.229356099012433e+18, 2.3424948022493204e+18, 3.1915508413556316e+16, 9.215254680528316e+18, 1.4586659468754925e+17, 3.6471221266093225e+18, 1.3096145775821868e+18, 6.051989868950384e+18, 7.971405872655676e+17, 8.662873481123118e+16, 1.6003602139261734e+18, 5.551715697378565e+16, 3.100201333568685e+16, 1.7734266731485225e+18, 2.445115552442349e+18, 9.449745945503484e+17, 2.1708069789467e+16, 1.4010107445261216e+16, 1.0636969282225107e+17, 5.969245470028711e+18] -Total loo_error 2.190955656228621e+18 -iteration 66current difference of loo_error 2.351575908815127e+17 - getting loo error of with lamda = 0.12723733922158906, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2669538158.5193024 -error 7.126433979345704e+18 - y tested = 5326600510.288329 -y predicted = 3798983353.584221 -error 2.333614177456744e+18 - y tested = 5072151352.996373 -y predicted = 5240481307.662657 -error 2.8334973637953096e+16 - y tested = 7650055845.407672 -y predicted = 4633266511.72117 -error 9.101017883844646e+18 - y tested = 5789616901.049658 -y predicted = 6170194527.687985 -error 1.4483932989766227e+17 - y tested = 8224428196.629629 -y predicted = 6332442819.172929 -error 3.579608668509973e+18 - y tested = 4059018123.5159216 -y predicted = 5203148231.376278 -error 1.3090337037125507e+18 - y tested = 5947637003.818383 -y predicted = 3496094958.414925 -error 6.010058400380971e+18 - y tested = 997516184.7000968 -y predicted = 1865341035.267513 -error 7.531199712623583e+17 - y tested = 6532788063.289651 -y predicted = 6836181489.627386 -error 9.204757114495074e+16 - y tested = 1980229389.772511 -y predicted = 3243141324.4750757 -error 1.594946554814175e+18 - y tested = 5035525633.343237 -y predicted = 5273984657.577207 -error 5.686270623861694e+16 - y tested = 5026691733.102776 -y predicted = 5206127286.956977 -error 3.219711798696398e+16 - y tested = 1014996574.3865615 -y predicted = 2326218070.512772 -error 1.7193018119034583e+18 - y tested = 7665772326.561901 -y predicted = 6112688476.259113 -error 2.4120694460713324e+18 - y tested = 3029054692.61153 -y predicted = 4011191314.9389977 -error 9.645923449168073e+17 - y tested = 4062233415.93208 -y predicted = 3923444551.1893415 -error 1.9262348976578092e+16 - y tested = 5822958761.806049 -y predicted = 5945427303.508373 -error 1.4998543706693852e+16 - y tested = 6611133148.221605 -y predicted = 6288710047.496344 -error 1.0395665588129224e+17 - y tested = 5377240292.736961 -y predicted = 2934954446.890823 -error 5.964760152820388e+18 -error squared vector [7.126433979345704e+18, 2.333614177456744e+18, 2.8334973637953096e+16, 9.101017883844646e+18, 1.4483932989766227e+17, 3.579608668509973e+18, 1.3090337037125507e+18, 6.010058400380971e+18, 7.531199712623583e+17, 9.204757114495074e+16, 1.594946554814175e+18, 5.686270623861694e+16, 3.219711798696398e+16, 1.7193018119034583e+18, 2.4120694460713324e+18, 9.645923449168073e+17, 1.9262348976578092e+16, 1.4998543706693852e+16, 1.0395665588129224e+17, 5.964760152820388e+18] -Total loo_error 2.1680528171254907e+18 -iteration 67current difference of loo_error 2.1225475177838234e+17 - getting loo error of with lamda = 0.12338166230578333, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2650323365.422803 -error 7.024213940864331e+18 - y tested = 5326600510.288329 -y predicted = 3801945791.0381527 -error 2.3245720129318344e+18 - y tested = 5072151352.996373 -y predicted = 5229970081.876551 -error 2.4906751185354972e+16 - y tested = 7650055845.407672 -y predicted = 4652244120.363044 -error 8.986875138815049e+18 - y tested = 5789616901.049658 -y predicted = 6168642215.56241 -error 1.4366018904149098e+17 - y tested = 8224428196.629629 -y predicted = 6350276820.640207 -error 3.5124433801230433e+18 - y tested = 4059018123.5159216 -y predicted = 5202815382.830054 -error 1.3082721704145213e+18 - y tested = 5947637003.818383 -y predicted = 3504800679.7552333 -error 5.967449306162362e+18 - y tested = 997516184.7000968 -y predicted = 1840398721.2358806 -error 7.104509703969969e+17 - y tested = 6532788063.289651 -y predicted = 6844867478.831291 -error 9.739356160481179e+16 - y tested = 1980229389.772511 -y predicted = 3241142579.704344 -error 1.5899020725440701e+18 - y tested = 5035525633.343237 -y predicted = 5276732906.655864 -error 5.8180948698912264e+16 - y tested = 5026691733.102776 -y predicted = 5209418373.625477 -error 3.3389025156712492e+16 - y tested = 1014996574.3865615 -y predicted = 2305809541.036254 -error 1.6661981148709804e+18 - y tested = 7665772326.561901 -y predicted = 6123240376.848482 -error 2.3794048158866816e+18 - y tested = 3029054692.61153 -y predicted = 4021321716.2918057 -error 9.845938462833133e+17 - y tested = 4062233415.93208 -y predicted = 3932161729.4836473 -error 1.6918643615539324e+16 - y tested = 5822958761.806049 -y predicted = 5949383984.500206 -error 1.59833369332671e+16 - y tested = 6611133148.221605 -y predicted = 6292256838.565413 -error 1.0168210085995154e+17 - y tested = 5377240292.736961 -y predicted = 2935973971.532221 -error 5.959781251048527e+18 -error squared vector [7.024213940864331e+18, 2.3245720129318344e+18, 2.4906751185354972e+16, 8.986875138815049e+18, 1.4366018904149098e+17, 3.5124433801230433e+18, 1.3082721704145213e+18, 5.967449306162362e+18, 7.104509703969969e+17, 9.739356160481179e+16, 1.5899020725440701e+18, 5.8180948698912264e+16, 3.3389025156712492e+16, 1.6661981148709804e+18, 2.3794048158866816e+18, 9.845938462833133e+17, 1.6918643615539324e+16, 1.59833369332671e+16, 1.0168210085995154e+17, 5.959781251048527e+18] -Total loo_error 2.1453135788718874e+18 -iteration 68current difference of loo_error 1.89515513524779e+17 - getting loo error of with lamda = 0.11964282408439596, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0000-1000' +--- Neighbour 0 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 7 in the X datas point +-------------- + --- Configuration: 1000-1010 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6501654671.113798 + --- Energy: 42.85376093977719 + --- Workload: 278621000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 33 in the X datas point +-------------- + --- Configuration: 1000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 997516184.7000968 + --- Energy: 29.543907709942122 + --- Workload: 29470600000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 42 in the X datas point +-------------- + --- Configuration: 1100-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5947637003.818383 + --- Energy: 36.68430426428569 + --- Workload: 218185000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0000-1000' +--- Neighbour 0 in the list of neghbours, And at position 33 in the X datas point +-------------- + --- Configuration: 1000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 997516184.7000968 + --- Energy: 29.543907709942122 + --- Workload: 29470600000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 42 in the X datas point +-------------- + --- Configuration: 1100-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5947637003.818383 + --- Energy: 36.68430426428569 + --- Workload: 218185000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 7 in the X datas point +-------------- + --- Configuration: 1000-1010 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6501654671.113798 + --- Energy: 42.85376093977719 + --- Workload: 278621000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (35.40657570372512 mAh) it is NOT far from the median. +--- Median :35.40657570372512, the gap is : 10 +--- So No we don't romove this configuration '0000-1000' + --- remove_aberrant_points: The value [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0] +--- Computing the list of the 10 first neighbours of '0000-2000' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2631109447.413105 -error 6.922736923827976e+18 - y tested = 5326600510.288329 -y predicted = 3804963174.1532035 -error 2.3153801827204014e+18 - y tested = 5072151352.996373 -y predicted = 5219276191.380645 -error 2.1645718069598044e+16 - y tested = 7650055845.407672 -y predicted = 4671317975.1471405 -error 8.872879299724247e+18 - y tested = 5789616901.049658 -y predicted = 6166895463.431814 -error 1.4233911363314666e+17 - y tested = 8224428196.629629 -y predicted = 6368184882.628015 -error 3.445639240775697e+18 - y tested = 4059018123.5159216 -y predicted = 5202405783.374254 -error 1.307335340716314e+18 - y tested = 5947637003.818383 -y predicted = 3513666802.7844806 -error 5.924210939521017e+18 - y tested = 997516184.7000968 -y predicted = 1815524926.506638 -error 6.691383016719206e+17 - y tested = 6532788063.289651 -y predicted = 6853176253.032189 -error 1.0264859212650082e+17 - y tested = 1980229389.772511 -y predicted = 3239288186.36559 -error 1.5852290532784125e+18 - y tested = 5035525633.343237 -y predicted = 5279389860.781426 -error 5.9469761424025016e+16 - y tested = 5026691733.102776 -y predicted = 5212639263.54944 -error 3.4576484079213336e+16 - y tested = 1014996574.3865615 -y predicted = 2285477632.139649 -error 1.6141221181094042e+18 - y tested = 7665772326.561901 -y predicted = 6133745431.13094 -error 2.3471064083238277e+18 - y tested = 3029054692.61153 -y predicted = 4031539205.904068 -error 1.0049751993913772e+18 - y tested = 4062233415.93208 -y predicted = 3941045456.682858 -error 1.4686521466991044e+16 - y tested = 5822958761.806049 -y predicted = 5953201102.075595 -error 1.6963067198888088e+16 - y tested = 6611133148.221605 -y predicted = 6295634579.465992 -error 9.953934688684046e+16 - y tested = 5377240292.736961 -y predicted = 2937090938.0066767 -error 5.954328873390625e+18 -error squared vector [6.922736923827976e+18, 2.3153801827204014e+18, 2.1645718069598044e+16, 8.872879299724247e+18, 1.4233911363314666e+17, 3.445639240775697e+18, 1.307335340716314e+18, 5.924210939521017e+18, 6.691383016719206e+17, 1.0264859212650082e+17, 1.5852290532784125e+18, 5.9469761424025016e+16, 3.4576484079213336e+16, 1.6141221181094042e+18, 2.3471064083238277e+18, 1.0049751993913772e+18, 1.4686521466991044e+16, 1.6963067198888088e+16, 9.953934688684046e+16, 5.954328873390625e+18] -Total loo_error 2.122747524316821e+18 -iteration 69current difference of loo_error 1.6694945896971264e+17 - getting loo error of with lamda = 0.1160172839909294, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2611904036.6345344 -error 6.822042696152457e+18 - y tested = 5326600510.288329 -y predicted = 3808031909.726437 -error 2.306050594612503e+18 - y tested = 5072151352.996373 -y predicted = 5208408989.28945 -error 1.8566143448176324e+16 - y tested = 7650055845.407672 -y predicted = 4690481041.573149 -error 8.759083019492156e+18 - y tested = 5789616901.049658 -y predicted = 6164964924.328503 -error 1.4088613857933624e+17 - y tested = 8224428196.629629 -y predicted = 6386165261.061413 -error 3.3792106202838764e+18 - y tested = 4059018123.5159216 -y predicted = 5201921703.891779 -error 1.306228594035954e+18 - y tested = 5947637003.818383 -y predicted = 3522684967.652598 -error 5.880392377704588e+18 - y tested = 997516184.7000968 -y predicted = 1790727948.5686233 -error 6.29184902339419e+17 - y tested = 6532788063.289651 -y predicted = 6861110562.333202 -error 1.0779566337820283e+17 - y tested = 1980229389.772511 -y predicted = 3237579691.776828 -error 1.5809297819503468e+18 - y tested = 5035525633.343237 -y predicted = 5281954182.52252 -error 6.072702985060637e+16 - y tested = 5026691733.102776 -y predicted = 5215790349.939483 -error 3.5758286889555772e+16 - y tested = 1014996574.3865615 -y predicted = 2265228212.619349 -error 1.56307914923824e+18 - y tested = 7665772326.561901 -y predicted = 6144207359.53598 -error 2.315159948880592e+18 - y tested = 3029054692.61153 -y predicted = 4041839050.187662 -error 1.025732154950899e+18 - y tested = 4062233415.93208 -y predicted = 3950092759.2722006 -error 1.257552687610891e+16 - y tested = 5822958761.806049 -y predicted = 5956886793.172508 -error 1.7936717585695198e+16 - y tested = 6611133148.221605 -y predicted = 6298847979.883345 -error 9.752202636405579e+16 - y tested = 5377240292.736961 -y predicted = 2938301276.867361 -error 5.948423523130974e+18 -error squared vector [6.822042696152457e+18, 2.306050594612503e+18, 1.8566143448176324e+16, 8.759083019492156e+18, 1.4088613857933624e+17, 3.3792106202838764e+18, 1.306228594035954e+18, 5.880392377704588e+18, 6.29184902339419e+17, 1.0779566337820283e+17, 1.5809297819503468e+18, 6.072702985060637e+16, 3.5758286889555772e+16, 1.56307914923824e+18, 2.315159948880592e+18, 1.025732154950899e+18, 1.257552687610891e+16, 1.7936717585695198e+16, 9.752202636405579e+16, 5.948423523130974e+18] -Total loo_error 2.1003642447871872e+18 -iteration 70current difference of loo_error 1.4456617944007885e+17 - getting loo error of with lamda = 0.11250160874878003, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2592714755.801953 -error 6.72216980452106e+18 - y tested = 5326600510.288329 -y predicted = 3811148381.0107813 -error 2.2965951561318536e+18 - y tested = 5072151352.996373 -y predicted = 5197377773.514084 -error 1.5681656395678512e+16 - y tested = 7650055845.407672 -y predicted = 4709726162.614778 -error 8.645538643512963e+18 - y tested = 5789616901.049658 -y predicted = 6162861247.41514 -error 1.3931134209379614e+17 - y tested = 8224428196.629629 -y predicted = 6404215796.988514 -error 3.313173179807267e+18 - y tested = 4059018123.5159216 -y predicted = 5201365408.948343 -error 1.3049573205348227e+18 - y tested = 5947637003.818383 -y predicted = 3531846598.595685 -error 5.836043281966048e+18 - y tested = 997516184.7000968 -y predicted = 1766015986.266656 -error 5.905919450078406e+17 - y tested = 6532788063.289651 -y predicted = 6868673274.441618 -error 1.1281887507060149e+17 - y tested = 1980229389.772511 -y predicted = 3236018602.88299 -error 1.5770065477646356e+18 - y tested = 5035525633.343237 -y predicted = 5284424513.251305 -error 6.195065241949071e+16 - y tested = 5026691733.102776 -y predicted = 5218872037.603712 -error 3.693326943807268e+16 - y tested = 1014996574.3865615 -y predicted = 2245067035.319351 -error 1.513073338859406e+18 - y tested = 7665772326.561901 -y predicted = 6154629670.675906 -error 2.2835521264381783e+18 - y tested = 3029054692.61153 -y predicted = 4052216518.9117064 -error 1.0468601227979128e+18 - y tested = 4062233415.93208 -y predicted = 3959300606.4285216 -error 1.0595163272295792e+16 - y tested = 5822958761.806049 -y predicted = 5960449322.54609 -error 1.8903654292610844e+16 - y tested = 6611133148.221605 -y predicted = 6301901730.883257 -error 9.562406946908379e+16 - y tested = 5377240292.736961 -y predicted = 2939600850.3137 -error 5.942086051257588e+18 -error squared vector [6.72216980452106e+18, 2.2965951561318536e+18, 1.5681656395678512e+16, 8.645538643512963e+18, 1.3931134209379614e+17, 3.313173179807267e+18, 1.3049573205348227e+18, 5.836043281966048e+18, 5.905919450078406e+17, 1.1281887507060149e+17, 1.5770065477646356e+18, 6.195065241949071e+16, 3.693326943807268e+16, 1.513073338859406e+18, 2.2835521264381783e+18, 1.0468601227979128e+18, 1.0595163272295792e+16, 1.8903654292610844e+16, 9.562406946908379e+16, 5.942086051257588e+18] -Total loo_error 2.0781733100525601e+18 -iteration 71current difference of loo_error 1.2237524470545178e+17 - getting loo error of with lamda = 0.10909246912002912, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2573549208.542309 -error 6.623155528359818e+18 - y tested = 5326600510.288329 -y predicted = 3814308957.0838165 -error 2.2870257418937172e+18 - y tested = 5072151352.996373 -y predicted = 5186191773.468538 -error 1.3005217501468214e+16 - y tested = 7650055845.407672 -y predicted = 4729046070.3735895 -error 8.532298105844661e+18 - y tested = 5789616901.049658 -y predicted = 6160595065.214059 -error 1.376247982867893e+17 - y tested = 8224428196.629629 -y predicted = 6422333923.761532 -error 3.2475437683039964e+18 - y tested = 4059018123.5159216 -y predicted = 5200739155.664594 -error 1.303526915250629e+18 - y tested = 5947637003.818383 -y predicted = 3541142923.7066917 -error 5.791213757612616e+18 - y tested = 997516184.7000968 -y predicted = 1741397127.9465785 -error 5.5335885772527526e+17 - y tested = 6532788063.289651 -y predicted = 6875867366.333732 -error 1.177034081772122e+17 - y tested = 1980229389.772511 -y predicted = 3234606386.1973453 -error 1.5734616491597885e+18 - y tested = 5035525633.343237 -y predicted = 5286799478.942939 -error 6.3138545482462824e+16 - y tested = 5026691733.102776 -y predicted = 5221884745.613904 -error 3.810031213316954e+16 - y tested = 1014996574.3865615 -y predicted = 2224999729.3402085 -error 1.4641076349977797e+18 - y tested = 7665772326.561901 -y predicted = 6165015658.844925 -error 2.2522705756969623e+18 - y tested = 3029054692.61153 -y predicted = 4062666893.7600336 -error 1.068354182363055e+18 - y tested = 4062233415.93208 -y predicted = 3968665918.5885377 -error 8754876559133758.0 - y tested = 5822958761.806049 -y predicted = 5963897070.853697 -error 1.986360695721019e+16 - y tested = 6611133148.221605 -y predicted = 6304800503.6358185 -error 9.383968913892198e+16 - y tested = 5377240292.736961 -y predicted = 2940985460.01088 -error 5.935337609981187e+18 -error squared vector [6.623155528359818e+18, 2.2870257418937172e+18, 1.3005217501468214e+16, 8.532298105844661e+18, 1.376247982867893e+17, 3.2475437683039964e+18, 1.303526915250629e+18, 5.791213757612616e+18, 5.5335885772527526e+17, 1.177034081772122e+17, 1.5734616491597885e+18, 6.3138545482462824e+16, 3.810031213316954e+16, 1.4641076349977797e+18, 2.2522705756969623e+18, 1.068354182363055e+18, 8754876559133758.0, 1.986360695721019e+16, 9.383968913892198e+16, 5.935337609981187e+18] -Total loo_error 2.056184239071293e+18 -iteration 72current difference of loo_error 1.0038617372418458e+17 - getting loo error of with lamda = 0.10578663675275551, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2554414969.6725082 -error 6.525035836861265e+18 - y tested = 5326600510.288329 -y predicted = 3817510001.9305377 -error 2.2773541624155773e+18 - y tested = 5072151352.996373 -y predicted = 5174860137.043718 -error 1.0549094320484184e+16 - y tested = 7650055845.407672 -y predicted = 4748433397.865818 -error 8.419412828078778e+18 - y tested = 5789616901.049658 -y predicted = 6158176980.996952 -error 1.3583653253075592e+17 - y tested = 8224428196.629629 -y predicted = 6440516675.5357485 -error 3.182340315091483e+18 - y tested = 4059018123.5159216 -y predicted = 5200045192.45243 -error 1.301942772045839e+18 - y tested = 5947637003.818383 -y predicted = 3550564995.137347 -error 5.745954214802137e+18 - y tested = 997516184.7000968 -y predicted = 1716879339.8283784 -error 5.1748334895611616e+17 - y tested = 6532788063.289651 -y predicted = 6882695915.763527 -error 1.2243550522287978e+17 - y tested = 1980229389.772511 -y predicted = 3233344467.578071 -error 1.570297398223635e+18 - y tested = 5035525633.343237 -y predicted = 5289077695.941836 -error 6.428864844800409e+16 - y tested = 5026691733.102776 -y predicted = 5224828909.817514 -error 3.925834079648765e+16 - y tested = 1014996574.3865615 -y predicted = 2205031792.5641594 -error 1.4161838205030034e+18 - y tested = 7665772326.561901 -y predicted = 6175368402.177511 -error 2.2213038578203901e+18 - y tested = 3029054692.61153 -y predicted = 4073185476.768665 -error 1.0902090944245937e+18 - y tested = 4062233415.93208 -y predicted = 3978185575.749988 -error 7064039439274430.0 - y tested = 5822958761.806049 -y predicted = 5967238522.403388 -error 2.0816649318025364e+16 - y tested = 6611133148.221605 -y predicted = 6307548948.124166 -error 9.216336654880235e+16 - y tested = 5377240292.736961 -y predicted = 2942450854.855531 -error 5.928199606818971e+18 -error squared vector [6.525035836861265e+18, 2.2773541624155773e+18, 1.0549094320484184e+16, 8.419412828078778e+18, 1.3583653253075592e+17, 3.182340315091483e+18, 1.301942772045839e+18, 5.745954214802137e+18, 5.1748334895611616e+17, 1.2243550522287978e+17, 1.570297398223635e+18, 6.428864844800409e+16, 3.925834079648765e+16, 1.4161838205030034e+18, 2.2213038578203901e+18, 1.0902090944245937e+18, 7064039439274430.0, 2.0816649318025364e+16, 9.216336654880235e+16, 5.928199606818971e+18] -Total loo_error 2.0344064716333253e+18 -iteration 73current difference of loo_error 7.860840628621696e+16 - getting loo error of with lamda = 0.10258098112388414, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2535319575.4479856 -error 6.4278453492272e+18 - y tested = 5326600510.288329 -y predicted = 3820747883.218713 -error 2.267592134452465e+18 - y tested = 5072151352.996373 -y predicted = 5163391917.891174 -error 8324840682322418.0 - y tested = 7650055845.407672 -y predicted = 4767880690.908344 -error 8.306933621213223e+18 - y tested = 5789616901.049658 -y predicted = 6155617556.357625 -error 1.339564796858614e+17 - y tested = 8224428196.629629 -y predicted = 6458760697.056583 -error 3.1175817190485315e+18 - y tested = 4059018123.5159216 -y predicted = 5199285757.632103 -error 1.3002102774129137e+18 - y tested = 5947637003.818383 -y predicted = 3560103709.6501665 -error 5.700315230761736e+18 - y tested = 997516184.7000968 -y predicted = 1692470454.657724 -error 4.8296143733233837e+17 - y tested = 6532788063.289651 -y predicted = 6889162092.65211 -error 1.2700244880403491e+17 - y tested = 1980229389.772511 -y predicted = 3232234231.8368635 -error 1.5675161245525842e+18 - y tested = 5035525633.343237 -y predicted = 5291257776.676465 -error 6.539892913380673e+16 - y tested = 5026691733.102776 -y predicted = 5227704985.191564 -error 4.040632751531065e+16 - y tested = 1014996574.3865615 -y predicted = 2185168584.533629 -error 1.3693025333316288e+18 - y tested = 7665772326.561901 -y predicted = 6185690761.449093 -error 2.19064143938678e+18 - y tested = 3029054692.61153 -y predicted = 4083767598.6225457 -error 1.112419314106202e+18 - y tested = 4062233415.93208 -y predicted = 3987856425.4788322 -error 5531936708882477.0 - y tested = 5822958761.806049 -y predicted = 5970482252.610621 -error 2.176318033916667e+16 - y tested = 6611133148.221605 -y predicted = 6310151691.822214 -error 9.058983709629861e+16 - y tested = 5377240292.736961 -y predicted = 2943992738.668659 -error 5.920693659379375e+18 -error squared vector [6.4278453492272e+18, 2.267592134452465e+18, 8324840682322418.0, 8.306933621213223e+18, 1.339564796858614e+17, 3.1175817190485315e+18, 1.3002102774129137e+18, 5.700315230761736e+18, 4.8296143733233837e+17, 1.2700244880403491e+17, 1.5675161245525842e+18, 6.539892913380673e+16, 4.040632751531065e+16, 1.3693025333316288e+18, 2.19064143938678e+18, 1.112419314106202e+18, 5531936708882477.0, 2.176318033916667e+16, 9.058983709629861e+16, 5.920693659379375e+18] -Total loo_error 2.012849341008533e+18 -iteration 74current difference of loo_error 5.705127566142464e+16 - getting loo error of with lamda = 0.09947246657467552, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2516270513.8147445 -error 6.331617298274139e+18 - y tested = 5326600510.288329 -y predicted = 3824018980.747147 -error 2.257751252918318e+18 - y tested = 5072151352.996373 -y predicted = 5151796063.058059 -error 6343279840809957.0 - y tested = 7650055845.407672 -y predicted = 4787380420.07052 -error 8.194910590829241e+18 - y tested = 5789616901.049658 -y predicted = 6152927298.989933 -error 1.3199444525152112e+17 - y tested = 8224428196.629629 -y predicted = 6477062254.69821 -error 3.053287735021876e+18 - y tested = 4059018123.5159216 -y predicted = 5198463077.946598 -error 1.2983348041775263e+18 - y tested = 5947637003.818383 -y predicted = 3569749829.438395 -error 5.654347414080845e+18 - y tested = 997516184.7000968 -y predicted = 1668178160.6846244 -error 4.4978748603147104e+17 - y tested = 6532788063.289651 -y predicted = 6895269150.39634 -error 1.313925385100474e+17 - y tested = 1980229389.772511 -y predicted = 3231277022.175024 -error 1.5651201785399334e+18 - y tested = 5035525633.343237 -y predicted = 5293338335.305574 -error 6.646738929312106e+16 - y tested = 5026691733.102776 -y predicted = 5230513448.036103 -error 4.154329147836269e+16 - y tested = 1014996574.3865615 -y predicted = 2165415319.718471 -error 1.323463289611045e+18 - y tested = 7665772326.561901 -y predicted = 6195985379.500296 -error 2.1602736697526746e+18 - y tested = 3029054692.61153 -y predicted = 4094408626.7915864 -error 1.1349790050729243e+18 - y tested = 4062233415.93208 -y predicted = 3997675290.597351 -error 4167751546734542.0 - y tested = 5822958761.806049 -y predicted = 5973636915.209574 -error 2.270390591309603e+16 - y tested = 6611133148.221605 -y predicted = 6312613338.326271 -error 8.91140768999465e+16 - y tested = 5377240292.736961 -y predicted = 2945606777.796978 -error 5.912841550979378e+18 -error squared vector [6.331617298274139e+18, 2.257751252918318e+18, 6343279840809957.0, 8.194910590829241e+18, 1.3199444525152112e+17, 3.053287735021876e+18, 1.2983348041775263e+18, 5.654347414080845e+18, 4.4978748603147104e+17, 1.313925385100474e+17, 1.5651201785399334e+18, 6.646738929312106e+16, 4.154329147836269e+16, 1.323463289611045e+18, 2.1602736697526746e+18, 1.1349790050729243e+18, 4167751546734542.0, 2.270390591309603e+16, 8.91140768999465e+16, 5.912841550979378e+18] -Total loo_error 1.9915220477011505e+18 -iteration 75current difference of loo_error 3.572398235404211e+16 - getting loo error of with lamda = 0.096458149436049, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2497275214.697398 -error 6.236383497525723e+18 - y tested = 5326600510.288329 -y predicted = 3827319694.550476 -error 2.247842964439562e+18 - y tested = 5072151352.996373 -y predicted = 5140081401.011312 -error 4614491423311830.0 - y tested = 7650055845.407672 -y predicted = 4806924992.658401 -error 8.083393045854799e+18 - y tested = 5789616901.049658 -y predicted = 6150116650.692945 -error 1.299600694928724e+17 - y tested = 8224428196.629629 -y predicted = 6495417248.712679 -error 2.9894788580166707e+18 - y tested = 4059018123.5159216 -y predicted = 5197579366.991436 -error 1.2963217051445097e+18 - y tested = 5947637003.818383 -y predicted = 3579494003.129659 -error 5.608101271710994e+18 - y tested = 997516184.7000968 -y predicted = 1644009991.0158596 -error 4.1795424160464294e+17 - y tested = 6532788063.289651 -y predicted = 6901020417.134672 -error 1.3559506641824493e+17 - y tested = 1980229389.772511 -y predicted = 3230474139.4439516 -error 1.5631119340810033e+18 - y tested = 5035525633.343237 -y predicted = 5295317993.278324 -error 6.74920702806419e+16 - y tested = 5026691733.102776 -y predicted = 5233254798.003441 -error 4.2668299781156456e+16 - y tested = 1014996574.3865615 -y predicted = 2145777061.2031307 -error 1.2786645093651174e+18 - y tested = 7665772326.561901 -y predicted = 6206254681.2633505 -error 2.1301917569378258e+18 - y tested = 3029054692.61153 -y predicted = 4105103973.4856043 -error 1.1578820548696128e+18 - y tested = 4062233415.93208 -y predicted = 4007638976.529751 -error 2980552813654570.0 - y tested = 5822958761.806049 -y predicted = 5976711229.265287 -error 2.3639821249804056e+16 - y tested = 6611133148.221605 -y predicted = 6314938465.9264765 -error 8.77312898199123e+16 - y tested = 5377240292.736961 -y predicted = 2947288608.6030526 -error 5.904665187225219e+18 -error squared vector [6.236383497525723e+18, 2.247842964439562e+18, 4614491423311830.0, 8.083393045854799e+18, 1.299600694928724e+17, 2.9894788580166707e+18, 1.2963217051445097e+18, 5.608101271710994e+18, 4.1795424160464294e+17, 1.3559506641824493e+17, 1.5631119340810033e+18, 6.74920702806419e+16, 4.2668299781156456e+16, 1.2786645093651174e+18, 2.1301917569378258e+18, 1.1578820548696128e+18, 2980552813654570.0, 2.3639821249804056e+16, 8.77312898199123e+16, 5.904665187225219e+18] -Total loo_error 1.9704336344027635e+18 -iteration 76current difference of loo_error 1.4635569055655168e+16 - getting loo error of with lamda = 0.0935351752410172, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2478341040.354562 -error 6.142174311892675e+18 - y tested = 5326600510.288329 -y predicted = 3830646452.645025 -error 2.2378785425794668e+18 - y tested = 5072151352.996373 -y predicted = 5128256630.088447 -error 3147802117578341.0 - y tested = 7650055845.407672 -y predicted = 4826506764.697905 -error 7.972429411176972e+18 - y tested = 5789616901.049658 -y predicted = 6147195975.625165 -error 1.2786279457427611e+17 - y tested = 8224428196.629629 -y predicted = 6513821226.64144 -error 2.9261762057721723e+18 - y tested = 4059018123.5159216 -y predicted = 5196636823.577826 -error 1.2941763067305362e+18 - y tested = 5947637003.818383 -y predicted = 3589326786.889821 -error 5.561627079269642e+18 - y tested = 997516184.7000968 -y predicted = 1619973313.383934 -error 3.8745287704932704e+17 - y tested = 6532788063.289651 -y predicted = 6906419287.008619 -error 1.3960029133773381e+17 - y tested = 1980229389.772511 -y predicted = 3229826841.2254305 -error 1.5614937906776315e+18 - y tested = 5035525633.343237 -y predicted = 5297195384.791886 -error 6.847105882319796e+16 - y tested = 5026691733.102776 -y predicted = 5235929559.962739 -error 4.378046818908003e+16 - y tested = 1014996574.3865615 -y predicted = 2126258714.8230464 -error 1.2349035447674778e+18 - y tested = 7665772326.561901 -y predicted = 6216500874.36806 -error 2.1003877421440448e+18 - y tested = 3029054692.61153 -y predicted = 4115849103.4053736 -error 1.181122091332738e+18 - y tested = 4062233415.93208 -y predicted = 4017744278.284223 -error 1979283368649941.5 - y tested = 5822958761.806049 -y predicted = 5979713966.0325165 -error 2.457219405208142e+16 - y tested = 6611133148.221605 -y predicted = 6317131626.104839 -error 8.643689500697523e+16 - y tested = 5377240292.736961 -y predicted = 2949033844.826605 -error 5.896186553673431e+18 -error squared vector [6.142174311892675e+18, 2.2378785425794668e+18, 3147802117578341.0, 7.972429411176972e+18, 1.2786279457427611e+17, 2.9261762057721723e+18, 1.2941763067305362e+18, 5.561627079269642e+18, 3.8745287704932704e+17, 1.3960029133773381e+17, 1.5614937906776315e+18, 6.847105882319796e+16, 4.378046818908003e+16, 1.2349035447674778e+18, 2.1003877421440448e+18, 1.181122091332738e+18, 1979283368649941.5, 2.457219405208142e+16, 8.643689500697523e+16, 5.896186553673431e+18] -Total loo_error 1.9495929622267843e+18 -iteration 77current difference of loo_error -6205103120324096.0 - getting loo error of with lamda = 0.002834400219424764, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1405201914.2767556 -error 1.974592419652858e+18 - y tested = 5326600510.288329 -y predicted = 4023524847.431304 -error 1.6980061831302756e+18 - y tested = 5072151352.996373 -y predicted = 3962255024.07013 -error 1.2318698609639516e+18 - y tested = 7650055845.407672 -y predicted = 6124556575.798789 -error 2.3271480215772355e+18 - y tested = 5789616901.049658 -y predicted = 6355045200.130483 -error 3.197091614014347e+17 - y tested = 8224428196.629629 -y predicted = 7813067139.539448 -error 1.6921791929035146e+17 - y tested = 4059018123.5159216 -y predicted = 5054751284.673304 -error 9.91484528228473e+17 - y tested = 5947637003.818383 -y predicted = 4056539168.193436 -error 3.5762510239053594e+18 - y tested = 997516184.7000968 -y predicted = 222283756.56395707 -error 6.009853176338551e+17 - y tested = 6532788063.289651 -y predicted = 6002181686.984481 -error 2.8154312657570374e+17 - y tested = 1980229389.772511 -y predicted = 3796377186.663487 -error 3.2983928201519457e+18 - y tested = 5035525633.343237 -y predicted = 4932081003.057052 -error 1.0700791535045558e+16 - y tested = 5026691733.102776 -y predicted = 5354935459.159017 -error 1.077439436952846e+17 - y tested = 1014996574.3865615 -y predicted = 969884368.327853 -error 2035111135483380.2 - y tested = 7665772326.561901 -y predicted = 7003340803.132541 -error 4.388155232329432e+17 - y tested = 3029054692.61153 -y predicted = 5177320169.714427 -error 4.615044560112138e+18 - y tested = 4062233415.93208 -y predicted = 5430940085.882415 -error 1.8733579483665354e+18 - y tested = 5822958761.806049 -y predicted = 7022604847.325643 -error 1.4391507305024832e+18 - y tested = 6611133148.221605 -y predicted = 6335907859.28277 -error 7.57489596714653e+16 - y tested = 5377240292.736961 -y predicted = 2923532431.395844 -error 6.0206822688072e+18 -error squared vector [1.974592419652858e+18, 1.6980061831302756e+18, 1.2318698609639516e+18, 2.3271480215772355e+18, 3.197091614014347e+17, 1.6921791929035146e+17, 9.91484528228473e+17, 3.5762510239053594e+18, 6.009853176338551e+17, 2.8154312657570374e+17, 3.2983928201519457e+18, 1.0700791535045558e+16, 1.077439436952846e+17, 2035111135483380.2, 4.388155232329432e+17, 4.615044560112138e+18, 1.8733579483665354e+18, 1.4391507305024832e+18, 7.57489596714653e+16, 6.0206822688072e+18] -Total loo_error 1.5526240109785014e+18 -iteration 78current difference of loo_error 3.969689512482829e+17 - getting loo error of with lamda = 0.09078666690702955, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2460054487.3559346 -error 6.051868080350061e+18 - y tested = 5326600510.288329 -y predicted = 3833892395.3735657 -error 2.2281775163323866e+18 - y tested = 5072151352.996373 -y predicted = 5116698586.586024 -error 1984456020490940.0 - y tested = 7650055845.407672 -y predicted = 4845514454.384627 -error 7.865452413961474e+18 - y tested = 5789616901.049658 -y predicted = 6144269842.861254 -error 1.2577870913561923e+17 - y tested = 8224428196.629629 -y predicted = 6531701331.32225 -error 2.865324240533345e+18 - y tested = 4059018123.5159216 -y predicted = 5195669188.006918 -error 1.291975642408515e+18 - y tested = 5947637003.818383 -y predicted = 3598932695.322626 -error 5.516411928746533e+18 - y tested = 997516184.7000968 -y predicted = 1596808274.905311 -error 3.5915100938253466e+17 - y tested = 6532788063.289651 -y predicted = 6911319045.662652 -error 1.4328570461626926e+17 - y tested = 1980229389.772511 -y predicted = 3229349079.413886 -error 1.560299999049765e+18 - y tested = 5035525633.343237 -y predicted = 5298916159.152558 -error 6.937456908611081e+16 - y tested = 5026691733.102776 -y predicted = 5238459021.311411 -error 4.4845384355239224e+16 - y tested = 1014996574.3865615 -y predicted = 2107459661.0992327 -error 1.1934755958297774e+18 - y tested = 7665772326.561901 -y predicted = 6226411728.68479 -error 2.0717589307211556e+18 - y tested = 3029054692.61153 -y predicted = 4126307000.447842 -error 1.2039626270521134e+18 - y tested = 4062233415.93208 -y predicted = 4027670863.636617 -error 1194570021176587.5 - y tested = 5822958761.806049 -y predicted = 5982564352.874626 -error 2.547394470034977e+16 - y tested = 6611133148.221605 -y predicted = 6319135657.240756 -error 8.526253473911115e+16 - y tested = 5377240292.736961 -y predicted = 2950781750.8254957 -error 5.887701055615116e+18 -error squared vector [6.051868080350061e+18, 2.2281775163323866e+18, 1984456020490940.0, 7.865452413961474e+18, 1.2577870913561923e+17, 2.865324240533345e+18, 1.291975642408515e+18, 5.516411928746533e+18, 3.5915100938253466e+17, 1.4328570461626926e+17, 1.560299999049765e+18, 6.937456908611081e+16, 4.4845384355239224e+16, 1.1934755958297774e+18, 2.0717589307211556e+18, 1.2039626270521134e+18, 1194570021176587.5, 2.547394470034977e+16, 8.526253473911115e+16, 5.887701055615116e+18] -Total loo_error 1.9296379456328573e+18 -iteration 79current difference of loo_error 3.77013934654356e+17 - getting loo error of with lamda = 0.08812144670437486, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2441856213.223808 -error 5.962661765652738e+18 - y tested = 5326600510.288329 -y predicted = 3837153157.911486 -error 2.2184534155023875e+18 - y tested = 5072151352.996373 -y predicted = 5105064022.127205 -error 1083243789315603.1 - y tested = 7650055845.407672 -y predicted = 4864524570.97234 -error 7.759184480857327e+18 - y tested = 5789616901.049658 -y predicted = 6141262195.718539 -error 1.2365441326276445e+17 - y tested = 8224428196.629629 -y predicted = 6549601080.418498 -error 2.8050458691960934e+18 - y tested = 4059018123.5159216 -y predicted = 5194651307.079079 -error 1.2896627276097912e+18 - y tested = 5947637003.818383 -y predicted = 3608594882.3297772 -error 5.471118046097919e+18 - y tested = 997516184.7000968 -y predicted = 1573801952.0484245 -error 3.321052856482508e+17 - y tested = 6532788063.289651 -y predicted = 6915889942.83087 -error 1.467670501080145e+17 - y tested = 1980229389.772511 -y predicted = 3229019926.415189 -error 1.5594778044083072e+18 - y tested = 5035525633.343237 -y predicted = 5300536878.9239235 -error 7.023096028422697e+16 - y tested = 5026691733.102776 -y predicted = 5240924633.538538 -error 4.589573562911929e+16 - y tested = 1014996574.3865615 -y predicted = 2088799758.4403908 -error 1.1530532780841418e+18 - y tested = 7665772326.561901 -y predicted = 6236294875.264788 -error 2.0434057837668913e+18 - y tested = 3029054692.61153 -y predicted = 4136793348.9781613 -error 1.22708493080895e+18 - y tested = 4062233415.93208 -y predicted = 4037714837.923258 -error 601160667574688.0 - y tested = 5822958761.806049 -y predicted = 5985361153.109059 -error 2.6374536700935972e+16 - y tested = 6611133148.221605 -y predicted = 6321022296.045869 -error 8.4164306550132e+16 - y tested = 5377240292.736961 -y predicted = 2952579319.8588986 -error 5.878980833397993e+18 -error squared vector [5.962661765652738e+18, 2.2184534155023875e+18, 1083243789315603.1, 7.759184480857327e+18, 1.2365441326276445e+17, 2.8050458691960934e+18, 1.2896627276097912e+18, 5.471118046097919e+18, 3.321052856482508e+17, 1.467670501080145e+17, 1.5594778044083072e+18, 7.023096028422697e+16, 4.589573562911929e+16, 1.1530532780841418e+18, 2.0434057837668913e+18, 1.22708493080895e+18, 601160667574688.0, 2.6374536700935972e+16, 8.4164306550132e+16, 5.878980833397993e+18] -Total loo_error 1.9099502814011438e+18 -iteration 80current difference of loo_error 3.573262704226424e+17 - getting loo error of with lamda = 0.08553699075028547, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0000-2000' +--- Neighbour 0 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 24 in the X datas point +-------------- + --- Configuration: 0000-3000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3307720550.5370083 + --- Energy: 35.59789292409111 + --- Workload: 117748000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 25 in the X datas point +-------------- + --- Configuration: 0000-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5789616901.049658 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0000-2000' +--- Neighbour 0 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 24 in the X datas point +-------------- + --- Configuration: 0000-3000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3307720550.5370083 + --- Energy: 35.59789292409111 + --- Workload: 117748000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 25 in the X datas point +-------------- + --- Configuration: 0000-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5789616901.049658 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (35.44774676664167 mAh) it is NOT far from the median. +--- Median :35.44774676664167, the gap is : 10 +--- So No we don't romove this configuration '0000-2000' + --- remove_aberrant_points: The value [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0] +--- Computing the list of the 10 first neighbours of '0000-2200' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2423752965.809953 -error 5.874578438868584e+18 - y tested = 5326600510.288329 -y predicted = 3840425470.5199485 -error 2.2087162488305477e+18 - y tested = 5072151352.996373 -y predicted = 5093361000.242782 -error 449849136317082.06 - y tested = 7650055845.407672 -y predicted = 4883529515.600702 -error 7.653667933515222e+18 - y tested = 5789616901.049658 -y predicted = 6138182493.539714 -error 1.214979722679438e+17 - y tested = 8224428196.629629 -y predicted = 6567514962.843595 -error 2.7453614642952945e+18 - y tested = 4059018123.5159216 -y predicted = 5193585303.834637 -error 1.2872426866563597e+18 - y tested = 5947637003.818383 -y predicted = 3618304187.205033 -error 5.425791370551884e+18 - y tested = 997516184.7000968 -y predicted = 1550960778.9723191 -error 3.063009189291447e+17 - y tested = 6532788063.289651 -y predicted = 6920136005.951922 -error 1.5003842868469437e+17 - y tested = 1980229389.772511 -y predicted = 3228839975.983119 -error 1.559028395997198e+18 - y tested = 5035525633.343237 -y predicted = 5302056610.019046 -error 7.103876152776059e+16 - y tested = 5026691733.102776 -y predicted = 5243327058.693609 -error 4.693086429384651e+16 - y tested = 1014996574.3865615 -y predicted = 2070283176.8606687 -error 1.1136298133613443e+18 - y tested = 7665772326.561901 -y predicted = 6246151517.065982 -error 2.015323242753849e+18 - y tested = 3029054692.61153 -y predicted = 4147303809.623456 -error 1.2504810876979525e+18 - y tested = 4062233415.93208 -y predicted = 4047872647.785022 -error 206231661773555.94 - y tested = 5822958761.806049 -y predicted = 5988112458.001117 -error 2.7275743366892624e+16 - y tested = 6611133148.221605 -y predicted = 6322795872.851065 -error 8.313838436810698e+16 - y tested = 5377240292.736961 -y predicted = 2954422351.860946 -error 5.870046774630694e+18 -error squared vector [5.874578438868584e+18, 2.2087162488305477e+18, 449849136317082.06, 7.653667933515222e+18, 1.214979722679438e+17, 2.7453614642952945e+18, 1.2872426866563597e+18, 5.425791370551884e+18, 3.063009189291447e+17, 1.5003842868469437e+17, 1.559028395997198e+18, 7.103876152776059e+16, 4.693086429384651e+16, 1.1136298133613443e+18, 2.015323242753849e+18, 1.2504810876979525e+18, 206231661773555.94, 2.7275743366892624e+16, 8.313838436810698e+16, 5.870046774630694e+18] -Total loo_error 1.8905372305697705e+18 -iteration 81current difference of loo_error 3.379132195912691e+17 - getting loo error of with lamda = 0.08303085164328969, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2405751368.640619 -error 5.787639647315251e+18 - y tested = 5326600510.288329 -y predicted = 3843706125.8201118 -error 2.1989757554873733e+18 - y tested = 5072151352.996373 -y predicted = 5081597408.374803 -error 89227962212355.23 - y tested = 7650055845.407672 -y predicted = 4902521710.866297 -error 7.548943820470023e+18 - y tested = 5789616901.049658 -y predicted = 6135040046.199782 -error 1.1931714920540402e+17 - y tested = 8224428196.629629 -y predicted = 6585437226.005687 -error 2.686291401786813e+18 - y tested = 4059018123.5159216 -y predicted = 5192473277.18992 -error 1.2847205853901484e+18 - y tested = 5947637003.818383 -y predicted = 3628051478.467724 -error 5.380477009416294e+18 - y tested = 997516184.7000968 -y predicted = 1528290979.022924 -error 2.8172188228843942e+17 - y tested = 6532788063.289651 -y predicted = 6924061303.8781185 -error 1.5309474880060083e+17 - y tested = 1980229389.772511 -y predicted = 3228809756.8662133 -error 1.5589529330918444e+18 - y tested = 5035525633.343237 -y predicted = 5303474464.004782 -error 7.179657585288921e+16 - y tested = 5026691733.102776 -y predicted = 5245666987.511335 -error 4.795016204329349e+16 - y tested = 1014996574.3865615 -y predicted = 2051913909.356935 -error 1.0751975595620618e+18 - y tested = 7665772326.561901 -y predicted = 6255982659.399176 -error 1.987506905638788e+18 - y tested = 3029054692.61153 -y predicted = 4157834125.063723 -error 1.2741430071270956e+18 - y tested = 4062233415.93208 -y predicted = 4058140747.200499 -error 16749937346458.656 - y tested = 5822958761.806049 -y predicted = 5990826313.6803255 -error 2.8179514972262796e+16 - y tested = 6611133148.221605 -y predicted = 6324460675.488322 -error 8.218110662301491e+16 - y tested = 5377240292.736961 -y predicted = 2956306668.0642605 -error 5.860919615070901e+18 -error squared vector [5.787639647315251e+18, 2.1989757554873733e+18, 89227962212355.23, 7.548943820470023e+18, 1.1931714920540402e+17, 2.686291401786813e+18, 1.2847205853901484e+18, 5.380477009416294e+18, 2.8172188228843942e+17, 1.5309474880060083e+17, 1.5589529330918444e+18, 7.179657585288921e+16, 4.795016204329349e+16, 1.0751975595620618e+18, 1.987506905638788e+18, 1.2741430071270956e+18, 16749937346458.656, 2.8179514972262796e+16, 8.218110662301491e+16, 5.860919615070901e+18] -Total loo_error 1.871405767902103e+18 -iteration 82current difference of loo_error 3.1878175692360166e+17 - getting loo error of with lamda = 0.0806006561455968, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2387857912.630299 -error 5.701865410513152e+18 - y tested = 5326600510.288329 -y predicted = 3846991983.973516 -error 2.189241391143493e+18 - y tested = 5072151352.996373 -y predicted = 5069780950.261564 -error 5618809125189.615 - y tested = 7650055845.407672 -y predicted = 4921493612.121606 -error 7.445051860915044e+18 - y tested = 5789616901.049658 -y predicted = 6131844004.391111 -error 1.1711939026148194e+17 - y tested = 8224428196.629629 -y predicted = 6603361894.748984 -error 2.62785595509299e+18 - y tested = 4059018123.5159216 -y predicted = 5191317300.359099 -error 1.282101425879738e+18 - y tested = 5947637003.818383 -y predicted = 3637827673.166003 -error 5.335219143968796e+18 - y tested = 997516184.7000968 -y predicted = 1505798558.2761486 -error 2.58350971288105e+17 - y tested = 6532788063.289651 -y predicted = 6927669939.842397 -error 1.55931696429818e+17 - y tested = 1980229389.772511 -y predicted = 3228929730.873037 -error 1.5592525418645696e+18 - y tested = 5035525633.343237 -y predicted = 5304789602.449681 -error 7.250308505895622e+16 - y tested = 5026691733.102776 -y predicted = 5247945140.04024 -error 4.895307008143536e+16 - y tested = 1014996574.3865615 -y predicted = 2033695769.4393976 -error 1.0377480500012961e+18 - y tested = 7665772326.561901 -y predicted = 6265789113.918179 -error 1.9599529956842383e+18 - y tested = 3029054692.61153 -y predicted = 4168380125.5164022 -error 1.2980624420638748e+18 - y tested = 4062233415.93208 -y predicted = 4068515601.7388444 -error 39465858510714.625 - y tested = 5822958761.806049 -y predicted = 5993510707.891537 -error 2.9087966313546988e+16 - y tested = 6611133148.221605 -y predicted = 6326020947.153285 -error 8.128896719802229e+16 - y tested = 5377240292.736961 -y predicted = 2958228117.3238873 -error 5.851619904796692e+18 -error squared vector [5.701865410513152e+18, 2.189241391143493e+18, 5618809125189.615, 7.445051860915044e+18, 1.1711939026148194e+17, 2.62785595509299e+18, 1.282101425879738e+18, 5.335219143968796e+18, 2.58350971288105e+17, 1.55931696429818e+17, 1.5592525418645696e+18, 7.250308505895622e+16, 4.895307008143536e+16, 1.0377480500012961e+18, 1.9599529956842383e+18, 1.2980624420638748e+18, 39465858510714.625, 2.9087966313546988e+16, 8.128896719802229e+16, 5.851619904796692e+18] -Total loo_error 1.8525625676611446e+18 -iteration 83current difference of loo_error 2.999385566826432e+17 - getting loo error of with lamda = 0.07824410293571281, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2370078948.084029 -error 5.617274219756084e+18 - y tested = 5326600510.288329 -y predicted = 3850279977.463169 -error 2.1795223156411643e+18 - y tested = 5072151352.996373 -y predicted = 5057919138.937897 -error 202555917006294.66 - y tested = 7650055845.407672 -y predicted = 4940437718.538964 -error 7.342030393455484e+18 - y tested = 5789616901.049658 -y predicted = 6128603350.315165 -error 1.1491181278563598e+17 - y tested = 8224428196.629629 -y predicted = 6621282790.8663435 -error 2.5700751920199296e+18 - y tested = 4059018123.5159216 -y predicted = 5190119419.326321 -error 1.279390141383964e+18 - y tested = 5947637003.818383 -y predicted = 3647623755.6888623 -error 5.290060941571309e+18 - y tested = 997516184.7000968 -y predicted = 1483489299.702284 -error 2.3616986850492912e+17 - y tested = 6532788063.289651 -y predicted = 6930966044.681838 -error 1.585457048655569e+17 - y tested = 1980229389.772511 -y predicted = 3229200290.8024178 -error 1.559928311619457e+18 - y tested = 5035525633.343237 -y predicted = 5306001241.063601 -error 7.315705437170002e+16 - y tested = 5026691733.102776 -y predicted = 5250162266.1103525 -error 4.9939079122690536e+16 - y tested = 1014996574.3865615 -y predicted = 2015632389.1882734 -error 1.001272033863886e+18 - y tested = 7665772326.561901 -y predicted = 6275571502.996511 -error 1.9326583298418875e+18 - y tested = 3029054692.61153 -y predicted = 4178937733.867657 -error 1.3222310085684406e+18 - y tested = 4062233415.93208 -y predicted = 4078993692.4031415 -error 280906867386424.66 - y tested = 5822958761.806049 -y predicted = 5996173556.935415 -error 3.000336525170821e+16 - y tested = 6611133148.221605 -y predicted = 6327480884.179647 -error 8.045860689612858e+16 - y tested = 5377240292.736961 -y predicted = 2960182582.210519 -error 5.842167976015328e+18 -error squared vector [5.617274219756084e+18, 2.1795223156411643e+18, 202555917006294.66, 7.342030393455484e+18, 1.1491181278563598e+17, 2.5700751920199296e+18, 1.279390141383964e+18, 5.290060941571309e+18, 2.3616986850492912e+17, 1.585457048655569e+17, 1.559928311619457e+18, 7.315705437170002e+16, 4.9939079122690536e+16, 1.001272033863886e+18, 1.9326583298418875e+18, 1.3222310085684406e+18, 280906867386424.66, 3.000336525170821e+16, 8.045860689612858e+16, 5.842167976015328e+18] -Total loo_error 1.834013990915984e+18 -iteration 84current difference of loo_error 2.813899799374825e+17 - getting loo error of with lamda = 0.07595896042915863, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2352420677.010177 -error 5.533883041232949e+18 - y tested = 5326600510.288329 -y predicted = 3853567115.4766455 -error 2.1698273822304335e+18 - y tested = 5072151352.996373 -y predicted = 5046019290.363517 -error 682884697447528.1 - y tested = 7650055845.407672 -y predicted = 4959346583.912421 -error 7.239916329896317e+18 - y tested = 5789616901.049658 -y predicted = 6125326888.795174 -error 1.1270119587209438e+17 - y tested = 8224428196.629629 -y predicted = 6639193553.098137 -error 2.512968875052417e+18 - y tested = 4059018123.5159216 -y predicted = 5188881651.380898 -error 1.2765915915994913e+18 - y tested = 5947637003.818383 -y predicted = 3657430796.023316 -error 5.245044474223063e+18 - y tested = 997516184.7000968 -y predicted = 1461368757.9642174 -error 2.1515920972374634e+17 - y tested = 6532788063.289651 -y predicted = 6933953770.3437395 -error 1.6093392451620682e+17 - y tested = 1980229389.772511 -y predicted = 3229621758.242588 -error 1.5609812903912689e+18 - y tested = 5035525633.343237 -y predicted = 5307108653.619957 -error 7.375733690262533e+16 - y tested = 5026691733.102776 -y predicted = 5252319145.642543 -error 5.090772928939033e+16 - y tested = 1014996574.3865615 -y predicted = 1997727217.8359742 -error 9.657595175744968e+17 - y tested = 7665772326.561901 -y predicted = 6285330264.461418 -error 1.9056202868162335e+18 - y tested = 3029054692.61153 -y predicted = 4189502970.4369144 -error 1.346640205507901e+18 - y tested = 4062233415.93208 -y predicted = 4089571519.064711 -error 747371882890385.4 - y tested = 5822958761.806049 -y predicted = 5998822692.835609 -error 3.0928122237169868e+16 - y tested = 6611133148.221605 -y predicted = 6328844633.7258415 -error 7.968680541622504e+16 - y tested = 5377240292.736961 -y predicted = 2962165984.8641357 -error 5.832583912547408e+18 -error squared vector [5.533883041232949e+18, 2.1698273822304335e+18, 682884697447528.1, 7.239916329896317e+18, 1.1270119587209438e+17, 2.512968875052417e+18, 1.2765915915994913e+18, 5.245044474223063e+18, 2.1515920972374634e+17, 1.6093392451620682e+17, 1.5609812903912689e+18, 7.375733690262533e+16, 5.090772928939033e+16, 9.657595175744968e+17, 1.9056202868162335e+18, 1.346640205507901e+18, 747371882890385.4, 3.0928122237169868e+16, 7.968680541622504e+16, 5.832583912547408e+18] -Total loo_error 1.8157660743804887e+18 -iteration 85current difference of loo_error 2.6314206340198733e+17 - getting loo error of with lamda = 0.0737430646652273, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2334889145.7628727 -error 5.451707322612129e+18 - y tested = 5326600510.288329 -y predicted = 3856850487.8964458 -error 2.1601651283209416e+18 - y tested = 5072151352.996373 -y predicted = 5034088517.687074 -error 1448779431782854.5 - y tested = 7650055845.407672 -y predicted = 4978212827.175045 -error 7.138745114078433e+18 - y tested = 5789616901.049658 -y predicted = 6122023238.82426 -error 1.1049397339272275e+17 - y tested = 8224428196.629629 -y predicted = 6657087657.532109 -error 2.456556365498504e+18 - y tested = 4059018123.5159216 -y predicted = 5187605983.727135 -error 1.2737105582161247e+18 - y tested = 5947637003.818383 -y predicted = 3667239967.3988543 -error 5.200210643710971e+18 - y tested = 997516184.7000968 -y predicted = 1439442254.857411 -error 1.9529865148468726e+17 - y tested = 6532788063.289651 -y predicted = 6936637283.698798 -error 1.63094192825076e+17 - y tested = 1980229389.772511 -y predicted = 3230194381.245539 -error 1.5624124799081674e+18 - y tested = 5035525633.343237 -y predicted = 5308111175.653437 -error 7.43028778765457e+16 - y tested = 5026691733.102776 -y predicted = 5254416588.804326 -error 5.185860990429199e+16 - y tested = 1014996574.3865615 -y predicted = 1979983520.8695097 -error 9.311998068824844e+17 - y tested = 7665772326.561901 -y predicted = 6295065656.657139 -error 1.878836774921403e+18 - y tested = 3029054692.61153 -y predicted = 4200071957.3617744 -error 1.3712814343431444e+18 - y tested = 4062233415.93208 -y predicted = 4100245603.4927516 -error 1444926403147692.5 - y tested = 5822958761.806049 -y predicted = 6001465850.769902 -error 3.186478081034889e+16 - y tested = 6611133148.221605 -y predicted = 6330116291.377545 -error 7.897047383051488e+16 - y tested = 5377240292.736961 -y predicted = 2964174292.6004963 -error 5.822887521014599e+18 -error squared vector [5.451707322612129e+18, 2.1601651283209416e+18, 1448779431782854.5, 7.138745114078433e+18, 1.1049397339272275e+17, 2.456556365498504e+18, 1.2737105582161247e+18, 5.200210643710971e+18, 1.9529865148468726e+17, 1.63094192825076e+17, 1.5624124799081674e+18, 7.43028778765457e+16, 5.185860990429199e+16, 9.311998068824844e+17, 1.878836774921403e+18, 1.3712814343431444e+18, 1444926403147692.5, 3.186478081034889e+16, 7.897047383051488e+16, 5.822887521014599e+18] -Total loo_error 1.797824520773301e+18 -iteration 86current difference of loo_error 2.452005097947996e+17 - getting loo error of with lamda = 0.07159431725777873, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2317490238.032196 -error 5.370761002988276e+18 - y tested = 5326600510.288329 -y predicted = 3860127268.9016337 -error 2.150543767703201e+18 - y tested = 5072151352.996373 -y predicted = 5022133726.152104 -error 2501762995132519.0 - y tested = 7650055845.407672 -y predicted = 4997029142.607499 -error 7.038550685770756e+18 - y tested = 5789616901.049658 -y predicted = 6118700825.560241 -error 1.0829622937128704e+17 - y tested = 8224428196.629629 -y predicted = 6674958438.315824 -error 2.400856531929043e+18 - y tested = 4059018123.5159216 -y predicted = 5186294372.180267 -error 1.27075174080276e+18 - y tested = 5947637003.818383 -y predicted = 3677042563.264417 -error 5.155599113474578e+18 - y tested = 997516184.7000968 -y predicted = 1417714875.3975334 -error 1.7656693966383997e+17 - y tested = 6532788063.289651 -y predicted = 6939020760.682637 -error 1.6502500443118157e+17 - y tested = 1980229389.772511 -y predicted = 3230918331.8832455 -error 1.5642228299180682e+18 - y tested = 5035525633.343237 -y predicted = 5309008207.925203 -error 7.479271859998082e+16 - y tested = 5026691733.102776 -y predicted = 5256455436.015351 -error 5.279135917609836e+16 - y tested = 1014996574.3865615 -y predicted = 1962404379.645702 -error 8.975815494659412e+17 - y tested = 7665772326.561901 -y predicted = 6304777763.807953 -error 1.8523061998458107e+18 - y tested = 3029054692.61153 -y predicted = 4210640922.5933914 -error 1.3961460188827487e+18 - y tested = 4062233415.93208 -y predicted = 4111012491.986011 -error 2379398260675207.5 - y tested = 5822958761.806049 -y predicted = 6004110656.797584 -error 3.2816009059023844e+16 - y tested = 6611133148.221605 -y predicted = 6331299898.669485 -error 7.830664755489918e+16 - y tested = 5377240292.736961 -y predicted = 2966203523.264974 -error 5.813098303745917e+18 -error squared vector [5.370761002988276e+18, 2.150543767703201e+18, 2501762995132519.0, 7.038550685770756e+18, 1.0829622937128704e+17, 2.400856531929043e+18, 1.27075174080276e+18, 5.155599113474578e+18, 1.7656693966383997e+17, 1.6502500443118157e+17, 1.5642228299180682e+18, 7.479271859998082e+16, 5.279135917609836e+16, 8.975815494659412e+17, 1.8523061998458107e+18, 1.3961460188827487e+18, 2379398260675207.5, 3.2816009059023844e+16, 7.830664755489918e+16, 5.813098303745917e+18] -Total loo_error 1.780194690681961e+18 -iteration 87current difference of loo_error 2.275706797034596e+17 - getting loo error of with lamda = 0.06951068340813164, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2300229668.198685 -error 5.291056526078061e+18 - y tested = 5326600510.288329 -y predicted = 3863394720.1886697 -error 2.1409711841811686e+18 - y tested = 5072151352.996373 -y predicted = 5010161608.647049 -error 3842728404494575.0 - y tested = 7650055845.407672 -y predicted = 5015788309.718508 -error 6.939365449585862e+18 - y tested = 5789616901.049658 -y predicted = 6115367872.779161 -error 1.0611369558271587e+17 - y tested = 8224428196.629629 -y predicted = 6692799108.594314 -error 2.345887663315892e+18 - y tested = 4059018123.5159216 -y predicted = 5184948739.957282 -error 1.267719753040022e+18 - y tested = 5947637003.818383 -y predicted = 3686830013.5493116 -error 5.111248247249498e+18 - y tested = 997516184.7000968 -y predicted = 1396191464.5564194 -error 1.589419787685171e+17 - y tested = 6532788063.289651 -y predicted = 6941108380.785849 -error 1.6672548168019568e+17 - y tested = 1980229389.772511 -y predicted = 3231793703.6940484 -error 1.5664132318818885e+18 - y tested = 5035525633.343237 -y predicted = 5309799219.651773 -error 7.522600014654624e+16 - y tested = 5026691733.102776 -y predicted = 5258436557.807191 -error 5.3705663777280184e+16 - y tested = 1014996574.3865615 -y predicted = 1944992691.5087693 -error 8.648927778623832e+17 - y tested = 7665772326.561901 -y predicted = 6314466501.654324 -error 1.8260274324291484e+18 - y tested = 3029054692.61153 -y predicted = 4221206203.492248 -error 1.4212252248951793e+18 - y tested = 4062233415.93208 -y predicted = 4121868757.6141057 -error 3556373977531977.0 - y tested = 5822958761.806049 -y predicted = 6006764615.916678 -error 3.378459200533786e+16 - y tested = 6611133148.221605 -y predicted = 6332399440.533119 -error 7.769247980177042e+16 - y tested = 5377240292.736961 -y predicted = 2968249750.3287053 -error 5.803235433412424e+18 -error squared vector [5.291056526078061e+18, 2.1409711841811686e+18, 3842728404494575.0, 6.939365449585862e+18, 1.0611369558271587e+17, 2.345887663315892e+18, 1.267719753040022e+18, 5.111248247249498e+18, 1.589419787685171e+17, 1.6672548168019568e+17, 1.5664132318818885e+18, 7.522600014654624e+16, 5.3705663777280184e+16, 8.648927778623832e+17, 1.8260274324291484e+18, 1.4212252248951793e+18, 3556373977531977.0, 3.378459200533786e+16, 7.769247980177042e+16, 5.803235433412424e+18] -Total loo_error 1.7628815959037957e+18 -iteration 88current difference of loo_error 2.1025758492529434e+17 - getting loo error of with lamda = 0.06749018997817083, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2283112975.0665064 -error 5.212604856536515e+18 - y tested = 5326600510.288329 -y predicted = 3866650193.81877 -error 2.131454926559566e+18 - y tested = 5072151352.996373 -y predicted = 4998178641.899655 -error 5471961986998482.0 - y tested = 7650055845.407672 -y predicted = 5034483202.776854 -error 6.841220248878763e+18 - y tested = 5789616901.049658 -y predicted = 6112032395.79726 -error 1.0395175125334126e+17 - y tested = 8224428196.629629 -y predicted = 6710602781.583639 -error 2.291667387239164e+18 - y tested = 4059018123.5159216 -y predicted = 5183570976.570984 -error 1.2646191193142804e+18 - y tested = 5947637003.818383 -y predicted = 3696593900.1634507 -error 5.067195054512431e+18 - y tested = 997516184.7000968 -y predicted = 1374876624.644843 -error 1.4240090163529245e+17 - y tested = 6532788063.289651 -y predicted = 6942904321.909581 -error 1.6819534558440954e+17 - y tested = 1980229389.772511 -y predicted = 3232820509.0282755 -error 1.5689845120384087e+18 - y tested = 5035525633.343237 -y predicted = 5310483751.491063 -error 7.560196673539395e+16 - y tested = 5026691733.102776 -y predicted = 5260360854.542502 -error 5.460125831441381e+16 - y tested = 1014996574.3865615 -y predicted = 1927751170.39682 -error 8.331209525378502e+17 - y tested = 7665772326.561901 -y predicted = 6324131623.333095 -error 1.7999997765602865e+18 - y tested = 3029054692.61153 -y predicted = 4231764250.0178823 -error 1.4465102794765844e+18 - y tested = 4062233415.93208 -y predicted = 4132811002.079425 -error 4981195666385914.0 - y tested = 5822958761.806049 -y predicted = 6009435100.478269 -error 3.4773424884596224e+16 - y tested = 6611133148.221605 -y predicted = 6333418842.676205 -error 7.712523550456413e+16 - y tested = 5377240292.736961 -y predicted = 2970309107.725285 -error 5.793317729381712e+18 -error squared vector [5.212604856536515e+18, 2.131454926559566e+18, 5471961986998482.0, 6.841220248878763e+18, 1.0395175125334126e+17, 2.291667387239164e+18, 1.2646191193142804e+18, 5.067195054512431e+18, 1.4240090163529245e+17, 1.6819534558440954e+17, 1.5689845120384087e+18, 7.560196673539395e+16, 5.460125831441381e+16, 8.331209525378502e+17, 1.7999997765602865e+18, 1.4465102794765844e+18, 4981195666385914.0, 3.4773424884596224e+16, 7.712523550456413e+16, 5.793317729381712e+18] -Total loo_error 1.7458898942300477e+18 -iteration 89current difference of loo_error 1.9326588325154637e+17 - getting loo error of with lamda = 0.06553092362184519, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2266145515.9895425 -error 5.135415499261818e+18 - y tested = 5326600510.288329 -y predicted = 3869891134.701128 -error 2.1220022049236534e+18 - y tested = 5072151352.996373 -y predicted = 4986191083.311844 -error 7389167964237008.0 - y tested = 7650055845.407672 -y predicted = 5053106799.978029 -error 6.744144344557933e+18 - y tested = 5789616901.049658 -y predicted = 6108702194.869161 -error 1.0181542473187845e+17 - y tested = 8224428196.629629 -y predicted = 6728362491.69224 -error 2.238212593489808e+18 - y tested = 4059018123.5159216 -y predicted = 5182162936.833269 -error 1.2614542716816594e+18 - y tested = 5947637003.818383 -y predicted = 3706325971.6987414 -error 5.023475142701214e+18 - y tested = 997516184.7000968 -y predicted = 1353774713.3365405 -error 1.2692013922620371e+17 - y tested = 6532788063.289651 -y predicted = 6944412755.601403 -error 1.6943488732074477e+17 - y tested = 1980229389.772511 -y predicted = 3233998676.3042865 -error 1.5719374238503972e+18 - y tested = 5035525633.343237 -y predicted = 5311061418.283201 -error 7.591996878248226e+16 - y tested = 5026691733.102776 -y predicted = 5262229255.99766 -error 5.5477924691458056e+16 - y tested = 1014996574.3865615 -y predicted = 1910682347.922005 -error 8.022530049137856e+17 - y tested = 7665772326.561901 -y predicted = 6333772725.476499 -error 1.7742229372916713e+18 - y tested = 3029054692.61153 -y predicted = 4242311627.5066853 -error 1.4719923900711875e+18 - y tested = 4062233415.93208 -y predicted = 4143835857.21183 -error 6658958422815103.0 - y tested = 5822958761.806049 -y predicted = 6012129338.98696 -error 3.5785507270959028e+16 - y tested = 6611133148.221605 -y predicted = 6334361968.904503 -error 7.660228570057966e+16 - y tested = 5377240292.736961 -y predicted = 2972377794.424946 -error 5.783363635787509e+18 -error squared vector [5.135415499261818e+18, 2.1220022049236534e+18, 7389167964237008.0, 6.744144344557933e+18, 1.0181542473187845e+17, 2.238212593489808e+18, 1.2614542716816594e+18, 5.023475142701214e+18, 1.2692013922620371e+17, 1.6943488732074477e+17, 1.5719374238503972e+18, 7.591996878248226e+16, 5.5477924691458056e+16, 8.022530049137856e+17, 1.7742229372916713e+18, 1.4719923900711875e+18, 6658958422815103.0, 3.5785507270959028e+16, 7.660228570057966e+16, 5.783363635787509e+18] -Total loo_error 1.7292238856320996e+18 -iteration 90current difference of loo_error 1.765998746535982e+17 - getting loo error of with lamda = 0.063631028973287, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2249332461.400408 -error 5.059496521534727e+18 - y tested = 5326600510.288329 -y predicted = 3873115082.722297 -error 2.1126198881468106e+18 - y tested = 5072151352.996373 -y predicted = 4974204968.429514 -error 9593494249719082.0 - y tested = 7650055845.407672 -y predicted = 5071652192.229098 -error 6.648165398724614e+18 - y tested = 5789616901.049658 -y predicted = 6105384849.070185 -error 9.970939699709418e+16 - y tested = 8224428196.629629 -y predicted = 6746071215.602459 -error 2.1855393633517688e+18 - y tested = 4059018123.5159216 -y predicted = 5180726439.974058 -error 1.258229547211347e+18 - y tested = 5947637003.818383 -y predicted = 3716018157.297551 -error 4.980122676146969e+18 - y tested = 997516184.7000968 -y predicted = 1332889842.3244689 -error 1.1247549022834949e+17 - y tested = 6532788063.289651 -y predicted = 6945637842.683899 -error 1.7044494034587923e+17 - y tested = 1980229389.772511 -y predicted = 3235328047.185309 -error 1.5752726398394079e+18 - y tested = 5035525633.343237 -y predicted = 5311531911.543315 -error 7.617946560585886e+16 - y tested = 5026691733.102776 -y predicted = 5264042720.815069 -error 5.633549136800136e+16 - y tested = 1014996574.3865615 -y predicted = 1893788574.906138 -error 7.722753801771992e+17 - y tested = 7665772326.561901 -y predicted = 6343389254.503325 -error 1.748696989267076e+18 - y tested = 3029054692.61153 -y predicted = 4252845019.0336385 -error 1.4976627630443313e+18 - y tested = 4062233415.93208 -y predicted = 4154939986.110773 -error 8594508154296985.0 - y tested = 5822958761.806049 -y predicted = 6014854405.310097 -error 3.682393799583245e+16 - y tested = 6611133148.221605 -y predicted = 6335232618.393995 -error 7.612110235915592e+16 - y tested = 5377240292.736961 -y predicted = 2974452078.7475877 -error 5.773391201286244e+18 -error squared vector [5.059496521534727e+18, 2.1126198881468106e+18, 9593494249719082.0, 6.648165398724614e+18, 9.970939699709418e+16, 2.1855393633517688e+18, 1.258229547211347e+18, 4.980122676146969e+18, 1.1247549022834949e+17, 1.7044494034587923e+17, 1.5752726398394079e+18, 7.617946560585886e+16, 5.633549136800136e+16, 7.722753801771992e+17, 1.748696989267076e+18, 1.4976627630443313e+18, 8594508154296985.0, 3.682393799583245e+16, 7.612110235915592e+16, 5.773391201286244e+18] -Total loo_error 1.7128875098017341e+18 -iteration 91current difference of loo_error 1.6026349882323277e+17 - getting loo error of with lamda = 0.06178870688983663, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2232678789.7539897 -error 4.984854577845226e+18 - y tested = 5326600510.288329 -y predicted = 3876319674.531996 -error 2.1033145025620887e+18 - y tested = 5072151352.996373 -y predicted = 4962226109.038463 -error 1.2083559259206148e+16 - y tested = 7650055845.407672 -y predicted = 5090112591.53785 -error 6.553309463033609e+18 - y tested = 5789616901.049658 -y predicted = 6102087710.667434 -error 9.763800686318837e+16 - y tested = 8224428196.629629 -y predicted = 6763721893.225356 -error 2.133662904804976e+18 - y tested = 4059018123.5159216 -y predicted = 5179263268.878375 -error 1.2549491857081444e+18 - y tested = 5947637003.818383 -y predicted = 3725662579.6608124 -error 4.937170341610369e+18 - y tested = 997516184.7000968 -y predicted = 1312225876.5986161 -error 9.904219017486093e+16 - y tested = 6532788063.289651 -y predicted = 6946583729.285859 -error 1.7122685319724547e+17 - y tested = 1980229389.772511 -y predicted = 3236808373.692051 -error 1.5789907428282634e+18 - y tested = 5035525633.343237 -y predicted = 5311895001.704531 -error 7.63800277684205e+16 - y tested = 5026691733.102776 -y predicted = 5265802235.829615 -error 5.717383251428171e+16 - y tested = 1014996574.3865615 -y predicted = 1877072023.3513324 -error 7.431740797078113e+17 - y tested = 7665772326.561901 -y predicted = 6352980513.077072 -error 1.723422345552786e+18 - y tested = 3029054692.61153 -y predicted = 4263361227.3572574 -error 1.523512621716006e+18 - y tested = 4062233415.93208 -y predicted = 4166120083.949553 -error 1.0792439791772694e+16 - y tested = 5822958761.806049 -y predicted = 6017617208.319382 -error 3.789191079898388e+16 - y tested = 6611133148.221605 -y predicted = 6336034522.926148 -error 7.567925363945019e+16 - y tested = 5377240292.736961 -y predicted = 2976528302.415535 -error 5.763418060473064e+18 -error squared vector [4.984854577845226e+18, 2.1033145025620887e+18, 1.2083559259206148e+16, 6.553309463033609e+18, 9.763800686318837e+16, 2.133662904804976e+18, 1.2549491857081444e+18, 4.937170341610369e+18, 9.904219017486093e+16, 1.7122685319724547e+17, 1.5789907428282634e+18, 7.63800277684205e+16, 5.717383251428171e+16, 7.431740797078113e+17, 1.723422345552786e+18, 1.523512621716006e+18, 1.0792439791772694e+16, 3.789191079898388e+16, 7.567925363945019e+16, 5.763418060473064e+18] -Total loo_error 1.696884344992488e+18 -iteration 92current difference of loo_error 1.4426033401398656e+17 - getting loo error of with lamda = 0.060002212748309, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2216189282.892696 -error 4.911494937239076e+18 - y tested = 5326600510.288329 -y predicted = 3879502644.997696 -error 2.0940922317287076e+18 - y tested = 5072151352.996373 -y predicted = 4950260091.875828 -error 1.485747953755698e+16 - y tested = 7650055845.407672 -y predicted = 5108481338.993871 -error 6.459600971652557e+18 - y tested = 5789616901.049658 -y predicted = 6098817899.984421 -error 9.560525774225528e+16 - y tested = 8224428196.629629 -y predicted = 6781307448.444417 -error 2.0825974938426465e+18 - y tested = 4059018123.5159216 -y predicted = 5177775169.444251 -error 1.2516173278142822e+18 - y tested = 5947637003.818383 -y predicted = 3735251567.1725545 -error 4.894649320282554e+18 - y tested = 997516184.7000968 -y predicted = 1291786434.3300426 -error 8.65949798172706e+16 - y tested = 6532788063.289651 -y predicted = 6947254543.283892 -error 1.717824630388164e+17 - y tested = 1980229389.772511 -y predicted = 3238439315.264001 -error 1.5830922166053005e+18 - y tested = 5035525633.343237 -y predicted = 5312150540.11064 -error 7.65213390440742e+16 - y tested = 5026691733.102776 -y predicted = 5267508815.274804 -error 5.7992867065849544e+16 - y tested = 1014996574.3865615 -y predicted = 1860534688.8249354 -error 7.149347029680008e+17 - y tested = 7665772326.561901 -y predicted = 6362545666.707573 -error 1.6983997269550687e+18 - y tested = 3029054692.61153 -y predicted = 4273857176.4467325 -error 1.5495332237622902e+18 - y tested = 4062233415.93208 -y predicted = 4177372878.460639 -error 1.325709583136549e+16 - y tested = 5822958761.806049 -y predicted = 6020424481.983432 -error 3.899271064517231e+16 - y tested = 6611133148.221605 -y predicted = 6336771344.097658 -error 7.527439956214714e+16 - y tested = 5377240292.736961 -y predicted = 2978602884.3480577 -error 5.753461416922636e+18 -error squared vector [4.911494937239076e+18, 2.0940922317287076e+18, 1.485747953755698e+16, 6.459600971652557e+18, 9.560525774225528e+16, 2.0825974938426465e+18, 1.2516173278142822e+18, 4.894649320282554e+18, 8.65949798172706e+16, 1.717824630388164e+17, 1.5830922166053005e+18, 7.65213390440742e+16, 5.7992867065849544e+16, 7.149347029680008e+17, 1.6983997269550687e+18, 1.5495332237622902e+18, 1.325709583136549e+16, 3.899271064517231e+16, 7.527439956214714e+16, 5.753461416922636e+18] -Total loo_error 1.6812176081028813e+18 -iteration 93current difference of loo_error 1.285935971243799e+17 - getting loo error of with lamda = 0.058269854792888265, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2199868521.8413496 -error 4.839421513021799e+18 - y tested = 5326600510.288329 -y predicted = 3882661828.3396482 -error 2.0849589172276938e+18 - y tested = 5072151352.996373 -y predicted = 4938312277.942775 -error 1.7912898011202746e+16 - y tested = 7650055845.407672 -y predicted = 5126751912.330222 -error 6.367062738684127e+18 - y tested = 5789616901.049658 -y predicted = 6095582300.761343 -error 9.361482582073128e+16 - y tested = 8224428196.629629 -y predicted = 6798820809.566278 -error 2.032356422049594e+18 - y tested = 4059018123.5159216 -y predicted = 5176263850.062836 -error 1.248238013487342e+18 - y tested = 5947637003.818383 -y predicted = 3744777665.124035 -error 4.852589266072902e+18 - y tested = 997516184.7000968 -y predicted = 1271574887.344426 -error 7.510817249509278e+16 - y tested = 6532788063.289651 -y predicted = 6947654391.158814 -error 1.721140699996443e+17 - y tested = 1980229389.772511 -y predicted = 3240220435.785457 -error 1.5875774360327982e+18 - y tested = 5035525633.343237 -y predicted = 5312298460.758418 -error 7.660319799539365e+16 - y tested = 5026691733.102776 -y predicted = 5269163499.874703 -error 5.879255768150017e+16 - y tested = 1014996574.3865615 -y predicted = 1844178393.2338264 -error 6.875424887068584e+17 - y tested = 7665772326.561901 -y predicted = 6372083750.472283 -error 1.6736301319047826e+18 - y tested = 3029054692.61153 -y predicted = 4284329912.594372 -error 1.5757158779029724e+18 - y tested = 4062233415.93208 -y predicted = 4188695130.1195593 -error 1.5992565155235752e+16 - y tested = 5822958761.806049 -y predicted = 6023282775.92978 -error 4.012971063464464e+16 - y tested = 6611133148.221605 -y predicted = 6337446670.518704 -error 7.490428807742046e+16 - y tested = 5377240292.736961 -y predicted = 2980672324.2020698 -error 5.743538027807457e+18 -error squared vector [4.839421513021799e+18, 2.0849589172276938e+18, 1.7912898011202746e+16, 6.367062738684127e+18, 9.361482582073128e+16, 2.032356422049594e+18, 1.248238013487342e+18, 4.852589266072902e+18, 7.510817249509278e+16, 1.721140699996443e+17, 1.5875774360327982e+18, 7.660319799539365e+16, 5.879255768150017e+16, 6.875424887068584e+17, 1.6736301319047826e+18, 1.5757158779029724e+18, 1.5992565155235752e+16, 4.012971063464464e+16, 7.490428807742046e+16, 5.743538027807457e+18] -Total loo_error 1.6658901559384594e+18 -iteration 94current difference of loo_error 1.1326614495995802e+17 - getting loo error of with lamda = 0.05658999253308634, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0000-2200' +--- Neighbour 0 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [1.] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 25 in the X datas point +-------------- + --- Configuration: 0000-3300 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5789616901.049658 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 9 in the X datas point +-------------- + --- Configuration: 0010-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6532788063.289651 + --- Energy: 42.64544340651106 + --- Workload: 278594000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 24 in the X datas point +-------------- + --- Configuration: 0000-3000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3307720550.5370083 + --- Energy: 35.59789292409111 + --- Workload: 117748000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 26 in the X datas point +-------------- + --- Configuration: 0000-3330 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 7665772326.561901 + --- Energy: 48.682465076838824 + --- Workload: 373189000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0000-2200' +--- Neighbour 0 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 24 in the X datas point +-------------- + --- Configuration: 0000-3000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3307720550.5370083 + --- Energy: 35.59789292409111 + --- Workload: 117748000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 25 in the X datas point +-------------- + --- Configuration: 0000-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5789616901.049658 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 9 in the X datas point +-------------- + --- Configuration: 0010-3300 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6532788063.289651 + --- Energy: 42.64544340651106 + --- Workload: 278594000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 26 in the X datas point +-------------- + --- Configuration: 0000-3330 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 7665772326.561901 + --- Energy: 48.682465076838824 + --- Workload: 373189000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 25 in the X datas point +-------------- + --- Configuration: 0000-3300 + --- Energy efficiency: 5789616901.049658 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (42.05795824330537 mAh) it is NOT far from the median. +--- Median :42.05795824330537, the gap is : 10 +--- So No we don't romove this configuration '0000-2200' + --- remove_aberrant_points: The value [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0] +--- Computing the list of the 10 first neighbours of '1001-2220' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2183720883.0362926 -error 4.768636894644851e+18 - y tested = 5326600510.288329 -y predicted = 3885795158.9595633 -error 2.0759200604176084e+18 - y tested = 5072151352.996373 -y predicted = 4926387802.403882 -error 2.124701268132973e+16 - y tested = 7650055845.407672 -y predicted = 5144917933.056867 -error 6.275715959897351e+18 - y tested = 5789616901.049658 -y predicted = 6092387556.012417 -error 9.167006950657806e+16 - y tested = 8224428196.629629 -y predicted = 6816254929.3976145 -error 1.982951950546887e+18 - y tested = 4059018123.5159216 -y predicted = 5174730981.220259 -error 1.2448151808467784e+18 - y tested = 5947637003.818383 -y predicted = 3754233646.024724 -error 4.811018289980499e+18 - y tested = 997516184.7000968 -y predicted = 1251594362.1661677 -error 6.4555720264480216e+16 - y tested = 6532788063.289651 -y predicted = 6947787355.269831 -error 1.7222441234405053e+17 - y tested = 1980229389.772511 -y predicted = 3242151200.5935316 -error 1.5924466566258038e+18 - y tested = 5035525633.343237 -y predicted = 5312338781.7911825 -error 7.662551915366437e+16 - y tested = 5026691733.102776 -y predicted = 5270767355.826728 -error 5.9572909608085096e+16 - y tested = 1014996574.3865615 -y predicted = 1828004787.9640253 -error 6.60982355344419e+17 - y tested = 7665772326.561901 -y predicted = 6381593675.835842 -error 1.6491148069806013e+18 - y tested = 3029054692.61153 -y predicted = 4294776605.115877 -error 1.6020519597936627e+18 - y tested = 4062233415.93208 -y predicted = 4200083632.0476847 -error 1.9002682083118972e+16 - y tested = 5822958761.806049 -y predicted = 6026198446.489293 -error 4.1306369430144344e+16 - y tested = 6611133148.221605 -y predicted = 6338064015.014355 -error 7.456675151055917e+16 - y tested = 5377240292.736961 -y predicted = 2982733205.6637955 -error 5.733664190043618e+18 -error squared vector [4.768636894644851e+18, 2.0759200604176084e+18, 2.124701268132973e+16, 6.275715959897351e+18, 9.167006950657806e+16, 1.982951950546887e+18, 1.2448151808467784e+18, 4.811018289980499e+18, 6.4555720264480216e+16, 1.7222441234405053e+17, 1.5924466566258038e+18, 7.662551915366437e+16, 5.9572909608085096e+16, 6.60982355344419e+17, 1.6491148069806013e+18, 1.6020519597936627e+18, 1.9002682083118972e+16, 4.1306369430144344e+16, 7.456675151055917e+16, 5.733664190043618e+18] -Total loo_error 1.6509044875852045e+18 -iteration 95current difference of loo_error 9.82804766067031e+16 - getting loo error of with lamda = 0.05496103519024811, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2167750534.9930577 -error 4.699142381601396e+18 - y tested = 5326600510.288329 -y predicted = 3888900671.975722 -error 2.066980825084097e+18 - y tested = 5072151352.996373 -y predicted = 4914491575.054639 -error 2.4856605580636972e+16 - y tested = 7650055845.407672 -y predicted = 5162973173.158501 -error 6.185580218602078e+18 - y tested = 5789616901.049658 -y predicted = 6089240064.380039 -error 8.97740400041044e+16 - y tested = 8224428196.629629 -y predicted = 6833602804.87285 -error 1.9343952703553969e+18 - y tested = 4059018123.5159216 -y predicted = 5173178195.218342 -error 1.2413526653759421e+18 - y tested = 5947637003.818383 -y predicted = 3763612518.9942117 -error 4.769962950311487e+18 - y tested = 997516184.7000968 -y predicted = 1231847741.6101637 -error 5.4911278563895896e+16 - y tested = 6532788063.289651 -y predicted = 6947657491.54723 -error 1.7211664250277037e+17 - y tested = 1980229389.772511 -y predicted = 3244230973.4849916 -error 1.597700003627659e+18 - y tested = 5035525633.343237 -y predicted = 5312271606.745303 -error 7.658833379425715e+16 - y tested = 5026691733.102776 -y predicted = 5272321473.681334 -error 6.033396945668969e+16 - y tested = 1014996574.3865615 -y predicted = 1812015357.3594308 -error 6.352389404115537e+17 - y tested = 7665772326.561901 -y predicted = 6391074237.545731 -error 1.6248552181414769e+18 - y tested = 3029054692.61153 -y predicted = 4305194546.645744 -error 1.6285329270544663e+18 - y tested = 4062233415.93208 -y predicted = 4211535209.6549807 -error 2.229102560887564e+16 - y tested = 5822958761.806049 -y predicted = 6029177648.238191 -error 4.252622912131239e+16 - y tested = 6611133148.221605 -y predicted = 6338626811.843042 -error 7.42597033664665e+16 - y tested = 5377240292.736961 -y predicted = 2984782199.496358 -error 5.723855727912464e+18 -error squared vector [4.699142381601396e+18, 2.066980825084097e+18, 2.4856605580636972e+16, 6.185580218602078e+18, 8.97740400041044e+16, 1.9343952703553969e+18, 1.2413526653759421e+18, 4.769962950311487e+18, 5.4911278563895896e+16, 1.7211664250277037e+17, 1.597700003627659e+18, 7.658833379425715e+16, 6.033396945668969e+16, 6.352389404115537e+17, 1.6248552181414769e+18, 1.6285329270544663e+18, 2.229102560887564e+16, 4.252622912131239e+16, 7.42597033664665e+16, 5.723855727912464e+18] -Total loo_error 1.6362627478238513e+18 -iteration 96current difference of loo_error 8.363873684534989e+16 - getting loo error of with lamda = 0.05338144019113225, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2151961435.4153914 -error 4.630938019156411e+18 - y tested = 5326600510.288329 -y predicted = 3891976503.4776945 -error 2.0581460409173998e+18 - y tested = 5072151352.996373 -y predicted = 4902628281.338366 -error 2.8738071824365988e+16 - y tested = 7650055845.407672 -y predicted = 5180911561.350431 -error 6.096673495492542e+18 - y tested = 5789616901.049658 -y predicted = 6086145976.983323 -error 8.792949287407342e+16 - y tested = 8224428196.629629 -y predicted = 6850857496.159089 -error 1.88669646919113e+18 - y tested = 4059018123.5159216 -y predicted = 5171607086.013242 -error 1.2378541994708634e+18 - y tested = 5947637003.818383 -y predicted = 3772907538.2312407 -error 4.729448248492938e+18 - y tested = 997516184.7000968 -y predicted = 1212337666.8990662 -error 4.614826921416211e+16 - y tested = 6532788063.289651 -y predicted = 6947268827.60039 -error 1.7179430398361482e+17 - y tested = 1980229389.772511 -y predicted = 3246459013.742185 -error 1.6033374606183823e+18 - y tested = 5035525633.343237 -y predicted = 5312097125.551626 -error 7.649179030237514e+16 - y tested = 5026691733.102776 -y predicted = 5273826967.124369 -error 6.107582389490758e+16 - y tested = 1014996574.3865615 -y predicted = 1796211422.5122344 -error 6.102966389320182e+17 - y tested = 7665772326.561901 -y predicted = 6400524120.585434 -error 1.6008530227266685e+18 - y tested = 3029054692.61153 -y predicted = 4315581153.033426 -error 1.6551503333656934e+18 - y tested = 4062233415.93208 -y predicted = 4223046720.044428 -error 2.5860918779530548e+16 - y tested = 5822958761.806049 -y predicted = 6032226326.045922 -error 4.379291344288934e+16 - y tested = 6611133148.221605 -y predicted = 6339138413.949662 -error 7.398113547166493e+16 - y tested = 5377240292.736961 -y predicted = 2986816066.3514423 -error 5.714127982090807e+18 -error squared vector [4.630938019156411e+18, 2.0581460409173998e+18, 2.8738071824365988e+16, 6.096673495492542e+18, 8.792949287407342e+16, 1.88669646919113e+18, 1.2378541994708634e+18, 4.729448248492938e+18, 4.614826921416211e+16, 1.7179430398361482e+17, 1.6033374606183823e+18, 7.649179030237514e+16, 6.107582389490758e+16, 6.102966389320182e+17, 1.6008530227266685e+18, 1.6551503333656934e+18, 2.5860918779530548e+16, 4.379291344288934e+16, 7.398113547166493e+16, 5.714127982090807e+18] -Total loo_error 1.6219667315121219e+18 -iteration 97current difference of loo_error 6.934272053362048e+16 - getting loo error of with lamda = 0.051849711707141116, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2136357328.7460904 -error 4.564022635731072e+18 - y tested = 5326600510.288329 -y predicted = 3895020890.5153756 -error 2.049420207749274e+18 - y tested = 5072151352.996373 -y predicted = 4890802383.890772 -error 3.288744859566434e+16 - y tested = 7650055845.407672 -y predicted = 5198727188.888345 -error 6.00901218227285e+18 - y tested = 5789616901.049658 -y predicted = 6083111194.75882 -error 8.613890043983971e+16 - y tested = 8224428196.629629 -y predicted = 6868012145.169893 -error 1.8398645046576207e+18 - y tested = 4059018123.5159216 -y predicted = 5170019209.166712 -error 1.2343234123172344e+18 - y tested = 5947637003.818383 -y predicted = 3782112210.5650597 -error 4.68949763019485e+18 - y tested = 997516184.7000968 -y predicted = 1193066540.2798295 -error 3.823994156735988e+16 - y tested = 6532788063.289651 -y predicted = 6946625361.238565 -error 1.7126130917365866e+17 - y tested = 1980229389.772511 -y predicted = 3248834473.1973615 -error 1.6093588576913718e+18 - y tested = 5035525633.343237 -y predicted = 5311815615.296536 -error 7.633615412775458e+16 - y tested = 5026691733.102776 -y predicted = 5275284971.667951 -error 6.179859826032204e+16 - y tested = 1014996574.3865615 -y predicted = 1780594145.3376236 -error 5.861396406461665e+17 - y tested = 7665772326.561901 -y predicted = 6409941907.16472 -error 1.5771100422833009e+18 - y tested = 3029054692.61153 -y predicted = 4325933962.850931 -error 1.6818958415766822e+18 - y tested = 4062233415.93208 -y predicted = 4234615051.2004647 -error 2.9715428177802492e+16 - y tested = 5822958761.806049 -y predicted = 6035350207.637757 -error 4.5110126262483336e+16 - y tested = 6611133148.221605 -y predicted = 6339602090.268711 -error 7.3729115433018e+16 - y tested = 5377240292.736961 -y predicted = 2988831659.351063 -error 5.704495800032296e+18 -error squared vector [4.564022635731072e+18, 2.049420207749274e+18, 3.288744859566434e+16, 6.00901218227285e+18, 8.613890043983971e+16, 1.8398645046576207e+18, 1.2343234123172344e+18, 4.68949763019485e+18, 3.823994156735988e+16, 1.7126130917365866e+17, 1.6093588576913718e+18, 7.633615412775458e+16, 6.179859826032204e+16, 5.861396406461665e+17, 1.5771100422833009e+18, 1.6818958415766822e+18, 2.9715428177802492e+16, 4.5110126262483336e+16, 7.3729115433018e+16, 5.704495800032296e+18] -Total loo_error 1.608017888859531e+18 -iteration 98current difference of loo_error 5.539387788102963e+16 - getting loo error of with lamda = 0.05036439923781638, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2120941744.1597397 -error 4.498393881765869e+18 - y tested = 5326600510.288329 -y predicted = 3898032170.834368 -error 2.0408075004902472e+18 - y tested = 5072151352.996373 -y predicted = 4879018124.58991 -error 3.730044391470325e+16 - y tested = 7650055845.407672 -y predicted = 5216414314.92928 -error 5.922611098869208e+18 - y tested = 5789616901.049658 -y predicted = 6080141366.287107 -error 8.440446490150608e+16 - y tested = 8224428196.629629 -y predicted = 6885059993.423005 -error 1.7939071837609405e+18 - y tested = 4059018123.5159216 -y predicted = 5168416081.905143 -error 1.2307638300781722e+18 - y tested = 5947637003.818383 -y predicted = 3791220302.0934877 -error 4.650132991478076e+18 - y tested = 997516184.7000968 -y predicted = 1174036528.113289 -error 3.1159431638711332e+16 - y tested = 6532788063.289651 -y predicted = 6945731059.395906 -error 1.7052191803321098e+17 - y tested = 1980229389.772511 -y predicted = 3251356393.356393 -error 1.615763859240138e+18 - y tested = 5035525633.343237 -y predicted = 5311427440.745477 -error 7.612180732782262e+16 - y tested = 5026691733.102776 -y predicted = 5276696643.255459 -error 6.250245510045123e+16 - y tested = 1014996574.3865615 -y predicted = 1765164532.9046776 -error 5.6275196598723795e+17 - y tested = 7665772326.561901 -y predicted = 6419326083.730101 -error 1.5536282362695117e+18 - y tested = 3029054692.61153 -y predicted = 4336250636.5217285 -error 1.7087612357752753e+18 - y tested = 4062233415.93208 -y predicted = 4246237120.9845123 -error 3.3857363473022588e+16 - y tested = 5822958761.806049 -y predicted = 6038554796.678923 -error 4.64816502529052e+16 - y tested = 6611133148.221605 -y predicted = 6340021023.094118 -error 7.350178439114227e+16 - y tested = 5377240292.736961 -y predicted = 2990825926.4480014 -error 5.694973527630338e+18 -error squared vector [4.498393881765869e+18, 2.0408075004902472e+18, 3.730044391470325e+16, 5.922611098869208e+18, 8.440446490150608e+16, 1.7939071837609405e+18, 1.2307638300781722e+18, 4.650132991478076e+18, 3.1159431638711332e+16, 1.7052191803321098e+17, 1.615763859240138e+18, 7.612180732782262e+16, 6.250245510045123e+16, 5.6275196598723795e+17, 1.5536282362695117e+18, 1.7087612357752753e+18, 3.3857363473022588e+16, 4.64816502529052e+16, 7.350178439114227e+16, 5.694973527630338e+18] -Total loo_error 1.5944173315189248e+18 -iteration 99current difference of loo_error 4.179332054042342e+16 - getting loo error of with lamda = 0.04892409623725906, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2105717993.9960766 -error 4.4340482698879084e+18 - y tested = 5326600510.288329 -y predicted = 3901008782.3731685 -error 2.0323117747001334e+18 - y tested = 5072151352.996373 -y predicted = 4867279527.087403 -error 4.197246505127526e+16 - y tested = 7650055845.407672 -y predicted = 5233967371.442493 -error 5.837483514027385e+18 - y tested = 5789616901.049658 -y predicted = 6077241886.101335 -error 8.272813202597728e+16 - y tested = 8224428196.629629 -y predicted = 6901994399.182257 -error 1.7488311486310781e+18 - y tested = 4059018123.5159216 -y predicted = 5166799183.280508 -error 1.2271788763731502e+18 - y tested = 5947637003.818383 -y predicted = 3800225843.921267 -error 4.611374689650678e+18 - y tested = 997516184.7000968 -y predicted = 1155249564.408176 -error 2.487981907413306e+16 - y tested = 6532788063.289651 -y predicted = 6944589857.454958 -error 1.6958071767776592e+17 - y tested = 1980229389.772511 -y predicted = 3254023702.603732 -error 1.6225519514011628e+18 - y tested = 5035525633.343237 -y predicted = 5310933054.63426 -error 7.584924770217117e+16 - y tested = 5026691733.102776 -y predicted = 5278063156.787308 -error 6.318759264518858e+16 - y tested = 1014996574.3865615 -y predicted = 1749923441.9939814 -error 5.40117500731254e+17 - y tested = 7665772326.561901 -y predicted = 6428675047.9774275 -error 1.5304096766811108e+18 - y tested = 3029054692.61153 -y predicted = 4346528955.083136 -error 1.7357384322751017e+18 - y tested = 4062233415.93208 -y predicted = 4257909875.9612885 -error 3.82892770095625e+16 - y tested = 5822958761.806049 -y predicted = 6041845366.383621 -error 4.79113456634983e+16 - y tested = 6611133148.221605 -y predicted = 6340398305.533575 -error 7.329735504531248e+16 - y tested = 5377240292.736961 -y predicted = 2992795912.573482 -error 5.685575002093199e+18 -error squared vector [4.4340482698879084e+18, 2.0323117747001334e+18, 4.197246505127526e+16, 5.837483514027385e+18, 8.272813202597728e+16, 1.7488311486310781e+18, 1.2271788763731502e+18, 4.611374689650678e+18, 2.487981907413306e+16, 1.6958071767776592e+17, 1.6225519514011628e+18, 7.584924770217117e+16, 6.318759264518858e+16, 5.40117500731254e+17, 1.5304096766811108e+18, 1.7357384322751017e+18, 3.82892770095625e+16, 4.79113456634983e+16, 7.329735504531248e+16, 5.685575002093199e+18] -Total loo_error 1.5811658394173524e+18 -iteration 100current difference of loo_error 2.854182843885107e+16 - getting loo error of with lamda = 0.04752743878217317, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2090689172.6305845 -error 4.37098121620631e+18 - y tested = 5326600510.288329 -y predicted = 3903949262.5345697 -error 2.0239365727353285e+18 - y tested = 5072151352.996373 -y predicted = 4855590399.795997 -error 4.689864645105566e+16 - y tested = 7650055845.407672 -y predicted = 5251380967.6700115 -error 5.75364116908978e+18 - y tested = 5789616901.049658 -y predicted = 6074417893.467957 -error 8.111160528244784e+16 - y tested = 8224428196.629629 -y predicted = 6918808853.82887 -error 1.7046418682954867e+18 - y tested = 4059018123.5159216 -y predicted = 5165169954.426916 -error 1.2235718730277455e+18 - y tested = 5947637003.818383 -y predicted = 3809123137.0132565 -error 4.573241558517815e+18 - y tested = 997516184.7000968 -y predicted = 1136707354.7714741 -error 1.937418182583907e+16 - y tested = 6532788063.289651 -y predicted = 6943205658.955801 -error 1.6844260283238346e+17 - y tested = 1980229389.772511 -y predicted = 3256835213.5116434 -error 1.6297224292046687e+18 - y tested = 5035525633.343237 -y predicted = 5310332997.733388 -error 7.551908752306125e+16 - y tested = 5026691733.102776 -y predicted = 5279385704.572306 -error 6.38542432170437e+16 - y tested = 1014996574.3865615 -y predicted = 1734871583.854827 -error 5.1822002925693523e+17 - y tested = 7665772326.561901 -y predicted = 6437987115.851862 -error 1.5074565236382953e+18 - y tested = 3029054692.61153 -y predicted = 4356766818.596697 -error 1.762819489488052e+18 - y tested = 4062233415.93208 -y predicted = 4269630290.079079 -error 4.301346340594629e+16 - y tested = 5822958761.806049 -y predicted = 6045226953.651179 -error 4.9403149106103496e+16 - y tested = 6611133148.221605 -y predicted = 6340736939.063424 -error 7.311410992711486e+16 - y tested = 5377240292.736961 -y predicted = 2994738761.580795 -error 5.676313545961478e+18 -error squared vector [4.37098121620631e+18, 2.0239365727353285e+18, 4.689864645105566e+16, 5.75364116908978e+18, 8.111160528244784e+16, 1.7046418682954867e+18, 1.2235718730277455e+18, 4.573241558517815e+18, 1.937418182583907e+16, 1.6844260283238346e+17, 1.6297224292046687e+18, 7.551908752306125e+16, 6.38542432170437e+16, 5.1822002925693523e+17, 1.5074565236382953e+18, 1.762819489488052e+18, 4.301346340594629e+16, 4.9403149106103496e+16, 7.311410992711486e+16, 5.676313545961478e+18] -Total loo_error 1.5682638682496445e+18 -iteration 101current difference of loo_error 1.5639857271143168e+16 - getting loo error of with lamda = 0.0461731042802717, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2075858155.7789567 -error 4.309187082568035e+18 - y tested = 5326600510.288329 -y predicted = 3906852247.2460213 -error 2.01568513041165e+18 - y tested = 5072151352.996373 -y predicted = 4843954339.307632 -error 5.207387705645933e+16 - y tested = 7650055845.407672 -y predicted = 5268649894.139154 -error 5.671094304737113e+18 - y tested = 5789616901.049658 -y predicted = 6071674271.63247 -error 7.955636030008992e+16 - y tested = 8224428196.629629 -y predicted = 6935496997.4120455 -error 1.6613436363164782e+18 - y tested = 4059018123.5159216 -y predicted = 5163529798.904409 -error 1.2199460410694843e+18 - y tested = 5947637003.818383 -y predicted = 3817906756.1811247 -error 4.5357509277010586e+18 - y tested = 997516184.7000968 -y predicted = 1118411380.7445617 -error 1.4615648426629584e+16 - y tested = 6532788063.289651 -y predicted = 6941582335.680797 -error 1.6711275713980624e+17 - y tested = 1980229389.772511 -y predicted = 3259789620.2750874 -error 1.6372743834838062e+18 - y tested = 5035525633.343237 -y predicted = 5309627898.690583 -error 7.513205186854704e+16 - y tested = 5026691733.102776 -y predicted = 5280665494.711758 -error 6.450267158581606e+16 - y tested = 1014996574.3865615 -y predicted = 1720009529.1321669 -error 4.9704326635912896e+17 - y tested = 7665772326.561901 -y predicted = 6447260528.519259 -error 1.4847710019691116e+18 - y tested = 3029054692.61153 -y predicted = 4366962244.220882 -error 1.7899966166533325e+18 - y tested = 4062233415.93208 -y predicted = 4281395363.2271643 -error 4.8031959142173384e+16 - y tested = 5822958761.806049 -y predicted = 6048704353.731105 -error 5.096107227359369e+16 - y tested = 6611133148.221605 -y predicted = 6341039831.201934 -error 7.295039989868874e+16 - y tested = 5377240292.736961 -y predicted = 2996651717.993999 -error 5.667201962196729e+18 -error squared vector [4.309187082568035e+18, 2.01568513041165e+18, 5.207387705645933e+16, 5.671094304737113e+18, 7.955636030008992e+16, 1.6613436363164782e+18, 1.2199460410694843e+18, 4.5357509277010586e+18, 1.4615648426629584e+16, 1.6711275713980624e+17, 1.6372743834838062e+18, 7.513205186854704e+16, 6.450267158581606e+16, 4.9704326635912896e+17, 1.4847710019691116e+18, 1.7899966166533325e+18, 4.8031959142173384e+16, 5.096107227359369e+16, 7.295039989868874e+16, 5.667201962196729e+18] -Total loo_error 1.5557115575578865e+18 -iteration 102current difference of loo_error 3087546579385088.0 - getting loo error of with lamda = 0.044859810217821795, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2061227600.229291 -error 4.248659219603464e+18 - y tested = 5326600510.288329 -y predicted = 3909716469.821601 -error 2.0075603841293212e+18 - y tested = 5072151352.996373 -y predicted = 4832374734.214254 -error 5.749282691458553e+16 - y tested = 7650055845.407672 -y predicted = 5285769126.229134 -error 5.589851690484016e+18 - y tested = 5789616901.049658 -y predicted = 6069015647.519889 -error 7.806365952913645e+16 - y tested = 8224428196.629629 -y predicted = 6952052633.334893 -error 1.6189395740695964e+18 - y tested = 4059018123.5159216 -y predicted = 5161880083.12268 -error 1.2163045019476585e+18 - y tested = 5947637003.818383 -y predicted = 3826571553.226238 -error 4.498918645695661e+18 - y tested = 997516184.7000968 -y predicted = 1100362904.4953694 -error 1.0577447772647314e+16 - y tested = 6532788063.289651 -y predicted = 6939723728.09931 -error 1.6559663529407914e+17 - y tested = 1980229389.772511 -y predicted = 3262885496.297453 -error 1.6452066876057231e+18 - y tested = 5035525633.343237 -y predicted = 5308818473.6587925 -error 7.468897656774376e+16 - y tested = 5026691733.102776 -y predicted = 5281903749.4209795 -error 6.513317327320318e+16 - y tested = 1014996574.3865615 -y predicted = 1705337712.9356265 -error 4.765708875732193e+17 - y tested = 7665772326.561901 -y predicted = 6456493459.294929 -error 1.4623553788184922e+18 - y tested = 3029054692.61153 -y predicted = 4377113363.962121 -error 1.8172621814035213e+18 - y tested = 4062233415.93208 -y predicted = 4293202119.6951623 -error 5.334654211799856e+16 - y tested = 5822958761.806049 -y predicted = 6052282115.414489 -error 5.258920051022136e+16 - y tested = 6611133148.221605 -y predicted = 6341309793.317017 -error 7.280464285196763e+16 - y tested = 5377240292.736961 -y predicted = 2998532128.570093 -error 5.658252530274113e+18 -error squared vector [4.248659219603464e+18, 2.0075603841293212e+18, 5.749282691458553e+16, 5.589851690484016e+18, 7.806365952913645e+16, 1.6189395740695964e+18, 1.2163045019476585e+18, 4.498918645695661e+18, 1.0577447772647314e+16, 1.6559663529407914e+17, 1.6452066876057231e+18, 7.468897656774376e+16, 6.513317327320318e+16, 4.765708875732193e+17, 1.4623553788184922e+18, 1.8172621814035213e+18, 5.334654211799856e+16, 5.258920051022136e+16, 7.280464285196763e+16, 5.658252530274113e+18] -Total loo_error 1.5435087393218184e+18 -iteration 103current difference of loo_error -9115271656683008.0 - getting loo error of with lamda = 0.004107897492103461, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1435168989.2180412 -error 2.0597100273739395e+18 - y tested = 5326600510.288329 -y predicted = 4019406491.5170703 -error 1.708756202711354e+18 - y tested = 5072151352.996373 -y predicted = 4053487318.934171 -error 1.037676414291879e+18 - y tested = 7650055845.407672 -y predicted = 6099470103.907716 -error 2.404316141742969e+18 - y tested = 5789616901.049658 -y predicted = 6271825623.840124 -error 2.3252525233521277e+17 - y tested = 8224428196.629629 -y predicted = 7765358044.831884 -error 2.107454042716044e+17 - y tested = 4059018123.5159216 -y predicted = 5058211726.706488 -error 9.983878566569464e+17 - y tested = 5947637003.818383 -y predicted = 4069198351.6415367 -error 3.528531769991968e+18 - y tested = 997516184.7000968 -y predicted = 267512554.59823692 -error 5.329052999618931e+17 - y tested = 6532788063.289651 -y predicted = 6168869989.136131 -error 1.3243636469560661e+17 - y tested = 1980229389.772511 -y predicted = 3755747402.3493776 -error 3.152464212984906e+18 - y tested = 5035525633.343237 -y predicted = 4990542076.642759 -error 2023520373425083.2 - y tested = 5026691733.102776 -y predicted = 5344465426.560179 -error 1.0098012025355965e+17 - y tested = 1014996574.3865615 -y predicted = 1003369296.9941847 -error 135193579559276.19 - y tested = 7665772326.561901 -y predicted = 6979055782.20739 -error 4.715796122902014e+17 - y tested = 3029054692.61153 -y predicted = 5095506638.489772 -error 4.270223644623973e+18 - y tested = 4062233415.93208 -y predicted = 5305955533.674591 -error 1.5468447061619172e+18 - y tested = 5822958761.806049 -y predicted = 6855295997.964702 -error 1.0657201691596851e+18 - y tested = 6611133148.221605 -y predicted = 6342762501.670586 -error 7.202280393021233e+16 - y tested = 5377240292.736961 -y predicted = 2953337283.957925 -error 5.875305795968066e+18 -error squared vector [2.0597100273739395e+18, 1.708756202711354e+18, 1.037676414291879e+18, 2.404316141742969e+18, 2.3252525233521277e+17, 2.107454042716044e+17, 9.983878566569464e+17, 3.528531769991968e+18, 5.329052999618931e+17, 1.3243636469560661e+17, 3.152464212984906e+18, 2023520373425083.2, 1.0098012025355965e+17, 135193579559276.19, 4.715796122902014e+17, 4.270223644623973e+18, 1.5468447061619172e+18, 1.0657201691596851e+18, 7.202280393021233e+16, 5.875305795968066e+18] -Total loo_error 1.470164525667944e+18 -iteration 104current difference of loo_error 7.334421365387443e+16 - getting loo error of with lamda = 0.043624903771587904, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2047240685.0228653 -error 4.191194422071684e+18 - y tested = 5326600510.288329 -y predicted = 3912454491.856826 -error 1.9998089614456737e+18 - y tested = 5072151352.996373 -y predicted = 4821208199.207814 -error 6.297246643334835e+16 - y tested = 7650055845.407672 -y predicted = 5302214350.640895 -error 5.512359684548694e+18 - y tested = 5789616901.049658 -y predicted = 6066524047.863179 -error 7.667756795640509e+16 - y tested = 8224428196.629629 -y predicted = 6967966882.186536 -error 1.5786950346920658e+18 - y tested = 4059018123.5159216 -y predicted = 5160273244.4173565 -error 1.212762841311634e+18 - y tested = 5947637003.818383 -y predicted = 3834851828.3267436 -error 4.4638611977772385e+18 - y tested = 997516184.7000968 -y predicted = 1083106777.5304084 -error 7325749581044177.0 - y tested = 6532788063.289651 -y predicted = 6937701349.537875 -error 1.639547693803364e+17 - y tested = 1980229389.772511 -y predicted = 3266019690.7431636 -error 1.6532566980702013e+18 - y tested = 5035525633.343237 -y predicted = 5307935142.259077 -error 7.42069405477692e+16 - y tested = 5026691733.102776 -y predicted = 5283065443.395199 -error 6.572747932910337e+16 - y tested = 1014996574.3865615 -y predicted = 1691299034.6649723 -error 4.573850177786314e+17 - y tested = 7665772326.561901 -y predicted = 6465401973.683018 -error 1.4408889840705748e+18 - y tested = 3029054692.61153 -y predicted = 4386908298.339002 -error 1.8437664145870966e+18 - y tested = 4062233415.93208 -y predicted = 4304682696.403122 -error 5.878165360092606e+16 - y tested = 5822958761.806049 -y predicted = 6055849666.877237 -error 5.423817366487709e+16 - y tested = 6611133148.221605 -y predicted = 6341542588.743576 -error 7.267906975967683e+16 - y tested = 5377240292.736961 -y predicted = 3000321230.014085 -error 5.649744230735398e+18 -error squared vector [4.191194422071684e+18, 1.9998089614456737e+18, 6.297246643334835e+16, 5.512359684548694e+18, 7.667756795640509e+16, 1.5786950346920658e+18, 1.212762841311634e+18, 4.4638611977772385e+18, 7325749581044177.0, 1.639547693803364e+17, 1.6532566980702013e+18, 7.42069405477692e+16, 6.572747932910337e+16, 4.573850177786314e+17, 1.4408889840705748e+18, 1.8437664145870966e+18, 5.878165360092606e+16, 5.423817366487709e+16, 7.267906975967683e+16, 5.649744230735398e+18] -Total loo_error 1.532014367867119e+18 -iteration 105current difference of loo_error 6.184984219917517e+16 - getting loo error of with lamda = 0.04242741873281565, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2033459557.9930713 -error 4.1349577736544676e+18 - y tested = 5326600510.288329 -y predicted = 3915151444.8271384 -error 1.9921884643912686e+18 - y tested = 5072151352.996373 -y predicted = 4810111051.79967 -error 6.866511945125881e+16 - y tested = 7650055845.407672 -y predicted = 5318494594.458163 -error 5.436177866929238e+18 - y tested = 5789616901.049658 -y predicted = 6064122420.378365 -error 7.535328014192299e+16 - y tested = 8224428196.629629 -y predicted = 6983730597.348477 -error 1.5393305328620134e+18 - y tested = 4059018123.5159216 -y predicted = 5158661404.465339 -error 1.2092153453371986e+18 - y tested = 5947637003.818383 -y predicted = 3843003944.9167337 -error 4.429480312621714e+18 - y tested = 997516184.7000968 -y predicted = 1066101142.2875737 -error 4703896407275998.0 - y tested = 6532788063.289651 -y predicted = 6935467209.715926 -error 1.6215049496659363e+17 - y tested = 1980229389.772511 -y predicted = 3269280610.609637 -error 1.6616530499416845e+18 - y tested = 5035525633.343237 -y predicted = 5306956353.5662985 -error 7.367463588080992e+16 - y tested = 5026691733.102776 -y predicted = 5284189348.220146 -error 6.630502179113353e+16 - y tested = 1014996574.3865615 -y predicted = 1677452747.243569 -error 4.388481809563532e+17 - y tested = 7665772326.561901 -y predicted = 6474260423.2895355 -error 1.419700615639735e+18 - y tested = 3029054692.61153 -y predicted = 4396649119.015212 -error 1.8703145151304166e+18 - y tested = 4062233415.93208 -y predicted = 4316185915.002681 -error 6.449187178420359e+16 - y tested = 5822958761.806049 -y predicted = 6059515651.07246 -error 5.595916185940095e+16 - y tested = 6611133148.221605 -y predicted = 6341749192.014753 -error 7.256771586165514e+16 - y tested = 5377240292.736961 -y predicted = 3002073467.0799475 -error 5.641417449701616e+18 -error squared vector [4.1349577736544676e+18, 1.9921884643912686e+18, 6.866511945125881e+16, 5.436177866929238e+18, 7.535328014192299e+16, 1.5393305328620134e+18, 1.2092153453371986e+18, 4.429480312621714e+18, 4703896407275998.0, 1.6215049496659363e+17, 1.6616530499416845e+18, 7.367463588080992e+16, 6.630502179113353e+16, 4.388481809563532e+17, 1.419700615639735e+18, 1.8703145151304166e+18, 6.449187178420359e+16, 5.595916185940095e+16, 7.256771586165514e+16, 5.641417449701616e+18] -Total loo_error 1.5208577652654976e+18 -iteration 106current difference of loo_error 5.069323959755366e+16 - getting loo error of with lamda = 0.04126622111946074, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2019885868.635549 -error 4.0799389219769395e+18 - y tested = 5326600510.288329 -y predicted = 3917806470.162286 -error 1.9847006474946598e+18 - y tested = 5072151352.996373 -y predicted = 4799085970.814418 -error 7.456470294617733e+16 - y tested = 7650055845.407672 -y predicted = 5334605791.167924 -error 5.361308953678852e+18 - y tested = 5789616901.049658 -y predicted = 6061814087.063286 -error 7.40913080737376e+16 - y tested = 8224428196.629629 -y predicted = 6999338620.618702 -error 1.5008444692506335e+18 - y tested = 4059018123.5159216 -y predicted = 5157045769.8035345 -error 1.2056647120119153e+18 - y tested = 5947637003.818383 -y predicted = 3851024109.3789444 -error 4.3957856291297213e+18 - y tested = 997516184.7000968 -y predicted = 1049346377.1172411 -error 2686368845998202.5 - y tested = 6532788063.289651 -y predicted = 6933025399.44625 -error 1.6018992525373046e+17 - y tested = 1980229389.772511 -y predicted = 3272666157.051772 -error 1.670392797415267e+18 - y tested = 5035525633.343237 -y predicted = 5305883296.460263 -error 7.30932660060995e+16 - y tested = 5026691733.102776 -y predicted = 5285276676.015237 -error 6.6866172701040856e+16 - y tested = 1014996574.3865615 -y predicted = 1663798775.9310367 -error 4.209442967289578e+17 - y tested = 7665772326.561901 -y predicted = 6483066878.974101 -error 1.3987921757538583e+18 - y tested = 3029054692.61153 -y predicted = 4406334282.511939 -error 1.8968990687562394e+18 - y tested = 4062233415.93208 -y predicted = 4327708712.686975 -error 7.047713318709942e+16 - y tested = 5822958761.806049 -y predicted = 6063283110.187112 -error 5.77557924247823e+16 - y tested = 6611133148.221605 -y predicted = 6341931954.3294735 -error 7.246928279294914e+16 - y tested = 5377240292.736961 -y predicted = 3003786768.422267 -error 5.633281632081843e+18 -error squared vector [4.0799389219769395e+18, 1.9847006474946598e+18, 7.456470294617733e+16, 5.361308953678852e+18, 7.40913080737376e+16, 1.5008444692506335e+18, 1.2056647120119153e+18, 4.3957856291297213e+18, 2686368845998202.5, 1.6018992525373046e+17, 1.670392797415267e+18, 7.30932660060995e+16, 6.6866172701040856e+16, 4.209442967289578e+17, 1.3987921757538583e+18, 1.8968990687562394e+18, 7.047713318709942e+16, 5.77557924247823e+16, 7.246928279294914e+16, 5.633281632081843e+18] -Total loo_error 1.510037362825525e+18 -iteration 107current difference of loo_error 3.987283715758106e+16 - getting loo error of with lamda = 0.040140211312571124, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 2006521055.5864782 -error 4.026126746177455e+18 - y tested = 5326600510.288329 -y predicted = 3920418796.7423935 -error 1.9773470115109837e+18 - y tested = 5072151352.996373 -y predicted = 4788135455.814737 -error 8.066502985188955e+16 - y tested = 7650055845.407672 -y predicted = 5350544073.221185 -error 5.287754390424239e+18 - y tested = 5789616901.049658 -y predicted = 6059602119.164744 -error 7.289201800065086e+16 - y tested = 8224428196.629629 -y predicted = 7014786013.29895 -error 1.463234211693012e+18 - y tested = 4059018123.5159216 -y predicted = 5155427511.505678 -error 1.2021135460720727e+18 - y tested = 5947637003.818383 -y predicted = 3858908805.369835 -error 4.362785486994118e+18 - y tested = 997516184.7000968 -y predicted = 1032842670.5284097 -error 1247960600977990.2 - y tested = 6532788063.289651 -y predicted = 6930379991.360351 -error 1.5807934126697645e+17 - y tested = 1980229389.772511 -y predicted = 3276174111.8493996 -error 1.679472722678944e+18 - y tested = 5035525633.343237 -y predicted = 5304717239.513144 -error 7.246412083233411e+16 - y tested = 5026691733.102776 -y predicted = 5286328641.388926 -error 6.741132414439066e+16 - y tested = 1014996574.3865615 -y predicted = 1650336935.9162097 -error 4.0365737498862406e+17 - y tested = 7665772326.561901 -y predicted = 6491819384.3036995 -error 1.3781655106366884e+18 - y tested = 3029054692.61153 -y predicted = 4415962341.674446 -error 1.9235128270292252e+18 - y tested = 4062233415.93208 -y predicted = 4339248045.701236 -error 7.673710510614256e+16 - y tested = 5822958761.806049 -y predicted = 6067154823.714269 -error 5.963171665148289e+16 - y tested = 6611133148.221605 -y predicted = 6342093125.568185 -error 7.2382533789353e+16 - y tested = 5377240292.736961 -y predicted = 3005459171.5110435 -error 5.625345687003672e+18 -error squared vector [4.026126746177455e+18, 1.9773470115109837e+18, 8.066502985188955e+16, 5.287754390424239e+18, 7.289201800065086e+16, 1.463234211693012e+18, 1.2021135460720727e+18, 4.362785486994118e+18, 1247960600977990.2, 1.5807934126697645e+17, 1.679472722678944e+18, 7.246412083233411e+16, 6.741132414439066e+16, 4.0365737498862406e+17, 1.3781655106366884e+18, 1.9235128270292252e+18, 7.673710510614256e+16, 5.963171665148289e+16, 7.2382533789353e+16, 5.625345687003672e+18] -Total loo_error 1.4995513332726615e+18 -iteration 108current difference of loo_error 2.938680760471757e+16 - getting loo error of with lamda = 0.03904832301498119, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1993366349.0689554 -error 3.973509401268269e+18 - y tested = 5326600510.288329 -y predicted = 3922987738.794216 -error 1.970128812301385e+18 - y tested = 5072151352.996373 -y predicted = 4777261832.639282 -error 8.695982921643515e+16 - y tested = 7650055845.407672 -y predicted = 5366305772.887696 -error 5.215514393734994e+18 - y tested = 5789616901.049658 -y predicted = 6057489339.694763 -error 7.1755643385675736e+16 - y tested = 8224428196.629629 -y predicted = 7030068064.318981 -error 1.4264961256531085e+18 - y tested = 4059018123.5159216 -y predicted = 5153807765.808504 -error 1.198564360871121e+18 - y tested = 5947637003.818383 -y predicted = 3866654792.1553082 -error 4.3304869652581427e+18 - y tested = 997516184.7000968 -y predicted = 1016590027.3245633 -error 363811472462912.0 - y tested = 6532788063.289651 -y predicted = 6927535041.65927 -error 1.5582517693194474e+17 - y tested = 1980229389.772511 -y predicted = 3279802137.3793545 -error 1.6888893263224005e+18 - y tested = 5035525633.343237 -y predicted = 5303459529.227734 -error 7.178857256384431e+16 - y tested = 5026691733.102776 -y predicted = 5287346459.573191 -error 6.794088643136692e+16 - y tested = 1014996574.3865615 -y predicted = 1637066937.4666278 -error 3.8697153662256557e+17 - y tested = 7665772326.561901 -y predicted = 6500515961.937822 -error 1.357822395296924e+18 - y tested = 3029054692.61153 -y predicted = 4425531942.124578 -error 1.9501487084075295e+18 - y tested = 4062233415.93208 -y predicted = 4350800888.1684675 -error 8.32711860328984e+16 - y tested = 5822958761.806049 -y predicted = 6071133307.500945 -error 6.1590605130867896e+16 - y tested = 6611133148.221605 -y predicted = 6342234853.578711 -error 7.230629286185704e+16 - y tested = 5377240292.736961 -y predicted = 3007088823.0076146 -error 5.617617989460182e+18 -error squared vector [3.973509401268269e+18, 1.970128812301385e+18, 8.695982921643515e+16, 5.215514393734994e+18, 7.1755643385675736e+16, 1.4264961256531085e+18, 1.198564360871121e+18, 4.3304869652581427e+18, 363811472462912.0, 1.5582517693194474e+17, 1.6888893263224005e+18, 7.178857256384431e+16, 6.794088643136692e+16, 3.8697153662256557e+17, 1.357822395296924e+18, 1.9501487084075295e+18, 8.32711860328984e+16, 6.1590605130867896e+16, 7.230629286185704e+16, 5.617617989460182e+18] -Total loo_error 1.4893976009611986e+18 -iteration 109current difference of loo_error 1.9233075293254656e+16 - getting loo error of with lamda = 0.03798952224156066, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1980422773.6916418 -error 3.922074362226426e+18 - y tested = 5326600510.288329 -y predicted = 3925512693.6815042 -error 1.9630470698440796e+18 - y tested = 5072151352.996373 -y predicted = 4766467259.1233225 -error 9.344276524698806e+16 - y tested = 7650055845.407672 -y predicted = 5381887422.721302 -error 5.144587993671576e+18 - y tested = 5789616901.049658 -y predicted = 6055478326.3061075 -error 7.068229743939079e+16 - y tested = 8224428196.629629 -y predicted = 7045180297.362916 -error 1.390625607924956e+18 - y tested = 4059018123.5159216 -y predicted = 5152187634.75716 -error 1.1950195803074084e+18 - y tested = 5947637003.818383 -y predicted = 3874259102.328782 -error 4.2988959223854223e+18 - y tested = 997516184.7000968 -y predicted = 1000588274.8769488 -error 9437738054710.479 - y tested = 6532788063.289651 -y predicted = 6924494592.037972 -error 1.5343400466405965e+17 - y tested = 1980229389.772511 -y predicted = 3283547776.906631 -error 1.698638818241884e+18 - y tested = 5035525633.343237 -y predicted = 5302111588.113503 -error 7.106807128077459e+16 - y tested = 5026691733.102776 -y predicted = 5288331344.548523 -error 6.845528627748166e+16 - y tested = 1014996574.3865615 -y predicted = 1623988391.0421262 -error 3.7087103275344486e+17 - y tested = 7665772326.561901 -y predicted = 6509154619.877145 -error 1.337764519416705e+18 - y tested = 3029054692.61153 -y predicted = 4435041818.559208 -error 1.976799798330612e+18 - y tested = 4062233415.93208 -y predicted = 4362364230.975098 -error 9.007850613838619e+16 - y tested = 5822958761.806049 -y predicted = 6075220813.310513 -error 6.363614262924044e+16 - y tested = 6611133148.221605 -y predicted = 6342359183.686321 -error 7.223944401201413e+16 - y tested = 5377240292.736961 -y predicted = 3008673978.992981 -error 5.610106382602748e+18 -error squared vector [3.922074362226426e+18, 1.9630470698440796e+18, 9.344276524698806e+16, 5.144587993671576e+18, 7.068229743939079e+16, 1.390625607924956e+18, 1.1950195803074084e+18, 4.2988959223854223e+18, 9437738054710.479, 1.5343400466405965e+17, 1.698638818241884e+18, 7.106807128077459e+16, 6.845528627748166e+16, 3.7087103275344486e+17, 1.337764519416705e+18, 1.976799798330612e+18, 9.007850613838619e+16, 6.363614262924044e+16, 7.223944401201413e+16, 5.610106382602748e+18] -Total loo_error 1.4795738521565827e+18 -iteration 110current difference of loo_error 9409326488638720.0 - getting loo error of with lamda = 0.03696280634006195, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1967691151.5893602 -error 3.8718084677151145e+18 - y tested = 5326600510.288329 -y predicted = 3927993139.600216 -error 1.9561025773431173e+18 - y tested = 5072151352.996373 -y predicted = 4755753730.977019 -error 1.0010745521950192e+17 - y tested = 7650055845.407672 -y predicted = 5397285755.646861 -error 5.074973077320931e+18 - y tested = 5789616901.049658 -y predicted = 6053571414.510239 -error 6.9671985176211944e+16 - y tested = 8224428196.629629 -y predicted = 7060118477.000954 -error 1.3556171232218048e+18 - y tested = 4059018123.5159216 -y predicted = 5150568186.860451 -error 1.1914815407874455e+18 - y tested = 5947637003.818383 -y predicted = 3881719038.9490476 -error 4.2680170375698575e+18 - y tested = 997516184.7000968 -y predicted = 984837069.5074084 -error 160759962069463.47 - y tested = 6532788063.289651 -y predicted = 6921262671.758883 -error 1.5091252142532352e+17 - y tested = 1980229389.772511 -y predicted = 3287408455.207947 -error 1.7087171091126592e+18 - y tested = 5035525633.343237 -y predicted = 5300674912.610094 -error 7.03041402957338e+16 - y tested = 5026691733.102776 -y predicted = 5289284507.168395 -error 6.895496499147747e+16 - y tested = 1014996574.3865615 -y predicted = 1611100812.3507817 -error 3.553402625189036e+17 - y tested = 7665772326.561901 -y predicted = 6517733357.566731 -error 1.317993474331492e+18 - y tested = 3029054692.61153 -y predicted = 4444490790.917903 -error 2.0034593483887688e+18 - y tested = 4062233415.93208 -y predicted = 4373935080.731796 -error 9.71579278389148e+16 - y tested = 5822958761.806049 -y predicted = 6079419328.887386 -error 6.577202246768094e+16 - y tested = 6611133148.221605 -y predicted = 6342468058.435873 -error 7.218093046957558e+16 - y tested = 5377240292.736961 -y predicted = 3010213005.052141 -error 5.602818180644557e+18 -error squared vector [3.8718084677151145e+18, 1.9561025773431173e+18, 1.0010745521950192e+17, 5.074973077320931e+18, 6.9671985176211944e+16, 1.3556171232218048e+18, 1.1914815407874455e+18, 4.2680170375698575e+18, 160759962069463.47, 1.5091252142532352e+17, 1.7087171091126592e+18, 7.03041402957338e+16, 6.895496499147747e+16, 3.553402625189036e+17, 1.317993474331492e+18, 2.0034593483887688e+18, 9.71579278389148e+16, 6.577202246768094e+16, 7.218093046957558e+16, 5.602818180644557e+18] -Total loo_error 1.470077545340057e+18 -iteration 111current difference of loo_error -86980327886848.0 - getting loo error of with lamda = 0.005103500790526446, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '1001-2220' +--- Neighbour 0 in the list of neghbours, And at position 56 in the X datas point +-------------- + --- Configuration: 1001-2220 + --- Distance from that configuration: [1.] + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 7 in the X datas point +-------------- + --- Configuration: 1000-1010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6501654671.113798 + --- Energy: 42.85376093977719 + --- Workload: 278621000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 26 in the X datas point +-------------- + --- Configuration: 0000-3330 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7665772326.561901 + --- Energy: 48.682465076838824 + --- Workload: 373189000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 62 in the X datas point +-------------- + --- Configuration: 2002-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 69 in the X datas point +-------------- + --- Configuration: 0101-2020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8367150566.874451 + --- Energy: 43.37670883350873 + --- Workload: 362938000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '1001-2220' +--- Neighbour 0 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [1.] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 62 in the X datas point +-------------- + --- Configuration: 2002-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 7 in the X datas point +-------------- + --- Configuration: 1000-1010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6501654671.113798 + --- Energy: 42.85376093977719 + --- Workload: 278621000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 69 in the X datas point +-------------- + --- Configuration: 0101-2020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8367150566.874451 + --- Energy: 43.37670883350873 + --- Workload: 362938000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 26 in the X datas point +-------------- + --- Configuration: 0000-3330 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7665772326.561901 + --- Energy: 48.682465076838824 + --- Workload: 373189000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 56 in the X datas point +-------------- + --- Configuration: 1001-2220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (42.80059101405426 mAh) it is NOT far from the median. +--- Median :42.80059101405426, the gap is : 10 +--- So No we don't romove this configuration '1001-2220' + --- remove_aberrant_points: The value [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0] +--- Computing the list of the 10 first neighbours of '0200-1100' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1456974875.417487 -error 2.1227757873549727e+18 - y tested = 5326600510.288329 -y predicted = 4016558685.2908254 -error 1.7162095832427901e+18 - y tested = 5072151352.996373 -y predicted = 4110911068.3092585 -error 9.239828849053654e+17 - y tested = 7650055845.407672 -y predicted = 6075201222.3808365 -error 2.480167083668996e+18 - y tested = 5789616901.049658 -y predicted = 6224691976.301274 -error 1.8929032110519974e+17 - y tested = 8224428196.629629 -y predicted = 7731679672.54201 -error 2.428011079905267e+17 - y tested = 4059018123.5159216 -y predicted = 5061714928.2245655 -error 1.0054008821729244e+18 - y tested = 5947637003.818383 -y predicted = 4075850308.247064 -error 3.503585433717798e+18 - y tested = 997516184.7000968 -y predicted = 301182838.6947422 -error 4.848801287590129e+17 - y tested = 6532788063.289651 -y predicted = 6268827827.7136135 -error 6.967500596535716e+16 - y tested = 1980229389.772511 -y predicted = 3721448833.675311 -error 3.0318451518251766e+18 - y tested = 5035525633.343237 -y predicted = 5027247782.371061 -error 68522816717548.49 - y tested = 5026691733.102776 -y predicted = 5338141810.234395 -error 9.700115054529171e+16 - y tested = 1014996574.3865615 -y predicted = 1030696835.2001661 -error 246498189615207.97 - y tested = 7665772326.561901 -y predicted = 6958503795.114633 -error 5.002287755755758e+17 - y tested = 3029054692.61153 -y predicted = 5042384567.932253 -error 4.0534971868589583e+18 - y tested = 4062233415.93208 -y predicted = 5225343142.552045 -error 1.35282423615797e+18 - y tested = 5822958761.806049 -y predicted = 6754215017.620814 -error 8.67238213994135e+17 - y tested = 6611133148.221605 -y predicted = 6345313858.214397 -error 7.065989493993608e+16 - y tested = 5377240292.736961 -y predicted = 2970829167.418286 -error 5.790814504057495e+18 -error squared vector [2.1227757873549727e+18, 1.7162095832427901e+18, 9.239828849053654e+17, 2.480167083668996e+18, 1.8929032110519974e+17, 2.428011079905267e+17, 1.0054008821729244e+18, 3.503585433717798e+18, 4.848801287590129e+17, 6.967500596535716e+16, 3.0318451518251766e+18, 68522816717548.49, 9.700115054529171e+16, 246498189615207.97, 5.002287755755758e+17, 4.0534971868589583e+18, 1.35282423615797e+18, 8.67238213994135e+17, 7.065989493993608e+16, 5.790814504057495e+18] -Total loo_error 1.4251596176921907e+18 -iteration 112current difference of loo_error 4.491792764786637e+16 - getting loo error of with lamda = 0.03599737283856087, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1955554012.302521 -error 3.824191494706563e+18 - y tested = 5326600510.288329 -y predicted = 3930354392.4369907 -error 1.9495032216149335e+18 - y tested = 5072151352.996373 -y predicted = 4745448828.886466 -error 1.0673453925978446e+17 - y tested = 7650055845.407672 -y predicted = 5412032599.282761 -error 5.008748050195486e+18 - y tested = 5789616901.049658 -y predicted = 6051824488.430322 -error 6.875281887998848e+16 - y tested = 8224428196.629629 -y predicted = 7074427290.289348 -error 1.3225020845834688e+18 - y tested = 4059018123.5159216 -y predicted = 5149000182.810213 -error 1.1880608895834243e+18 - y tested = 5947637003.818383 -y predicted = 3888809433.842851 -error 4.238770962891354e+18 - y tested = 997516184.7000968 -y predicted = 969808990.356057 -error 767688618418391.0 - y tested = 6532788063.289651 -y predicted = 6917951233.124523 -error 1.4835066739724666e+17 - y tested = 1980229389.772511 -y predicted = 3291257623.6899924 -error 1.7187950301287903e+18 - y tested = 5035525633.343237 -y predicted = 5299199227.024177 -error 6.952376400462127e+16 - y tested = 5026691733.102776 -y predicted = 5290179216.278862 -error 6.9425653790468424e+16 - y tested = 1014996574.3865615 -y predicted = 1598791354.8127298 -error 3.408163456528381e+17 - y tested = 7665772326.561901 -y predicted = 6525989141.342123 -error 1.2991057093097428e+18 - y tested = 3029054692.61153 -y predicted = 4453589956.157683 -error 2.029300717086509e+18 - y tested = 4062233415.93208 -y predicted = 4385154367.233008 -error 1.0427794078909669e+17 - y tested = 5822958761.806049 -y predicted = 6083596271.0680275 -error 6.793191123428774e+16 - y tested = 6611133148.221605 -y predicted = 6342560573.15222 -error 7.213122807940072e+16 - y tested = 5377240292.736961 -y predicted = 3011659226.856238 -error 5.59597377925338e+18 -error squared vector [3.824191494706563e+18, 1.9495032216149335e+18, 1.0673453925978446e+17, 5.008748050195486e+18, 6.875281887998848e+16, 1.3225020845834688e+18, 1.1880608895834243e+18, 4.238770962891354e+18, 767688618418391.0, 1.4835066739724666e+17, 1.7187950301287903e+18, 6.952376400462127e+16, 6.9425653790468424e+16, 3.408163456528381e+17, 1.2991057093097428e+18, 2.029300717086509e+18, 1.0427794078909669e+17, 6.793191123428774e+16, 7.213122807940072e+16, 5.59597377925338e+18] -Total loo_error 1.46118322485299e+18 -iteration 113current difference of loo_error 3.602360716079923e+16 - getting loo error of with lamda = 0.03506119489771135, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1943628333.449734 -error 3.7776910982646523e+18 - y tested = 5326600510.288329 -y predicted = 3932670873.790892 -error 1.9430398315058767e+18 - y tested = 5072151352.996373 -y predicted = 4735233113.415703 -error 1.1351390016213798e+17 - y tested = 7650055845.407672 -y predicted = 5426587829.309728 -error 4.943810018610528e+18 - y tested = 5789616901.049658 -y predicted = 6050180558.989724 -error 6.7893419839107896e+16 - y tested = 8224428196.629629 -y predicted = 7088551941.858199 -error 1.2902148661535706e+18 - y tested = 4059018123.5159216 -y predicted = 5147436209.511019 -error 1.1846539299212306e+18 - y tested = 5947637003.818383 -y predicted = 3895753332.900599 -error 4.210226598979042e+18 - y tested = 997516184.7000968 -y predicted = 955029295.0757234 -error 1805135789953691.2 - y tested = 6532788063.289651 -y predicted = 6914470776.852397 -error 1.4568169383262125e+17 - y tested = 1980229389.772511 -y predicted = 3295205933.7732434 -error 1.72916331127211e+18 - y tested = 5035525633.343237 -y predicted = 5297644677.240476 -error 6.870639317360257e+16 - y tested = 5026691733.102776 -y predicted = 5291045529.401413 -error 6.988292961750147e+16 - y tested = 1014996574.3865615 -y predicted = 1586671724.1898394 -error 3.268124769026002e+17 - y tested = 7665772326.561901 -y predicted = 6534177090.265576 -error 1.280507778808535e+18 - y tested = 3029054692.61153 -y predicted = 4462621290.245585 -error 2.0551131898520824e+18 - y tested = 4062233415.93208 -y predicted = 4396364432.719171 -error 1.1164353637917514e+17 - y tested = 5822958761.806049 -y predicted = 6087876288.679983 -error 7.018129604500143e+16 - y tested = 6611133148.221605 -y predicted = 6342641807.457921 -error 7.208760006508083e+16 - y tested = 5377240292.736961 -y predicted = 3013058067.1750565 -error 5.589357595662842e+18 -error squared vector [3.7776910982646523e+18, 1.9430398315058767e+18, 1.1351390016213798e+17, 4.943810018610528e+18, 6.7893419839107896e+16, 1.2902148661535706e+18, 1.1846539299212306e+18, 4.210226598979042e+18, 1805135789953691.2, 1.4568169383262125e+17, 1.72916331127211e+18, 6.870639317360257e+16, 6.988292961750147e+16, 3.268124769026002e+17, 1.280507778808535e+18, 2.0551131898520824e+18, 1.1164353637917514e+17, 7.018129604500143e+16, 7.208760006508083e+16, 5.589357595662842e+18] -Total loo_error 1.4525993300418627e+18 -iteration 114current difference of loo_error 2.7439712349671936e+16 - getting loo error of with lamda = 0.03415338598537241, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1931914088.5477648 -error 3.7322920452073554e+18 - y tested = 5326600510.288329 -y predicted = 3934942373.333466 -error 1.9367123701526804e+18 - y tested = 5072151352.996373 -y predicted = 4725108047.106995 -error 1.2043905616262877e+17 - y tested = 7650055845.407672 -y predicted = 5440949127.524153 -error 4.880152490998095e+18 - y tested = 5789616901.049658 -y predicted = 6048640864.905042 -error 6.709341385135521e+16 - y tested = 8224428196.629629 -y predicted = 7102489362.160891 -error 1.2587467482890716e+18 - y tested = 4059018123.5159216 -y predicted = 5145877185.893035 -error 1.1812626214712579e+18 - y tested = 5947637003.818383 -y predicted = 3902549208.8607187 -error 4.1823840890848026e+18 - y tested = 997516184.7000968 -y predicted = 940496979.7943324 -error 3251189728085554.0 - y tested = 6532788063.289651 -y predicted = 6910825535.7528715 -error 1.4291233058638027e+17 - y tested = 1980229389.772511 -y predicted = 3299250328.3449154 -error 1.7398162363924265e+18 - y tested = 5035525633.343237 -y predicted = 5296013084.061602 -error 6.785371198175249e+16 - y tested = 5026691733.102776 -y predicted = 5291884582.201204 -error 7.032724721294199e+16 - y tested = 1014996574.3865615 -y predicted = 1574741073.8727884 -error 3.1331390470508666e+17 - y tested = 7665772326.561901 -y predicted = 6542295343.749748 -error 1.2622005309086984e+18 - y tested = 3029054692.61153 -y predicted = 4471583849.445685 -error 2.0808903683166597e+18 - y tested = 4062233415.93208 -y predicted = 4407562281.339821 -error 1.1925202528379774e+17 - y tested = 5822958761.806049 -y predicted = 6092260048.06469 -error 7.252318278055813e+16 - y tested = 6611133148.221605 -y predicted = 6342713278.394388 -error 7.204922651806018e+16 - y tested = 5377240292.736961 -y predicted = 3014408431.9100995 -error 5.582974402538531e+18 -error squared vector [3.7322920452073554e+18, 1.9367123701526804e+18, 1.2043905616262877e+17, 4.880152490998095e+18, 6.709341385135521e+16, 1.2587467482890716e+18, 1.1812626214712579e+18, 4.1823840890848026e+18, 3251189728085554.0, 1.4291233058638027e+17, 1.7398162363924265e+18, 6.785371198175249e+16, 7.032724721294199e+16, 3.1331390470508666e+17, 1.2622005309086984e+18, 2.0808903683166597e+18, 1.1925202528379774e+17, 7.252318278055813e+16, 7.204922651806018e+16, 5.582974402538531e+18] -Total loo_error 1.4443223596085112e+18 -iteration 115current difference of loo_error 1.916274191632051e+16 - getting loo error of with lamda = 0.033273086434013444, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1920411072.942129 -error 3.6879786887586703e+18 - y tested = 5326600510.288329 -y predicted = 3937168747.4788175 -error 1.930520623503947e+18 - y tested = 5072151352.996373 -y predicted = 4715074962.255673 -error 1.275035488244049e+17 - y tested = 7650055845.407672 -y predicted = 5455114371.665981 -error 4.817768073151345e+18 - y tested = 5789616901.049658 -y predicted = 6047206427.732976 -error 6.6352364256935864e+16 - y tested = 8224428196.629629 -y predicted = 7116236732.620398 -error 1.228088320902924e+18 - y tested = 4059018123.5159216 -y predicted = 5144323999.357396 -error 1.1778888441360302e+18 - y tested = 5947637003.818383 -y predicted = 3909195777.6693263 -error 4.1552426324640707e+18 - y tested = 997516184.7000968 -y predicted = 926210903.1824828 -error 5084443172306186.0 - y tested = 6532788063.289651 -y predicted = 6907019739.597072 -error 1.4004934755186213e+17 - y tested = 1980229389.772511 -y predicted = 3303387653.397131 -error 1.7507477905981192e+18 - y tested = 5035525633.343237 -y predicted = 5294306325.451892 -error 6.696744660823448e+16 - y tested = 5026691733.102776 -y predicted = 5292697497.107924 -error 7.075906648396296e+16 - y tested = 1014996574.3865615 -y predicted = 1562998484.4759464 -error 3.0030609346161434e+17 - y tested = 7665772326.561901 -y predicted = 6550342064.722275 -error 1.2441846690276173e+18 - y tested = 3029054692.61153 -y predicted = 4480476755.556835 -error 2.106626004804406e+18 - y tested = 4062233415.93208 -y predicted = 4418744935.771265 -error 1.2710046377804578e+17 - y tested = 5822958761.806049 -y predicted = 6096747967.090193 -error 7.496052893012285e+16 - y tested = 6611133148.221605 -y predicted = 6342776406.433487 -error 7.201534086313483e+16 - y tested = 5377240292.736961 -y predicted = 3015709333.1524167 -error 5.576828473076301e+18 -error squared vector [3.6879786887586703e+18, 1.930520623503947e+18, 1.275035488244049e+17, 4.817768073151345e+18, 6.6352364256935864e+16, 1.228088320902924e+18, 1.1778888441360302e+18, 4.1552426324640707e+18, 5084443172306186.0, 1.4004934755186213e+17, 1.7507477905981192e+18, 6.696744660823448e+16, 7.075906648396296e+16, 3.0030609346161434e+17, 1.2441846690276173e+18, 2.106626004804406e+18, 1.2710046377804578e+17, 7.496052893012285e+16, 7.201534086313483e+16, 5.576828473076301e+18] -Total loo_error 1.436348638217703e+18 -iteration 116current difference of loo_error 1.1189020525512192e+16 - getting loo error of with lamda = 0.03241946262663505, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1909118908.7867057 -error 3.6447350075687557e+18 - y tested = 5326600510.288329 -y predicted = 3939349916.7238398 -error 1.924464209345028e+18 - y tested = 5072151352.996373 -y predicted = 4705135066.939397 -error 1.3470095423105627e+17 - y tested = 7650055845.407672 -y predicted = 5469081633.374915 -error 4.756648513551905e+18 - y tested = 5789616901.049658 -y predicted = 6045878057.077031 -error 6.566978008848577e+16 - y tested = 8224428196.629629 -y predicted = 7129791485.786416 -error 1.1982295287256481e+18 - y tested = 4059018123.5159216 -y predicted = 5142777506.345476 -error 1.174534399871097e+18 - y tested = 5947637003.818383 -y predicted = 3915691992.679506 -error 4.128800528292173e+18 - y tested = 997516184.7000968 -y predicted = 912169792.9228295 -error 7284006589398806.0 - y tested = 6532788063.289651 -y predicted = 6903057616.874304 -error 1.3709954231177814e+17 - y tested = 1980229389.772511 -y predicted = 3307614661.399037 -error 1.761951659331026e+18 - y tested = 5035525633.343237 -y predicted = 5292526333.569866 -error 6.604935991697775e+16 - y tested = 5026691733.102776 -y predicted = 5293485381.680202 -error 7.117885092125506e+16 - y tested = 1014996574.3865615 -y predicted = 1551442968.1061845 -error 2.8777473333478874e+17 - y tested = 7665772326.561901 -y predicted = 6558315444.52215 -error 1.226460745577207e+18 - y tested = 3029054692.61153 -y predicted = 4489299192.078016 -error 2.1323139982221297e+18 - y tested = 4062233415.93208 -y predicted = 4429909437.245718 -error 1.3518565664902694e+17 - y tested = 5822958761.806049 -y predicted = 6101340218.730797 -error 7.749623555954502e+16 - y tested = 6611133148.221605 -y predicted = 6342832516.803977 -error 7.1985228819098024e+16 - y tested = 5377240292.736961 -y predicted = 3016959888.20246 -error 5.570923588029551e+18 -error squared vector [3.6447350075687557e+18, 1.924464209345028e+18, 1.3470095423105627e+17, 4.756648513551905e+18, 6.566978008848577e+16, 1.1982295287256481e+18, 1.174534399871097e+18, 4.128800528292173e+18, 7284006589398806.0, 1.3709954231177814e+17, 1.761951659331026e+18, 6.604935991697775e+16, 7.117885092125506e+16, 2.8777473333478874e+17, 1.226460745577207e+18, 2.1323139982221297e+18, 1.3518565664902694e+17, 7.749623555954502e+16, 7.1985228819098024e+16, 5.570923588029551e+18] -Total loo_error 1.4286743263467968e+18 -iteration 117current difference of loo_error 3514708654606080.0 - getting loo error of with lamda = 0.03159170620735904, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1898037050.233539 -error 3.602544643742895e+18 - y tested = 5326600510.288329 -y predicted = 3941485862.965005 -error 1.918542586229617e+18 - y tested = 5072151352.996373 -y predicted = 4695289451.01858 -error 1.4202489316231946e+17 - y tested = 7650055845.407672 -y predicted = 5482849175.871869 -error 4.696784748480467e+18 - y tested = 5789616901.049658 -y predicted = 6044656356.006437 -error 6.504512358465115e+16 - y tested = 8224428196.629629 -y predicted = 7143151304.676633 -error 1.1691597170715315e+18 - y tested = 4059018123.5159216 -y predicted = 5141238532.885441 -error 1.1712010144559299e+18 - y tested = 5947637003.818383 -y predicted = 3922037038.5285845 -error 4.103055219382034e+18 - y tested = 997516184.7000968 -y predicted = 898372252.1313082 -error 9829519365204510.0 - y tested = 6532788063.289651 -y predicted = 6898943396.500497 -error 1.3406972803874563e+17 - y tested = 1980229389.772511 -y predicted = 3311928015.023047 -error 1.7734212284941676e+18 - y tested = 5035525633.343237 -y predicted = 5290675091.715981 -error 6.5101246107904424e+16 - y tested = 5026691733.102776 -y predicted = 5294249327.01825 -error 7.158706606183817e+16 - y tested = 1014996574.3865615 -y predicted = 1540073472.48812 -error 2.7570574891995453e+17 - y tested = 7665772326.561901 -y predicted = 6566213707.587883 -error 1.20902915656005e+18 - y tested = 3029054692.61153 -y predicted = 4498050400.402598 -error 2.1579483895085824e+18 - y tested = 4062233415.93208 -y predicted = 4441052845.720998 -error 1.43504160385601e+17 - y tested = 5822958761.806049 -y predicted = 6106036735.070079 -error 8.013313894727061e+16 - y tested = 6611133148.221605 -y predicted = 6342882841.036012 -error 7.1958227305165336e+16 - y tested = 5377240292.736961 -y predicted = 3018159318.4619794 -error 5.565263043186199e+18 -error squared vector [3.602544643742895e+18, 1.918542586229617e+18, 1.4202489316231946e+17, 4.696784748480467e+18, 6.504512358465115e+16, 1.1691597170715315e+18, 1.1712010144559299e+18, 4.103055219382034e+18, 9829519365204510.0, 1.3406972803874563e+17, 1.7734212284941676e+18, 6.5101246107904424e+16, 7.158706606183817e+16, 2.7570574891995453e+17, 1.20902915656005e+18, 2.1579483895085824e+18, 1.43504160385601e+17, 8.013313894727061e+16, 7.1958227305165336e+16, 5.565263043186199e+18] -Total loo_error 1.4212954299495063e+18 -iteration 118current difference of loo_error -3864187742684416.0 - getting loo error of with lamda = 0.005906173681945615, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1473879851.2420022 -error 2.1723218156515003e+18 - y tested = 5326600510.288329 -y predicted = 4014324737.7665677 -error 1.7220677031475858e+18 - y tested = 5072151352.996373 -y predicted = 4151024710.714898 -error 8.484742911207446e+17 - y tested = 7650055845.407672 -y predicted = 6054237056.117478 -error 2.5466376082516193e+18 - y tested = 5789616901.049658 -y predicted = 6194491979.997142 -error 1.6392382955273142e+17 - y tested = 8224428196.629629 -y predicted = 7706100818.871554 -error 2.6866327053356192e+17 - y tested = 4059018123.5159216 -y predicted = 5064803694.625802 -error 1.0116046150528284e+18 - y tested = 5947637003.818383 -y predicted = 4079221106.1477113 -error 3.490977966668503e+18 - y tested = 997516184.7000968 -y predicted = 327230925.4398359 -error 4.492823287815952e+17 - y tested = 6532788063.289651 -y predicted = 6335736669.635372 -error 3.882925174109353e+16 - y tested = 1980229389.772511 -y predicted = 3694237008.2798386 -error 2.9378221163011604e+18 - y tested = 5035525633.343237 -y predicted = 5052545613.8755455 -error 289679737320163.0 - y tested = 5026691733.102776 -y predicted = 5333945746.322787 -error 9.440502863980314e+16 - y tested = 1014996574.3865615 -y predicted = 1052608901.8610929 -error 1414687178051390.5 - y tested = 7665772326.561901 -y predicted = 6941664180.13219 -error 5.2433260772587226e+17 - y tested = 3029054692.61153 -y predicted = 5004726474.875149 -error 3.9032789912327045e+18 - y tested = 4062233415.93208 -y predicted = 5168361667.678067 -error 1.2235197093106345e+18 - y tested = 5822958761.806049 -y predicted = 6686258764.846216 -error 7.452868952491521e+17 - y tested = 6611133148.221605 -y predicted = 6346391476.734857 -error 7.008815262159757e+16 - y tested = 5377240292.736961 -y predicted = 2982171490.7283177 -error 5.736354566355119e+18 -error squared vector [2.1723218156515003e+18, 1.7220677031475858e+18, 8.484742911207446e+17, 2.5466376082516193e+18, 1.6392382955273142e+17, 2.6866327053356192e+17, 1.0116046150528284e+18, 3.490977966668503e+18, 4.492823287815952e+17, 3.882925174109353e+16, 2.9378221163011604e+18, 289679737320163.0, 9.440502863980314e+16, 1414687178051390.5, 5.2433260772587226e+17, 3.9032789912327045e+18, 1.2235197093106345e+18, 7.452868952491521e+17, 7.008815262159757e+16, 5.736354566355119e+18] -Total loo_error 1.397478755742659e+18 -iteration 119current difference of loo_error 2.381667420684723e+16 - getting loo error of with lamda = 0.030813356736891964, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1887496098.0924191 -error 3.562641519999525e+18 - y tested = 5326600510.288329 -y predicted = 3943512988.6123233 -error 1.9129310926158758e+18 - y tested = 5072151352.996373 -y predicted = 4685837579.745552 -error 1.4923833140328682e+17 - y tested = 7650055845.407672 -y predicted = 5496001173.203874 -error 4.639951530843013e+18 - y tested = 5789616901.049658 -y predicted = 6043574413.546234 -error 6.449441815344871e+16 - y tested = 8224428196.629629 -y predicted = 7155912194.439212 -error 1.1417264469369919e+18 - y tested = 4059018123.5159216 -y predicted = 5139754825.886159 -error 1.167991819850095e+18 - y tested = 5947637003.818383 -y predicted = 3928042088.6016655 -error 4.078763621569221e+18 - y tested = 997516184.7000968 -y predicted = 885230133.454914 -error 1.2608157304235834e+16 - y tested = 6532788063.289651 -y predicted = 6894814572.006123 -error 1.3106319301343754e+17 - y tested = 1980229389.772511 -y predicted = 3316187861.8438454 -error 1.7847850390991744e+18 - y tested = 5035525633.343237 -y predicted = 5288814715.275707 -error 6.415535902619366e+16 - y tested = 5026691733.102776 -y predicted = 5294967941.48223 -error 7.197212398245655e+16 - y tested = 1014996574.3865615 -y predicted = 1529230172.4743137 -error 2.6443619340227587e+17 - y tested = 7665772326.561901 -y predicted = 6573795695.484471 -error 1.192412962819213e+18 - y tested = 3029054692.61153 -y predicted = 4506463784.465393 -error 2.182737624692457e+18 - y tested = 4062233415.93208 -y predicted = 4451830599.310651 -error 1.517859652965159e+17 - y tested = 5822958761.806049 -y predicted = 6110688006.294776 -error 8.27881181340534e+16 - y tested = 6611133148.221605 -y predicted = 6342927172.464751 -error 7.1934445431686184e+16 - y tested = 5377240292.736961 -y predicted = 3019272425.7007375 -error 5.56001246197536e+18 -error squared vector [3.562641519999525e+18, 1.9129310926158758e+18, 1.4923833140328682e+17, 4.639951530843013e+18, 6.449441815344871e+16, 1.1417264469369919e+18, 1.167991819850095e+18, 4.078763621569221e+18, 1.2608157304235834e+16, 1.3106319301343754e+17, 1.7847850390991744e+18, 6.415535902619366e+16, 7.197212398245655e+16, 2.6443619340227587e+17, 1.192412962819213e+18, 2.182737624692457e+18, 1.517859652965159e+17, 8.27881181340534e+16, 7.1934445431686184e+16, 5.56001246197536e+18] -Total loo_error 1.414421521277426e+18 -iteration 120current difference of loo_error 1.6942765534766848e+16 - getting loo error of with lamda = 0.030058593614014802, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1877161102.3983514 -error 3.5237338040445343e+18 - y tested = 5326600510.288329 -y predicted = 3945495869.92152 -error 1.9074500276427325e+18 - y tested = 5072151352.996373 -y predicted = 4676484937.131255 -error 1.565519126435485e+17 - y tested = 7650055845.407672 -y predicted = 5508950496.082679 -error 4.584332116908101e+18 - y tested = 5789616901.049658 -y predicted = 6042594143.109925 -error 6.399748500041915e+16 - y tested = 8224428196.629629 -y predicted = 7168474367.177716 -error 1.1150384899341595e+18 - y tested = 4059018123.5159216 -y predicted = 5138281041.905685 -error 1.16480844701119e+18 - y tested = 5947637003.818383 -y predicted = 3933898667.7207146 -error 4.055142086269407e+18 - y tested = 997516184.7000968 -y predicted = 872326223.4542619 -error 1.5672526396733656e+16 - y tested = 6532788063.289651 -y predicted = 6890554851.383045 -error 1.2799707466266368e+17 - y tested = 1980229389.772511 -y predicted = 3320518221.698022 -error 1.7963741529842504e+18 - y tested = 5035525633.343237 -y predicted = 5286893079.398681 -error 6.318559293643643e+16 - y tested = 5026691733.102776 -y predicted = 5295665373.798561 -error 7.234681938914554e+16 - y tested = 1014996574.3865615 -y predicted = 1518569681.1241956 -error 2.5358587382939258e+17 - y tested = 7665772326.561901 -y predicted = 6581296764.350694 -error 1.1760872450333143e+18 - y tested = 3029054692.61153 -y predicted = 4514801015.527667 -error 2.2074421360588227e+18 - y tested = 4062233415.93208 -y predicted = 4462572838.356223 -error 1.6027165314689667e+17 - y tested = 5822958761.806049 -y predicted = 6115431850.405886 -error 8.554050755512773e+16 - y tested = 6611133148.221605 -y predicted = 6342968058.2034235 -error 7.191251550445955e+16 - y tested = 5377240292.736961 -y predicted = 3020335347.4428115 -error 5.555000921152019e+18 -error squared vector [3.5237338040445343e+18, 1.9074500276427325e+18, 1.565519126435485e+17, 4.584332116908101e+18, 6.399748500041915e+16, 1.1150384899341595e+18, 1.16480844701119e+18, 4.055142086269407e+18, 1.5672526396733656e+16, 1.2799707466266368e+17, 1.7963741529842504e+18, 6.318559293643643e+16, 7.234681938914554e+16, 2.5358587382939258e+17, 1.1760872450333143e+18, 2.2074421360588227e+18, 1.6027165314689667e+17, 8.554050755512773e+16, 7.191251550445955e+16, 5.555000921152019e+18] -Total loo_error 1.4078235694051679e+18 -iteration 121current difference of loo_error 1.03448136625088e+16 - getting loo error of with lamda = 0.029326702100921795, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1867030865.3551524 -error 3.4858042518776376e+18 - y tested = 5326600510.288329 -y predicted = 3947434708.552978 -error 1.9020983086763139e+18 - y tested = 5072151352.996373 -y predicted = 4667232225.150952 -error 1.6395950009509626e+17 - y tested = 7650055845.407672 -y predicted = 5521696260.257294 -error 4.52991452370149e+18 - y tested = 5789616901.049658 -y predicted = 6041715302.040649 -error 6.355360378221479e+16 - y tested = 8224428196.629629 -y predicted = 7180836575.028227 -error 1.0890834726766444e+18 - y tested = 4059018123.5159216 -y predicted = 5136817867.609701 -error 1.1616522883686167e+18 - y tested = 5947637003.818383 -y predicted = 3939606873.8482943 -error 4.0321850028676925e+18 - y tested = 997516184.7000968 -y predicted = 859658658.5857774 -error 1.9004697506360268e+16 - y tested = 6532788063.289651 -y predicted = 6886168591.952906 -error 1.248777980383214e+17 - y tested = 1980229389.772511 -y predicted = 3324915511.5483966 -error 1.8081807660966717e+18 - y tested = 5035525633.343237 -y predicted = 5284912340.626931 -error 6.219372976980301e+16 - y tested = 5026691733.102776 -y predicted = 5296342601.473232 -error 7.271159081294136e+16 - y tested = 1014996574.3865615 -y predicted = 1508090688.063859 -error 2.4314180494319955e+17 - y tested = 7665772326.561901 -y predicted = 6588715420.565526 -error 1.1600515787544845e+18 - y tested = 3029054692.61153 -y predicted = 4523061505.991891 -error 2.2320563584269412e+18 - y tested = 4062233415.93208 -y predicted = 4473276721.48586 -error 1.689565990405782e+17 - y tested = 5822958761.806049 -y predicted = 6120267168.482288 -error 8.839228868036392e+16 - y tested = 6611133148.221605 -y predicted = 6343006382.64709 -error 7.18919624174511e+16 - y tested = 5377240292.736961 -y predicted = 3021347763.3381033 -error 5.550229610077349e+18 -error squared vector [3.4858042518776376e+18, 1.9020983086763139e+18, 1.6395950009509626e+17, 4.52991452370149e+18, 6.355360378221479e+16, 1.0890834726766444e+18, 1.1616522883686167e+18, 4.0321850028676925e+18, 1.9004697506360268e+16, 1.248777980383214e+17, 1.8081807660966717e+18, 6.219372976980301e+16, 7.271159081294136e+16, 2.4314180494319955e+17, 1.1600515787544845e+18, 2.2320563584269412e+18, 1.689565990405782e+17, 8.839228868036392e+16, 7.18919624174511e+16, 5.550229610077349e+18] -Total loo_error 1.4014969868305085e+18 -iteration 122current difference of loo_error 4018231087849472.0 - getting loo error of with lamda = 0.028616989118528578, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1857104053.163266 -error 3.4488354639659136e+18 - y tested = 5326600510.288329 -y predicted = 3949329752.974877 -error 1.8968747389507702e+18 - y tested = 5072151352.996373 -y predicted = 4658080055.299316 -error 1.714550395765246e+17 - y tested = 7650055845.407672 -y predicted = 5534237756.810226 -error 4.4766861840361477e+18 - y tested = 5789616901.049658 -y predicted = 6040937476.588184 -error 6.316203168901622e+16 - y tested = 8224428196.629629 -y predicted = 7192997800.550708 -error 1.0638486619555205e+18 - y tested = 4059018123.5159216 -y predicted = 5135365960.843917 -error 1.1585246669206525e+18 - y tested = 5947637003.818383 -y predicted = 3945166996.3440948 -error 4.0098861308340767e+18 - y tested = 997516184.7000968 -y predicted = 847225481.9885651 -error 2.258729532152602e+16 - y tested = 6532788063.289651 -y predicted = 6881660151.514819 -error 1.2171173394258957e+17 - y tested = 1980229389.772511 -y predicted = 3329376093.568005 -error 1.8201968283622467e+18 - y tested = 5035525633.343237 -y predicted = 5282874686.060433 -error 6.118155388009443e+16 - y tested = 5026691733.102776 -y predicted = 5297000578.7207365 -error 7.306687201931464e+16 - y tested = 1014996574.3865615 -y predicted = 1497791835.1029112 -error 2.330912637701681e+17 - y tested = 7665772326.561901 -y predicted = 6596050225.307417 -error 1.1443053739123089e+18 - y tested = 3029054692.61153 -y predicted = 4531244710.922695 -error 2.2565748511136993e+18 - y tested = 4062233415.93208 -y predicted = 4483939435.944716 -error 1.778359673148983e+17 - y tested = 5822958761.806049 -y predicted = 6125192657.706783 -error 9.134532783133568e+16 - y tested = 6611133148.221605 -y predicted = 6343042950.326376 -error 7.187235420750323e+16 - y tested = 5377240292.736961 -y predicted = 3022309446.5065928 -error 5.54569929052728e+18 -error squared vector [3.4488354639659136e+18, 1.8968747389507702e+18, 1.714550395765246e+17, 4.4766861840361477e+18, 6.316203168901622e+16, 1.0638486619555205e+18, 1.1585246669206525e+18, 4.0098861308340767e+18, 2.258729532152602e+16, 1.2171173394258957e+17, 1.8201968283622467e+18, 6.118155388009443e+16, 7.306687201931464e+16, 2.330912637701681e+17, 1.1443053739123089e+18, 2.2565748511136993e+18, 1.778359673148983e+17, 9.134532783133568e+16, 7.187235420750323e+16, 5.54569929052728e+18] -Total loo_error 1.3954370815065795e+18 -iteration 123current difference of loo_error -2041674236079616.0 - getting loo error of with lamda = 0.006594380210326917, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0200-1100' +--- Neighbour 0 in the list of neghbours, And at position 57 in the X datas point +-------------- + --- Configuration: 0200-1100 + --- Distance from that configuration: [1.] + --- Energy efficiency: 6540008502.011052 + --- Energy: 42.722378810206706 + --- Workload: 279405000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 2 in the X datas point +-------------- + --- Configuration: 0303-0100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 37 in the X datas point +-------------- + --- Configuration: 2200-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1998856653.9939156 + --- Energy: 30.07061597004587 + --- Workload: 60106800000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 40 in the X datas point +-------------- + --- Configuration: 3300-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5058399218.983161 + --- Energy: 36.78276420172299 + --- Workload: 186062000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 42 in the X datas point +-------------- + --- Configuration: 1100-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5947637003.818383 + --- Energy: 36.68430426428569 + --- Workload: 218185000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0200-1100' +--- Neighbour 0 in the list of neghbours, And at position 37 in the X datas point +-------------- + --- Configuration: 2200-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 1998856653.9939156 + --- Energy: 30.07061597004587 + --- Workload: 60106800000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 42 in the X datas point +-------------- + --- Configuration: 1100-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5947637003.818383 + --- Energy: 36.68430426428569 + --- Workload: 218185000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 40 in the X datas point +-------------- + --- Configuration: 3300-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5058399218.983161 + --- Energy: 36.78276420172299 + --- Workload: 186062000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 57 in the X datas point +-------------- + --- Configuration: 0200-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6540008502.011052 + --- Energy: 42.722378810206706 + --- Workload: 279405000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 2 in the X datas point +-------------- + --- Configuration: 0303-0100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (36.93355197432356 mAh) it is NOT far from the median. +--- Median :36.93355197432356, the gap is : 10 +--- So No we don't romove this configuration '0200-1100' + --- remove_aberrant_points: The value [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 1, 0, 0, 1, 0.0, 0, 1, 0, 0] +--- Computing the list of the 10 first neighbours of '2002-0100' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1488009116.4407148 -error 2.2141711303626755e+18 - y tested = 5326600510.288329 -y predicted = 4012414541.5484996 -error 1.7270847604326444e+18 - y tested = 5072151352.996373 -y predicted = 4182015633.6837754 -error 7.923415987961558e+17 - y tested = 7650055845.407672 -y predicted = 6035754882.452089 -error 2.605967598999321e+18 - y tested = 5789616901.049658 -y predicted = 6172814273.977008 -error 1.468402266184226e+17 - y tested = 8224428196.629629 -y predicted = 7685039569.6682625 -error 2.9094009089526835e+17 - y tested = 4059018123.5159216 -y predicted = 5067551133.939199 -error 1.0171388331134395e+18 - y tested = 5947637003.818383 -y predicted = 4080868303.888744 -error 3.484825379036996e+18 - y tested = 997516184.7000968 -y predicted = 348830691.40070814 -error 4.2079286921707117e+17 - y tested = 6532788063.289651 -y predicted = 6385543179.761817 -error 2.1681055725125384e+16 - y tested = 1980229389.772511 -y predicted = 3671719274.7395587 -error 2.861138030945836e+18 - y tested = 5035525633.343237 -y predicted = 5071772469.791753 -error 1313833152525460.2 - y tested = 5026691733.102776 -y predicted = 5330857967.518607 -error 9.25170981587066e+16 - y tested = 1014996574.3865615 -y predicted = 1071097694.7359747 -error 3147335704459339.0 - y tested = 7665772326.561901 -y predicted = 6927258850.749447 -error 5.454021539565924e+17 - y tested = 3029054692.61153 -y predicted = 4975407285.005857 -error 3.78828841392012e+18 - y tested = 4062233415.93208 -y predicted = 5124077945.725048 -error 1.1275138054512499e+18 - y tested = 5822958761.806049 -y predicted = 6635532457.226673 -error 6.602760104895287e+17 - y tested = 6611133148.221605 -y predicted = 6346878759.493867 -error 6.9830381961870664e+16 - y tested = 5377240292.736961 -y predicted = 2990324307.9791274 -error 5.697367918292461e+18 -error squared vector [2.2141711303626755e+18, 1.7270847604326444e+18, 7.923415987961558e+17, 2.605967598999321e+18, 1.468402266184226e+17, 2.9094009089526835e+17, 1.0171388331134395e+18, 3.484825379036996e+18, 4.2079286921707117e+17, 2.1681055725125384e+16, 2.861138030945836e+18, 1313833152525460.2, 9.25170981587066e+16, 3147335704459339.0, 5.454021539565924e+17, 3.78828841392012e+18, 1.1275138054512499e+18, 6.602760104895287e+17, 6.9830381961870664e+16, 5.697367918292461e+18] -Total loo_error 1.3784289262615235e+18 -iteration 124current difference of loo_error 1.7008155245056e+16 - getting loo error of with lamda = 0.02794963733343156, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1847675338.5414782 -error 3.41390415634642e+18 - y tested = 5326600510.288329 -y predicted = 3951124988.5452337 -error 1.8919329109144404e+18 - y tested = 5072151352.996373 -y predicted = 4649305850.22779 -error 1.78798319211616e+17 - y tested = 7650055845.407672 -y predicted = 5546198034.618376 -error 4.42621768801913e+18 - y tested = 5789616901.049658 -y predicted = 6040279434.214056 -error 6.283170553239302e+16 - y tested = 8224428196.629629 -y predicted = 7204592398.8223 -error 1.0400650544893116e+18 - y tested = 4059018123.5159216 -y predicted = 5133970061.765172 -error 1.1555216695458202e+18 - y tested = 5947637003.818383 -y predicted = 3950415216.620888 -error 3.988894867256356e+18 - y tested = 997516184.7000968 -y predicted = 835396498.216984 -error 2.628279274538279e+16 - y tested = 6532788063.289651 -y predicted = 6877177904.083035 -error 1.1860436244169275e+17 - y tested = 1980229389.772511 -y predicted = 3333756389.935033 -error 1.8320353401689554e+18 - y tested = 5035525633.343237 -y predicted = 5280847483.390226 -error 6.0182810110477576e+16 - y tested = 5026691733.102776 -y predicted = 5297620824.036666 -error 7.340257231426422e+16 - y tested = 1014996574.3865615 -y predicted = 1487980358.9748802 -error 2.2371366048348906e+17 - y tested = 7665772326.561901 -y predicted = 6603078087.899457 -error 1.1293190448863517e+18 - y tested = 3029054692.61153 -y predicted = 4539101970.626204 -error 2.2802427818395254e+18 - y tested = 4062233415.93208 -y predicted = 4494232252.8620615 -error 1.8662299510885693e+17 - y tested = 5822958761.806049 -y predicted = 6130051279.146499 -error 9.430581420649418e+16 - y tested = 6611133148.221605 -y predicted = 6343077404.189969 -error 7.185388190835409e+16 - y tested = 5377240292.736961 -y predicted = 3023193004.1966743 -error 5.541538636683877e+18 -error squared vector [3.41390415634642e+18, 1.8919329109144404e+18, 1.78798319211616e+17, 4.42621768801913e+18, 6.283170553239302e+16, 1.0400650544893116e+18, 1.1555216695458202e+18, 3.988894867256356e+18, 2.628279274538279e+16, 1.1860436244169275e+17, 1.8320353401689554e+18, 6.0182810110477576e+16, 7.340257231426422e+16, 2.2371366048348906e+17, 1.1293190448863517e+18, 2.2802427818395254e+18, 1.8662299510885693e+17, 9.430581420649418e+16, 7.185388190835409e+16, 5.541538636683877e+18] -Total loo_error 1.3898135532106604e+18 -iteration 125current difference of loo_error 1.1384626949136896e+16 - getting loo error of with lamda = 0.027302508329701117, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1838443692.2182643 -error 3.3798752091507174e+18 - y tested = 5326600510.288329 -y predicted = 3952877995.4526024 -error 1.8871135477665935e+18 - y tested = 5072151352.996373 -y predicted = 4640635287.574659 -error 1.862061147170368e+17 - y tested = 7650055845.407672 -y predicted = 5557954365.420772 -error 4.3768886025633787e+18 - y tested = 5789616901.049658 -y predicted = 6039715575.140262 -error 6.254934678187807e+16 - y tested = 8224428196.629629 -y predicted = 7215986060.059979 -error 1.0169555428091601e+18 - y tested = 4059018123.5159216 -y predicted = 5132587210.598569 -error 1.1525505847394688e+18 - y tested = 5947637003.818383 -y predicted = 3955520514.6384854 -error 3.968528106462442e+18 - y tested = 997516184.7000968 -y predicted = 823794898.5940247 -error 3.0179085246347788e+16 - y tested = 6532788063.289651 -y predicted = 6872593397.6318 -error 1.1546766524737952e+17 - y tested = 1980229389.772511 -y predicted = 3338185004.4754143 -error 1.8440434515031398e+18 - y tested = 5035525633.343237 -y predicted = 5278772947.056945 -error 5.916925562893504e+16 - y tested = 5026691733.102776 -y predicted = 5298224110.264148 -error 7.372983184690568e+16 - y tested = 1014996574.3865615 -y predicted = 1478344661.4331863 -error 2.1469144976976656e+17 - y tested = 7665772326.561901 -y predicted = 6610018046.278721 -error 1.1146171003362559e+18 - y tested = 3029054692.61153 -y predicted = 4546878284.86812 -error 2.3037884572107003e+18 - y tested = 4062233415.93208 -y predicted = 4504471453.766797 -error 1.9557448210790083e+17 - y tested = 5822958761.806049 -y predicted = 6134986882.108194 -error 9.736154785928987e+16 - y tested = 6611133148.221605 -y predicted = 6343111454.053639 -error 7.183562854466664e+16 - y tested = 5377240292.736961 -y predicted = 3024027951.583646 -error 5.537608322556269e+18 -error squared vector [3.3798752091507174e+18, 1.8871135477665935e+18, 1.862061147170368e+17, 4.3768886025633787e+18, 6.254934678187807e+16, 1.0169555428091601e+18, 1.1525505847394688e+18, 3.968528106462442e+18, 3.0179085246347788e+16, 1.1546766524737952e+17, 1.8440434515031398e+18, 5.916925562893504e+16, 7.372983184690568e+16, 2.1469144976976656e+17, 1.1146171003362559e+18, 2.3037884572107003e+18, 1.9557448210790083e+17, 9.736154785928987e+16, 7.183562854466664e+16, 5.537608322556269e+18] -Total loo_error 1.3844366666424115e+18 -iteration 126current difference of loo_error 6007740380888064.0 - getting loo error of with lamda = 0.026674989295780688, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1829407282.8261082 -error 3.3467310061523036e+18 - y tested = 5326600510.288329 -y predicted = 3954589179.6208777 -error 1.8824150914798707e+18 - y tested = 5072151352.996373 -y predicted = 4632068671.7267 -error 1.936727663535049e+17 - y tested = 7650055845.407672 -y predicted = 5569506787.886215 -error 4.328684380753422e+18 - y tested = 5789616901.049658 -y predicted = 6039244843.360797 -error 6.231410958249339e+16 - y tested = 8224428196.629629 -y predicted = 7227178686.600535 -error 9.945065852532676e+17 - y tested = 4059018123.5159216 -y predicted = 5131217933.303399 -error 1.149612432108303e+18 - y tested = 5947637003.818383 -y predicted = 3960483884.84511 -error 3.948777518245208e+18 - y tested = 997516184.7000968 -y predicted = 812418383.7333508 -error 3.426119592272515e+16 - y tested = 6532788063.289651 -y predicted = 6867911026.062344 -error 1.1230740017754757e+17 - y tested = 1980229389.772511 -y predicted = 3342658245.575714 -error 1.8562123871252252e+18 - y tested = 5035525633.343237 -y predicted = 5276653325.89862 -error 5.8142564117083176e+16 - y tested = 5026691733.102776 -y predicted = 5298811265.591159 -error 7.404903996169629e+16 - y tested = 1014996574.3865615 -y predicted = 1468883183.547207 -error 2.0601305397534867e+17 - y tested = 7665772326.561901 -y predicted = 6616869000.830829 -error 1.1001981867297042e+18 - y tested = 3029054692.61153 -y predicted = 4554573254.500629 -error 2.3272068826681866e+18 - y tested = 4062233415.93208 -y predicted = 4514654412.125585 -error 2.046847577967233e+17 - y tested = 5822958761.806049 -y predicted = 6139997398.543108 -error 1.0051349718409262e+17 - y tested = 6611133148.221605 -y predicted = 6343145630.031336 -error 7.181730990578001e+16 - y tested = 5377240292.736961 -y predicted = 3024814438.1678047 -error 5.533907401245427e+18 -error squared vector [3.3467310061523036e+18, 1.8824150914798707e+18, 1.936727663535049e+17, 4.328684380753422e+18, 6.231410958249339e+16, 9.945065852532676e+17, 1.149612432108303e+18, 3.948777518245208e+18, 3.426119592272515e+16, 1.1230740017754757e+17, 1.8562123871252252e+18, 5.8142564117083176e+16, 7.404903996169629e+16, 2.0601305397534867e+17, 1.1001981867297042e+18, 2.3272068826681866e+18, 2.046847577967233e+17, 1.0051349718409262e+17, 7.181730990578001e+16, 5.533907401245427e+18] -Total loo_error 1.3793013783368957e+18 -iteration 127current difference of loo_error 872452075372288.0 - getting loo error of with lamda = 0.026066485990160877, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1820564176.6067529 -error 3.314453920840397e+18 - y tested = 5326600510.288329 -y predicted = 3956258980.151639 -error 1.8778359092173652e+18 - y tested = 5072151352.996373 -y predicted = 4623606239.031456 -error 2.0119271926180054e+17 - y tested = 7650055845.407672 -y predicted = 5580855493.95738 -error 4.2815900944420106e+18 - y tested = 5789616901.049658 -y predicted = 6038866050.953709 -error 6.2125138727892e+16 - y tested = 8224428196.629629 -y predicted = 7238170377.933525 -error 9.727044849391972e+17 - y tested = 4059018123.5159216 -y predicted = 5129862728.537767 -error 1.146708168104393e+18 - y tested = 5947637003.818383 -y predicted = 3965306469.841247 -error 3.9296343459380777e+18 - y tested = 997516184.7000968 -y predicted = 801264588.6932782 -error 3.851468893522356e+16 - y tested = 6532788063.289651 -y predicted = 6863135175.599247 -error 1.0912921461128888e+17 - y tested = 1980229389.772511 -y predicted = 3347172405.9314137 -error 1.868533209425598e+18 - y tested = 5035525633.343237 -y predicted = 5274490878.351292 -error 5.7104388321759624e+16 - y tested = 5026691733.102776 -y predicted = 5299383091.082128 -error 7.43605767166231e+16 - y tested = 1014996574.3865615 -y predicted = 1459594331.515438 -error 1.9766716564402752e+17 - y tested = 7665772326.561901 -y predicted = 6623629920.146312 -error 1.0860607952496754e+18 - y tested = 3029054692.61153 -y predicted = 4562186512.682665 -error 2.350493177714631e+18 - y tested = 4062233415.93208 -y predicted = 4524778543.095555 -error 2.1394799466267574e+17 - y tested = 5822958761.806049 -y predicted = 6145080603.884735 -error 1.0376248114416578e+17 - y tested = 6611133148.221605 -y predicted = 6343180398.920476 -error 7.179867585803387e+16 - y tested = 5377240292.736961 -y predicted = 3025552692.050594 -error 5.530434571222004e+18 -error squared vector [3.314453920840397e+18, 1.8778359092173652e+18, 2.0119271926180054e+17, 4.2815900944420106e+18, 6.2125138727892e+16, 9.727044849391972e+17, 1.146708168104393e+18, 3.9296343459380777e+18, 3.851468893522356e+16, 1.0912921461128888e+17, 1.868533209425598e+18, 5.7104388321759624e+16, 7.43605767166231e+16, 1.9766716564402752e+17, 1.0860607952496754e+18, 2.350493177714631e+18, 2.1394799466267574e+17, 1.0376248114416578e+17, 7.179867585803387e+16, 5.530434571222004e+18] -Total loo_error 1.374402586048842e+18 -iteration 128current difference of loo_error -4026340212681472.0 - getting loo error of with lamda = 0.007184444021837037, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1499900881.6338902 -error 2.2497026544761377e+18 - y tested = 5326600510.288329 -y predicted = 4010769720.7612443 -error 1.7314106666674714e+18 - y tested = 5072151352.996373 -y predicted = 4206526905.446959 -error 7.493056841952284e+17 - y tested = 7650055845.407672 -y predicted = 6019723582.070173 -error 2.657983288879171e+18 - y tested = 5789616901.049658 -y predicted = 6156740636.683075 -error 1.3477983726543515e+17 - y tested = 8224428196.629629 -y predicted = 7667517935.838279 -error 3.1014903857468986e+17 - y tested = 4059018123.5159216 -y predicted = 5069942470.344322 -error 1.0219680350104284e+18 - y tested = 5947637003.818383 -y predicted = 4081480052.45839 -error 3.4825417671092234e+18 - y tested = 997516184.7000968 -y predicted = 366846333.39013326 -error 3.977444613513316e+17 - y tested = 6532788063.289651 -y predicted = 6423666207.262103 -error 1.1907579462896878e+16 - y tested = 1980229389.772511 -y predicted = 3653156600.7847033 -error 2.798685453345032e+18 - y tested = 5035525633.343237 -y predicted = 5086724492.348676 -error 2621323163458802.0 - y tested = 5026691733.102776 -y predicted = 5328520475.876745 -error 9.110058996451514e+16 - y tested = 1014996574.3865615 -y predicted = 1086665625.275841 -error 5136452855370133.0 - y tested = 7665772326.561901 -y predicted = 6915016847.179905 -error 5.636337898220909e+17 - y tested = 3029054692.61153 -y predicted = 4952118835.329117 -error 3.6981756970061276e+18 - y tested = 4062233415.93208 -y predicted = 5088954532.889012 -error 1.0541562520052911e+18 - y tested = 5822958761.806049 -y predicted = 6596632869.584739 -error 5.985716250471511e+17 - y tested = 6611133148.221605 -y predicted = 6347078223.508275 -error 6.972500326536252e+16 - y tested = 5377240292.736961 -y predicted = 2996344723.924343 -error 5.668663709591561e+18 -error squared vector [2.2497026544761377e+18, 1.7314106666674714e+18, 7.493056841952284e+17, 2.657983288879171e+18, 1.3477983726543515e+17, 3.1014903857468986e+17, 1.0219680350104284e+18, 3.4825417671092234e+18, 3.977444613513316e+17, 1.1907579462896878e+16, 2.798685453345032e+18, 2621323163458802.0, 9.110058996451514e+16, 5136452855370133.0, 5.636337898220909e+17, 3.6981756970061276e+18, 1.0541562520052911e+18, 5.985716250471511e+17, 6.972500326536252e+16, 5.668663709591561e+18] -Total loo_error 1.3648981454528988e+18 -iteration 129current difference of loo_error 9504440595943168.0 - getting loo error of with lamda = 0.02549430290021167, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1812175639.1249206 -error 3.2839805467357855e+18 - y tested = 5326600510.288329 -y predicted = 3957838368.217383 -error 1.8735098015666452e+18 - y tested = 5072151352.996373 -y predicted = 4615503695.634435 -error 2.0852708297414637e+17 - y tested = 7650055845.407672 -y predicted = 5591661026.517478 -error 4.236989230433994e+18 - y tested = 5789616901.049658 -y predicted = 6038585411.6276045 -error 6.198531925940114e+16 - y tested = 8224428196.629629 -y predicted = 7248632483.249157 -error 9.521772742517046e+17 - y tested = 4059018123.5159216 -y predicted = 5128563084.873808 -error 1.1439264243660425e+18 - y tested = 5947637003.818383 -y predicted = 3969847569.1590767 -error 3.9116510478499794e+18 - y tested = 997516184.7000968 -y predicted = 790664137.5698702 -error 4.278776940196549e+16 - y tested = 6532788063.289651 -y predicted = 6858421152.893274 -error 1.0603690904480142e+17 - y tested = 1980229389.772511 -y predicted = 3351583253.0445204 -error 1.880611418311065e+18 - y tested = 5035525633.343237 -y predicted = 5272356215.033701 -error 5.608872442384355e+16 - y tested = 5026691733.102776 -y predicted = 5299923428.415712 -error 7.465555932358152e+16 - y tested = 1014996574.3865615 -y predicted = 1450754406.9756486 -error 1.8988488866273888e+17 - y tested = 7665772326.561901 -y predicted = 6630096044.472547 -error 1.0726253612824283e+18 - y tested = 3029054692.61153 -y predicted = 4569487292.493292 -error 2.3729325947784847e+18 - y tested = 4062233415.93208 -y predicted = 4534532718.809517 -error 2.230666314985131e+17 - y tested = 5822958761.806049 -y predicted = 6150074581.4414015 -error 1.0700475945570822e+17 - y tested = 6611133148.221605 -y predicted = 6343215048.59978 -error 7.1780108104970264e+16 - y tested = 5377240292.736961 -y predicted = 3026222494.0999107 -error 5.527284689508204e+18 -error squared vector [3.2839805467357855e+18, 1.8735098015666452e+18, 2.0852708297414637e+17, 4.236989230433994e+18, 6.198531925940114e+16, 9.521772742517046e+17, 1.1439264243660425e+18, 3.9116510478499794e+18, 4.278776940196549e+16, 1.0603690904480142e+17, 1.880611418311065e+18, 5.608872442384355e+16, 7.465555932358152e+16, 1.8988488866273888e+17, 1.0726253612824283e+18, 2.3729325947784847e+18, 2.230666314985131e+17, 1.0700475945570822e+17, 7.1780108104970264e+16, 5.527284689508204e+18] -Total loo_error 1.3698753070617e+18 -iteration 130current difference of loo_error 4977161608801280.0 - getting loo error of with lamda = 0.024939458691776075, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1803972660.3167884 -error 3.254317358869769e+18 - y tested = 5326600510.288329 -y predicted = 3959378311.843258 -error 1.8692965399209738e+18 - y tested = 5072151352.996373 -y predicted = 4607506930.064752 -error 2.158944397614596e+17 - y tested = 7650055845.407672 -y predicted = 5602265838.863134 -error 4.193443910903677e+18 - y tested = 5789616901.049658 -y predicted = 6038388757.635098 -error 6.188743662896704e+16 - y tested = 8224428196.629629 -y predicted = 7258896748.177441 -error 9.322509779501811e+17 - y tested = 4059018123.5159216 -y predicted = 5127278737.952033 -error 1.1411807403554184e+18 - y tested = 5947637003.818383 -y predicted = 3974254728.304229 -error 3.8942376053134223e+18 - y tested = 997516184.7000968 -y predicted = 780278264.4265624 -error 4.71923140047705e+16 - y tested = 6532788063.289651 -y predicted = 6853632043.743485 -error 1.0294085979346056e+17 - y tested = 1980229389.772511 -y predicted = 3356021382.6415043 -error 1.892803607642436e+18 - y tested = 5035525633.343237 -y predicted = 5270187612.708029 -error 5.506624455940201e+16 - y tested = 5026691733.102776 -y predicted = 5300450269.732798 -error 7.494373637781112e+16 - y tested = 1014996574.3865615 -y predicted = 1442081876.7468596 -error 1.824018554921872e+17 - y tested = 7665772326.561901 -y predicted = 6636469787.366221 -error 1.0594637171946737e+18 - y tested = 3029054692.61153 -y predicted = 4576703813.327727 -error 2.395217800853619e+18 - y tested = 4062233415.93208 -y predicted = 4544217689.196001 -error 2.3230883967375034e+17 - y tested = 5822958761.806049 -y predicted = 6155127443.400504 -error 1.1033603303219827e+17 - y tested = 6611133148.221605 -y predicted = 6343250921.2188635 -error 7.17608875439485e+16 - y tested = 5377240292.736961 -y predicted = 3026847033.6492963 -error 5.524348472364735e+18 -error squared vector [3.254317358869769e+18, 1.8692965399209738e+18, 2.158944397614596e+17, 4.193443910903677e+18, 6.188743662896704e+16, 9.322509779501811e+17, 1.1411807403554184e+18, 3.8942376053134223e+18, 4.71923140047705e+16, 1.0294085979346056e+17, 1.892803607642436e+18, 5.506624455940201e+16, 7.494373637781112e+16, 1.824018554921872e+17, 1.0594637171946737e+18, 2.395217800853619e+18, 2.3230883967375034e+17, 1.1033603303219827e+17, 7.17608875439485e+16, 5.524348472364735e+18] -Total loo_error 1.365564668911843e+18 -iteration 131current difference of loo_error 666523458944256.0 - getting loo error of with lamda = 0.024401427944202164, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1795952956.9327643 -error 3.2254470232162145e+18 - y tested = 5326600510.288329 -y predicted = 3960879353.03563 -error 1.865194279367651e+18 - y tested = 5072151352.996373 -y predicted = 4599615934.192084 -error 2.2328972202454467e+17 - y tested = 7650055845.407672 -y predicted = 5612670749.6282215 -error 4.15093802850424e+18 - y tested = 5789616901.049658 -y predicted = 6038274456.20757 -error 6.183057973711018e+16 - y tested = 8224428196.629629 -y predicted = 7268964014.677295 -error 9.129118029938436e+17 - y tested = 4059018123.5159216 -y predicted = 5126010063.649178 -error 1.1384718003093297e+18 - y tested = 5947637003.818383 -y predicted = 3978529593.595075 -error 3.8773839929963433e+18 - y tested = 997516184.7000968 -y predicted = 770104369.9657983 -error 5.171613348074694e+16 - y tested = 6532788063.289651 -y predicted = 6848772165.726952 -error 9.984595299310653e+16 - y tested = 1980229389.772511 -y predicted = 3360483209.136634 -error 1.9051006058692488e+18 - y tested = 5035525633.343237 -y predicted = 5267987292.886023 -error 5.403842315738598e+16 - y tested = 5026691733.102776 -y predicted = 5300964289.146534 -error 7.522543499877659e+16 - y tested = 1014996574.3865615 -y predicted = 1433574993.8988833 -error 1.7520789328143328e+17 - y tested = 7665772326.561901 -y predicted = 6642750477.699577 -error 1.0465737032496872e+18 - y tested = 3029054692.61153 -y predicted = 4583835841.677817 -error 2.4173444214918856e+18 - y tested = 4062233415.93208 -y predicted = 4553831134.63098 -error 2.4166831702996256e+17 - y tested = 5822958761.806049 -y predicted = 6160236469.657766 -error 1.1375625221370816e+17 - y tested = 6611133148.221605 -y predicted = 6343288282.157404 -error 7.174087227694996e+16 - y tested = 5377240292.736961 -y predicted = 3027426826.2329354 -error 5.521623327363667e+18 -error squared vector [3.2254470232162145e+18, 1.865194279367651e+18, 2.2328972202454467e+17, 4.15093802850424e+18, 6.183057973711018e+16, 9.129118029938436e+17, 1.1384718003093297e+18, 3.8773839929963433e+18, 5.171613348074694e+16, 9.984595299310653e+16, 1.9051006058692488e+18, 5.403842315738598e+16, 7.522543499877659e+16, 1.7520789328143328e+17, 1.0465737032496872e+18, 2.4173444214918856e+18, 2.4166831702996256e+17, 1.1375625221370816e+17, 7.174087227694996e+16, 5.521623327363667e+18] -Total loo_error 1.3614654283277919e+18 -iteration 132current difference of loo_error -3432717125106944.0 - getting loo error of with lamda = 0.0077061708073632535, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1510265781.761982 -error 2.2809027313094198e+18 - y tested = 5326600510.288329 -y predicted = 4009306574.1246295 -error 1.7352633142536532e+18 - y tested = 5072151352.996373 -y predicted = 4226842983.6833873 -error 7.145462392305793e+17 - y tested = 7650055845.407672 -y predicted = 6005493448.490685 -error 2.7045854773533435e+18 - y tested = 5789616901.049658 -y predicted = 6144159531.645592 -error 1.2570047690988485e+17 - y tested = 8224428196.629629 -y predicted = 7652387085.842273 -error 3.272310324308325e+17 - y tested = 4059018123.5159216 -y predicted = 5072066436.317277 -error 1.0262668840696727e+18 - y tested = 5947637003.818383 -y predicted = 4081475996.608847 -error 3.48255690482931e+18 - y tested = 997516184.7000968 -y predicted = 382411892.4629608 -error 3.7835329032854816e+17 - y tested = 6532788063.289651 -y predicted = 6454362081.187834 -error 6150634668634541.0 - y tested = 1980229389.772511 -y predicted = 3637361627.190299 -error 2.746087252289284e+18 - y tested = 5035525633.343237 -y predicted = 5098915562.556867 -error 4018283125708987.0 - y tested = 5026691733.102776 -y predicted = 5326656419.88177 -error 8.997881331442032e+16 - y tested = 1014996574.3865615 -y predicted = 1100189881.7477615 -error 7257899619139890.0 - y tested = 7665772326.561901 -y predicted = 6904313914.143867 -error 5.798189138421935e+17 - y tested = 3029054692.61153 -y predicted = 4932770738.124816 -error 3.624134781944744e+18 - y tested = 4062233415.93208 -y predicted = 5059813045.884297 -error 9.951651180956033e+17 - y tested = 5822958761.806049 -y predicted = 6565271061.362567 -error 5.510275500728851e+17 - y tested = 6611133148.221605 -y predicted = 6347134664.183232 -error 6.969519957455908e+16 - y tested = 5377240292.736961 -y predicted = 3001023068.8465734 -error 5.646408295113342e+18 -error squared vector [2.2809027313094198e+18, 1.7352633142536532e+18, 7.145462392305793e+17, 2.7045854773533435e+18, 1.2570047690988485e+17, 3.272310324308325e+17, 1.0262668840696727e+18, 3.48255690482931e+18, 3.7835329032854816e+17, 6150634668634541.0, 2.746087252289284e+18, 4018283125708987.0, 8.997881331442032e+16, 7257899619139890.0, 5.798189138421935e+17, 3.624134781944744e+18, 9.951651180956033e+17, 5.510275500728851e+17, 6.969519957455908e+16, 5.646408295113342e+18] -Total loo_error 1.354757454618788e+18 -iteration 133current difference of loo_error 6707973709003776.0 - getting loo error of with lamda = 0.023895511061267652, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1788352619.4770305 -error 3.198205091292298e+18 - y tested = 5326600510.288329 -y predicted = 3962297628.84897 -error 1.861322352303738e+18 - y tested = 5072151352.996373 -y predicted = 4592068545.577347 -error 2.3047950197933395e+17 - y tested = 7650055845.407672 -y predicted = 5622565730.465395 -error 4.1107161661886474e+18 - y tested = 5789616901.049658 -y predicted = 6038240633.669634 -error 6.1813760421889336e+16 - y tested = 8224428196.629629 -y predicted = 7278534557.496902 -error 8.94714776551753e+17 - y tested = 4059018123.5159216 -y predicted = 5124795701.144912 -error 1.1358818449767182e+18 - y tested = 5947637003.818383 -y predicted = 3982548367.5146246 -error 3.861573348530166e+18 - y tested = 997516184.7000968 -y predicted = 760443223.6959661 -error 5.620358883926609e+16 - y tested = 6532788063.289651 -y predicted = 6843998295.351294 -error 9.685180853986147e+16 - y tested = 1980229389.772511 -y predicted = 3364827040.707468 -error 1.9171106549746012e+18 - y tested = 5035525633.343237 -y predicted = 5265826473.899693 -error 5.303847716100999e+16 - y tested = 5026691733.102776 -y predicted = 5301450871.602793 -error 7.549258418927162e+16 - y tested = 1014996574.3865615 -y predicted = 1425486188.3650942 -error 1.6850172318424477e+17 - y tested = 7665772326.561901 -y predicted = 6648748608.990263 -error 1.0343372421032351e+18 - y tested = 3029054692.61153 -y predicted = 4590667662.496318 -error 2.438635067712388e+18 - y tested = 4062233415.93208 -y predicted = 4563078477.287865 -error 2.5084577548447994e+17 - y tested = 5822958761.806049 -y predicted = 6165239276.997629 -error 1.171559510798133e+17 - y tested = 6611133148.221605 -y predicted = 6343326121.3852215 -error 7.17206036229436e+16 - y tested = 5377240292.736961 -y predicted = 3027946625.336471 -error 5.519180735688046e+18 -error squared vector [3.198205091292298e+18, 1.861322352303738e+18, 2.3047950197933395e+17, 4.1107161661886474e+18, 6.1813760421889336e+16, 8.94714776551753e+17, 1.1358818449767182e+18, 3.861573348530166e+18, 5.620358883926609e+16, 9.685180853986147e+16, 1.9171106549746012e+18, 5.303847716100999e+16, 7.549258418927162e+16, 1.6850172318424477e+17, 1.0343372421032351e+18, 2.438635067712388e+18, 2.5084577548447994e+17, 1.171559510798133e+17, 7.17206036229436e+16, 5.519180735688046e+18] -Total loo_error 1.3576890527411853e+18 -iteration 134current difference of loo_error 2931598122397184.0 - getting loo error of with lamda = 0.023404924992967518, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '2002-0100' +--- Neighbour 0 in the list of neghbours, And at position 58 in the X datas point +-------------- + --- Configuration: 2002-0100 + --- Distance from that configuration: [1.] + --- Energy efficiency: 7245431755.278297 + --- Energy: 42.016301664202444 + --- Workload: 304426000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 2 in the X datas point +-------------- + --- Configuration: 0303-0100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 18 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1016987763.6032282 + --- Energy: 29.060137396486432 + --- Workload: 29553800000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 33 in the X datas point +-------------- + --- Configuration: 1000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 997516184.7000968 + --- Energy: 29.543907709942122 + --- Workload: 29470600000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 35 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1010122436.9405816 + --- Energy: 29.239529117166907 + --- Workload: 29535500000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 37 in the X datas point +-------------- + --- Configuration: 2200-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1998856653.9939156 + --- Energy: 30.07061597004587 + --- Workload: 60106800000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '2002-0100' +--- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 18 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 1016987763.6032282 + --- Energy: 29.060137396486432 + --- Workload: 29553800000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 35 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1010122436.9405816 + --- Energy: 29.239529117166907 + --- Workload: 29535500000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 33 in the X datas point +-------------- + --- Configuration: 1000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 997516184.7000968 + --- Energy: 29.543907709942122 + --- Workload: 29470600000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 37 in the X datas point +-------------- + --- Configuration: 2200-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1998856653.9939156 + --- Energy: 30.07061597004587 + --- Workload: 60106800000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 58 in the X datas point +-------------- + --- Configuration: 2002-0100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7245431755.278297 + --- Energy: 42.016301664202444 + --- Workload: 304426000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 50 in the X datas point +-------------- + --- Configuration: 1000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6448575832.027497 + --- Energy: 42.80059101405426 + --- Workload: 276003000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 2 in the X datas point +-------------- + --- Configuration: 0303-0100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 37 in the X datas point +-------------- + --- Configuration: 2200-0000 + --- Energy efficiency: 1998856653.9939156 + --- Energy: 30.07061597004587 + --- Workload: 60106800000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (42.016301664202444 mAh) is far from the median. +--- Median :30.07061597004587, the gap is : 10 +--- So yes we remove this configuration '2002-0100' +--- remove_aberrant_points: The value [1.0, 1, 0, 0, 1, 0.0, 0, 1, 0, 0] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1] +--- Computing the list of the 10 first neighbours of '0000-0001' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1780927103.0298896 -error 3.171701346009614e+18 - y tested = 5326600510.288329 -y predicted = 3963679106.625902 -error 1.8575547525611602e+18 - y tested = 5072151352.996373 -y predicted = 4584627472.436341 -error 2.3767953411631226e+17 - y tested = 7650055845.407672 -y predicted = 5632265543.901427 -error 4.071477700852662e+18 - y tested = 5789616901.049658 -y predicted = 6038280833.986158 -error 6.183375154344844e+16 - y tested = 8224428196.629629 -y predicted = 7287913089.927371 -error 8.770605450815419e+17 - y tested = 4059018123.5159216 -y predicted = 5123597831.494699 -error 1.1333299546401779e+18 - y tested = 5947637003.818383 -y predicted = 3986442503.620762 -error 3.846283867605398e+18 - y tested = 997516184.7000968 -y predicted = 750985295.1796176 -error 6.077747948775872e+16 - y tested = 6532788063.289651 -y predicted = 6839170534.499712 -error 9.38702186647839e+16 - y tested = 1980229389.772511 -y predicted = 3369182373.819917 -error 1.9291903918941942e+18 - y tested = 5035525633.343237 -y predicted = 5263642050.1178 -error 5.2037099602066056e+16 - y tested = 5026691733.102776 -y predicted = 5301926127.064434 -error 7.575397161944142e+16 - y tested = 1014996574.3865615 -y predicted = 1417557247.4855194 -error 1.6205509552588605e+17 - y tested = 7665772326.561901 -y predicted = 6654652652.681627 -error 1.0223629949077513e+18 - y tested = 3029054692.61153 -y predicted = 4597413302.641053 -error 2.4597487296537385e+18 - y tested = 4062233415.93208 -y predicted = 4572245712.785453 -error 2.6011254294165312e+17 - y tested = 5822958761.806049 -y predicted = 6170284664.28195 -error 1.2063528253069885e+17 - y tested = 6611133148.221605 -y predicted = 6343365686.221365 -error 7.169941370605014e+16 - y tested = 5377240292.736961 -y predicted = 3028425065.911515 -error 5.516932969767072e+18 -error squared vector [3.171701346009614e+18, 1.8575547525611602e+18, 2.3767953411631226e+17, 4.071477700852662e+18, 6.183375154344844e+16, 8.770605450815419e+17, 1.1333299546401779e+18, 3.846283867605398e+18, 6.077747948775872e+16, 9.38702186647839e+16, 1.9291903918941942e+18, 5.2037099602066056e+16, 7.575397161944142e+16, 1.6205509552588605e+17, 1.0223629949077513e+18, 2.4597487296537385e+18, 2.6011254294165312e+17, 1.2063528253069885e+17, 7.169941370605014e+16, 5.516932969767072e+18] -Total loo_error 1.3541048821355707e+18 -iteration 135current difference of loo_error -652572483217408.0 - getting loo error of with lamda = 0.008181890631169444, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1519605928.2842877 -error 2.3092021770234844e+18 - y tested = 5326600510.288329 -y predicted = 4007964166.413383 -error 1.738801807387885e+18 - y tested = 5072151352.996373 -y predicted = 4244391615.4411707 -error 6.851861831174577e+17 - y tested = 7650055845.407672 -y predicted = 5992518597.655993 -error 2.747429727684209e+18 - y tested = 5789616901.049658 -y predicted = 6133846004.178035 -error 1.1849367544056678e+17 - y tested = 8224428196.629629 -y predicted = 7638857661.252522 -error 3.4289285190183136e+17 - y tested = 4059018123.5159216 -y predicted = 5074001235.041295 -error 1.0301907166817286e+18 - y tested = 5947637003.818383 -y predicted = 4081073123.854663 -error 3.4840607179852175e+18 - y tested = 997516184.7000968 -y predicted = 396323884.8802822 -error 3.6143218136263795e+17 - y tested = 6532788063.289651 -y predicted = 6480189355.193952 -error 2766624093336584.0 - y tested = 1980229389.772511 -y predicted = 3623477980.8477592 -error 2.7002659320707886e+18 - y tested = 5035525633.343237 -y predicted = 5109280107.882401 -error 5439722514548271.0 - y tested = 5026691733.102776 -y predicted = 5325100838.600689 -error 8.904799424406478e+16 - y tested = 1014996574.3865615 -y predicted = 1112316921.1348739 -error 9471249891211750.0 - y tested = 7665772326.561901 -y predicted = 6894672723.049889 -error 5.945945985363828e+17 - y tested = 3029054692.61153 -y predicted = 4916037296.678176 -error 3.5607033480501407e+18 - y tested = 4062233415.93208 -y predicted = 5034642780.443053 -error 9.455799721886353e+17 - y tested = 5822958761.806049 -y predicted = 6538858636.971883 -error 5.1251263126245594e+17 - y tested = 6611133148.221605 -y predicted = 6347113725.866736 -error 6.970625538059864e+16 - y tested = 5377240292.736961 -y predicted = 3004822863.574405 -error 5.628364458194272e+18 -error squared vector [2.3092021770234844e+18, 1.738801807387885e+18, 6.851861831174577e+17, 2.747429727684209e+18, 1.1849367544056678e+17, 3.4289285190183136e+17, 1.0301907166817286e+18, 3.4840607179852175e+18, 3.6143218136263795e+17, 2766624093336584.0, 2.7002659320707886e+18, 5439722514548271.0, 8.904799424406478e+16, 9471249891211750.0, 5.945945985363828e+17, 3.5607033480501407e+18, 9.455799721886353e+17, 5.1251263126245594e+17, 6.970625538059864e+16, 5.628364458194272e+18] -Total loo_error 1.3468071412505728e+18 -iteration 136current difference of loo_error 7297740884997888.0 - getting loo error of with lamda = 0.02294362092139788, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1773894446.3791397 -error 3.1467015065991055e+18 - y tested = 5326600510.288329 -y predicted = 3964983547.001877 -error 1.85400075470942e+18 - y tested = 5072151352.996373 -y predicted = 4577516539.206093 -error 2.446635990133453e+17 - y tested = 7650055845.407672 -y predicted = 5641482007.283204 -error 4.034368863198056e+18 - y tested = 5789616901.049658 -y predicted = 6038388620.430961 -error 6.188736836392968e+16 - y tested = 8224428196.629629 -y predicted = 7296821256.673048 -error 8.604546350556123e+17 - y tested = 4059018123.5159216 -y predicted = 5122452795.230902 -error 1.1308933010055475e+18 - y tested = 5947637003.818383 -y predicted = 3990099799.655171 -error 3.831951905683126e+18 - y tested = 997516184.7000968 -y predicted = 742009619.9206806 -error 6.528360464537801e+16 - y tested = 6532788063.289651 -y predicted = 6834443769.088793 -error 9.099616484117845e+16 - y tested = 1980229389.772511 -y predicted = 3373411556.9025455 -error 1.9409565508091392e+18 - y tested = 5035525633.343237 -y predicted = 5261504290.289354 -error 5.1066353395171016e+16 - y tested = 5026691733.102776 -y predicted = 5302376477.883002 -error 7.600207850453874e+16 - y tested = 1014996574.3865615 -y predicted = 1410022997.8686154 -error 1.5604587524902298e+17 - y tested = 7665772326.561901 -y predicted = 6660284999.284194 -error 1.0110047653160668e+18 - y tested = 3029054692.61153 -y predicted = 4603869109.8316765 -error 2.4800404486844303e+18 - y tested = 4062233415.93208 -y predicted = 4581052630.717198 -error 2.69173377630247e+17 - y tested = 5822958761.806049 -y predicted = 6175212657.464314 -error 1.2408280700642392e+17 - y tested = 6611133148.221605 -y predicted = 6343405792.579687 -error 7.1677936959014136e+16 - y tested = 5377240292.736961 -y predicted = 3028850008.037728 -error 5.514936929269747e+18 -error squared vector [3.1467015065991055e+18, 1.85400075470942e+18, 2.446635990133453e+17, 4.034368863198056e+18, 6.188736836392968e+16, 8.604546350556123e+17, 1.1308933010055475e+18, 3.831951905683126e+18, 6.528360464537801e+16, 9.099616484117845e+16, 1.9409565508091392e+18, 5.1066353395171016e+16, 7.600207850453874e+16, 1.5604587524902298e+17, 1.0110047653160668e+18, 2.4800404486844303e+18, 2.69173377630247e+17, 1.2408280700642392e+17, 7.1677936959014136e+16, 5.514936929269747e+18] -Total loo_error 1.3508094412969252e+18 -iteration 137current difference of loo_error 4002300046352384.0 - getting loo error of with lamda = 0.02249629576108793, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1767027836.53809 -error 3.1223873748059786e+18 - y tested = 5326600510.288329 -y predicted = 3966253349.2633467 -error 1.8505443985087296e+18 - y tested = 5072151352.996373 -y predicted = 4570511729.113066 -error 2.5164231224978618e+17 - y tested = 7650055845.407672 -y predicted = 5650509110.70333 -error 3.998187144266796e+18 - y tested = 5789616901.049658 -y predicted = 6038562128.124688 -error 6.197372608343842e+16 - y tested = 8224428196.629629 -y predicted = 7305543511.9533415 -error 8.443490637326406e+17 - y tested = 4059018123.5159216 -y predicted = 5121324793.084642 -error 1.1284954602101874e+18 - y tested = 5947637003.818383 -y predicted = 3993640421.711396 -error 3.818102642885787e+18 - y tested = 997516184.7000968 -y predicted = 733228078.8811325 -error 6.9848202877376104e+16 - y tested = 6532788063.289651 -y predicted = 6829678630.621095 -error 8.814400897038656e+16 - y tested = 1980229389.772511 -y predicted = 3377641336.3356533 -error 1.9527601483973906e+18 - y tested = 5035525633.343237 -y predicted = 5259350327.749669 -error 5.0097493826132744e+16 - y tested = 5026691733.102776 -y predicted = 5302816770.4361725 -error 7.624503624236984e+16 - y tested = 1014996574.3865615 -y predicted = 1402642483.75859 -error 1.502693510528669e+17 - y tested = 7665772326.561901 -y predicted = 6665823154.231003 -error 9.998983472452485e+17 - y tested = 3029054692.61153 -y predicted = 4610237710.144945 -error 2.500139734936077e+18 - y tested = 4062233415.93208 -y predicted = 4589772310.946737 -error 2.7829728575328582e+17 - y tested = 5822958761.806049 -y predicted = 6180170260.464714 -error 1.2760005477396922e+17 - y tested = 6611133148.221605 -y predicted = 6343447667.003832 -error 7.1655516854790936e+16 - y tested = 5377240292.736961 -y predicted = 3029237131.4640856 -error 5.513118845347418e+18 -error squared vector [3.1223873748059786e+18, 1.8505443985087296e+18, 2.5164231224978618e+17, 3.998187144266796e+18, 6.197372608343842e+16, 8.443490637326406e+17, 1.1284954602101874e+18, 3.818102642885787e+18, 6.9848202877376104e+16, 8.814400897038656e+16, 1.9527601483973906e+18, 5.0097493826132744e+16, 7.624503624236984e+16, 1.502693510528669e+17, 9.998983472452485e+17, 2.500139734936077e+18, 2.7829728575328582e+17, 1.2760005477396922e+17, 7.1655516854790936e+16, 5.513118845347418e+18] -Total loo_error 1.3476878074510328e+18 -iteration 138current difference of loo_error 880666200460032.0 - getting loo error of with lamda = 0.022062525908666156, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1760324635.9199657 -error 3.098742823533373e+18 - y tested = 5326600510.288329 -y predicted = 3967489147.750771 -error 1.8471836957786977e+18 - y tested = 5072151352.996373 -y predicted = 4563612680.529736 -error 2.586115813941301e+17 - y tested = 7650055845.407672 -y predicted = 5659348527.742068 -error 3.9629156246073825e+18 - y tested = 5789616901.049658 -y predicted = 6038799309.308353 -error 6.209187258560325e+16 - y tested = 8224428196.629629 -y predicted = 7314081644.932732 -error 8.287308441864321e+17 - y tested = 4059018123.5159216 -y predicted = 5120214006.022069 -error 1.126136701048001e+18 - y tested = 5947637003.818383 -y predicted = 3997066537.30321 -error 3.804725144841221e+18 - y tested = 997516184.7000968 -y predicted = 724637832.7900996 -error 7.446259494111629e+16 - y tested = 6532788063.289651 -y predicted = 6824879075.5831375 -error 8.531715946263374e+16 - y tested = 1980229389.772511 -y predicted = 3381868640.06636 -error 1.964592587964303e+18 - y tested = 5035525633.343237 -y predicted = 5257182150.592711 -error 4.91316116391666e+16 - y tested = 5026691733.102776 -y predicted = 5303247475.570013 -error 7.648307869160498e+16 - y tested = 1014996574.3865615 -y predicted = 1395413760.8681056 -error 1.4471723577053392e+17 - y tested = 7665772326.561901 -y predicted = 6671267062.34102 -error 9.890407205630452e+17 - y tested = 3029054692.61153 -y predicted = 4616519114.017131 -error 2.52004328922862e+18 - y tested = 4062233415.93208 -y predicted = 4598403044.380819 -error 2.874778704708594e+17 - y tested = 5822958761.806049 -y predicted = 6185154409.947841 -error 1.3118568753285232e+17 - y tested = 6611133148.221605 -y predicted = 6343491352.490542 -error 7.163213082214799e+16 - y tested = 5377240292.736961 -y predicted = 3029587273.659583 -error 5.511474697983129e+18 -error squared vector [3.098742823533373e+18, 1.8471836957786977e+18, 2.586115813941301e+17, 3.9629156246073825e+18, 6.209187258560325e+16, 8.287308441864321e+17, 1.126136701048001e+18, 3.804725144841221e+18, 7.446259494111629e+16, 8.531715946263374e+16, 1.964592587964303e+18, 4.91316116391666e+16, 7.648307869160498e+16, 1.4471723577053392e+17, 9.890407205630452e+17, 2.52004328922862e+18, 2.874778704708594e+17, 1.3118568753285232e+17, 7.163213082214799e+16, 5.511474697983129e+18] -Total loo_error 1.3447348476522427e+18 -iteration 139current difference of loo_error -2072293598330112.0 - getting loo error of with lamda = 0.008602515942608737, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1527782862.3114905 -error 2.3341204741180605e+18 - y tested = 5326600510.288329 -y predicted = 4006770426.240818 -error 1.7419514507568602e+18 - y tested = 5072151352.996373 -y predicted = 4259212318.514291 -error 6.608698737846604e+17 - y tested = 7650055845.407672 -y predicted = 5981071615.176075 -error 2.785508360761756e+18 - y tested = 5789616901.049658 -y predicted = 6125542364.124743 -error 1.1284591674221072e+17 - y tested = 8224428196.629629 -y predicted = 7627090851.002167 -error 3.5681190448126246e+17 - y tested = 4059018123.5159216 -y predicted = 5075705119.918037 -error 1.0336524486531558e+18 - y tested = 5947637003.818383 -y predicted = 4080429879.2142043 -error 3.4864624461726054e+18 - y tested = 997516184.7000968 -y predicted = 408412522.78030115 -error 3.47043124487313e+17 - y tested = 6532788063.289651 -y predicted = 6501489416.570109 -error 979605286474669.0 - y tested = 1980229389.772511 -y predicted = 3611615169.6282105 -error 2.661419562715389e+18 - y tested = 5035525633.343237 -y predicted = 5117902599.479949 -error 6785964549889008.0 - y tested = 5026691733.102776 -y predicted = 5323826590.301813 -error 8.828912336269243e+16 - y tested = 1014996574.3865615 -y predicted = 1122874860.0886018 -error 1.1637724526011036e+16 - y tested = 7665772326.561901 -y predicted = 6886251290.45982 -error 6.076530457256623e+17 - y tested = 3029054692.61153 -y predicted = 4901897211.726849 -error 3.507539101406213e+18 - y tested = 4062233415.93208 -y predicted = 5013400986.156563 -error 9.047197466467469e+17 - y tested = 5822958761.806049 -y predicted = 6517060982.71265 -error 4.8177789306747584e+17 - y tested = 6611133148.221605 -y predicted = 6347051796.643543 -error 6.973896025129602e+16 - y tested = 5377240292.736961 -y predicted = 3007850123.3500023 -error 5.614009774787562e+18 -error squared vector [2.3341204741180605e+18, 1.7419514507568602e+18, 6.608698737846604e+17, 2.785508360761756e+18, 1.1284591674221072e+17, 3.5681190448126246e+17, 1.0336524486531558e+18, 3.4864624461726054e+18, 3.47043124487313e+17, 979605286474669.0, 2.661419562715389e+18, 6785964549889008.0, 8.828912336269243e+16, 1.1637724526011036e+16, 6.076530457256623e+17, 3.507539101406213e+18, 9.047197466467469e+17, 4.8177789306747584e+17, 6.973896025129602e+16, 5.614009774787562e+18] -Total loo_error 1.3406908251141647e+18 -iteration 140current difference of loo_error 4044022538077952.0 - getting loo error of with lamda = 0.02165464681878563, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1753981050.3095813 -error 3.076449524552772e+18 - y tested = 5326600510.288329 -y predicted = 3968655089.156098 -error 1.844015766773993e+18 - y tested = 5072151352.996373 -y predicted = 4557026399.346161 -error 2.6535371787313334e+17 - y tested = 7650055845.407672 -y predicted = 5667738597.127678 -error 3.9295816728283674e+18 - y tested = 5789616901.049658 -y predicted = 6039087989.680612 -error 6.22358240627132e+16 - y tested = 8224428196.629629 -y predicted = 7322183218.561821 -error 8.140460004485796e+17 - y tested = 4059018123.5159216 -y predicted = 5119153965.318192 -error 1.1238880030738075e+18 - y tested = 5947637003.818383 -y predicted = 4000280084.6087804 -error 3.7921989707935155e+18 - y tested = 997516184.7000968 -y predicted = 716491681.8151642 -error 7.897477122172352e+16 - y tested = 6532788063.289651 -y predicted = 6820197996.018842 -error 8.2604469431398e+16 - y tested = 1980229389.772511 -y predicted = 3385960711.2865524 -error 1.9760805482856133e+18 - y tested = 5035525633.343237 -y predicted = 5255068947.16366 -error 4.819926664325279e+16 - y tested = 5026691733.102776 -y predicted = 5303656204.10619 -error 7.670931819820104e+16 - y tested = 1014996574.3865615 -y predicted = 1388550400.4369943 -error 1.3954246095691701e+17 - y tested = 7665772326.561901 -y predicted = 6676453588.506847 -error 9.78751565466844e+17 - y tested = 3029054692.61153 -y predicted = 4622524123.896944 -error 2.5391448284410614e+18 - y tested = 4062233415.93208 -y predicted = 4606681869.38498 -error 2.9642411846725504e+17 - y tested = 5822958761.806049 -y predicted = 6190007662.317057 -error 1.3472489536633934e+17 - y tested = 6611133148.221605 -y predicted = 6343535439.337937 -error 7.1608533799788296e+16 - y tested = 5377240292.736961 -y predicted = 3029892176.0923038 -error 5.510043180715221e+18 -error squared vector [3.076449524552772e+18, 1.844015766773993e+18, 2.6535371787313334e+17, 3.9295816728283674e+18, 6.22358240627132e+16, 8.140460004485796e+17, 1.1238880030738075e+18, 3.7921989707935155e+18, 7.897477122172352e+16, 8.2604469431398e+16, 1.9760805482856133e+18, 4.819926664325279e+16, 7.670931819820104e+16, 1.3954246095691701e+17, 9.78751565466844e+17, 2.5391448284410614e+18, 2.9642411846725504e+17, 1.3472489536633934e+17, 7.1608533799788296e+16, 5.510043180715221e+18] -Total loo_error 1.342028871870025e+18 -iteration 141current difference of loo_error 1338046755860224.0 - getting loo error of with lamda = 0.021259127701325722, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1747791897.675155 -error 3.0547765172876206e+18 - y tested = 5326600510.288329 -y predicted = 3969789204.3601704 -error 1.8409369198944755e+18 - y tested = 5072151352.996373 -y predicted = 4550544888.934324 -error 2.7207330335131354e+17 - y tested = 7650055845.407672 -y predicted = 5675947875.580419 -error 3.89710227653548e+18 - y tested = 5789616901.049658 -y predicted = 6039432238.931364 -error 6.240770304095105e+16 - y tested = 8224428196.629629 -y predicted = 7330107863.7278385 -error 7.998088578415695e+17 - y tested = 4059018123.5159216 -y predicted = 5118111365.591613 -error 1.1216784954103987e+18 - y tested = 5947637003.818383 -y predicted = 4003387266.745182 -error 3.780107040109212e+18 - y tested = 997516184.7000968 -y predicted = 708527519.8072585 -error 8.351444843654523e+16 - y tested = 6532788063.289651 -y predicted = 6815496289.24132 -error 7.992394102073979e+16 - y tested = 1980229389.772511 -y predicted = 3390041040.382478 -error 1.9875688901956004e+18 - y tested = 5035525633.343237 -y predicted = 5252948019.000624 -error 4.727249378494943e+16 - y tested = 5026691733.102776 -y predicted = 5304056348.028902 -error 7.693112961311843e+16 - y tested = 1014996574.3865615 -y predicted = 1381832395.6564515 -error 1.3456851976675464e+17 - y tested = 7665772326.561901 -y predicted = 6681546810.822777 -error 9.686998658319452e+17 - y tested = 3029054692.61153 -y predicted = 4628441658.355676 -error 2.5580386661922657e+18 - y tested = 4062233415.93208 -y predicted = 4614866348.656858 -error 3.054031583319897e+17 - y tested = 5822958761.806049 -y predicted = 6194875424.758489 -error 1.3832200418167834e+17 - y tested = 6611133148.221605 -y predicted = 6343581194.68114 -error 7.158404784331933e+16 - y tested = 5377240292.736961 -y predicted = 3030163731.597238 -error 5.508768383851469e+18 -error squared vector [3.0547765172876206e+18, 1.8409369198944755e+18, 2.7207330335131354e+17, 3.89710227653548e+18, 6.240770304095105e+16, 7.998088578415695e+17, 1.1216784954103987e+18, 3.780107040109212e+18, 8.351444843654523e+16, 7.992394102073979e+16, 1.9875688901956004e+18, 4.727249378494943e+16, 7.693112961311843e+16, 1.3456851976675464e+17, 9.686998658319452e+17, 2.5580386661922657e+18, 3.054031583319897e+17, 1.3832200418167834e+17, 7.158404784331933e+16, 5.508768383851469e+18] -Total loo_error 1.3394743331260698e+18 -iteration 142current difference of loo_error -1216491988094976.0 - getting loo error of with lamda = 0.008986049632266829, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1535175960.5807407 -error 2.3567652296891377e+18 - y tested = 5326600510.288329 -y predicted = 4005676463.5344195 -error 1.7448403372927247e+18 - y tested = 5072151352.996373 -y predicted = 4272207967.2415867 -error 6.399094204128311e+17 - y tested = 7650055845.407672 -y predicted = 5970669146.623745 -error 2.820339684052376e+18 - y tested = 5789616901.049658 -y predicted = 6118571513.387902 -error 1.0821113697860467e+17 - y tested = 8224428196.629629 -y predicted = 7616511521.7219095 -error 3.6956268363085805e+17 - y tested = 4059018123.5159216 -y predicted = 5077250015.626505 -error 1.0367961861110986e+18 - y tested = 5947637003.818383 -y predicted = 4079628888.309208 -error 3.4894543196081403e+18 - y tested = 997516184.7000968 -y predicted = 419269306.4624317 -error 3.343694521916052e+17 - y tested = 6532788063.289651 -y predicted = 6519770811.957452 -error 169448832245639.16 - y tested = 1980229389.772511 -y predicted = 3601133154.427752 -error 2.627329014273533e+18 - y tested = 5035525633.343237 -y predicted = 5125357598.632578 -error 8069781987745361.0 - y tested = 5026691733.102776 -y predicted = 5322738843.932259 -error 8.764389183048421e+16 - y tested = 1014996574.3865615 -y predicted = 1132367165.2810876 -error 1.3775855606930218e+16 - y tested = 7665772326.561901 -y predicted = 6878661953.189805 -error 6.195427398699604e+17 - y tested = 3029054692.61153 -y predicted = 4889496990.705835 -error 3.4612455445384207e+18 - y tested = 4062233415.93208 -y predicted = 4994796512.767442 -error 8.696739295791607e+17 - y tested = 5822958761.806049 -y predicted = 6498343050.7700615 -error 4.5614393777942426e+17 - y tested = 6611133148.221605 -y predicted = 6346968118.083782 -error 6.978316314771699e+16 - y tested = 5377240292.736961 -y predicted = 3010363090.5178194 -error 5.602107690384713e+18 -error squared vector [2.3567652296891377e+18, 1.7448403372927247e+18, 6.399094204128311e+17, 2.820339684052376e+18, 1.0821113697860467e+17, 3.6956268363085805e+17, 1.0367961861110986e+18, 3.4894543196081403e+18, 3.343694521916052e+17, 169448832245639.16, 2.627329014273533e+18, 8069781987745361.0, 8.764389183048421e+16, 1.3775855606930218e+16, 6.195427398699604e+17, 3.4612455445384207e+18, 8.696739295791607e+17, 4.5614393777942426e+17, 6.978316314771699e+16, 5.602107690384713e+18] -Total loo_error 1.3357866723898854e+18 -iteration 143current difference of loo_error 3687660736184320.0 - getting loo error of with lamda = 0.020887216244687572, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1741937933.471825 -error 3.034347763777769e+18 - y tested = 5326600510.288329 -y predicted = 3970858675.7205505 -error 1.838035921997206e+18 - y tested = 5072151352.996373 -y predicted = 4544362235.950189 -error 2.7856135207239107e+17 - y tested = 7650055845.407672 -y predicted = 5683734009.846096 -error 3.866421561006245e+18 - y tested = 5789616901.049658 -y predicted = 6039816928.998171 -error 6.26000539854367e+16 - y tested = 8224428196.629629 -y predicted = 7337621925.421469 -error 7.864253626541213e+17 - y tested = 4059018123.5159216 -y predicted = 5117117562.83712 -error 1.1195744234918345e+18 - y tested = 5947637003.818383 -y predicted = 4006299536.819958 -error 3.768791160771861e+18 - y tested = 997516184.7000968 -y predicted = 700979278.4080496 -error 8.793413679325842e+16 - y tested = 6532788063.289651 -y predicted = 6810922963.682211 -error 7.735902281637928e+16 - y tested = 1980229389.772511 -y predicted = 3393982113.635954 -error 1.9986967642313042e+18 - y tested = 5035525633.343237 -y predicted = 5250886655.26738 -error 4.638036976421113e+16 - y tested = 5026691733.102776 -y predicted = 5304436344.448407 -error 7.714206913153595e+16 - y tested = 1014996574.3865615 -y predicted = 1375457850.9263074 -error 1.2993233188466318e+17 - y tested = 7665772326.561901 -y predicted = 6686394559.046034 -error 9.59180811504364e+17 - y tested = 3029054692.61153 -y predicted = 4634093831.721211 -error 2.5761506380739476e+18 - y tested = 4062233415.93208 -y predicted = 4622707783.868758 -error 3.1413151711401914e+17 - y tested = 5822958761.806049 -y predicted = 6199604444.276728 -error 1.4186197012380304e+17 - y tested = 6611133148.221605 -y predicted = 6343627107.552357 -error 7.155948179453767e+16 - y tested = 5377240292.736961 -y predicted = 3030395989.3088865 -error 5.507678184532806e+18 -error squared vector [3.034347763777769e+18, 1.838035921997206e+18, 2.7856135207239107e+17, 3.866421561006245e+18, 6.26000539854367e+16, 7.864253626541213e+17, 1.1195744234918345e+18, 3.768791160771861e+18, 8.793413679325842e+16, 7.735902281637928e+16, 1.9986967642313042e+18, 4.638036976421113e+16, 7.714206913153595e+16, 1.2993233188466318e+17, 9.59180811504364e+17, 2.5761506380739476e+18, 3.1413151711401914e+17, 1.4186197012380304e+17, 7.155948179453767e+16, 5.507678184532806e+18] -Total loo_error 1.3371382448760847e+18 -iteration 144current difference of loo_error 1351572486199296.0 - getting loo error of with lamda = 0.020526574832189975, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0000-0001' +--- Neighbour 0 in the list of neghbours, And at position 59 in the X datas point +-------------- + --- Configuration: 0000-0001 + --- Distance from that configuration: [1.] + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 33 in the X datas point +-------------- + --- Configuration: 1000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 997516184.7000968 + --- Energy: 29.543907709942122 + --- Workload: 29470600000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 36 in the X datas point +-------------- + --- Configuration: 1100-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 2018619748.5607243 + --- Energy: 30.059275323795035 + --- Workload: 60678300000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0000-0001' +--- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 33 in the X datas point +-------------- + --- Configuration: 1000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 997516184.7000968 + --- Energy: 29.543907709942122 + --- Workload: 29470600000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 36 in the X datas point +-------------- + --- Configuration: 1100-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 2018619748.5607243 + --- Energy: 30.059275323795035 + --- Workload: 60678300000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 53 in the X datas point +-------------- + --- Configuration: 0000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3145168392.3157244 + --- Energy: 35.44774676664167 + --- Workload: 111489000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 59 in the X datas point +-------------- + --- Configuration: 0000-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3321398441.599851 + --- Energy: 35.588916806469584 + --- Workload: 118205000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 36 in the X datas point +-------------- + --- Configuration: 1100-0000 + --- Energy efficiency: 2018619748.5607243 + --- Energy: 30.059275323795035 + --- Workload: 60678300000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (30.059275323795035 mAh) it is NOT far from the median. +--- Median :30.059275323795035, the gap is : 10 +--- So No we don't romove this configuration '0000-0001' + --- remove_aberrant_points: The value [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1] is not an abberant point. + --- remove_aberrant_points: do we remove value [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0] +--- Computing the list of the 10 first neighbours of '0101-0200' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1736229429.5356836 -error 3.014492631696434e+18 - y tested = 5326600510.288329 -y predicted = 3971898466.8852167 -error 1.8352176264005683e+18 - y tested = 5072151352.996373 -y predicted = 4538282803.184021 -error 2.8501562847874397e+17 - y tested = 7650055845.407672 -y predicted = 5691346856.381145 -error 3.836540903693321e+18 - y tested = 5789616901.049658 -y predicted = 6040249450.610152 -error 6.28166748991937e+16 - y tested = 8224428196.629629 -y predicted = 7344966820.594562 -error 7.734523119374945e+17 - y tested = 4059018123.5159216 -y predicted = 5116141218.993352 -error 1.1175092389917843e+18 - y tested = 5947637003.818383 -y predicted = 4009113500.356798 -error 3.757873373472978e+18 - y tested = 997516184.7000968 -y predicted = 693603660.8501072 -error 9.236282215287053e+16 - y tested = 6532788063.289651 -y predicted = 6806341354.354444 -error 7.483140305237915e+16 - y tested = 1980229389.772511 -y predicted = 3397903492.249858 -error 2.0097998608349512e+18 - y tested = 5035525633.343237 -y predicted = 5248823306.716046 -error 4.549589746625369e+16 - y tested = 5026691733.102776 -y predicted = 5304808593.857029 -error 7.734898823580077e+16 - y tested = 1014996574.3865615 -y predicted = 1369222059.0121355 -error 1.2547569395822275e+17 - y tested = 7665772326.561901 -y predicted = 6691150640.430992 -error 9.49887431076656e+17 - y tested = 3029054692.61153 -y predicted = 4639658815.870366 -error 2.5940456418583644e+18 - y tested = 4062233415.93208 -y predicted = 4630450799.972248 -error 3.228709955254521e+17 - y tested = 5822958761.806049 -y predicted = 6204336945.955682 -error 1.4544931934527098e+17 - y tested = 6611133148.221605 -y predicted = 6343674473.265478 -error 7.153414280928729e+16 - y tested = 5377240292.736961 -y predicted = 3030598479.571942 -error 5.506727799294411e+18 -error squared vector [3.014492631696434e+18, 1.8352176264005683e+18, 2.8501562847874397e+17, 3.836540903693321e+18, 6.28166748991937e+16, 7.734523119374945e+17, 1.1175092389917843e+18, 3.757873373472978e+18, 9.236282215287053e+16, 7.483140305237915e+16, 2.0097998608349512e+18, 4.549589746625369e+16, 7.734898823580077e+16, 1.2547569395822275e+17, 9.49887431076656e+17, 2.5940456418583644e+18, 3.228709955254521e+17, 1.4544931934527098e+17, 7.153414280928729e+16, 5.506727799294411e+18] -Total loo_error 1.334937419259022e+18 -iteration 145current difference of loo_error -849253130863360.0 - getting loo error of with lamda = 0.009335762517112985, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1541867361.487781 -error 2.377354960164314e+18 - y tested = 5326600510.288329 -y predicted = 4004674568.407112 -error 1.7474881958185426e+18 - y tested = 5072151352.996373 -y predicted = 4283660383.853887 -error 6.21718008419257e+17 - y tested = 7650055845.407672 -y predicted = 5961221921.317766 -error 2.8521600231569096e+18 - y tested = 5789616901.049658 -y predicted = 6112670963.523217 -error 1.043639272806704e+17 - y tested = 8224428196.629629 -y predicted = 7606983078.953488 -error 3.8123847334210336e+17 - y tested = 4059018123.5159216 -y predicted = 5078649507.309125 -error 1.0396481588160428e+18 - y tested = 5947637003.818383 -y predicted = 4078734219.6867766 -error 3.4927976165348705e+18 - y tested = 997516184.7000968 -y predicted = 429036274.2496725 -error 3.2316940858572256e+17 - y tested = 6532788063.289651 -y predicted = 6535568861.900843 -error 7732840916005.963 - y tested = 1980229389.772511 -y predicted = 3591849612.807634 -error 2.5973197432957793e+18 - y tested = 5035525633.343237 -y predicted = 5131840821.298534 -error 9276615430864278.0 - y tested = 5026691733.102776 -y predicted = 5321802898.4186735 -error 8.709059989410725e+16 - y tested = 1014996574.3865615 -y predicted = 1140911313.865511 -error 1.5854521618051706e+16 - y tested = 7665772326.561901 -y predicted = 6871819015.42833 -error 6.303618602599604e+17 - y tested = 3029054692.61153 -y predicted = 4878571151.218281 -error 3.4207111306572575e+18 - y tested = 4062233415.93208 -y predicted = 4978424580.618075 -error 8.394062502486811e+17 - y tested = 5822958761.806049 -y predicted = 6482161629.10585 -error 4.3454842025627885e+17 - y tested = 6611133148.221605 -y predicted = 6346874275.9802685 -error 6.9832751558263176e+16 - y tested = 5377240292.736961 -y predicted = 3012465354.4274154 -error 5.592160508856917e+18 -error squared vector [2.377354960164314e+18, 1.7474881958185426e+18, 6.21718008419257e+17, 2.8521600231569096e+18, 1.043639272806704e+17, 3.8123847334210336e+17, 1.0396481588160428e+18, 3.4927976165348705e+18, 3.2316940858572256e+17, 7732840916005.963, 2.5973197432957793e+18, 9276615430864278.0, 8.709059989410725e+16, 1.5854521618051706e+16, 6.303618602599604e+17, 3.4207111306572575e+18, 8.394062502486811e+17, 4.3454842025627885e+17, 6.9832751558263176e+16, 5.592160508856917e+18] -Total loo_error 1.3318254453517755e+18 -iteration 146current difference of loo_error 3111973907246592.0 - getting loo error of with lamda = 0.020187459307490673, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1730832755.9725142 -error 2.995782028858937e+18 - y tested = 5326600510.288329 -y predicted = 3972878560.2823043 -error 1.8325631179281144e+18 - y tested = 5072151352.996373 -y predicted = 4532488269.135929 -error 2.912362440817647e+17 - y tested = 7650055845.407672 -y predicted = 5698562252.468293 -error 3.808327243283446e+18 - y tested = 5789616901.049658 -y predicted = 6040712336.31529 -error 6.30489176112375e+16 - y tested = 8224428196.629629 -y predicted = 7351926549.455552 -error 7.612591243214776e+17 - y tested = 4059018123.5159216 -y predicted = 5115211591.262693 -error 1.1155446413109512e+18 - y tested = 5947637003.818383 -y predicted = 4011749285.8525844 -error 3.7476612565708283e+18 - y tested = 997516184.7000968 -y predicted = 686616914.2176546 -error 9.66583563865148e+16 - y tested = 6532788063.289651 -y predicted = 6801895932.547679 -error 7.24190452965959e+16 - y tested = 1980229389.772511 -y predicted = 3401683230.7434287 -error 2.020531022010975e+18 - y tested = 5035525633.343237 -y predicted = 5246823065.463195 -error 4.464660482048822e+16 - y tested = 5026691733.102776 -y predicted = 5305162294.20599 -error 7.754585340113899e+16 - y tested = 1014996574.3865615 -y predicted = 1363308557.988915 -error 1.2132123792100614e+17 - y tested = 7665772326.561901 -y predicted = 6695673376.243976 -error 9.410919734079407e+17 - y tested = 3029054692.61153 -y predicted = 4644969663.504172 -error 2.6111811931549696e+18 - y tested = 4062233415.93208 -y predicted = 4637860757.606847 -error 3.31346836483559e+17 - y tested = 5822958761.806049 -y predicted = 6208924475.525278 -error 1.4896953216679363e+17 - y tested = 6611133148.221605 -y predicted = 6343721712.693444 -error 7.150887585123183e+16 - y tested = 5377240292.736961 -y predicted = 3030767237.918611 -error 5.50593579698856e+18 -error squared vector [2.995782028858937e+18, 1.8325631179281144e+18, 2.912362440817647e+17, 3.808327243283446e+18, 6.30489176112375e+16, 7.612591243214776e+17, 1.1155446413109512e+18, 3.7476612565708283e+18, 9.66583563865148e+16, 7.24190452965959e+16, 2.020531022010975e+18, 4.464660482048822e+16, 7.754585340113899e+16, 1.2132123792100614e+17, 9.410919734079407e+17, 2.6111811931549696e+18, 3.31346836483559e+17, 1.4896953216679363e+17, 7.150887585123183e+16, 5.50593579698856e+18] -Total loo_error 1.3329289450928266e+18 -iteration 147current difference of loo_error 1103499741051136.0 - getting loo error of with lamda = 0.019858620010812563, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1725572676.4329562 -error 2.9776010613644006e+18 - y tested = 5326600510.288329 -y predicted = 3973831062.89738 -error 1.8299851777944143e+18 - y tested = 5072151352.996373 -y predicted = 4526794913.48003 -error 2.974136461219428e+17 - y tested = 7650055845.407672 -y predicted = 5705612299.535566 -error 3.7808607030836874e+18 - y tested = 5789616901.049658 -y predicted = 6041215779.032095 -error 6.330199540202129e+16 - y tested = 8224428196.629629 -y predicted = 7358725253.403871 -error 7.494415859097409e+17 - y tested = 4059018123.5159216 -y predicted = 5114299262.24537 -error 1.1136182817581211e+18 - y tested = 5947637003.818383 -y predicted = 4014294622.2455277 -error 3.7378127643858007e+18 - y tested = 997516184.7000968 -y predicted = 679793456.7098703 -error 1.0094773188155146e+17 - y tested = 6532788063.289651 -y predicted = 6797453127.67142 -error 7.0047596304206024e+16 - y tested = 1980229389.772511 -y predicted = 3405436593.6099133 -error 2.031215573870027e+18 - y tested = 5035525633.343237 -y predicted = 5244825840.52524 -error 4.380657672642939e+16 - y tested = 5026691733.102776 -y predicted = 5305508945.67503 -error 7.773903802656157e+16 - y tested = 1014996574.3865615 -y predicted = 1357527108.0284216 -error 1.1732716647697747e+17 - y tested = 7665772326.561901 -y predicted = 6700106670.106392 -error 9.325101600576495e+17 - y tested = 3029054692.61153 -y predicted = 4650194127.971183 -error 2.6280930688782147e+18 - y tested = 4062233415.93208 -y predicted = 4645169465.490464 -error 3.398144378747352e+17 - y tested = 5822958761.806049 -y predicted = 6213505562.110774 -error 1.525268032282585e+17 - y tested = 6611133148.221605 -y predicted = 6343770150.662716 -error 7.1482972463674696e+16 - y tested = 5377240292.736961 -y predicted = 3030909688.7250047 -error 5.505267303323113e+18 -error squared vector [2.9776010613644006e+18, 1.8299851777944143e+18, 2.974136461219428e+17, 3.7808607030836874e+18, 6.330199540202129e+16, 7.494415859097409e+17, 1.1136182817581211e+18, 3.7378127643858007e+18, 1.0094773188155146e+17, 7.0047596304206024e+16, 2.031215573870027e+18, 4.380657672642939e+16, 7.773903802656157e+16, 1.1732716647697747e+17, 9.325101600576495e+17, 2.6280930688782147e+18, 3.398144378747352e+17, 1.525268032282585e+17, 7.1482972463674696e+16, 5.505267303323113e+18] -Total loo_error 1.3310406822465766e+18 -iteration 148current difference of loo_error -784763105198848.0 - getting loo error of with lamda = 0.009654636986619032, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1547928905.7012918 -error 2.396083896847611e+18 - y tested = 5326600510.288329 -y predicted = 4003757538.6313972 -error 1.7499135276621422e+18 - y tested = 5072151352.996373 -y predicted = 4293795351.1421576 -error 6.058380656224797e+17 - y tested = 7650055845.407672 -y predicted = 5952644774.466119 -error 2.88120434375495e+18 - y tested = 5789616901.049658 -y predicted = 6107639980.614106 -error 1.0113867913565546e+17 - y tested = 8224428196.629629 -y predicted = 7598388559.454486 -error 3.91925627314385e+17 - y tested = 4059018123.5159216 -y predicted = 5079916772.507598 -error 1.04223405151303e+18 - y tested = 5947637003.818383 -y predicted = 4077791650.391817 -error 3.49632164573092e+18 - y tested = 997516184.7000968 -y predicted = 437835766.95234966 -error 3.132421700102928e+17 - y tested = 6532788063.289651 -y predicted = 6549301682.130968 -error 272699607236305.66 - y tested = 1980229389.772511 -y predicted = 3583608607.686294 -error 2.570824916437815e+18 - y tested = 5035525633.343237 -y predicted = 5137507541.847322 -error 1.0400309662135674e+16 - y tested = 5026691733.102776 -y predicted = 5320992014.688613 -error 8.661265574150317e+16 - y tested = 1014996574.3865615 -y predicted = 1148610648.7157266 -error 1.7852720858839656e+16 - y tested = 7665772326.561901 -y predicted = 6865645172.677151 -error 6.40203462383711e+17 - y tested = 3029054692.61153 -y predicted = 4868905567.250857 -error 3.3850512409110984e+18 - y tested = 4062233415.93208 -y predicted = 4963958737.141782 -error 8.131085549107402e+17 - y tested = 5822958761.806049 -y predicted = 6468091545.998813 -error 4.1619630924030656e+17 - y tested = 6611133148.221605 -y predicted = 6346777332.296704 -error 6.988399741332014e+16 - y tested = 5377240292.736961 -y predicted = 3014236390.4403954 -error 5.583787442268799e+18 -error squared vector [2.396083896847611e+18, 1.7499135276621422e+18, 6.058380656224797e+17, 2.88120434375495e+18, 1.0113867913565546e+17, 3.91925627314385e+17, 1.04223405151303e+18, 3.49632164573092e+18, 3.132421700102928e+17, 272699607236305.66, 2.570824916437815e+18, 1.0400309662135674e+16, 8.661265574150317e+16, 1.7852720858839656e+16, 6.40203462383711e+17, 3.3850512409110984e+18, 8.131085549107402e+17, 4.1619630924030656e+17, 6.988399741332014e+16, 5.583787442268799e+18] -Total loo_error 1.3286048158513485e+18 -iteration 149current difference of loo_error 2435866395228160.0 - getting loo error of with lamda = 0.01954940840401882, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1720602193.5800738 -error 2.960471908265795e+18 - y tested = 5326600510.288329 -y predicted = 3974728534.9571385 -error 1.8275578376858552e+18 - y tested = 5072151352.996373 -y predicted = 4521372531.195393 -error 3.033573105444763e+17 - y tested = 7650055845.407672 -y predicted = 5712289922.309509 -error 3.7549367727204746e+18 - y tested = 5789616901.049658 -y predicted = 6041740527.145114 -error 6.356632283552136e+16 - y tested = 8224428196.629629 -y predicted = 7365163482.850668 -error 7.383358483456401e+17 - y tested = 4059018123.5159216 -y predicted = 5113431475.109762 -error 1.1117875160193562e+18 - y tested = 5947637003.818383 -y predicted = 4016677523.2331276 -error 3.72860451566208e+18 - y tested = 997516184.7000968 -y predicted = 673332991.8231183 -error 1.0509474254391226e+17 - y tested = 6532788063.289651 -y predicted = 6793152339.329102 -error 6.7789556237547256e+16 - y tested = 1980229389.772511 -y predicted = 3409047429.4210424 -error 2.0415209904250724e+18 - y tested = 5035525633.343237 -y predicted = 5242894289.85783 -error 4.3001759704667304e+16 - y tested = 5026691733.102776 -y predicted = 5305838451.569878 -error 7.792289043095154e+16 - y tested = 1014996574.3865615 -y predicted = 1352047558.1755586 -error 1.1360336567313075e+17 - y tested = 7665772326.561901 -y predicted = 6704318839.947353 -error 9.243928069232703e+17 - y tested = 3029054692.61153 -y predicted = 4655175804.720327 -error 2.6442698712459525e+18 - y tested = 4062233415.93208 -y predicted = 4652156062.199667 -error 3.4800872857935277e+17 - y tested = 5822958761.806049 -y predicted = 6217937053.6536875 -error 1.56007851030878e+17 - y tested = 6611133148.221605 -y predicted = 6343818170.395424 -error 7.145729737021186e+16 - y tested = 5377240292.736961 -y predicted = 3031023555.830715 -error 5.504732976538994e+18 -error squared vector [2.960471908265795e+18, 1.8275578376858552e+18, 3.033573105444763e+17, 3.7549367727204746e+18, 6.356632283552136e+16, 7.383358483456401e+17, 1.1117875160193562e+18, 3.72860451566208e+18, 1.0509474254391226e+17, 6.7789556237547256e+16, 2.0415209904250724e+18, 4.3001759704667304e+16, 7.792289043095154e+16, 1.1360336567313075e+17, 9.243928069232703e+17, 2.6442698712459525e+18, 3.4800872857935277e+17, 1.56007851030878e+17, 7.145729737021186e+16, 5.504732976538994e+18] -Total loo_error 1.3293210434391567e+18 -iteration 150current difference of loo_error 716227587808256.0 - getting loo error of with lamda = 0.019249566845915795, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1715759628.2214463 -error 2.9438311015486356e+18 - y tested = 5326600510.288329 -y predicted = 3975600430.1853995 -error 1.8252012164381222e+18 - y tested = 5072151352.996373 -y predicted = 4516048859.315756 -error 3.09249983477801e+17 - y tested = 7650055845.407672 -y predicted = 5718810417.442349 -error 3.729708903036962e+18 - y tested = 5789616901.049658 -y predicted = 6042299088.397442 -error 6.384828780286063e+16 - y tested = 8224428196.629629 -y predicted = 7371449047.3788395 -error 7.275734290566008e+17 - y tested = 4059018123.5159216 -y predicted = 5112580676.754393 -error 1.1099940535863661e+18 - y tested = 5947637003.818383 -y predicted = 4018977539.6442385 -error 3.719727328748499e+18 - y tested = 997516184.7000968 -y predicted = 667026588.0854149 -error 1.092233734705352e+17 - y tested = 6532788063.289651 -y predicted = 6788863652.393307 -error 6.557470733478437e+16 - y tested = 1980229389.772511 -y predicted = 3412626415.098195 -error 2.0517612381618683e+18 - y tested = 5035525633.343237 -y predicted = 5240970042.244825 -error 4.220740514892307e+16 - y tested = 5026691733.102776 -y predicted = 5306161491.076141 -error 7.810334562169165e+16 - y tested = 1014996574.3865615 -y predicted = 1346693321.0153897 -error 1.1002273172414902e+17 - y tested = 7665772326.561901 -y predicted = 6708444277.893392 -error 9.16476992767456e+17 - y tested = 3029054692.61153 -y predicted = 4660072376.362221 -error 2.660218684707469e+18 - y tested = 4062233415.93208 -y predicted = 4659039726.335139 -error 3.5617777213691296e+17 - y tested = 5822958761.806049 -y predicted = 6222353332.812601 -error 1.595160233495075e+17 - y tested = 6611133148.221605 -y predicted = 6343867121.423944 -error 7.143112908020795e+16 - y tested = 5377240292.736961 -y predicted = 3031114405.385036 -error 5.504306679302859e+18 -error squared vector [2.9438311015486356e+18, 1.8252012164381222e+18, 3.09249983477801e+17, 3.729708903036962e+18, 6.384828780286063e+16, 7.275734290566008e+17, 1.1099940535863661e+18, 3.719727328748499e+18, 1.092233734705352e+17, 6.557470733478437e+16, 2.0517612381618683e+18, 4.220740514892307e+16, 7.810334562169165e+16, 1.1002273172414902e+17, 9.16476992767456e+17, 2.660218684707469e+18, 3.5617777213691296e+17, 1.595160233495075e+17, 7.143112908020795e+16, 5.504306679302859e+18] -Total loo_error 1.3277077193251108e+18 -iteration 151current difference of loo_error -897096526237696.0 - getting loo error of with lamda = 0.009945392436900753, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1553423882.0347505 -error 2.4131257570170107e+18 - y tested = 5326600510.288329 -y predicted = 4002918634.819813 -error 1.7521337074438487e+18 - y tested = 5072151352.996373 -y predicted = 4302796496.17384 -error 5.919068957164212e+17 - y tested = 7650055845.407672 -y predicted = 5944858209.569146 -error 2.9076989772692977e+18 - y tested = 5789616901.049658 -y predicted = 6103322773.317814 -error 9.841137429552464e+16 - y tested = 8224428196.629629 -y predicted = 7590626834.098124 -error 4.0170416714679296e+17 - y tested = 4059018123.5159216 -y predicted = 5081064204.891558 -error 1.0445781924552933e+18 - y tested = 5947637003.818383 -y predicted = 4076833703.880629 -error 3.4999049870579907e+18 - y tested = 997516184.7000968 -y predicted = 445773819.12295693 -error 3.0441963797265824e+17 - y tested = 6532788063.289651 -y predicted = 6561300651.682174 -error 812967696841426.6 - y tested = 1980229389.772511 -y predicted = 3576276944.2864804 -error 2.547367796270022e+18 - y tested = 5035525633.343237 -y predicted = 5142482552.813633 -error 1.1439782622596784e+16 - y tested = 5026691733.102776 -y predicted = 5320285281.269967 -error 8.6197171525401e+16 - y tested = 1014996574.3865615 -y predicted = 1155556029.6756215 -error 1.9756960471157256e+16 - y tested = 7665772326.561901 -y predicted = 6860071176.938834 -error 6.491543425039316e+17 - y tested = 3029054692.61153 -y predicted = 4860325248.103068 -error 3.353551847410288e+18 - y tested = 4062233415.93208 -y predicted = 4951132262.706433 -error 7.901411597967756e+17 - y tested = 5822958761.806049 -y predicted = 6455795257.922496 -error 4.004820308169412e+17 - y tested = 6611133148.221605 -y predicted = 6346681537.739387 -error 6.9934654286639144e+16 - y tested = 5377240292.736961 -y predicted = 3015737903.703315 -error 5.57669353341162e+18 -error squared vector [2.4131257570170107e+18, 1.7521337074438487e+18, 5.919068957164212e+17, 2.9076989772692977e+18, 9.841137429552464e+16, 4.0170416714679296e+17, 1.0445781924552933e+18, 3.4999049870579907e+18, 3.0441963797265824e+17, 812967696841426.6, 2.547367796270022e+18, 1.1439782622596784e+16, 8.6197171525401e+16, 1.9756960471157256e+16, 6.491543425039316e+17, 3.353551847410288e+18, 7.901411597967756e+17, 4.004820308169412e+17, 6.9934654286639144e+16, 5.57669353341162e+18] -Total loo_error 1.3259707971593526e+18 -iteration 152current difference of loo_error 1736922165758208.0 - getting loo error of with lamda = 0.01896762216685473, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1711185583.4771364 -error 2.92815610081479e+18 - y tested = 5326600510.288329 -y predicted = 3976421678.053408 -error 1.8229828790152548e+18 - y tested = 5072151352.996373 -y predicted = 4510982343.34376 -error 3.1491065739449517e+17 - y tested = 7650055845.407672 -y predicted = 5724982717.509331 -error 3.705906547756303e+18 - y tested = 5789616901.049658 -y predicted = 6042870921.764601 -error 6.4137599008284744e+16 - y tested = 8224428196.629629 -y predicted = 7377397973.149794 -error 7.174601994883e+17 - y tested = 4059018123.5159216 -y predicted = 5111772187.163862 -error 1.1082911185272522e+18 - y tested = 5947637003.818383 -y predicted = 4021129832.623995 -error 3.7114298806634045e+18 - y tested = 997516184.7000968 -y predicted = 661058500.4075388 -error 1.1320377331951069e+17 - y tested = 6532788063.289651 -y predicted = 6784720973.2998085 -error 6.347019114618616e+16 - y tested = 1980229389.772511 -y predicted = 3416063328.991883 -error 2.0616191010142188e+18 - y tested = 5035525633.343237 -y predicted = 5239113140.775857 -error 4.144787318262712e+16 - y tested = 5026691733.102776 -y predicted = 5306468625.2966175 -error 7.827510940564466e+16 - y tested = 1014996574.3865615 -y predicted = 1341621407.4388697 -error 1.0668378156644821e+17 - y tested = 7665772326.561901 -y predicted = 6712360790.247684 -error 9.089935575770365e+17 - y tested = 3029054692.61153 -y predicted = 4664737567.026944 -error 2.675458465655872e+18 - y tested = 4062233415.93208 -y predicted = 4665613026.164463 -error 3.640669540441827e+17 - y tested = 5822958761.806049 -y predicted = 6226616950.150276 -error 1.629399330173433e+17 - y tested = 6611133148.221605 -y predicted = 6343915376.281942 -error 7.140533764039771e+16 - y tested = 5377240292.736961 -y predicted = 3031181376.7278156 -error 5.503992437386008e+18 -error squared vector [2.92815610081479e+18, 1.8229828790152548e+18, 3.1491065739449517e+17, 3.705906547756303e+18, 6.4137599008284744e+16, 7.174601994883e+17, 1.1082911185272522e+18, 3.7114298806634045e+18, 1.1320377331951069e+17, 6.347019114618616e+16, 2.0616191010142188e+18, 4.144787318262712e+16, 7.827510940564466e+16, 1.0668378156644821e+17, 9.089935575770365e+17, 2.675458465655872e+18, 3.640669540441827e+17, 1.629399330173433e+17, 7.140533764039771e+16, 5.503992437386008e+18] -Total loo_error 1.3262415748811779e+18 -iteration 153current difference of loo_error 270777721825280.0 - getting loo error of with lamda = 0.018694221265947036, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1706731035.008889 -error 2.912930825578058e+18 - y tested = 5326600510.288329 -y predicted = 3977219273.9780703 -error 1.8208297209062026e+18 - y tested = 5072151352.996373 -y predicted = 4506011705.761521 -error 3.205141001712025e+17 - y tested = 7650055845.407672 -y predicted = 5731006260.411357 -error 3.682751309674529e+18 - y tested = 5789616901.049658 -y predicted = 6043470398.223032 -error 6.444159802715229e+16 - y tested = 8224428196.629629 -y predicted = 7383202676.569827 -error 7.076603755998844e+17 - y tested = 4059018123.5159216 -y predicted = 5110980253.284503 -error 1.1066243224672497e+18 - y tested = 5947637003.818383 -y predicted = 4023206444.876877 -error 3.703432976187919e+18 - y tested = 997516184.7000968 -y predicted = 655235416.8727459 -error 1.1715612402448094e+17 - y tested = 6532788063.289651 -y predicted = 6780598511.390608 -error 6.1410018187997064e+16 - y tested = 1980229389.772511 -y predicted = 3419464042.3633294 -error 2.0713963852182136e+18 - y tested = 5035525633.343237 -y predicted = 5237267149.803483 -error 4.069963946367974e+16 - y tested = 5026691733.102776 -y predicted = 5306769781.442906 -error 7.844371316201666e+16 - y tested = 1014996574.3865615 -y predicted = 1336668087.752334 -error 1.0347256251102642e+17 - y tested = 7665772326.561901 -y predicted = 6716193668.802919 -error 9.016996272713492e+17 - y tested = 3029054692.61153 -y predicted = 4669319352.70006 -error 2.690468155135341e+18 - y tested = 4062233415.93208 -y predicted = 4672082754.656041 -error 3.719162159420529e+17 - y tested = 5822958761.806049 -y predicted = 6230857757.85249 -error 1.6638159097569456e+17 - y tested = 6611133148.221605 -y predicted = 6343964300.567931 -error 7.1379193156592136e+16 - y tested = 5377240292.736961 -y predicted = 3031228413.6099954 -error 5.503771737004838e+18 -error squared vector [2.912930825578058e+18, 1.8208297209062026e+18, 3.205141001712025e+17, 3.682751309674529e+18, 6.444159802715229e+16, 7.076603755998844e+17, 1.1066243224672497e+18, 3.703432976187919e+18, 1.1715612402448094e+17, 6.1410018187997064e+16, 2.0713963852182136e+18, 4.069963946367974e+16, 7.844371316201666e+16, 1.0347256251102642e+17, 9.016996272713492e+17, 2.690468155135341e+18, 3.719162159420529e+17, 1.6638159097569456e+17, 7.1379193156592136e+16, 5.503771737004838e+18] -Total loo_error 1.3248690095332739e+18 -iteration 154current difference of loo_error -1101787626078720.0 - getting loo error of with lamda = 0.010210508462023368, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1558408349.669016 -error 2.428636584058371e+18 - y tested = 5326600510.288329 -y predicted = 4002151560.2603383 -error 1.7541650212302474e+18 - y tested = 5072151352.996373 -y predicted = 4310815111.308043 -error 5.796328729081123e+17 - y tested = 7650055845.407672 -y predicted = 5937788970.515352 -error 2.9318578508535107e+18 - y tested = 5789616901.049658 -y predicted = 6099596844.090952 -error 9.608756508788394e+16 - y tested = 8224428196.629629 -y predicted = 7583609792.124551 -error 4.106482275524342e+17 - y tested = 4059018123.5159216 -y predicted = 5082103253.094763 -error 1.0467031823653544e+18 - y tested = 5947637003.818383 -y predicted = 4075883254.246007 -error 3.50346209903825e+18 - y tested = 997516184.7000968 -y predicted = 452942841.5348278 -error 2.965601260861978e+17 - y tested = 6532788063.289651 -y predicted = 6571831817.196712 -error 1524414719155111.8 - y tested = 1980229389.772511 -y predicted = 3569740747.309866 -error 2.526546355740245e+18 - y tested = 5035525633.343237 -y predicted = 5146867303.6944895 -error 1.2396967556606992e+16 - y tested = 5026691733.102776 -y predicted = 5319666120.543944 -error 8.583399169652808e+16 - y tested = 1014996574.3865615 -y predicted = 1161827418.1384413 -error 2.1559296676888944e+16 - y tested = 7665772326.561901 -y predicted = 6855035222.880328 -error 6.572946512859855e+17 - y tested = 3029054692.61153 -y predicted = 4852685527.975059 -error 3.3256294236886815e+18 - y tested = 4062233415.93208 -y predicted = 4939724763.181308 -error 7.699910644972653e+17 - y tested = 5822958761.806049 -y predicted = 6445001398.494161 -error 3.8693704185789766e+17 - y tested = 6611133148.221605 -y predicted = 6346589379.335033 -error 6.998340565671196e+16 - y tested = 5377240292.736961 -y predicted = 3017018318.2661357 -error 5.570647768774963e+18 -error squared vector [2.428636584058371e+18, 1.7541650212302474e+18, 5.796328729081123e+17, 2.9318578508535107e+18, 9.608756508788394e+16, 4.106482275524342e+17, 1.0467031823653544e+18, 3.50346209903825e+18, 2.965601260861978e+17, 1524414719155111.8, 2.526546355740245e+18, 1.2396967556606992e+16, 8.583399169652808e+16, 2.1559296676888944e+16, 6.572946512859855e+17, 3.3256294236886815e+18, 7.699910644972653e+17, 3.8693704185789766e+17, 6.998340565671196e+16, 5.570647768774963e+18] -Total loo_error 1.3238048955665646e+18 -iteration 155current difference of loo_error 1064113966709248.0 - getting loo error of with lamda = 0.01843713905976753, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1702525102.586713 -error 2.898591724654144e+18 - y tested = 5326600510.288329 -y predicted = 3977970321.9093127 -error 1.8188033850072212e+18 - y tested = 5072151352.996373 -y predicted = 4501284582.073063 -error 3.2588887014440723e+17 - y tested = 7650055845.407672 -y predicted = 5736704937.918603 -error 3.660911695189244e+18 - y tested = 5789616901.049658 -y predicted = 6044076122.033925 -error 6.474949514392014e+16 - y tested = 8224428196.629629 -y predicted = 7388693622.35145 -error 6.984522786439293e+17 - y tested = 4059018123.5159216 -y predicted = 5110228366.887798 -error 1.1050429757699603e+18 - y tested = 5947637003.818383 -y predicted = 4025149001.0755606 -error 3.6959601206900874e+18 - y tested = 997516184.7000968 -y predicted = 649727190.6972284 -error 1.2095718434952725e+17 - y tested = 6532788063.289651 -y predicted = 6776624364.123687 -error 5.945614160442644e+16 - y tested = 1980229389.772511 -y predicted = 3422724319.015572 -error 2.0807916208919437e+18 - y tested = 5035525633.343237 -y predicted = 5235489368.356502 -error 3.998549532045513e+16 - y tested = 5026691733.102776 -y predicted = 5307056137.055306 -error 7.86041990036579e+16 - y tested = 1014996574.3865615 -y predicted = 1331978356.4216025 -error 1.0047745014211022e+17 - y tested = 7665772326.561901 -y predicted = 6719829693.72424 -error 8.948074646198455e+17 - y tested = 3029054692.61153 -y predicted = 4673681157.526371 -error 2.704796209098287e+18 - y tested = 4062233415.93208 -y predicted = 4678254504.090993 -error 3.7948198105649146e+17 - y tested = 5822958761.806049 -y predicted = 6234944310.562117 -error 1.697320923838379e+17 - y tested = 6611133148.221605 -y predicted = 6344012279.097165 -error 7.13535587217963e+16 - y tested = 5377240292.736961 -y predicted = 3031255824.4015875 -error 5.503643125670807e+18 -error squared vector [2.898591724654144e+18, 1.8188033850072212e+18, 3.2588887014440723e+17, 3.660911695189244e+18, 6.474949514392014e+16, 6.984522786439293e+17, 1.1050429757699603e+18, 3.6959601206900874e+18, 1.2095718434952725e+17, 5.945614160442644e+16, 2.0807916208919437e+18, 3.998549532045513e+16, 7.86041990036579e+16, 1.0047745014211022e+17, 8.948074646198455e+17, 2.704796209098287e+18, 3.7948198105649146e+17, 1.697320923838379e+17, 7.13535587217963e+16, 5.503643125670807e+18] -Total loo_error 1.323624353405305e+18 -iteration 156current difference of loo_error -180542161259520.0 - getting loo error of with lamda = 0.010459800298318646, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0101-0200' +--- Neighbour 0 in the list of neghbours, And at position 60 in the X datas point +-------------- + --- Configuration: 0101-0200 + --- Distance from that configuration: [1.] + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 69 in the X datas point +-------------- + --- Configuration: 0101-2020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8367150566.874451 + --- Energy: 43.37670883350873 + --- Workload: 362938000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 13 in the X datas point +-------------- + --- Configuration: 0011-1100 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7650055845.407672 + --- Energy: 43.82652071469574 + --- Workload: 335276000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 25 in the X datas point +-------------- + --- Configuration: 0000-3300 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5789616901.049658 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0101-0200' +--- Neighbour 0 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 60 in the X datas point +-------------- + --- Configuration: 0101-0200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 25 in the X datas point +-------------- + --- Configuration: 0000-3300 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5789616901.049658 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 69 in the X datas point +-------------- + --- Configuration: 0101-2020 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8367150566.874451 + --- Energy: 43.37670883350873 + --- Workload: 362938000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 13 in the X datas point +-------------- + --- Configuration: 0011-1100 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7650055845.407672 + --- Energy: 43.82652071469574 + --- Workload: 335276000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 60 in the X datas point +-------------- + --- Configuration: 0101-0200 + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (37.334916995372765 mAh) it is NOT far from the median. +--- Median :37.334916995372765, the gap is : 10 +--- So No we don't romove this configuration '0101-0200' + --- remove_aberrant_points: The value [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0] +--- Computing the list of the 10 first neighbours of '3330-2220' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1563073222.9446745 -error 2.44319790002614e+18 - y tested = 5326600510.288329 -y predicted = 4001428513.06417 -error 1.7560808222270671e+18 - y tested = 5072151352.996373 -y predicted = 4318198851.132248 -error 5.6844437506717376e+17 - y tested = 7650055845.407672 -y predicted = 5931169917.147322 -error 2.954568834371446e+18 - y tested = 5789616901.049658 -y predicted = 6096266194.495423 -error 9.40337891707872e+16 - y tested = 8224428196.629629 -y predicted = 7577062500.969541 -error 4.190823439174704e+17 - y tested = 4059018123.5159216 -y predicted = 5083073688.692549 -error 1.0486898005692212e+18 - y tested = 5947637003.818383 -y predicted = 4074926254.8663974 -error 3.5070455492403077e+18 - y tested = 997516184.7000968 -y predicted = 459625448.4922624 -error 2.893264440982062e+17 - y tested = 6532788063.289651 -y predicted = 6581396418.66158 -error 2362772211963755.5 - y tested = 1980229389.772511 -y predicted = 3563721842.3232455 -error 2.50744834728514e+18 - y tested = 5035525633.343237 -y predicted = 5150864499.890657 -error 1.3303054136443676e+16 - y tested = 5026691733.102776 -y predicted = 5319104487.819397 -error 8.550521912096299e+16 - y tested = 1014996574.3865615 -y predicted = 1167671659.2308514 -error 2.330968153221112e+16 - y tested = 7665772326.561901 -y predicted = 6850340557.379453 -error 6.649289701920178e+17 - y tested = 3029054692.61153 -y predicted = 4845654649.550795 -error 3.300035403551739e+18 - y tested = 4062233415.93208 -y predicted = 4929237843.480824 -error 7.516966773891264e+17 - y tested = 5822958761.806049 -y predicted = 6435197000.6179905 -error 3.7483566106354746e+17 - y tested = 6611133148.221605 -y predicted = 6346499468.648123 -error 7.0030984364600616e+16 - y tested = 5377240292.736961 -y predicted = 3018149272.7302303 -error 5.565310440676399e+18 -error squared vector [2.44319790002614e+18, 1.7560808222270671e+18, 5.6844437506717376e+17, 2.954568834371446e+18, 9.40337891707872e+16, 4.190823439174704e+17, 1.0486898005692212e+18, 3.5070455492403077e+18, 2.893264440982062e+17, 2362772211963755.5, 2.50744834728514e+18, 1.3303054136443676e+16, 8.550521912096299e+16, 2.330968153221112e+16, 6.649289701920178e+17, 3.300035403551739e+18, 7.516966773891264e+17, 3.7483566106354746e+17, 7.0030984364600616e+16, 5.565310440676399e+18] -Total loo_error 1.3219618535105987e+18 -iteration 157current difference of loo_error 1662499894706432.0 - getting loo error of with lamda = 0.018195401521541806, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1698554861.2526715 -error 2.8850886164019896e+18 - y tested = 5326600510.288329 -y predicted = 3978677433.8366885 -error 1.8168966200308554e+18 - y tested = 5072151352.996373 -y predicted = 4496791378.781477 -error 3.31039099928566e+17 - y tested = 7650055845.407672 -y predicted = 5742094358.853738 -error 3.640317034173098e+18 - y tested = 5789616901.049658 -y predicted = 6044684291.059463 -error 6.505937344641383e+16 - y tested = 8224428196.629629 -y predicted = 7393886036.344867 -error 6.898002800104799e+17 - y tested = 4059018123.5159216 -y predicted = 5109514901.884503 -error 1.1035434813627692e+18 - y tested = 5947637003.818383 -y predicted = 4026966046.21119 -error 3.688976927395732e+18 - y tested = 997516184.7000968 -y predicted = 644518374.5613059 -error 1.2460745396278192e+17 - y tested = 6532788063.289651 -y predicted = 6772798235.358789 -error 5.760488269665748e+16 - y tested = 1980229389.772511 -y predicted = 3425846605.168179 -error 2.0898091334483254e+18 - y tested = 5035525633.343237 -y predicted = 5233779509.740581 -error 3.930459950657321e+16 - y tested = 5026691733.102776 -y predicted = 5307328372.058019 -error 7.875692312409547e+16 - y tested = 1014996574.3865615 -y predicted = 1327539731.5949945 -error 9.768322511781528e+16 - y tested = 7665772326.561901 -y predicted = 6723277292.98685 -error 8.882968883136371e+17 - y tested = 3029054692.61153 -y predicted = 4677831168.753402 -error 2.7184638682788086e+18 - y tested = 4062233415.93208 -y predicted = 4684137853.24345 -error 3.867651291475722e+17 - y tested = 5822958761.806049 -y predicted = 6238877267.452518 -error 1.7298820333919197e+17 - y tested = 6611133148.221605 -y predicted = 6344059188.420741 -error 7.132850000371364e+16 - y tested = 5377240292.736961 -y predicted = 3031266080.699878 -error 5.503595003543013e+18 -error squared vector [2.8850886164019896e+18, 1.8168966200308554e+18, 3.31039099928566e+17, 3.640317034173098e+18, 6.505937344641383e+16, 6.898002800104799e+17, 1.1035434813627692e+18, 3.688976927395732e+18, 1.2460745396278192e+17, 5.760488269665748e+16, 2.0898091334483254e+18, 3.930459950657321e+16, 7.875692312409547e+16, 9.768322511781528e+16, 8.882968883136371e+17, 2.7184638682788086e+18, 3.867651291475722e+17, 1.7298820333919197e+17, 7.132850000371364e+16, 5.503595003543013e+18] -Total loo_error 1.322496262161604e+18 -iteration 158current difference of loo_error 534408651005440.0 - getting loo error of with lamda = 0.017960989363262316, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1694690644.4026184 -error 2.871976379943314e+18 - y tested = 5326600510.288329 -y predicted = 3979363904.1898966 -error 1.8150464728116232e+18 - y tested = 5072151352.996373 -y predicted = 4492388575.341627 -error 3.361248783539465e+17 - y tested = 7650055845.407672 -y predicted = 5747349253.866537 -error 3.620292373494083e+18 - y tested = 5789616901.049658 -y predicted = 6045311080.58737 -error 6.537951344946374e+16 - y tested = 8224428196.629629 -y predicted = 7398948400.703914 -error 6.814168934815608e+17 - y tested = 4059018123.5159216 -y predicted = 5108817017.113602 -error 1.1020777169989133e+18 - y tested = 5947637003.818383 -y predicted = 4028718600.394243 -error 3.682247838999852e+18 - y tested = 997516184.7000968 -y predicted = 639439821.5497211 -error 1.2821868184699976e+17 - y tested = 6532788063.289651 -y predicted = 6769002959.273809 -error 5.5797477084806824e+16 - y tested = 1980229389.772511 -y predicted = 3428927855.1167135 -error 2.0987272434906476e+18 - y tested = 5035525633.343237 -y predicted = 5232085133.280324 -error 3.863563701551773e+16 - y tested = 5026691733.102776 -y predicted = 5307595260.209178 -error 7.890679154081734e+16 - y tested = 1014996574.3865615 -y predicted = 1323208524.204919 -error 9.499460601083378e+16 - y tested = 7665772326.561901 -y predicted = 6726647226.284686 -error 8.819559539706892e+17 - y tested = 3029054692.61153 -y predicted = 4681901508.710678 -error 2.7319025974890916e+18 - y tested = 4062233415.93208 -y predicted = 4689918777.745604 -error 3.939889134349743e+17 - y tested = 5822958761.806049 -y predicted = 6242777307.282594 -error 1.7624761112604138e+17 - y tested = 6611133148.221605 -y predicted = 6344106378.723179 -error 7.130329562876576e+16 - y tested = 5377240292.736961 -y predicted = 3031261066.9905114 -error 5.503618527633913e+18 -error squared vector [2.871976379943314e+18, 1.8150464728116232e+18, 3.361248783539465e+17, 3.620292373494083e+18, 6.537951344946374e+16, 6.814168934815608e+17, 1.1020777169989133e+18, 3.682247838999852e+18, 1.2821868184699976e+17, 5.5797477084806824e+16, 2.0987272434906476e+18, 3.863563701551773e+16, 7.890679154081734e+16, 9.499460601083378e+16, 8.819559539706892e+17, 2.7319025974890916e+18, 3.939889134349743e+17, 1.7624761112604138e+17, 7.130329562876576e+16, 5.503618527633913e+18] -Total loo_error 1.321442970190293e+18 -iteration 159current difference of loo_error -518883320305664.0 - getting loo error of with lamda = 0.010687109057862394, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1567308434.2281241 -error 2.4564557277413965e+18 - y tested = 5326600510.288329 -y predicted = 4000767829.834277 -error 1.7578322965599762e+18 - y tested = 5072151352.996373 -y predicted = 4324805279.957509 -error 5.5852615288661126e+17 - y tested = 7650055845.407672 -y predicted = 5925159435.416283 -error 2.9752676252011827e+18 - y tested = 5789616901.049658 -y predicted = 6093367813.809035 -error 9.226461700215494e+16 - y tested = 8224428196.629629 -y predicted = 7571134502.352567 -error 4.267926509821719e+17 - y tested = 4059018123.5159216 -y predicted = 5083952759.753388 -error 1.0504910085592284e+18 - y tested = 5947637003.818383 -y predicted = 4074002912.195224 -error 3.510504709292542e+18 - y tested = 997516184.7000968 -y predicted = 465670504.1874989 -error 2.8285982787990838e+17 - y tested = 6532788063.289651 -y predicted = 6589845520.196287 -error 3255553388652651.5 - y tested = 1980229389.772511 -y predicted = 3558339152.9452496 -error 2.490430424621117e+18 - y tested = 5035525633.343237 -y predicted = 5154407320.083842 -error 1.4132855442291422e+16 - y tested = 5026691733.102776 -y predicted = 5318608743.249177 -error 8.521554081281422e+16 - y tested = 1014996574.3865615 -y predicted = 1172956513.4718623 -error 2.495134235583194e+16 - y tested = 7665772326.561901 -y predicted = 6846094366.25062 -error 6.718719586200623e+17 - y tested = 3029054692.61153 -y predicted = 4839367601.206804 -error 3.2772328270266824e+18 - y tested = 4062233415.93208 -y predicted = 4919870249.99602 -error 7.355409391432191e+17 - y tested = 5822958761.806049 -y predicted = 6426535249.452729 -error 3.643045764399027e+17 - y tested = 6611133148.221605 -y predicted = 6346415376.634954 -error 7.007549859380225e+16 - y tested = 5377240292.736961 -y predicted = 3019121822.586771 -error 5.560722719263475e+18 -error squared vector [2.4564557277413965e+18, 1.7578322965599762e+18, 5.5852615288661126e+17, 2.9752676252011827e+18, 9.226461700215494e+16, 4.267926509821719e+17, 1.0504910085592284e+18, 3.510504709292542e+18, 2.8285982787990838e+17, 3255553388652651.5, 2.490430424621117e+18, 1.4132855442291422e+16, 8.521554081281422e+16, 2.495134235583194e+16, 6.718719586200623e+17, 3.2772328270266824e+18, 7.355409391432191e+17, 3.643045764399027e+17, 7.007549859380225e+16, 5.560722719263475e+18] -Total loo_error 1.320436442590651e+18 -iteration 160current difference of loo_error 1006527599642112.0 - getting loo error of with lamda = 0.017740568747947168, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1691044176.6963208 -error 2.859630407256697e+18 - y tested = 5326600510.288329 -y predicted = 3980010071.341657 -error 1.8133058102625907e+18 - y tested = 5072151352.996373 -y predicted = 4488206476.913475 -error 3.409916183034713e+17 - y tested = 7650055845.407672 -y predicted = 5752316524.881543 -error 3.601414528670973e+18 - y tested = 5789616901.049658 -y predicted = 6045934913.173742 -error 6.569892333924231e+16 - y tested = 8224428196.629629 -y predicted = 7403733347.026339 -error 6.735400361653677e+17 - y tested = 4059018123.5159216 -y predicted = 5108155308.827616 -error 1.100688833603744e+18 - y tested = 5947637003.818383 -y predicted = 4030357566.464448 -error 3.6759604409002225e+18 - y tested = 997516184.7000968 -y predicted = 634639273.0163807 -error 1.3167965303311155e+17 - y tested = 6532788063.289651 -y predicted = 6765355532.83602 -error 5.408762789120153e+16 - y tested = 1980229389.772511 -y predicted = 3431874350.502364 -error 2.1072730920123768e+18 - y tested = 5035525633.343237 -y predicted = 5230458386.646497 -error 3.799877831038956e+16 - y tested = 5026691733.102776 -y predicted = 5307848962.538811 -error 7.904938766414731e+16 - y tested = 1014996574.3865615 -y predicted = 1319111144.4945385 -error 9.248567175195968e+16 - y tested = 7665772326.561901 -y predicted = 6729840380.939592 -error 8.759686068363603e+17 - y tested = 3029054692.61153 -y predicted = 4685771308.976129 -error 2.744709946938565e+18 - y tested = 4062233415.93208 -y predicted = 4695424405.786392 -error 4.0093082963268397e+17 - y tested = 5822958761.806049 -y predicted = 6246524407.261975 -error 1.7940785601049517e+17 - y tested = 6611133148.221605 -y predicted = 6344152315.470031 -error 7.12787650567242e+16 - y tested = 5377240292.736961 -y predicted = 3031242386.366601 -error 5.503706176694114e+18 -error squared vector [2.859630407256697e+18, 1.8133058102625907e+18, 3.409916183034713e+17, 3.601414528670973e+18, 6.569892333924231e+16, 6.735400361653677e+17, 1.100688833603744e+18, 3.6759604409002225e+18, 1.3167965303311155e+17, 5.408762789120153e+16, 2.1072730920123768e+18, 3.799877831038956e+16, 7.904938766414731e+16, 9.248567175195968e+16, 8.759686068363603e+17, 2.744709946938565e+18, 4.0093082963268397e+17, 1.7940785601049517e+17, 7.12787650567242e+16, 5.503706176694114e+18] -Total loo_error 1.3204903495167217e+18 -iteration 161current difference of loo_error 53906926070784.0 - getting loo error of with lamda = 0.017526827545217324, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1687496210.7116508 -error 2.847643460884931e+18 - y tested = 5326600510.288329 -y predicted = 3980637245.970362 -error 1.8116171088934774e+18 - y tested = 5072151352.996373 -y predicted = 4484111238.708568 -error 3.457911760116154e+17 - y tested = 7650055845.407672 -y predicted = 5757157513.626748 -error 3.5830640944590044e+18 - y tested = 5789616901.049658 -y predicted = 6046572822.235721 -error 6.602634543257812e+16 - y tested = 8224428196.629629 -y predicted = 7408396402.878014 -error 6.659078884134792e+17 - y tested = 4059018123.5159216 -y predicted = 5107508533.8059635 -error 1.0993321404701805e+18 - y tested = 5947637003.818383 -y predicted = 4031938078.4921227 -error 3.6699023724961894e+18 - y tested = 997516184.7000968 -y predicted = 629960621.4024289 -error 1.3509709211106602e+17 - y tested = 6532788063.289651 -y predicted = 6761743723.260907 -error 5.242069423287351e+16 - y tested = 1980229389.772511 -y predicted = 3434778001.246008 -error 2.1157116631394778e+18 - y tested = 5035525633.343237 -y predicted = 5228849122.647355 -error 3.737397151671949e+16 - y tested = 5026691733.102776 -y predicted = 5308097644.768432 -error 7.918928712037904e+16 - y tested = 1014996574.3865615 -y predicted = 1315114742.1354263 -error 9.007091461293573e+16 - y tested = 7665772326.561901 -y predicted = 6732959583.530763 -error 8.701396135612767e+17 - y tested = 3029054692.61153 -y predicted = 4689564032.50712 -error 2.757291267880489e+18 - y tested = 4062233415.93208 -y predicted = 4700829248.966091 -error 4.0780463796840294e+17 - y tested = 5822958761.806049 -y predicted = 6250234045.943505 -error 1.825641684347437e+17 - y tested = 6611133148.221605 -y predicted = 6344198335.840615 -error 7.1254194060874344e+16 - y tested = 5377240292.736961 -y predicted = 3031210854.3585377 -error 5.503854125738182e+18 -error squared vector [2.847643460884931e+18, 1.8116171088934774e+18, 3.457911760116154e+17, 3.5830640944590044e+18, 6.602634543257812e+16, 6.659078884134792e+17, 1.0993321404701805e+18, 3.6699023724961894e+18, 1.3509709211106602e+17, 5.242069423287351e+16, 2.1157116631394778e+18, 3.737397151671949e+16, 7.918928712037904e+16, 9.007091461293573e+16, 8.701396135612767e+17, 2.757291267880489e+18, 4.0780463796840294e+17, 1.825641684347437e+17, 7.1254194060874344e+16, 5.503854125738182e+18] -Total loo_error 1.319602810871944e+18 -iteration 162current difference of loo_error -833631718706944.0 - getting loo error of with lamda = 0.010894373254448907, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1571155204.6937282 -error 2.468528676974332e+18 - y tested = 5326600510.288329 -y predicted = 4000164315.9954586 -error 1.7594329775301537e+18 - y tested = 5072151352.996373 -y predicted = 4330728398.54351 -error 5.497079973896118e+17 - y tested = 7650055845.407672 -y predicted = 5919700356.952449 -error 2.9941301164271135e+18 - y tested = 5789616901.049658 -y predicted = 6090834846.523154 -error 9.073225067527427e+16 - y tested = 8224428196.629629 -y predicted = 7565763345.101389 -error 4.338393866387187e+17 - y tested = 4059018123.5159216 -y predicted = 5084749354.247957 -error 1.0521245576990565e+18 - y tested = 5947637003.818383 -y predicted = 4073120796.4646893 -error 3.513811011631677e+18 - y tested = 997516184.7000968 -y predicted = 471143227.69515973 -error 2.7706848986612138e+17 - y tested = 6532788063.289651 -y predicted = 6597333042.506005 -error 4166054342039617.5 - y tested = 1980229389.772511 -y predicted = 3553517254.7152147 -error 2.4752347059759713e+18 - y tested = 5035525633.343237 -y predicted = 5157556207.5609045 -error 1.4891461043893676e+16 - y tested = 5026691733.102776 -y predicted = 5318169587.031279 -error 8.495933933076576e+16 - y tested = 1014996574.3865615 -y predicted = 1177739204.709976 -error 2.6485163724583536e+16 - y tested = 7665772326.561901 -y predicted = 6842251320.06864 -error 6.781868481356742e+17 - y tested = 3029054692.61153 -y predicted = 4833734083.375406 -error 3.256867703447876e+18 - y tested = 4062233415.93208 -y predicted = 4911484734.850228 -error 7.212278026842148e+17 - y tested = 5822958761.806049 -y predicted = 6418858732.190689 -error 3.550967747044145e+17 - y tested = 6611133148.221605 -y predicted = 6346337379.913968 -error 7.011679891363189e+16 - y tested = 5377240292.736961 -y predicted = 3019962017.523204 -error 5.556760866794748e+18 -error squared vector [2.468528676974332e+18, 1.7594329775301537e+18, 5.497079973896118e+17, 2.9941301164271135e+18, 9.073225067527427e+16, 4.338393866387187e+17, 1.0521245576990565e+18, 3.513811011631677e+18, 2.7706848986612138e+17, 4166054342039617.5, 2.4752347059759713e+18, 1.4891461043893676e+16, 8.495933933076576e+16, 2.6485163724583536e+16, 6.781868481356742e+17, 3.256867703447876e+18, 7.212278026842148e+17, 3.550967747044145e+17, 7.011679891363189e+16, 5.556760866794748e+18] -Total loo_error 1.3191684491964936e+18 -iteration 163current difference of loo_error 434361675450368.0 - getting loo error of with lamda = 0.017325844081860706, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1684149187.656114 -error 2.8363584860020577e+18 - y tested = 5326600510.288329 -y predicted = 3981227485.684891 -error 1.8100285753306028e+18 - y tested = 5072151352.996373 -y predicted = 4480223817.478195 -error 3.503782073046239e+17 - y tested = 7650055845.407672 -y predicted = 5761731451.829539 -error 3.5657690153822223e+18 - y tested = 5789616901.049658 -y predicted = 6047203245.374 -error 6.635072478237836e+16 - y tested = 8224428196.629629 -y predicted = 7412802065.876673 -error 6.58736976121015e+17 - y tested = 4059018123.5159216 -y predicted = 5106895725.859146 -error 1.098047469492585e+18 - y tested = 5947637003.818383 -y predicted = 4033415938.5223417 -error 3.6642422868231117e+18 - y tested = 997516184.7000968 -y predicted = 625539773.7355475 -error 1.3836645031406728e+17 - y tested = 6532788063.289651 -y predicted = 6758278363.9371805 -error 5.084587568611329e+16 - y tested = 1980229389.772511 -y predicted = 3437550876.9929333 -error 2.1237859171143434e+18 - y tested = 5035525633.343237 -y predicted = 5227306630.427276 -error 3.677995084254807e+16 - y tested = 5026691733.102776 -y predicted = 5308333994.36695 -error 7.93223633299975e+16 - y tested = 1014996574.3865615 -y predicted = 1311335763.377791 -error 8.781691493197958e+16 - y tested = 7665772326.561901 -y predicted = 6735913317.290531 -error 8.646377771231337e+17 - y tested = 3029054692.61153 -y predicted = 4693167301.461827 -error 2.769270774934543e+18 - y tested = 4062233415.93208 -y predicted = 4705972128.644993 -error 4.143995302452784e+17 - y tested = 5822958761.806049 -y predicted = 6253792538.289783 -error 1.8561774295923536e+17 - y tested = 6611133148.221605 -y predicted = 6344242958.057651 -error 7.123037360575192e+16 - y tested = 5377240292.736961 -y predicted = 3031168717.8762574 -error 5.504051834369383e+18 -error squared vector [2.8363584860020577e+18, 1.8100285753306028e+18, 3.503782073046239e+17, 3.5657690153822223e+18, 6.635072478237836e+16, 6.58736976121015e+17, 1.098047469492585e+18, 3.6642422868231117e+18, 1.3836645031406728e+17, 5.084587568611329e+16, 2.1237859171143434e+18, 3.677995084254807e+16, 7.93223633299975e+16, 8.781691493197958e+16, 8.646377771231337e+17, 2.769270774934543e+18, 4.143995302452784e+17, 1.8561774295923536e+17, 7.123037360575192e+16, 5.504051834369383e+18] -Total loo_error 1.318801862334749e+18 -iteration 164current difference of loo_error -366586861744640.0 - getting loo error of with lamda = 0.011089266309825022, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1574759525.2815888 -error 2.4798675622026353e+18 - y tested = 5326600510.288329 -y predicted = 3999595931.346519 -error 1.7609411525325307e+18 - y tested = 5072151352.996373 -y predicted = 4336213476.252522 -error 5.416045584262472e+17 - y tested = 7650055845.407672 -y predicted = 5914586217.288944 -error 3.011854830122555e+18 - y tested = 5789616901.049658 -y predicted = 6088544579.379599 -error 8.935775687172856e+16 - y tested = 8224428196.629629 -y predicted = 7560741872.277357 -error 4.4047953713222925e+17 - y tested = 4059018123.5159216 -y predicted = 5085493986.624818 -error 1.0536526975451535e+18 - y tested = 5947637003.818383 -y predicted = 4072257871.9355407 -error 3.5170468883016443e+18 - y tested = 997516184.7000968 -y predicted = 476255794.6394198 -error 2.7171239424620918e+17 - y tested = 6532788063.289651 -y predicted = 6604192567.126215 -error 5098603168145892.0 - y tested = 1980229389.772511 -y predicted = 3549056863.8943973 -error 2.4612196435596575e+18 - y tested = 5035525633.343237 -y predicted = 5160448640.945919 -error 1.5605757828499774e+16 - y tested = 5026691733.102776 -y predicted = 5317767292.186963 -error 8.472498109617234e+16 - y tested = 1014996574.3865615 -y predicted = 1182205373.9339297 -error 2.7958782646071948e+16 - y tested = 7665772326.561901 -y predicted = 6838662632.437785 -error 6.841104461140886e+17 - y tested = 3029054692.61153 -y predicted = 4828520161.610322 -error 3.238075974119043e+18 - y tested = 4062233415.93208 -y predicted = 4903731131.66274 -error 7.081184055799186e+17 - y tested = 5822958761.806049 -y predicted = 6411825682.451605 -error 3.4676425023057894e+17 - y tested = 6611133148.221605 -y predicted = 6346263200.718428 -error 7.015608909033608e+16 - y tested = 5377240292.736961 -y predicted = 3020713182.314355 -error 5.553220022156719e+18 -error squared vector [2.4798675622026353e+18, 1.7609411525325307e+18, 5.416045584262472e+17, 3.011854830122555e+18, 8.935775687172856e+16, 4.4047953713222925e+17, 1.0536526975451535e+18, 3.5170468883016443e+18, 2.7171239424620918e+17, 5098603168145892.0, 2.4612196435596575e+18, 1.5605757828499774e+16, 8.472498109617234e+16, 2.7958782646071948e+16, 6.841104461140886e+17, 3.238075974119043e+18, 7.081184055799186e+17, 3.4676425023057894e+17, 7.015608909033608e+16, 5.553220022156719e+18] -Total loo_error 1.3180785166485082e+18 -iteration 165current difference of loo_error 723345686240768.0 - getting loo error of with lamda = 0.017136856876647504, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '3330-2220' +--- Neighbour 0 in the list of neghbours, And at position 61 in the X datas point +-------------- + --- Configuration: 3330-2220 + --- Distance from that configuration: [1.] + --- Energy efficiency: 9229945635.620207 + --- Energy: 51.28077619994492 + --- Workload: 473319000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 4 in the X datas point +-------------- + --- Configuration: 3000-1110 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8096707069.234942 + --- Energy: 49.41467631934382 + --- Workload: 400095000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 23 in the X datas point +-------------- + --- Configuration: 3333-3300 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9963434196.49885 + --- Energy: 75.09852863759252 + --- Workload: 748237000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 28 in the X datas point +-------------- + --- Configuration: 3330-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5822958761.806049 + --- Energy: 37.40635012737015 + --- Workload: 217816000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 31 in the X datas point +-------------- + --- Configuration: 3000-3330 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8224428196.629629 + --- Energy: 49.410116578739654 + --- Workload: 406369000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 41 in the X datas point +-------------- + --- Configuration: 3300-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 14 in the X datas point +-------------- + --- Configuration: 3303-1010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 20 in the X datas point +-------------- + --- Configuration: 3330-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5377240292.736961 + --- Energy: 32.51205394198035 + --- Workload: 174825000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '3330-2220' +--- Neighbour 0 in the list of neghbours, And at position 20 in the X datas point +-------------- + --- Configuration: 3330-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 5377240292.736961 + --- Energy: 32.51205394198035 + --- Workload: 174825000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 41 in the X datas point +-------------- + --- Configuration: 3300-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 28 in the X datas point +-------------- + --- Configuration: 3330-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5822958761.806049 + --- Energy: 37.40635012737015 + --- Workload: 217816000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 31 in the X datas point +-------------- + --- Configuration: 3000-3330 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8224428196.629629 + --- Energy: 49.410116578739654 + --- Workload: 406369000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 4 in the X datas point +-------------- + --- Configuration: 3000-1110 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8096707069.234942 + --- Energy: 49.41467631934382 + --- Workload: 400095000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 61 in the X datas point +-------------- + --- Configuration: 3330-2220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9229945635.620207 + --- Energy: 51.28077619994492 + --- Workload: 473319000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 14 in the X datas point +-------------- + --- Configuration: 3303-1010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 23 in the X datas point +-------------- + --- Configuration: 3333-3300 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9963434196.49885 + --- Energy: 75.09852863759252 + --- Workload: 748237000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 31 in the X datas point +-------------- + --- Configuration: 3000-3330 + --- Energy efficiency: 8224428196.629629 + --- Energy: 49.410116578739654 + --- Workload: 406369000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (49.410116578739654 mAh) it is NOT far from the median. +--- Median :49.410116578739654, the gap is : 10 +--- So No we don't romove this configuration '3330-2220' + --- remove_aberrant_points: The value [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0] +--- Computing the list of the 10 first neighbours of '2002-2000' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1680992324.0265203 -error 2.8257351931559163e+18 - y tested = 5326600510.288329 -y predicted = 3981782912.321336 -error 1.8085343718017137e+18 - y tested = 5072151352.996373 -y predicted = 4476535347.761884 -error 3.547584256914913e+17 - y tested = 7650055845.407672 -y predicted = 5766051844.761546 -error 3.549471074450607e+18 - y tested = 5789616901.049658 -y predicted = 6047823929.647506 -error 6.6670869617329864e+16 - y tested = 8224428196.629629 -y predicted = 7416963428.3000145 -error 6.519993520935982e+17 - y tested = 4059018123.5159216 -y predicted = 5106315361.389533 -error 1.0968315044576959e+18 - y tested = 5947637003.818383 -y predicted = 4034797869.5289164 -error 3.658953553669277e+18 - y tested = 997516184.7000968 -y predicted = 621363586.2061659 -error 1.4149077735373642e+17 - y tested = 6532788063.289651 -y predicted = 6754957112.600804 -error 4.935908647182172e+16 - y tested = 1980229389.772511 -y predicted = 3440196562.849673 -error 2.1315041464629192e+18 - y tested = 5035525633.343237 -y predicted = 5225829701.861765 -error 3.621563849470459e+16 - y tested = 5026691733.102776 -y predicted = 5308558557.231434 -error 7.944890654437598e+16 - y tested = 1014996574.3865615 -y predicted = 1307763429.8213115 -error 8.571243164115178e+16 - y tested = 7665772326.561901 -y predicted = 6738709247.198867 -error 8.594459531180716e+17 - y tested = 3029054692.61153 -y predicted = 4696588864.954344 -error 2.7806702159310336e+18 - y tested = 4062233415.93208 -y predicted = 4710862794.498713 -error 4.207200707397362e+17 - y tested = 5822958761.806049 -y predicted = 6257202448.972487 -error 1.8856757984390336e+17 - y tested = 6611133148.221605 -y predicted = 6344286127.743338 -error 7.120733233812901e+16 - y tested = 5377240292.736961 -y predicted = 3031117676.692977 -error 5.50429132951307e+18 -error squared vector [2.8257351931559163e+18, 1.8085343718017137e+18, 3.547584256914913e+17, 3.549471074450607e+18, 6.6670869617329864e+16, 6.519993520935982e+17, 1.0968315044576959e+18, 3.658953553669277e+18, 1.4149077735373642e+17, 4.935908647182172e+16, 2.1315041464629192e+18, 3.621563849470459e+16, 7.944890654437598e+16, 8.571243164115178e+16, 8.594459531180716e+17, 2.7806702159310336e+18, 4.207200707397362e+17, 1.8856757984390336e+17, 7.120733233812901e+16, 5.50429132951307e+18] -Total loo_error 1.3180793906695142e+18 -iteration 166current difference of loo_error 874021006080.0 - getting loo error of with lamda = 0.016953596556440763, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1677922182.3170362 -error 2.8154228496319114e+18 - y tested = 5326600510.288329 -y predicted = 3982321871.3663974 -error 1.8070850590618012e+18 - y tested = 5072151352.996373 -y predicted = 4472927391.671976 -error 3.590693558253025e+17 - y tested = 7650055845.407672 -y predicted = 5770259419.296119 -error 3.533634603621768e+18 - y tested = 5789616901.049658 -y predicted = 6048452388.945094 -error 6.699580979406854e+16 - y tested = 8224428196.629629 -y predicted = 7421016102.3623 -error 6.45470993215016e+17 - y tested = 4059018123.5159216 -y predicted = 5105748728.592211 -error 1.0956449596033745e+18 - y tested = 5947637003.818383 -y predicted = 4036130444.806683 -error 3.65385732514475e+18 - y tested = 997516184.7000968 -y predicted = 617295951.516391 -error 1.445674257222716e+17 - y tested = 6532788063.289651 -y predicted = 6751676976.374896 -error 4.791235627164e+16 - y tested = 1980229389.772511 -y predicted = 3442798177.034302 -error 2.1391074574724268e+18 - y tested = 5035525633.343237 -y predicted = 5224372438.872629 -error 3.5663115958656092e+16 - y tested = 5026691733.102776 -y predicted = 5308778555.32834 -error 7.957297527331694e+16 - y tested = 1014996574.3865615 -y predicted = 1304281621.5523756 -error 8.368583851372725e+16 - y tested = 7665772326.561901 -y predicted = 6741437739.401822 -error 8.543944290203937e+17 - y tested = 3029054692.61153 -y predicted = 4699938280.000975 -error 2.7918519626074204e+18 - y tested = 4062233415.93208 -y predicted = 4715656969.106186 -error 4.269623398426739e+17 - y tested = 5822958761.806049 -y predicted = 6260569629.159732 -error 1.915032712260423e+17 - y tested = 6611133148.221605 -y predicted = 6344329125.102091 -error 7.118438675275841e+16 - y tested = 5377240292.736961 -y predicted = 3031057266.278935 -error 5.504574793639745e+18 -error squared vector [2.8154228496319114e+18, 1.8070850590618012e+18, 3.590693558253025e+17, 3.533634603621768e+18, 6.699580979406854e+16, 6.45470993215016e+17, 1.0956449596033745e+18, 3.65385732514475e+18, 1.445674257222716e+17, 4.791235627164e+16, 2.1391074574724268e+18, 3.5663115958656092e+16, 7.957297527331694e+16, 8.368583851372725e+16, 8.543944290203937e+17, 2.7918519626074204e+18, 4.269623398426739e+17, 1.915032712260423e+17, 7.118438675275841e+16, 5.504574793639745e+18] -Total loo_error 1.3174080654099533e+18 -iteration 167current difference of loo_error -670451238554880.0 - getting loo error of with lamda = 0.011266973286995196, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1578035290.5809968 -error 2.490195378056045e+18 - y tested = 5326600510.288329 -y predicted = 3999076957.3191476 -error 1.7623187836879194e+18 - y tested = 5072151352.996373 -y predicted = 4341145812.989931 -error 5.3436909952010995e+17 - y tested = 7650055845.407672 -y predicted = 5909939524.974751 -error 3.0280048086370063e+18 - y tested = 5789616901.049658 -y predicted = 6086530592.488464 -error 8.815774016381882e+16 - y tested = 8224428196.629629 -y predicted = 7556187354.372146 -error 4.465458232609909e+17 - y tested = 4059018123.5159216 -y predicted = 5086169157.475534 -error 1.0550392465643017e+18 - y tested = 5947637003.818383 -y predicted = 4071443904.757279 -error 3.5201005449645107e+18 - y tested = 997516184.7000968 -y predicted = 480889725.20757747 -error 2.6690289864777578e+17 - y tested = 6532788063.289651 -y predicted = 6610299637.046881 -error 6008044066322476.0 - y tested = 1980229389.772511 -y predicted = 3545051078.1313515 -error 2.448666916358212e+18 - y tested = 5035525633.343237 -y predicted = 5163029947.408881 -error 1.625735010535045e+16 - y tested = 5026691733.102776 -y predicted = 5317409061.58397 -error 8.451656507924274e+16 - y tested = 1014996574.3865615 -y predicted = 1186251780.2836256 -error 2.9328345546845816e+16 - y tested = 7665772326.561901 -y predicted = 6835411479.559885 -error 6.894991362339055e+17 - y tested = 3029054692.61153 -y predicted = 4823834261.42751 -error 3.2212337006392765e+18 - y tested = 4062233415.93208 -y predicted = 4896769017.609139 -error 6.964496704664919e+17 - y tested = 5822958761.806049 -y predicted = 6405563863.4356365 -error 3.3942870444482157e+17 - y tested = 6611133148.221605 -y predicted = 6346195072.933411 -error 7.01921837374131e+16 - y tested = 5377240292.736961 -y predicted = 3021366495.333024 -error 5.550141349294448e+18 -error squared vector [2.490195378056045e+18, 1.7623187836879194e+18, 5.3436909952010995e+17, 3.0280048086370063e+18, 8.815774016381882e+16, 4.465458232609909e+17, 1.0550392465643017e+18, 3.5201005449645107e+18, 2.6690289864777578e+17, 6008044066322476.0, 2.448666916358212e+18, 1.625735010535045e+16, 8.451656507924274e+16, 2.9328345546845816e+16, 6.894991362339055e+17, 3.2212337006392765e+18, 6.964496704664919e+17, 3.3942870444482157e+17, 7.01921837374131e+16, 5.550141349294448e+18] -Total loo_error 1.3171678144737405e+18 -iteration 168current difference of loo_error 240250936212736.0 - getting loo error of with lamda = 0.016781274639184836, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1675027226.3073123 -error 2.805716208591597e+18 - y tested = 5326600510.288329 -y predicted = 3982828967.928079 -error 1.8057219580572452e+18 - y tested = 5072151352.996373 -y predicted = 4469506147.279825 -error 3.631812439731404e+17 - y tested = 7650055845.407672 -y predicted = 5774232185.470329 -error 3.5187144031807273e+18 - y tested = 5789616901.049658 -y predicted = 6049067893.352238 -error 6.731481740679337e+16 - y tested = 8224428196.629629 -y predicted = 7424842642.550228 -error 6.393370582924627e+17 - y tested = 4059018123.5159216 -y predicted = 5105212429.785782 -error 1.0945225264714742e+18 - y tested = 5947637003.818383 -y predicted = 4037376468.77344 -error 3.649095311750193e+18 - y tested = 997516184.7000968 -y predicted = 613454749.6576756 -error 1.4750318588684394e+17 - y tested = 6532788063.289651 -y predicted = 6748537863.89444 -error 4.654797646100612e+16 - y tested = 1980229389.772511 -y predicted = 3445277484.0532084 -error 2.146365918555503e+18 - y tested = 5035525633.343237 -y predicted = 5222979131.03821 -error 3.5138813798079244e+16 - y tested = 5026691733.102776 -y predicted = 5308987516.4531145 -error 7.96909092973815e+16 - y tested = 1014996574.3865615 -y predicted = 1300991520.601413 -error 8.17931092604358e+16 - y tested = 7665772326.561901 -y predicted = 6744019043.438127 -error 8.496291149494573e+17 - y tested = 3029054692.61153 -y predicted = 4703116674.347083 -error 2.802483518692368e+18 - y tested = 4062233415.93208 -y predicted = 4720212341.893557 -error 4.3293626700941856e+17 - y tested = 5822958761.806049 -y predicted = 6263791610.346524 -error 1.9433360035230928e+17 - y tested = 6611133148.221605 -y predicted = 6344370588.101892 -error 7.11622634816234e+16 - y tested = 5377240292.736961 -y predicted = 3030990351.686085 -error 5.50488878588124e+18 -error squared vector [2.805716208591597e+18, 1.8057219580572452e+18, 3.631812439731404e+17, 3.5187144031807273e+18, 6.731481740679337e+16, 6.393370582924627e+17, 1.0945225264714742e+18, 3.649095311750193e+18, 1.4750318588684394e+17, 4.654797646100612e+16, 2.146365918555503e+18, 3.5138813798079244e+16, 7.96909092973815e+16, 8.17931092604358e+16, 8.496291149494573e+17, 2.802483518692368e+18, 4.3293626700941856e+17, 1.9433360035230928e+17, 7.11622634816234e+16, 5.50488878588124e+18] -Total loo_error 1.316803849567465e+18 -iteration 169current difference of loo_error -363964906275584.0 - getting loo error of with lamda = 0.01143407332797064, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1581106306.1850035 -error 2.499897151194469e+18 - y tested = 5326600510.288329 -y predicted = 3998588376.743019 -error 1.7636162268435663e+18 - y tested = 5072151352.996373 -y predicted = 4345725460.666328 -error 5.2769457704750176e+17 - y tested = 7650055845.407672 -y predicted = 5905584760.555232 -error 3.0431793658862484e+18 - y tested = 5789616901.049658 -y predicted = 6084699181.488946 -error 8.707355222925069e+16 - y tested = 8224428196.629629 -y predicted = 7551925373.132618 -error 4.5226004761145216e+17 - y tested = 4059018123.5159216 -y predicted = 5086800675.20297 -error 1.0563369735523395e+18 - y tested = 5947637003.818383 -y predicted = 4070655787.027414 -error 3.523058488186108e+18 - y tested = 997516184.7000968 -y predicted = 485223272.0366459 -error 2.6244402836520218e+17 - y tested = 6532788063.289651 -y predicted = 6615917961.469985 -error 6910579971472713.0 - y tested = 1980229389.772511 -y predicted = 3541336912.6508102 -error 2.4370566979872195e+18 - y tested = 5035525633.343237 -y predicted = 5165409796.004812 -error 1.6869895710298556e+16 - y tested = 5026691733.102776 -y predicted = 5317079372.848093 -error 8.432498131685627e+16 - y tested = 1014996574.3865615 -y predicted = 1190034356.8204608 -error 3.063822527937706e+16 - y tested = 7665772326.561901 -y predicted = 6832372689.752135 -error 6.945549546346496e+17 - y tested = 3029054692.61153 -y predicted = 4819485761.772626 -error 3.2056434134173455e+18 - y tested = 4062233415.93208 -y predicted = 4890313706.327907 -error 6.857169673420369e+17 - y tested = 5822958761.806049 -y predicted = 6399802994.188112 -error 3.327492684324514e+17 - y tested = 6611133148.221605 -y predicted = 6346130745.504226 -error 7.022627344598422e+16 - y tested = 5377240292.736961 -y predicted = 3021954261.7879825 -error 5.547372287583395e+18 -error squared vector [2.499897151194469e+18, 1.7636162268435663e+18, 5.2769457704750176e+17, 3.0431793658862484e+18, 8.707355222925069e+16, 4.5226004761145216e+17, 1.0563369735523395e+18, 3.523058488186108e+18, 2.6244402836520218e+17, 6910579971472713.0, 2.4370566979872195e+18, 1.6869895710298556e+16, 8.432498131685627e+16, 3.063822527937706e+16, 6.945549546346496e+17, 3.2056434134173455e+18, 6.857169673420369e+17, 3.327492684324514e+17, 7.022627344598422e+16, 5.547372287583395e+18] -Total loo_error 1.3163811978018609e+18 -iteration 170current difference of loo_error 422651765604096.0 - getting loo error of with lamda = 0.01661923823581471, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1672297904.7796957 -error 2.796580282051844e+18 - y tested = 5326600510.288329 -y predicted = 3983306051.259166 -error 1.8044400036584527e+18 - y tested = 5072151352.996373 -y predicted = 4466263299.2386265 -error 3.6710033368635014e+17 - y tested = 7650055845.407672 -y predicted = 5777982326.135282 -error 3.504659261560913e+18 - y tested = 5789616901.049658 -y predicted = 6049668961.728647 -error 6.762707426338879e+16 - y tested = 8224428196.629629 -y predicted = 7428454824.02084 -error 6.335736099022108e+17 - y tested = 4059018123.5159216 -y predicted = 5104705038.094063 -error 1.0934611233199528e+18 - y tested = 5947637003.818383 -y predicted = 4038541663.5586643 -error 3.6446450182013716e+18 - y tested = 997516184.7000968 -y predicted = 609828197.3156233 -error 1.5030197556222374e+17 - y tested = 6532788063.289651 -y predicted = 6745536579.854035 -error 4.526193130034617e+16 - y tested = 1980229389.772511 -y predicted = 3447638436.983475 -error 2.1532893118365898e+18 - y tested = 5035525633.343237 -y predicted = 5221648204.223955 -error 3.4641611391247984e+16 - y tested = 5026691733.102776 -y predicted = 5309185928.580566 -error 7.98029704786443e+16 - y tested = 1014996574.3865615 -y predicted = 1297883387.2189438 -error 8.002494887446331e+16 - y tested = 7665772326.561901 -y predicted = 6746460249.439204 -error 8.451346951436474e+17 - y tested = 3029054692.61153 -y predicted = 4706131404.984001 -error 2.812586299182057e+18 - y tested = 4062233415.93208 -y predicted = 4724538464.010633 -error 4.386479767103353e+17 - y tested = 5822958761.806049 -y predicted = 6266871768.443531 -error 1.9705875746192886e+17 - y tested = 6611133148.221605 -y predicted = 6344410497.856511 -error 7.114097221778028e+16 - y tested = 5377240292.736961 -y predicted = 3030918227.097293 -error 5.505227235707601e+18 -error squared vector [2.796580282051844e+18, 1.8044400036584527e+18, 3.6710033368635014e+17, 3.504659261560913e+18, 6.762707426338879e+16, 6.335736099022108e+17, 1.0934611233199528e+18, 3.6446450182013716e+18, 1.5030197556222374e+17, 4.526193130034617e+16, 2.1532893118365898e+18, 3.4641611391247984e+16, 7.98029704786443e+16, 8.002494887446331e+16, 8.451346951436474e+17, 2.812586299182057e+18, 4.386479767103353e+17, 1.9705875746192886e+17, 7.114097221778028e+16, 5.505227235707601e+18] -Total loo_error 1.3162602696255677e+18 -iteration 171current difference of loo_error -120928176293120.0 - getting loo error of with lamda = 0.011591199537299248, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1583985939.7841406 -error 2.50901145716985e+18 - y tested = 5326600510.288329 -y predicted = 3998128472.1000195 -error 1.7648379562482017e+18 - y tested = 5072151352.996373 -y predicted = 4349981638.469116 -error 5.2152909658037984e+17 - y tested = 7650055845.407672 -y predicted = 5901502991.023818 -error 3.057437084573923e+18 - y tested = 5789616901.049658 -y predicted = 6083030414.531549 -error 8.609148989378821e+16 - y tested = 8224428196.629629 -y predicted = 7547935814.4096775 -error 4.5764194320162515e+17 - y tested = 4059018123.5159216 -y predicted = 5087391498.717783 -error 1.0575517988240684e+18 - y tested = 5947637003.818383 -y predicted = 4069895305.694174 -error 3.5259138848743895e+18 - y tested = 997516184.7000968 -y predicted = 489277436.8434228 -error 2.5830662482291994e+17 - y tested = 6532788063.289651 -y predicted = 6621094391.138855 -error 7798007538211113.0 - y tested = 1980229389.772511 -y predicted = 3537890220.476064 -error 2.426307263508083e+18 - y tested = 5035525633.343237 -y predicted = 5167606807.388743 -error 1.7445436537239374e+16 - y tested = 5026691733.102776 -y predicted = 5316775446.431445 -error 8.414856073854973e+16 - y tested = 1014996574.3865615 -y predicted = 1193571643.289855 -error 3.1889055233816016e+16 - y tested = 7665772326.561901 -y predicted = 6829531432.160955 -error 6.992988334684936e+17 - y tested = 3029054692.61153 -y predicted = 4815446515.049017 -error 3.1911957432715264e+18 - y tested = 4062233415.93208 -y predicted = 4884322386.528894 -error 6.758302755769303e+17 - y tested = 5822958761.806049 -y predicted = 6394495104.14718 -error 3.266537906166776e+17 - y tested = 6611133148.221605 -y predicted = 6346070142.629211 -error 7.025839693367342e+16 - y tested = 5377240292.736961 -y predicted = 3022484224.352921 -error 5.544876141591463e+18 -error squared vector [2.50901145716985e+18, 1.7648379562482017e+18, 5.2152909658037984e+17, 3.057437084573923e+18, 8.609148989378821e+16, 4.5764194320162515e+17, 1.0575517988240684e+18, 3.5259138848743895e+18, 2.5830662482291994e+17, 7798007538211113.0, 2.426307263508083e+18, 1.7445436537239374e+16, 8.414856073854973e+16, 3.1889055233816016e+16, 6.992988334684936e+17, 3.1911957432715264e+18, 6.758302755769303e+17, 3.266537906166776e+17, 7.025839693367342e+16, 5.544876141591463e+18] -Total loo_error 1.3157011420601905e+18 -iteration 172current difference of loo_error 559127565377280.0 - getting loo error of with lamda = 0.016466873426768787, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1669725136.2567585 -error 2.7879820303693635e+18 - y tested = 5326600510.288329 -y predicted = 3983754868.8372173 -error 1.8032344167642478e+18 - y tested = 5072151352.996373 -y predicted = 4463190770.914005 -error 3.708329905300963e+17 - y tested = 7650055845.407672 -y predicted = 5781521497.745111 -error 3.4914206083947505e+18 - y tested = 5789616901.049658 -y predicted = 6050254378.816727 -error 6.793189481677931e+16 - y tested = 8224428196.629629 -y predicted = 7431863902.901742 -error 6.281581596923846e+17 - y tested = 4059018123.5159216 -y predicted = 5104225171.031609 -error 1.0924577721764595e+18 - y tested = 5947637003.818383 -y predicted = 4039631381.886532 -error 3.640485453323551e+18 - y tested = 997516184.7000968 -y predicted = 606405038.4942924 -error 1.5296792868641814e+17 - y tested = 6532788063.289651 -y predicted = 6742669674.805457 -error 4.405029085247179e+16 - y tested = 1980229389.772511 -y predicted = 3449885067.983288 -error 2.1598878124971784e+18 - y tested = 5035525633.343237 -y predicted = 5220377980.0376215 -error 3.417039007842095e+16 - y tested = 5026691733.102776 -y predicted = 5309374260.516512 -error 7.99094113050178e+16 - y tested = 1014996574.3865615 -y predicted = 1294947891.2060761 -error 7.837273978898026e+16 - y tested = 7665772326.561901 -y predicted = 6748768200.84426 -error 8.408965665831749e+17 - y tested = 3029054692.61153 -y predicted = 4708989648.115358 -error 2.8221814547236506e+18 - y tested = 4062233415.93208 -y predicted = 4728644746.849803 -error 4.4410406197553114e+17 - y tested = 5822958761.806049 -y predicted = 6269813722.958489 -error 1.9967935630654874e+17 - y tested = 6611133148.221605 -y predicted = 6344448847.111195 -error 7.11205164587482e+16 - y tested = 5377240292.736961 -y predicted = 3030842042.230514 -error 5.505584749979717e+18 -error squared vector [2.7879820303693635e+18, 1.8032344167642478e+18, 3.708329905300963e+17, 3.4914206083947505e+18, 6.793189481677931e+16, 6.281581596923846e+17, 1.0924577721764595e+18, 3.640485453323551e+18, 1.5296792868641814e+17, 4.405029085247179e+16, 2.1598878124971784e+18, 3.417039007842095e+16, 7.99094113050178e+16, 7.837273978898026e+16, 8.408965665831749e+17, 2.8221814547236506e+18, 4.4410406197553114e+17, 1.9967935630654874e+17, 7.11205164587482e+16, 5.505584749979717e+18] -Total loo_error 1.3157714302651745e+18 -iteration 173current difference of loo_error 70288204984064.0 - getting loo error of with lamda = 0.016319125733148497, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1667224427.2271717 -error 2.7796372904651003e+18 - y tested = 5326600510.288329 -y predicted = 3984190267.494027 -error 1.802065259959057e+18 - y tested = 5072151352.996373 -y predicted = 4460189461.477131 -error 3.744973566718089e+17 - y tested = 7650055845.407672 -y predicted = 5784965373.825439 -error 3.4785624671868344e+18 - y tested = 5789616901.049658 -y predicted = 6050841235.274287 -error 6.823815279110089e+16 - y tested = 8224428196.629629 -y predicted = 7435181325.52244 -error 6.229106235524881e+17 - y tested = 4059018123.5159216 -y predicted = 5103757275.98823 -error 1.0914798967085568e+18 - y tested = 5947637003.818383 -y predicted = 4040682392.117215 -error 3.636475891088353e+18 - y tested = 997516184.7000968 -y predicted = 603073392.9484652 -error 1.5558511596482102e+17 - y tested = 6532788063.289651 -y predicted = 6739847345.028287 -error 4.287354615411985e+16 - y tested = 1980229389.772511 -y predicted = 3452088596.124335 -error 2.1663695233226207e+18 - y tested = 5035525633.343237 -y predicted = 5219128577.094262 -error 3.3710040954042124e+16 - y tested = 5026691733.102776 -y predicted = 5309558573.310872 -error 8.00136492893128e+16 - y tested = 1014996574.3865615 -y predicted = 1292089304.2773643 -error 7.678038095833736e+16 - y tested = 7665772326.561901 -y predicted = 6751017831.410198 -error 8.367757864002468e+17 - y tested = 3029054692.61153 -y predicted = 4711783371.408704 -error 2.831575806446483e+18 - y tested = 4062233415.93208 -y predicted = 4732662721.545215 -error 4.494754538249102e+17 - y tested = 5822958761.806049 -y predicted = 6272709682.814366 -error 2.022758909478294e+17 - y tested = 6611133148.221605 -y predicted = 6344486800.041357 -error 7.1100274997862184e+16 - y tested = 5377240292.736961 -y predicted = 3030760217.230436 -error 5.505968744749109e+18 -error squared vector [2.7796372904651003e+18, 1.802065259959057e+18, 3.744973566718089e+17, 3.4785624671868344e+18, 6.823815279110089e+16, 6.229106235524881e+17, 1.0914798967085568e+18, 3.636475891088353e+18, 1.5558511596482102e+17, 4.287354615411985e+16, 2.1663695233226207e+18, 3.3710040954042124e+16, 8.00136492893128e+16, 7.678038095833736e+16, 8.367757864002468e+17, 2.831575806446483e+18, 4.494754538249102e+17, 2.022758909478294e+17, 7.1100274997862184e+16, 5.505968744749109e+18] -Total loo_error 1.3153185576216497e+18 -iteration 174current difference of loo_error -382584438540800.0 - getting loo error of with lamda = 0.01173447002808256, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1586604873.649922 -error 2.517315024825251e+18 - y tested = 5326600510.288329 -y predicted = 3997708734.6971464 -error 1.7659533512338862e+18 - y tested = 5072151352.996373 -y predicted = 4353821226.605912 -error 5.159981704801356e+17 - y tested = 7650055845.407672 -y predicted = 5897792328.329588 -error 3.070427433282857e+18 - y tested = 5789616901.049658 -y predicted = 6081552489.902472 -error 8.522638803883909e+16 - y tested = 8224428196.629629 -y predicted = 7544313104.559093 -error 4.625565384621132e+17 - y tested = 4059018123.5159216 -y predicted = 5087927663.199351 -error 1.0586548408515672e+18 - y tested = 5947637003.818383 -y predicted = 4069186022.0278077 -error 3.528578090989977e+18 - y tested = 997516184.7000968 -y predicted = 492956833.86096853 -error 2.5458013851920256e+17 - y tested = 6532788063.289651 -y predicted = 6625726827.606607 -error 8637613912762791.0 - y tested = 1980229389.772511 -y predicted = 3534785625.133474 -error 2.4166450888996495e+18 - y tested = 5035525633.343237 -y predicted = 5169576463.967146 -error 1.7969625190959938e+16 - y tested = 5026691733.102776 -y predicted = 5316503274.443589 -error 8.399072949433813e+16 - y tested = 1014996574.3865615 -y predicted = 1196780681.7990267 -error 3.3045461707746692e+16 - y tested = 7665772326.561901 -y predicted = 6826954335.649585 -error 7.036156218781748e+17 - y tested = 3029054692.61153 -y predicted = 4811804439.190117 -error 3.1781966589260165e+18 - y tested = 4062233415.93208 -y predicted = 4878924356.109754 -error 6.669840917682927e+17 - y tested = 5822958761.806049 -y predicted = 6389744937.404805 -error 3.212465688498637e+17 - y tested = 6611133148.221605 -y predicted = 6346014873.49777 -error 7.028769959254284e+16 - y tested = 5377240292.736961 -y predicted = 3022948831.173146 -error 5.542688285992287e+18 -error squared vector [2.517315024825251e+18, 1.7659533512338862e+18, 5.159981704801356e+17, 3.070427433282857e+18, 8.522638803883909e+16, 4.625565384621132e+17, 1.0586548408515672e+18, 3.528578090989977e+18, 2.5458013851920256e+17, 8637613912762791.0, 2.4166450888996495e+18, 1.7969625190959938e+16, 8.399072949433813e+16, 3.3045461707746692e+16, 7.036156218781748e+17, 3.1781966589260165e+18, 6.669840917682927e+17, 3.212465688498637e+17, 7.028769959254284e+16, 5.542688285992287e+18] -Total loo_error 1.3151298711448233e+18 -iteration 175current difference of loo_error 188686476826368.0 - getting loo error of with lamda = 0.016180196772388925, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1664867658.938931 -error 2.771784321503319e+18 - y tested = 5326600510.288329 -y predicted = 3984599829.919443 -error 1.8009658261105528e+18 - y tested = 5072151352.996373 -y predicted = 4457347302.296118 -error 3.779840207574422e+17 - y tested = 7650055845.407672 -y predicted = 5788214461.629057 -error 3.466453338350668e+18 - y tested = 5789616901.049658 -y predicted = 6051410693.247219 -error 6.853598963317989e+16 - y tested = 8224428196.629629 -y predicted = 7438311270.086417 -error 6.179798221977457e+17 - y tested = 4059018123.5159216 -y predicted = 5103314988.740107 -error 1.0905559427170596e+18 - y tested = 5947637003.818383 -y predicted = 4041665388.000906 -error 3.632727800301885e+18 - y tested = 997516184.7000968 -y predicted = 599929523.6512828 -error 1.5807515304394454e+17 - y tested = 6532788063.289651 -y predicted = 6737154716.654676 -error 4.17657290076205e+16 - y tested = 1980229389.772511 -y predicted = 3454183344.5200167 -error 2.172540260715812e+18 - y tested = 5035525633.343237 -y predicted = 5217937590.743658 -error 3.3274122202653056e+16 - y tested = 5026691733.102776 -y predicted = 5309733450.736595 -error 8.011261392110285e+16 - y tested = 1014996574.3865615 -y predicted = 1289390414.310009 -error 7.529197938793453e+16 - y tested = 7665772326.561901 -y predicted = 6753143696.262704 -error 8.328910168417888e+17 - y tested = 3029054692.61153 -y predicted = 4714430523.587489 -error 2.8404916916379054e+18 - y tested = 4062233415.93208 -y predicted = 4736473845.831264 -error 4.546001573106361e+17 - y tested = 5822958761.806049 -y predicted = 6275472346.532823 -error 2.047685443622746e+17 - y tested = 6611133148.221605 -y predicted = 6344523179.353382 -error 7.1080875499914936e+16 - y tested = 5377240292.736961 -y predicted = 3030675955.95444 -error 5.506364186659594e+18 -error squared vector [2.771784321503319e+18, 1.8009658261105528e+18, 3.779840207574422e+17, 3.466453338350668e+18, 6.853598963317989e+16, 6.179798221977457e+17, 1.0905559427170596e+18, 3.632727800301885e+18, 1.5807515304394454e+17, 4.17657290076205e+16, 2.172540260715812e+18, 3.3274122202653056e+16, 8.011261392110285e+16, 7.529197938793453e+16, 8.328910168417888e+17, 2.8404916916379054e+18, 4.546001573106361e+17, 2.047685443622746e+17, 7.1080875499914936e+16, 5.506364186659594e+18] -Total loo_error 1.3149121696081516e+18 -iteration 176current difference of loo_error -217701536671744.0 - getting loo error of with lamda = 0.011869189020334268, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '2002-2000' +--- Neighbour 0 in the list of neghbours, And at position 62 in the X datas point +-------------- + --- Configuration: 2002-2000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 29 in the X datas point +-------------- + --- Configuration: 3000-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 41 in the X datas point +-------------- + --- Configuration: 3300-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '2002-2000' +--- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 29 in the X datas point +-------------- + --- Configuration: 3000-3000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 41 in the X datas point +-------------- + --- Configuration: 3300-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 62 in the X datas point +-------------- + --- Configuration: 2002-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 51 in the X datas point +-------------- + --- Configuration: 2000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6539495281.754154 + --- Energy: 42.61363347008094 + --- Workload: 278672000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (36.93355197432356 mAh) it is NOT far from the median. +--- Median :36.93355197432356, the gap is : 10 +--- So No we don't romove this configuration '2002-2000' + --- remove_aberrant_points: The value [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0] +--- Computing the list of the 10 first neighbours of '0001-0200' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1589061645.1702993 -error 2.5251169118864947e+18 - y tested = 5326600510.288329 -y predicted = 3997313731.0767956 -error 1.7670033413865723e+18 - y tested = 5072151352.996373 -y predicted = 4357396561.280575 -error 5.1087441228069434e+17 - y tested = 7650055845.407672 -y predicted = 5894312958.174801 -error 3.082633086068818e+18 - y tested = 5789616901.049658 -y predicted = 6080199728.834664 -error 8.443837980353075e+16 - y tested = 8224428196.629629 -y predicted = 7540919563.35669 -error 4.6718405175864064e+17 - y tested = 4059018123.5159216 -y predicted = 5088429581.084134 -error 1.0596879489727118e+18 - y tested = 5947637003.818383 -y predicted = 4068505685.9339595 -error 3.5311345098540513e+18 - y tested = 997516184.7000968 -y predicted = 496401786.4221612 -error 2.511156401614575e+17 - y tested = 6532788063.289651 -y predicted = 6630008544.8945875 -error 9451822043495816.0 - y tested = 1980229389.772511 -y predicted = 3531899124.1688824 -error 2.4076789646417055e+18 - y tested = 5035525633.343237 -y predicted = 5171399961.858467 -error 1.8461833149464692e+16 - y tested = 5026691733.102776 -y predicted = 5316251513.251342 -error 8.384486627968602e+16 - y tested = 1014996574.3865615 -y predicted = 1199784110.2656114 -error 3.414643341625115e+16 - y tested = 7665772326.561901 -y predicted = 6824542874.638494 -error 7.076669907833567e+17 - y tested = 3029054692.61153 -y predicted = 4808414624.410948 -error 3.1661217668932296e+18 - y tested = 4062233415.93208 -y predicted = 4873903864.095521 -error 6.588089164218414e+17 - y tested = 5822958761.806049 -y predicted = 6385354344.771374 -error 3.162887917389071e+17 - y tested = 6611133148.221605 -y predicted = 6345962959.089495 -error 7.0315229204359304e+16 - y tested = 5377240292.736961 -y predicted = 3023369949.808721 -error 5.540705591317112e+18 -error squared vector [2.5251169118864947e+18, 1.7670033413865723e+18, 5.1087441228069434e+17, 3.082633086068818e+18, 8.443837980353075e+16, 4.6718405175864064e+17, 1.0596879489727118e+18, 3.5311345098540513e+18, 2.511156401614575e+17, 9451822043495816.0, 2.4076789646417055e+18, 1.8461833149464692e+16, 8.384486627968602e+16, 3.414643341625115e+16, 7.076669907833567e+17, 3.1661217668932296e+18, 6.588089164218414e+17, 3.162887917389071e+17, 7.0315229204359304e+16, 5.540705591317112e+18] -Total loo_error 1.314633974403119e+18 -iteration 177current difference of loo_error 278195205032448.0 - getting loo error of with lamda = 0.016049560173841813, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1662646840.1765358 -error 2.7643945148719114e+18 - y tested = 5326600510.288329 -y predicted = 3984985070.8875756 -error 1.7999319872384768e+18 - y tested = 5072151352.996373 -y predicted = 4454656823.7276 -error 3.812994936768637e+17 - y tested = 7650055845.407672 -y predicted = 5791279167.617349 -error 3.4550507378972314e+18 - y tested = 5789616901.049658 -y predicted = 6051962097.246218 -error 6.882500196741151e+16 - y tested = 8224428196.629629 -y predicted = 7441263765.33937 -error 6.133465264381953e+17 - y tested = 4059018123.5159216 -y predicted = 5102897039.632606 -error 1.0896831915129428e+18 - y tested = 5947637003.818383 -y predicted = 4042584890.439073 -error 3.629223554690976e+18 - y tested = 997516184.7000968 -y predicted = 596963414.4459296 -error 1.6044252175828765e+17 - y tested = 6532788063.289651 -y predicted = 6734587878.902272 -error 4.072316558128796e+16 - y tested = 1980229389.772511 -y predicted = 3456173435.8185368 -error 2.178410827058713e+18 - y tested = 5035525633.343237 -y predicted = 5216803159.564286 -error 3.286154151282322e+16 - y tested = 5026691733.102776 -y predicted = 5309899317.816597 -error 8.020653603943634e+16 - y tested = 1014996574.3865615 -y predicted = 1286842864.0449371 -error 7.390040520102546e+16 - y tested = 7665772326.561901 -y predicted = 6755152028.760976 -error 8.292293267670458e+17 - y tested = 3029054692.61153 -y predicted = 4716937804.793021 -error 2.848949400387477e+18 - y tested = 4062233415.93208 -y predicted = 4740087099.699055 -error 4.5948561659645805e+17 - y tested = 5822958761.806049 -y predicted = 6278105774.24139 -error 2.0715880292881635e+17 - y tested = 6611133148.221605 -y predicted = 6344558001.603441 -error 7.106230879449566e+16 - y tested = 5377240292.736961 -y predicted = 3030590095.7434487 -error 5.506767147049691e+18 -error squared vector [2.7643945148719114e+18, 1.7999319872384768e+18, 3.812994936768637e+17, 3.4550507378972314e+18, 6.882500196741151e+16, 6.133465264381953e+17, 1.0896831915129428e+18, 3.629223554690976e+18, 1.6044252175828765e+17, 4.072316558128796e+16, 2.178410827058713e+18, 3.286154151282322e+16, 8.020653603943634e+16, 7.390040520102546e+16, 8.292293267670458e+17, 2.848949400387477e+18, 4.5948561659645805e+17, 2.0715880292881635e+17, 7.106230879449566e+16, 5.506767147049691e+18] -Total loo_error 1.3145476303984783e+18 -iteration 178current difference of loo_error -86344004640768.0 - getting loo error of with lamda = 0.01199586693407692, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1591366645.6904993 -error 2.5324478007510036e+18 - y tested = 5326600510.288329 -y predicted = 3996942036.873703 -error 1.767991655923314e+18 - y tested = 5072151352.996373 -y predicted = 4360728141.775713 -error 5.061229854635161e+17 - y tested = 7650055845.407672 -y predicted = 5891050008.626326 -error 3.0941015338308444e+18 - y tested = 5789616901.049658 -y predicted = 6078959535.589484 -error 8.371916016244754e+16 - y tested = 8224428196.629629 -y predicted = 7537739893.800456 -error 4.715408252424101e+17 - y tested = 4059018123.5159216 -y predicted = 5088899543.745833 -error 1.0606557397347802e+18 - y tested = 5947637003.818383 -y predicted = 4067854451.9500756 -error 3.5335824423085266e+18 - y tested = 997516184.7000968 -y predicted = 499628160.32051873 -error 2.4789248482059936e+17 - y tested = 6532788063.289651 -y predicted = 6633970615.891011 -error 1.0237908950927048e+16 - y tested = 1980229389.772511 -y predicted = 3529213560.0053 -error 2.399351959631762e+18 - y tested = 5035525633.343237 -y predicted = 5173089862.023239 -error 1.8923917012323944e+16 - y tested = 5026691733.102776 -y predicted = 5316018347.172802 -error 8.3709889609226e+16 - y tested = 1014996574.3865615 -y predicted = 1202595940.6891851 -error 3.519352223714596e+16 - y tested = 7665772326.561901 -y predicted = 6822285765.696454 -error 7.114695783606195e+17 - y tested = 3029054692.61153 -y predicted = 4805257347.31514 -error 3.1548958705761516e+18 - y tested = 4062233415.93208 -y predicted = 4869231020.230106 -error 6.512451333427543e+17 - y tested = 5822958761.806049 -y predicted = 6381291486.05989 -error 3.11735430972715e+17 - y tested = 6611133148.221605 -y predicted = 6345914242.082792 -error 7.034106817346851e+16 - y tested = 5377240292.736961 -y predicted = 3023752357.605172 -error 5.538905460810893e+18 -error squared vector [2.5324478007510036e+18, 1.767991655923314e+18, 5.061229854635161e+17, 3.0941015338308444e+18, 8.371916016244754e+16, 4.715408252424101e+17, 1.0606557397347802e+18, 3.5335824423085266e+18, 2.4789248482059936e+17, 1.0237908950927048e+16, 2.399351959631762e+18, 1.8923917012323944e+16, 8.3709889609226e+16, 3.519352223714596e+16, 7.114695783606195e+17, 3.1548958705761516e+18, 6.512451333427543e+17, 3.11735430972715e+17, 7.034106817346851e+16, 5.538905460810893e+18] -Total loo_error 1.3142032183957714e+18 -iteration 179current difference of loo_error 344412002706944.0 - getting loo error of with lamda = 0.01592672098475803, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1660554389.6793637 -error 2.757440880806645e+18 - y tested = 5326600510.288329 -y predicted = 3985347419.410628 -error 1.7989598537889871e+18 - y tested = 5072151352.996373 -y predicted = 4452110809.109503 -error 3.84450276063526e+17 - y tested = 7650055845.407672 -y predicted = 5794169412.992696 -error 3.444314450021988e+18 - y tested = 5789616901.049658 -y predicted = 6052494976.168563 -error 6.9104882378220696e+16 - y tested = 8224428196.629629 -y predicted = 7444048366.970398 -error 6.089926785389706e+17 - y tested = 4059018123.5159216 -y predicted = 5102502206.64348 -error 1.0888590317405618e+18 - y tested = 5947637003.818383 -y predicted = 4043445119.243682 -error 3.6259467332801526e+18 - y tested = 997516184.7000968 -y predicted = 594165523.155158 -error 1.6269175616873978e+17 - y tested = 6532788063.289651 -y predicted = 6732142807.596956 -error 3.974231407783109e+16 - y tested = 1980229389.772511 -y predicted = 3458062979.682874 -error 2.1839921194673516e+18 - y tested = 5035525633.343237 -y predicted = 5215723381.738149 -error 3.2471228526595924e+16 - y tested = 5026691733.102776 -y predicted = 5310056584.037271 -error 8.029563874512856e+16 - y tested = 1014996574.3865615 -y predicted = 1284438673.3544755 -error 7.259904469623515e+16 - y tested = 7665772326.561901 -y predicted = 6757048813.240932 -error 8.257784236624046e+17 - y tested = 3029054692.61153 -y predicted = 4719311709.482606 -error 2.856968783081909e+18 - y tested = 4062233415.93208 -y predicted = 4743511249.172619 -error 4.641394860649238e+17 - y tested = 5822958761.806049 -y predicted = 6280614133.734037 -error 2.094484394545451e+17 - y tested = 6611133148.221605 -y predicted = 6344591290.4183035 -error 7.104456196123556e+16 - y tested = 5377240292.736961 -y predicted = 3030503366.7407885 -error 5.507174199833968e+18 -error squared vector [2.757440880806645e+18, 1.7989598537889871e+18, 3.84450276063526e+17, 3.444314450021988e+18, 6.9104882378220696e+16, 6.089926785389706e+17, 1.0888590317405618e+18, 3.6259467332801526e+18, 1.6269175616873978e+17, 3.974231407783109e+16, 2.1839921194673516e+18, 3.2471228526595924e+16, 8.029563874512856e+16, 7.259904469623515e+16, 8.257784236624046e+17, 2.856968783081909e+18, 4.641394860649238e+17, 2.094484394545451e+17, 7.104456196123556e+16, 5.507174199833968e+18] -Total loo_error 1.3142207391179958e+18 -iteration 180current difference of loo_error 17520722224384.0 - getting loo error of with lamda = 0.015807604195343453, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1658521458.7195547 -error 2.7506934287568195e+18 - y tested = 5326600510.288329 -y predicted = 3985698874.4405327 -error 1.7980171970192965e+18 - y tested = 5072151352.996373 -y predicted = 4449626801.938571 -error 3.875368166697182e+17 - y tested = 7650055845.407672 -y predicted = 5796979928.906462 -error 3.4338903523168e+18 - y tested = 5789616901.049658 -y predicted = 6053025291.778116 -error 6.938398030615621e+16 - y tested = 8224428196.629629 -y predicted = 7446756345.258168 -error 6.047735084155156e+17 - y tested = 4059018123.5159216 -y predicted = 5102117637.174298 -error 1.088056595394342e+18 - y tested = 5947637003.818383 -y predicted = 4044275101.0266056 -error 3.622786532999136e+18 - y tested = 997516184.7000968 -y predicted = 591444180.7989434 -error 1.6489447235229837e+17 - y tested = 6532788063.289651 -y predicted = 6729742220.338433 -error 3.8790939978796424e+16 - y tested = 1980229389.772511 -y predicted = 3459912343.131784 -error 2.1894616424620204e+18 - y tested = 5035525633.343237 -y predicted = 5214664049.4159775 -error 3.209057211305031e+16 - y tested = 5026691733.102776 -y predicted = 5310210320.855905 -error 8.038278960152872e+16 - y tested = 1014996574.3865615 -y predicted = 1282099217.9320743 -error 7.134382218900127e+16 - y tested = 7665772326.561901 -y predicted = 6758895871.421446 -error 8.224249048881181e+17 - y tested = 3029054692.61153 -y predicted = 4721628965.465508 -error 2.8648076691271747e+18 - y tested = 4062233415.93208 -y predicted = 4746856568.8241205 -error 4.687088614758386e+17 - y tested = 5822958761.806049 -y predicted = 6283076734.653446 -error 2.1170854893719782e+17 - y tested = 6611133148.221605 -y predicted = 6344624076.196799 -error 7.102708547152325e+16 - y tested = 5377240292.736961 -y predicted = 3030413598.3365397 -error 5.50759553355041e+18 -error squared vector [2.7506934287568195e+18, 1.7980171970192965e+18, 3.875368166697182e+17, 3.4338903523168e+18, 6.938398030615621e+16, 6.047735084155156e+17, 1.088056595394342e+18, 3.622786532999136e+18, 1.6489447235229837e+17, 3.8790939978796424e+16, 2.1894616424620204e+18, 3.209057211305031e+16, 8.038278960152872e+16, 7.134382218900127e+16, 8.224249048881181e+17, 2.8648076691271747e+18, 4.687088614758386e+17, 2.1170854893719782e+17, 7.102708547152325e+16, 5.50759553355041e+18] -Total loo_error 1.313918762701237e+18 -iteration 181current difference of loo_error -284455694534400.0 - getting loo error of with lamda = 0.01211137412381227, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1593464077.9135447 -error 2.5391277673352863e+18 - y tested = 5326600510.288329 -y predicted = 3996602905.150242 -error 1.7688936296730476e+18 - y tested = 5072151352.996373 -y predicted = 4363740802.908424 -error 5.018455074759102e+17 - y tested = 7650055845.407672 -y predicted = 5888082230.331452 -error 3.104551020224762e+18 - y tested = 5789616901.049658 -y predicted = 6077854946.429992 -error 8.308117080467542e+16 - y tested = 8224428196.629629 -y predicted = 7534850084.65875 -error 4.755179725093229e+17 - y tested = 4059018123.5159216 -y predicted = 5089326368.367592 -error 1.0615350794093293e+18 - y tested = 5947637003.818383 -y predicted = 4067251179.217835 -error 3.5358508493586836e+18 - y tested = 997516184.7000968 -y predicted = 502559199.1361692 -error 2.4498241755853008e+17 - y tested = 6532788063.289651 -y predicted = 6637530345.39112 -error 1.0970945659823722e+16 - y tested = 1980229389.772511 -y predicted = 3526788747.694585 -error 2.3918458475763374e+18 - y tested = 5035525633.343237 -y predicted = 5174610230.3079605 -error 1.9344525112839596e+16 - y tested = 5026691733.102776 -y predicted = 5315808668.950499 -error 8.358860259397638e+16 - y tested = 1014996574.3865615 -y predicted = 1205149488.1823215 -error 3.615813062501774e+16 - y tested = 7665772326.561901 -y predicted = 6820236469.270706 -error 7.14930885965156e+17 - y tested = 3029054692.61153 -y predicted = 4802403524.63651 -error 3.144766080044361e+18 - y tested = 4062233415.93208 -y predicted = 4865010051.935739 -error 6.444503273133509e+17 - y tested = 5822958761.806049 -y predicted = 6377641177.336031 -error 3.0767258209817517e+17 - y tested = 6611133148.221605 -y predicted = 6345869940.624775 -error 7.036456930455913e+16 - y tested = 5377240292.736961 -y predicted = 3024089848.1136055 -error 5.537317015031097e+18 -error squared vector [2.5391277673352863e+18, 1.7688936296730476e+18, 5.018455074759102e+17, 3.104551020224762e+18, 8.308117080467542e+16, 4.755179725093229e+17, 1.0615350794093293e+18, 3.5358508493586836e+18, 2.4498241755853008e+17, 1.0970945659823722e+16, 2.3918458475763374e+18, 1.9344525112839596e+16, 8.358860259397638e+16, 3.615813062501774e+16, 7.14930885965156e+17, 3.144766080044361e+18, 6.444503273133509e+17, 3.0767258209817517e+17, 7.036456930455913e+16, 5.537317015031097e+18] -Total loo_error 1.313839746283712e+18 -iteration 182current difference of loo_error 79016417524992.0 - getting loo error of with lamda = 0.015695597223478873, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1656606366.2192748 -error 2.744344652322129e+18 - y tested = 5326600510.288329 -y predicted = 3986029423.4033823 -error 1.7971308389918876e+18 - y tested = 5072151352.996373 -y predicted = 4447277265.501208 -error 3.9046762522291494e+17 - y tested = 7650055845.407672 -y predicted = 5799629760.741988 -error 3.4240766948111724e+18 - y tested = 5789616901.049658 -y predicted = 6053536389.668068 -error 6.96534964726031e+16 - y tested = 8224428196.629629 -y predicted = 7449309697.377022 -error 6.008086878836142e+17 - y tested = 4059018123.5159216 -y predicted = 5101754488.074038 -error 1.0872991259718761e+18 - y tested = 5947637003.818383 -y predicted = 4045051688.1770434 -error 3.6198308832940564e+18 - y tested = 997516184.7000968 -y predicted = 588877811.9730694 -error 1.66985319664993e+17 - y tested = 6532788063.289651 -y predicted = 6727457882.509079 -error 3.78963385149248e+16 - y tested = 1980229389.772511 -y predicted = 3461666833.4675922 -error 2.194656899581817e+18 - y tested = 5035525633.343237 -y predicted = 5213656756.979806 -error 3.173069720802664e+16 - y tested = 5026691733.102776 -y predicted = 5310356021.26011 -error 8.04654283758072e+16 - y tested = 1014996574.3865615 -y predicted = 1279892048.30469 -error 7.016961210230983e+16 - y tested = 7665772326.561901 -y predicted = 6760639685.244935 -error 8.192650983774276e+17 - y tested = 3029054692.61153 -y predicted = 4723821833.811977 -error 2.8722356628927375e+18 - y tested = 4062233415.93208 -y predicted = 4750024908.762724 -error 4.73057137610206e+17 - y tested = 5822958761.806049 -y predicted = 6285419980.170402 -error 2.138703784910411e+17 - y tested = 6611133148.221605 -y predicted = 6344655360.013882 -error 7.101041160808041e+16 - y tested = 5377240292.736961 -y predicted = 3030323992.776995 -error 5.508016119017778e+18 -error squared vector [2.744344652322129e+18, 1.7971308389918876e+18, 3.9046762522291494e+17, 3.4240766948111724e+18, 6.96534964726031e+16, 6.008086878836142e+17, 1.0872991259718761e+18, 3.6198308832940564e+18, 1.66985319664993e+17, 3.78963385149248e+16, 2.194656899581817e+18, 3.173069720802664e+16, 8.04654283758072e+16, 7.016961210230983e+16, 8.192650983774276e+17, 2.8722356628927375e+18, 4.73057137610206e+17, 2.138703784910411e+17, 7.101041160808041e+16, 5.508016119017778e+18] -Total loo_error 1.31364855542077e+18 -iteration 183current difference of loo_error -191190862941952.0 - getting loo error of with lamda = 0.01221998694501429, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1595432590.8219006 -error 2.545405151590777e+18 - y tested = 5326600510.288329 -y predicted = 3996283838.349362 -error 1.7697424476387697e+18 - y tested = 5072151352.996373 -y predicted = 4366552172.803425 -error 4.978702030889608e+17 - y tested = 7650055845.407672 -y predicted = 5885298101.092529 -error 3.1143698961202703e+18 - y tested = 5789616901.049658 -y predicted = 6076838615.928586 -error 8.249631349799232e+16 - y tested = 8224428196.629629 -y predicted = 7532140930.774812 -error 4.792616584647386e+17 - y tested = 4059018123.5159216 -y predicted = 5089726234.866219 -error 1.0623592108032961e+18 - y tested = 5947637003.818383 -y predicted = 4066675878.112556 -error 3.538014756416533e+18 - y tested = 997516184.7000968 -y predicted = 505305964.6844302 -error 2.4227090068787098e+17 - y tested = 6532788063.289651 -y predicted = 6640832446.32993 -error 1.1673588706554612e+16 - y tested = 1980229389.772511 -y predicted = 3524529276.357185 -error 2.3848621397054367e+18 - y tested = 5035525633.343237 -y predicted = 5176022318.550389 -error 1.9739318554197668e+16 - y tested = 5026691733.102776 -y predicted = 5315613984.05331 -error 8.347606709432382e+16 - y tested = 1014996574.3865615 -y predicted = 1207541701.4053404 -error 3.707362593867771e+16 - y tested = 7665772326.561901 -y predicted = 6818317106.006075 -error 7.18180350847324e+17 - y tested = 3029054692.61153 -y predicted = 4799741450.095802 -error 3.135331593130167e+18 - y tested = 4062233415.93208 -y predicted = 4861075097.513469 -error 6.381480322317812e+17 - y tested = 5822958761.806049 -y predicted = 6374255035.214149 -error 3.039275810736587e+17 - y tested = 6611133148.221605 -y predicted = 6345828414.841288 -error 7.038660155400146e+16 - y tested = 5377240292.736961 -y predicted = 3024397667.1408634 -error 5.53586842082194e+18 -error squared vector [2.545405151590777e+18, 1.7697424476387697e+18, 4.978702030889608e+17, 3.1143698961202703e+18, 8.249631349799232e+16, 4.792616584647386e+17, 1.0623592108032961e+18, 3.538014756416533e+18, 2.4227090068787098e+17, 1.1673588706554612e+16, 2.3848621397054367e+18, 1.9739318554197668e+16, 8.347606709432382e+16, 3.707362593867771e+16, 7.18180350847324e+17, 3.135331593130167e+18, 6.381480322317812e+17, 3.039275810736587e+17, 7.038660155400146e+16, 5.53586842082194e+18] -Total loo_error 1.3135228928983634e+18 -iteration 184current difference of loo_error 125662522406656.0 - getting loo error of with lamda = 0.015590275699889036, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1654802475.4722495 -error 2.7383712325532846e+18 - y tested = 5326600510.288329 -y predicted = 3986340300.363891 -error 1.7962974303066985e+18 - y tested = 5072151352.996373 -y predicted = 4445055606.957907 -error 3.932490746995408e+17 - y tested = 7650055845.407672 -y predicted = 5802127692.770493 -error 3.4148384573090586e+18 - y tested = 5789616901.049658 -y predicted = 6054028177.728508 -error 6.991332323493946e+16 - y tested = 8224428196.629629 -y predicted = 7451716873.761743 -error 5.970827884882392e+17 - y tested = 4059018123.5159216 -y predicted = 5101411653.699117 -error 1.0865842717677837e+18 - y tested = 5947637003.818383 -y predicted = 4045778427.592101 -error 3.617066043965461e+18 - y tested = 997516184.7000968 -y predicted = 586457979.1537155 -error 1.689688483470111e+17 - y tested = 6532788063.289651 -y predicted = 6725285607.685414 -error 3.7055304598398904e+16 - y tested = 1980229389.772511 -y predicted = 3463330462.565137 -error 2.1995887921186378e+18 - y tested = 5035525633.343237 -y predicted = 5212699553.827298 -error 3.1390598099692456e+16 - y tested = 5026691733.102776 -y predicted = 5310494058.275349 -error 8.054375977335891e+16 - y tested = 1014996574.3865615 -y predicted = 1277810070.293928 -error 6.90709336310513e+16 - y tested = 7665772326.561901 -y predicted = 6762285639.332059 -error 8.162881940015547e+17 - y tested = 3029054692.61153 -y predicted = 4725896291.446374 -error 2.87927141153639e+18 - y tested = 4062233415.93208 -y predicted = 4753024461.546812 -error 4.771922687014951e+17 - y tested = 5822958761.806049 -y predicted = 6287648188.114492 -error 2.1593626292286995e+17 - y tested = 6611133148.221605 -y predicted = 6344685179.139934 -error 7.099452022774749e+16 - y tested = 5377240292.736961 -y predicted = 3030235052.188743 -error 5.5084335991608e+18 -error squared vector [2.7383712325532846e+18, 1.7962974303066985e+18, 3.932490746995408e+17, 3.4148384573090586e+18, 6.991332323493946e+16, 5.970827884882392e+17, 1.0865842717677837e+18, 3.617066043965461e+18, 1.689688483470111e+17, 3.7055304598398904e+16, 2.1995887921186378e+18, 3.1390598099692456e+16, 8.054375977335891e+16, 6.90709336310513e+16, 8.162881940015547e+17, 2.87927141153639e+18, 4.771922687014951e+17, 2.1593626292286995e+17, 7.099452022774749e+16, 5.5084335991608e+18] -Total loo_error 1.3134068557722004e+18 -iteration 185current difference of loo_error -116037126162944.0 - getting loo error of with lamda = 0.012322116907283222, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1597280327.7480102 -error 2.5513044451445775e+18 - y tested = 5326600510.288329 -y predicted = 3995983666.9961886 -error 1.7705411836527409e+18 - y tested = 5072151352.996373 -y predicted = 4369177071.762313 -error 4.941728400765437e+17 - y tested = 7650055845.407672 -y predicted = 5882685933.397991 -error 3.1235964058771067e+18 - y tested = 5789616901.049658 -y predicted = 6075902285.399157 -error 8.195932129214022e+16 - y tested = 8224428196.629629 -y predicted = 7529600645.524162 -error 4.8278532577522016e+17 - y tested = 4059018123.5159216 -y predicted = 5090100919.33596 -error 1.0631317318360678e+18 - y tested = 5947637003.818383 -y predicted = 4066127970.8853874 -error 3.540076241008457e+18 - y tested = 997516184.7000968 -y predicted = 507880612.72376794 -error 2.3974299334458678e+17 - y tested = 6532788063.289651 -y predicted = 6643898267.128411 -error 1.234547739709088e+16 - y tested = 1980229389.772511 -y predicted = 3522422712.936822 -error 2.378360246012581e+18 - y tested = 5035525633.343237 -y predicted = 5177334874.833602 -error 2.0109860972072668e+16 - y tested = 5026691733.102776 -y predicted = 5315433055.672958 -error 8.337155135957835e+16 - y tested = 1014996574.3865615 -y predicted = 1209783300.439084 -error 3.794186864626046e+16 - y tested = 7665772326.561901 -y predicted = 6816519019.9559 -error 7.212311787812261e+17 - y tested = 3029054692.61153 -y predicted = 4797256895.39197 -error 3.1265390299176e+18 - y tested = 4062233415.93208 -y predicted = 4857404680.1282215 -error 6.322973394032902e+17 - y tested = 5822958761.806049 -y predicted = 6371111175.211513 -error 3.0047106832223386e+17 - y tested = 6611133148.221605 -y predicted = 6345789504.939863 -error 7.04072490300284e+16 - y tested = 5377240292.736961 -y predicted = 3024678861.3462896 -error 5.534545288466927e+18 -error squared vector [2.5513044451445775e+18, 1.7705411836527409e+18, 4.941728400765437e+17, 3.1235964058771067e+18, 8.195932129214022e+16, 4.8278532577522016e+17, 1.0631317318360678e+18, 3.540076241008457e+18, 2.3974299334458678e+17, 1.234547739709088e+16, 2.378360246012581e+18, 2.0109860972072668e+16, 8.337155135957835e+16, 3.794186864626046e+16, 7.212311787812261e+17, 3.1265390299176e+18, 6.322973394032902e+17, 3.0047106832223386e+17, 7.04072490300284e+16, 5.534545288466927e+18] -Total loo_error 1.3132465323158164e+18 -iteration 186current difference of loo_error 160323456384000.0 - getting loo error of with lamda = 0.015491240584961588, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1653103501.3384647 -error 2.7327511858619745e+18 - y tested = 5326600510.288329 -y predicted = 3986632668.1790953 -error 1.7955138178868767e+18 - y tested = 5072151352.996373 -y predicted = 4442955485.813447 -error 3.958874392800745e+17 - y tested = 7650055845.407672 -y predicted = 5804482075.877462 -error 3.406142538777947e+18 - y tested = 5789616901.049658 -y predicted = 6054500682.642146 -error 7.016341775073704e+16 - y tested = 8224428196.629629 -y predicted = 7453985905.573041 -error 5.935813238485245e+17 - y tested = 4059018123.5159216 -y predicted = 5101088075.266124 -error 1.0859097843406687e+18 - y tested = 5947637003.818383 -y predicted = 4046458625.8798676 -error 3.6144792247409254e+18 - y tested = 997516184.7000968 -y predicted = 584176662.3654712 -error 1.7084956072381645e+17 - y tested = 6532788063.289651 -y predicted = 6723221197.778341 -error 3.626477871118764e+16 - y tested = 1980229389.772511 -y predicted = 3464907170.837318 -error 2.2042681135875187e+18 - y tested = 5035525633.343237 -y predicted = 5211790493.389623 -error 3.106930088717196e+16 - y tested = 5026691733.102776 -y predicted = 5310624791.271919 -error 8.061798152128232e+16 - y tested = 1014996574.3865615 -y predicted = 1275846528.2890487 -error 6.804269845092967e+16 - y tested = 7665772326.561901 -y predicted = 6763838881.376464 -error 8.134839395440721e+17 - y tested = 3029054692.61153 -y predicted = 4727858101.027016 -error 2.885933020444072e+18 - y tested = 4062233415.93208 -y predicted = 4755863165.884594 -error 4.811222300191873e+17 - y tested = 5822958761.806049 -y predicted = 6289765683.968547 -error 2.1790870257882403e+17 - y tested = 6611133148.221605 -y predicted = 6344713574.398462 -error 7.0979389316105144e+16 - y tested = 5377240292.736961 -y predicted = 3030147203.008395 -error 5.508845971851588e+18 -error squared vector [2.7327511858619745e+18, 1.7955138178868767e+18, 3.958874392800745e+17, 3.406142538777947e+18, 7.016341775073704e+16, 5.935813238485245e+17, 1.0859097843406687e+18, 3.6144792247409254e+18, 1.7084956072381645e+17, 3.626477871118764e+16, 2.2042681135875187e+18, 3.106930088717196e+16, 8.061798152128232e+16, 6.804269845092967e+16, 8.134839395440721e+17, 2.885933020444072e+18, 4.811222300191873e+17, 2.1790870257882403e+17, 7.0979389316105144e+16, 5.508845971851588e+18] -Total loo_error 1.3131907210061742e+18 -iteration 187current difference of loo_error -55811309642240.0 - getting loo error of with lamda = 0.01241815095812196, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1599014890.814432 -error 2.5568486207797873e+18 - y tested = 5326600510.288329 -y predicted = 3995701286.8171678 -error 1.7712927430361403e+18 - y tested = 5072151352.996373 -y predicted = 4371629050.275063 -error 4.9073149660996755e+17 - y tested = 7650055845.407672 -y predicted = 5880234814.840025 -error 3.132266480239528e+18 - y tested = 5789616901.049658 -y predicted = 6075038612.289727 -error 8.146555324720955e+16 - y tested = 8224428196.629629 -y predicted = 7527218272.932309 -error 4.861016777020228e+17 - y tested = 4059018123.5159216 -y predicted = 5090452073.728173 -error 1.0638559936504497e+18 - y tested = 5947637003.818383 -y predicted = 4065606757.750313 -error 3.542037847115042e+18 - y tested = 997516184.7000968 -y predicted = 510294425.5271087 -error 2.3738504261162122e+17 - y tested = 6532788063.289651 -y predicted = 6646747050.308853 -error 1.2986650722442702e+16 - y tested = 1980229389.772511 -y predicted = 3520457694.0348167 -error 2.3723032292507377e+18 - y tested = 5035525633.343237 -y predicted = 5178555812.840194 -error 2.045763224693169e+16 - y tested = 5026691733.102776 -y predicted = 5315264770.87958 -error 8.327439813173274e+16 - y tested = 1014996574.3865615 -y predicted = 1211884229.4169142 -error 3.8764748703351176e+16 - y tested = 7665772326.561901 -y predicted = 6814834178.515206 -error 7.240957318011386e+17 - y tested = 3029054692.61153 -y predicted = 4794936860.701961 -error 3.11833983157976e+18 - y tested = 4062233415.93208 -y predicted = 4853979200.748828 -error 6.268613877750885e+17 - y tested = 5822958761.806049 -y predicted = 6368189870.013213 -error 2.9727696135681197e+17 - y tested = 6611133148.221605 -y predicted = 6345753055.3947115 -error 7.0426593668810776e+16 - y tested = 5377240292.736961 -y predicted = 3024936115.44333 -error 5.533334942513069e+18 -error squared vector [2.5568486207797873e+18, 1.7712927430361403e+18, 4.9073149660996755e+17, 3.132266480239528e+18, 8.146555324720955e+16, 4.861016777020228e+17, 1.0638559936504497e+18, 3.542037847115042e+18, 2.3738504261162122e+17, 1.2986650722442702e+16, 2.3723032292507377e+18, 2.045763224693169e+16, 8.327439813173274e+16, 3.8764748703351176e+16, 7.240957318011386e+17, 3.11833983157976e+18, 6.268613877750885e+17, 2.9727696135681197e+17, 7.0426593668810776e+16, 5.533334942513069e+18] -Total loo_error 1.313005378137082e+18 -iteration 188current difference of loo_error 185342869092096.0 - getting loo error of with lamda = 0.015398116656875538, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1651503494.203758 -error 2.7274637910919716e+18 - y tested = 5326600510.288329 -y predicted = 3986907622.3345013 -error 1.7947770340340675e+18 - y tested = 5072151352.996373 -y predicted = 4440970811.573967 -error 3.9838887587028186e+17 - y tested = 7650055845.407672 -y predicted = 5806700843.399706 -error 3.3979576634277883e+18 - y tested = 5789616901.049658 -y predicted = 6054954034.042254 -error 7.040379414473091e+16 - y tested = 8224428196.629629 -y predicted = 7456124420.644015 -error 5.902906921937523e+17 - y tested = 4059018123.5159216 -y predicted = 5100782740.105608 -error 1.0852735163782563e+18 - y tested = 5947637003.818383 -y predicted = 4047095365.1018467 -error 3.612058520495338e+18 - y tested = 997516184.7000968 -y predicted = 582026242.9930823 -error 1.7263189165969837e+17 - y tested = 6532788063.289651 -y predicted = 6721260465.696494 -error 3.5521846469007028e+16 - y tested = 1980229389.772511 -y predicted = 3466400815.6679745 -error 2.2087055071481551e+18 - y tested = 5035525633.343237 -y predicted = 5210927642.736936 -error 3.0765864899347164e+16 - y tested = 5026691733.102776 -y predicted = 5310748566.308688 -error 8.068828449097165e+16 - y tested = 1014996574.3865615 -y predicted = 1273994993.6099298 -error 6.7080181160203624e+16 - y tested = 7665772326.561901 -y predicted = 6765304327.446581 -error 8.108426174307483e+17 - y tested = 3029054692.61153 -y predicted = 4729712810.942348 -error 2.8922380354445174e+18 - y tested = 4062233415.93208 -y predicted = 4758548700.41356 -error 4.848549754025246e+17 - y tested = 5822958761.806049 -y predicted = 6291776778.385439 -error 2.197903326694328e+17 - y tested = 6611133148.221605 -y predicted = 6344740589.37454 -error 7.096499540908698e+16 - y tested = 5377240292.736961 -y predicted = 3030060803.8240514 -error 5.509251553173469e+18 -error squared vector [2.7274637910919716e+18, 1.7947770340340675e+18, 3.9838887587028186e+17, 3.3979576634277883e+18, 7.040379414473091e+16, 5.902906921937523e+17, 1.0852735163782563e+18, 3.612058520495338e+18, 1.7263189165969837e+17, 3.5521846469007028e+16, 2.2087055071481551e+18, 3.0765864899347164e+16, 8.068828449097165e+16, 6.7080181160203624e+16, 8.108426174307483e+17, 2.8922380354445174e+18, 4.848549754025246e+17, 2.197903326694328e+17, 7.096499540908698e+16, 5.509251553173469e+18] -Total loo_error 1.3129974986496676e+18 -iteration 189current difference of loo_error -7879487414528.0 - getting loo error of with lamda = 0.01250845294899328, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0001-0200' +--- Neighbour 0 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [1.] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 60 in the X datas point +-------------- + --- Configuration: 0101-0200 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 13 in the X datas point +-------------- + --- Configuration: 0011-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7650055845.407672 + --- Energy: 43.82652071469574 + --- Workload: 335276000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 25 in the X datas point +-------------- + --- Configuration: 0000-3300 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5789616901.049658 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 56 in the X datas point +-------------- + --- Configuration: 1001-2220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0001-0200' +--- Neighbour 0 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 60 in the X datas point +-------------- + --- Configuration: 0101-0200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 25 in the X datas point +-------------- + --- Configuration: 0000-3300 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5789616901.049658 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 55 in the X datas point +-------------- + --- Configuration: 0000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5724131219.984087 + --- Energy: 42.51731520413714 + --- Workload: 243375000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 13 in the X datas point +-------------- + --- Configuration: 0011-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7650055845.407672 + --- Energy: 43.82652071469574 + --- Workload: 335276000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 56 in the X datas point +-------------- + --- Configuration: 1001-2220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 63 in the X datas point +-------------- + --- Configuration: 0001-0200 + --- Energy efficiency: 4385426351.149858 + --- Energy: 36.59285860316189 + --- Workload: 160475000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (36.59285860316189 mAh) it is NOT far from the median. +--- Median :36.59285860316189, the gap is : 10 +--- So No we don't romove this configuration '0001-0200' + --- remove_aberrant_points: The value [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0] +--- Computing the list of the 10 first neighbours of '0220-0020' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1600643380.271874 -error 2.562059230541397e+18 - y tested = 5326600510.288329 -y predicted = 3995435655.617914 -error 1.771999870309707e+18 - y tested = 5072151352.996373 -y predicted = 4373920521.170661 -error 4.87526294512026e+17 - y tested = 7650055845.407672 -y predicted = 5877934554.45374 -error 3.1404138698522296e+18 - y tested = 5789616901.049658 -y predicted = 6074241051.4564705 -error 8.101090699479992e+16 - y tested = 8224428196.629629 -y predicted = 7524983621.244243 -error 4.892227140360436e+17 - y tested = 4059018123.5159216 -y predicted = 5090781235.046993 -error 1.0645351183162787e+18 - y tested = 5947637003.818383 -y predicted = 4065111448.0572667 -error 3.5439024680937006e+18 - y tested = 997516184.7000968 -y predicted = 512557883.7364306 -error 2.351845536735659e+17 - y tested = 6532788063.289651 -y predicted = 6649396181.785195 -error 1.3597453299070932e+16 - y tested = 1980229389.772511 -y predicted = 3518623818.868696 -error 2.3666574194741775e+18 - y tested = 5035525633.343237 -y predicted = 5179692306.966192 -error 2.078402978350772e+16 - y tested = 5026691733.102776 -y predicted = 5315108125.376526 -error 8.318401533220581e+16 - y tested = 1014996574.3865615 -y predicted = 1213853720.2607598 -error 3.954416446523219e+16 - y tested = 7665772326.561901 -y predicted = 6813255122.649425 -error 7.267855829667471e+17 - y tested = 3029054692.61153 -y predicted = 4792769446.48586 -error 3.1106897330339886e+18 - y tested = 4062233415.93208 -y predicted = 4850780740.611486 -error 6.218068832590496e+17 - y tested = 5822958761.806049 -y predicted = 6365473294.521566 -error 2.943220182075358e+17 - y tested = 6611133148.221605 -y predicted = 6345718916.338263 -error 7.044471448622483e+16 - y tested = 5377240292.736961 -y predicted = 3025171800.9124646 -error 5.532226190233563e+18 -error squared vector [2.562059230541397e+18, 1.771999870309707e+18, 4.87526294512026e+17, 3.1404138698522296e+18, 8.101090699479992e+16, 4.892227140360436e+17, 1.0645351183162787e+18, 3.5439024680937006e+18, 2.351845536735659e+17, 1.3597453299070932e+16, 2.3666574194741775e+18, 2.078402978350772e+16, 8.318401533220581e+16, 3.954416446523219e+16, 7.267855829667471e+17, 3.1106897330339886e+18, 6.218068832590496e+17, 2.943220182075358e+17, 7.044471448622483e+16, 5.532226190233563e+18] -Total loo_error 1.3127948615435525e+18 -iteration 190current difference of loo_error 202637106115072.0 - getting loo error of with lamda = 0.015310551089970014, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1649996824.36022 -error 2.7224895201238113e+18 - y tested = 5326600510.288329 -y predicted = 3987166194.618826 -error 1.7940842859930304e+18 - y tested = 5072151352.996373 -y predicted = 4439095740.577077 -error 4.0075940841557024e+17 - y tested = 7650055845.407672 -y predicted = 5808791527.078984 -error 3.3902542899504067e+18 - y tested = 5789616901.049658 -y predicted = 6055388450.033145 -error 7.06345162490821e+16 - y tested = 8224428196.629629 -y predicted = 7458139659.40849 -error 5.871981222765129e+17 - y tested = 4059018123.5159216 -y predicted = 5100494680.751591 -error 1.084673419271462e+18 - y tested = 5947637003.818383 -y predicted = 4047691517.679547 -error 3.6097928502993393e+18 - y tested = 997516184.7000968 -y predicted = 579999487.7331141 -error 1.7432019224621926e+17 - y tested = 6532788063.289651 -y predicted = 6719399255.260676 -error 3.482373696884692e+16 - y tested = 1980229389.772511 -y predicted = 3467815161.819458 -error 2.2129114291965115e+18 - y tested = 5035525633.343237 -y predicted = 5210109090.918407 -error 3.0479383658901364e+16 - y tested = 5026691733.102776 -y predicted = 5310865716.441859 -error 8.075485280680181e+16 - y tested = 1014996574.3865615 -y predicted = 1272249352.7650223 -error 6.617899198343745e+16 - y tested = 7665772326.561901 -y predicted = 6766686667.838387 -error 8.08355021722296e+17 - y tested = 3029054692.61153 -y predicted = 4731465756.265628 -error 2.8982034296518774e+18 - y tested = 4062233415.93208 -y predicted = 4761088479.493144 -error 4.8839839986493914e+17 - y tested = 5822958761.806049 -y predicted = 6293685747.390405 -error 2.215838949573339e+17 - y tested = 6611133148.221605 -y predicted = 6344766269.717519 -error 7.0951313964010776e+16 - y tested = 5377240292.736961 -y predicted = 3029976152.6356554 -error 5.509648943405523e+18 -error squared vector [2.7224895201238113e+18, 1.7940842859930304e+18, 4.0075940841557024e+17, 3.3902542899504067e+18, 7.06345162490821e+16, 5.871981222765129e+17, 1.084673419271462e+18, 3.6097928502993393e+18, 1.7432019224621926e+17, 3.482373696884692e+16, 2.2129114291965115e+18, 3.0479383658901364e+16, 8.075485280680181e+16, 6.617899198343745e+16, 8.08355021722296e+17, 2.8982034296518774e+18, 4.8839839986493914e+17, 2.215838949573339e+17, 7.0951313964010776e+16, 5.509648943405523e+18] -Total loo_error 1.3128248001502956e+18 -iteration 191current difference of loo_error 29938606743040.0 - getting loo error of with lamda = 0.015225639025091931, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1648533803.7935016 -error 2.717663701975116e+18 - y tested = 5326600510.288329 -y predicted = 3987416955.7850537 -error 1.7934125926520271e+18 - y tested = 5072151352.996373 -y predicted = 4437269201.684242 -error 4.030753460547195e+17 - y tested = 7650055845.407672 -y predicted = 5810822887.769744 -error 3.3827778724615603e+18 - y tested = 5789616901.049658 -y predicted = 6055817331.845363 -error 7.086266935581884e+16 - y tested = 8224428196.629629 -y predicted = 7460097889.933778 -error 5.842008177337742e+17 - y tested = 4059018123.5159216 -y predicted = 5100214469.903065 -error 1.0840898317299357e+18 - y tested = 5947637003.818383 -y predicted = 4048267168.7504215 -error 3.607605770366096e+18 - y tested = 997516184.7000968 -y predicted = 578029781.2242687 -error 1.759688427010853e+17 - y tested = 6532788063.289651 -y predicted = 6717578030.523217 -error 3.41473319901825e+16 - y tested = 1980229389.772511 -y predicted = 3469195846.315319 -error 2.2170211087096458e+18 - y tested = 5035525633.343237 -y predicted = 5209308600.591485 -error 3.020051970560567e+16 - y tested = 5026691733.102776 -y predicted = 5310980036.817579 -error 8.081983962904046e+16 - y tested = 1014996574.3865615 -y predicted = 1270552307.5789404 -error 6.530873276749434e+16 - y tested = 7665772326.561901 -y predicted = 6768031174.831398 -error 8.059391755104101e+17 - y tested = 3029054692.61153 -y predicted = 4733173945.71936 -error 2.9040224288127903e+18 - y tested = 4062233415.93208 -y predicted = 4763564891.588576 -error 4.91865838746519e+17 - y tested = 5822958761.806049 -y predicted = 6295553663.597871 -error 2.2334594119962138e+17 - y tested = 6611133148.221605 -y predicted = 6344791428.628388 -error 7.093791159587178e+16 - y tested = 5377240292.736961 -y predicted = 3029890862.170753 -error 5.510049349179503e+18 -error squared vector [2.717663701975116e+18, 1.7934125926520271e+18, 4.030753460547195e+17, 3.3827778724615603e+18, 7.086266935581884e+16, 5.842008177337742e+17, 1.0840898317299357e+18, 3.607605770366096e+18, 1.759688427010853e+17, 3.41473319901825e+16, 2.2170211087096458e+18, 3.020051970560567e+16, 8.081983962904046e+16, 6.530873276749434e+16, 8.059391755104101e+17, 2.9040224288127903e+18, 4.91865838746519e+17, 2.2334594119962138e+17, 7.093791159587178e+16, 5.510049349179503e+18] -Total loo_error 1.3126657811438408e+18 -iteration 192current difference of loo_error -129080399711744.0 - getting loo error of with lamda = 0.01259079192099627, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1602126127.477553 -error 2.566808128079199e+18 - y tested = 5326600510.288329 -y predicted = 3995193363.12497 -error 1.7726449915176748e+18 - y tested = 5072151352.996373 -y predicted = 4375998129.430166 -error 4.846293106816213e+17 - y tested = 7650055845.407672 -y predicted = 5875840996.9404745 -error 3.14783832852148e+18 - y tested = 5789616901.049658 -y predicted = 6073525918.003349 -error 8.060432990761147e+16 - y tested = 8224428196.629629 -y predicted = 7522950661.859117 -error 4.920707317877157e+17 - y tested = 4059018123.5159216 -y predicted = 5091080495.442982 -error 1.0651527395477094e+18 - y tested = 5947637003.818383 -y predicted = 4064655499.6137166 -error 3.545619345176869e+18 - y tested = 997516184.7000968 -y predicted = 514616480.5295656 -error 2.3319212428798662e+17 - y tested = 6532788063.289651 -y predicted = 6651787065.384961 -error 1.4160762499679644e+16 - y tested = 1980229389.772511 -y predicted = 3516963269.1902223 -error 2.3615510161502085e+18 - y tested = 5035525633.343237 -y predicted = 5180718939.366094 -error 2.108109611384692e+16 - y tested = 5026691733.102776 -y predicted = 5314966612.752848 -error 8.310240623726355e+16 - y tested = 1014996574.3865615 -y predicted = 1215644467.0991335 -error 4.025957684999579e+16 - y tested = 7665772326.561901 -y predicted = 6811819710.655304 -error 7.292350702137202e+17 - y tested = 3029054692.61153 -y predicted = 4790804952.1993475 -error 3.103763977157743e+18 - y tested = 4062233415.93208 -y predicted = 4847883151.290999 -error 6.172455066695405e+17 - y tested = 5822958761.806049 -y predicted = 6363021539.087528 -error 2.9166780340498426e+17 - y tested = 6611133148.221605 -y predicted = 6345687911.349043 -error 7.046117377833077e+16 - y tested = 5377240292.736961 -y predicted = 3025381541.495616 -error 5.531239585790501e+18 -error squared vector [2.566808128079199e+18, 1.7726449915176748e+18, 4.846293106816213e+17, 3.14783832852148e+18, 8.060432990761147e+16, 4.920707317877157e+17, 1.0651527395477094e+18, 3.545619345176869e+18, 2.3319212428798662e+17, 1.4160762499679644e+16, 2.3615510161502085e+18, 2.108109611384692e+16, 8.310240623726355e+16, 4.025957684999579e+16, 7.292350702137202e+17, 3.103763977157743e+18, 6.172455066695405e+17, 2.9166780340498426e+17, 7.046117377833077e+16, 5.531239585790501e+18] -Total loo_error 1.312616400218684e+18 -iteration 193current difference of loo_error 49380925156864.0 - getting loo error of with lamda = 0.015145795173452669, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1647156300.56006 -error 2.713123878200177e+18 - y tested = 5326600510.288329 -y predicted = 3987652768.962136 -error 1.7927810540025147e+18 - y tested = 5072151352.996373 -y predicted = 4435544162.656617 -error 4.0526871479227834e+17 - y tested = 7650055845.407672 -y predicted = 5812736625.902953 -error 3.375741914361429e+18 - y tested = 5789616901.049658 -y predicted = 6056227563.534308 -error 7.108124535050429e+16 - y tested = 8224428196.629629 -y predicted = 7461942899.498384 -error 5.813838283413225e+17 - y tested = 4059018123.5159216 -y predicted = 5099950191.476636 -error 1.0835395701089692e+18 - y tested = 5947637003.818383 -y predicted = 4048806231.2783403 -error 3.605558302745016e+18 - y tested = 997516184.7000968 -y predicted = 576173695.1955833 -error 1.7752949346186106e+17 - y tested = 6532788063.289651 -y predicted = 6715850587.32792 -error 3.351188770726183e+16 - y tested = 1980229389.772511 -y predicted = 3470502447.808464 -error 2.220913787507831e+18 - y tested = 5035525633.343237 -y predicted = 5208549767.154146 -error 2.9937350881015436e+16 - y tested = 5026691733.102776 -y predicted = 5311088192.818085 -error 8.088134629860146e+16 - y tested = 1014996574.3865615 -y predicted = 1268952668.305052 -error 6.449369763833718e+16 - y tested = 7665772326.561901 -y predicted = 6769299088.281999 -error 8.036642669520548e+17 - y tested = 3029054692.61153 -y predicted = 4734787767.145026 -error 2.9095253215574943e+18 - y tested = 4062233415.93208 -y predicted = 4765905824.74635 -error 4.951548589264778e+17 - y tested = 5822958761.806049 -y predicted = 6297325359.484488 -error 2.2502366899301725e+17 - y tested = 6611133148.221605 -y predicted = 6344815316.020516 -error 7.092518774828734e+16 - y tested = 5377240292.736961 -y predicted = 3029807741.6642694 -error 5.510439581835646e+18 -error squared vector [2.713123878200177e+18, 1.7927810540025147e+18, 4.0526871479227834e+17, 3.375741914361429e+18, 7.108124535050429e+16, 5.813838283413225e+17, 1.0835395701089692e+18, 3.605558302745016e+18, 1.7752949346186106e+17, 3.351188770726183e+16, 2.220913787507831e+18, 2.9937350881015436e+16, 8.088134629860146e+16, 6.449369763833718e+16, 8.036642669520548e+17, 2.9095253215574943e+18, 4.951548589264778e+17, 2.2502366899301725e+17, 7.092518774828734e+16, 5.510439581835646e+18] -Total loo_error 1.3125239478705044e+18 -iteration 194current difference of loo_error -92452348179456.0 - getting loo error of with lamda = 0.012668216261979797, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1603518518.3864996 -error 2.571271638541182e+18 - y tested = 5326600510.288329 -y predicted = 3994965461.650019 -error 1.773251902761954e+18 - y tested = 5072151352.996373 -y predicted = 4377941593.790296 -error 4.819271897769602e+17 - y tested = 7650055845.407672 -y predicted = 5873875767.976561 -error 3.1548156674631885e+18 - y tested = 5789616901.049658 -y predicted = 6072863833.097974 -error 8.022882451478334e+16 - y tested = 8224428196.629629 -y predicted = 7521043056.221707 -error 4.947506557466719e+17 - y tested = 4059018123.5159216 -y predicted = 5091361131.196855 -error 1.065732085507715e+18 - y tested = 5947637003.818383 -y predicted = 4064223075.4109817 -error 3.5472480257190006e+18 - y tested = 997516184.7000968 -y predicted = 516547654.8005537 -error 2.3133072675372774e+17 - y tested = 6532788063.289651 -y predicted = 6654014098.368312 -error 1.4695751580892738e+16 - y tested = 1980229389.772511 -y predicted = 3515411860.514274 -error 2.3567852184727844e+18 - y tested = 5035525633.343237 -y predicted = 5181676006.472048 -error 2.135993156569065e+16 - y tested = 5026691733.102776 -y predicted = 5314834672.99561 -error 8.302635381008573e+16 - y tested = 1014996574.3865615 -y predicted = 1217323941.3464167 -error 4.09363634209079e+16 - y tested = 7665772326.561901 -y predicted = 6810473793.973489 -error 7.315355798478913e+17 - y tested = 3029054692.61153 -y predicted = 4788967852.727512 -error 3.097294331149424e+18 - y tested = 4062233415.93208 -y predicted = 4845174705.859123 -error 6.129970634726227e+17 - y tested = 5822958761.806049 -y predicted = 6360737804.607079 -error 2.8920629887599123e+17 - y tested = 6611133148.221605 -y predicted = 6345658871.968494 -error 7.047659135211303e+16 - y tested = 5377240292.736961 -y predicted = 3025574341.2962437 -error 5.530332747165576e+18 -error squared vector [2.571271638541182e+18, 1.773251902761954e+18, 4.819271897769602e+17, 3.1548156674631885e+18, 8.022882451478334e+16, 4.947506557466719e+17, 1.065732085507715e+18, 3.5472480257190006e+18, 2.3133072675372774e+17, 1.4695751580892738e+16, 2.3567852184727844e+18, 2.135993156569065e+16, 8.302635381008573e+16, 4.09363634209079e+16, 7.315355798478913e+17, 3.097294331149424e+18, 6.129970634726227e+17, 2.8920629887599123e+17, 7.047659135211303e+16, 5.530332747165576e+18] -Total loo_error 1.312460147374958e+18 -iteration 195current difference of loo_error 63800495546368.0 - getting loo error of with lamda = 0.015070717024620157, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1645859416.1535697 -error 2.7088532174670597e+18 - y tested = 5326600510.288329 -y predicted = 3987874521.9651704 -error 1.7921872718118182e+18 - y tested = 5072151352.996373 -y predicted = 4433915370.110762 -error 4.073451698499626e+17 - y tested = 7650055845.407672 -y predicted = 5814539345.572173 -error 3.3691208211683604e+18 - y tested = 5789616901.049658 -y predicted = 6056619535.177485 -error 7.129040663119859e+16 - y tested = 8224428196.629629 -y predicted = 7463681034.802526 -error 5.787362442279919e+17 - y tested = 4059018123.5159216 -y predicted = 5099700984.832333 -error 1.0830208178377124e+18 - y tested = 5947637003.818383 -y predicted = 4049311112.403338 -error 3.603641190016726e+18 - y tested = 997516184.7000968 -y predicted = 574424885.0609759 -error 1.7900624783032042e+17 - y tested = 6532788063.289651 -y predicted = 6714212903.083092 -error 3.2914972494075668e+16 - y tested = 1980229389.772511 -y predicted = 3471738479.545732 -error 2.2245993648761423e+18 - y tested = 5035525633.343237 -y predicted = 5207830757.126539 -error 2.9689055681979132e+16 - y tested = 5026691733.102776 -y predicted = 5311190486.507753 -error 8.093954068898637e+16 - y tested = 1014996574.3865615 -y predicted = 1267445052.248141 -error 6.373023397462842e+16 - y tested = 7665772326.561901 -y predicted = 6770494568.270101 -error 8.015222644919916e+17 - y tested = 3029054692.61153 -y predicted = 4736312040.361741 -error 2.9147276514470856e+18 - y tested = 4062233415.93208 -y predicted = 4768118039.815983 -error 4.9827310223571923e+17 - y tested = 5822958761.806049 -y predicted = 6299004968.546082 -error 2.2661999095157347e+17 - y tested = 6611133148.221605 -y predicted = 6344837980.644646 -error 7.0913116274841e+16 - y tested = 5377240292.736961 -y predicted = 3029726963.533804 -error 5.510818830786491e+18 -error squared vector [2.7088532174670597e+18, 1.7921872718118182e+18, 4.073451698499626e+17, 3.3691208211683604e+18, 7.129040663119859e+16, 5.787362442279919e+17, 1.0830208178377124e+18, 3.603641190016726e+18, 1.7900624783032042e+17, 3.2914972494075668e+16, 2.2245993648761423e+18, 2.9689055681979132e+16, 8.093954068898637e+16, 6.373023397462842e+16, 8.015222644919916e+17, 2.9147276514470856e+18, 4.9827310223571923e+17, 2.2661999095157347e+17, 7.0913116274841e+16, 5.510818830786491e+18] -Total loo_error 1.3123974755372332e+18 -iteration 196current difference of loo_error -62671837724928.0 - getting loo error of with lamda = 0.012741019315393141, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1604826166.2279375 -error 2.5754670235423887e+18 - y tested = 5326600510.288329 -y predicted = 3994751103.0971084 -error 1.7738228434356063e+18 - y tested = 5072151352.996373 -y predicted = 4379760198.560333 -error 4.7940551074127206e+17 - y tested = 7650055845.407672 -y predicted = 5872030824.582188 -error 3.161372974681464e+18 - y tested = 5789616901.049658 -y predicted = 6072250299.065779 -error 7.988163767413902e+16 - y tested = 8224428196.629629 -y predicted = 7519252838.954317 -error 4.9727228507250426e+17 - y tested = 4059018123.5159216 -y predicted = 5091624341.38125 -error 1.0662756011741389e+18 - y tested = 5947637003.818383 -y predicted = 4063813251.7152014 -error 3.5487919289881103e+18 - y tested = 997516184.7000968 -y predicted = 518359564.9698185 -error 2.295910662313466e+17 - y tested = 6532788063.289651 -y predicted = 6656089750.436916 -error 1.5203306053362122e+16 - y tested = 1980229389.772511 -y predicted = 3513961854.4803743 -error 2.3523352732988575e+18 - y tested = 5035525633.343237 -y predicted = 5182568703.98272 -error 2.162166462308812e+16 - y tested = 5026691733.102776 -y predicted = 5314711586.598024 -error 8.295543600742458e+16 - y tested = 1014996574.3865615 -y predicted = 1218899313.2103093 -error 4.157632689982549e+16 - y tested = 7665772326.561901 -y predicted = 6809211580.555306 -error 7.33696311599374e+17 - y tested = 3029054692.61153 -y predicted = 4787249270.327469 -error 3.0912481731097293e+18 - y tested = 4062233415.93208 -y predicted = 4842642088.212189 -error 6.090376957700024e+17 - y tested = 5822958761.806049 -y predicted = 6358609304.757194 -error 2.8692150416385558e+17 - y tested = 6611133148.221605 -y predicted = 6345631673.370885 -error 7.049103314790772e+16 - y tested = 5377240292.736961 -y predicted = 3025751779.8820744 -error 5.529498226088488e+18 -error squared vector [2.5754670235423887e+18, 1.7738228434356063e+18, 4.7940551074127206e+17, 3.161372974681464e+18, 7.988163767413902e+16, 4.9727228507250426e+17, 1.0662756011741389e+18, 3.5487919289881103e+18, 2.295910662313466e+17, 1.5203306053362122e+16, 2.3523352732988575e+18, 2.162166462308812e+16, 8.295543600742458e+16, 4.157632689982549e+16, 7.33696311599374e+17, 3.0912481731097293e+18, 6.090376957700024e+17, 2.8692150416385558e+17, 7.049103314790772e+16, 5.529498226088488e+18] -Total loo_error 1.3123232911151442e+18 -iteration 197current difference of loo_error 74184422088960.0 - getting loo error of with lamda = 0.01500012012434055, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1644638521.1603222 -error 2.7048358650103055e+18 - y tested = 5326600510.288329 -y predicted = 3988083050.4705496 -error 1.7916289902370412e+18 - y tested = 5072151352.996373 -y predicted = 4432377801.335578 -error 4.093101974046682e+17 - y tested = 7650055845.407672 -y predicted = 5816237304.229121 -error 3.3628904419702277e+18 - y tested = 5789616901.049658 -y predicted = 6056993684.639222 -error 7.149034440270071e+16 - y tested = 8224428196.629629 -y predicted = 7465318309.311646 -error 5.762478210239204e+17 - y tested = 4059018123.5159216 -y predicted = 5099466030.519556 -error 1.0825318471882436e+18 - y tested = 5947637003.818383 -y predicted = 4049784055.1853094 -error 3.6018458146352527e+18 - y tested = 997516184.7000968 -y predicted = 572777337.4904137 -error 1.804030883290106e+17 - y tested = 6532788063.289651 -y predicted = 6712661036.755059 -error 3.235428658328749e+16 - y tested = 1980229389.772511 -y predicted = 3472907341.2535734 -error 2.2280874668377009e+18 - y tested = 5035525633.343237 -y predicted = 5207149779.662736 -error 2.945484759989681e+16 - y tested = 5026691733.102776 -y predicted = 5311287207.94444 -error 8.099458430035238e+16 - y tested = 1014996574.3865615 -y predicted = 1266024351.1343021 -error 6.301494469891351e+16 - y tested = 7665772326.561901 -y predicted = 6771621572.211036 -error 7.995055715062216e+17 - y tested = 3029054692.61153 -y predicted = 4737751381.259208 -error 2.9196443737955395e+18 - y tested = 4062233415.93208 -y predicted = 4770208031.4715185 -error 5.0122805624821606e+17 - y tested = 5822958761.806049 -y predicted = 6300596539.185831 -error 2.2813784638029792e+17 - y tested = 6611133148.221605 -y predicted = 6344859471.4880295 -error 7.090167092121684e+16 - y tested = 5377240292.736961 -y predicted = 3029648660.597829 -error 5.511186471289676e+18 -error squared vector [2.7048358650103055e+18, 1.7916289902370412e+18, 4.093101974046682e+17, 3.3628904419702277e+18, 7.149034440270071e+16, 5.762478210239204e+17, 1.0825318471882436e+18, 3.6018458146352527e+18, 1.804030883290106e+17, 3.235428658328749e+16, 2.2280874668377009e+18, 2.945484759989681e+16, 8.099458430035238e+16, 6.301494469891351e+16, 7.995055715062216e+17, 2.9196443737955395e+18, 5.0122805624821606e+17, 2.2813784638029792e+17, 7.090167092121684e+16, 5.511186471289676e+18] -Total loo_error 1.3122847265181345e+18 -iteration 198current difference of loo_error -38564597009664.0 - getting loo error of with lamda = 0.012809476915664276, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1606054322.7245057 -error 2.579410487274395e+18 - y tested = 5326600510.288329 -y predicted = 3994549488.268618 -error 1.7743599252637565e+18 - y tested = 5072151352.996373 -y predicted = 4381462506.983675 -error 4.770510820063527e+17 - y tested = 7650055845.407672 -y predicted = 5870298646.698936 -error 3.167535686355565e+18 - y tested = 5789616901.049658 -y predicted = 6071681264.898998 -error 7.95603053537331e+16 - y tested = 8224428196.629629 -y predicted = 7517572579.508121 -error 4.9964486345622874e+17 - y tested = 4059018123.5159216 -y predicted = 5091871243.617986 -error 1.066785567704569e+18 - y tested = 5947637003.818383 -y predicted = 4063425094.683431 -error 3.5502545185259807e+18 - y tested = 997516184.7000968 -y predicted = 520059813.8560986 -error 2.279645860595216e+17 - y tested = 6532788063.289651 -y predicted = 6658025391.426796 -error 1.5684388358930942e+16 - y tested = 1980229389.772511 -y predicted = 3512606127.1794257 -error 2.3481784653458606e+18 - y tested = 5035525633.343237 -y predicted = 5183401781.451331 -error 2.1867355179287016e+16 - y tested = 5026691733.102776 -y predicted = 5314596697.4088125 -error 8.288926847206042e+16 - y tested = 1014996574.3865615 -y predicted = 1220377260.191889 -error 4.2181226101866664e+16 - y tested = 7665772326.561901 -y predicted = 6808027677.417652 -error 7.357258831355908e+17 - y tested = 3029054692.61153 -y predicted = 4785641022.773091 -error 3.0855955353104625e+18 - y tested = 4062233415.93208 -y predicted = 4840273039.129724 -error 6.053456552655315e+17 - y tested = 5822958761.806049 -y predicted = 6356624380.734745 -error 2.8479899282654784e+17 - y tested = 6611133148.221605 -y predicted = 6345606197.852013 -error 7.050456137257613e+16 - y tested = 5377240292.736961 -y predicted = 3025915266.456276 -error 5.528729379213866e+18 -error squared vector [2.579410487274395e+18, 1.7743599252637565e+18, 4.770510820063527e+17, 3.167535686355565e+18, 7.95603053537331e+16, 4.9964486345622874e+17, 1.066785567704569e+18, 3.5502545185259807e+18, 2.279645860595216e+17, 1.5684388358930942e+16, 2.3481784653458606e+18, 2.1867355179287016e+16, 8.288926847206042e+16, 4.2181226101866664e+16, 7.357258831355908e+17, 3.0855955353104625e+18, 6.053456552655315e+17, 2.8479899282654784e+17, 7.050456137257613e+16, 5.528729379213866e+18] -Total loo_error 1.312203386629134e+18 -iteration 199current difference of loo_error 81339889000448.0 - getting loo error of with lamda = 0.014933736996804906, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1643489241.8083155 -error 2.701056887665757e+18 - y tested = 5326600510.288329 -y predicted = 3988279140.9754825 -error 1.791104087559413e+18 - y tested = 5072151352.996373 -y predicted = 4430926658.553406 -error 4.111691087634769e+17 - y tested = 7650055845.407672 -y predicted = 5817836428.013844 -error 3.35702799347498e+18 - y tested = 5789616901.049658 -y predicted = 6057350488.403128 -error 7.168127379715807e+16 - y tested = 8224428196.629629 -y predicted = 7466860418.18464 -error 5.739089389380762e+17 - y tested = 4059018123.5159216 -y predicted = 5099244548.943936 -error 1.0820710161587451e+18 - y tested = 5947637003.818383 -y predicted = 4050227149.9299703 -error 3.6001641536328484e+18 - y tested = 997516184.7000968 -y predicted = 571225355.6289327 -error 1.8172387095018048e+17 - y tested = 6532788063.289651 -y predicted = 6711191138.740138 -error 3.182765733019221e+16 - y tested = 1980229389.772511 -y predicted = 3474012316.224961 -error 2.231387431360845e+18 - y tested = 5035525633.343237 -y predicted = 5206505090.388944 -error 2.923397473164468e+16 - y tested = 5026691733.102776 -y predicted = 5311378635.437804 -error 8.104663236111414e+16 - y tested = 1014996574.3865615 -y predicted = 1264685719.6605935 -error 6.234466926767666e+16 - y tested = 7665772326.561901 -y predicted = 6772683862.010829 -error 7.976070055141916e+17 - y tested = 3029054692.61153 -y predicted = 4739110205.858479 -error 2.924289858386285e+18 - y tested = 4062233415.93208 -y predicted = 4772182030.677048 -error 5.040270355782989e+17 - y tested = 5822958761.806049 -y predicted = 6302104024.846596 -error 2.2958018309419443e+17 - y tested = 6611133148.221605 -y predicted = 6344879837.41084 -error 7.0890825517693976e+16 - y tested = 5377240292.736961 -y predicted = 3029572930.97379 -error 5.511542041488048e+18 -error squared vector [2.701056887665757e+18, 1.791104087559413e+18, 4.111691087634769e+17, 3.35702799347498e+18, 7.168127379715807e+16, 5.739089389380762e+17, 1.0820710161587451e+18, 3.6001641536328484e+18, 1.8172387095018048e+17, 3.182765733019221e+16, 2.231387431360845e+18, 2.923397473164468e+16, 8.104663236111414e+16, 6.234466926767666e+16, 7.976070055141916e+17, 2.924289858386285e+18, 5.040270355782989e+17, 2.2958018309419443e+17, 7.0890825517693976e+16, 5.511542041488048e+18] -Total loo_error 1.312184232278541e+18 -iteration 200current difference of loo_error -19154350593024.0 - getting loo error of with lamda = 0.012873848433274597, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1607207902.919821 -error 2.583117242940061e+18 - y tested = 5326600510.288329 -y predicted = 3994359864.22543 -error 1.7748651390220908e+18 - y tested = 5072151352.996373 -y predicted = 4383056427.147974 -error 4.7485181683001075e+17 - y tested = 7650055845.407672 -y predicted = 5868672201.369415 -error 3.1733276872470185e+18 - y tested = 5789616901.049658 -y predicted = 6071153074.451934 -error 7.926261693399645e+16 - y tested = 8224428196.629629 -y predicted = 7515995342.723591 -error 5.018771084934542e+17 - y tested = 4059018123.5159216 -y predicted = 5092102880.021366 -error 1.0672641141239136e+18 - y tested = 5947637003.818383 -y predicted = 4063057670.2998033 -error 3.551639264325335e+18 - y tested = 997516184.7000968 -y predicted = 521655490.62233496 -error 2.2644340016816928e+17 - y tested = 6532788063.289651 -y predicted = 6659831406.3679 -error 1.6140011020497672e+16 - y tested = 1980229389.772511 -y predicted = 3511338112.943174 -error 2.3442939221692974e+18 - y tested = 5035525633.343237 -y predicted = 5184179587.477646 -error 2.209799807979496e+16 - y tested = 5026691733.102776 -y predicted = 5314489405.875055 -error 8.282750045314021e+16 - y tested = 1014996574.3865615 -y predicted = 1221764004.593252 -error 4.27527701942786e+16 - y tested = 7665772326.561901 -y predicted = 6806917060.480026 -error 7.37632368076568e+17 - y tested = 3029054692.61153 -y predicted = 4784135559.306126 -error 3.080308848637454e+18 - y tested = 4062233415.93208 -y predicted = 4838056257.782422 -error 6.019010819367412e+17 - y tested = 5822958761.806049 -y predicted = 6354772383.383791 -error 2.8282572809563338e+17 - y tested = 6611133148.221605 -y predicted = 6345582334.697511 -error 7.0517234563308456e+16 - y tested = 5377240292.736961 -y predicted = 3026066060.7438703 -error 5.528020269188302e+18 -error squared vector [2.583117242940061e+18, 1.7748651390220908e+18, 4.7485181683001075e+17, 3.1733276872470185e+18, 7.926261693399645e+16, 5.018771084934542e+17, 1.0672641141239136e+18, 3.551639264325335e+18, 2.2644340016816928e+17, 1.6140011020497672e+16, 2.3442939221692974e+18, 2.209799807979496e+16, 8.282750045314021e+16, 4.27527701942786e+16, 7.37632368076568e+17, 3.080308848637454e+18, 6.019010819367412e+17, 2.8282572809563338e+17, 7.0517234563308456e+16, 5.528020269188302e+18] -Total loo_error 1.312098306124953e+18 -iteration 201current difference of loo_error 85926153587968.0 - getting loo error of with lamda = 0.014871316131243381, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0220-0020' +--- Neighbour 0 in the list of neghbours, And at position 64 in the X datas point +-------------- + --- Configuration: 0220-0020 + --- Distance from that configuration: [1.] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 66 in the X datas point +-------------- + --- Configuration: 0110-0020 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3998672440.749671 + --- Energy: 36.82601141845538 + --- Workload: 147255000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 12 in the X datas point +-------------- + --- Configuration: 0022-0030 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7249844128.351241 + --- Energy: 42.05401520354165 + --- Workload: 304885000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 76 in the X datas point +-------------- + --- Configuration: 2020-0022 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8754497623.153894 + --- Energy: 65.93701913313123 + --- Workload: 577244000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 5 in the X datas point +-------------- + --- Configuration: 0030-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 994906080.8659663 + --- Energy: 29.623247258891045 + --- Workload: 29472300000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 8 in the X datas point +-------------- + --- Configuration: 0020-0202 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8089829466.394849 + --- Energy: 66.44909360627778 + --- Workload: 537560000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0220-0020' +--- Neighbour 0 in the list of neghbours, And at position 5 in the X datas point +-------------- + --- Configuration: 0030-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 994906080.8659663 + --- Energy: 29.623247258891045 + --- Workload: 29472300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 66 in the X datas point +-------------- + --- Configuration: 0110-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 64 in the X datas point +-------------- + --- Configuration: 0220-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3998672440.749671 + --- Energy: 36.82601141845538 + --- Workload: 147255000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 12 in the X datas point +-------------- + --- Configuration: 0022-0030 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7249844128.351241 + --- Energy: 42.05401520354165 + --- Workload: 304885000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 76 in the X datas point +-------------- + --- Configuration: 2020-0022 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8754497623.153894 + --- Energy: 65.93701913313123 + --- Workload: 577244000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 8 in the X datas point +-------------- + --- Configuration: 0020-0202 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8089829466.394849 + --- Energy: 66.44909360627778 + --- Workload: 537560000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 64 in the X datas point +-------------- + --- Configuration: 0220-0020 + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (36.67117347490831 mAh) it is NOT far from the median. +--- Median :36.67117347490831, the gap is : 10 +--- So No we don't romove this configuration '0220-0020' + --- remove_aberrant_points: The value [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0] +--- Computing the list of the 10 first neighbours of '0303-1000' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1642407447.0300128 -error 2.6975022217859103e+18 - y tested = 5326600510.288329 -y predicted = 3988463533.6062603 -error 1.7906105683638277e+18 - y tested = 5072151352.996373 -y predicted = 4429557362.823529 -error 4.12927036206257e+17 - y tested = 7650055845.407672 -y predicted = 5819342326.760085 -error 3.351511987359028e+18 - y tested = 5789616901.049658 -y predicted = 6057690453.404096 -error 7.186342947192752e+16 - y tested = 8224428196.629629 -y predicted = 7468312752.838459 -error 5.7171056433951814e+17 - y tested = 4059018123.5159216 -y predicted = 5099035798.9945135 -error 1.0816367653078938e+18 - y tested = 5947637003.818383 -y predicted = 4050642344.784378 -error 3.5985887364035415e+18 - y tested = 997516184.7000968 -y predicted = 569763544.6979431 -error 1.8297232102881216e+17 - y tested = 6532788063.289651 -y predicted = 6709799458.969766 -error 3.1333034200622144e+16 - y tested = 1980229389.772511 -y predicted = 3475056569.4737973 -error 2.2345082971737016e+18 - y tested = 5035525633.343237 -y predicted = 5205894994.475787 -error 2.902571921271332e+16 - y tested = 5026691733.102776 -y predicted = 5311465035.809656 -error 8.109583393458464e+16 - y tested = 1014996574.3865615 -y predicted = 1263424564.2374923 -error 6.1716466141374184e+16 - y tested = 7665772326.561901 -y predicted = 6773685011.308741 -error 7.958197780355917e+17 - y tested = 3029054692.61153 -y predicted = 4740392734.835571 -error 2.9286778947632154e+18 - y tested = 4062233415.93208 -y predicted = 4774046008.189073 -error 5.066771664956199e+17 - y tested = 5822958761.806049 -y predicted = 6303531275.911071 -error 2.3094994131322106e+17 - y tested = 6611133148.221605 -y predicted = 6344899126.838785 -error 7.088055414166793e+16 - y tested = 5377240292.736961 -y predicted = 3029499842.517111 -error 5.511885221598507e+18 -error squared vector [2.6975022217859103e+18, 1.7906105683638277e+18, 4.12927036206257e+17, 3.351511987359028e+18, 7.186342947192752e+16, 5.7171056433951814e+17, 1.0816367653078938e+18, 3.5985887364035415e+18, 1.8297232102881216e+17, 3.1333034200622144e+16, 2.2345082971737016e+18, 2.902571921271332e+16, 8.109583393458464e+16, 6.1716466141374184e+16, 7.958197780355917e+17, 2.9286778947632154e+18, 5.066771664956199e+17, 2.3094994131322106e+17, 7.088055414166793e+16, 5.511885221598507e+18] -Total loo_error 1.3120946768638766e+18 -iteration 202current difference of loo_error -3629261076480.0 - getting loo error of with lamda = 0.012934377757455469, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1608291508.1134183 -error 2.586601574801685e+18 - y tested = 5326600510.288329 -y predicted = 3994181521.76213 -error 1.7753403609851802e+18 - y tested = 5072151352.996373 -y predicted = 4384549270.630382 -error 4.727966236740479e+17 - y tested = 7650055845.407672 -y predicted = 5867144909.506734 -error 3.1787714053551585e+18 - y tested = 5789616901.049658 -y predicted = 6070662421.510194 -error 7.898658457093357e+16 - y tested = 8224428196.629629 -y predicted = 7514514652.73851 -error 5.0397723980004774e+17 - y tested = 4059018123.5159216 -y predicted = 5092320222.676686 -error 1.0677132281300428e+18 - y tested = 5947637003.818383 -y predicted = 4062710052.30256 -error 3.5529496125507354e+18 - y tested = 997516184.7000968 -y predicted = 523153209.0464259 -error 2.2502023267100525e+17 - y tested = 6532788063.289651 -y predicted = 6661517296.374181 -error 1.6571215450531222e+16 - y tested = 1980229389.772511 -y predicted = 3510151754.0712223 -error 2.3406624407813586e+18 - y tested = 5035525633.343237 -y predicted = 5184906109.519195 -error 2.231452666255586e+16 - y tested = 5026691733.102776 -y predicted = 5314389163.149134 -error 8.276981125527912e+16 - y tested = 1014996574.3865615 -y predicted = 1223065347.744798 -error 4.329261444680116e+16 - y tested = 7665772326.561901 -y predicted = 6805875046.952879 -error 7.394233314789969e+17 - y tested = 3029054692.61153 -y predicted = 4782725903.656747 -error 3.075362716448798e+18 - y tested = 4062233415.93208 -y predicted = 4835981314.176013 -error 5.986858100369041e+17 - y tested = 5822958761.806049 -y predicted = 6353043569.814995 -error 2.8098990368188058e+17 - y tested = 6611133148.221605 -y predicted = 6345559979.9681225 -error 7.0529107696192696e+16 - y tested = 5377240292.736961 -y predicted = 3026205291.0273056 -error 5.527365579263921e+18 -error squared vector [2.586601574801685e+18, 1.7753403609851802e+18, 4.727966236740479e+17, 3.1787714053551585e+18, 7.898658457093357e+16, 5.0397723980004774e+17, 1.0677132281300428e+18, 3.5529496125507354e+18, 2.2502023267100525e+17, 1.6571215450531222e+16, 2.3406624407813586e+18, 2.231452666255586e+16, 8.276981125527912e+16, 4.329261444680116e+16, 7.394233314789969e+17, 3.075362716448798e+18, 5.986858100369041e+17, 2.8098990368188058e+17, 7.0529107696192696e+16, 5.527365579263921e+18] -Total loo_error 1.3120061959871027e+18 -iteration 203current difference of loo_error 88480876773888.0 - getting loo error of with lamda = 0.014812621029007385, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1641389236.0405824 -error 2.6941586239163223e+18 - y tested = 5326600510.288329 -y predicted = 3988636924.781092 -error 1.7901465561433815e+18 - y tested = 5072151352.996373 -y predicted = 4428265547.65921 -error 4.145889303146869e+17 - y tested = 7650055845.407672 -y predicted = 5820760308.635838 -error 3.3463221608533535e+18 - y tested = 5789616901.049658 -y predicted = 6058014109.78686 -error 7.203706165792153e+16 - y tested = 8224428196.629629 -y predicted = 7469680415.11378 -error 5.6964421370309594e+17 - y tested = 4059018123.5159216 -y predicted = 5098839076.642788 -error 1.0812276145616648e+18 - y tested = 5947637003.818383 -y predicted = 4051031455.6333714 -error 3.5971126054061696e+18 - y tested = 997516184.7000968 -y predicted = 568386798.0012267 -error 1.8415203052854845e+17 - y tested = 6532788063.289651 -y predicted = 6708482353.417468 -error 3.0868483583517588e+16 - y tested = 1980229389.772511 -y predicted = 3476043146.8256636 -error 2.2374587957894676e+18 - y tested = 5035525633.343237 -y predicted = 5205317849.022183 -error 2.8829396505165884e+16 - y tested = 5026691733.102776 -y predicted = 5311546664.662769 -error 8.114233203404872e+16 - y tested = 1014996574.3865615 -y predicted = 1262236531.9543264 -error 6.112759661811018e+16 - y tested = 7665772326.561901 -y predicted = 6774628412.751467 -error 7.941374751213788e+17 - y tested = 3029054692.61153 -y predicted = 4741602998.42793 -error 2.932821699754622e+18 - y tested = 4062233415.93208 -y predicted = 4775805678.947348 -error 5.091853745447306e+17 - y tested = 5822958761.806049 -y predicted = 6304882033.200398 -error 2.3225003951143146e+17 - y tested = 6611133148.221605 -y predicted = 6344917387.507331 -error 7.087083125267981e+16 - y tested = 5377240292.736961 -y predicted = 3029429436.828228 -error 5.512215815122899e+18 -error squared vector [2.6941586239163223e+18, 1.7901465561433815e+18, 4.145889303146869e+17, 3.3463221608533535e+18, 7.203706165792153e+16, 5.6964421370309594e+17, 1.0812276145616648e+18, 3.5971126054061696e+18, 1.8415203052854845e+17, 3.0868483583517588e+16, 2.2374587957894676e+18, 2.8829396505165884e+16, 8.114233203404872e+16, 6.112759661811018e+16, 7.941374751213788e+17, 2.932821699754622e+18, 5.091853745447306e+17, 2.3225003951143146e+17, 7.087083125267981e+16, 5.512215815122899e+18] -Total loo_error 1.31201488184616e+18 -iteration 204current difference of loo_error 8685859057152.0 - getting loo error of with lamda = 0.014755704566233084, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1640400965.5969064 -error 2.690915327657863e+18 - y tested = 5326600510.288329 -y predicted = 3988805064.9265203 -error 1.7896966536308004e+18 - y tested = 5072151352.996373 -y predicted = 4427008915.033573 -error 4.162087652605853e+17 - y tested = 7650055845.407672 -y predicted = 5822137142.993819 -error 3.341286782634343e+18 - y tested = 5789616901.049658 -y predicted = 6058331682.135236 -error 7.22076335738701e+16 - y tested = 8224428196.629629 -y predicted = 7471008503.221873 -error 5.676412344146368e+17 - y tested = 4059018123.5159216 -y predicted = 5098647914.951254 -error 1.0808301032398725e+18 - y tested = 5947637003.818383 -y predicted = 4051407554.4591246 -error 3.5956861246173174e+18 - y tested = 997516184.7000968 -y predicted = 567049736.8437642 -error 1.8530136273004877e+17 - y tested = 6532788063.289651 -y predicted = 6707197230.702204 -error 3.041855767753988e+16 - y tested = 1980229389.772511 -y predicted = 3477004159.2966785 -error 2.240334710684125e+18 - y tested = 5035525633.343237 -y predicted = 5204754960.610119 -error 2.863856520720143e+16 - y tested = 5026691733.102776 -y predicted = 5311626181.532498 -error 8.118763990195035e+16 - y tested = 1014996574.3865615 -y predicted = 1261082500.1211538 -error 6.055828284465129e+16 - y tested = 7665772326.561901 -y predicted = 6775545090.373835 -error 7.925045320510435e+17 - y tested = 3029054692.61153 -y predicted = 4742780584.172002 -error 2.9368564314047345e+18 - y tested = 4062233415.93208 -y predicted = 4777518505.200802 -error 5.116327589301637e+17 - y tested = 5822958761.806049 -y predicted = 6306199978.803458 -error 2.335220738051368e+17 - y tested = 6611133148.221605 -y predicted = 6344935207.894517 -error 7.08613434343841e+16 - y tested = 5377240292.736961 -y predicted = 3029359593.5145354 -error 5.512543777781188e+18 -error squared vector [2.690915327657863e+18, 1.7896966536308004e+18, 4.162087652605853e+17, 3.341286782634343e+18, 7.22076335738701e+16, 5.676412344146368e+17, 1.0808301032398725e+18, 3.5956861246173174e+18, 1.8530136273004877e+17, 3.041855767753988e+16, 2.240334710684125e+18, 2.863856520720143e+16, 8.118763990195035e+16, 6.055828284465129e+16, 7.925045320510435e+17, 2.9368564314047345e+18, 5.116327589301637e+17, 2.335220738051368e+17, 7.08613434343841e+16, 5.512543777781188e+18] -Total loo_error 1.3119416330740723e+18 -iteration 205current difference of loo_error -64562913030400.0 - getting loo error of with lamda = 0.012989569478933578, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1609278614.4840848 -error 2.5897776587676027e+18 - y tested = 5326600510.288329 -y predicted = 3994018876.113807 -error 1.7757738117392394e+18 - y tested = 5072151352.996373 -y predicted = 4385905498.712138 -error 4.709333725222995e+17 - y tested = 7650055845.407672 -y predicted = 5865754052.354444 -error 3.183732888692966e+18 - y tested = 5789616901.049658 -y predicted = 6070220057.923447 -error 7.873813164753614e+16 - y tested = 8224428196.629629 -y predicted = 7513166556.872694 -error 5.0589312018972416e+17 - y tested = 4059018123.5159216 -y predicted = 5092518004.102252 -error 1.0681220031719592e+18 - y tested = 5947637003.818383 -y predicted = 4062391315.9707313 -error 3.554151303548166e+18 - y tested = 997516184.7000968 -y predicted = 524516572.37836754 -error 2.237286332565062e+17 - y tested = 6532788063.289651 -y predicted = 6663044208.839392 -error 1.6966663453475258e+16 - y tested = 1980229389.772511 -y predicted = 3509075026.7056036 -error 2.3373689815693537e+18 - y tested = 5035525633.343237 -y predicted = 5185564496.641761 -error 2.2511660499913144e+16 - y tested = 5026691733.102776 -y predicted = 5314298297.309276 -error 8.271753577466763e+16 - y tested = 1014996574.3865615 -y predicted = 1224249723.4573417 -error 4.378688039603814e+16 - y tested = 7665772326.561901 -y predicted = 6804926870.615628 -error 7.410548990233464e+17 - y tested = 3029054692.61153 -y predicted = 4781445538.442256 -error 3.070873676551328e+18 - y tested = 4062233415.93208 -y predicted = 4834097323.791969 -error 5.9577389225674e+17 - y tested = 5822958761.806049 -y predicted = 6351477781.852824 -error 2.793323545512032e+17 - y tested = 6611133148.221605 -y predicted = 6345539669.777692 -error 7.053989579193752e+16 - y tested = 5377240292.736961 -y predicted = 3026330102.0904207 -error 5.526778724485754e+18 -error squared vector [2.5897776587676027e+18, 1.7757738117392394e+18, 4.709333725222995e+17, 3.183732888692966e+18, 7.873813164753614e+16, 5.0589312018972416e+17, 1.0681220031719592e+18, 3.554151303548166e+18, 2.237286332565062e+17, 1.6966663453475258e+16, 2.3373689815693537e+18, 2.2511660499913144e+16, 8.271753577466763e+16, 4.378688039603814e+16, 7.410548990233464e+17, 3.070873676551328e+18, 5.9577389225674e+17, 2.793323545512032e+17, 7.053989579193752e+16, 5.526778724485754e+18] -Total loo_error 1.3119278043944876e+18 -iteration 206current difference of loo_error 13828679584768.0 - getting loo error of with lamda = 0.014702185321163403, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1639470860.2450957 -error 2.6878647013195494e+18 - y tested = 5326600510.288329 -y predicted = 3988963171.262387 -error 1.7892736507564037e+18 - y tested = 5072151352.996373 -y predicted = 4425823702.36764 -error 4.177394319672584e+17 - y tested = 7650055845.407672 -y predicted = 5823433434.188039 -error 3.3365494331698263e+18 - y tested = 5789616901.049658 -y predicted = 6058633675.820502 -error 7.237002510810726e+16 - y tested = 8224428196.629629 -y predicted = 7472259005.380589 -error 5.6575849226423584e+17 - y tested = 4059018123.5159216 -y predicted = 5098467802.979746 -error 1.080455636137447e+18 - y tested = 5947637003.818383 -y predicted = 4051760094.7272353 -error 3.5943492544250045e+18 - y tested = 997516184.7000968 -y predicted = 565790647.3508073 -error 1.863869395995328e+17 - y tested = 6532788063.289651 -y predicted = 6705981632.2225 -error 2.9996012319697496e+16 - y tested = 1980229389.772511 -y predicted = 3477911722.365516 -error 2.243052369361225e+18 - y tested = 5035525633.343237 -y predicted = 5204222744.902693 -error 2.84587154485035e+16 - y tested = 5026691733.102776 -y predicted = 5311701281.147213 -error 8.123044247649448e+16 - y tested = 1014996574.3865615 -y predicted = 1259995545.9797168 -error 6.0024496081703704e+16 - y tested = 7665772326.561901 -y predicted = 6776408732.118056 -error 7.909676031220756e+17 - y tested = 3029054692.61153 -y predicted = 4743891497.97975 -error 2.940665269045482e+18 - y tested = 4062233415.93208 -y predicted = 4779134955.531888 -error 5.1394781748057536e+17 - y tested = 5822958761.806049 -y predicted = 6307446614.594063 -error 2.347284794991398e+17 - y tested = 6611133148.221605 -y predicted = 6344952065.818676 -error 7.085236862919504e+16 - y tested = 5377240292.736961 -y predicted = 3029292493.679123 -error 5.512858867100548e+18 -error squared vector [2.6878647013195494e+18, 1.7892736507564037e+18, 4.177394319672584e+17, 3.3365494331698263e+18, 7.237002510810726e+16, 5.6575849226423584e+17, 1.080455636137447e+18, 3.5943492544250045e+18, 1.863869395995328e+17, 2.9996012319697496e+16, 2.243052369361225e+18, 2.84587154485035e+16, 8.123044247649448e+16, 6.0024496081703704e+16, 7.909676031220756e+17, 2.940665269045482e+18, 5.1394781748057536e+17, 2.347284794991398e+17, 7.085236862919504e+16, 5.512858867100548e+18] -Total loo_error 1.3118765002656005e+18 -iteration 207current difference of loo_error -51304128887040.0 - getting loo error of with lamda = 0.013041466928698118, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1610205982.7850845 -error 2.5927633067285125e+18 - y tested = 5326600510.288329 -y predicted = 3993865913.439593 -error 1.7761815056375636e+18 - y tested = 5072151352.996373 -y predicted = 4387176484.095837 -error 4.691905710253072e+17 - y tested = 7650055845.407672 -y predicted = 5864447741.23378 -error 3.1883963016914806e+18 - y tested = 5789616901.049658 -y predicted = 6069808424.144128 -error 7.850728961399893e+16 - y tested = 8224428196.629629 -y predicted = 7511900680.4973345 -error 5.076954612456574e+17 - y tested = 4059018123.5159216 -y predicted = 5092703636.082614 -error 1.0685057388902655e+18 - y tested = 5947637003.818383 -y predicted = 4062090080.4698563 -error 3.555287200149096e+18 - y tested = 997516184.7000968 -y predicted = 525796581.902174 -error 2.225193836638301e+17 - y tested = 6532788063.289651 -y predicted = 6664471091.732695 -error 1.7340419979931458e+16 - y tested = 1980229389.772511 -y predicted = 3508066908.984203 -error 2.334287485110937e+18 - y tested = 5035525633.343237 -y predicted = 5186180074.262049 -error 2.2696760568559756e+16 - y tested = 5026691733.102776 -y predicted = 5314213316.608221 -error 8.266866098147886e+16 - y tested = 1014996574.3865615 -y predicted = 1225361488.7563 -error 4.425339719778739e+16 - y tested = 7665772326.561901 -y predicted = 6804036982.683484 -error 7.425878028892536e+17 - y tested = 3029054692.61153 -y predicted = 4780245898.31303 -error 3.0666706389262746e+18 - y tested = 4062233415.93208 -y predicted = 4832332677.114778 -error 5.93052872074137e+17 - y tested = 5822958761.806049 -y predicted = 6350014570.652697 -error 2.7778782563899357e+17 - y tested = 6611133148.221605 -y predicted = 6345520637.328612 -error 7.055000594288031e+16 - y tested = 5377240292.736961 -y predicted = 3026445619.0798635 -error 5.526235597694581e+18 -error squared vector [2.5927633067285125e+18, 1.7761815056375636e+18, 4.691905710253072e+17, 3.1883963016914806e+18, 7.850728961399893e+16, 5.076954612456574e+17, 1.0685057388902655e+18, 3.555287200149096e+18, 2.225193836638301e+17, 1.7340419979931458e+16, 2.334287485110937e+18, 2.2696760568559756e+16, 8.266866098147886e+16, 4.425339719778739e+16, 7.425878028892536e+17, 3.0666706389262746e+18, 5.93052872074137e+17, 2.7778782563899357e+17, 7.055000594288031e+16, 5.526235597694581e+18] -Total loo_error 1.3118589112825267e+18 -iteration 208current difference of loo_error 17588983073792.0 - getting loo error of with lamda = 0.014651860521391728, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1638595542.3892007 -error 2.68499535126466e+18 - y tested = 5326600510.288329 -y predicted = 3989111841.7521663 -error 1.7888759384626378e+18 - y tested = 5072151352.996373 -y predicted = 4424706040.193645 -error 4.1918543307022317e+17 - y tested = 7650055845.407672 -y predicted = 5824653800.713064 -error 3.3320926247752545e+18 - y tested = 5789616901.049658 -y predicted = 6058920656.699674 -error 7.252451280720344e+16 - y tested = 8224428196.629629 -y predicted = 7473436361.568734 -error 5.639887363281305e+17 - y tested = 4059018123.5159216 -y predicted = 5098298122.55167 -error 1.0801029163957454e+18 - y tested = 5947637003.818383 -y predicted = 4052090599.667204 -error 3.593096170290466e+18 - y tested = 997516184.7000968 -y predicted = 564605081.6516523 -error 1.8741202314262093e+17 - y tested = 6532788063.289651 -y predicted = 6704832189.38696 -error 2.95991813245868e+16 - y tested = 1980229389.772511 -y predicted = 3478768590.8784447 -error 2.24561973725121e+18 - y tested = 5035525633.343237 -y predicted = 5203719691.484933 -error 2.828924119417221e+16 - y tested = 5026691733.102776 -y predicted = 5311772192.57595 -error 8.127086837343606e+16 - y tested = 1014996574.3865615 -y predicted = 1258971868.8101344 -error 5.952394428906908e+16 - y tested = 7665772326.561901 -y predicted = 6777222312.711726 -error 7.89521127113146e+17 - y tested = 3029054692.61153 -y predicted = 4744939322.325843 -error 2.9442600624898253e+18 - y tested = 4062233415.93208 -y predicted = 4780660137.380283 -error 5.1613695409081466e+17 - y tested = 5822958761.806049 -y predicted = 6308625397.395021 -error 2.3587208092431142e+17 - y tested = 6611133148.221605 -y predicted = 6344968006.6748705 -error 7.084388257459338e+16 - y tested = 5377240292.736961 -y predicted = 3029228126.657449 -error 5.513161132057404e+18 -error squared vector [2.68499535126466e+18, 1.7888759384626378e+18, 4.1918543307022317e+17, 3.3320926247752545e+18, 7.252451280720344e+16, 5.639887363281305e+17, 1.0801029163957454e+18, 3.593096170290466e+18, 1.8741202314262093e+17, 2.95991813245868e+16, 2.24561973725121e+18, 2.828924119417221e+16, 8.127086837343606e+16, 5.952394428906908e+16, 7.89521127113146e+17, 2.9442600624898253e+18, 5.1613695409081466e+17, 2.3587208092431142e+17, 7.084388257459338e+16, 5.513161132057404e+18] -Total loo_error 1.3118185959109757e+18 -iteration 209current difference of loo_error -40315371550976.0 - getting loo error of with lamda = 0.013090266734537318, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1611077275.0466619 -error 2.595569985903265e+18 - y tested = 5326600510.288329 -y predicted = 3993722059.449848 -error 1.776564964709589e+18 - y tested = 5072151352.996373 -y predicted = 4388367840.456006 -error 4.6755989202204243e+17 - y tested = 7650055845.407672 -y predicted = 5863220754.085806 -error 3.1927796435792215e+18 - y tested = 5789616901.049658 -y predicted = 6069425148.921423 -error 7.829265557706715e+16 - y tested = 8224428196.629629 -y predicted = 7510711907.700693 -error 5.093909410824925e+17 - y tested = 4059018123.5159216 -y predicted = 5092877883.55775 -error 1.0688660034337464e+18 - y tested = 5947637003.818383 -y predicted = 4061805492.435454 -error 3.5563604893248236e+18 - y tested = 997516184.7000968 -y predicted = 526998449.2524838 -error 2.2138693937074998e+17 - y tested = 6532788063.289651 -y predicted = 6665805011.863442 -error 1.7693508607882694e+16 - y tested = 1980229389.772511 -y predicted = 3507122784.417129 -error 2.3314034386093655e+18 - y tested = 5035525633.343237 -y predicted = 5186755827.58128 -error 2.2870571649276164e+16 - y tested = 5026691733.102776 -y predicted = 5314133811.4834385 -error 8.262294842379517e+16 - y tested = 1014996574.3865615 -y predicted = 1226405205.7608187 -error 4.469360941953657e+16 - y tested = 7665772326.561901 -y predicted = 6803201705.21921 -error 7.440280768035168e+17 - y tested = 3029054692.61153 -y predicted = 4779121638.937132 -error 3.0627343166214175e+18 - y tested = 4062233415.93208 -y predicted = 4830679410.412975 -error 5.905092464337325e+17 - y tested = 5822958761.806049 -y predicted = 6348646689.426845 -error 2.7634779724624646e+17 - y tested = 6611133148.221605 -y predicted = 6345502800.145756 -error 7.055948181889698e+16 - y tested = 5377240292.736961 -y predicted = 3026552625.9352775 -error 5.525732506853545e+18 -error squared vector [2.595569985903265e+18, 1.776564964709589e+18, 4.6755989202204243e+17, 3.1927796435792215e+18, 7.829265557706715e+16, 5.093909410824925e+17, 1.0688660034337464e+18, 3.5563604893248236e+18, 2.2138693937074998e+17, 1.7693508607882694e+16, 2.3314034386093655e+18, 2.2870571649276164e+16, 8.262294842379517e+16, 4.469360941953657e+16, 7.440280768035168e+17, 3.0627343166214175e+18, 5.905092464337325e+17, 2.7634779724624646e+17, 7.055948181889698e+16, 5.525732506853545e+18] -Total loo_error 1.3117983508745103e+18 -iteration 210current difference of loo_error 20245036465408.0 - getting loo error of with lamda = 0.014604539497547654, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0303-1000' +--- Neighbour 0 in the list of neghbours, And at position 65 in the X datas point +-------------- + --- Configuration: 0303-1000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 0 in the X datas point +-------------- + --- Configuration: 0303-1010 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 8236960890.90969 + --- Energy: 61.00540758755291 + --- Workload: 502499000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 2 in the X datas point +-------------- + --- Configuration: 0303-0100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 14 in the X datas point +-------------- + --- Configuration: 3303-1010 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 40 in the X datas point +-------------- + --- Configuration: 3300-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5058399218.983161 + --- Energy: 36.78276420172299 + --- Workload: 186062000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 70 in the X datas point +-------------- + --- Configuration: 0202-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 19 in the X datas point +-------------- + --- Configuration: 3300-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1980229389.772511 + --- Energy: 30.277288658122774 + --- Workload: 59956000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 21 in the X datas point +-------------- + --- Configuration: 3333-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8296551953.00833 + --- Energy: 59.045602086542516 + --- Workload: 489874000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0303-1000' +--- Neighbour 0 in the list of neghbours, And at position 19 in the X datas point +-------------- + --- Configuration: 3300-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 1980229389.772511 + --- Energy: 30.277288658122774 + --- Workload: 59956000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 40 in the X datas point +-------------- + --- Configuration: 3300-1000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5058399218.983161 + --- Energy: 36.78276420172299 + --- Workload: 186062000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 70 in the X datas point +-------------- + --- Configuration: 0202-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 2 in the X datas point +-------------- + --- Configuration: 0303-0100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 65 in the X datas point +-------------- + --- Configuration: 0303-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 21 in the X datas point +-------------- + --- Configuration: 3333-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8296551953.00833 + --- Energy: 59.045602086542516 + --- Workload: 489874000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 0 in the X datas point +-------------- + --- Configuration: 0303-1010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8236960890.90969 + --- Energy: 61.00540758755291 + --- Workload: 502499000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point +-------------- + --- Configuration: 3303-1010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 65 in the X datas point +-------------- + --- Configuration: 0303-1000 + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (53.6166443408558 mAh) it is NOT far from the median. +--- Median :53.6166443408558, the gap is : 10 +--- So No we don't romove this configuration '0303-1000' + --- remove_aberrant_points: The value [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0] +--- Computing the list of the 10 first neighbours of '0110-0020' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1637771825.311126 -error 2.6822965515099756e+18 - y tested = 5326600510.288329 -y predicted = 3989251638.8880253 -error 1.7885020038356664e+18 - y tested = 5072151352.996373 -y predicted = 4423652247.930236 -error 4.20551089271581e+17 - y tested = 7650055845.407672 -y predicted = 5825802607.134056 -error 3.3278998773517737e+18 - y tested = 5789616901.049658 -y predicted = 6059193194.698621 -error 7.267137809751192e+16 - y tested = 8224428196.629629 -y predicted = 7474544768.196463 -error 5.6232515623867994e+17 - y tested = 4059018123.5159216 -y predicted = 5098138287.669226 -error 1.0797707155499896e+18 - y tested = 5947637003.818383 -y predicted = 4052400489.871272 -error 3.5919214437983985e+18 - y tested = 997516184.7000968 -y predicted = 563488834.5306628 -error 1.8837974069510054e+17 - y tested = 6532788063.289651 -y predicted = 6703745652.283456 -error 2.9226497234574732e+16 - y tested = 1980229389.772511 -y predicted = 3479577402.792791 -error 2.2480444641478615e+18 - y tested = 5035525633.343237 -y predicted = 5203244345.942075 -error 2.8129566555811572e+16 - y tested = 5026691733.102776 -y predicted = 5311839134.665535 -error 8.130904061799357e+16 - y tested = 1014996574.3865615 -y predicted = 1258007872.215701 -error 5.905449087260278e+16 - y tested = 7665772326.561901 -y predicted = 6777988650.829456 -error 7.881598548970107e+17 - y tested = 3029054692.61153 -y predicted = 4745927468.353639 -error 2.9476521280844134e+18 - y tested = 4062233415.93208 -y predicted = 4782098922.64539 -error 5.1820634775561024e+17 - y tested = 5822958761.806049 -y predicted = 6309739661.916725 -error 2.3695564471255974e+17 - y tested = 6611133148.221605 -y predicted = 6344983074.580293 -error 7.083586169927612e+16 - y tested = 5377240292.736961 -y predicted = 3029166466.607542 -error 5.513450692954051e+18 -error squared vector [2.6822965515099756e+18, 1.7885020038356664e+18, 4.20551089271581e+17, 3.3278998773517737e+18, 7.267137809751192e+16, 5.6232515623867994e+17, 1.0797707155499896e+18, 3.5919214437983985e+18, 1.8837974069510054e+17, 2.9226497234574732e+16, 2.2480444641478615e+18, 2.8129566555811572e+16, 8.130904061799357e+16, 5.905449087260278e+16, 7.881598548970107e+17, 2.9476521280844134e+18, 5.1820634775561024e+17, 2.3695564471255974e+17, 7.083586169927612e+16, 5.513450692954051e+18] -Total loo_error 1.3117671272940221e+18 -iteration 211current difference of loo_error -31223580488192.0 - getting loo error of with lamda = 0.013136153787961874, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1611895923.2985783 -error 2.598208467277927e+18 - y tested = 5326600510.288329 -y predicted = 3993586773.5749636 -error 1.7769256222665298e+18 - y tested = 5072151352.996373 -y predicted = 4389484780.425279 -error 4.6603364930596544e+17 - y tested = 7650055845.407672 -y predicted = 5862068200.594663 -error 3.1968998180039716e+18 - y tested = 5789616901.049658 -y predicted = 6069068071.161749 -error 7.809295647701686e+16 - y tested = 8224428196.629629 -y predicted = 7509595452.988177 -error 5.109858513819656e+17 - y tested = 4059018123.5159216 -y predicted = 5093041461.238629 -error 1.069204262955209e+18 - y tested = 5947637003.818383 -y predicted = 4061536724.681879 -error 3.557374262958799e+18 - y tested = 997516184.7000968 -y predicted = 528127046.32104456 -error 2.203261632282291e+17 - y tested = 6532788063.289651 -y predicted = 6667052475.444555 -error 1.802693237130203e+16 - y tested = 1980229389.772511 -y predicted = 3506238375.603194 -error 2.3287034248359905e+18 - y tested = 5035525633.343237 -y predicted = 5187294509.700859 -error 2.30337918308552e+16 - y tested = 5026691733.102776 -y predicted = 5314059404.434491 -error 8.258017852661291e+16 - y tested = 1014996574.3865615 -y predicted = 1227385136.8254156 -error 4.510890145484302e+16 - y tested = 7665772326.561901 -y predicted = 6802417603.265578 -error 7.453813782380701e+17 - y tested = 3029054692.61153 -y predicted = 4778067800.801615 -error 3.0590468526207416e+18 - y tested = 4062233415.93208 -y predicted = 4829130140.067165 -error 5.881305854891255e+17 - y tested = 5822958761.806049 -y predicted = 6347367466.24526 -error 2.7500448929161165e+17 - y tested = 6611133148.221605 -y predicted = 6345486081.127233 -error 7.056836425584218e+16 - y tested = 5377240292.736961 -y predicted = 3026651830.492125 -error 5.525266118838544e+18 -error squared vector [2.598208467277927e+18, 1.7769256222665298e+18, 4.6603364930596544e+17, 3.1968998180039716e+18, 7.809295647701686e+16, 5.109858513819656e+17, 1.069204262955209e+18, 3.557374262958799e+18, 2.203261632282291e+17, 1.802693237130203e+16, 2.3287034248359905e+18, 2.30337918308552e+16, 8.258017852661291e+16, 4.510890145484302e+16, 7.453813782380701e+17, 3.0590468526207416e+18, 5.881305854891255e+17, 2.7500448929161165e+17, 7.056836425584218e+16, 5.525266118838544e+18] -Total loo_error 1.3117451035804575e+18 -iteration 212current difference of loo_error 22023713564672.0 - getting loo error of with lamda = 0.014560042960893539, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1636996702.990205 -error 2.6797582053279693e+18 - y tested = 5326600510.288329 -y predicted = 3989383091.764787 -error 1.7881504244027656e+18 - y tested = 5072151352.996373 -y predicted = 4422658826.93214 -error 4.218405414132982e+17 - y tested = 7650055845.407672 -y predicted = 5826883976.757625 -error 3.3239556626369055e+18 - y tested = 5789616901.049658 -y predicted = 6059451859.862216 -error 7.281090499737496e+16 - y tested = 8224428196.629629 -y predicted = 7475588190.267336 -error 5.6076135512867936e+17 - y tested = 4059018123.5159216 -y predicted = 5097987743.124815 -error 1.0794578704702486e+18 - y tested = 5947637003.818383 -y predicted = 4052691090.4883785 -error 3.5908200144460856e+18 - y tested = 997516184.7000968 -y predicted = 562437931.4195868 -error 1.8929308647761968e+17 - y tested = 6532788063.289651 -y predicted = 6702718890.8671055 -error 2.887648616115859e+16 - y tested = 1980229389.772511 -y predicted = 3480340681.118068 -error 2.2503338864224353e+18 - y tested = 5035525633.343237 -y predicted = 5202795310.006163 -error 2.7979144730919716e+16 - y tested = 5026691733.102776 -y predicted = 5311902316.3368635 -error 8.13450767887286e+16 - y tested = 1014996574.3865615 -y predicted = 1257100154.3773506 -error 5.861414344435639e+16 - y tested = 7665772326.561901 -y predicted = 6778710416.019855 -error 7.868788331345057e+17 - y tested = 3029054692.61153 -y predicted = 4746859181.729317 -error 2.9508522628332206e+18 - y tested = 4062233415.93208 -y predicted = 4783455954.573132 -error 5.201619502438434e+17 - y tested = 5822958761.806049 -y predicted = 6310792619.60987 -error 2.3798187281975827e+17 - y tested = 6611133148.221605 -y predicted = 6344997312.283369 -error 7.082828317054379e+16 - y tested = 5377240292.736961 -y predicted = 3029107474.9469204 -error 5.513727729982598e+18 -error squared vector [2.6797582053279693e+18, 1.7881504244027656e+18, 4.218405414132982e+17, 3.3239556626369055e+18, 7.281090499737496e+16, 5.6076135512867936e+17, 1.0794578704702486e+18, 3.5908200144460856e+18, 1.8929308647761968e+17, 2.887648616115859e+16, 2.2503338864224353e+18, 2.7979144730919716e+16, 8.13450767887286e+16, 5.861414344435639e+16, 7.868788331345057e+17, 2.9508522628332206e+18, 5.201619502438434e+17, 2.3798187281975827e+17, 7.082828317054379e+16, 5.513727729982598e+18] -Total loo_error 1.311721386751651e+18 -iteration 213current difference of loo_error -23716828806400.0 - getting loo error of with lamda = 0.013179301944717378, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1612665144.667375 -error 2.6006888685562685e+18 - y tested = 5326600510.288329 -y predicted = 3993459547.0406003 -error 1.7772648278890824e+18 - y tested = 5072151352.996373 -y predicted = 4390532148.091128 -error 4.646047404956581e+17 - y tested = 7650055845.407672 -y predicted = 5860985500.13038 -error 3.20077270035061e+18 - y tested = 5789616901.049658 -y predicted = 6068735218.273972 -error 7.790703501013264e+16 - y tested = 8224428196.629629 -y predicted = 7508546838.491761 -error 5.1248611892931834e+17 - y tested = 4059018123.5159216 -y predicted = 5093195037.125262 -error 1.0695218886425417e+18 - y tested = 5947637003.818383 -y predicted = 4061282977.975435 -error 3.558331510813899e+18 - y tested = 997516184.7000968 -y predicted = 529186929.08255714 -error 2.1933229166727885e+17 - y tested = 6532788063.289651 -y predicted = 6668219479.7632675 -error 1.8341668568050188e+16 - y tested = 1980229389.772511 -y predicted = 3505409716.0874534 -error 2.326175027778154e+18 - y tested = 5035525633.343237 -y predicted = 5187798662.459675 -error 2.3187075396295548e+16 - y tested = 5026691733.102776 -y predicted = 5313989747.069944 -error 8.254014882947952e+16 - y tested = 1014996574.3865615 -y predicted = 1228305265.7897668 -error 4.5500597828147864e+16 - y tested = 7665772326.561901 -y predicted = 6801681467.560808 -error 7.466530126092466e+17 - y tested = 3029054692.61153 -y predicted = 4777079777.73759 -error 3.0555916982299694e+18 - y tested = 4062233415.93208 -y predicted = 4827678014.475935 -error 5.859054334399636e+17 - y tested = 5822958761.806049 -y predicted = 6346170751.056606 -error 2.7375078569552493e+17 - y tested = 6611133148.221605 -y predicted = 6345470408.225879 -error 7.057669142203702e+16 - y tested = 5377240292.736961 -y predicted = 3026743872.917083 -error 5.524833419586066e+18 -error squared vector [2.6006888685562685e+18, 1.7772648278890824e+18, 4.646047404956581e+17, 3.20077270035061e+18, 7.790703501013264e+16, 5.1248611892931834e+17, 1.0695218886425417e+18, 3.558331510813899e+18, 2.1933229166727885e+17, 1.8341668568050188e+16, 2.326175027778154e+18, 2.3187075396295548e+16, 8.254014882947952e+16, 4.5500597828147864e+16, 7.466530126092466e+17, 3.0555916982299694e+18, 5.859054334399636e+17, 2.7375078569552493e+17, 7.057669142203702e+16, 5.524833419586066e+18] -Total loo_error 1.3116982770868864e+18 -iteration 214current difference of loo_error 23109664764672.0 - getting loo error of with lamda = 0.014518202324039716, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1636267340.3953066 -error 2.6773708089716193e+18 - y tested = 5326600510.288329 -y predicted = 3989506698.0382195 -error 1.7878198627575316e+18 - y tested = 5072151352.996373 -y predicted = 4421722453.537539 -error 4.2305775325123085e+17 - y tested = 7650055845.407672 -y predicted = 5827901803.826486 -error 3.3202453512506516e+18 - y tested = 5789616901.049658 -y predicted = 6059697218.965824 -error 7.294337812569746e+16 - y tested = 8224428196.629629 -y predicted = 7476570373.072063 -error 5.592913242562591e+17 - y tested = 4059018123.5159216 -y predicted = 5097845963.138513 -error 1.0791632803749396e+18 - y tested = 5947637003.818383 -y predicted = 4052963637.9093866 -error 3.5897871634849265e+18 - y tested = 997516184.7000968 -y predicted = 561448616.847457 -error 1.901549237329166e+17 - y tested = 6532788063.289651 -y predicted = 6701748895.313404 -error 2.8547762758158932e+16 - y tested = 1980229389.772511 -y predicted = 3481060836.249506 -error 2.252495030734229e+18 - y tested = 5035525633.343237 -y predicted = 5202371241.36087 -error 2.7837456914773788e+16 - y tested = 5026691733.102776 -y predicted = 5311961936.887722 -error 8.137908916750486e+16 - y tested = 1014996574.3865615 -y predicted = 1256245498.6312761 -error 5.8201043449232056e+16 - y tested = 7665772326.561901 -y predicted = 6779390135.478358 -error 7.856733886700622e+17 - y tested = 3029054692.61153 -y predicted = 4747737548.569431 -error 2.9538707593636086e+18 - y tested = 4062233415.93208 -y predicted = 4784735654.929965 -error 5.2200948535695725e+17 - y tested = 5822958761.806049 -y predicted = 6311787358.362165 -error 2.389533968110221e+17 - y tested = 6611133148.221605 -y predicted = 6345010761.096169 -error 7.082112492934034e+16 - y tested = 5377240292.736961 -y predicted = 3029051102.5109854 -error 5.513992473094125e+18 -error squared vector [2.6773708089716193e+18, 1.7878198627575316e+18, 4.2305775325123085e+17, 3.3202453512506516e+18, 7.294337812569746e+16, 5.592913242562591e+17, 1.0791632803749396e+18, 3.5897871634849265e+18, 1.901549237329166e+17, 2.8547762758158932e+16, 2.252495030734229e+18, 2.7837456914773788e+16, 8.137908916750486e+16, 5.8201043449232056e+16, 7.856733886700622e+17, 2.9538707593636086e+18, 5.2200948535695725e+17, 2.389533968110221e+17, 7.082112492934034e+16, 5.513992473094125e+18] -Total loo_error 1.3116807428727393e+18 -iteration 215current difference of loo_error -17534214147072.0 - getting loo error of with lamda = 0.013219874683484721, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1613387955.406573 -error 2.6030206943821046e+18 - y tested = 5326600510.288329 -y predicted = 3993339901.0430818 -error 1.7775838521650081e+18 - y tested = 5072151352.996373 -y predicted = 4391514448.391487 -error 4.6326659591012077e+17 - y tested = 7650055845.407672 -y predicted = 5859968361.254922 -error 3.204413200920322e+18 - y tested = 5789616901.049658 -y predicted = 6068424787.078291 -error 7.773383731175528e+16 - y tested = 8224428196.629629 -y predicted = 7507561872.926061 -error 5.138973260602694e+17 - y tested = 4059018123.5159216 -y predicted = 5093339235.757145 -error 1.0698201632279213e+18 - y tested = 5947637003.818383 -y predicted = 4061043482.230504 -error 3.559235115697356e+18 - y tested = 997516184.7000968 -y predicted = 530182359.54823405 -error 2.1840090413107187e+17 - y tested = 6532788063.289651 -y predicted = 6669311559.268107 -error 1.8638664954179628e+16 - y tested = 1980229389.772511 -y predicted = 3504633124.9077253 -error 2.3238067476941926e+18 - y tested = 5035525633.343237 -y predicted = 5188270635.08444 -error 2.33310355569202e+16 - y tested = 5026691733.102776 -y predicted = 5313924517.480603 -error 8.250267242143963e+16 - y tested = 1014996574.3865615 -y predicted = 1229169317.5422094 -error 4.586996391081511e+16 - y tested = 7665772326.561901 -y predicted = 6800990298.617343 -error 7.478479558559026e+17 - y tested = 3029054692.61153 -y predicted = 4776153288.472965 -error 3.052353503660999e+18 - y tested = 4062233415.93208 -y predicted = 4826316670.634046 -error 5.838232201159492e+17 - y tested = 5822958761.806049 -y predicted = 6345050868.436567 -error 2.7258016780589213e+17 - y tested = 6611133148.221605 -y predicted = 6345455714.137407 -error 7.058449898156338e+16 - y tested = 5377240292.736961 -y predicted = 3026829333.0993423 -error 5.524431679184633e+18 -error squared vector [2.6030206943821046e+18, 1.7775838521650081e+18, 4.6326659591012077e+17, 3.204413200920322e+18, 7.773383731175528e+16, 5.138973260602694e+17, 1.0698201632279213e+18, 3.559235115697356e+18, 2.1840090413107187e+17, 1.8638664954179628e+16, 2.3238067476941926e+18, 2.33310355569202e+16, 8.250267242143963e+16, 4.586996391081511e+16, 7.478479558559026e+17, 3.052353503660999e+18, 5.838232201159492e+17, 2.7258016780589213e+17, 7.058449898156338e+16, 5.524431679184633e+18] -Total loo_error 1.3116570899974208e+18 -iteration 216current difference of loo_error 23652875318528.0 - getting loo error of with lamda = 0.014478859062204716, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1635581064.235608 -error 2.6751254174134876e+18 - y tested = 5326600510.288329 -y predicted = 3989622925.7716703 -error 1.7875090614999995e+18 - y tested = 5072151352.996373 -y predicted = 4420839972.151436 -error 4.24206514818139e+17 - y tested = 7650055845.407672 -y predicted = 5828859765.237122 -error 3.316755162428578e+18 - y tested = 5789616901.049658 -y predicted = 6059929832.63264 -error 7.306908098098594e+16 - y tested = 8224428196.629629 -y predicted = 7477494853.416107 -error 5.5790941920412896e+17 - y tested = 4059018123.5159216 -y predicted = 5097712450.021105 -error 1.0788859039140562e+18 - y tested = 5947637003.818383 -y predicted = 4053219285.976092 -error 3.5888184896747955e+18 - y tested = 997516184.7000968 -y predicted = 560517343.345401 -error 1.909679873453466e+17 - y tested = 6532788063.289651 -y predicted = 6700832775.647995 -error 2.82390253515986e+16 - y tested = 1980229389.772511 -y predicted = 3481740168.623122 -error 2.254534619004569e+18 - y tested = 5035525633.343237 -y predicted = 5201970853.154986 -error 2.7704011198181596e+16 - y tested = 5026691733.102776 -y predicted = 5312018186.299529 -error 8.141118489383917e+16 - y tested = 1014996574.3865615 -y predicted = 1255440864.3768964 -error 5.781345658895625e+16 - y tested = 7665772326.561901 -y predicted = 6780030200.647347 -error 7.84539113619633e+17 - y tested = 3029054692.61153 -y predicted = 4748565501.397528 -error 2.9567174215318764e+18 - y tested = 4062233415.93208 -y predicted = 4785942231.383535 -error 5.23754449562149e+17 - y tested = 5822958761.806049 -y predicted = 6312726842.926102 -error 2.3987277328401818e+17 - y tested = 6611133148.221605 -y predicted = 6345023460.847963 -error 7.0814365714097464e+16 - y tested = 5377240292.736961 -y predicted = 3028997291.462523 -error 5.514245193034382e+18 -error squared vector [2.6751254174134876e+18, 1.7875090614999995e+18, 4.24206514818139e+17, 3.316755162428578e+18, 7.306908098098594e+16, 5.5790941920412896e+17, 1.0788859039140562e+18, 3.5888184896747955e+18, 1.909679873453466e+17, 2.82390253515986e+16, 2.254534619004569e+18, 2.7704011198181596e+16, 8.141118489383917e+16, 5.781345658895625e+16, 7.84539113619633e+17, 2.9567174215318764e+18, 5.23754449562149e+17, 2.3987277328401818e+17, 7.0814365714097464e+16, 5.514245193034382e+18] -Total loo_error 1.311644632553141e+18 -iteration 217current difference of loo_error -12457444279808.0 - getting loo error of with lamda = 0.013258025725264116, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1614067183.9421496 -error 2.60521287400993e+18 - y tested = 5326600510.288329 -y predicted = 3993227385.0231676 -error 1.777883891179384e+18 - y tested = 5072151352.996373 -y predicted = 4392435873.764717 -error 4.620131327071199e+17 - y tested = 7650055845.407672 -y predicted = 5859012762.672466 -error 3.207835324213629e+18 - y tested = 5789616901.049658 -y predicted = 6068135126.935011 -error 7.757240215032456e+16 - y tested = 8224428196.629629 -y predicted = 7506636632.135624 -error 5.152247300587516e+17 - y tested = 4059018123.5159216 -y predicted = 5093474641.217607 -error 1.0701002870154964e+18 - y tested = 5947637003.818383 -y predicted = 4060817497.2310624 -error 3.560087850438421e+18 - y tested = 997516184.7000968 -y predicted = 531117326.01712817 -error 2.1752789538077578e+17 - y tested = 6532788063.289651 -y predicted = 6670333826.764476 -error 1.8918837049872476e+16 - y tested = 1980229389.772511 -y predicted = 3503905183.5359674 -error 2.3215879245006986e+18 - y tested = 5035525633.343237 -y predicted = 5188712600.916273 -error 2.3466247034222444e+16 - y tested = 5026691733.102776 -y predicted = 5313863417.894791 -error 8.246757654628446e+16 - y tested = 1014996574.3865615 -y predicted = 1229980776.0484228 -error 4.621820696418785e+16 - y tested = 7665772326.561901 -y predicted = 6800341292.042143 -error 7.48970875509939e+17 - y tested = 3029054692.61153 -y predicted = 4775284350.862514 -error 3.0493180193553475e+18 - y tested = 4062233415.93208 -y predicted = 4825040194.853074 -error 5.818741819678226e+17 - y tested = 5822958761.806049 -y predicted = 6344002575.345742 -error 2.7148665562798624e+17 - y tested = 6611133148.221605 -y predicted = 6345441936.00037 -error 7.059182025158948e+16 - y tested = 5377240292.736961 -y predicted = 3026908737.135871 -error 5.524058421254241e+18 -error squared vector [2.60521287400993e+18, 1.777883891179384e+18, 4.620131327071199e+17, 3.207835324213629e+18, 7.757240215032456e+16, 5.152247300587516e+17, 1.0701002870154964e+18, 3.560087850438421e+18, 2.1752789538077578e+17, 1.8918837049872476e+16, 2.3215879245006986e+18, 2.3466247034222444e+16, 8.246757654628446e+16, 4.621820696418785e+16, 7.48970875509939e+17, 3.0493180193553475e+18, 5.818741819678226e+17, 2.7148665562798624e+17, 7.059182025158948e+16, 5.524058421254241e+18] -Total loo_error 1.3116208576608013e+18 -iteration 218current difference of loo_error 23774892339712.0 - getting loo error of with lamda = 0.014441864112600455, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1634935354.1539848 -error 2.6730136119901266e+18 - y tested = 5326600510.288329 -y predicted = 3989732215.179346 -error 1.7872168384675988e+18 - y tested = 5072151352.996373 -y predicted = 4420008388.391951 -error 4.252904462830451e+17 - y tested = 7650055845.407672 -y predicted = 5829761331.78089 -error 3.3134721163397606e+18 - y tested = 5789616901.049658 -y predicted = 6060150252.905023 -error 7.318829446609861e+16 - y tested = 8224428196.629629 -y predicted = 7478364970.383135 -error 5.5661033755732774e+17 - y tested = 4059018123.5159216 -y predicted = 5097586732.873035 -error 1.0786247563419693e+18 - y tested = 5947637003.818383 -y predicted = 4053459111.7482677 -error 3.5879098868071864e+18 - y tested = 997516184.7000968 -y predicted = 559640760.8028785 -error 1.9173488685316864e+17 - y tested = 6532788063.289651 -y predicted = 6699967760.750358 -error 2.7949051243053424e+16 - y tested = 1980229389.772511 -y predicted = 3482380871.6283026 -error 2.2564590744415506e+18 - y tested = 5035525633.343237 -y predicted = 5201592913.266333 -error 2.7578341461055824e+16 - y tested = 5026691733.102776 -y predicted = 5312071245.546859 -error 8.144146612282264e+16 - y tested = 1014996574.3865615 -y predicted = 1254683378.3203437 -error 5.744976397999136e+16 - y tested = 7665772326.561901 -y predicted = 6780632873.630301 -error 7.834718511360515e+17 - y tested = 3029054692.61153 -y predicted = 4749345825.098506 -error 2.959401580513323e+18 - y tested = 4062233415.93208 -y predicted = 4787079685.024451 -error 5.2540211381713056e+17 - y tested = 5822958761.806049 -y predicted = 6313613915.979633 -error 2.4074248031710346e+17 - y tested = 6611133148.221605 -y predicted = 6345035449.857253 -error 7.0807985074805784e+16 - y tested = 5377240292.736961 -y predicted = 3028945976.970954 -error 5.514486193458941e+18 -error squared vector [2.6730136119901266e+18, 1.7872168384675988e+18, 4.252904462830451e+17, 3.3134721163397606e+18, 7.318829446609861e+16, 5.5661033755732774e+17, 1.0786247563419693e+18, 3.5879098868071864e+18, 1.9173488685316864e+17, 2.7949051243053424e+16, 2.2564590744415506e+18, 2.7578341461055824e+16, 8.144146612282264e+16, 5.744976397999136e+16, 7.834718511360515e+17, 2.959401580513323e+18, 5.2540211381713056e+17, 2.4074248031710346e+17, 7.0807985074805784e+16, 5.514486193458941e+18] -Total loo_error 1.3116125538336056e+18 -iteration 219current difference of loo_error -8303827195648.0 - getting loo error of with lamda = 0.013293899615789459, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1614705483.0119789 -error 2.6072737965998305e+18 - y tested = 5326600510.288329 -y predicted = 3993121575.0312657 -error 1.7781660707743114e+18 - y tested = 5072151352.996373 -y predicted = 4393300328.352294 -error 4.608387136603162e+17 - y tested = 7650055845.407672 -y predicted = 5858114935.51503 -error 3.21105222454687e+18 - y tested = 5789616901.049658 -y predicted = 6067864724.806266 -error 7.74218514252884e+16 - y tested = 8224428196.629629 -y predicted = 7505767441.09624 -error 5.1647328154382163e+17 - y tested = 4059018123.5159216 -y predicted = 5093601799.913084 -error 1.0703633834674685e+18 - y tested = 5947637003.818383 -y predicted = 4060604312.9700375 -error 3.5608923763303485e+18 - y tested = 997516184.7000968 -y predicted = 531995561.77667904 -error 2.1670945036700694e+17 - y tested = 6532788063.289651 -y predicted = 6671291010.320752 -error 1.918306633630003e+16 - y tested = 1980229389.772511 -y predicted = 3503222714.9578466 -error 2.3195086685590856e+18 - y tested = 5035525633.343237 -y predicted = 5189126572.446222 -error 2.3593248493319024e+16 - y tested = 5026691733.102776 -y predicted = 5313806172.582518 -error 8.243470135776646e+16 - y tested = 1014996574.3865615 -y predicted = 1230742900.9856033 -error 4.654647744098042e+16 - y tested = 7665772326.561901 -y predicted = 6799731824.991814 -error 7.500261503597686e+17 - y tested = 3029054692.61153 -y predicted = 4774469258.50385 -error 3.0464720068290765e+18 - y tested = 4062233415.93208 -y predicted = 4823843087.15835 -error 5.800492913053874e+17 - y tested = 5822958761.806049 -y predicted = 6343021023.284873 -error 2.7046475581446835e+17 - y tested = 6611133148.221605 -y predicted = 6345429015.109019 -error 7.059868635311083e+16 - y tested = 5377240292.736961 -y predicted = 3026982563.0367427 -error 5.523711396015626e+18 -error squared vector [2.6072737965998305e+18, 1.7781660707743114e+18, 4.608387136603162e+17, 3.21105222454687e+18, 7.74218514252884e+16, 5.1647328154382163e+17, 1.0703633834674685e+18, 3.5608923763303485e+18, 2.1670945036700694e+17, 1.918306633630003e+16, 2.3195086685590856e+18, 2.3593248493319024e+16, 8.243470135776646e+16, 4.654647744098042e+16, 7.500261503597686e+17, 3.0464720068290765e+18, 5.800492913053874e+17, 2.7046475581446835e+17, 7.059868635311083e+16, 5.523711396015626e+18] -Total loo_error 1.3115889798790075e+18 -iteration 220current difference of loo_error 23573954598144.0 - getting loo error of with lamda = 0.01440707730966679, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1634327834.3537543 -error 2.6710274698710446e+18 - y tested = 5326600510.288329 -y predicted = 3989834980.268534 -error 1.7869420822491034e+18 - y tested = 5072151352.996373 -y predicted = 4419224862.33202 -error 4.263130022112679e+17 - y tested = 7650055845.407672 -y predicted = 5830609778.9096365 -error 3.3103839888951736e+18 - y tested = 5789616901.049658 -y predicted = 6060359021.220632 -error 7.3301295634674e+16 - y tested = 8224428196.629629 -y predicted = 7479183875.640093 -error 5.55389097967155e+17 - y tested = 4059018123.5159216 -y predicted = 5097468366.316218 -error 1.0783789067719954e+18 - y tested = 5947637003.818383 -y predicted = 4053684120.8539724 -error 3.587057522889203e+18 - y tested = 997516184.7000968 -y predicted = 558815706.2693406 -error 1.924581097753744e+17 - y tested = 6532788063.289651 -y predicted = 6699151196.8243065 -error 2.767669219946964e+16 - y tested = 1980229389.772511 -y predicted = 3482985034.724894 -error 2.2582745284362527e+18 - y tested = 5035525633.343237 -y predicted = 5201236243.35559 -error 2.746000627066613e+16 - y tested = 5026691733.102776 -y predicted = 5312121286.909398 -error 8.147003018624762e+16 - y tested = 1014996574.3865615 -y predicted = 1253970326.050606 -error 5.710845398438841e+16 - y tested = 7665772326.561901 -y predicted = 6781200293.408026 -error 7.824676818379808e+17 - y tested = 3029054692.61153 -y predicted = 4750081162.837644 -error 2.961932111218957e+18 - y tested = 4062233415.93208 -y predicted = 4788151817.968646 -error 5.2695752641532186e+17 - y tested = 5822958761.806049 -y predicted = 6314451299.728008 -error 2.4156491483296822e+17 - y tested = 6611133148.221605 -y predicted = 6345046764.918802 -error 7.080196337916622e+16 - y tested = 5377240292.736961 -y predicted = 3028897088.6861877 -error 5.514715804011453e+18 -error squared vector [2.6710274698710446e+18, 1.7869420822491034e+18, 4.263130022112679e+17, 3.3103839888951736e+18, 7.3301295634674e+16, 5.55389097967155e+17, 1.0783789067719954e+18, 3.587057522889203e+18, 1.924581097753744e+17, 2.767669219946964e+16, 2.2582745284362527e+18, 2.746000627066613e+16, 8.147003018624762e+16, 5.710845398438841e+16, 7.824676818379808e+17, 2.961932111218957e+18, 5.2695752641532186e+17, 2.4156491483296822e+17, 7.080196337916622e+16, 5.514715804011453e+18] -Total loo_error 1.3115840594518932e+18 -iteration 221current difference of loo_error -4920427114240.0 - getting loo error of with lamda = 0.013327632273179681, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0110-0020' +--- Neighbour 0 in the list of neghbours, And at position 66 in the X datas point +-------------- + --- Configuration: 0110-0020 + --- Distance from that configuration: [1.] + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 64 in the X datas point +-------------- + --- Configuration: 0220-0020 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3998672440.749671 + --- Energy: 36.82601141845538 + --- Workload: 147255000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 38 in the X datas point +-------------- + --- Configuration: 1110-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 2905397356.669485 + --- Energy: 30.668041259477853 + --- Workload: 89102900000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 69 in the X datas point +-------------- + --- Configuration: 0101-2020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8367150566.874451 + --- Energy: 43.37670883350873 + --- Workload: 362938000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 12 in the X datas point +-------------- + --- Configuration: 0022-0030 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7249844128.351241 + --- Energy: 42.05401520354165 + --- Workload: 304885000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0110-0020' +--- Neighbour 0 in the list of neghbours, And at position 32 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 29.957415812958512 + --- Workload: 0.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 17 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.027102694886654 + --- Workload: 0.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 16 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 0.08333333333333333 + --- Energy: 30.299284062105812 + --- Workload: 0.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 38 in the X datas point +-------------- + --- Configuration: 1110-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 2905397356.669485 + --- Energy: 30.668041259477853 + --- Workload: 89102900000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 66 in the X datas point +-------------- + --- Configuration: 0110-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 64 in the X datas point +-------------- + --- Configuration: 0220-0020 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 3998672440.749671 + --- Energy: 36.82601141845538 + --- Workload: 147255000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 12 in the X datas point +-------------- + --- Configuration: 0022-0030 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7249844128.351241 + --- Energy: 42.05401520354165 + --- Workload: 304885000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 69 in the X datas point +-------------- + --- Configuration: 0101-2020 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8367150566.874451 + --- Energy: 43.37670883350873 + --- Workload: 362938000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 66 in the X datas point +-------------- + --- Configuration: 0110-0020 + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (36.31061849927073 mAh) it is NOT far from the median. +--- Median :36.31061849927073, the gap is : 10 +--- So No we don't romove this configuration '0110-0020' + --- remove_aberrant_points: The value [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0] +--- Computing the list of the 10 first neighbours of '0030-2000' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1615305340.9677536 -error 2.6092113442897336e+18 - y tested = 5326600510.288329 -y predicted = 3993022072.182721 -error 1.778431450580193e+18 - y tested = 5072151352.996373 -y predicted = 4394111450.024918 -error 4.5973811002154086e+17 - y tested = 7650055845.407672 -y predicted = 5857271346.862893 -error 3.2140762582224543e+18 - y tested = 5789616901.049658 -y predicted = 6067612191.998267 -error 7.728138178960197e+16 - y tested = 8224428196.629629 -y predicted = 7504950857.243157 -error 5.176476418906362e+17 - y tested = 4059018123.5159216 -y predicted = 5093721223.145496 -error 1.0706105043830497e+18 - y tested = 5947637003.818383 -y predicted = 4060403249.6736927 -error 3.561651242783062e+18 - y tested = 997516184.7000968 -y predicted = 532820562.3925773 -error 2.1594202139177286e+17 - y tested = 6532788063.289651 -y predicted = 6672187486.401439 -error 1.9432199163899236e+16 - y tested = 1980229389.772511 -y predicted = 3502582764.6626863 -error 2.317559798039507e+18 - y tested = 5035525633.343237 -y predicted = 5189514414.851374 -error 2.371254483036068e+16 - y tested = 5026691733.102776 -y predicted = 5313752525.975807 -error 8.240389880489355e+16 - y tested = 1014996574.3865615 -y predicted = 1231458743.1064956 -error 4.685587048693722e+16 - y tested = 7665772326.561901 -y predicted = 6799159443.661716 -error 7.510178888085691e+17 - y tested = 3029054692.61153 -y predicted = 4773704559.476179 -error 3.0438031579508383e+18 - y tested = 4062233415.93208 -y predicted = 4822720228.960397 -error 5.783401927899663e+17 - y tested = 5822958761.806049 -y predicted = 6342101724.3201475 -error 2.6950941552791434e+17 - y tested = 6611133148.221605 -y predicted = 6345416896.639549 -error 7.0605126354818504e+16 - y tested = 5377240292.736961 -y predicted = 3027051245.7503347 -error 5.523388556575908e+18 -error squared vector [2.6092113442897336e+18, 1.778431450580193e+18, 4.5973811002154086e+17, 3.2140762582224543e+18, 7.728138178960197e+16, 5.176476418906362e+17, 1.0706105043830497e+18, 3.561651242783062e+18, 2.1594202139177286e+17, 1.9432199163899236e+16, 2.317559798039507e+18, 2.371254483036068e+16, 8.240389880489355e+16, 4.685587048693722e+16, 7.510178888085691e+17, 3.0438031579508383e+18, 5.783401927899663e+17, 2.6950941552791434e+17, 7.0605126354818504e+16, 5.523388556575908e+18] -Total loo_error 1.3115609302342828e+18 -iteration 222current difference of loo_error 23129217610496.0 - getting loo error of with lamda = 0.014374366854015665, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1633756265.6368217 -error 2.669159535235281e+18 - y tested = 5326600510.288329 -y predicted = 3989931610.3890147 -error 1.7866837479580434e+18 - y tested = 5072151352.996373 -y predicted = 4418486701.854889 -error 4.2727747615191834e+17 - y tested = 7650055845.407672 -y predicted = 5831408197.035371 -error 3.3074792689301007e+18 - y tested = 5789616901.049658 -y predicted = 6060556666.748591 -error 7.340835663699304e+16 - y tested = 8224428196.629629 -y predicted = 7479954543.293126 -error 5.542410205121997e+17 - y tested = 4059018123.5159216 -y predicted = 5097356929.266111 -error 1.0781474755267304e+18 - y tested = 5947637003.818383 -y predicted = 4053895252.457376 -error 3.586257820847855e+18 - y tested = 997516184.7000968 -y predicted = 558039194.196882 -error 1.9314002518176278e+17 - y tested = 6532788063.289651 -y predicted = 6698380545.416693 -error 2.7420870136994664e+16 - y tested = 1980229389.772511 -y predicted = 3483554646.715664 -error 2.2599868281631967e+18 - y tested = 5035525633.343237 -y predicted = 5200899717.7454195 -error 2.734858779186021e+16 - y tested = 5026691733.102776 -y predicted = 5312168474.284981 -error 8.149696975601178e+16 - y tested = 1014996574.3865615 -y predicted = 1253299143.9524329 -error 5.678811466169696e+16 - y tested = 7665772326.561901 -y predicted = 6781734481.850818 -error 7.815229108814176e+17 - y tested = 3029054692.61153 -y predicted = 4750774021.916096 -error 2.9643174489009644e+18 - y tested = 4062233415.93208 -y predicted = 4789162240.981395 -error 5.284255166875776e+17 - y tested = 5822958761.806049 -y predicted = 6315241597.962542 -error 2.4234239077427978e+17 - y tested = 6611133148.221605 -y predicted = 6345057441.303627 -error 7.079628181190188e+16 - y tested = 5377240292.736961 -y predicted = 3028850552.0260787 -error 5.514934374276127e+18 -error squared vector [2.669159535235281e+18, 1.7866837479580434e+18, 4.2727747615191834e+17, 3.3074792689301007e+18, 7.340835663699304e+16, 5.542410205121997e+17, 1.0781474755267304e+18, 3.586257820847855e+18, 1.9314002518176278e+17, 2.7420870136994664e+16, 2.2599868281631967e+18, 2.734858779186021e+16, 8.149696975601178e+16, 5.678811466169696e+16, 7.815229108814176e+17, 2.9643174489009644e+18, 5.284255166875776e+17, 2.4234239077427978e+17, 7.079628181190188e+16, 5.514934374276127e+18] -Total loo_error 1.3115587510411456e+18 -iteration 223current difference of loo_error -2179193137152.0 - getting loo error of with lamda = 0.013359351502901984, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1615869092.305182 -error 2.6110329231978614e+18 - y tested = 5326600510.288329 -y predicted = 3992928501.198801 -error 1.7786810278288983e+18 - y tested = 5072151352.996373 -y predicted = 4394872630.462036 -error 4.587064679977435e+17 - y tested = 7650055845.407672 -y predicted = 5856478684.407161 -error 3.2169190324626534e+18 - y tested = 5789616901.049658 -y predicted = 6067376252.374584 -error 7.715025724844387e+16 - y tested = 8224428196.629629 -y predicted = 7504183655.017814 -error 5.1875219972161414e+17 - y tested = 4059018123.5159216 -y predicted = 5093833389.493512 -error 1.0708426347002715e+18 - y tested = 5947637003.818383 -y predicted = 4060213657.5775247 -error 3.56236688793504e+18 - y tested = 997516184.7000968 -y predicted = 533595601.7078608 -error 2.1522230732385616e+17 - y tested = 6532788063.289651 -y predicted = 6673027309.6719475 -error 1.966704622587448e+16 - y tested = 1980229389.772511 -y predicted = 3501982583.343965 -error 2.315732782144919e+18 - y tested = 5035525633.343237 -y predicted = 5189877858.211145 -error 2.3824609321673384e+16 - y tested = 5026691733.102776 -y predicted = 5313702240.979479 -error 8.237503163164315e+16 - y tested = 1014996574.3865615 -y predicted = 1232131158.4417613 -error 4.71474275928246e+16 - y tested = 7665772326.561901 -y predicted = 6798621851.721442 -error 7.519499460160333e+17 - y tested = 3029054692.61153 -y predicted = 4772987036.974448 -error 3.0413000217151447e+18 - y tested = 4062233415.93208 -y predicted = 4821666853.647457 -error 5.767391463201958e+17 - y tested = 5822958761.806049 -y predicted = 6341240520.517583 -error 2.686159814131203e+17 - y tested = 6611133148.221605 -y predicted = 6345405529.392545 -error 7.06111674085625e+16 - y tested = 5377240292.736961 -y predicted = 3027115181.599662 -error 5.523088037998105e+18 -error squared vector [2.6110329231978614e+18, 1.7786810278288983e+18, 4.587064679977435e+17, 3.2169190324626534e+18, 7.715025724844387e+16, 5.1875219972161414e+17, 1.0708426347002715e+18, 3.56236688793504e+18, 2.1522230732385616e+17, 1.966704622587448e+16, 2.315732782144919e+18, 2.3824609321673384e+16, 8.237503163164315e+16, 4.71474275928246e+16, 7.519499460160333e+17, 3.0413000217151447e+18, 5.767391463201958e+17, 2.686159814131203e+17, 7.06111674085625e+16, 5.523088037998105e+18] -Total loo_error 1.3115362468102239e+18 -iteration 224current difference of loo_error 22504230921728.0 - getting loo error of with lamda = 0.014343608813072827, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1633218537.844354 -error 2.6674027920862464e+18 - y tested = 5326600510.288329 -y predicted = 3990022471.6922464 -error 1.7864408532573514e+18 - y tested = 5072151352.996373 -y predicted = 4417791356.146069 -error 4.281870054779306e+17 - y tested = 7650055845.407672 -y predicted = 5832159501.370749 -error 3.3047471176628086e+18 - y tested = 5789616901.049658 -y predicted = 6060743705.046434 -error 7.350974384550651e+16 - y tested = 8224428196.629629 -y predicted = 7480679779.3007965 -error 5.5316170827914336e+17 - y tested = 4059018123.5159216 -y predicted = 5097252023.742909 -error 1.077929631580543e+18 - y tested = 5947637003.818383 -y predicted = 4054093383.8662 -error 3.585507440661618e+18 - y tested = 997516184.7000968 -y predicted = 557308407.1102742 -error 1.9378288745057075e+17 - y tested = 6532788063.289651 -y predicted = 6697653381.059165 -error 2.7180573003242856e+16 - y tested = 1980229389.772511 -y predicted = 3484091599.130528 -error 2.261601544735176e+18 - y tested = 5035525633.343237 -y predicted = 5200582262.15556 -error 2.724369071488885e+16 - y tested = 5026691733.102776 -y predicted = 5312212963.501273 -error 8.152237300827194e+16 - y tested = 1014996574.3865615 -y predicted = 1252667411.4502866 -error 5.648742679057177e+16 - y tested = 7665772326.561901 -y predicted = 6782237349.518045 -error 7.806340556598866e+17 - y tested = 3029054692.61153 -y predicted = 4751426779.542372 -error 2.966565605838504e+18 - y tested = 4062233415.93208 -y predicted = 4790114381.085104 -error 5.2981069943209805e+17 - y tested = 5822958761.806049 -y predicted = 6315987298.501578 -error 2.4307713799613456e+17 - y tested = 6611133148.221605 -y predicted = 6345067512.769631 -error 7.079092236846268e+16 - y tested = 5377240292.736961 -y predicted = 3028806289.2955456 -error 5.515142268519876e+18 -error squared vector [2.6674027920862464e+18, 1.7864408532573514e+18, 4.281870054779306e+17, 3.3047471176628086e+18, 7.350974384550651e+16, 5.5316170827914336e+17, 1.077929631580543e+18, 3.585507440661618e+18, 1.9378288745057075e+17, 2.7180573003242856e+16, 2.261601544735176e+18, 2.724369071488885e+16, 8.152237300827194e+16, 5.648742679057177e+16, 7.806340556598866e+17, 2.966565605838504e+18, 5.2981069943209805e+17, 2.4307713799613456e+17, 7.079092236846268e+16, 5.515142268519876e+18] -Total loo_error 1.3115362739184417e+18 -iteration 225current difference of loo_error 27108217856.0 - getting loo error of with lamda = 0.01431378283397674, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1632696850.2812033 -error 2.665699004646046e+18 - y tested = 5326600510.288329 -y predicted = 3990110578.385725 -error 1.7862053380770273e+18 - y tested = 5072151352.996373 -y predicted = 4417115924.949861 -error 4.29071411996078e+17 - y tested = 7650055845.407672 -y predicted = 5832888540.678031 -error 3.302097013378388e+18 - y tested = 5789616901.049658 -y predicted = 6060926182.694512 -error 7.3608726306647e+16 - y tested = 8224428196.629629 -y predicted = 7481383564.918919 -error 5.521153247141055e+17 - y tested = 4059018123.5159216 -y predicted = 5097150186.129547 -error 1.0777181794264205e+18 - y tested = 5947637003.818383 -y predicted = 4054285140.2147856 -error 3.5847812794112164e+18 - y tested = 997516184.7000968 -y predicted = 556599186.7965488 -error 1.9440779904027734e+17 - y tested = 6532788063.289651 -y predicted = 6696945916.385427 -error 2.6947800733014556e+16 - y tested = 1980229389.772511 -y predicted = 3484613523.598526 -error 2.2631716221074493e+18 - y tested = 5035525633.343237 -y predicted = 5200273481.633897 -error 2.7141853516402292e+16 - y tested = 5026691733.102776 -y predicted = 5312256214.87611 -error 8.154707325047309e+16 - y tested = 1014996574.3865615 -y predicted = 1252054254.8560078 -error 5.6196343869554104e+16 - y tested = 7665772326.561901 -y predicted = 6782725501.288668 -error 7.797716956251364e+17 - y tested = 3029054692.61153 -y predicted = 4752060921.830794 -error 2.9687504659283886e+18 - y tested = 4062233415.93208 -y predicted = 4791039551.894695 -error 5.311583838167584e+17 - y tested = 5822958761.806049 -y predicted = 6316712795.4291935 -error 2.4379304571912496e+17 - y tested = 6611133148.221605 -y predicted = 6345077308.862934 -error 7.078570965684705e+16 - y tested = 5377240292.736961 -y predicted = 3028762898.993078 -error 5.515346068926062e+18 -error squared vector [2.665699004646046e+18, 1.7862053380770273e+18, 4.29071411996078e+17, 3.302097013378388e+18, 7.3608726306647e+16, 5.521153247141055e+17, 1.0777181794264205e+18, 3.5847812794112164e+18, 1.9440779904027734e+17, 2.6947800733014556e+16, 2.2631716221074493e+18, 2.7141853516402292e+16, 8.154707325047309e+16, 5.6196343869554104e+16, 7.797716956251364e+17, 2.9687504659283886e+18, 5.311583838167584e+17, 2.4379304571912496e+17, 7.078570965684705e+16, 5.515346068926062e+18] -Total loo_error 1.3115157070072707e+18 -iteration 226current difference of loo_error -20539802953216.0 - getting loo error of with lamda = 0.013388273664449704, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1616382875.6674142 -error 2.6126936004814623e+18 - y tested = 5326600510.288329 -y predicted = 3992843175.5447464 -error 1.7789086279823053e+18 - y tested = 5072151352.996373 -y predicted = 4395565403.997635 -error 4.5776854638252326e+17 - y tested = 7650055845.407672 -y predicted = 5855756405.910212 -error 3.2195104785809004e+18 - y tested = 5789616901.049658 -y predicted = 6067162395.331588 -error 7.703150139620082e+16 - y tested = 8224428196.629629 -y predicted = 7503484647.220274 -error 5.1975960143495936e+17 - y tested = 4059018123.5159216 -y predicted = 5093935555.988722 -error 1.071054092036093e+18 - y tested = 5947637003.818383 -y predicted = 4060040339.493898 -error 3.5630211671689236e+18 - y tested = 997516184.7000968 -y predicted = 534301690.6772571 -error 2.1456766747283542e+17 - y tested = 6532788063.289651 -y predicted = 6673790432.75338 -error 1.9881668194385908e+16 - y tested = 1980229389.772511 -y predicted = 3501436651.2035346 -error 2.314071532230475e+18 - y tested = 5035525633.343237 -y predicted = 5190208201.427828 -error 2.3926696869244104e+16 - y tested = 5026691733.102776 -y predicted = 5313656524.054523 -error 8.234879124598037e+16 - y tested = 1014996574.3865615 -y predicted = 1232743688.9182785 -error 4.741380588688866e+16 - y tested = 7665772326.561901 -y predicted = 6798132193.337161 -error 7.527994007822446e+17 - y tested = 3029054692.61153 -y predicted = 4772334076.876879 -error 3.039023011604574e+18 - y tested = 4062233415.93208 -y predicted = 4820708438.513622 -error 5.752843598800714e+17 - y tested = 5822958761.806049 -y predicted = 6340457969.594461 -error 2.678054300616341e+17 - y tested = 6611133148.221605 -y predicted = 6345395188.339033 -error 7.061666332255154e+16 - y tested = 5377240292.736961 -y predicted = 3027172935.7146845 -error 5.522816582541669e+18 -error squared vector [2.6126936004814623e+18, 1.7789086279823053e+18, 4.5776854638252326e+17, 3.2195104785809004e+18, 7.703150139620082e+16, 5.1975960143495936e+17, 1.071054092036093e+18, 3.5630211671689236e+18, 2.1456766747283542e+17, 1.9881668194385908e+16, 2.314071532230475e+18, 2.3926696869244104e+16, 8.234879124598037e+16, 4.741380588688866e+16, 7.527994007822446e+17, 3.039023011604574e+18, 5.752843598800714e+17, 2.678054300616341e+17, 7.061666332255154e+16, 5.522816582541669e+18] -Total loo_error 1.311515161277796e+18 -iteration 227current difference of loo_error 545729474560.0 - getting loo error of with lamda = 0.014285737101566831, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1632206072.2466726 -error 2.664096662006876e+18 - y tested = 5326600510.288329 -y predicted = 3990193424.950501 -error 1.7859838977411492e+18 - y tested = 5072151352.996373 -y predicted = 4416479765.84396 -error 4.299052301989648e+17 - y tested = 7650055845.407672 -y predicted = 5833574515.987012 -error 3.2996044201338486e+18 - y tested = 5789616901.049658 -y predicted = 6061098768.182337 -error 7.370240418184557e+16 - y tested = 8224428196.629629 -y predicted = 7482045816.76483 -error 5.5113159793372346e+17 - y tested = 4059018123.5159216 -y predicted = 5097054327.185544 -error 1.0775191601288419e+18 - y tested = 5947637003.818383 -y predicted = 4054465115.6165013 -error 3.584099798277879e+18 - y tested = 997516184.7000968 -y predicted = 555931777.6914033 -error 1.9499678851321955e+17 - y tested = 6532788063.289651 -y predicted = 6696278571.434712 -error 2.672914625353042e+16 - y tested = 1980229389.772511 -y predicted = 3485105415.4539304 -error 2.2646518526707039e+18 - y tested = 5035525633.343237 -y predicted = 5199982279.5192585 -error 2.704598847146515e+16 - y tested = 5026691733.102776 -y predicted = 5312296984.420508 -error 8.157035958026531e+16 - y tested = 1014996574.3865615 -y predicted = 1251477185.4380305 -error 5.592307940327614e+16 - y tested = 7665772326.561901 -y predicted = 6783184986.285139 -error 7.789604132168088e+17 - y tested = 3029054692.61153 -y predicted = 4752658264.174783 -error 2.9708092719056015e+18 - y tested = 4062233415.93208 -y predicted = 4791911199.20361 -error 5.3242966740005485e+17 - y tested = 5822958761.806049 -y predicted = 6317397148.529754 -error 2.444693182659394e+17 - y tested = 6611133148.221605 -y predicted = 6345086546.94562 -error 7.078079405050333e+16 - y tested = 5377240292.736961 -y predicted = 3028721675.1939826 -error 5.515539696945985e+18 -error squared vector [2.664096662006876e+18, 1.7859838977411492e+18, 4.299052301989648e+17, 3.2996044201338486e+18, 7.370240418184557e+16, 5.5113159793372346e+17, 1.0775191601288419e+18, 3.584099798277879e+18, 1.9499678851321955e+17, 2.672914625353042e+16, 2.2646518526707039e+18, 2.704598847146515e+16, 8.157035958026531e+16, 5.592307940327614e+16, 7.789604132168088e+17, 2.9708092719056015e+18, 5.3242966740005485e+17, 2.444693182659394e+17, 7.078079405050333e+16, 5.515539696945985e+18] -Total loo_error 1.311497477364024e+18 -iteration 228current difference of loo_error -17683913772032.0 - getting loo error of with lamda = 0.013415469526180527, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1616865770.6019022 -error 2.6142549198746056e+18 - y tested = 5326600510.288329 -y predicted = 3992762937.7380166 -error 1.7791226699469102e+18 - y tested = 5072151352.996373 -y predicted = 4396215714.377012 -error 4.5688898755576326e+17 - y tested = 7650055845.407672 -y predicted = 5855077661.076751 -error 3.2219466822239304e+18 - y tested = 5789616901.049658 -y predicted = 6066962408.283868 -error 7.692053038300123e+16 - y tested = 8224428196.629629 -y predicted = 7502827831.505115 -error 5.2070708694783277e+17 - y tested = 4059018123.5159216 -y predicted = 5094031529.7297 -error 1.0712527510422481e+18 - y tested = 5947637003.818383 -y predicted = 4059876981.8891964 -error 3.563637900394084e+18 - y tested = 997516184.7000968 -y predicted = 534965108.876456 -error 2.1395349774560752e+17 - y tested = 6532788063.289651 -y predicted = 6674505717.754776 -error 2.0083893587096588e+16 - y tested = 1980229389.772511 -y predicted = 3500924453.4462676 -error 2.3125134766817306e+18 - y tested = 5035525633.343237 -y predicted = 5190517916.477369 -error 2.402260783113106e+16 - y tested = 5026691733.102776 -y predicted = 5313613651.556119 -error 8.232418728894704e+16 - y tested = 1014996574.3865615 -y predicted = 1233319146.5642931 -error 4.766474552230084e+16 - y tested = 7665772326.561901 -y predicted = 6797672220.159221 -error 7.535977947363451e+17 - y tested = 3029054692.61153 -y predicted = 4771721208.335288 -error 3.036886585024784e+18 - y tested = 4062233415.93208 -y predicted = 4819809024.602864 -error 5.739208028529096e+17 - y tested = 5822958761.806049 -y predicted = 6339724474.634439 -error 2.6704680195503418e+17 - y tested = 6611133148.221605 -y predicted = 6345385485.423316 -error 7.062182028275327e+16 - y tested = 5377240292.736961 -y predicted = 3027226771.9975605 -error 5.522563547657994e+18 -error squared vector [2.6142549198746056e+18, 1.7791226699469102e+18, 4.5688898755576326e+17, 3.2219466822239304e+18, 7.692053038300123e+16, 5.2070708694783277e+17, 1.0712527510422481e+18, 3.563637900394084e+18, 2.1395349774560752e+17, 2.0083893587096588e+16, 2.3125134766817306e+18, 2.402260783113106e+16, 8.232418728894704e+16, 4.766474552230084e+16, 7.535977947363451e+17, 3.036886585024784e+18, 5.739208028529096e+17, 2.6704680195503418e+17, 7.062182028275327e+16, 5.522563547657994e+18] -Total loo_error 1.3114965644767503e+18 -iteration 229current difference of loo_error 912887273728.0 - getting loo error of with lamda = 0.014259365356858155, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1631744385.150065 -error 2.662589738196806e+18 - y tested = 5326600510.288329 -y predicted = 3990271325.390168 -error 1.7857756904105833e+18 - y tested = 5072151352.996373 -y predicted = 4415880652.117895 -error 4.306912328315288e+17 - y tested = 7650055845.407672 -y predicted = 5834219945.525862 -error 3.2972600152995835e+18 - y tested = 5789616901.049658 -y predicted = 6061261940.458359 -error 7.379102743535469e+16 - y tested = 8224428196.629629 -y predicted = 7482668959.687225 -error 5.5020676558937715e+17 - y tested = 4059018123.5159216 -y predicted = 5096964101.574195 -error 1.0773318533673455e+18 - y tested = 5947637003.818383 -y predicted = 4054634050.2997622 -error 3.5834601820302223e+18 - y tested = 997516184.7000968 -y predicted = 555303743.4934143 -error 1.955518431579737e+17 - y tested = 6532788063.289651 -y predicted = 6695649187.645775 -error 2.652374582654086e+16 - y tested = 1980229389.772511 -y predicted = 3485568940.2045045 -error 2.2660471620947963e+18 - y tested = 5035525633.343237 -y predicted = 5199707702.409126 -error 2.6955751802756464e+16 - y tested = 5026691733.102776 -y predicted = 5312335409.276236 -error 8.159230973788848e+16 - y tested = 1014996574.3865615 -y predicted = 1250934107.5066652 -error 5.566651953480004e+16 - y tested = 7665772326.561901 -y predicted = 6783617461.636939 -error 7.78197205710778e+17 - y tested = 3029054692.61153 -y predicted = 4753220884.795118 -error 2.9727490582688553e+18 - y tested = 4062233415.93208 -y predicted = 4792732326.28188 -error 5.33628658022246e+17 - y tested = 5822958761.806049 -y predicted = 6318042571.702876 -error 2.4510797882195728e+17 - y tested = 6611133148.221605 -y predicted = 6345095257.153757 -error 7.077615948382827e+16 - y tested = 5377240292.736961 -y predicted = 3028682535.7350993 -error 5.515723537973618e+18 -error squared vector [2.662589738196806e+18, 1.7857756904105833e+18, 4.306912328315288e+17, 3.2972600152995835e+18, 7.379102743535469e+16, 5.5020676558937715e+17, 1.0773318533673455e+18, 3.5834601820302223e+18, 1.955518431579737e+17, 2.652374582654086e+16, 2.2660471620947963e+18, 2.6955751802756464e+16, 8.159230973788848e+16, 5.566651953480004e+16, 7.78197205710778e+17, 2.9727490582688553e+18, 5.33628658022246e+17, 2.4510797882195728e+17, 7.077615948382827e+16, 5.515723537973618e+18] -Total loo_error 1.3114813217798418e+18 -iteration 230current difference of loo_error -15242696908544.0 - getting loo error of with lamda = 0.013441042127110153, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0030-2000' +--- Neighbour 0 in the list of neghbours, And at position 67 in the X datas point +-------------- + --- Configuration: 0030-2000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 4809102669.532892 + --- Energy: 35.93660318178646 + --- Workload: 172823000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 1 in the X datas point +-------------- + --- Configuration: 0033-3000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6957102505.948323 + --- Energy: 53.35616382684589 + --- Workload: 371205000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 5 in the X datas point +-------------- + --- Configuration: 0030-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 994906080.8659663 + --- Energy: 29.623247258891045 + --- Workload: 29472300000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 28 in the X datas point +-------------- + --- Configuration: 3330-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5822958761.806049 + --- Energy: 37.40635012737015 + --- Workload: 217816000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 29 in the X datas point +-------------- + --- Configuration: 3000-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 41 in the X datas point +-------------- + --- Configuration: 3300-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0030-2000' +--- Neighbour 0 in the list of neghbours, And at position 5 in the X datas point +-------------- + --- Configuration: 0030-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 994906080.8659663 + --- Energy: 29.623247258891045 + --- Workload: 29472300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 67 in the X datas point +-------------- + --- Configuration: 0030-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4809102669.532892 + --- Energy: 35.93660318178646 + --- Workload: 172823000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 29 in the X datas point +-------------- + --- Configuration: 3000-3000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4149980287.5936337 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 41 in the X datas point +-------------- + --- Configuration: 3300-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5026691733.102776 + --- Energy: 36.9852979298838 + --- Workload: 185914000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 28 in the X datas point +-------------- + --- Configuration: 3330-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5822958761.806049 + --- Energy: 37.40635012737015 + --- Workload: 217816000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 1 in the X datas point +-------------- + --- Configuration: 0033-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6957102505.948323 + --- Energy: 53.35616382684589 + --- Workload: 371205000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (36.46450751429702 mAh) it is NOT far from the median. +--- Median :36.46450751429702, the gap is : 10 +--- So No we don't romove this configuration '0030-2000' + --- remove_aberrant_points: The value [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1] +--- Computing the list of the 10 first neighbours of '2002-1001' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1617319646.6516654 -error 2.615722839175915e+18 - y tested = 5326600510.288329 -y predicted = 3992687484.787735 -error 1.7793239596001487e+18 - y tested = 5072151352.996373 -y predicted = 4396826228.815917 -error 4.5606402334934854e+17 - y tested = 7650055845.407672 -y predicted = 5854439802.666125 -error 3.2242369729508116e+18 - y tested = 5789616901.049658 -y predicted = 6066775330.604915 -error 7.681679507353627e+16 - y tested = 8224428196.629629 -y predicted = 7502210634.412925 -error 5.215982071742392e+17 - y tested = 4059018123.5159216 -y predicted = 5094121691.314833 -error 1.071439396070035e+18 - y tested = 5947637003.818383 -y predicted = 4059723036.734633 -error 3.5642191471099034e+18 - y tested = 997516184.7000968 -y predicted = 535588465.13936204 -error 2.1337721809858086e+17 - y tested = 6532788063.289651 -y predicted = 6675176293.900305 -error 2.0274408216432748e+16 - y tested = 1980229389.772511 -y predicted = 3500443840.9013586 -error 2.3110519774209833e+18 - y tested = 5035525633.343237 -y predicted = 5190808343.182992 -error 2.4112719975177564e+16 - y tested = 5026691733.102776 -y predicted = 5313573439.676228 -error 8.230111356649621e+16 - y tested = 1014996574.3865615 -y predicted = 1233859804.3544574 -error 4.790111343198007e+16 - y tested = 7665772326.561901 -y predicted = 6797240106.822741 -error 7.543482167250335e+17 - y tested = 3029054692.61153 -y predicted = 4771145905.231944 -error 3.034881793089265e+18 - y tested = 4062233415.93208 -y predicted = 4818964876.693686 -error 5.7264250370639366e+17 - y tested = 5822958761.806049 -y predicted = 6339036826.729404 -error 2.6633656909503472e+17 - y tested = 6611133148.221605 -y predicted = 6345376380.2874975 -error 7.062665970278322e+16 - y tested = 5377240292.736961 -y predicted = 3027276980.864863 -error 5.522327567144881e+18 -error squared vector [2.615722839175915e+18, 1.7793239596001487e+18, 4.5606402334934854e+17, 3.2242369729508116e+18, 7.681679507353627e+16, 5.215982071742392e+17, 1.071439396070035e+18, 3.5642191471099034e+18, 2.1337721809858086e+17, 2.0274408216432748e+16, 2.3110519774209833e+18, 2.4112719975177564e+16, 8.230111356649621e+16, 4.790111343198007e+16, 7.543482167250335e+17, 3.034881793089265e+18, 5.7264250370639366e+17, 2.6633656909503472e+17, 7.062665970278322e+16, 5.522327567144881e+18] -Total loo_error 1.311480160033849e+18 -iteration 231current difference of loo_error 1161745992704.0 - getting loo error of with lamda = 0.014234567683229428, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1631310075.9269514 -error 2.661172563548911e+18 - y tested = 5326600510.288329 -y predicted = 3990344574.979185 -error 1.7855799246489152e+18 - y tested = 5072151352.996373 -y predicted = 4415316476.939866 -error 4.3143205440416704e+17 - y tested = 7650055845.407672 -y predicted = 5834827203.247727 -error 3.295055023317836e+18 - y tested = 5789616901.049658 -y predicted = 6061416162.097252 -error 7.387483830601819e+16 - y tested = 8224428196.629629 -y predicted = 7483255279.972985 -error 5.4933729238531635e+17 - y tested = 4059018123.5159216 -y predicted = 5096879183.244673 -error 1.0771555793012864e+18 - y tested = 5947637003.818383 -y predicted = 4054792636.3144035 -error 3.5828597995915407e+18 - y tested = 997516184.7000968 -y predicted = 554712786.6100512 -error 1.960748493600915e+17 - y tested = 6532788063.289651 -y predicted = 6695055709.257758 -error 2.6330788928030984e+16 - y tested = 1980229389.772511 -y predicted = 3486005678.2270484 -error 2.2673622308719222e+18 - y tested = 5035525633.343237 -y predicted = 5199448843.1804495 -error 2.687081872333482e+16 - y tested = 5026691733.102776 -y predicted = 5312371619.58094 -error 8.161299753817706e+16 - y tested = 1014996574.3865615 -y predicted = 1250423043.8577094 -error 5.542562252764933e+16 - y tested = 7665772326.561901 -y predicted = 6784024491.723892 -error 7.774792442415165e+17 - y tested = 3029054692.61153 -y predicted = 4753750751.01104 -error 2.974576493858806e+18 - y tested = 4062233415.93208 -y predicted = 4793505778.455197 -error 5.347592681901418e+17 - y tested = 5822958761.806049 -y predicted = 6318651173.372416 -error 2.4571096688447978e+17 - y tested = 6611133148.221605 -y predicted = 6345103468.203066 -error 7.077179065076648e+16 - y tested = 5377240292.736961 -y predicted = 3028645398.205571 -error 5.515897978618912e+18 -error squared vector [2.661172563548911e+18, 1.7855799246489152e+18, 4.3143205440416704e+17, 3.295055023317836e+18, 7.387483830601819e+16, 5.4933729238531635e+17, 1.0771555793012864e+18, 3.5828597995915407e+18, 1.960748493600915e+17, 2.6330788928030984e+16, 2.2673622308719222e+18, 2.687081872333482e+16, 8.161299753817706e+16, 5.542562252764933e+16, 7.774792442415165e+17, 2.974576493858806e+18, 5.347592681901418e+17, 2.4571096688447978e+17, 7.077179065076648e+16, 5.515897978618912e+18] -Total loo_error 1.311467006294891e+18 -iteration 232current difference of loo_error -13153738958080.0 - getting loo error of with lamda = 0.013465088356083463, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1617746258.7404454 -error 2.617102957399084e+18 - y tested = 5326600510.288329 -y predicted = 3992616531.6897364 -error 1.7795132551577308e+18 - y tested = 5072151352.996373 -y predicted = 4397399439.308309 -error 4.5529014502570534e+17 - y tested = 7650055845.407672 -y predicted = 5853840347.075423 -error 3.2263901164489687e+18 - y tested = 5789616901.049658 -y predicted = 6066600275.203516 -error 7.67197895576562e+16 - y tested = 8224428196.629629 -y predicted = 7501630642.590331 -error 5.22436304125192e+17 - y tested = 4059018123.5159216 -y predicted = 5094206397.355971 -error 1.0716147622959418e+18 - y tested = 5947637003.818383 -y predicted = 4059577982.9892526 -error 3.5647668661342556e+18 - y tested = 997516184.7000968 -y predicted = 536174205.2414206 -error 2.1283642201084963e+17 - y tested = 6532788063.289651 -y predicted = 6675805070.396908 -error 2.045386432191717e+16 - y tested = 1980229389.772511 -y predicted = 3499992808.826068 -error 2.309680849893357e+18 - y tested = 5035525633.343237 -y predicted = 5191080728.286387 -error 2.4197387562772572e+16 - y tested = 5026691733.102776 -y predicted = 5313535717.312683 -error 8.227947127741368e+16 - y tested = 1014996574.3865615 -y predicted = 1234367792.4799047 -error 4.812373132775712e+16 - y tested = 7665772326.561901 -y predicted = 6796834143.181428 -error 7.550535665365568e+17 - y tested = 3029054692.61153 -y predicted = 4770605808.284368 -error 3.033000288501306e+18 - y tested = 4062233415.93208 -y predicted = 4818172508.21702 -error 5.714439112445794e+17 - y tested = 5822958761.806049 -y predicted = 6338392042.596075 -error 2.6567146694596947e+17 - y tested = 6611133148.221605 -y predicted = 6345367835.217166 -error 7.0631201596347624e+16 - y tested = 5377240292.736961 -y predicted = 3027323828.4894786 -error 5.522107388941391e+18 -error squared vector [2.617102957399084e+18, 1.7795132551577308e+18, 4.5529014502570534e+17, 3.2263901164489687e+18, 7.67197895576562e+16, 5.22436304125192e+17, 1.0716147622959418e+18, 3.5647668661342556e+18, 2.1283642201084963e+17, 2.045386432191717e+16, 2.309680849893357e+18, 2.4197387562772572e+16, 8.227947127741368e+16, 4.812373132775712e+16, 7.550535665365568e+17, 3.033000288501306e+18, 5.714439112445794e+17, 2.6567146694596947e+17, 7.0631201596347624e+16, 5.522107388941391e+18] -Total loo_error 1.3114656873152374e+18 -iteration 233current difference of loo_error 1318979653632.0 - getting loo error of with lamda = 0.014211250127861369, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1630901531.0864754 -error 2.659839803828393e+18 - y tested = 5326600510.288329 -y predicted = 3990413451.376139 -error 1.7853958564044083e+18 - y tested = 5072151352.996373 -y predicted = 4414785247.617877 -error 4.3213019650049216e+17 - y tested = 7650055845.407672 -y predicted = 5835398526.745499 -error 3.292981184174188e+18 - y tested = 5789616901.049658 -y predicted = 6061561878.976716 -error 7.395407101974818e+16 - y tested = 8224428196.629629 -y predicted = 7483806932.920818 -error 5.485198562576359e+17 - y tested = 4059018123.5159216 -y predicted = 5096799264.433518 -error 1.076989696444229e+18 - y tested = 5947637003.818383 -y predicted = 4054941520.822539 -error 3.5822961913528724e+18 - y tested = 997516184.7000968 -y predicted = 554156740.6285365 -error 1.9656759664744307e+17 - y tested = 6532788063.289651 -y predicted = 6694496179.978139 -error 2.6149515002937652e+16 - y tested = 1980229389.772511 -y predicted = 3486417128.2668114 -error 2.2686015035905748e+18 - y tested = 5035525633.343237 -y predicted = 5199204839.382695 -error 2.6790882489707436e+16 - y tested = 5026691733.102776 -y predicted = 5312405738.7646475 -error 8.163249303135218e+16 - y tested = 1014996574.3865615 -y predicted = 1249942129.44058 -error 5.519941383964078e+16 - y tested = 7665772326.561901 -y predicted = 6784407553.013303 -error 7.76803864052372e+17 - y tested = 3029054692.61153 -y predicted = 4754249724.428349 -error 2.9762978978054344e+18 - y tested = 4062233415.93208 -y predicted = 4794234250.2019005 -error 5.358252213717135e+17 - y tested = 5822958761.806049 -y predicted = 6319224959.912659 -error 2.4628013938318845e+17 - y tested = 6611133148.221605 -y predicted = 6345111207.428804 -error 7.076767298316847e+16 - y tested = 5377240292.736961 -y predicted = 3028610180.5073204 -error 5.516063404071816e+18 -error squared vector [2.659839803828393e+18, 1.7853958564044083e+18, 4.3213019650049216e+17, 3.292981184174188e+18, 7.395407101974818e+16, 5.485198562576359e+17, 1.076989696444229e+18, 3.5822961913528724e+18, 1.9656759664744307e+17, 2.6149515002937652e+16, 2.2686015035905748e+18, 2.6790882489707436e+16, 8.163249303135218e+16, 5.519941383964078e+16, 7.76803864052372e+17, 2.9762978978054344e+18, 5.358252213717135e+17, 2.4628013938318845e+17, 7.076767298316847e+16, 5.516063404071816e+18] -Total loo_error 1.3114543230125655e+18 -iteration 234current difference of loo_error -11364302671872.0 - getting loo error of with lamda = 0.013487699318864612, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1618147254.3711529 -error 2.6184005365592095e+18 - y tested = 5326600510.288329 -y predicted = 3992549810.367396 -error 1.7796912699595318e+18 - y tested = 5072151352.996373 -y predicted = 4397937675.054644 -error 4.5456408352371424e+17 - y tested = 7650055845.407672 -y predicted = 5853276963.925154 -error 3.228414348941569e+18 - y tested = 5789616901.049658 -y predicted = 6066436422.116193 -error 7.662904724350581e+16 - y tested = 8224428196.629629 -y predicted = 7501085592.460142 -error 5.232245230066952e+17 - y tested = 4059018123.5159216 -y predicted = 5094285982.056463 -error 1.071779538927119e+18 - y tested = 5947637003.818383 -y predicted = 4059441325.709829 -error 3.5652829188278236e+18 - y tested = 997516184.7000968 -y predicted = 536724622.5128043 -error 2.1232886378300547e+17 - y tested = 6532788063.289651 -y predicted = 6676394753.681412 -error 2.0622881525275052e+16 - y tested = 1980229389.772511 -y predicted = 3499569486.3395343 -error 2.3083943290362916e+18 - y tested = 5035525633.343237 -y predicted = 5191336232.614949 -error 2.4276942845410116e+16 - y tested = 5026691733.102776 -y predicted = 5313500325.091022 -error 8.225916843828014e+16 - y tested = 1014996574.3865615 -y predicted = 1234845107.7190728 -error 4.833337760845634e+16 - y tested = 7665772326.561901 -y predicted = 6796452726.692744 -error 7.55716566716671e+17 - y tested = 3029054692.61153 -y predicted = 4770098713.11668 -error 3.0312342813367383e+18 - y tested = 4062233415.93208 -y predicted = 4817428663.268936 -error 5.703198616001757e+17 - y tested = 5822958761.806049 -y predicted = 6337787346.886966 -error 2.6504847201641837e+17 - y tested = 6611133148.221605 -y predicted = 6345359814.961737 -error 7.063546467206119e+16 - y tested = 5377240292.736961 -y predicted = 3027367559.110234 -error 5.521901864242349e+18 -error squared vector [2.6184005365592095e+18, 1.7796912699595318e+18, 4.5456408352371424e+17, 3.228414348941569e+18, 7.662904724350581e+16, 5.232245230066952e+17, 1.071779538927119e+18, 3.5652829188278236e+18, 2.1232886378300547e+17, 2.0622881525275052e+16, 2.3083943290362916e+18, 2.4276942845410116e+16, 8.225916843828014e+16, 4.833337760845634e+16, 7.55716566716671e+17, 3.0312342813367383e+18, 5.703198616001757e+17, 2.6504847201641837e+17, 7.063546467206119e+16, 5.521901864242349e+18] -Total loo_error 1.3114529170405146e+18 -iteration 235current difference of loo_error 1405972050944.0 - getting loo error of with lamda = 0.014189324345770558, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1630517231.0736444 -error 2.6585864405563116e+18 - y tested = 5326600510.288329 -y predicted = 3990478215.6721945 -error 1.7852227861702848e+18 - y tested = 5072151352.996373 -y predicted = 4414285080.056612 -error 4.3278803307165235e+17 - y tested = 7650055845.407672 -y predicted = 5835936024.7745905 -error 3.2910307236138035e+18 - y tested = 5789616901.049658 -y predicted = 6061699520.105332 -error 7.402895159219531e+16 - y tested = 8224428196.629629 -y predicted = 7484325950.039772 -error 5.4775133540735366e+17 - y tested = 4059018123.5159216 -y predicted = 5096724054.707806 -error 1.0768335996308152e+18 - y tested = 5947637003.818383 -y predicted = 4055081309.152405 -error 3.5817670574126244e+18 - y tested = 997516184.7000968 -y predicted = 553633563.1545427 -error 1.9703178171015366e+17 - y tested = 6532788063.289651 -y predicted = 6693968739.557965 -error 2.5979210402311156e+16 - y tested = 1980229389.772511 -y predicted = 3486804710.9002423 -error 2.2697691982311268e+18 - y tested = 5035525633.343237 -y predicted = 5198974871.603276 -error 2.6715653487787104e+16 - y tested = 5026691733.102776 -y predicted = 5312437883.839859 -error 8.165086266106002e+16 - y tested = 1014996574.3865615 -y predicted = 1249489605.321191 -error 5.498698155690914e+16 - y tested = 7665772326.561901 -y predicted = 6784768038.6867285 -error 7.761685552544401e+17 - y tested = 3029054692.61153 -y predicted = 4754719565.968406 -error 2.977919255137803e+18 - y tested = 4062233415.93208 -y predicted = 4794920292.076659 -error 5.368300584745023e+17 - y tested = 5822958761.806049 -y predicted = 6319765839.166461 -error 2.4681727211539405e+17 - y tested = 6611133148.221605 -y predicted = 6345118500.827499 -error 7.07637926282105e+16 - y tested = 5377240292.736961 -y predicted = 3028576801.3281374 -error 5.516220195876687e+18 -error squared vector [2.6585864405563116e+18, 1.7852227861702848e+18, 4.3278803307165235e+17, 3.2910307236138035e+18, 7.402895159219531e+16, 5.4775133540735366e+17, 1.0768335996308152e+18, 3.5817670574126244e+18, 1.9703178171015366e+17, 2.5979210402311156e+16, 2.2697691982311268e+18, 2.6715653487787104e+16, 8.165086266106002e+16, 5.498698155690914e+16, 7.761685552544401e+17, 2.977919255137803e+18, 5.368300584745023e+17, 2.4681727211539405e+17, 7.07637926282105e+16, 5.516220195876687e+18] -Total loo_error 1.3114430872495713e+18 -iteration 236current difference of loo_error -9829790943232.0 - getting loo error of with lamda = 0.013508960683316308, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1618524180.3517838 -error 2.6196205221136594e+18 - y tested = 5326600510.288329 -y predicted = 3992487068.673267 -error 1.779858675097986e+18 - y tested = 5072151352.996373 -y predicted = 4398443113.900515 -error 4.5388279142564256e+17 - y tested = 7650055845.407672 -y predicted = 5852747466.340428 -error 3.2303174094653225e+18 - y tested = 5789616901.049658 -y predicted = 6066283012.738489 -error 7.65441373570169e+16 - y tested = 8224428196.629629 -y predicted = 7500573360.599629 -error 5.239658236440178e+17 - y tested = 4059018123.5159216 -y predicted = 5094360758.678783 -error 1.0719343721859788e+18 - y tested = 5947637003.818383 -y predicted = 4059312595.1218944 -error 3.565769072478944e+18 - y tested = 997516184.7000968 -y predicted = 537241867.7105104 -error 2.1185244688023034e+17 - y tested = 6532788063.289651 -y predicted = 6676947863.116662 -error 2.078204788616391e+16 - y tested = 1980229389.772511 -y predicted = 3499172126.725471 -error 2.307187038142149e+18 - y tested = 5035525633.343237 -y predicted = 5191575937.619529 -error 2.4351697464723268e+16 - y tested = 5026691733.102776 -y predicted = 5313467114.472627 -error 8.224011935982355e+16 - y tested = 1014996574.3865615 -y predicted = 1235293622.1471782 -error 4.8530789252043416e+16 - y tested = 7665772326.561901 -y predicted = 6796094355.346699 -error 7.563397736169903e+17 - y tested = 3029054692.61153 -y predicted = 4769622559.290669 -error 3.029576498515971e+18 - y tested = 4062233415.93208 -y predicted = 4816730300.090501 -error 5.692655482047658e+17 - y tested = 5822958761.806049 -y predicted = 6337220156.094993 -error 2.64464781656008e+17 - y tested = 6611133148.221605 -y predicted = 6345352286.567312 -error 7.063946642169846e+16 - y tested = 5377240292.736961 -y predicted = 3027408397.09279 -error 5.521709937786679e+18 -error squared vector [2.6196205221136594e+18, 1.779858675097986e+18, 4.5388279142564256e+17, 3.2303174094653225e+18, 7.65441373570169e+16, 5.239658236440178e+17, 1.0719343721859788e+18, 3.565769072478944e+18, 2.1185244688023034e+17, 2.078204788616391e+16, 2.307187038142149e+18, 2.4351697464723268e+16, 8.224011935982355e+16, 4.8530789252043416e+16, 7.563397736169903e+17, 3.029576498515971e+18, 5.692655482047658e+17, 2.64464781656008e+17, 7.063946642169846e+16, 5.521709937786679e+18] -Total loo_error 1.3114416474477906e+18 -iteration 237current difference of loo_error 1439801780736.0 - getting loo error of with lamda = 0.014168707265090126, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1630155744.933625 -error 2.6574077524684093e+18 - y tested = 5326600510.288329 -y predicted = 3990539113.3770714 -error 1.7850600563164613e+18 - y tested = 5072151352.996373 -y predicted = 4413814193.407655 -error 4.334078156953417e+17 - y tested = 7650055845.407672 -y predicted = 5836441684.398506 -error 3.28919632501298e+18 - y tested = 5789616901.049658 -y predicted = 6061829497.580152 -error 7.409969770987338e+16 - y tested = 8224428196.629629 -y predicted = 7484814245.887725 -error 5.47028796132048e+17 - y tested = 4059018123.5159216 -y predicted = 5096653280.04984 -error 1.0766867180751693e+18 - y tested = 5947637003.818383 -y predicted = 4055212567.6315794 -error 3.5812702466769423e+18 - y tested = 997516184.7000968 -y predicted = 553141329.0030099 -error 1.9746901237580685e+17 - y tested = 6532788063.289651 -y predicted = 6693471620.311466 -error 2.581920549718297e+16 - y tested = 1980229389.772511 -y predicted = 3487169771.9442196 -error 2.2708693154198152e+18 - y tested = 5035525633.343237 -y predicted = 5198758161.8228 -error 2.6644858353831268e+16 - y tested = 5026691733.102776 -y predicted = 5312468165.684491 -error 8.166816941913184e+16 - y tested = 1014996574.3865615 -y predicted = 1249063812.9352524 -error 5.478747216180978e+16 - y tested = 7665772326.561901 -y predicted = 6785107263.06015 -error 7.75570954072543e+17 - y tested = 3029054692.61153 -y predicted = 4755161940.733914 -error 2.979446232020631e+18 - y tested = 4062233415.93208 -y predicted = 4795566317.440774 -error 5.377771444351601e+17 - y tested = 5822958761.806049 -y predicted = 6320275624.023406 -error 2.4732406144571734e+17 - y tested = 6611133148.221605 -y predicted = 6345125373.102571 -error 7.076013642377898e+16 - y tested = 5377240292.736961 -y predicted = 3028545180.53626 -error 5.516368730075465e+18 -error squared vector [2.6574077524684093e+18, 1.7850600563164613e+18, 4.334078156953417e+17, 3.28919632501298e+18, 7.409969770987338e+16, 5.47028796132048e+17, 1.0766867180751693e+18, 3.5812702466769423e+18, 1.9746901237580685e+17, 2.581920549718297e+16, 2.2708693154198152e+18, 2.6644858353831268e+16, 8.166816941913184e+16, 5.478747216180978e+16, 7.75570954072543e+17, 2.979446232020631e+18, 5.377771444351601e+17, 2.4732406144571734e+17, 7.076013642377898e+16, 5.516368730075465e+18] -Total loo_error 1.311433134989405e+18 -iteration 238current difference of loo_error -8512458385664.0 - getting loo error of with lamda = 0.013528953003976121, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1618878489.0821936 -error 2.620767562143233e+18 - y tested = 5326600510.288329 -y predicted = 3992428069.4492717 -error 1.780016101894448e+18 - y tested = 5072151352.996373 -y predicted = 4398917792.876317 -error 4.5324342647192525e+17 - y tested = 7650055845.407672 -y predicted = 5852249801.877706 -error 3.2321065701528714e+18 - y tested = 5789616901.049658 -y predicted = 6066139344.627638 -error 7.646466180233715e+16 - y tested = 8224428196.629629 -y predicted = 7500091954.777646 -error 5.246629912602545e+17 - y tested = 4059018123.5159216 -y predicted = 5094431020.909236 -error 1.0720798680884182e+18 - y tested = 5947637003.818383 -y predicted = 4059191345.663904 -error 3.5662270038025037e+18 - y tested = 997516184.7000968 -y predicted = 537727958.2071825 -error 2.114052132214995e+17 - y tested = 6532788063.289651 -y predicted = 6677466745.294207 -error 2.0931921026575348e+16 - y tested = 1980229389.772511 -y predicted = 3498799098.523085 -error 2.3060539603348035e+18 - y tested = 5035525633.343237 -y predicted = 5191800851.342884 -error 2.4421943760837236e+16 - y tested = 5026691733.102776 -y predicted = 5313435946.9421835 -error 8.22222441703801e+16 - y tested = 1014996574.3865615 -y predicted = 1235715091.23574 -error 4.8716663680101064e+16 - y tested = 7665772326.561901 -y predicted = 6795757621.09118 -error 7.569255877353059e+17 - y tested = 3029054692.61153 -y predicted = 4769175420.2069645 -error 3.028020146607265e+18 - y tested = 4062233415.93208 -y predicted = 4816074575.877545 -error 5.68276494427925e+17 - y tested = 5822958761.806049 -y predicted = 6336688063.885353 -error 2.639177958148885e+17 - y tested = 6611133148.221605 -y predicted = 6345345219.220625 -error 7.0643223202630184e+16 - y tested = 5377240292.736961 -y predicted = 3027446548.771862 -error 5.521530639177519e+18 -error squared vector [2.620767562143233e+18, 1.780016101894448e+18, 4.5324342647192525e+17, 3.2321065701528714e+18, 7.646466180233715e+16, 5.246629912602545e+17, 1.0720798680884182e+18, 3.5662270038025037e+18, 2.114052132214995e+17, 2.0931921026575348e+16, 2.3060539603348035e+18, 2.4421943760837236e+16, 8.22222441703801e+16, 4.8716663680101064e+16, 7.569255877353059e+17, 3.028020146607265e+18, 5.68276494427925e+17, 2.639177958148885e+17, 7.0643223202630184e+16, 5.521530639177519e+18] -Total loo_error 1.3114317009387863e+18 -iteration 239current difference of loo_error 1434050618624.0 - getting loo error of with lamda = 0.014149320772329096, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1629815725.2644262 -error 2.656299298047572e+18 - y tested = 5326600510.288329 -y predicted = 3990596375.347253 -error 1.7849070485796536e+18 - y tested = 5072151352.996373 -y predicted = 4413370904.921094 -error 4.3399167876626566e+17 - y tested = 7650055845.407672 -y predicted = 5836917377.768539 -error 3.2874711028327813e+18 - y tested = 5789616901.049658 -y predicted = 6061952206.656967 -error 7.416651868022658e+16 - y tested = 8224428196.629629 -y predicted = 7485273624.563503 -error 5.4634948140625766e+17 - y tested = 4059018123.5159216 -y predicted = 5096586681.983668 -error 1.076548513520838e+18 - y tested = 5947637003.818383 -y predicted = 4055335826.220541 -error 3.5808037467381806e+18 - y tested = 997516184.7000968 -y predicted = 552678223.7315321 -error 1.9788081151867034e+17 - y tested = 6532788063.289651 -y predicted = 6693003143.604408 -error 2.5668871960264148e+16 - y tested = 1980229389.772511 -y predicted = 3487513585.7982745 -error 2.2719056475890322e+18 - y tested = 5035525633.343237 -y predicted = 5198553971.769455 -error 2.657823913001348e+16 - y tested = 5026691733.102776 -y predicted = 5312496689.318833 -error 8.16844729976627e+16 - y tested = 1014996574.3865615 -y predicted = 1248663188.6174605 -error 5.460008660613176e+16 - y tested = 7665772326.561901 -y predicted = 6785426465.80297 -error 7.750088345553834e+17 - y tested = 3029054692.61153 -y predicted = 4755578422.706068 -error 2.980884190579558e+18 - y tested = 4062233415.93208 -y predicted = 4796174608.991552 -error 5.38669674869562e+17 - y tested = 5822958761.806049 -y predicted = 6320756036.024029 -error 2.478021262188502e+17 - y tested = 6611133148.221605 -y predicted = 6345131847.709683 -error 7.075669187403378e+16 - y tested = 5377240292.736961 -y predicted = 3028515239.505005 -error 5.516509375679457e+18 -error squared vector [2.656299298047572e+18, 1.7849070485796536e+18, 4.3399167876626566e+17, 3.2874711028327813e+18, 7.416651868022658e+16, 5.4634948140625766e+17, 1.076548513520838e+18, 3.5808037467381806e+18, 1.9788081151867034e+17, 2.5668871960264148e+16, 2.2719056475890322e+18, 2.657823913001348e+16, 8.16844729976627e+16, 5.460008660613176e+16, 7.750088345553834e+17, 2.980884190579558e+18, 5.38669674869562e+17, 2.478021262188502e+17, 7.075669187403378e+16, 5.516509375679457e+18] -Total loo_error 1.31142432060752e+18 -iteration 240current difference of loo_error -7380331266304.0 - getting loo error of with lamda = 0.013547752027259545, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1619211544.4347146 -error 2.6218460253607854e+18 - y tested = 5326600510.288329 -y predicted = 3992372589.6402564 -error 1.78016414423688e+18 - y tested = 5072151352.996373 -y predicted = 4399363617.919819 -error 4.526433364694398e+17 - y tested = 7650055845.407672 -y predicted = 5851782044.051759 -error 3.2337886646430464e+18 - y tested = 5789616901.049658 -y predicted = 6066004766.809212 -error 7.63902523391212e+16 - y tested = 8224428196.629629 -y predicted = 7499639505.596766 -error 5.2531864664913043e+17 - y tested = 4059018123.5159216 -y predicted = 5094497044.128335 -error 1.0722165950326487e+18 - y tested = 5947637003.818383 -y predicted = 4059077155.018276 -error 3.566658302499883e+18 - y tested = 997516184.7000968 -y predicted = 538184786.5500543 -error 2.109853333264729e+17 - y tested = 6532788063.289651 -y predicted = 6677953587.090637 -error 2.1073029300414716e+16 - y tested = 1980229389.772511 -y predicted = 3498448877.3306756 -error 2.304990412401376e+18 - y tested = 5035525633.343237 -y predicted = 5192011913.880293 -error 2.448795599632218e+16 - y tested = 5026691733.102776 -y predicted = 5313406693.264065 -error 8.220546838028966e+16 - y tested = 1014996574.3865615 -y predicted = 1236111161.3899665 -error 4.889166058568635e+16 - y tested = 7665772326.561901 -y predicted = 6795441203.719478 -error 7.574762633881536e+17 - y tested = 3029054692.61153 -y predicted = 4768755493.797101 -error 3.0265588776457185e+18 - y tested = 4062233415.93208 -y predicted = 4815458832.794635 -error 5.673485286077698e+17 - y tested = 5822958761.806049 -y predicted = 6336188827.7068405 -error 2.6340510054453043e+17 - y tested = 6611133148.221605 -y predicted = 6345338584.103463 -error 7.064675031475317e+16 - y tested = 5377240292.736961 -y predicted = 3027482204.098912 -error 5.521363075119941e+18 -error squared vector [2.6218460253607854e+18, 1.78016414423688e+18, 4.526433364694398e+17, 3.2337886646430464e+18, 7.63902523391212e+16, 5.2531864664913043e+17, 1.0722165950326487e+18, 3.566658302499883e+18, 2.109853333264729e+17, 2.1073029300414716e+16, 2.304990412401376e+18, 2.448795599632218e+16, 8.220546838028966e+16, 4.889166058568635e+16, 7.574762633881536e+17, 3.0265588776457185e+18, 5.673485286077698e+17, 2.6340510054453043e+17, 7.064675031475317e+16, 5.521363075119941e+18] -Total loo_error 1.3114229211421181e+18 -iteration 241current difference of loo_error 1399465401856.0 - getting loo error of with lamda = 0.014131091416417899, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1629495903.4416034 -error 2.6552568990613847e+18 - y tested = 5326600510.288329 -y predicted = 3990650218.6588993 -error 1.7847631817047585e+18 - y tested = 5072151352.996373 -y predicted = 4412953624.993157 -error 4.3454164460460166e+17 - y tested = 7650055845.407672 -y predicted = 5837364868.557139 -error 3.2858485775553377e+18 - y tested = 5789616901.049658 -y predicted = 6062068025.912524 -error 7.422961543904122e+16 - y tested = 8224428196.629629 -y predicted = 7485705785.866716 -error 5.457108001633696e+17 - y tested = 4059018123.5159216 -y predicted = 5096524016.740811 -error 1.0764184784763763e+18 - y tested = 5947637003.818383 -y predicted = 4055451580.955481 -error 3.58036567449486e+18 - y tested = 997516184.7000968 -y predicted = 552242537.4994181 -error 1.982686208913945e+17 - y tested = 6532788063.289651 -y predicted = 6692561716.340391 -error 2.5527620209178316e+16 - y tested = 1980229389.772511 -y predicted = 3487837358.7107563 -error 2.2728817880061012e+18 - y tested = 5035525633.343237 -y predicted = 5198361601.28334 -error 2.6515552454990424e+16 - y tested = 5026691733.102776 -y predicted = 5312523554.173821 -error 8.169982993679038e+16 - y tested = 1014996574.3865615 -y predicted = 1248286258.399473 -error 5.442407666684406e+16 - y tested = 7665772326.561901 -y predicted = 6785726815.959437 -error 7.744801007315511e+17 - y tested = 3029054692.61153 -y predicted = 4755970499.27046 -error 2.982238203288464e+18 - y tested = 4062233415.93208 -y predicted = 4796747325.079565 -error 5.3951068273112026e+17 - y tested = 5822958761.806049 -y predicted = 6321208708.969349 -error 2.4825300984823082e+17 - y tested = 6611133148.221605 -y predicted = 6345137946.904824 -error 7.075344712355488e+16 - y tested = 5377240292.736961 -y predicted = 3028486901.3782086 -error 5.516642493419242e+18 -error squared vector [2.6552568990613847e+18, 1.7847631817047585e+18, 4.3454164460460166e+17, 3.2858485775553377e+18, 7.422961543904122e+16, 5.457108001633696e+17, 1.0764184784763763e+18, 3.58036567449486e+18, 1.982686208913945e+17, 2.5527620209178316e+16, 2.2728817880061012e+18, 2.6515552454990424e+16, 8.169982993679038e+16, 5.442407666684406e+16, 7.744801007315511e+17, 2.982238203288464e+18, 5.3951068273112026e+17, 2.4825300984823082e+17, 7.075344712355488e+16, 5.516642493419242e+18] -Total loo_error 1.3114165148403594e+18 -iteration 242current difference of loo_error -6406301758720.0 - getting loo error of with lamda = 0.013565428978446162, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '2002-1001' +--- Neighbour 0 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Distance from that configuration: [1.] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 62 in the X datas point +-------------- + --- Configuration: 2002-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 70 in the X datas point +-------------- + --- Configuration: 0202-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 71 in the X datas point +-------------- + --- Configuration: 3003-1101 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 9428892010.8998 + --- Energy: 67.46193459835338 + --- Workload: 636090000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '2002-1001' +--- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 46 in the X datas point +-------------- + --- Configuration: 1000-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 4062233415.93208 + --- Energy: 36.86022362180361 + --- Workload: 149735000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 62 in the X datas point +-------------- + --- Configuration: 2002-2000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 70 in the X datas point +-------------- + --- Configuration: 0202-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 71 in the X datas point +-------------- + --- Configuration: 3003-1101 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9428892010.8998 + --- Energy: 67.46193459835338 + --- Workload: 636090000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 62 in the X datas point +-------------- + --- Configuration: 2002-2000 + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (41.829225389075674 mAh) it is NOT far from the median. +--- Median :41.829225389075674, the gap is : 10 +--- So No we don't romove this configuration '2002-1001' + --- remove_aberrant_points: The value [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1] is not an abberant point. + --- remove_aberrant_points: do we remove value [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0] +--- Computing the list of the 10 first neighbours of '0101-2020' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1619524627.2519724 -error 2.6228600180057196e+18 - y tested = 5326600510.288329 -y predicted = 3992320419.45994 -error 1.7803033607810145e+18 - y tested = 5072151352.996373 -y predicted = 4399782372.854731 -error 4.520800454567125e+17 - y tested = 7650055845.407672 -y predicted = 5851342384.419427 -error 3.235370114740311e+18 - y tested = 5789616901.049658 -y predicted = 6065878675.533291 -error 7.632056804084573e+16 - y tested = 8224428196.629629 -y predicted = 7499214258.697206 -error 5.259352557714531e+17 - y tested = 4059018123.5159216 -y predicted = 5094559086.592632 -error 1.0723450862098415e+18 - y tested = 5947637003.818383 -y predicted = 4058969623.139842 -error 3.5670644748391414e+18 - y tested = 997516184.7000968 -y predicted = 538614128.4364794 -error 2.1059109724297626e+17 - y tested = 6532788063.289651 -y predicted = 6678410427.598056 -error 2.1205872986769804e+16 - y tested = 1980229389.772511 -y predicted = 3498120038.2588673 -error 2.3039920207623311e+18 - y tested = 5035525633.343237 -y predicted = 5192210002.379652 -error 2.4549991500339516e+16 - y tested = 5026691733.102776 -y predicted = 5313379232.803034 -error 8.218972248438558e+16 - y tested = 1014996574.3865615 -y predicted = 1236483376.9665864 -error 4.90564037171229e+16 - y tested = 7665772326.561901 -y predicted = 6795143865.180301 -error 7.579939177676928e+17 - y tested = 3029054692.61153 -y predicted = 4768361093.93471 -error 3.02518675768379e+18 - y tested = 4062233415.93208 -y predicted = 4814880585.086653 -error 5.664777612363924e+17 - y tested = 5822958761.806049 -y predicted = 6335720356.55639 -error 2.629244530509124e+17 - y tested = 6611133148.221605 -y predicted = 6345332354.258793 -error 7.0650062071261464e+16 - y tested = 5377240292.736961 -y predicted = 3027515538.120855 -error 5.521206422455722e+18 -error squared vector [2.6228600180057196e+18, 1.7803033607810145e+18, 4.520800454567125e+17, 3.235370114740311e+18, 7.632056804084573e+16, 5.259352557714531e+17, 1.0723450862098415e+18, 3.5670644748391414e+18, 2.1059109724297626e+17, 2.1205872986769804e+16, 2.3039920207623311e+18, 2.4549991500339516e+16, 8.218972248438558e+16, 4.90564037171229e+16, 7.579939177676928e+17, 3.02518675768379e+18, 5.664777612363924e+17, 2.629244530509124e+17, 7.0650062071261464e+16, 5.521206422455722e+18] -Total loo_error 1.3114151703402368e+18 -iteration 243current difference of loo_error 1344500122624.0 - getting loo error of with lamda = 0.014113950130418756, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0101-2020' +--- Neighbour 0 in the list of neghbours, And at position 69 in the X datas point +-------------- + --- Configuration: 0101-2020 + --- Distance from that configuration: [1.] + --- Energy efficiency: 8367150566.874451 + --- Energy: 43.37670883350873 + --- Workload: 362938000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 56 in the X datas point +-------------- + --- Configuration: 1001-2220 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 60 in the X datas point +-------------- + --- Configuration: 0101-0200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 66 in the X datas point +-------------- + --- Configuration: 0110-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 7 in the X datas point +-------------- + --- Configuration: 1000-1010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 6501654671.113798 + --- Energy: 42.85376093977719 + --- Workload: 278621000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 24 in the X datas point +-------------- + --- Configuration: 0000-3000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 3307720550.5370083 + --- Energy: 35.59789292409111 + --- Workload: 117748000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 26 in the X datas point +-------------- + --- Configuration: 0000-3330 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7665772326.561901 + --- Energy: 48.682465076838824 + --- Workload: 373189000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 42 in the X datas point +-------------- + --- Configuration: 1100-1000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5947637003.818383 + --- Energy: 36.68430426428569 + --- Workload: 218185000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0101-2020' +--- Neighbour 0 in the list of neghbours, And at position 54 in the X datas point +-------------- + --- Configuration: 0000-2000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 3331046015.069652 + --- Energy: 35.40657570372512 + --- Workload: 117941000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 24 in the X datas point +-------------- + --- Configuration: 0000-3000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3307720550.5370083 + --- Energy: 35.59789292409111 + --- Workload: 117748000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 66 in the X datas point +-------------- + --- Configuration: 0110-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 42 in the X datas point +-------------- + --- Configuration: 1100-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5947637003.818383 + --- Energy: 36.68430426428569 + --- Workload: 218185000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 60 in the X datas point +-------------- + --- Configuration: 0101-0200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 7 in the X datas point +-------------- + --- Configuration: 1000-1010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 6501654671.113798 + --- Energy: 42.85376093977719 + --- Workload: 278621000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 69 in the X datas point +-------------- + --- Configuration: 0101-2020 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8367150566.874451 + --- Energy: 43.37670883350873 + --- Workload: 362938000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 26 in the X datas point +-------------- + --- Configuration: 0000-3330 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7665772326.561901 + --- Energy: 48.682465076838824 + --- Workload: 373189000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 56 in the X datas point +-------------- + --- Configuration: 1001-2220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9166575000.916658 + --- Energy: 50.735447078258076 + --- Workload: 465069000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 43 in the X datas point +-------------- + --- Configuration: 2200-2000 + --- Energy efficiency: 5035525633.343237 + --- Energy: 36.93355197432356 + --- Workload: 185980000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (36.93355197432356 mAh) it is NOT far from the median. +--- Median :36.93355197432356, the gap is : 10 +--- So No we don't romove this configuration '0101-2020' + --- remove_aberrant_points: The value [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1] +--- Computing the list of the 10 first neighbours of '0202-1001' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0202-1001' +--- Neighbour 0 in the list of neghbours, And at position 70 in the X datas point +-------------- + --- Configuration: 0202-1001 + --- Distance from that configuration: [1.] + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 65 in the X datas point +-------------- + --- Configuration: 0303-1000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 72 in the X datas point +-------------- + --- Configuration: 0220-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 7282684688.88371 + --- Energy: 43.18443043197562 + --- Workload: 314499000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 0 in the X datas point +-------------- + --- Configuration: 0303-1010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8236960890.90969 + --- Energy: 61.00540758755291 + --- Workload: 502499000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 57 in the X datas point +-------------- + --- Configuration: 0200-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6540008502.011052 + --- Energy: 42.722378810206706 + --- Workload: 279405000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 2 in the X datas point +-------------- + --- Configuration: 0303-0100 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point +-------------- + --- Configuration: 3303-1010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0202-1001' +--- Neighbour 0 in the list of neghbours, And at position 57 in the X datas point +-------------- + --- Configuration: 0200-1100 + --- Distance from that configuration: [1.] + --- Energy efficiency: 6540008502.011052 + --- Energy: 42.722378810206706 + --- Workload: 279405000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 72 in the X datas point +-------------- + --- Configuration: 0220-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 7282684688.88371 + --- Energy: 43.18443043197562 + --- Workload: 314499000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 70 in the X datas point +-------------- + --- Configuration: 0202-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 2 in the X datas point +-------------- + --- Configuration: 0303-0100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 65 in the X datas point +-------------- + --- Configuration: 0303-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6928278461.367919 + --- Energy: 53.6166443408558 + --- Workload: 371471000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 0 in the X datas point +-------------- + --- Configuration: 0303-1010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8236960890.90969 + --- Energy: 61.00540758755291 + --- Workload: 502499000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 14 in the X datas point +-------------- + --- Configuration: 3303-1010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9340120487.55429 + --- Energy: 67.3857084084629 + --- Workload: 629393000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 2 in the X datas point +-------------- + --- Configuration: 0303-0100 + --- Energy efficiency: 6956231392.081026 + --- Energy: 53.38267358149647 + --- Workload: 371343000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (53.38267358149647 mAh) it is NOT far from the median. +--- Median :53.38267358149647, the gap is : 10 +--- So No we don't romove this configuration '0202-1001' + --- remove_aberrant_points: The value [1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 1, 0.0, 1, 1, 0, 1] +--- Computing the list of the 10 first neighbours of '3003-1101' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '3003-1101' +--- Neighbour 0 in the list of neghbours, And at position 71 in the X datas point +-------------- + --- Configuration: 3003-1101 + --- Distance from that configuration: [1.] + --- Energy efficiency: 9428892010.8998 + --- Energy: 67.46193459835338 + --- Workload: 636090000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 4 in the X datas point +-------------- + --- Configuration: 3000-1110 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8096707069.234942 + --- Energy: 49.41467631934382 + --- Workload: 400095000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 58 in the X datas point +-------------- + --- Configuration: 2002-0100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7245431755.278297 + --- Energy: 42.016301664202444 + --- Workload: 304426000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 73 in the X datas point +-------------- + --- Configuration: 3003-0002 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7595205906.032112 + --- Energy: 65.80063109114849 + --- Workload: 499771000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '3003-1101' +--- Neighbour 0 in the list of neghbours, And at position 44 in the X datas point +-------------- + --- Configuration: 3000-1000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 5326600510.288329 + --- Energy: 36.46450751429702 + --- Workload: 194232000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 58 in the X datas point +-------------- + --- Configuration: 2002-0100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 7245431755.278297 + --- Energy: 42.016301664202444 + --- Workload: 304426000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 49 in the X datas point +-------------- + --- Configuration: 3000-2200 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6519117311.516021 + --- Energy: 42.79271109577192 + --- Workload: 278971000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 48 in the X datas point +-------------- + --- Configuration: 3000-1100 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 6443423519.784533 + --- Energy: 43.3608751201712 + --- Workload: 279393000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 4 in the X datas point +-------------- + --- Configuration: 3000-1110 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8096707069.234942 + --- Energy: 49.41467631934382 + --- Workload: 400095000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 73 in the X datas point +-------------- + --- Configuration: 3003-0002 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7595205906.032112 + --- Energy: 65.80063109114849 + --- Workload: 499771000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 71 in the X datas point +-------------- + --- Configuration: 3003-1101 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9428892010.8998 + --- Energy: 67.46193459835338 + --- Workload: 636090000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (67.46193459835338 mAh) is far from the median. +--- Median :48.71596839606954, the gap is : 10 +--- So yes we remove this configuration '3003-1101' +--- remove_aberrant_points: The value [2.0, 1, 0, 0, 1, 0.0, 1, 1, 0, 1] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [1.0, 0, 1, 1, 0, 0.0, 1, 0, 0, 1] +--- Computing the list of the 10 first neighbours of '0220-1001' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '0220-1001' +--- Neighbour 0 in the list of neghbours, And at position 72 in the X datas point +-------------- + --- Configuration: 0220-1001 + --- Distance from that configuration: [1.] + --- Energy efficiency: 7282684688.88371 + --- Energy: 43.18443043197562 + --- Workload: 314499000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 70 in the X datas point +-------------- + --- Configuration: 0202-1001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 57 in the X datas point +-------------- + --- Configuration: 0200-1100 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6540008502.011052 + --- Energy: 42.722378810206706 + --- Workload: 279405000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 5 in the X datas point +-------------- + --- Configuration: 0030-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 994906080.8659663 + --- Energy: 29.623247258891045 + --- Workload: 29472300000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 3998672440.749671 + --- Energy: 36.82601141845538 + --- Workload: 147255000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 8 in the X datas point +-------------- + --- Configuration: 0020-0202 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8089829466.394849 + --- Energy: 66.44909360627778 + --- Workload: 537560000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 20 in the X datas point +-------------- + --- Configuration: 3330-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5377240292.736961 + --- Energy: 32.51205394198035 + --- Workload: 174825000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '0220-1001' +--- Neighbour 0 in the list of neghbours, And at position 5 in the X datas point +-------------- + --- Configuration: 0030-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 994906080.8659663 + --- Energy: 29.623247258891045 + --- Workload: 29472300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 20 in the X datas point +-------------- + --- Configuration: 3330-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5377240292.736961 + --- Energy: 32.51205394198035 + --- Workload: 174825000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3998672440.749671 + --- Energy: 36.82601141845538 + --- Workload: 147255000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 57 in the X datas point +-------------- + --- Configuration: 0200-1100 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 6540008502.011052 + --- Energy: 42.722378810206706 + --- Workload: 279405000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 72 in the X datas point +-------------- + --- Configuration: 0220-1001 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7282684688.88371 + --- Energy: 43.18443043197562 + --- Workload: 314499000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 70 in the X datas point +-------------- + --- Configuration: 0202-1001 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8895689149.038376 + --- Energy: 48.8428586507307 + --- Workload: 434491000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 8 in the X datas point +-------------- + --- Configuration: 0020-0202 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8089829466.394849 + --- Energy: 66.44909360627778 + --- Workload: 537560000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Energy efficiency: 3998672440.749671 + --- Energy: 36.82601141845538 + --- Workload: 147255000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (36.82601141845538 mAh) it is NOT far from the median. +--- Median :36.82601141845538, the gap is : 10 +--- So No we don't romove this configuration '0220-1001' + --- remove_aberrant_points: The value [1.0, 0, 1, 1, 0, 0.0, 1, 0, 0, 1] is not an abberant point. + --- remove_aberrant_points: do we remove value [2.0, 1, 0, 0, 1, 1.0, 0, 0, 0, 1] +--- Computing the list of the 10 first neighbours of '3003-0002' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '3003-0002' +--- Neighbour 0 in the list of neghbours, And at position 73 in the X datas point +-------------- + --- Configuration: 3003-0002 + --- Distance from that configuration: [1.] + --- Energy efficiency: 7595205906.032112 + --- Energy: 65.80063109114849 + --- Workload: 499771000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 18 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1016987763.6032282 + --- Energy: 29.060137396486432 + --- Workload: 29553800000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 35 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1010122436.9405816 + --- Energy: 29.239529117166907 + --- Workload: 29535500000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 62 in the X datas point +-------------- + --- Configuration: 2002-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 71 in the X datas point +-------------- + --- Configuration: 3003-1101 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 9428892010.8998 + --- Energy: 67.46193459835338 + --- Workload: 636090000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 19 in the X datas point +-------------- + --- Configuration: 3300-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 1980229389.772511 + --- Energy: 30.277288658122774 + --- Workload: 59956000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '3003-0002' +--- Neighbour 0 in the list of neghbours, And at position 18 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 1016987763.6032282 + --- Energy: 29.060137396486432 + --- Workload: 29553800000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 35 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 1010122436.9405816 + --- Energy: 29.239529117166907 + --- Workload: 29535500000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 19 in the X datas point +-------------- + --- Configuration: 3300-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 1980229389.772511 + --- Energy: 30.277288658122774 + --- Workload: 59956000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 45 in the X datas point +-------------- + --- Configuration: 3000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4059018123.5159216 + --- Energy: 36.96583597689362 + --- Workload: 150045000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 62 in the X datas point +-------------- + --- Configuration: 2002-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 68 in the X datas point +-------------- + --- Configuration: 2002-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8795770993.306417 + --- Energy: 48.71596839606954 + --- Workload: 428493000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 15 in the X datas point +-------------- + --- Configuration: 0003-1001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 6806147312.252427 + --- Energy: 54.44253148500697 + --- Workload: 370545000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 11 in the X datas point +-------------- + --- Configuration: 3303-0001 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8321129010.784183 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 73 in the X datas point +-------------- + --- Configuration: 3003-0002 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 7595205906.032112 + --- Energy: 65.80063109114849 + --- Workload: 499771000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 71 in the X datas point +-------------- + --- Configuration: 3003-1101 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9428892010.8998 + --- Energy: 67.46193459835338 + --- Workload: 636090000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 62 in the X datas point +-------------- + --- Configuration: 2002-2000 + --- Energy efficiency: 7263008047.412917 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (65.80063109114849 mAh) is far from the median. +--- Median :41.829225389075674, the gap is : 10 +--- So yes we remove this configuration '3003-0002' +--- remove_aberrant_points: The value [2.0, 1, 0, 0, 1, 1.0, 0, 0, 0, 1] is an abberant point. we don't add it + --- remove_aberrant_points: do we remove value [0.0, 1, 1, 1, 1, 0.0, 0, 1, 0, 1] +--- Computing the list of the 10 first neighbours of '1111-0101' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '1111-0101' +--- Neighbour 0 in the list of neghbours, And at position 74 in the X datas point +-------------- + --- Configuration: 1111-0101 + --- Distance from that configuration: [1.] + --- Energy efficiency: 9080672696.233337 + --- Energy: 45.44863666563364 + --- Workload: 412706000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 10 in the X datas point +-------------- + --- Configuration: 0011-0111 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8964027358.211496 + --- Energy: 50.74428137607953 + --- Workload: 454872000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 38 in the X datas point +-------------- + --- Configuration: 1110-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 2905397356.669485 + --- Energy: 30.668041259477853 + --- Workload: 89102900000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 13 in the X datas point +-------------- + --- Configuration: 0011-1100 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7650055845.407672 + --- Energy: 43.82652071469574 + --- Workload: 335276000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 36 in the X datas point +-------------- + --- Configuration: 1100-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 2018619748.5607243 + --- Energy: 30.059275323795035 + --- Workload: 60678300000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 58 in the X datas point +-------------- + --- Configuration: 2002-0100 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7245431755.278297 + --- Energy: 42.016301664202444 + --- Workload: 304426000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 60 in the X datas point +-------------- + --- Configuration: 0101-0200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '1111-0101' +--- Neighbour 0 in the list of neghbours, And at position 36 in the X datas point +-------------- + --- Configuration: 1100-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 2018619748.5607243 + --- Energy: 30.059275323795035 + --- Workload: 60678300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 38 in the X datas point +-------------- + --- Configuration: 1110-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 2905397356.669485 + --- Energy: 30.668041259477853 + --- Workload: 89102900000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 60 in the X datas point +-------------- + --- Configuration: 0101-0200 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 58 in the X datas point +-------------- + --- Configuration: 2002-0100 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7245431755.278297 + --- Energy: 42.016301664202444 + --- Workload: 304426000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 13 in the X datas point +-------------- + --- Configuration: 0011-1100 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7650055845.407672 + --- Energy: 43.82652071469574 + --- Workload: 335276000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 74 in the X datas point +-------------- + --- Configuration: 1111-0101 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 9080672696.233337 + --- Energy: 45.44863666563364 + --- Workload: 412706000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 10 in the X datas point +-------------- + --- Configuration: 0011-0111 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8964027358.211496 + --- Energy: 50.74428137607953 + --- Workload: 454872000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 60 in the X datas point +-------------- + --- Configuration: 0101-0200 + --- Energy efficiency: 5549420363.04308 + --- Energy: 37.334916995372765 + --- Workload: 207187000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (37.334916995372765 mAh) it is NOT far from the median. +--- Median :37.334916995372765, the gap is : 10 +--- So No we don't romove this configuration '1111-0101' + --- remove_aberrant_points: The value [0.0, 1, 1, 1, 1, 0.0, 0, 1, 0, 1] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] +--- Computing the list of the 10 first neighbours of '2220-0000' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '2220-0000' +--- Neighbour 0 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 20 in the X datas point +-------------- + --- Configuration: 3330-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 5377240292.736961 + --- Energy: 32.51205394198035 + --- Workload: 174825000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 37 in the X datas point +-------------- + --- Configuration: 2200-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 1998856653.9939156 + --- Energy: 30.07061597004587 + --- Workload: 60106800000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 38 in the X datas point +-------------- + --- Configuration: 1110-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 2905397356.669485 + --- Energy: 30.668041259477853 + --- Workload: 89102900000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 19 in the X datas point +-------------- + --- Configuration: 3300-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 1980229389.772511 + --- Energy: 30.277288658122774 + --- Workload: 59956000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 21 in the X datas point +-------------- + --- Configuration: 3333-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 8296551953.00833 + --- Energy: 59.045602086542516 + --- Workload: 489874000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 36 in the X datas point +-------------- + --- Configuration: 1100-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 2018619748.5607243 + --- Energy: 30.059275323795035 + --- Workload: 60678300000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 5 in the X datas point +-------------- + --- Configuration: 0030-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 994906080.8659663 + --- Energy: 29.623247258891045 + --- Workload: 29472300000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '2220-0000' +--- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 5 in the X datas point +-------------- + --- Configuration: 0030-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 994906080.8659663 + --- Energy: 29.623247258891045 + --- Workload: 29472300000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 36 in the X datas point +-------------- + --- Configuration: 1100-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 2018619748.5607243 + --- Energy: 30.059275323795035 + --- Workload: 60678300000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 37 in the X datas point +-------------- + --- Configuration: 2200-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 1998856653.9939156 + --- Energy: 30.07061597004587 + --- Workload: 60106800000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 19 in the X datas point +-------------- + --- Configuration: 3300-0000 + --- Distance from that configuration: [0.91310072] + --- Energy efficiency: 1980229389.772511 + --- Energy: 30.277288658122774 + --- Workload: 59956000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 75 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 2991522026.5766816 + --- Energy: 30.63396781022152 + --- Workload: 91642100000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 38 in the X datas point +-------------- + --- Configuration: 1110-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 2905397356.669485 + --- Energy: 30.668041259477853 + --- Workload: 89102900000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 20 in the X datas point +-------------- + --- Configuration: 3330-0000 + --- Distance from that configuration: [0.83375292] + --- Energy efficiency: 5377240292.736961 + --- Energy: 32.51205394198035 + --- Workload: 174825000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 21 in the X datas point +-------------- + --- Configuration: 3333-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8296551953.00833 + --- Energy: 59.045602086542516 + --- Workload: 489874000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 19 in the X datas point +-------------- + --- Configuration: 3300-0000 + --- Energy efficiency: 1980229389.772511 + --- Energy: 30.277288658122774 + --- Workload: 59956000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (30.277288658122774 mAh) it is NOT far from the median. +--- Median :30.277288658122774, the gap is : 10 +--- So No we don't romove this configuration '2220-0000' + --- remove_aberrant_points: The value [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] is not an abberant point. + --- remove_aberrant_points: do we remove value [1.0, 1, 0, 1, 0, 1.0, 0, 0, 1, 1] +--- Computing the list of the 10 first neighbours of '2020-0022' +*** START computing ci exp matrix +X = [[2. 0. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 1. 1. 2. 1. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 0. 1. 0. 0.] + [1. 1. 1. 1. 1. 1. 0. 1. 1. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 1. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] + [1. 0. 0. 1. 0. 1. 0. 1. 0. 1.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 1. 1. 0. 0. 1. 1. 1.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [2. 1. 1. 0. 1. 0. 1. 0. 1. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 1. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 1. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [0. 1. 0. 0. 1. 1. 1. 1. 1. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 1. 0. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [1. 1. 0. 0. 1. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 1. 1. 0. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [1. 1. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 1. 0. 1. 0.] + [1. 0. 1. 0. 1. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 0. 1. 1. 0. 1.] + [1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 1. 1. 0. 0. 0. 1.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [1. 1. 0. 1. 0. 1. 0. 0. 1. 1.]] +*** END computing ci exp matrix, cached result [[[1. ] + [0.52921334] + [0.76130039] + ... + [0.40289032] + [0.57957828] + [0.48322508]] + + [[0.52921334] + [1. ] + [0.48322508] + ... + [0.30672056] + [0.44123317] + [0.52921334]] + + [[0.76130039] + [0.48322508] + [1. ] + ... + [0.52921334] + [0.63473642] + [0.44123317]] + + ... + + [[0.40289032] + [0.30672056] + [0.52921334] + ... + [1. ] + [0.69514393] + [0.57957828]] + + [[0.57957828] + [0.44123317] + [0.63473642] + ... + [0.69514393] + [1. ] + [0.69514393]] + + [[0.48322508] + [0.52921334] + [0.44123317] + ... + [0.57957828] + [0.69514393] + [1. ]]] +--- Ordered by distance, Printing the list of the 10 first neighbours of '2020-0022' +--- Neighbour 0 in the list of neghbours, And at position 76 in the X datas point +-------------- + --- Configuration: 2020-0022 + --- Distance from that configuration: [1.] + --- Energy efficiency: 8754497623.153894 + --- Energy: 65.93701913313123 + --- Workload: 577244000000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3998672440.749671 + --- Energy: 36.82601141845538 + --- Workload: 147255000000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 8 in the X datas point +-------------- + --- Configuration: 0020-0202 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 8089829466.394849 + --- Energy: 66.44909360627778 + --- Workload: 537560000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 64 in the X datas point +-------------- + --- Configuration: 0220-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 12 in the X datas point +-------------- + --- Configuration: 0022-0030 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7249844128.351241 + --- Energy: 42.05401520354165 + --- Workload: 304885000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 66 in the X datas point +-------------- + --- Configuration: 0110-0020 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 +-------------- +--- Ordered by energy, Printing the list of the 10 first neighbours of '2020-0022' +--- Neighbour 0 in the list of neghbours, And at position 34 in the X datas point +-------------- + --- Configuration: 2000-0000 + --- Distance from that configuration: [1.] + --- Energy efficiency: 1014996574.3865615 + --- Energy: 29.02206558996354 + --- Workload: 29457300000.0 +-------------- +--- Neighbour 1 in the list of neghbours, And at position 39 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 3029054692.61153 + --- Energy: 30.508250558695604 + --- Workload: 92411200000.0 +-------------- +--- Neighbour 2 in the list of neghbours, And at position 47 in the X datas point +-------------- + --- Configuration: 2000-2000 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 4153496621.1304984 + --- Energy: 36.241340818491324 + --- Workload: 150528000000.0 +-------------- +--- Neighbour 3 in the list of neghbours, And at position 66 in the X datas point +-------------- + --- Configuration: 0110-0020 + --- Distance from that configuration: [0.76130039] + --- Energy efficiency: 5821399464.43125 + --- Energy: 36.31061849927073 + --- Workload: 211379000000.0 +-------------- +--- Neighbour 4 in the list of neghbours, And at position 64 in the X datas point +-------------- + --- Configuration: 0220-0020 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 +-------------- +--- Neighbour 5 in the list of neghbours, And at position 6 in the X datas point +-------------- + --- Configuration: 0020-0010 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 3998672440.749671 + --- Energy: 36.82601141845538 + --- Workload: 147255000000.0 +-------------- +--- Neighbour 6 in the list of neghbours, And at position 12 in the X datas point +-------------- + --- Configuration: 0022-0030 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 7249844128.351241 + --- Energy: 42.05401520354165 + --- Workload: 304885000000.0 +-------------- +--- Neighbour 7 in the list of neghbours, And at position 3 in the X datas point +-------------- + --- Configuration: 2222-0220 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 11285968381.230984 + --- Energy: 54.74622776577034 + --- Workload: 617864000000.0 +-------------- +--- Neighbour 8 in the list of neghbours, And at position 76 in the X datas point +-------------- + --- Configuration: 2020-0022 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8754497623.153894 + --- Energy: 65.93701913313123 + --- Workload: 577244000000.0 +-------------- +--- Neighbour 9 in the list of neghbours, And at position 8 in the X datas point +-------------- + --- Configuration: 0020-0202 + --- Distance from that configuration: [0.69514393] + --- Energy efficiency: 8089829466.394849 + --- Energy: 66.44909360627778 + --- Workload: 537560000000.0 +-------------- +-------------- +--- Median at position 4 in the list of neghbours, And at position 64 in the X datas point +-------------- + --- Configuration: 0220-0020 + --- Energy efficiency: 5040602049.508794 + --- Energy: 36.67117347490831 + --- Workload: 184845000000.0 +-------------- +--- Comparing the median energy with the energy of that data point +--- The energy of the current configuration (65.93701913313123 mAh) is far from the median. +--- Median :36.67117347490831, the gap is : 10 +--- So yes we remove this configuration '2020-0022' +--- remove_aberrant_points: The value [1.0, 1, 0, 1, 0, 1.0, 0, 0, 1, 1] is an abberant point. we don't add it +--- remove_aberrant_points: Printing all 14 removed points + --- Configuration: 0033-3000 + --- Energy: 53.35616382684589 + --- Configuration: 2222-0220 + --- Energy: 54.74622776577034 + --- Configuration: 3000-1110 + --- Energy: 49.41467631934382 + --- Configuration: 1000-1010 + --- Energy: 42.85376093977719 + --- Configuration: 0020-0202 + --- Energy: 66.44909360627778 + --- Configuration: 0011-0111 + --- Energy: 50.74428137607953 + --- Configuration: 3303-1010 + --- Energy: 67.3857084084629 + --- Configuration: 3333-0000 + --- Energy: 59.045602086542516 + --- Configuration: 3333-3000 + --- Energy: 66.34289826476824 + --- Configuration: 3333-3300 + --- Energy: 75.09852863759252 + --- Configuration: 2002-0100 + --- Energy: 42.016301664202444 + --- Configuration: 3003-1101 + --- Energy: 67.46193459835338 + --- Configuration: 3003-0002 + --- Energy: 65.80063109114849 + --- Configuration: 2020-0022 + --- Energy: 65.93701913313123 +final_X_user friendly : + ['0303-1010', '0303-0100', '0030-0000', '0020-0010', '0010-3300', '3303-0001', '0022-0030', '0011-1100', '0003-1001', '0000-0000', '0000-0000', '3000-0000', '3300-0000', '3330-0000', '0000-3000', '0000-3300', '0000-3330', '3300-3000', '3330-3000', '3000-3000', '3000-3300', '3000-3330', '0000-0000', '1000-0000', '2000-0000', '3000-0000', '1100-0000', '2200-0000', '1110-0000', '2220-0000', '3300-1000', '3300-2000', '1100-1000', '2200-2000', '3000-1000', '3000-2000', '1000-1000', '2000-2000', '3000-1100', '3000-2200', '1000-1100', '2000-2200', '3000-3300', '0000-1000', '0000-2000', '0000-2200', '1001-2220', '0200-1100', '0000-0001', '0101-0200', '3330-2220', '2002-2000', '0001-0200', '0220-0020', '0303-1000', '0110-0020', '0030-2000', '2002-1001', '0101-2020', '0202-1001', '0220-1001', '1111-0101', '2220-0000'] +final_X : + [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0], [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0], [1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1], [1.0, 0, 1, 1, 0, 0.0, 1, 0, 0, 1], [0.0, 1, 1, 1, 1, 0.0, 0, 1, 0, 1], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0]] +final_y : + [8236960890.90969, 6956231392.081026, 994906080.8659663, 3998672440.749671, 6532788063.289651, 8321129010.784183, 7249844128.351241, 7650055845.407672, 6806147312.252427, 0.08333333333333333, 0.08333333333333333, 1016987763.6032282, 1980229389.772511, 5377240292.736961, 3307720550.5370083, 5789616901.049658, 7665772326.561901, 5072151352.996373, 5822958761.806049, 4149980287.5936337, 6611133148.221605, 8224428196.629629, 0.08333333333333333, 997516184.7000968, 1014996574.3865615, 1010122436.9405816, 2018619748.5607243, 1998856653.9939156, 2905397356.669485, 3029054692.61153, 5058399218.983161, 5026691733.102776, 5947637003.818383, 5035525633.343237, 5326600510.288329, 4059018123.5159216, 4062233415.93208, 4153496621.1304984, 6443423519.784533, 6519117311.516021, 6448575832.027497, 6539495281.754154, 6473246073.976255, 3145168392.3157244, 3331046015.069652, 5724131219.984087, 9166575000.916658, 6540008502.011052, 3321398441.599851, 5549420363.04308, 9229945635.620207, 7263008047.412917, 4385426351.149858, 5040602049.508794, 6928278461.367919, 5821399464.43125, 4809102669.532892, 8795770993.306417, 8367150566.874451, 8895689149.038376, 7282684688.88371, 9080672696.233337, 2991522026.5766816] + --- Actual line: ['X_0' 'X_1' 'X_2' 'X_3' 'X_4' 'X_5' 'X_6' 'X_7' 'X_8' 'X_9' 'y'] + --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 8.23696089e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.95623139e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 9.94906081e+08] + --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 3.99867244e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.53278806e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 8.32112901e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 1.00000000e+00 2.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 7.24984413e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 7.65005585e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 6.80614731e+09] + --- Actual line: [0. 0. 0. 0. 0. 0. + 0. 0. 0. 0. 0.08333333] + --- Actual line: [0. 0. 0. 0. 0. 0. + 0. 0. 0. 0. 0.08333333] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.01698776e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.98022939e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.37724029e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.30772055e+09] + --- Actual line: [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 + 2.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + 5.7896169e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 7.66577233e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.07215135e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.82295876e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.14998029e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.61113315e+09] + --- Actual line: [2.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 + 2.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 + 8.2244282e+09] + --- Actual line: [0. 0. 0. 0. 0. 0. + 0. 0. 0. 0. 0.08333333] + --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 9.97516185e+08] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.01499657e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.01012244e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 2.01861975e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.99885665e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 2.90539736e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.02905469e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.05839922e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.02669173e+09] + --- Actual line: [0.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 + 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 + 5.947637e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.03552563e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.32660051e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.05901812e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.06223342e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.15349662e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.44342352e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.51911731e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.44857583e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.53949528e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.47324607e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.14516839e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.33104602e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.72413122e+09] + --- Actual line: [0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 + 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 + 9.166575e+09] + --- Actual line: [1.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + 0.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + 6.5400085e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 3.32139844e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.54942036e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 9.22994564e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 7.26300805e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.38542635e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 5.04060205e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.92827846e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 5.82139946e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.80910267e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 8.79577099e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 8.36715057e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 8.89568915e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 7.28268469e+09] + --- Actual line: [0.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 + 0.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00 1.0000000e+00 + 9.0806727e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 2.99152203e+09] +--- Size of X after removing aberrants points from the dataset: 63 +--- Number of abberant points removed : 14 +*** Ratio energy by wokload : [8236960890.90969, 6956231392.081026, 994906080.8659663, 3998672440.749671, 6532788063.289651, 8321129010.784183, 7249844128.351241, 7650055845.407672, 6806147312.252427, 0.08333333333333333, 0.08333333333333333, 1016987763.6032282, 1980229389.772511, 5377240292.736961, 3307720550.5370083, 5789616901.049658, 7665772326.561901, 5072151352.996373, 5822958761.806049, 4149980287.5936337, 6611133148.221605, 8224428196.629629, 0.08333333333333333, 997516184.7000968, 1014996574.3865615, 1010122436.9405816, 2018619748.5607243, 1998856653.9939156, 2905397356.669485, 3029054692.61153, 5058399218.983161, 5026691733.102776, 5947637003.818383, 5035525633.343237, 5326600510.288329, 4059018123.5159216, 4062233415.93208, 4153496621.1304984, 6443423519.784533, 6519117311.516021, 6448575832.027497, 6539495281.754154, 6473246073.976255, 3145168392.3157244, 3331046015.069652, 5724131219.984087, 9166575000.916658, 6540008502.011052, 3321398441.599851, 5549420363.04308, 9229945635.620207, 7263008047.412917, 4385426351.149858, 5040602049.508794, 6928278461.367919, 5821399464.43125, 4809102669.532892, 8795770993.306417, 8367150566.874451, 8895689149.038376, 7282684688.88371, 9080672696.233337, 2991522026.5766816] +--- Size of X before removing duplicates: 63 + --- Actual line: ['X_0' 'X_1' 'X_2' 'X_3' 'X_4' 'X_5' 'X_6' 'X_7' 'X_8' 'X_9' 'y'] + --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 8.23696089e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.95623139e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 9.94906081e+08] + --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 3.99867244e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.53278806e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 8.32112901e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 1.00000000e+00 2.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 7.24984413e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 7.65005585e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 6.80614731e+09] + --- Actual line: [0. 0. 0. 0. 0. 0. + 0. 0. 0. 0. 0.08333333] + --- Actual line: [0. 0. 0. 0. 0. 0. + 0. 0. 0. 0. 0.08333333] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.01698776e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.98022939e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.37724029e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.30772055e+09] + --- Actual line: [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 + 2.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + 5.7896169e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 7.66577233e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.07215135e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.82295876e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.14998029e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.61113315e+09] + --- Actual line: [2.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 + 2.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 + 8.2244282e+09] + --- Actual line: [0. 0. 0. 0. 0. 0. + 0. 0. 0. 0. 0.08333333] + --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 9.97516185e+08] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.01499657e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.01012244e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 2.01861975e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.99885665e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 2.90539736e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.02905469e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.05839922e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.02669173e+09] + --- Actual line: [0.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 + 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 + 5.947637e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.03552563e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.32660051e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.05901812e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.06223342e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.15349662e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.44342352e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.51911731e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.44857583e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.53949528e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.47324607e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.14516839e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.33104602e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.72413122e+09] + --- Actual line: [0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 + 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 + 9.166575e+09] + --- Actual line: [1.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + 0.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + 6.5400085e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 3.32139844e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.54942036e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 9.22994564e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 7.26300805e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.38542635e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 5.04060205e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.92827846e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 5.82139946e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.80910267e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 8.79577099e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 8.36715057e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 8.89568915e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 7.28268469e+09] + --- Actual line: [0.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 + 0.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00 1.0000000e+00 + 9.0806727e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 2.99152203e+09] + --- Checking value [2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0] + --- Retained configurations [] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] + --- Answer : configuration is present, have it been processed? -1 + --- Answer : the configuration 0000-0000 is already present at positions [9, 10, 22] + --- Position: 9 +-------------- + --- Configuration: 0000-0000 + --- Energy efficiency: 0.08333333333333333 + --- Energy: 42.64544340651106 + --- Workload: 278594000000.0 +-------------- + --- Position: 10 +-------------- + --- Configuration: 0000-0000 + --- Energy efficiency: 0.08333333333333333 + --- Energy: 50.74428137607953 + --- Workload: 454872000000.0 +-------------- + --- Position: 22 +-------------- + --- Configuration: 0000-0000 + --- Energy efficiency: 0.08333333333333333 + --- Energy: 66.34289826476824 + --- Workload: 623684000000.0 +-------------- +---------------------- +--- Ordered by energy, Printing the list of the 3 duplicates of '0000-0000' +--- Duplicate 0 in the list of duplicate, And at position 22 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Energy efficiency: 0.08333333333333333 + --- Energy: 66.34289826476824 + --- Workload: 623684000000.0 +-------------- +--- Duplicate 1 in the list of duplicate, And at position 10 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Energy efficiency: 0.08333333333333333 + --- Energy: 50.74428137607953 + --- Workload: 454872000000.0 +-------------- +--- Duplicate 2 in the list of duplicate, And at position 9 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Energy efficiency: 0.08333333333333333 + --- Energy: 42.64544340651106 + --- Workload: 278594000000.0 +-------------- +-------------- +--- We append this Median as duplicate representant at position 0 in the list of duplicates, And at position 22 in the X datas point +-------------- + --- Configuration: 0000-0000 + --- Energy efficiency: 0.08333333333333333 + --- Energy: 66.34289826476824 + --- Workload: 623684000000.0 +-------------- + --- Checking value [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0]] + --- Answer : configuration is present, have it been processed? 0 + --- Checking value [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0]] + --- Answer : configuration is present, have it been processed? -1 + --- Answer : the configuration 3000-0000 is already present at positions [11, 25] + --- Position: 11 +-------------- + --- Configuration: 3000-0000 + --- Energy efficiency: 1016987763.6032282 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- + --- Position: 25 +-------------- + --- Configuration: 3000-0000 + --- Energy efficiency: 1010122436.9405816 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 +-------------- +---------------------- +--- Ordered by energy, Printing the list of the 2 duplicates of '3000-0000' +--- Duplicate 0 in the list of duplicate, And at position 11 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Energy efficiency: 1016987763.6032282 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- +--- Duplicate 1 in the list of duplicate, And at position 25 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Energy efficiency: 1010122436.9405816 + --- Energy: 42.05795824330537 + --- Workload: 243499000000.0 +-------------- +-------------- +--- We append this Median as duplicate representant at position 0 in the list of duplicates, And at position 11 in the X datas point +-------------- + --- Configuration: 3000-0000 + --- Energy efficiency: 1016987763.6032282 + --- Energy: 59.94594005320708 + --- Workload: 498819000000.0 +-------------- + --- Checking value [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0]] + --- Answer : configuration is present, have it been processed? -1 + --- Answer : the configuration 3000-3300 is already present at positions [20, 42] + --- Position: 20 +-------------- + --- Configuration: 3000-3300 + --- Energy efficiency: 6611133148.221605 + --- Energy: 32.51205394198035 + --- Workload: 174825000000.0 +-------------- + --- Position: 42 +-------------- + --- Configuration: 3000-3300 + --- Energy efficiency: 6473246073.976255 + --- Energy: 36.68430426428569 + --- Workload: 218185000000.0 +-------------- +---------------------- +--- Ordered by energy, Printing the list of the 2 duplicates of '3000-3300' +--- Duplicate 0 in the list of duplicate, And at position 42 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Energy efficiency: 6473246073.976255 + --- Energy: 36.68430426428569 + --- Workload: 218185000000.0 +-------------- +--- Duplicate 1 in the list of duplicate, And at position 20 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Energy efficiency: 6611133148.221605 + --- Energy: 32.51205394198035 + --- Workload: 174825000000.0 +-------------- +-------------- +--- We append this Median as duplicate representant at position 0 in the list of duplicates, And at position 42 in the X datas point +-------------- + --- Configuration: 3000-3300 + --- Energy efficiency: 6473246073.976255 + --- Energy: 36.68430426428569 + --- Workload: 218185000000.0 +-------------- + --- Checking value [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0], [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0], [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0], [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0], [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 0, 1, 1, 0, 0.0, 1, 0, 0, 1] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0], [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0], [1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [0.0, 1, 1, 1, 1, 0.0, 0, 1, 0, 1] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0], [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0], [1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1], [1.0, 0, 1, 1, 0, 0.0, 1, 0, 0, 1]] + --- Answer : we add the configuration, it is not yet present + --- Checking value [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0] + --- Retained configurations [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0], [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0], [1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1], [1.0, 0, 1, 1, 0, 0.0, 1, 0, 0, 1], [0.0, 1, 1, 1, 1, 0.0, 0, 1, 0, 1]] + --- Answer : configuration is present, have it been processed? -1 + --- Answer : the configuration 2220-0000 is already present at positions [29, 62] + --- Position: 29 +-------------- + --- Configuration: 2220-0000 + --- Energy efficiency: 3029054692.61153 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- + --- Position: 62 +-------------- + --- Configuration: 2220-0000 + --- Energy efficiency: 2991522026.5766816 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +---------------------- +--- Ordered by energy, Printing the list of the 2 duplicates of '2220-0000' +--- Duplicate 0 in the list of duplicate, And at position 62 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Energy efficiency: 2991522026.5766816 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +--- Duplicate 1 in the list of duplicate, And at position 29 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Energy efficiency: 3029054692.61153 + --- Energy: 36.1860248822606 + --- Workload: 150171000000.0 +-------------- +-------------- +--- We append this Median as duplicate representant at position 0 in the list of duplicates, And at position 62 in the X datas point +-------------- + --- Configuration: 2220-0000 + --- Energy efficiency: 2991522026.5766816 + --- Energy: 41.829225389075674 + --- Workload: 303807000000.0 +-------------- +final_X_user friendly : + ['0303-1010', '0303-0100', '0030-0000', '0020-0010', '0010-3300', '3303-0001', '0022-0030', '0011-1100', '0003-1001', '0000-0000', '3000-0000', '3300-0000', '3330-0000', '0000-3000', '0000-3300', '0000-3330', '3300-3000', '3330-3000', '3000-3000', '3000-3300', '3000-3330', '1000-0000', '2000-0000', '1100-0000', '2200-0000', '1110-0000', '2220-0000', '3300-1000', '3300-2000', '1100-1000', '2200-2000', '3000-1000', '3000-2000', '1000-1000', '2000-2000', '3000-1100', '3000-2200', '1000-1100', '2000-2200', '0000-1000', '0000-2000', '0000-2200', '1001-2220', '0200-1100', '0000-0001', '0101-0200', '3330-2220', '2002-2000', '0001-0200', '0220-0020', '0303-1000', '0110-0020', '0030-2000', '2002-1001', '0101-2020', '0202-1001', '0220-1001', '1111-0101'] +final_X : + [[2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [2.0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1.0, 0, 0, 1, 0, 0.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 1, 0, 1, 0.0, 0, 0, 0, 1], [1.0, 0, 0, 1, 1, 2.0, 0, 0, 1, 0], [0.0, 0, 0, 1, 1, 0.0, 1, 1, 0, 0], [2.0, 0, 0, 0, 1, 0.0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 1, 1, 0], [2.0, 1, 1, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 2.0, 1, 1, 1, 0], [0.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1.0, 1, 1, 1, 0, 0, 0, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [1.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [1.0, 0, 1, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 1.0, 1, 1, 1, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [1.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 0], [0.0, 0, 1, 1, 0, 1.0, 0, 0, 1, 0], [2.0, 0, 0, 1, 0, 1.0, 1, 0, 0, 0], [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1], [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0], [1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1], [1.0, 0, 1, 1, 0, 0.0, 1, 0, 0, 1], [0.0, 1, 1, 1, 1, 0.0, 0, 1, 0, 1]] +final_y : + [8236960890.90969, 6956231392.081026, 994906080.8659663, 3998672440.749671, 6532788063.289651, 8321129010.784183, 7249844128.351241, 7650055845.407672, 6806147312.252427, 0.08333333333333333, 1016987763.6032282, 1980229389.772511, 5377240292.736961, 3307720550.5370083, 5789616901.049658, 7665772326.561901, 5072151352.996373, 5822958761.806049, 4149980287.5936337, 6473246073.976255, 8224428196.629629, 997516184.7000968, 1014996574.3865615, 2018619748.5607243, 1998856653.9939156, 2905397356.669485, 2991522026.5766816, 5058399218.983161, 5026691733.102776, 5947637003.818383, 5035525633.343237, 5326600510.288329, 4059018123.5159216, 4062233415.93208, 4153496621.1304984, 6443423519.784533, 6519117311.516021, 6448575832.027497, 6539495281.754154, 3145168392.3157244, 3331046015.069652, 5724131219.984087, 9166575000.916658, 6540008502.011052, 3321398441.599851, 5549420363.04308, 9229945635.620207, 7263008047.412917, 4385426351.149858, 5040602049.508794, 6928278461.367919, 5821399464.43125, 4809102669.532892, 8795770993.306417, 8367150566.874451, 8895689149.038376, 7282684688.88371, 9080672696.233337] + --- Actual line: ['X_0' 'X_1' 'X_2' 'X_3' 'X_4' 'X_5' 'X_6' 'X_7' 'X_8' 'X_9' 'y'] + --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 8.23696089e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.95623139e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 9.94906081e+08] + --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 3.99867244e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.53278806e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 8.32112901e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 1.00000000e+00 2.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 7.24984413e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 7.65005585e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 6.80614731e+09] + --- Actual line: [0. 0. 0. 0. 0. 0. + 0. 0. 0. 0. 0.08333333] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.01698776e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.98022939e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.37724029e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.30772055e+09] + --- Actual line: [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 + 2.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + 5.7896169e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 7.66577233e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.07215135e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.82295876e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.14998029e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 2.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.47324607e+09] + --- Actual line: [2.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 + 2.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 + 8.2244282e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 9.97516185e+08] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.01499657e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 2.01861975e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.99885665e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 2.90539736e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 2.99152203e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.05839922e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.02669173e+09] + --- Actual line: [0.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 + 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 + 5.947637e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.03552563e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.32660051e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.05901812e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.06223342e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.15349662e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.44342352e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.51911731e+09] + --- Actual line: [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.44857583e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.53949528e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.14516839e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 3.33104602e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.72413122e+09] + --- Actual line: [0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 + 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 + 9.166575e+09] + --- Actual line: [1.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + 0.0000000e+00 1.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00 + 6.5400085e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 3.32139844e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 5.54942036e+09] + --- Actual line: [2.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 + 1.00000000e+00 0.00000000e+00 9.22994564e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 7.26300805e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.38542635e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 5.04060205e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 6.92827846e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 5.82139946e+09] + --- Actual line: [2.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00 + 0.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 0.00000000e+00 4.80910267e+09] + --- Actual line: [1.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 8.79577099e+09] + --- Actual line: [0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 1.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 8.36715057e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 1.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 8.89568915e+09] + --- Actual line: [1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 + 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 + 0.00000000e+00 1.00000000e+00 7.28268469e+09] + --- Actual line: [0.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 + 0.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00 1.0000000e+00 + 9.0806727e+09] +--- Size of X after removing duplicates: 58 +--- Number of duplicates points removed : 5 +*** Ratio energy by wokload : [8236960890.90969, 6956231392.081026, 994906080.8659663, 3998672440.749671, 6532788063.289651, 8321129010.784183, 7249844128.351241, 7650055845.407672, 6806147312.252427, 0.08333333333333333, 1016987763.6032282, 1980229389.772511, 5377240292.736961, 3307720550.5370083, 5789616901.049658, 7665772326.561901, 5072151352.996373, 5822958761.806049, 4149980287.5936337, 6473246073.976255, 8224428196.629629, 997516184.7000968, 1014996574.3865615, 2018619748.5607243, 1998856653.9939156, 2905397356.669485, 2991522026.5766816, 5058399218.983161, 5026691733.102776, 5947637003.818383, 5035525633.343237, 5326600510.288329, 4059018123.5159216, 4062233415.93208, 4153496621.1304984, 6443423519.784533, 6519117311.516021, 6448575832.027497, 6539495281.754154, 3145168392.3157244, 3331046015.069652, 5724131219.984087, 9166575000.916658, 6540008502.011052, 3321398441.599851, 5549420363.04308, 9229945635.620207, 7263008047.412917, 4385426351.149858, 5040602049.508794, 6928278461.367919, 5821399464.43125, 4809102669.532892, 8795770993.306417, 8367150566.874451, 8895689149.038376, 7282684688.88371, 9080672696.233337] +---> getting userfriendly values from X values +---> getting userfriendly values from X values +Train set Configurations : [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1629195085.1055577 -error 2.654276625060573e+18 - y tested = 5326600510.288329 -y predicted = 3990700847.429668 -error 1.7846279092258847e+18 - y tested = 5072151352.996373 -y predicted = 4412560852.414246 -error 4.350596284581816e+17 - y tested = 7650055845.407672 -y predicted = 5837785818.054211 -error 3.284322652043715e+18 - y tested = 5789616901.049658 -y predicted = 6062177317.48678 -error 7.428918060837755e+16 - y tested = 8224428196.629629 -y predicted = 7486112331.138172 -error 5.451103172363992e+17 - y tested = 4059018123.5159216 -y predicted = 5096465054.465148 -error 1.0762961345359689e+18 - y tested = 5947637003.818383 -y predicted = 4055560296.2191563 -error 3.5799542674395305e+18 - y tested = 997516184.7000968 -y predicted = 551832659.2421043 -error 1.986338048646651e+17 - y tested = 6532788063.289651 -y predicted = 6692145827.464995 -error 2.53948970029647e+16 - y tested = 1980229389.772511 -y predicted = 3488142231.9594216 -error 2.2738011396322068e+18 - y tested = 5035525633.343237 -y predicted = 5198180386.699948 -error 2.6456568789532616e+16 - y tested = 5026691733.102776 -y predicted = 5312548854.353077 -error 8.171429376950949e+16 - y tested = 1014996574.3865615 -y predicted = 1247931633.0676675 -error 5.425874156277028e+16 - y tested = 7665772326.561901 -y predicted = 6786009415.78025 -error 7.73982779187004e+17 - y tested = 3029054692.61153 -y predicted = 4756339575.572395 -error 2.983513066905131e+18 - y tested = 4062233415.93208 -y predicted = 4797286505.810378 -error 5.4030304493963366e+17 - y tested = 5822958761.806049 -y predicted = 6321635192.508202 -error 2.4867818253783846e+17 - y tested = 6611133148.221605 -y predicted = 6345143691.791043 -error 7.075039093222585e+16 - y tested = 5377240292.736961 -y predicted = 3028460091.2827406 -error 5.51676843474333e+18 -error squared vector [2.654276625060573e+18, 1.7846279092258847e+18, 4.350596284581816e+17, 3.284322652043715e+18, 7.428918060837755e+16, 5.451103172363992e+17, 1.0762961345359689e+18, 3.5799542674395305e+18, 1.986338048646651e+17, 2.53948970029647e+16, 2.2738011396322068e+18, 2.6456568789532616e+16, 8.171429376950949e+16, 5.425874156277028e+16, 7.73982779187004e+17, 2.983513066905131e+18, 5.4030304493963366e+17, 2.4867818253783846e+17, 7.075039093222585e+16, 5.51676843474333e+18] -Total loo_error 1.311409602973772e+18 -iteration 244current difference of loo_error -5567366464768.0 - getting loo error of with lamda = 0.013582050831536241, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +Train set energy by workload : [7.28268469e+09 4.05901812e+09 5.82139946e+09 5.37724029e+09 + 4.80910267e+09 5.72413122e+09 5.07215135e+09 9.94906081e+08 + 2.90539736e+09 6.47324607e+09 7.24984413e+09 5.78961690e+09 + 5.04060205e+09 1.99885665e+09 8.32112901e+09 6.53949528e+09 + 4.06223342e+09 6.53278806e+09 3.99867244e+09 3.14516839e+09 + 6.44857583e+09 8.22442820e+09 2.99152203e+09 9.22994564e+09 + 9.97516185e+08 6.92827846e+09 5.32660051e+09 4.15349662e+09 + 7.65005585e+09 9.08067270e+09 1.98022939e+09 4.14998029e+09 + 6.54000850e+09 1.01499657e+09 6.80614731e+09 5.54942036e+09 + 7.66577233e+09 3.33104602e+09] +Test set Configurations : [[1.0, 0, 1, 0, 1, 0.0, 1, 0, 0, 1], [0.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [2.0, 1, 0, 0, 0, 0.0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0.0, 0, 0, 0, 1], [0.0, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1.0, 1, 0, 0, 1, 1.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 0, 1, 0, 1, 0.0, 1, 0, 1, 0], [1.0, 1, 1, 0, 0, 1.0, 1, 0, 0, 0], [2.0, 0, 1, 0, 1, 0.0, 0, 1, 0, 0], [1.0, 1, 0, 0, 1, 0.0, 1, 0, 0, 1], [0.0, 1, 0, 0, 1, 1.0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2.0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2.0, 1, 0, 0, 0], [2.0, 1, 1, 0, 0, 0.0, 1, 0, 0, 0], [0.0, 0, 1, 0, 1, 1.0, 1, 0, 1, 0], [2.0, 1, 0, 0, 0, 1.0, 1, 1, 0, 0], [0.0, 0, 0, 0, 1, 1.0, 0, 1, 0, 0], [2.0, 1, 1, 1, 0, 2.0, 1, 0, 0, 0]] +Test set energy by workload : [8895689149.038376, 5947637003.818383, 6443423519.784533, 3321398441.599851, 2018619748.5607243, 7263008047.412917, 5026691733.102776, 8236960890.90969, 5035525633.343237, 6956231392.081026, 8795770993.306417, 9166575000.916658, 0.08333333333333333, 1016987763.6032282, 3307720550.5370083, 5058399218.983161, 8367150566.874451, 6519117311.516021, 4385426351.149858, 5822958761.806049] +Train set Configurations in user friendly mode : ['0220-1001', '3000-2000', '0110-0020', '3330-0000', '0030-2000', '0000-2200', '3300-3000', '0030-0000', '1110-0000', '3000-3300', '0022-0030', '0000-3300', '0220-0020', '2200-0000', '3303-0001', '2000-2200', '1000-1000', '0010-3300', '0020-0010', '0000-1000', '1000-1100', '3000-3330', '2220-0000', '3330-2220', '1000-0000', '0303-1000', '3000-1000', '2000-2000', '0011-1100', '1111-0101', '3300-0000', '3000-3000', '0200-1100', '2000-0000', '0003-1001', '0101-0200', '0000-3330', '0000-2000'] +Test set Configurations in user friendly mode : ['0202-1001', '1100-1000', '3000-1100', '0000-0001', '1100-0000', '2002-2000', '3300-2000', '0303-1010', '2200-2000', '0303-0100', '2002-1001', '1001-2220', '0000-0000', '3000-0000', '0000-3000', '3300-1000', '0101-2020', '3000-2200', '0001-0200', '3330-3000'] +Size of X_train: 38 +Size of X_test: 20 + ***** Training the datas ***** + **** Predicted y test = [8.12426728e+09 4.40116220e+09 6.34101576e+09 2.63283029e+09 + 2.02563998e+09 6.31518758e+09 5.36773409e+09 7.88859602e+09 + 5.09458256e+09 6.14736991e+09 7.85871654e+09 9.25246315e+09 + 8.58239102e+08 1.95449313e+09 3.86968319e+09 5.33863303e+09 + 7.64976951e+09 6.52412922e+09 5.21326796e+09 5.99875656e+09] +Start computin r squared, result = +column mean vector= [5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385] + diff with mean vector [ 3.31642455e+09 3.68372400e+08 8.64158916e+08 -2.25786616e+09 + -3.56064486e+09 1.68374344e+09 -5.52572871e+08 2.65769629e+09 + -5.43738971e+08 1.37696679e+09 3.21650639e+09 3.58731040e+09 + -5.57926460e+09 -4.56227684e+09 -2.27154405e+09 -5.20865385e+08 + 2.78788596e+09 9.39852708e+08 -1.19383825e+09 2.43694158e+08] + diff with mean vector squared [1.09986718e+19 1.35698225e+17 7.46770632e+17 5.09795961e+18 + 1.26781918e+19 2.83499198e+18 3.05336778e+17 7.06334955e+18 + 2.95652068e+17 1.89603754e+18 1.03459134e+19 1.28687959e+19 + 3.11281935e+19 2.08143700e+19 5.15991239e+18 2.71300749e+17 + 7.77230814e+18 8.83323112e+17 1.42524977e+18 5.93868426e+16] + diff with predicted vector [ 7.71421865e+08 1.54647481e+09 1.02407760e+08 6.88568152e+08 + -7.02023594e+06 9.47820466e+08 -3.41042355e+08 3.48364871e+08 + -5.90569222e+07 8.08861484e+08 9.37054453e+08 -8.58881499e+07 + -8.58239101e+08 -9.37505370e+08 -5.61962636e+08 -2.80233812e+08 + 7.17381056e+08 -5.01190493e+06 -8.27841612e+08 -1.75797801e+08] + diff with predicted vector squared [5.95091694e+17 2.39158433e+18 1.04873494e+16 4.74126100e+17 + 4.92837127e+13 8.98363635e+17 1.16309888e+17 1.21358083e+17 + 3.48772006e+15 6.54256901e+17 8.78071049e+17 7.37677430e+15 + 7.36574355e+17 8.78916318e+17 3.15802004e+17 7.85309891e+16 + 5.14635579e+17 2.51191910e+13 6.85321734e+17 3.09048669e+16] +End computing r squared, result = 0.9292726781781174 + Kernel ridge R2 score = 0.9292726781781174 +printing plots +Start computin r squared, result = +column mean vector= [5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385] + diff with mean vector [ 3.31642455e+09 3.68372400e+08 8.64158916e+08 -2.25786616e+09 + -3.56064486e+09 1.68374344e+09 -5.52572871e+08 2.65769629e+09 + -5.43738971e+08 1.37696679e+09 3.21650639e+09 3.58731040e+09 + -5.57926460e+09 -4.56227684e+09 -2.27154405e+09 -5.20865385e+08 + 2.78788596e+09 9.39852708e+08 -1.19383825e+09 2.43694158e+08] + diff with mean vector squared [1.09986718e+19 1.35698225e+17 7.46770632e+17 5.09795961e+18 + 1.26781918e+19 2.83499198e+18 3.05336778e+17 7.06334955e+18 + 2.95652068e+17 1.89603754e+18 1.03459134e+19 1.28687959e+19 + 3.11281935e+19 2.08143700e+19 5.15991239e+18 2.71300749e+17 + 7.77230814e+18 8.83323112e+17 1.42524977e+18 5.93868426e+16] + diff with predicted vector [ 7.71421865e+08 1.54647481e+09 1.02407760e+08 6.88568152e+08 + -7.02023594e+06 9.47820466e+08 -3.41042355e+08 3.48364871e+08 + -5.90569222e+07 8.08861484e+08 9.37054453e+08 -8.58881499e+07 + -8.58239101e+08 -9.37505370e+08 -5.61962636e+08 -2.80233812e+08 + 7.17381056e+08 -5.01190493e+06 -8.27841612e+08 -1.75797801e+08] + diff with predicted vector squared [5.95091694e+17 2.39158433e+18 1.04873494e+16 4.74126100e+17 + 4.92837127e+13 8.98363635e+17 1.16309888e+17 1.21358083e+17 + 3.48772006e+15 6.54256901e+17 8.78071049e+17 7.37677430e+15 + 7.36574355e+17 8.78916318e+17 3.15802004e+17 7.85309891e+16 + 5.14635579e+17 2.51191910e+13 6.85321734e+17 3.09048669e+16] +End computing r squared, result = 0.9292726781781174 +Start computin r squared, result = +column mean vector= [5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385] + diff with mean vector [ 3.31642455e+09 3.68372400e+08 8.64158916e+08 -2.25786616e+09 + -3.56064486e+09 1.68374344e+09 -5.52572871e+08 2.65769629e+09 + -5.43738971e+08 1.37696679e+09 3.21650639e+09 3.58731040e+09 + -5.57926460e+09 -4.56227684e+09 -2.27154405e+09 -5.20865385e+08 + 2.78788596e+09 9.39852708e+08 -1.19383825e+09 2.43694158e+08] + diff with mean vector squared [1.09986718e+19 1.35698225e+17 7.46770632e+17 5.09795961e+18 + 1.26781918e+19 2.83499198e+18 3.05336778e+17 7.06334955e+18 + 2.95652068e+17 1.89603754e+18 1.03459134e+19 1.28687959e+19 + 3.11281935e+19 2.08143700e+19 5.15991239e+18 2.71300749e+17 + 7.77230814e+18 8.83323112e+17 1.42524977e+18 5.93868426e+16] + diff with predicted vector [ 7.71421865e+08 1.54647481e+09 1.02407760e+08 6.88568152e+08 + -7.02023594e+06 9.47820466e+08 -3.41042355e+08 3.48364871e+08 + -5.90569222e+07 8.08861484e+08 9.37054453e+08 -8.58881499e+07 + -8.58239101e+08 -9.37505370e+08 -5.61962636e+08 -2.80233812e+08 + 7.17381056e+08 -5.01190493e+06 -8.27841612e+08 -1.75797801e+08] + diff with predicted vector squared [5.95091694e+17 2.39158433e+18 1.04873494e+16 4.74126100e+17 + 4.92837127e+13 8.98363635e+17 1.16309888e+17 1.21358083e+17 + 3.48772006e+15 6.54256901e+17 8.78071049e+17 7.37677430e+15 + 7.36574355e+17 8.78916318e+17 3.15802004e+17 7.85309891e+16 + 5.14635579e+17 2.51191910e+13 6.85321734e+17 3.09048669e+16] +End computing r squared, result = 0.9292726781781174 +Start computin r squared, result = +column mean vector= [5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385] + diff with mean vector [ 3.31642455e+09 3.68372400e+08 8.64158916e+08 -2.25786616e+09 + -3.56064486e+09 1.68374344e+09 -5.52572871e+08 2.65769629e+09 + -5.43738971e+08 1.37696679e+09 3.21650639e+09 3.58731040e+09 + -5.57926460e+09 -4.56227684e+09 -2.27154405e+09 -5.20865385e+08 + 2.78788596e+09 9.39852708e+08 -1.19383825e+09 2.43694158e+08] + diff with mean vector squared [1.09986718e+19 1.35698225e+17 7.46770632e+17 5.09795961e+18 + 1.26781918e+19 2.83499198e+18 3.05336778e+17 7.06334955e+18 + 2.95652068e+17 1.89603754e+18 1.03459134e+19 1.28687959e+19 + 3.11281935e+19 2.08143700e+19 5.15991239e+18 2.71300749e+17 + 7.77230814e+18 8.83323112e+17 1.42524977e+18 5.93868426e+16] + diff with predicted vector [ 7.71421865e+08 1.54647481e+09 1.02407760e+08 6.88568152e+08 + -7.02023594e+06 9.47820466e+08 -3.41042355e+08 3.48364871e+08 + -5.90569222e+07 8.08861484e+08 9.37054453e+08 -8.58881499e+07 + -8.58239101e+08 -9.37505370e+08 -5.61962636e+08 -2.80233812e+08 + 7.17381056e+08 -5.01190493e+06 -8.27841612e+08 -1.75797801e+08] + diff with predicted vector squared [5.95091694e+17 2.39158433e+18 1.04873494e+16 4.74126100e+17 + 4.92837127e+13 8.98363635e+17 1.16309888e+17 1.21358083e+17 + 3.48772006e+15 6.54256901e+17 8.78071049e+17 7.37677430e+15 + 7.36574355e+17 8.78916318e+17 3.15802004e+17 7.85309891e+16 + 5.14635579e+17 2.51191910e+13 6.85321734e+17 3.09048669e+16] +End computing r squared, result = 0.9292726781781174 + R2 error = 0.9292726781781174 + --- Actual line: ['samsung_galaxy_s8', 'samsung_galaxy_s8_format', False, False, 1000, 0.049940597311979425, False, '----', 0, 1000000000.0, 1000000000.0, 1e-09, 1000, 0.1, 100, False, 0.9292726781781174, 10, 10, 'base_Y'] +Computed c values = [[ 4.36995901e+09] + [-9.26506201e+09] + [ 1.22359401e+10] + [ 2.73209958e+10] + [ 2.81412985e+09] + [ 3.35581350e+08] + [-4.98762505e+08] + [-2.13241898e+10] + [-5.02813389e+09] + [ 3.31651929e+09] + [ 8.31449980e+09] + [ 6.87923912e+08] + [-7.32812115e+09] + [-9.93991268e+09] + [ 1.99710954e+10] + [ 1.00683396e+08] + [ 6.37068105e+09] + [-9.50721078e+08] + [ 4.48058402e+09] + [-1.97031784e+09] + [ 1.12352368e+10] + [ 7.71340082e+09] + [-1.26592608e+10] + [-2.73332892e+09] + [-5.93829878e+09] + [ 5.91350671e+09] + [ 1.88367740e+10] + [-4.05068112e+09] + [ 3.03241583e+08] + [ 7.77014336e+09] + [-2.02777364e+10] + [-5.75568453e+09] + [ 4.01750791e+09] + [-1.11797986e+10] + [-6.22928525e+09] + [-5.98313168e+09] + [ 3.45720648e+09] + [-6.12646325e+09]] + ***** START computing marginal effects with matrix***** +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1619818940.494477 -error 2.6238133997146803e+18 - y tested = 5326600510.288329 -y predicted = 3992271361.6059585 -error 1.7804342770234202e+18 - y tested = 5072151352.996373 -y predicted = 4400175727.690281 -error 4.515512410055137e+17 - y tested = 7650055845.407672 -y predicted = 5850929125.181534 -error 3.2368569554316605e+18 - y tested = 5789616901.049658 -y predicted = 6065760510.432767 -error 7.625529300313114e+16 - y tested = 8224428196.629629 -y predicted = 7498814567.483189 -error 5.265151388030681e+17 - y tested = 4059018123.5159216 -y predicted = 5094617390.537151 -error 1.0724658418549083e+18 - y tested = 5947637003.818383 -y predicted = 4058868371.2883167 -error 3.5674469472294973e+18 - y tested = 997516184.7000968 -y predicted = 539017650.1495777 -error 2.1022090618497357e+17 - y tested = 6532788063.289651 -y predicted = 6678839169.045501 -error 2.133092549250643e+16 - y tested = 1980229389.772511 -y predicted = 3497811248.974716 -error 2.3030546993796216e+18 - y tested = 5035525633.343237 -y predicted = 5192395935.625586 -error 2.4608291738155436e+16 - y tested = 5026691733.102776 -y predicted = 5313353452.900473 -error 8.217494159737339e+16 - y tested = 1014996574.3865615 -y predicted = 1236833186.8119836 -error 4.921148261238693e+16 - y tested = 7665772326.561901 -y predicted = 6794864444.28193 -error 7.584805394173841e+17 - y tested = 3029054692.61153 -y predicted = 4767990642.502226 -error 3.023898237822257e+18 - y tested = 4062233415.93208 -y predicted = 4814337507.186214 -error 5.656605640812077e+17 - y tested = 5822958761.806049 -y predicted = 6335280699.779769 -error 2.6247376812914778e+17 - y tested = 6611133148.221605 -y predicted = 6345326504.464249 -error 7.06531718655503e+16 - y tested = 5377240292.736961 -y predicted = 3027546712.3058577 -error 5.52105992191914e+18 -error squared vector [2.6238133997146803e+18, 1.7804342770234202e+18, 4.515512410055137e+17, 3.2368569554316605e+18, 7.625529300313114e+16, 5.265151388030681e+17, 1.0724658418549083e+18, 3.5674469472294973e+18, 2.1022090618497357e+17, 2.133092549250643e+16, 2.3030546993796216e+18, 2.4608291738155436e+16, 8.217494159737339e+16, 4.921148261238693e+16, 7.584805394173841e+17, 3.023898237822257e+18, 5.656605640812077e+17, 2.6247376812914778e+17, 7.06531718655503e+16, 5.52105992191914e+18] -Total loo_error 1.3114083272152794e+18 -iteration 245current difference of loo_error 1275758492672.0 - getting loo error of with lamda = 0.014097831969846559, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1628912145.8958356 -error 2.653354778775491e+18 - y tested = 5326600510.288329 -y predicted = 3990748453.5909357 -error 1.784500717382656e+18 - y tested = 5072151352.996373 -y predicted = 4412191169.811386 -error 4.3554744338956166e+17 - y tested = 7650055845.407672 -y predicted = 5838181790.945098 -error 3.2828875892346465e+18 - y tested = 5789616901.049658 -y predicted = 6062280427.390373 -error 7.4345398596554e+16 - y tested = 8224428196.629629 -y predicted = 7486494768.795227 -error 5.445457439154307e+17 - y tested = 4059018123.5159216 -y predicted = 5096409578.456232 -error 1.0761810307831743e+18 - y tested = 5947637003.818383 -y predicted = 4055662406.850275 -error 3.579567875572635e+18 - y tested = 997516184.7000968 -y predicted = 551447071.1461179 -error 1.9897765406683254e+17 - y tested = 6532788063.289651 -y predicted = 6691754044.505968 -error 2.5270183184066504e+16 - y tested = 1980229389.772511 -y predicted = 3488429284.939695 -error 2.2746669237823045e+18 - y tested = 5035525633.343237 -y predicted = 5198009699.258236 -error 2.6401071676269744e+16 - y tested = 5026691733.102776 -y predicted = 5312572678.884972 -error 8.172791516132291e+16 - y tested = 1014996574.3865615 -y predicted = 1247598003.4688838 -error 5.4103424811138584e+16 - y tested = 7665772326.561901 -y predicted = 6786275304.368131 -error 7.735150120477094e+17 - y tested = 3029054692.61153 -y predicted = 4756686978.699329 -error 2.9847133159329567e+18 - y tested = 4062233415.93208 -y predicted = 4797794078.924752 -error 5.4104948894221984e+17 - y tested = 5822958761.806049 -y predicted = 6322036955.68951 -error 2.4907904360997747e+17 - y tested = 6611133148.221605 -y predicted = 6345149102.367577 -error 7.074751264887804e+16 - y tested = 5377240292.736961 -y predicted = 3028434736.4929132 -error 5.516887541042912e+18 -error squared vector [2.653354778775491e+18, 1.784500717382656e+18, 4.3554744338956166e+17, 3.2828875892346465e+18, 7.4345398596554e+16, 5.445457439154307e+17, 1.0761810307831743e+18, 3.579567875572635e+18, 1.9897765406683254e+17, 2.5270183184066504e+16, 2.2746669237823045e+18, 2.6401071676269744e+16, 8.172791516132291e+16, 5.4103424811138584e+16, 7.735150120477094e+17, 2.9847133159329567e+18, 5.4104948894221984e+17, 2.4907904360997747e+17, 7.074751264887804e+16, 5.516887541042912e+18] -Total loo_error 1.311403483227837e+18 -iteration 246current difference of loo_error -4843987442432.0 - getting loo error of with lamda = 0.01359768056300019, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1620095614.056006 -error 2.624709798413491e+18 - y tested = 5326600510.288329 -y predicted = 3992225230.5186 -error 1.780557387260543e+18 - y tested = 5072151352.996373 -y predicted = 4400545246.300864 -error 4.510547625506994e+17 - y tested = 7650055845.407672 -y predicted = 5850540672.267292 -error 3.2382548583624515e+18 - y tested = 5789616901.049658 -y predicted = 6065649751.036855 -error 7.619413427205435e+16 - y tested = 8224428196.629629 -y predicted = 7498438886.329726 -error 5.270604786697287e+17 - y tested = 4059018123.5159216 -y predicted = 5094672183.201609 -error 1.0725793313434446e+18 - y tested = 5947637003.818383 -y predicted = 4058773041.073742 -error 3.5678070697553894e+18 - y tested = 997516184.7000968 -y predicted = 539396915.4965158 -error 2.098732648156232e+17 - y tested = 6532788063.289651 -y predicted = 6679241586.806415 -error 2.1448634550475256e+16 - y tested = 1980229389.772511 -y predicted = 3497521263.283116 -error 2.3021746294213212e+18 - y tested = 5035525633.343237 -y predicted = 5192570478.248192 -error 2.4663083311221344e+16 - y tested = 5026691733.102776 -y predicted = 5313329248.302029 -error 8.216106511960205e+16 - y tested = 1014996574.3865615 -y predicted = 1237161950.3573425 -error 4.935745428023846e+16 - y tested = 7665772326.561901 -y predicted = 6794601851.756952 -error 7.5893799617188e+17 - y tested = 3029054692.61153 -y predicted = 4767642662.055812 -error 3.0226881274963917e+18 - y tested = 4062233415.93208 -y predicted = 4813827422.730275 -error 5.6489355105496576e+17 - y tested = 5822958761.806049 -y predicted = 6334868036.808579 -error 2.62051105833616e+17 - y tested = 6611133148.221605 -y predicted = 6345321011.115704 -error 7.0656092232806696e+16 - y tested = 5377240292.736961 -y predicted = 3027575875.73651 -error 5.520922872518072e+18 -error squared vector [2.624709798413491e+18, 1.780557387260543e+18, 4.510547625506994e+17, 3.2382548583624515e+18, 7.619413427205435e+16, 5.270604786697287e+17, 1.0725793313434446e+18, 3.5678070697553894e+18, 2.098732648156232e+17, 2.1448634550475256e+16, 2.3021746294213212e+18, 2.4663083311221344e+16, 8.216106511960205e+16, 4.935745428023846e+16, 7.5893799617188e+17, 3.0226881274963917e+18, 5.6489355105496576e+17, 2.62051105833616e+17, 7.0656092232806696e+16, 5.520922872518072e+18] -Total loo_error 1.311402284871701e+18 -iteration 247current difference of loo_error 1198356135936.0 - getting loo error of with lamda = 0.01408267586660879, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] + ***** START in function marginal_effect ***** +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1628646027.4210105 -error 2.652487882362798e+18 - y tested = 5326600510.288329 -y predicted = 3990793217.615209 -error 1.7843811231586906e+18 - y tested = 5072151352.996373 -y predicted = 4411843239.286837 -error 4.360068050306463e+17 - y tested = 7650055845.407672 -y predicted = 5838554260.780032 -error 3.28153799110845e+18 - y tested = 5789616901.049658 -y predicted = 6062377685.864372 -error 7.439844573273894e+16 - y tested = 8224428196.629629 -y predicted = 7486854519.575814 -error 5.4401492908268525e+17 - y tested = 4059018123.5159216 -y predicted = 5096357384.449198 -error 1.0760727422735956e+18 - y tested = 5947637003.818383 -y predicted = 4055758320.1053834 -error 3.579204953887633e+18 - y tested = 997516184.7000968 -y predicted = 551084343.4127071 -error 1.9930138891524915e+17 - y tested = 6532788063.289651 -y predicted = 6691385010.166233 -error 2.515299155857342e+16 - y tested = 1980229389.772511 -y predicted = 3488699538.1568203 -error 2.27548218856658e+18 - y tested = 5035525633.343237 -y predicted = 5197848943.541175 -error 2.634885703361599e+16 - y tested = 5026691733.102776 -y predicted = 5312595111.967081 -error 8.174074204602661e+16 - y tested = 1014996574.3865615 -y predicted = 1247284136.056696 -error 5.3957511306656504e+16 - y tested = 7665772326.561901 -y predicted = 6786525461.144791 -error 7.730750503458143e+17 - y tested = 3029054692.61153 -y predicted = 4757013961.693002 -error 2.9858432356045747e+18 - y tested = 4062233415.93208 -y predicted = 4798271865.456555 -error 5.41752599178394e+17 - y tested = 5822958761.806049 -y predicted = 6322415390.457289 -error 2.4945692390366205e+17 - y tested = 6611133148.221605 -y predicted = 6345154197.575514 -error 7.074480218679596e+16 - y tested = 5377240292.736961 -y predicted = 3028410766.558512 -error 5.517000143047678e+18 -error squared vector [2.652487882362798e+18, 1.7843811231586906e+18, 4.360068050306463e+17, 3.28153799110845e+18, 7.439844573273894e+16, 5.4401492908268525e+17, 1.0760727422735956e+18, 3.579204953887633e+18, 1.9930138891524915e+17, 2.515299155857342e+16, 2.27548218856658e+18, 2.634885703361599e+16, 8.174074204602661e+16, 5.3957511306656504e+16, 7.730750503458143e+17, 2.9858432356045747e+18, 5.41752599178394e+17, 2.4945692390366205e+17, 7.074480218679596e+16, 5.517000143047678e+18] -Total loo_error 1.311398065316543e+18 -iteration 248current difference of loo_error -4219555158016.0 - getting loo error of with lamda = 0.01361237739038227, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1620355709.2730222 -error 2.6255526243036196e+18 - y tested = 5326600510.288329 -y predicted = 3992181851.6866226 -error 1.7806731564243779e+18 - y tested = 5072151352.996373 -y predicted = 4400892393.538395 -error 4.505885906526077e+17 - y tested = 7650055845.407672 -y predicted = 5850175528.867135 -error 3.239569153870063e+18 - y tested = 5789616901.049658 -y predicted = 6065545913.605943 -error 7.613681997028643e+16 - y tested = 8224428196.629629 -y predicted = 7498085764.239876 -error 5.275733290898634e+17 - y tested = 4059018123.5159216 -y predicted = 5094723677.787351 -error 1.0726859951486881e+18 - y tested = 5947637003.818383 -y predicted = 4058683293.5183086 -error 3.5681461196564183e+18 - y tested = 997516184.7000968 -y predicted = 539753392.2816314 -error 2.0954677412275114e+17 - y tested = 6532788063.289651 -y predicted = 6679619338.581685 -error 2.155942340388512e+16 - y tested = 1980229389.772511 -y predicted = 3497248915.1992936 -error 2.3013482405261007e+18 - y tested = 5035525633.343237 -y predicted = 5192734344.591948 -error 2.4714578892480476e+16 - y tested = 5026691733.102776 -y predicted = 5313306520.632512 -error 8.214803643071602e+16 - y tested = 1014996574.3865615 -y predicted = 1237470943.3026254 -error 4.9494844824600904e+16 - y tested = 7665772326.561901 -y predicted = 6794355065.663448 -error 7.59368042591762e+17 - y tested = 3029054692.61153 -y predicted = 4767315769.036924 -error 3.0215515698155715e+18 - y tested = 4062233415.93208 -y predicted = 4813348294.405896 -error 5.64173560664736e+17 - y tested = 5822958761.806049 -y predicted = 6334480667.743492 -error 2.6165466025387405e+17 - y tested = 6611133148.221605 -y predicted = 6345315852.119186 -error 7.065883490720105e+16 - y tested = 5377240292.736961 -y predicted = 3027603166.183638 -error 5.520794626477757e+18 -error squared vector [2.6255526243036196e+18, 1.7806731564243779e+18, 4.505885906526077e+17, 3.239569153870063e+18, 7.613681997028643e+16, 5.275733290898634e+17, 1.0726859951486881e+18, 3.5681461196564183e+18, 2.0954677412275114e+17, 2.155942340388512e+16, 2.3013482405261007e+18, 2.4714578892480476e+16, 8.214803643071602e+16, 4.9494844824600904e+16, 7.59368042591762e+17, 3.0215515698155715e+18, 5.64173560664736e+17, 2.6165466025387405e+17, 7.065883490720105e+16, 5.520794626477757e+18] -Total loo_error 1.3113969491013678e+18 -iteration 249current difference of loo_error 1116215175168.0 - getting loo error of with lamda = 0.014068424397632229, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1628395733.4520996 -error 2.6516726644536023e+18 - y tested = 5326600510.288329 -y predicted = 3990835309.199399 -error 1.78426867244015e+18 - y tested = 5072151352.996373 -y predicted = 4411515798.244491 -error 4.364393362023276e+17 - y tested = 7650055845.407672 -y predicted = 5838904615.153967 -error 3.2802687788495094e+18 - y tested = 5789616901.049658 -y predicted = 6062469407.783958 -error 7.444849043119157e+16 - y tested = 8224428196.629629 -y predicted = 7487192921.50275 -error 5.435158508914046e+17 - y tested = 4059018123.5159216 -y predicted = 5096308279.929228 -error 1.0759708685919414e+18 - y tested = 5947637003.818383 -y predicted = 4055848417.4806695 -error 3.5788640553976453e+18 - y tested = 997516184.7000968 -y predicted = 550743129.2966845 -error 1.9960616303450054e+17 - y tested = 6532788063.289651 -y predicted = 6691037438.980962 -error 2.5042864906689656e+16 - y tested = 1980229389.772511 -y predicted = 3488953956.1159945 -error 2.2762498170883323e+18 - y tested = 5035525633.343237 -y predicted = 5197697555.9511175 -error 2.6299732482336412e+16 - y tested = 5026691733.102776 -y predicted = 5312616233.202835 -error 8.175281975746893e+16 - y tested = 1014996574.3865615 -y predicted = 1246988868.6656437 -error 5.3820424604872264e+16 - y tested = 7665772326.561901 -y predicted = 6786760809.14515 -error 7.72661247751299e+17 - y tested = 3029054692.61153 -y predicted = 4757321707.393269 -error 2.986906874382583e+18 - y tested = 4062233415.93208 -y predicted = 4798721585.167984 -error 5.424148234244539e+17 - y tested = 5822958761.806049 -y predicted = 6322771815.082608 -error 2.498130882256363e+17 - y tested = 6611133148.221605 -y predicted = 6345158995.34598 -error 7.0742249997906664e+16 - y tested = 5377240292.736961 -y predicted = 3028388113.3942 -error 5.51710656040324e+18 -error squared vector [2.6516726644536023e+18, 1.78426867244015e+18, 4.364393362023276e+17, 3.2802687788495094e+18, 7.444849043119157e+16, 5.435158508914046e+17, 1.0759708685919414e+18, 3.5788640553976453e+18, 1.9960616303450054e+17, 2.5042864906689656e+16, 2.2762498170883323e+18, 2.6299732482336412e+16, 8.175281975746893e+16, 5.3820424604872264e+16, 7.72661247751299e+17, 2.986906874382583e+18, 5.424148234244539e+17, 2.498130882256363e+17, 7.0742249997906664e+16, 5.51710656040324e+18] -Total loo_error 1.3113932691658545e+18 -iteration 250current difference of loo_error -3679935513344.0 - getting loo error of with lamda = 0.013626196996662572, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +number of variables: 10 +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1620600223.1468127 -error 2.6263450829933993e+18 - y tested = 5326600510.288329 -y predicted = 3992141060.9899178 -error 1.7807820218218194e+18 - y tested = 5072151352.996373 -y predicted = 4401218541.825059 -error 4.501508371062424e+17 - y tested = 7650055845.407672 -y predicted = 5849832289.3827095 -error 3.240804851667161e+18 - y tested = 5789616901.049658 -y predicted = 6065448548.252519 -error 7.608309759864349e+16 - y tested = 8224428196.629629 -y predicted = 7497753838.9170885 -error 5.2805562215693344e+17 - y tested = 4059018123.5159216 -y predicted = 5094772074.351069 -error 1.0727862466706179e+18 - y tested = 5947637003.818383 -y predicted = 4058598808.1395073 -error 3.568465304733703e+18 - y tested = 997516184.7000968 -y predicted = 540088458.3515117 -error 2.092401248324361e+17 - y tested = 6532788063.289651 -y predicted = 6679973972.836017 -error 2.1663691968990956e+16 - y tested = 1980229389.772511 -y predicted = 3496993113.4692664 -error 2.3005721935224474e+18 - y tested = 5035525633.343237 -y predicted = 5192888202.275544 -error 2.4762978100975148e+16 - y tested = 5026691733.102776 -y predicted = 5313285177.912183 -error 8.213580260772275e+16 - y tested = 1014996574.3865615 -y predicted = 1237761362.9182003 -error 4.962415100954573e+16 - y tested = 7665772326.561901 -y predicted = 6794123127.096265 -error 7.597723269290845e+17 - y tested = 3029054692.61153 -y predicted = 4767008667.484142 -error 3.020484018775513e+18 - y tested = 4062233415.93208 -y predicted = 4812898214.5553465 -error 5.634976398921096e+17 - y tested = 5822958761.806049 -y predicted = 6334117004.702605 -error 2.6128274928109443e+17 - y tested = 6611133148.221605 -y predicted = 6345311006.789684 -error 7.0661410875452216e+16 - y tested = 5377240292.736961 -y predicted = 3027628711.07379 -error 5.520674584685709e+18 -error squared vector [2.6263450829933993e+18, 1.7807820218218194e+18, 4.501508371062424e+17, 3.240804851667161e+18, 7.608309759864349e+16, 5.2805562215693344e+17, 1.0727862466706179e+18, 3.568465304733703e+18, 2.092401248324361e+17, 2.1663691968990956e+16, 2.3005721935224474e+18, 2.4762978100975148e+16, 8.213580260772275e+16, 4.962415100954573e+16, 7.597723269290845e+17, 3.020484018775513e+18, 5.634976398921096e+17, 2.6128274928109443e+17, 7.0661410875452216e+16, 5.520674584685709e+18] -Total loo_error 1.3113922368614802e+18 -iteration 251current difference of loo_error 1032304374272.0 - getting loo error of with lamda = 0.014055023567299815, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1628160326.3286557 -error 2.650906047959275e+18 - y tested = 5326600510.288329 -y predicted = 3990874887.90777 -error 1.7841629382839316e+18 - y tested = 5072151352.996373 -y predicted = 4411207655.405119 -error 4.3684657138559936e+17 - y tested = 7650055845.407672 -y predicted = 5839234160.604503 -error 3.2790751741533885e+18 - y tested = 5789616901.049658 -y predicted = 6062555893.095484 -error 7.449569337899144e+16 - y tested = 8224428196.629629 -y predicted = 7487511234.5835495 -error 5.430466089512232e+17 - y tested = 4059018123.5159216 -y predicted = 5096262083.482085 -error 1.0758750324862885e+18 - y tested = 5947637003.818383 -y predicted = 4055933056.4090123 -error 3.578543824644196e+18 - y tested = 997516184.7000968 -y predicted = 550422160.4092686 -error 1.998930665565677e+17 - y tested = 6532788063.289651 -y predicted = 6690710114.050652 -error 2.493937411656006e+16 - y tested = 1980229389.772511 -y predicted = 3489193450.1112194 -error 2.276972535393881e+18 - y tested = 5035525633.343237 -y predicted = 5197555003.225911 -error 2.6253516704576456e+16 - y tested = 5026691733.102776 -y predicted = 5312636117.8283 -error 8.176419115605899e+16 - y tested = 1014996574.3865615 -y predicted = 1246711106.5064104 -error 5.369162439552046e+16 - y tested = 7665772326.561901 -y predicted = 6786982218.146244 -error 7.722720546492023e+17 - y tested = 3029054692.61153 -y predicted = 4757611332.114687 -error 2.9879080559704474e+18 - y tested = 4062233415.93208 -y predicted = 4799144861.763099 -error 5.4303847899676275e+17 - y tested = 5822958761.806049 -y predicted = 6323107477.5141325 -error 2.50148737824445e+17 - y tested = 6611133148.221605 -y predicted = 6345163512.645422 -error 7.073984704852776e+16 - y tested = 5377240292.736961 -y predicted = 3028366711.342766 -error 5.517207101371595e+18 -error squared vector [2.650906047959275e+18, 1.7841629382839316e+18, 4.3684657138559936e+17, 3.2790751741533885e+18, 7.449569337899144e+16, 5.430466089512232e+17, 1.0758750324862885e+18, 3.578543824644196e+18, 1.998930665565677e+17, 2.493937411656006e+16, 2.276972535393881e+18, 2.6253516704576456e+16, 8.176419115605899e+16, 5.369162439552046e+16, 7.722720546492023e+17, 2.9879080559704474e+18, 5.4303847899676275e+17, 2.50148737824445e+17, 7.073984704852776e+16, 5.517207101371595e+18] -Total loo_error 1.3113890237713518e+18 -iteration 252current difference of loo_error -3213090128384.0 - getting loo error of with lamda = 0.013639191741227337, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1620830092.2992754 -error 2.6270901878327393e+18 - y tested = 5326600510.288329 -y predicted = 3992102704.0841393 -error 1.7808843947637952e+18 - y tested = 5072151352.996373 -y predicted = 4401524977.268867 -error 4.497397358214109e+17 - y tested = 7650055845.407672 -y predicted = 5849509633.767445 -error 3.241966660251974e+18 - y tested = 5789616901.049658 -y predicted = 6065357236.317973 -error 7.603273249388293e+16 - y tested = 8224428196.629629 -y predicted = 7497441831.224377 -error 5.2850917548513926e+17 - y tested = 4059018123.5159216 -y predicted = 5094817560.636885 -error 1.072880473940104e+18 - y tested = 5947637003.818383 -y predicted = 4058519282.058795 -error 3.568765766666137e+18 - y tested = 997516184.7000968 -y predicted = 540403407.2426984 -error 2.0895209131481706e+17 - y tested = 6532788063.289651 -y predicted = 6680306936.556501 -error 2.1761817969921092e+16 - y tested = 1980229389.772511 -y predicted = 3496752836.5015597 -error 2.299843364478954e+18 - y tested = 5035525633.343237 -y predicted = 5193032675.470409 -error 2.4808468319650884e+16 - y tested = 5026691733.102776 -y predicted = 5313265134.110167 -error 8.212431416494291e+16 - y tested = 1014996574.3865615 -y predicted = 1238034332.9981067 -error 4.97458417664619e+16 - y tested = 7665772326.561901 -y predicted = 6793905136.186284 -error 7.601523976534724e+17 - y tested = 3029054692.61153 -y predicted = 4766720143.20475 -error 3.019481218185339e+18 - y tested = 4062233415.93208 -y predicted = 4812475396.473829 -error 5.628630293672068e+17 - y tested = 5822958761.806049 -y predicted = 6333775563.864999 -error 2.6093380526573197e+17 - y tested = 6611133148.221605 -y predicted = 6345306455.757572 -error 7.066383042636765e+16 - y tested = 5377240292.736961 -y predicted = 3027652628.364113 -error 5.520562192573057e+18 -error squared vector [2.6270901878327393e+18, 1.7808843947637952e+18, 4.497397358214109e+17, 3.241966660251974e+18, 7.603273249388293e+16, 5.2850917548513926e+17, 1.072880473940104e+18, 3.568765766666137e+18, 2.0895209131481706e+17, 2.1761817969921092e+16, 2.299843364478954e+18, 2.4808468319650884e+16, 8.212431416494291e+16, 4.97458417664619e+16, 7.601523976534724e+17, 3.019481218185339e+18, 5.628630293672068e+17, 2.6093380526573197e+17, 7.066383042636765e+16, 5.520562192573057e+18] -Total loo_error 1.3113880749370552e+18 -iteration 253current difference of loo_error 948834296576.0 - getting loo error of with lamda = 0.014042422602873375, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1627938923.565066 -error 2.650185138586863e+18 - y tested = 5326600510.288329 -y predicted = 3990912103.7774014 -error 1.7840635192877012e+18 - y tested = 5072151352.996373 -y predicted = 4410917687.002042 -error 4.37229961044303e+17 - y tested = 7650055845.407672 -y predicted = 5839544127.246943 -error 3.277952681597313e+18 - y tested = 5789616901.049658 -y predicted = 6062637427.278561 -error 7.4540207742307e+16 - y tested = 8224428196.629629 -y predicted = 7487810645.255176 -error 5.426054169928957e+17 - y tested = 4059018123.5159216 -y predicted = 5096218624.176198 -error 1.0757848785699281e+18 - y tested = 5947637003.818383 -y predicted = 4056012571.837654 -error 3.578242991666416e+18 - y tested = 997516184.7000968 -y predicted = 550120242.2711426 -error 2.0016312930189213e+17 - y tested = 6532788063.289651 -y predicted = 6690401883.857669 -error 2.484211643404736e+16 - y tested = 1980229389.772511 -y predicted = 3489418880.9071445 -error 2.277652920151214e+18 - y tested = 5035525633.343237 -y predicted = 5197420780.998755 -error 2.6210038834402148e+16 - y tested = 5026691733.102776 -y predicted = 5312654836.930805 -error 8.177489675096045e+16 - y tested = 1014996574.3865615 -y predicted = 1246449818.3709342 -error 5.3570604150889576e+16 - y tested = 7665772326.561901 -y predicted = 6787190507.634662 -error 7.719060125494966e+17 - y tested = 3029054692.61153 -y predicted = 4757883889.160498 -error 2.9888503908401495e+18 - y tested = 4062233415.93208 -y predicted = 4799543227.880917 -error 5.436257587960291e+17 - y tested = 5822958761.806049 -y predicted = 6323423558.645225 -error 2.5046501287527693e+17 - y tested = 6611133148.221605 -y predicted = 6345167765.520853 -error 7.073758479515761e+16 - y tested = 5377240292.736961 -y predicted = 3028346497.209975 -error 5.517302062665173e+18 -error squared vector [2.650185138586863e+18, 1.7840635192877012e+18, 4.37229961044303e+17, 3.277952681597313e+18, 7.4540207742307e+16, 5.426054169928957e+17, 1.0757848785699281e+18, 3.578242991666416e+18, 2.0016312930189213e+17, 2.484211643404736e+16, 2.277652920151214e+18, 2.6210038834402148e+16, 8.177489675096045e+16, 5.3570604150889576e+16, 7.719060125494966e+17, 2.9888503908401495e+18, 5.436257587960291e+17, 2.5046501287527693e+17, 7.073758479515761e+16, 5.517302062665173e+18] -Total loo_error 1.3113852661816205e+18 -iteration 254current difference of loo_error -2808755434752.0 - getting loo error of with lamda = 0.013651410858246914, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1621046196.6783962 -error 2.6277907714953196e+18 - y tested = 5326600510.288329 -y predicted = 3992066635.8187985 -error 1.7809806621066568e+18 - y tested = 5072151352.996373 -y predicted = 4401812905.34166 -error 4.4935363440413126e+17 - y tested = 7650055845.407672 -y predicted = 5849206322.22834 -error 3.243059005135227e+18 - y tested = 5789616901.049658 -y predicted = 6065271587.980961 -error 7.598550642719469e+16 - y tested = 8224428196.629629 -y predicted = 7497148540.003996 -error 5.28935698941499e+17 - y tested = 4059018123.5159216 -y predicted = 5094860312.855483 -error 1.0729690412157759e+18 - y tested = 5947637003.818383 -y predicted = 4058444429.134857 -error 3.56904858423937e+18 - y tested = 997516184.7000968 -y predicted = 540699453.4569173 -error 2.0868152594370336e+17 - y tested = 6532788063.289651 -y predicted = 6680619582.398206 -error 2.1854158041943016e+16 - y tested = 1980229389.772511 -y predicted = 3496527127.67168 -error 2.2991588299581368e+18 - y tested = 5035525633.343237 -y predicted = 5193168347.925134 -error 2.4851225460749372e+16 - y tested = 5026691733.102776 -y predicted = 5313246308.734244 -error 8.211352481533115e+16 - y tested = 1014996574.3865615 -y predicted = 1238290908.480266 -error 4.986035963835096e+16 - y tested = 7665772326.561901 -y predicted = 6793700248.365855 -error 7.605097095691703e+17 - y tested = 3029054692.61153 -y predicted = 4766449058.3656645 -error 3.018539182154212e+18 - y tested = 4062233415.93208 -y predicted = 4812078166.344377 -error 5.622671497208796e+17 - y tested = 5822958761.806049 -y predicted = 6333454958.143804 -error 2.6060636647531494e+17 - y tested = 6611133148.221605 -y predicted = 6345302180.881311 -error 7.066610319707639e+16 - y tested = 5377240292.736961 -y predicted = 3027675027.332364 -error 5.520456936395776e+18 -error squared vector [2.6277907714953196e+18, 1.7809806621066568e+18, 4.4935363440413126e+17, 3.243059005135227e+18, 7.598550642719469e+16, 5.28935698941499e+17, 1.0729690412157759e+18, 3.56904858423937e+18, 2.0868152594370336e+17, 2.1854158041943016e+16, 2.2991588299581368e+18, 2.4851225460749372e+16, 8.211352481533115e+16, 4.986035963835096e+16, 7.605097095691703e+17, 3.018539182154212e+18, 5.622671497208796e+17, 2.6060636647531494e+17, 7.066610319707639e+16, 5.520456936395776e+18] -Total loo_error 1.311384398766791e+18 -iteration 255current difference of loo_error 867414829568.0 - getting loo error of with lamda = 0.01403057376212712, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1627730694.6493614 -error 2.6495072140324045e+18 - y tested = 5326600510.288329 -y predicted = 3990947097.8855634 -error 1.7839700380631526e+18 - y tested = 5072151352.996373 -y predicted = 4410644833.15457 -error 4.3759087579321446e+17 - y tested = 7650055845.407672 -y predicted = 5839835673.154196 -error 3.276897072033405e+18 - y tested = 5789616901.049658 -y predicted = 6062714281.828843 -error 7.458217938845133e+16 - y tested = 8224428196.629629 -y predicted = 7488092270.588017 -error 5.421905959795578e+17 - y tested = 4059018123.5159216 -y predicted = 5096177740.976825 -error 1.075700072091647e+18 - y tested = 5947637003.818383 -y predicted = 4056087277.6962895 -error 3.577960366392568e+18 - y tested = 997516184.7000968 -y predicted = 549836250.1062127 -error 2.0041732383798435e+17 - y tested = 6532788063.289651 -y predicted = 6690111659.17373 -error 2.475071382189699e+16 - y tested = 1980229389.772511 -y predicted = 3489631061.318885 -error 2.2782934060669875e+18 - y tested = 5035525633.343237 -y predicted = 5197294412.401426 -error 2.6169137877977296e+16 - y tested = 5026691733.102776 -y predicted = 5312672457.659613 -error 8.178497481805352e+16 - y tested = 1014996574.3865615 -y predicted = 1246204033.0386322 -error 5.345688893634895e+16 - y tested = 7665772326.561901 -y predicted = 6787386449.622808 -error 7.715617488060588e+17 - y tested = 3029054692.61153 -y predicted = 4758140372.177552 -error 2.9897372872802934e+18 - y tested = 4062233415.93208 -y predicted = 4799918129.873937 -error 5.441787371834792e+17 - y tested = 5822958761.806049 -y predicted = 6323721175.486163 -error 2.507629949547334e+17 - y tested = 6611133148.221605 -y predicted = 6345171769.143409 -error 7.073545516117615e+16 - y tested = 5377240292.736961 -y predicted = 3028327410.28013 -error 5.51739172937166e+18 -error squared vector [2.6495072140324045e+18, 1.7839700380631526e+18, 4.3759087579321446e+17, 3.276897072033405e+18, 7.458217938845133e+16, 5.421905959795578e+17, 1.075700072091647e+18, 3.577960366392568e+18, 2.0041732383798435e+17, 2.475071382189699e+16, 2.2782934060669875e+18, 2.6169137877977296e+16, 8.178497481805352e+16, 5.345688893634895e+16, 7.715617488060588e+17, 2.9897372872802934e+18, 5.441787371834792e+17, 2.507629949547334e+17, 7.073545516117615e+16, 5.51739172937166e+18] -Total loo_error 1.3113819405945523e+18 -iteration 256current difference of loo_error -2458172238592.0 - getting loo error of with lamda = 0.01366290064321298, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1621249363.030439 -error 2.628449496856396e+18 - y tested = 5326600510.288329 -y predicted = 3992032719.6919174 -error 1.7810711876973878e+18 - y tested = 5072151352.996373 -y predicted = 4402083456.1547575 -error 4.489909863777461e+17 - y tested = 7650055845.407672 -y predicted = 5848921190.267369 -error 3.244086045947377e+18 - y tested = 5789616901.049658 -y predicted = 6065191240.07349 -error 7.594121632842208e+16 - y tested = 8224428196.629629 -y predicted = 7496872837.231536 -error 5.293368009888886e+17 - y tested = 4059018123.5159216 -y predicted = 5094900496.409395 -error 1.0730522904714135e+18 - y tested = 5947637003.818383 -y predicted = 4058373979.1280656 -error 3.569314776462008e+18 - y tested = 997516184.7000968 -y predicted = 540977737.3944736 -error 2.0842735386822938e+17 - y tested = 6532788063.289651 -y predicted = 6680913175.267993 -error 2.1941048798596372e+16 - y tested = 1980229389.772511 -y predicted = 3496315090.9741735 -error 2.2985158533881367e+18 - y tested = 5035525633.343237 -y predicted = 5193295765.756242 -error 2.4891414681617092e+16 - y tested = 5026691733.102776 -y predicted = 5313228626.450709 -error 8.210339124948517e+16 - y tested = 1014996574.3865615 -y predicted = 1238532079.766951 -error 4.996812216566618e+16 - y tested = 7665772326.561901 -y predicted = 6793507670.882716 -error 7.60845629547127e+17 - y tested = 3029054692.61153 -y predicted = 4766194346.472182 -error 3.0176541770151076e+18 - y tested = 4062233415.93208 -y predicted = 4811704955.756015 -error 5.617075890060602e+17 - y tested = 5822958761.806049 -y predicted = 6333153890.433447 -error 2.6029906927512672e+17 - y tested = 6611133148.221605 -y predicted = 6345298165.166444 -error 7.066823821593799e+16 - y tested = 5377240292.736961 -y predicted = 3027696009.291756 -error 5.520358339870043e+18 -error squared vector [2.628449496856396e+18, 1.7810711876973878e+18, 4.489909863777461e+17, 3.244086045947377e+18, 7.594121632842208e+16, 5.293368009888886e+17, 1.0730522904714135e+18, 3.569314776462008e+18, 2.0842735386822938e+17, 2.1941048798596372e+16, 2.2985158533881367e+18, 2.4891414681617092e+16, 8.210339124948517e+16, 4.996812216566618e+16, 7.60845629547127e+17, 3.0176541770151076e+18, 5.617075890060602e+17, 2.6029906927512672e+17, 7.066823821593799e+16, 5.520358339870043e+18] -Total loo_error 1.311381151410539e+18 -iteration 257current difference of loo_error 789184013312.0 - getting loo error of with lamda = 0.014019432152463054, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1627534858.0205922 -error 2.6488697138008535e+18 - y tested = 5326600510.288329 -y predicted = 3990980002.8857408 -error 1.7838821397943475e+18 - y tested = 5072151352.996373 -y predicted = 4410388094.413948 -error 4.3793061040962963e+17 - y tested = 7650055845.407672 -y predicted = 5840109888.497367 -error 3.2759043669359596e+18 - y tested = 5789616901.049658 -y predicted = 6062786714.750863 -error 7.462174711755118e+16 - y tested = 8224428196.629629 -y predicted = 7488357162.261447 -error 5.418005676358456e+17 - y tested = 4059018123.5159216 -y predicted = 5096139282.190544 -error 1.0756202977705916e+18 - y tested = 5947637003.818383 -y predicted = 4056157468.265427 -error 3.577694833415627e+18 - y tested = 997516184.7000968 -y predicted = 549569124.8616123 -error 2.0065656841794285e+17 - y tested = 6532788063.289651 -y predicted = 6689838410.062438 -error 2.4664811421452676e+16 - y tested = 1980229389.772511 -y predicted = 3489830758.6840243 -error 2.278896293019515e+18 - y tested = 5035525633.343237 -y predicted = 5197175446.716375 -error 2.6130662163570484e+16 - y tested = 5026691733.102776 -y predicted = 5312689043.426849 -error 8.179446151260456e+16 - y tested = 1014996574.3865615 -y predicted = 1245972835.8731666 -error 5.335003337032855e+16 - y tested = 7665772326.561901 -y predicted = 6787570771.316911 -error 7.712379716347199e+17 - y tested = 3029054692.61153 -y predicted = 4758381718.355767 -error 2.9905719619694106e+18 - y tested = 4062233415.93208 -y predicted = 4800270932.372601 -error 5.4469937567369197e+17 - y tested = 5822958761.806049 -y predicted = 6324001384.238403 -error 2.5104370949389043e+17 - y tested = 6611133148.221605 -y predicted = 6345175537.851065 -error 7.0733450514008296e+16 - y tested = 5377240292.736961 -y predicted = 3028309392.3111835 -error 5.517476374975056e+18 -error squared vector [2.6488697138008535e+18, 1.7838821397943475e+18, 4.3793061040962963e+17, 3.2759043669359596e+18, 7.462174711755118e+16, 5.418005676358456e+17, 1.0756202977705916e+18, 3.577694833415627e+18, 2.0065656841794285e+17, 2.4664811421452676e+16, 2.278896293019515e+18, 2.6130662163570484e+16, 8.179446151260456e+16, 5.335003337032855e+16, 7.712379716347199e+17, 2.9905719619694106e+18, 5.4469937567369197e+17, 2.5104370949389043e+17, 7.0733450514008296e+16, 5.517476374975056e+18] -Total loo_error 1.31137899755233e+18 -iteration 258current difference of loo_error -2153858209024.0 - getting loo error of with lamda = 0.01367370462834177, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1621440368.1550624 -error 2.6290688672125844e+18 - y tested = 5326600510.288329 -y predicted = 3992000827.335633 -error 1.7811563137374374e+18 - y tested = 5072151352.996373 -y predicted = 4402337689.362809 -error 4.486503439902172e+17 - y tested = 7650055845.407672 -y predicted = 5848653144.03721 -error 3.245051692504796e+18 - y tested = 5789616901.049658 -y predicted = 6065115854.082644 -error 7.589967312227178e+16 - y tested = 8224428196.629629 -y predicted = 7496613663.482238 -error 5.297139946605552e+17 - y tested = 4059018123.5159216 -y predicted = 5094938266.572558 -error 1.0731305427904828e+18 - y tested = 5947637003.818383 -y predicted = 4058307676.8935437 -error 3.569565305578267e+18 - y tested = 997516184.7000968 -y predicted = 541239329.9669064 -error 2.0818856816521296e+17 - y tested = 6532788063.289651 -y predicted = 6681188898.40175 -error 2.2022807861968304e+16 - y tested = 1980229389.772511 -y predicted = 3496115886.987951 -error 2.2979118724400955e+18 - y tested = 5035525633.343237 -y predicted = 5193415440.026726 -error 2.492919105454948e+16 - y tested = 5026691733.102776 -y predicted = 5313212016.734073 -error 8.209387293215894e+16 - y tested = 1014996574.3865615 -y predicted = 1238758776.7607708 -error 5.006952321135659e+16 - y tested = 7665772326.561901 -y predicted = 6793326659.542704 -error 7.611614419005724e+17 - y tested = 3029054692.61153 -y predicted = 4765955007.702434 -error 3.0168227045628805e+18 - y tested = 4062233415.93208 -y predicted = 4811354294.7584505 -error 5.61182091093594e+17 - y tested = 5822958761.806049 -y predicted = 6332871147.379189 -error 2.6001064096088976e+17 - y tested = 6611133148.221605 -y predicted = 6345294392.689875 -error 7.0670243942659256e+16 - y tested = 5377240292.736961 -y predicted = 3027715668.241003 -error 5.520265961112874e+18 -error squared vector [2.6290688672125844e+18, 1.7811563137374374e+18, 4.486503439902172e+17, 3.245051692504796e+18, 7.589967312227178e+16, 5.297139946605552e+17, 1.0731305427904828e+18, 3.569565305578267e+18, 2.0818856816521296e+17, 2.2022807861968304e+16, 2.2979118724400955e+18, 2.492919105454948e+16, 8.209387293215894e+16, 5.006952321135659e+16, 7.611614419005724e+17, 3.0168227045628805e+18, 5.61182091093594e+17, 2.6001064096088976e+17, 7.0670243942659256e+16, 5.520265961112874e+18] -Total loo_error 1.311378282641771e+18 -iteration 259current difference of loo_error 714910558976.0 - getting loo error of with lamda = 0.014008955560823015, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1627350678.2188094 -error 2.648270229627994e+18 - y tested = 5326600510.288329 -y predicted = 3991010943.510235 -error 1.7837994908864975e+18 - y tested = 5072151352.996373 -y predicted = 4410146528.473743 -error 4.3825038769123776e+17 - y tested = 7650055845.407672 -y predicted = 5840367799.456944 -error 3.274970823656962e+18 - y tested = 5789616901.049658 -y predicted = 6062854971.061384 -error 7.465904290373309e+16 - y tested = 8224428196.629629 -y predicted = 7488606310.318477 -error 5.414338483745026e+17 - y tested = 4059018123.5159216 -y predicted = 5096103104.93913 -error 1.0755452586935762e+18 - y tested = 5947637003.818383 -y predicted = 4056223419.4496565 -error 3.5774453471345546e+18 - y tested = 997516184.7000968 -y predicted = 549317869.4466785 -error 2.0088172979600256e+17 - y tested = 6532788063.289651 -y predicted = 6689581162.982921 -error 2.458407611142362e+16 - y tested = 1980229389.772511 -y predicted = 3490018697.233052 -error 2.2794637529221793e+18 - y tested = 5035525633.343237 -y predicted = 5197063458.076039 -error 2.6094468819405584e+16 - y tested = 5026691733.102776 -y predicted = 5312704654.101202 -error 8.180339097805213e+16 - y tested = 1014996574.3865615 -y predicted = 1245755365.6045778 -error 5.3249619724400024e+16 - y tested = 7665772326.561901 -y predicted = 6787744157.645248 -error 7.7093346541113e+17 - y tested = 3029054692.61153 -y predicted = 4758608811.475893 -error 2.9913574500806835e+18 - y tested = 4062233415.93208 -y predicted = 4800602922.643415 -error 5.451895284411412e+17 - y tested = 5822958761.806049 -y predicted = 6324265183.267609 -error 2.5130812819859453e+17 - y tested = 6611133148.221605 -y predicted = 6345179085.189644 -error 7.073156364320852e+16 - y tested = 5377240292.736961 -y predicted = 3028292387.5155287 -error 5.517556261444156e+18 -error squared vector [2.648270229627994e+18, 1.7837994908864975e+18, 4.3825038769123776e+17, 3.274970823656962e+18, 7.465904290373309e+16, 5.414338483745026e+17, 1.0755452586935762e+18, 3.5774453471345546e+18, 2.0088172979600256e+17, 2.458407611142362e+16, 2.2794637529221793e+18, 2.6094468819405584e+16, 8.180339097805213e+16, 5.3249619724400024e+16, 7.7093346541113e+17, 2.9913574500806835e+18, 5.451895284411412e+17, 2.5130812819859453e+17, 7.073156364320852e+16, 5.517556261444156e+18] -Total loo_error 1.3113763932269716e+18 -iteration 260current difference of loo_error -1889414799360.0 - getting loo error of with lamda = 0.013683863747507867, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1621619941.9563186 -error 2.6296512358801444e+18 - y tested = 5326600510.288329 -y predicted = 3991970838.032379 -error 1.7812363620660244e+18 - y tested = 5072151352.996373 -y predicted = 4402576598.726541 -error 4.4833035155550675e+17 - y tested = 7650055845.407672 -y predicted = 5848401155.991825 -error 3.245959619894111e+18 - y tested = 5789616901.049658 -y predicted = 6065045114.322562 -error 7.586070066670451e+16 - y tested = 8224428196.629629 -y predicted = 7496370023.687296 -error 5.300687031881284e+17 - y tested = 4059018123.5159216 -y predicted = 5094973769.124188 -error 1.073204099667641e+18 - y tested = 5947637003.818383 -y predicted = 4058245281.604755 -error 3.5698010799693804e+18 - y tested = 997516184.7000968 -y predicted = 541485236.9105716 -error 2.0796422534181274e+17 - y tested = 6532788063.289651 -y predicted = 6681447858.975749 -error 2.209973485343243e+16 - y tested = 1980229389.772511 -y predicted = 3495928729.1330867 -error 2.2973444873380856e+18 - y tested = 5035525633.343237 -y predicted = 5193527849.130853 -error 2.49647001937963e+16 - y tested = 5026691733.102776 -y predicted = 5313196413.541409 -error 8.20849319132432e+16 - y tested = 1014996574.3865615 -y predicted = 1238971872.6385205 -error 5.0164934227053976e+16 - y tested = 7665772326.561901 -y predicted = 6793156515.667238 -error 7.6145835342335e+17 - y tested = 3029054692.61153 -y predicted = 4765730104.569231 -error 3.016041486498451e+18 - y tested = 4062233415.93208 -y predicted = 4811024805.409135 -error 5.6068854495497875e+17 - y tested = 5822958761.806049 -y predicted = 6332605593.621498 -error 2.5973989317952432e+17 - y tested = 6611133148.221605 -y predicted = 6345290848.5303955 -error 7.0672128305111e+16 - y tested = 5377240292.736961 -y predicted = 3027734091.4511733 -error 5.520179389880374e+18 -error squared vector [2.6296512358801444e+18, 1.7812363620660244e+18, 4.4833035155550675e+17, 3.245959619894111e+18, 7.586070066670451e+16, 5.300687031881284e+17, 1.073204099667641e+18, 3.5698010799693804e+18, 2.0796422534181274e+17, 2.209973485343243e+16, 2.2973444873380856e+18, 2.49647001937963e+16, 8.20849319132432e+16, 5.0164934227053976e+16, 7.6145835342335e+17, 3.016041486498451e+18, 5.6068854495497875e+17, 2.5973989317952432e+17, 7.0672128305111e+16, 5.520179389880374e+18] -Total loo_error 1.3113757481498424e+18 -iteration 261current difference of loo_error 645077129216.0 - getting loo error of with lamda = 0.013999104293752859, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1627177463.1969519 -error 2.6477064964648714e+18 - y tested = 5326600510.288329 -y predicted = 3991040037.043282 -error 1.7837217776945341e+18 - y tested = 5072151352.996373 -y predicted = 4409919247.043853 -error 4.3855136215431014e+17 - y tested = 7650055845.407672 -y predicted = 5840610371.917753 -error 3.2740929215331564e+18 - y tested = 5789616901.049658 -y predicted = 6062919283.294382 -error 7.469419214064138e+16 - y tested = 8224428196.629629 -y predicted = 7488840646.715718 -error 5.4108904358835034e+17 - y tested = 4059018123.5159216 -y predicted = 5096069074.660749 -error 1.075474675270392e+18 - y tested = 5947637003.818383 -y predicted = 4056285389.964336 -error 3.577210927228309e+18 - y tested = 997516184.7000968 -y predicted = 549081545.1767709 -error 2.0109362592441526e+17 - y tested = 6532788063.289651 -y predicted = 6689338997.993181 -error 2.4508195156549012e+16 - y tested = 1980229389.772511 -y predicted = 3490195560.3556547 -error 2.2799978363055235e+18 - y tested = 5035525633.343237 -y predicted = 5196958044.210987 -error 2.6060423278574104e+16 - y tested = 5026691733.102776 -y predicted = 5312719346.192209 -error 8.181179544963877e+16 - y tested = 1014996574.3865615 -y predicted = 1245550811.2834945 -error 5.315525615112708e+16 - y tested = 7665772326.561901 -y predicted = 6787907253.652272 -error 7.70647086234628e+17 - y tested = 3029054692.61153 -y predicted = 4758822484.812788 -error 2.992096614936815e+18 - y tested = 4062233415.93208 -y predicted = 4800915314.744828 -error 5.456509476336075e+17 - y tested = 5822958761.806049 -y predicted = 6324513515.969438 -error 2.5155717142389683e+17 - y tested = 6611133148.221605 -y predicted = 6345182423.952578 -error 7.072978773922041e+16 - y tested = 5377240292.736961 -y predicted = 3028276342.527871 -error 5.517631639381893e+18 -error squared vector [2.6477064964648714e+18, 1.7837217776945341e+18, 4.3855136215431014e+17, 3.2740929215331564e+18, 7.469419214064138e+16, 5.4108904358835034e+17, 1.075474675270392e+18, 3.577210927228309e+18, 2.0109362592441526e+17, 2.4508195156549012e+16, 2.2799978363055235e+18, 2.6060423278574104e+16, 8.181179544963877e+16, 5.315525615112708e+16, 7.70647086234628e+17, 2.992096614936815e+18, 5.456509476336075e+17, 2.5155717142389683e+17, 7.072978773922041e+16, 5.517631639381893e+18] -Total loo_error 1.3113740887845228e+18 -iteration 262current difference of loo_error -1659365319680.0 - getting loo error of with lamda = 0.013693416491333474, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1621788770.3035612 -error 2.6301988152124396e+18 - y tested = 5326600510.288329 -y predicted = 3991942638.26004 -error 1.7813116353670815e+18 - y tested = 5072151352.996373 -y predicted = 4402801116.360336 -error 4.480297392847185e+17 - y tested = 7650055845.407672 -y predicted = 5848164260.81274 -error 3.2468132826340337e+18 - y tested = 5789616901.049658 -y predicted = 6064978726.258783 -error 7.5824134782501e+16 - y tested = 8224428196.629629 -y predicted = 7496140983.161289 -error 5.304022653014793e+17 - y tested = 4059018123.5159216 -y predicted = 5095007140.9419 -error 1.0732732442272447e+18 - y tested = 5947637003.818383 -y predicted = 4058186566.0084133 -error 3.570022956940287e+18 - y tested = 997516184.7000968 -y predicted = 541716402.8258685 -error 2.0775344115659414e+17 - y tested = 6532788063.289651 -y predicted = 6681691093.293523 -error 2.217211234433398e+16 - y tested = 1980229389.772511 -y predicted = 3495752880.193918 -error 2.2968114500190853e+18 - y tested = 5035525633.343237 -y predicted = 5193633441.001189 -error 2.4998078842404044e+16 - y tested = 5026691733.102776 -y predicted = 5313181755.013111 -error 8.207653265418454e+16 - y tested = 1014996574.3865615 -y predicted = 1239172187.379924 -error 5.025470546094986e+16 - y tested = 7665772326.561901 -y predicted = 6792996583.248345 -error 7.617374981165297e+17 - y tested = 3029054692.61153 -y predicted = 4765518757.883641 -error 3.015307449981348e+18 - y tested = 4062233415.93208 -y predicted = 4810715195.776209 -error 5.602249747586353e+17 - y tested = 5822958761.806049 -y predicted = 6332356166.477737 -error 2.5948571588625155e+17 - y tested = 6611133148.221605 -y predicted = 6345287518.701766 -error 7.067389873479965e+16 - y tested = 5377240292.736961 -y predicted = 3027751360.0024757 -error 5.520098245041832e+18 -error squared vector [2.6301988152124396e+18, 1.7813116353670815e+18, 4.480297392847185e+17, 3.2468132826340337e+18, 7.5824134782501e+16, 5.304022653014793e+17, 1.0732732442272447e+18, 3.570022956940287e+18, 2.0775344115659414e+17, 2.217211234433398e+16, 2.2968114500190853e+18, 2.4998078842404044e+16, 8.207653265418454e+16, 5.025470546094986e+16, 7.617374981165297e+17, 3.015307449981348e+18, 5.602249747586353e+17, 2.5948571588625155e+17, 7.067389873479965e+16, 5.520098245041832e+18] -Total loo_error 1.3113735088373366e+18 -iteration 263current difference of loo_error 579947186176.0 - getting loo error of with lamda = 0.013989841027012877, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1627014561.7847261 -error 2.6471763839883756e+18 - y tested = 5326600510.288329 -y predicted = 3991067393.7649765 -error 1.783648705330579e+18 - y tested = 5072151352.996373 -y predicted = 4409705412.877615 -error 4.388346235798254e+17 - y tested = 7650055845.407672 -y predicted = 5840838514.957099 -error 3.2732673488026977e+18 - y tested = 5789616901.049658 -y predicted = 6062979872.005443 -error 7.472731388977325e+16 - y tested = 8224428196.629629 -y predicted = 7489061048.674055 -error 5.4076484229231514e+17 - y tested = 4059018123.5159216 -y predicted = 5096037064.638591 -error 1.0754082842471821e+18 - y tested = 5947637003.818383 -y predicted = 4056343622.441857 -error 3.576990654438655e+18 - y tested = 997516184.7000968 -y predicted = 548859268.4137349 -error 2.012930285315876e+17 - y tested = 6532788063.289651 -y predicted = 6689111046.059731 -error 2.443687494213461e+16 - y tested = 1980229389.772511 -y predicted = 3490361992.7664685 -error 2.2805004786253056e+18 - y tested = 5035525633.343237 -y predicted = 5196858825.246529 -error 2.6028398809704348e+16 - y tested = 5026691733.102776 -y predicted = 5312733173.027251 -error 8.181970535406742e+16 - y tested = 1014996574.3865615 -y predicted = 1245358409.4014647 -error 5.306657503143348e+16 - y tested = 7665772326.561901 -y predicted = 6788060666.764574 -error 7.703777577441788e+17 - y tested = 3029054692.61153 -y predicted = 4759023523.895465 -error 2.9927921572139044e+18 - y tested = 4062233415.93208 -y predicted = 4801209253.486265 -error 5.460852884889098e+17 - y tested = 5822958761.806049 -y predicted = 6324747273.531923 -error 2.5179171050006752e+17 - y tested = 6611133148.221605 -y predicted = 6345185566.219185 -error 7.0728116372934136e+16 - y tested = 5377240292.736961 -y predicted = 3028261206.362354 -error 5.517702748225286e+18 -error squared vector [2.6471763839883756e+18, 1.783648705330579e+18, 4.388346235798254e+17, 3.2732673488026977e+18, 7.472731388977325e+16, 5.4076484229231514e+17, 1.0754082842471821e+18, 3.576990654438655e+18, 2.012930285315876e+17, 2.443687494213461e+16, 2.2805004786253056e+18, 2.6028398809704348e+16, 8.181970535406742e+16, 5.306657503143348e+16, 7.703777577441788e+17, 2.9927921572139044e+18, 5.460852884889098e+17, 2.5179171050006752e+17, 7.0728116372934136e+16, 5.517702748225286e+18] -Total loo_error 1.311372049820446e+18 -iteration 264current difference of loo_error -1459016890624.0 - getting loo error of with lamda = 0.013702399053020729, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1621947497.7147517 -error 2.63071368507282e+18 - y tested = 5326600510.288329 -y predicted = 3991916121.2637625 -error 1.7813824183058808e+18 - y tested = 5072151352.996373 -y predicted = 4403012116.687964 -error 4.4774731756740045e+17 - y tested = 7650055845.407672 -y predicted = 5847941551.590607 -error 3.2476159279797796e+18 - y tested = 5789616901.049658 -y predicted = 6064916414.969696 -error 7.578982236460931e+16 - y tested = 8224428196.629629 -y predicted = 7495925663.882482 -error 5.3071594021900883e+17 - y tested = 4059018123.5159216 -y predicted = 5095038510.556077 -error 1.0733382423628334e+18 - y tested = 5947637003.818383 -y predicted = 4058131315.7109685 -error 3.5702317453902746e+18 - y tested = 997516184.7000968 -y predicted = 541933714.9550316 -error 2.0755538673901325e+17 - y tested = 6532788063.289651 -y predicted = 6681919571.586963 -error 2.2240206767031172e+16 - y tested = 1980229389.772511 -y predicted = 3495587649.0889935 -error 2.29631065407868e+18 - y tested = 5035525633.343237 -y predicted = 5193732635.153005 -error 2.502945542163585e+16 - y tested = 5026691733.102776 -y predicted = 5313167983.193061 -error 8.20686418657917e+16 - y tested = 1014996574.3865615 -y predicted = 1239360491.0697405 -error 5.03391671094165e+16 - y tested = 7665772326.561901 -y predicted = 6792846246.289315 -error 7.61999941620061e+17 - y tested = 3029054692.61153 -y predicted = 4765320142.997655 -error 3.014617714204534e+18 - y tested = 4062233415.93208 -y predicted = 4810424254.358295 -error 5.597895307049235e+17 - y tested = 5822958761.806049 -y predicted = 6332121871.018597 -error 2.5924707178298838e+17 - y tested = 6611133148.221605 -y predicted = 6345284390.093811 -error 7.0675562198090456e+16 - y tested = 5377240292.736961 -y predicted = 3027767549.269982 -error 5.520022172294256e+18 -error squared vector [2.63071368507282e+18, 1.7813824183058808e+18, 4.4774731756740045e+17, 3.2476159279797796e+18, 7.578982236460931e+16, 5.3071594021900883e+17, 1.0733382423628334e+18, 3.5702317453902746e+18, 2.0755538673901325e+17, 2.2240206767031172e+16, 2.29631065407868e+18, 2.502945542163585e+16, 8.20686418657917e+16, 5.03391671094165e+16, 7.61999941620061e+17, 3.014617714204534e+18, 5.597895307049235e+17, 2.5924707178298838e+17, 7.0675562198090456e+16, 5.520022172294256e+18] -Total loo_error 1.3113715302024515e+18 -iteration 265current difference of loo_error 519617994496.0 - getting loo error of with lamda = 0.013981130664164631, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1626861361.2986577 -error 2.6466778886153784e+18 - y tested = 5326600510.288329 -y predicted = 3991093117.370739 -error 1.7835799965375386e+18 - y tested = 5072151352.996373 -y predicted = 4409504236.948411 -error 4.391012004066815e+17 - y tested = 7650055845.407672 -y predicted = 5841053084.137691 -error 3.272490990282417e+18 - y tested = 5789616901.049658 -y predicted = 6063036946.273773 -error 7.47585211303573e+16 - y tested = 8224428196.629629 -y predicted = 7489268341.844147 -error 5.404600120882116e+17 - y tested = 4059018123.5159216 -y predicted = 5096006955.553074 -error 1.0753458377697773e+18 - y tested = 5947637003.818383 -y predicted = 4056398344.463081 -error 3.5767836666400415e+18 - y tested = 997516184.7000968 -y predicted = 548650207.3932648 -error 2.0148066558361747e+17 - y tested = 6532788063.289651 -y predicted = 6688896486.4694805 -error 2.436983978769276e+16 - y tested = 1980229389.772511 -y predicted = 3490518602.5730057 -error 2.2809735063015378e+18 - y tested = 5035525633.343237 -y predicted = 5196765442.550322 -error 2.599827607313706e+16 - y tested = 5026691733.102776 -y predicted = 5312746184.9204235 -error 8.182714940469506e+16 - y tested = 1014996574.3865615 -y predicted = 1245177441.1699054 -error 5.298323143313152e+16 - y tested = 7665772326.561901 -y predicted = 6788204968.934004 -error 7.701244671740097e+17 - y tested = 3029054692.61153 -y predicted = 4759212669.13214 -error 2.9934466237178926e+18 - y tested = 4062233415.93208 -y predicted = 4801485818.197123 -error 5.464941142546366e+17 - y tested = 5822958761.806049 -y predicted = 6324967297.588208 -error 2.5201256999814707e+17 - y tested = 6611133148.221605 -y predicted = 6345188523.391282 -error 7.072654347614137e+16 - y tested = 5377240292.736961 -y predicted = 3028246930.360776 -error 5.517769816487377e+18 -error squared vector [2.6466778886153784e+18, 1.7835799965375386e+18, 4.391012004066815e+17, 3.272490990282417e+18, 7.47585211303573e+16, 5.404600120882116e+17, 1.0753458377697773e+18, 3.5767836666400415e+18, 2.0148066558361747e+17, 2.436983978769276e+16, 2.2809735063015378e+18, 2.599827607313706e+16, 8.182714940469506e+16, 5.298323143313152e+16, 7.701244671740097e+17, 2.9934466237178926e+18, 5.464941142546366e+17, 2.5201256999814707e+17, 7.072654347614137e+16, 5.517769816487377e+18] -Total loo_error 1.311370245858121e+18 -iteration 266current difference of loo_error -1284344330496.0 - getting loo error of with lamda = 0.013710845465479635, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1622096729.871559 -error 2.631197800789656e+18 - y tested = 5326600510.288329 -y predicted = 3991891186.6530313 -error 1.7814489785989942e+18 - y tested = 5072151352.996373 -y predicted = 4403210420.129859 -error 4.4748197166432224e+17 - y tested = 7650055845.407672 -y predicted = 5847732176.2478 -error 3.248370608413904e+18 - y tested = 5789616901.049658 -y predicted = 6064857923.733362 -error 7.575762056797147e+16 - y tested = 8224428196.629629 -y predicted = 7495723241.0081625 -error 5.3101091234728365e+17 - y tested = 4059018123.5159216 -y predicted = 5095067998.668766 -error 1.0733993438042245e+18 - y tested = 5947637003.818383 -y predicted = 4058079328.495017 -error 3.5704282083734436e+18 - y tested = 997516184.7000968 -y predicted = 542138006.7204577 -error 2.0736928498005594e+17 - y tested = 6532788063.289651 -y predicted = 6682134202.459646 -error 2.230426928498361e+16 - y tested = 1980229389.772511 -y predicted = 3495432387.8664546 -error 2.2958401254328753e+18 - y tested = 5035525633.343237 -y predicted = 5193825824.579883 -error 2.50589505455586e+16 - y tested = 5026691733.102776 -y predicted = 5313155043.771063 -error 8.206122835903566e+16 - y tested = 1014996574.3865615 -y predicted = 1239537506.9871016 -error 5.0418630413120264e+16 - y tested = 7665772326.561901 -y predicted = 6792704926.316135 -error 7.622466853719e+17 - y tested = 3029054692.61153 -y predicted = 4765133486.305408 -error 3.01396957791359e+18 - y tested = 4062233415.93208 -y predicted = 4810150844.891802 -error 5.593804805417209e+17 - y tested = 5822958761.806049 -y predicted = 6331901775.51184 -error 2.5902299119993248e+17 - y tested = 6611133148.221605 -y predicted = 6345281450.414468 -error 7.067712522693755e+16 - y tested = 5377240292.736961 -y predicted = 3027782729.36772 -error 5.519950842072932e+18 -error squared vector [2.631197800789656e+18, 1.7814489785989942e+18, 4.4748197166432224e+17, 3.248370608413904e+18, 7.575762056797147e+16, 5.3101091234728365e+17, 1.0733993438042245e+18, 3.5704282083734436e+18, 2.0736928498005594e+17, 2.230426928498361e+16, 2.2958401254328753e+18, 2.50589505455586e+16, 8.206122835903566e+16, 5.0418630413120264e+16, 7.622466853719e+17, 3.01396957791359e+18, 5.593804805417209e+17, 2.5902299119993248e+17, 7.067712522693755e+16, 5.519950842072932e+18] -Total loo_error 1.3113697817951222e+18 -iteration 267current difference of loo_error 464062998784.0 - getting loo error of with lamda = 0.013972940203598419, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1626717285.289128 -error 2.646209125987311e+18 - y tested = 5326600510.288329 -y predicted = 3991117305.363883 -error 1.7835153906352701e+18 - y tested = 5072151352.996373 -y predicted = 4409314975.7708235 -error 4.393520629734912e+17 - y tested = 7650055845.407672 -y predicted = 5841254884.615492 -error 3.2717609157627136e+18 - y tested = 5789616901.049658 -y predicted = 6063090704.196854 -error 7.478792100779122e+16 - y tested = 8224428196.629629 -y predicted = 7489463303.293515 -error 5.401733944365653e+17 - y tested = 4059018123.5159216 -y predicted = 5095978635.060684 -error 1.0752871025031758e+18 - y tested = 5947637003.818383 -y predicted = 4056449769.5195246 -error 3.5765891551749663e+18 - y tested = 997516184.7000968 -y predicted = 548453579.2261051 -error 2.0165722363508995e+17 - y tested = 6532788063.289651 -y predicted = 6688694544.346404 -error 2.4306830835499732e+16 - y tested = 1980229389.772511 -y predicted = 3490665963.2469654 -error 2.2814186424892508e+18 - y tested = 5035525633.343237 -y predicted = 5196677557.624307 -error 2.596994269949164e+16 - y tested = 5026691733.102776 -y predicted = 5312758429.332787 -error 8.183415469195338e+16 - y tested = 1014996574.3865615 -y predicted = 1245007229.9486446 -error 5.290490167209924e+16 - y tested = 7665772326.561901 -y predicted = 6788340698.666017 -error 7.698862616320219e+17 - y tested = 3029054692.61153 -y predicted = 4759390618.302757 -error 2.9940624157377167e+18 - y tested = 4062233415.93208 -y predicted = 4801746026.311658 -error 5.468789009104177e+17 - y tested = 5822958761.806049 -y predicted = 6325174382.764561 -error 2.5222052993474314e+17 - y tested = 6611133148.221605 -y predicted = 6345191306.228769 -error 7.072506332254255e+16 - y tested = 5377240292.736961 -y predicted = 3028233468.134006 -error 5.51783306203126e+18 -error squared vector [2.646209125987311e+18, 1.7835153906352701e+18, 4.393520629734912e+17, 3.2717609157627136e+18, 7.478792100779122e+16, 5.401733944365653e+17, 1.0752871025031758e+18, 3.5765891551749663e+18, 2.0165722363508995e+17, 2.4306830835499732e+16, 2.2814186424892508e+18, 2.596994269949164e+16, 8.183415469195338e+16, 5.290490167209924e+16, 7.698862616320219e+17, 2.9940624157377167e+18, 5.468789009104177e+17, 2.5222052993474314e+17, 7.072506332254255e+16, 5.51783306203126e+18] -Total loo_error 1.3113686499036685e+18 -iteration 268current difference of loo_error -1131891453696.0 - getting loo error of with lamda = 0.013718787730271114, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1622237035.9815247 -error 2.63165300063975e+18 - y tested = 5326600510.288329 -y predicted = 3991867740.022975 -error 1.7815115680202266e+18 - y tested = 5072151352.996373 -y predicted = 4403396796.539887 -error 4.47232656781311e+17 - y tested = 7650055845.407672 -y predicted = 5847535334.184088 -error 3.2490801933817313e+18 - y tested = 5789616901.049658 -y predicted = 6064803012.729604 -error 7.572739606152768e+16 - y tested = 8224428196.629629 -y predicted = 7495532939.610377 -error 5.3128829570516115e+17 - y tested = 4059018123.5159216 -y predicted = 5095095718.639461 -error 1.073456783116976e+18 - y tested = 5947637003.818383 -y predicted = 4058030413.6667633 -error 3.570613065544432e+18 - y tested = 997516184.7000968 -y predicted = 542330061.0389929 -error 2.0719440717362182e+17 - y tested = 6532788063.289651 -y predicted = 6682335837.007462 -error 2.2364536623953492e+16 - y tested = 1980229389.772511 -y predicted = 3495286488.9086456 -error 2.2953980136427994e+18 - y tested = 5035525633.343237 -y predicted = 5193913377.511612 -error 2.5086677502746612e+16 - y tested = 5026691733.102776 -y predicted = 5313142885.8421135 -error 8.20542629056955e+16 - y tested = 1014996574.3865615 -y predicted = 1239703914.497923 -error 5.049338869992304e+16 - y tested = 7665772326.561901 -y predicted = 6792572080.050132 -error 7.624786705082147e+17 - y tested = 3029054692.61153 -y predicted = 4764958061.979738 -error 3.0133605077838986e+18 - y tested = 4062233415.93208 -y predicted = 4809893901.514644 -error 5.589962017015552e+17 - y tested = 5822958761.806049 -y predicted = 6331695007.1969795 -error 2.5881256737446074e+17 - y tested = 6611133148.221605 -y predicted = 6345278688.137006 -error 7.06785939468739e+16 - y tested = 5377240292.736961 -y predicted = 3027796965.5536385 -error 5.519883947646243e+18 -error squared vector [2.63165300063975e+18, 1.7815115680202266e+18, 4.47232656781311e+17, 3.2490801933817313e+18, 7.572739606152768e+16, 5.3128829570516115e+17, 1.073456783116976e+18, 3.570613065544432e+18, 2.0719440717362182e+17, 2.2364536623953492e+16, 2.2953980136427994e+18, 2.5086677502746612e+16, 8.20542629056955e+16, 5.049338869992304e+16, 7.624786705082147e+17, 3.0133605077838986e+18, 5.589962017015552e+17, 2.5881256737446074e+17, 7.06785939468739e+16, 5.519883947646243e+18] -Total loo_error 1.311368236738055e+18 -iteration 269current difference of loo_error 413165613568.0 - getting loo error of with lamda = 0.013965238613497591, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] - [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1626581791.4157922 -error 2.645768323894311e+18 - y tested = 5326600510.288329 -y predicted = 3991140049.4251857 -error 1.7834546425287995e+18 - y tested = 5072151352.996373 -y predicted = 4409136928.858383 -error 4.3958812661503046e+17 - y tested = 7650055845.407672 -y predicted = 5841444674.072048 -error 3.271074369080017e+18 - y tested = 5789616901.049658 -y predicted = 6063141333.377023 -error 7.481561508000723e+16 - y tested = 8224428196.629629 -y predicted = 7489646664.326751 -error 5.399039002133659e+17 - y tested = 4059018123.5159216 -y predicted = 5095951997.394253 -error 1.0752318587963228e+18 - y tested = 5947637003.818383 -y predicted = 4056498097.9106736 -error 3.576406361437809e+18 - y tested = 997516184.7000968 -y predicted = 548268647.0716811 -error 2.0182335006519478e+17 - y tested = 6532788063.289651 -y predicted = 6688504488.272576 -error 2.424760500946304e+16 - y tested = 1980229389.772511 -y predicted = 3490804615.500934 -error 2.2818375125844764e+18 - y tested = 5035525633.343237 -y predicted = 5196594851.049224 -error 2.5943292892418628e+16 - y tested = 5026691733.102776 -y predicted = 5312769951.026696 -error 8.184074677052622e+16 - y tested = 1014996574.3865615 -y predicted = 1244847138.8163667 -error 5.283128196870002e+16 - y tested = 7665772326.561901 -y predicted = 6788468362.935872 -error 7.696622445939409e+17 - y tested = 3029054692.61153 -y predicted = 4759558028.926134 -error 2.994641796995976e+18 - y tested = 4062233415.93208 -y predicted = 4801990836.775442 -error 5.472410416928235e+17 - y tested = 5822958761.806049 -y predicted = 6325369279.1196995 -error 2.5241632790736954e+17 - y tested = 6611133148.221605 -y predicted = 6345193924.882953 -error 7.072367050996575e+16 - y tested = 5377240292.736961 -y predicted = 3028220775.498674 -error 5.517892692366397e+18 -error squared vector [2.645768323894311e+18, 1.7834546425287995e+18, 4.3958812661503046e+17, 3.271074369080017e+18, 7.481561508000723e+16, 5.399039002133659e+17, 1.0752318587963228e+18, 3.576406361437809e+18, 2.0182335006519478e+17, 2.424760500946304e+16, 2.2818375125844764e+18, 2.5943292892418628e+16, 8.184074677052622e+16, 5.283128196870002e+16, 7.696622445939409e+17, 2.994641796995976e+18, 5.472410416928235e+17, 2.5241632790736954e+17, 7.072367050996575e+16, 5.517892692366397e+18] -Total loo_error 1.3113672380501458e+18 -iteration 270current difference of loo_error -998687909120.0 - getting loo error of with lamda = 0.013726255938853734, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1622368950.9920335 -error 2.6320810128725965e+18 - y tested = 5326600510.288329 -y predicted = 3991845692.5979133 -error 1.7815704233477752e+18 - y tested = 5072151352.996373 -y predicted = 4403571968.412748 -error 4.4699839349021856e+17 - y tested = 7650055845.407672 -y predicted = 5847350273.13331 -error 3.2497473803090335e+18 - y tested = 5789616901.049658 -y predicted = 6064751457.842426 -error 7.569902434155314e+16 - y tested = 8224428196.629629 -y predicted = 7495354031.616838 -error 5.315491380890979e+17 - y tested = 4059018123.5159216 -y predicted = 5095121776.938367 -error 1.0735107806353386e+18 - y tested = 5947637003.818383 -y predicted = 4057984391.4337015 -error 3.570786995492252e+18 - y tested = 997516184.7000968 -y predicted = 542510613.4243063 -error 2.0703006989200854e+17 - y tested = 6532788063.289651 -y predicted = 6682525272.637766 -error 2.242123186336121e+16 - y tested = 1980229389.772511 -y predicted = 3495149382.33012 -error 2.2949825838507464e+18 - y tested = 5035525633.343237 -y predicted = 5193995639.046973 -error 2.5112742707742216e+16 - y tested = 5026691733.102776 -y predicted = 5313131461.684595 -error 8.204771811002645e+16 - y tested = 1014996574.3865615 -y predicted = 1239860351.762704 -error 5.056371837586732e+16 - y tested = 7665772326.561901 -y predicted = 6792447197.230247 -error 7.626967815221512e+17 - y tested = 3029054692.61153 -y predicted = 4764793188.9326 -error 3.0127881276109297e+18 - y tested = 4062233415.93208 -y predicted = 4809652424.259375 -error 5.586351740089568e+17 - y tested = 5822958761.806049 -y predicted = 6331500748.367698 -error 2.5861495209606774e+17 - y tested = 6611133148.221605 -y predicted = 6345276092.450998 -error 7.067997410301564e+16 - y tested = 5377240292.736961 -y predicted = 3027810318.5989313 -error 5.519821203378224e+18 -error squared vector [2.6320810128725965e+18, 1.7815704233477752e+18, 4.4699839349021856e+17, 3.2497473803090335e+18, 7.569902434155314e+16, 5.315491380890979e+17, 1.0735107806353386e+18, 3.570786995492252e+18, 2.0703006989200854e+17, 2.242123186336121e+16, 2.2949825838507464e+18, 2.5112742707742216e+16, 8.204771811002645e+16, 5.056371837586732e+16, 7.626967815221512e+17, 3.0127881276109297e+18, 5.586351740089568e+17, 2.5861495209606774e+17, 7.067997410301564e+16, 5.519821203378224e+18] -Total loo_error 1.311366871304848e+18 -iteration 271current difference of loo_error 366745297920.0 - getting loo error of with lamda = 0.01395799671426596, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1626454369.4458418 -error 2.645353815618395e+18 - y tested = 5326600510.288329 -y predicted = 3991161435.761064 -error 1.7833975217742382e+18 - y tested = 5072151352.996373 -y predicted = 4408969436.313499 -error 4.3981025461517005e+17 - y tested = 7650055845.407672 -y predicted = 5841623165.48026 -error 3.2704287578294415e+18 - y tested = 5789616901.049658 -y predicted = 6063189011.397882 -error 7.48416995603812e+16 - y tested = 8224428196.629629 -y predicted = 7489819113.145185 -error 5.3965050553785434e+17 - y tested = 4059018123.5159216 -y predicted = 5095926942.984341 -error 1.0751798998913905e+18 - y tested = 5947637003.818383 -y predicted = 4056543517.5821595 -error 3.5762345736850744e+18 - y tested = 997516184.7000968 -y predicted = 548094717.4654697 -error 2.0197965521132502e+17 - y tested = 6532788063.289651 -y predicted = 6688325628.009779 -error 2.4191934039068024e+16 - y tested = 1980229389.772511 -y predicted = 3490935069.0772123 -error 2.282231649483479e+18 - y tested = 5035525633.343237 -y predicted = 5196517021.472506 -error 2.591822705178882e+16 - y tested = 5026691733.102776 -y predicted = 5312780792.211287 -error 8.184694974159309e+16 - y tested = 1014996574.3865615 -y predicted = 1244696568.2766144 -error 5.2762087193090344e+16 - y tested = 7665772326.561901 -y predicted = 6788588439.000305 -error 7.694515725976745e+17 - y tested = 3029054692.61153 -y predicted = 4759715520.505013 -error 2.995186901204958e+18 - y tested = 4062233415.93208 -y predicted = 4802221153.283233 -error 5.4758185143007885e+17 - y tested = 5822958761.806049 -y predicted = 6325552694.482186 -error 2.526006611628653e+17 - y tested = 6611133148.221605 -y predicted = 6345196388.929245 -error 7.072235994292278e+16 - y tested = 5377240292.736961 -y predicted = 3028208810.4084754 -error 5.517948904970364e+18 -error squared vector [2.645353815618395e+18, 1.7833975217742382e+18, 4.3981025461517005e+17, 3.2704287578294415e+18, 7.48416995603812e+16, 5.3965050553785434e+17, 1.0751798998913905e+18, 3.5762345736850744e+18, 2.0197965521132502e+17, 2.4191934039068024e+16, 2.282231649483479e+18, 2.591822705178882e+16, 8.184694974159309e+16, 5.2762087193090344e+16, 7.694515725976745e+17, 2.995186901204958e+18, 5.4758185143007885e+17, 2.526006611628653e+17, 7.072235994292278e+16, 5.517948904970364e+18] -Total loo_error 1.3113659891270577e+18 -iteration 272current difference of loo_error -882177790208.0 - getting loo error of with lamda = 0.013733278386593498, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1622492977.6680174 -error 2.6324834623116145e+18 - y tested = 5326600510.288329 -y predicted = 3991824960.8961124 -error 1.781625767255294e+18 - y tested = 5072151352.996373 -y predicted = 4403736613.877025 -error 4.4677826347198675e+17 - y tested = 7650055845.407672 -y predicted = 5847176286.214177 -error 3.2503747049577303e+18 - y tested = 5789616901.049658 -y predicted = 6064703049.558094 -error 7.567238910120542e+16 - y tested = 8224428196.629629 -y predicted = 7495185832.94451 -error 5.317944249930589e+17 - y tested = 4059018123.5159216 -y predicted = 5095146273.573247 -error 1.0735615433412154e+18 - y tested = 5947637003.818383 -y predicted = 4057941092.310754 -error 3.57095063796865e+18 - y tested = 997516184.7000968 -y predicted = 542680354.8954906 -error 2.068756320740447e+17 - y tested = 6532788063.289651 -y predicted = 6682703256.616762 -error 2.247456519030514e+16 - y tested = 1980229389.772511 -y predicted = 3495020533.553549 -error 2.2945922092774648e+18 - y tested = 5035525633.343237 -y predicted = 5194072932.669916 -error 2.513724612378362e+16 - y tested = 5026691733.102776 -y predicted = 5313120726.551871 -error 8.204156828826213e+16 - y tested = 1014996574.3865615 -y predicted = 1240007418.2727506 -error 5.062987986637497e+16 - y tested = 7665772326.561901 -y predicted = 6792329798.572277 -error 7.629018497009051e+17 - y tested = 3029054692.61153 -y predicted = 4764638227.976946 -error 3.012250208231516e+18 - y tested = 4062233415.93208 -y predicted = 4809425474.852462 -error 5.582959729136796e+17 - y tested = 5822958761.806049 -y predicted = 6331318232.736245 -error 2.584293516844286e+17 - y tested = 6611133148.221605 -y predicted = 6345273653.216841 -error 7.068127108418843e+16 - y tested = 5377240292.736961 -y predicted = 3027822845.1261463 -error 5.519762343138117e+18 -error squared vector [2.6324834623116145e+18, 1.781625767255294e+18, 4.4677826347198675e+17, 3.2503747049577303e+18, 7.567238910120542e+16, 5.317944249930589e+17, 1.0735615433412154e+18, 3.57095063796865e+18, 2.068756320740447e+17, 2.247456519030514e+16, 2.2945922092774648e+18, 2.513724612378362e+16, 8.204156828826213e+16, 5.062987986637497e+16, 7.629018497009051e+17, 3.012250208231516e+18, 5.582959729136796e+17, 2.584293516844286e+17, 7.068127108418843e+16, 5.519762343138117e+18] -Total loo_error 1.3113656645486912e+18 -iteration 273current difference of loo_error 324578366464.0 - getting loo error of with lamda = 0.013951187067972855, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1626334539.3687522 -error 2.6449640336727163e+18 - y tested = 5326600510.288329 -y predicted = 3991181545.4307227 -error 1.7833438117013612e+18 - y tested = 5072151352.996373 -y predicted = 4408811876.544025 -error 4.400192610200748e+17 - y tested = 7650055845.407672 -y predicted = 5841791029.713602 -error 3.269821643677108e+18 - y tested = 5789616901.049658 -y predicted = 6063233906.288978 -error 7.486626555613395e+16 - y tested = 8224428196.629629 -y predicted = 7489981297.3575 -error 5.3941224785044486e+17 - y tested = 4059018123.5159216 -y predicted = 5095903378.10417 -error 1.0751310311825364e+18 - y tested = 5947637003.818383 -y predicted = 4056586204.907448 -error 3.5760731240616873e+18 - y tested = 997516184.7000968 -y predicted = 547931137.7999103 -error 2.0212671439624294e+17 - y tested = 6532788063.289651 -y predicted = 6688157312.323147 -error 2.4139603545232468e+16 - y tested = 1980229389.772511 -y predicted = 3491057804.446134 -error 2.2826024985852132e+18 - y tested = 5035525633.343237 -y predicted = 5196443784.643929 -error 2.5894651418032276e+16 - y tested = 5026691733.102776 -y predicted = 5312790992.681722 -error 8.185278633162118e+16 - y tested = 1014996574.3865615 -y predicted = 1244554954.0916963 -error 5.2697049692846824e+16 - y tested = 7665772326.561901 -y predicted = 6788701376.108793 -error 7.69253452128718e+17 - y tested = 3029054692.61153 -y predicted = 4759863676.655442 -error 2.9956997392471204e+18 - y tested = 4062233415.93208 -y predicted = 4802437827.348812 -error 5.479025706807911e+17 - y tested = 5822958761.806049 -y predicted = 6325725296.681739 -error 2.527741885909079e+17 - y tested = 6611133148.221605 -y predicted = 6345198707.397778 -error 7.072112681628194e+16 - y tested = 5377240292.736961 -y predicted = 3028197532.8832417 -error 5.51800188762118e+18 -error squared vector [2.6449640336727163e+18, 1.7833438117013612e+18, 4.400192610200748e+17, 3.269821643677108e+18, 7.486626555613395e+16, 5.3941224785044486e+17, 1.0751310311825364e+18, 3.5760731240616873e+18, 2.0212671439624294e+17, 2.4139603545232468e+16, 2.2826024985852132e+18, 2.5894651418032276e+16, 8.185278633162118e+16, 5.2697049692846824e+16, 7.69253452128718e+17, 2.9956997392471204e+18, 5.479025706807911e+17, 2.527741885909079e+17, 7.072112681628194e+16, 5.51800188762118e+18] -Total loo_error 1.3113648843888125e+18 -iteration 274current difference of loo_error -780159878656.0 - getting loo error of with lamda = 0.01373988167996863, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1622609588.542892 -error 2.6328618765608986e+18 - y tested = 5326600510.288329 -y predicted = 3991805466.4144225 -error 1.7816778091503442e+18 - y tested = 5072151352.996373 -y predicted = 4403891369.4895735 -error 4.465714055565082e+17 - y tested = 7650055845.407672 -y predicted = 5847012709.166052 -error 3.250964551148017e+18 - y tested = 5789616901.049658 -y predicted = 6064657591.949067 -error 7.56473816504244e+16 - y tested = 8224428196.629629 -y predicted = 7495027700.810878 -error 5.3202508330064026e+17 - y tested = 4059018123.5159216 -y predicted = 5095169302.486204 -error 1.0736092656815066e+18 - y tested = 5947637003.818383 -y predicted = 4057900356.556017 -error 3.571104596006409e+18 - y tested = 997516184.7000968 -y predicted = 542839934.7032287 -error 2.0673049231121453e+17 - y tested = 6532788063.289651 -y predicted = 6682870489.362009 -error 2.2524734615764844e+16 - y tested = 1980229389.772511 -y predicted = 3494899441.0506473 -error 2.294225364238912e+18 - y tested = 5035525633.343237 -y predicted = 5194145561.660597 -error 2.51602816594044e+16 - y tested = 5026691733.102776 -y predicted = 5313110638.4804535 -error 8.203578935774722e+16 - y tested = 1014996574.3865615 -y predicted = 1240145677.2255182 -error 5.06921185091871e+16 - y tested = 7665772326.561901 -y predicted = 6792219433.860437 -error 7.630946563470949e+17 - y tested = 3029054692.61153 -y predicted = 4764492579.178123 -error 3.0117446581307254e+18 - y tested = 4062233415.93208 -y predicted = 4809212172.794838 -error 5.5797726320423155e+17 - y tested = 5822958761.806049 -y predicted = 6331146742.054664 -error 2.58255023269166e+17 - y tested = 6611133148.221605 -y predicted = 6345271360.921899 -error 7.068248994619436e+16 - y tested = 5377240292.736961 -y predicted = 3027834597.91856 -error 5.519707118845135e+18 -error squared vector [2.6328618765608986e+18, 1.7816778091503442e+18, 4.465714055565082e+17, 3.250964551148017e+18, 7.56473816504244e+16, 5.3202508330064026e+17, 1.0736092656815066e+18, 3.571104596006409e+18, 2.0673049231121453e+17, 2.2524734615764844e+16, 2.294225364238912e+18, 2.51602816594044e+16, 8.203578935774722e+16, 5.06921185091871e+16, 7.630946563470949e+17, 3.0117446581307254e+18, 5.5797726320423155e+17, 2.58255023269166e+17, 7.068248994619436e+16, 5.519707118845135e+18] -Total loo_error 1.3113645979744763e+18 -iteration 275current difference of loo_error 286414336256.0 - getting loo error of with lamda = 0.01394478387439697, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1626221849.6188555 -error 2.6445975039067346e+18 - y tested = 5326600510.288329 -y predicted = 3991200454.6524425 -error 1.7832933085923292e+18 - y tested = 5072151352.996373 -y predicted = 4408663664.100069 -error 4.4021591331695885e+17 - y tested = 7650055845.407672 -y predicted = 5841948898.005678 -error 3.269250733243356e+18 - y tested = 5789616901.049658 -y predicted = 6063276176.977156 -error 7.488939930116242e+16 - y tested = 8224428196.629629 -y predicted = 7490133826.346497 -error 5.391882222295022e+17 - y tested = 4059018123.5159216 -y predicted = 5095881214.530979 -error 1.0750850695092996e+18 - y tested = 5947637003.818383 -y predicted = 4056626325.418936 -error 3.5759213858207386e+18 - y tested = 997516184.7000968 -y predicted = 547777293.9474293 -error 2.0226506985543984e+17 - y tested = 6532788063.289651 -y predicted = 6687998926.902221 -error 2.4090412183359748e+16 - y tested = 1980229389.772511 -y predicted = 3491173274.421716 -error 2.2829514225588308e+18 - y tested = 5035525633.343237 -y predicted = 5196374872.4950695 -error 2.587247773572343e+16 - y tested = 5026691733.102776 -y predicted = 5312800589.951689 -error 8.18582779673919e+16 - y tested = 1014996574.3865615 -y predicted = 1244421765.2385018 -error 5.263591819744922e+16 - y tested = 7665772326.561901 -y predicted = 6788807597.12009 -error 7.690671366849498e+17 - y tested = 3029054692.61153 -y predicted = 4760003047.124885 -error 2.9961822059924905e+18 - y tested = 4062233415.93208 -y predicted = 4802641661.220258 -error 5.482043696907187e+17 - y tested = 5822958761.806049 -y predicted = 6325887715.682119 -error 2.5293753264687818e+17 - y tested = 6611133148.221605 -y predicted = 6345200888.803046 -error 7.07199665994598e+16 - y tested = 5377240292.736961 -y predicted = 3028186904.936153 -error 5.518051818738456e+18 -error squared vector [2.6445975039067346e+18, 1.7832933085923292e+18, 4.4021591331695885e+17, 3.269250733243356e+18, 7.488939930116242e+16, 5.391882222295022e+17, 1.0750850695092996e+18, 3.5759213858207386e+18, 2.0226506985543984e+17, 2.4090412183359748e+16, 2.2829514225588308e+18, 2.587247773572343e+16, 8.18582779673919e+16, 5.263591819744922e+16, 7.690671366849498e+17, 2.9961822059924905e+18, 5.482043696907187e+17, 2.5293753264687818e+17, 7.07199665994598e+16, 5.518051818738456e+18] -Total loo_error 1.3113639072385613e+18 -iteration 276current difference of loo_error -690735915008.0 - getting loo error of with lamda = 0.01374609083737555, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1622719227.7487495 -error 2.633217691835045e+18 - y tested = 5326600510.288329 -y predicted = 3991787135.3315296 -error 1.7817267459635615e+18 - y tested = 5072151352.996373 -y predicted = 4404036832.84558 -error 4.463770120363245e+17 - y tested = 7650055845.407672 -y predicted = 5846858917.75447 -error 3.251519159897947e+18 - y tested = 5789616901.049658 -y predicted = 6064614901.73457 -error 7.56239003806987e+16 - y tested = 8224428196.629629 -y predicted = 7494879031.215342 -error 5.322419847566835e+17 - y tested = 4059018123.5159216 -y predicted = 5095190951.927883 -error 1.0736541303392443e+18 - y tested = 5947637003.818383 -y predicted = 4057862033.632701 -error 3.571249437940296e+18 - y tested = 997516184.7000968 -y predicted = 542989962.8820004 -error 2.0659408632023338e+17 - y tested = 6532788063.289651 -y predicted = 6683027627.504689 -error 2.2571926655524616e+16 - y tested = 1980229389.772511 -y predicted = 3494785634.236311 -error 2.2938806176442898e+18 - y tested = 5035525633.343237 -y predicted = 5194213810.405404 -error 2.518193753931372e+16 - y tested = 5026691733.102776 -y predicted = 5313101158.11009 -error 8.20303587330206e+16 - y tested = 1014996574.3865615 -y predicted = 1240275657.7511773 -error 5.075066540160151e+16 - y tested = 7665772326.561901 -y predicted = 6792115680.157765 -error 7.63275935806121e+17 - y tested = 3029054692.61153 -y predicted = 4764355679.382642 -error 3.011269514688795e+18 - y tested = 4062233415.93208 -y predicted = 4809011691.706161 -error 5.57677793168109e+17 - y tested = 5822958761.806049 -y predicted = 6330985602.976895 -error 2.5809127135002797e+17 - y tested = 6611133148.221605 -y predicted = 6345269206.641628 -error 7.068363543244144e+16 - y tested = 5377240292.736961 -y predicted = 3027845626.203411 -error 5.519655299136292e+18 -error squared vector [2.633217691835045e+18, 1.7817267459635615e+18, 4.463770120363245e+17, 3.251519159897947e+18, 7.56239003806987e+16, 5.322419847566835e+17, 1.0736541303392443e+18, 3.571249437940296e+18, 2.0659408632023338e+17, 2.2571926655524616e+16, 2.2938806176442898e+18, 2.518193753931372e+16, 8.20303587330206e+16, 5.075066540160151e+16, 7.63275935806121e+17, 3.011269514688795e+18, 5.57677793168109e+17, 2.5809127135002797e+17, 7.068363543244144e+16, 5.519655299136292e+18] -Total loo_error 1.3113636552512783e+18 -iteration 277current difference of loo_error 251987282944.0 - getting loo error of with lamda = 0.013938762873275109, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1626115875.4003637 -error 2.644252839958072e+18 - y tested = 5326600510.288329 -y predicted = 3991218235.0942435 -error 1.7832458209025326e+18 - y tested = 5072151352.996373 -y predicted = 4408524247.6256695 -error 4.404009349826991e+17 - y tested = 7650055845.407672 -y predicted = 5842097364.269755 -error 3.2687138695185224e+18 - y tested = 5789616901.049658 -y predicted = 6063315973.725872 -error 7.49111823838196e+16 - y tested = 8224428196.629629 -y predicted = 7490277273.501487 -error 5.389775779299036e+17 - y tested = 4059018123.5159216 -y predicted = 5095860369.229273 -error 1.0750418424959054e+18 - y tested = 5947637003.818383 -y predicted = 4056664034.490335 -error 3.575778770729336e+18 - y tested = 997516184.7000968 -y predicted = 547632608.0171028 -error 2.0239523256908336e+17 - y tested = 6532788063.289651 -y predicted = 6687849892.37803 -error 2.404417084023363e+16 - y tested = 1980229389.772511 -y predicted = 3491281905.695229 -error 2.283279705876376e+18 - y tested = 5035525633.343237 -y predicted = 5196310032.263484 -error 2.5851622936145148e+16 - y tested = 5026691733.102776 -y predicted = 5312809619.378713 -error 8.186344484701006e+16 - y tested = 1014996574.3865615 -y predicted = 1244296501.9793725 -error 5.257845679406836e+16 - y tested = 7665772326.561901 -y predicted = 6788907500.029088 -error 7.688919240104204e+17 - y tested = 3029054692.61153 -y predicted = 4760134149.702673 -error 2.996636086762967e+18 - y tested = 4062233415.93208 -y predicted = 4802833410.641838 -error 5.48488352164094e+17 - y tested = 5822958761.806049 -y predicted = 6326040545.614373 -error 2.5309128119976512e+17 - y tested = 6611133148.221605 -y predicted = 6345202941.171807 -error 7.071887502154844e+16 - y tested = 5377240292.736961 -y predicted = 3028176890.498618 -error 5.518098867735581e+18 -error squared vector [2.644252839958072e+18, 1.7832458209025326e+18, 4.404009349826991e+17, 3.2687138695185224e+18, 7.49111823838196e+16, 5.389775779299036e+17, 1.0750418424959054e+18, 3.575778770729336e+18, 2.0239523256908336e+17, 2.404417084023363e+16, 2.283279705876376e+18, 2.5851622936145148e+16, 8.186344484701006e+16, 5.257845679406836e+16, 7.688919240104204e+17, 2.996636086762967e+18, 5.48488352164094e+17, 2.5309128119976512e+17, 7.071887502154844e+16, 5.518098867735581e+18] -Total loo_error 1.311363042982904e+18 -iteration 278current difference of loo_error -612268374272.0 - getting loo error of with lamda = 0.013751929383917961, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1622822312.734152 -error 2.633552258437352e+18 - y tested = 5326600510.288329 -y predicted = 3991769898.229274 -error 1.7817727628899523e+18 - y tested = 5072151352.996373 -y predicted = 4404173565.01826 -error 4.461943252321331e+17 - y tested = 7650055845.407672 -y predicted = 5846714325.339471 -error 3.25204063800189e+18 - y tested = 5789616901.049658 -y predicted = 6064574807.413731 -error 7.560185027211422e+16 - y tested = 8224428196.629629 -y predicted = 7494739256.574476 -error 5.3244594923881254e+17 - y tested = 4059018123.5159216 -y predicted = 5095211304.807035 -error 1.0736963089541992e+18 - y tested = 5947637003.818383 -y predicted = 4057825981.7000823 -error 3.571385699319817e+18 - y tested = 997516184.7000968 -y predicted = 543131012.6472878 -error 2.0646588458146083e+17 - y tested = 6532788063.289651 -y predicted = 6683175286.735964 -error 2.2616316975891244e+16 - y tested = 1980229389.772511 -y predicted = 3494678671.5030746 -error 2.29355662693422e+18 - y tested = 5035525633.343237 -y predicted = 5194277945.618715 -error 2.5202296652811e+16 - y tested = 5026691733.102776 -y predicted = 5313092248.517016 -error 8.20252552295428e+16 - y tested = 1014996574.3865615 -y predicted = 1240397856.9982953 -error 5.080573820301469e+16 - y tested = 7665772326.561901 -y predicted = 6792018140.131472 -error 7.634463783047017e+17 - y tested = 3029054692.61153 -y predicted = 4764226999.907653 -error 3.0108229360073513e+18 - y tested = 4062233415.93208 -y predicted = 4808823255.909801 -error 5.5739638915795866e+17 - y tested = 5822958761.806049 -y predicted = 6330834184.138591 -error 2.5793744460945734e+17 - y tested = 6611133148.221605 -y predicted = 6345267182.001227 -error 7.068471199429514e+16 - y tested = 5377240292.736961 -y predicted = 3027855975.912903 -error 5.519606668138848e+18 -error squared vector [2.633552258437352e+18, 1.7817727628899523e+18, 4.461943252321331e+17, 3.25204063800189e+18, 7.560185027211422e+16, 5.3244594923881254e+17, 1.0736963089541992e+18, 3.571385699319817e+18, 2.0646588458146083e+17, 2.2616316975891244e+16, 2.29355662693422e+18, 2.5202296652811e+16, 8.20252552295428e+16, 5.080573820301469e+16, 7.634463783047017e+17, 3.0108229360073513e+18, 5.5739638915795866e+17, 2.5793744460945734e+17, 7.068471199429514e+16, 5.519606668138848e+18] -Total loo_error 1.311362821956791e+18 -iteration 279current difference of loo_error 221026113024.0 - getting loo error of with lamda = 0.013933101252385498, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1626016217.11239 -error 2.643928738041485e+18 - y tested = 5326600510.288329 -y predicted = 3991234954.1444798 -error 1.783201168535372e+18 - y tested = 5072151352.996373 -y predicted = 4408393107.921344 -error 4.4057500790508275e+17 - y tested = 7650055845.407672 -y predicted = 5842236987.285423 -error 3.268209023782431e+18 - y tested = 5789616901.049658 -y predicted = 6063353438.557598 -error 7.4931691966836e+16 - y tested = 8224428196.629629 -y predicted = 7490412178.323007 -error 5.38779515130708e+17 - y tested = 4059018123.5159216 -y predicted = 5095840764.049459 -error 1.0750011879229379e+18 - y tested = 5947637003.818383 -y predicted = 4056699477.973893 -error 3.5756447266468813e+18 - y tested = 997516184.7000968 -y predicted = 547496536.2409254 -error 2.0251768399931622e+17 - y tested = 6532788063.289651 -y predicted = 6687709662.43474 -error 2.400070188167169e+16 - y tested = 1980229389.772511 -y predicted = 3491384100.290943 -error 2.2835885591220465e+18 - y tested = 5035525633.343237 -y predicted = 5196249025.657813 -error 2.5832008837105156e+16 - y tested = 5026691733.102776 -y predicted = 5312818114.282931 -error 8.186830600725179e+16 - y tested = 1014996574.3865615 -y predicted = 1244178694.041174 -error 5.252444396938109e+16 - y tested = 7665772326.561901 -y predicted = 6789001459.406508 -error 7.687271534924192e+17 - y tested = 3029054692.61153 -y predicted = 4760257472.030971 -error 2.9970630634695967e+18 - y tested = 4062233415.93208 -y predicted = 4803013787.472985 -error 5.48755558860282e+17 - y tested = 5822958761.806049 -y predicted = 6326184346.713564 -error 2.5323598930551014e+17 - y tested = 6611133148.221605 -y predicted = 6345204872.069696 -error 7.07178480571259e+16 - y tested = 5377240292.736961 -y predicted = 3028167455.3464713 -error 5.518143195365808e+18 -error squared vector [2.643928738041485e+18, 1.783201168535372e+18, 4.4057500790508275e+17, 3.268209023782431e+18, 7.4931691966836e+16, 5.38779515130708e+17, 1.0750011879229379e+18, 3.5756447266468813e+18, 2.0251768399931622e+17, 2.400070188167169e+16, 2.2835885591220465e+18, 2.5832008837105156e+16, 8.186830600725179e+16, 5.252444396938109e+16, 7.687271534924192e+17, 2.9970630634695967e+18, 5.48755558860282e+17, 2.5323598930551014e+17, 7.07178480571259e+16, 5.518143195365808e+18] -Total loo_error 1.3113622786149627e+18 -iteration 280current difference of loo_error -543341828352.0 - getting loo error of with lamda = 0.01375741944053819, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1622919235.8774724 -error 2.6338668459106324e+18 - y tested = 5326600510.288329 -y predicted = 3991753689.829843 -error 1.7818160340881298e+18 - y tested = 5072151352.996373 -y predicted = 4404302092.838615 -error 4.460226342932644e+17 - y tested = 7650055845.407672 -y predicted = 5846578380.592525 -error 3.252530966096071e+18 - y tested = 5789616901.049658 -y predicted = 6064537148.463 -error 7.558114243781344e+16 - y tested = 8224428196.629629 -y predicted = 7494607843.507383 -error 5.3263774783147955e+17 - y tested = 4059018123.5159216 -y predicted = 5095230439.016603 -error 1.0737359627952847e+18 - y tested = 5947637003.818383 -y predicted = 4057792067.127249 -error 3.571513884737118e+18 - y tested = 997516184.7000968 -y predicted = 543263622.6388068 -error 2.0634539013924614e+17 - y tested = 6532788063.289651 -y predicted = 6683314044.456107 -error 2.2658071006124332e+16 - y tested = 1980229389.772511 -y predicted = 3494578138.3880153 -error 2.2932521324333437e+18 - y tested = 5035525633.343237 -y predicted = 5194338217.479637 -error 2.52214368800812e+16 - y tested = 5026691733.102776 -y predicted = 5313083875.057556 -error 8.202045897344718e+16 - y tested = 1014996574.3865615 -y predicted = 1240512742.0894864 -error 5.085754189541373e+16 - y tested = 7665772326.561901 -y predicted = 6791926440.4821825 -error 7.636066326184485e+17 - y tested = 3029054692.61153 -y predicted = 4764106044.3827095 -error 3.010403193282998e+18 - y tested = 4062233415.93208 -y predicted = 4808646137.245429 -error 5.5713195053839955e+17 - y tested = 5822958761.806049 -y predicted = 6330691893.440519 -error 2.5779293295934602e+17 - y tested = 6611133148.221605 -y predicted = 6345265279.1420355 -error 7.068572380891128e+16 - y tested = 5377240292.736961 -y predicted = 3027865689.9221325 -error 5.519561024351335e+18 -error squared vector [2.6338668459106324e+18, 1.7818160340881298e+18, 4.460226342932644e+17, 3.252530966096071e+18, 7.558114243781344e+16, 5.3263774783147955e+17, 1.0737359627952847e+18, 3.571513884737118e+18, 2.0634539013924614e+17, 2.2658071006124332e+16, 2.2932521324333437e+18, 2.52214368800812e+16, 8.202045897344718e+16, 5.085754189541373e+16, 7.636066326184485e+17, 3.010403193282998e+18, 5.5713195053839955e+17, 2.5779293295934602e+17, 7.068572380891128e+16, 5.519561024351335e+18] -Total loo_error 1.3113620853538445e+18 -iteration 281current difference of loo_error 193261118208.0 - getting loo error of with lamda = 0.013927777561117398, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625922498.8620899 -error 2.643623972034956e+18 - y tested = 5326600510.288329 -y predicted = 3991250675.167731 -error 1.783159182156609e+18 - y tested = 5072151352.996373 -y predicted = 4408269756.11028 -error 4.4073877468402906e+17 - y tested = 7650055845.407672 -y predicted = 5842368292.758325 -error 3.267734288003387e+18 - y tested = 5789616901.049658 -y predicted = 6063388705.663891 -error 7.495100100173378e+16 - y tested = 8224428196.629629 -y predicted = 7490539048.407208 -error 5.3859328187863014e+17 - y tested = 4059018123.5159216 -y predicted = 5095822325.444646 -error 1.074962953137059e+18 - y tested = 5947637003.818383 -y predicted = 4056732792.7978535 -error 3.575518735255172e+18 - y tested = 997516184.7000968 -y predicted = 547368566.978599 -error 2.026328777403398e+17 - y tested = 6532788063.289651 -y predicted = 6687577722.009953 -error 2.395983844674745e+16 - y tested = 1980229389.772511 -y predicted = 3491480236.946047 -error 2.2838791230827297e+18 - y tested = 5035525633.343237 -y predicted = 5196191628.064357 -error 2.581356185972692e+16 - y tested = 5026691733.102776 -y predicted = 5312826106.061868 -error 8.187287938869283e+16 - y tested = 1014996574.3865615 -y predicted = 1244067898.899605 -error 5.24736717141601e+16 - y tested = 7665772326.561901 -y predicted = 6789089827.759917 -error 7.685722037056904e+17 - y tested = 3029054692.61153 -y predicted = 4760373473.317377 -error 2.997464720424782e+18 - y tested = 4062233415.93208 -y predicted = 4803183462.166416 -error 5.490069710146652e+17 - y tested = 5822958761.806049 -y predicted = 6326319647.164386 -error 2.5337218090872832e+17 - y tested = 6611133148.221605 -y predicted = 6345206688.6267185 -error 7.071688191267095e+16 - y tested = 5377240292.736961 -y predicted = 3028158567.0239906 -error 5.518184954078629e+18 -error squared vector [2.643623972034956e+18, 1.783159182156609e+18, 4.4073877468402906e+17, 3.267734288003387e+18, 7.495100100173378e+16, 5.3859328187863014e+17, 1.074962953137059e+18, 3.575518735255172e+18, 2.026328777403398e+17, 2.395983844674745e+16, 2.2838791230827297e+18, 2.581356185972692e+16, 8.187287938869283e+16, 5.24736717141601e+16, 7.685722037056904e+17, 2.997464720424782e+18, 5.490069710146652e+17, 2.5337218090872832e+17, 7.071688191267095e+16, 5.518184954078629e+18] -Total loo_error 1.311361602621457e+18 -iteration 282current difference of loo_error -482732387584.0 - getting loo error of with lamda = 0.013762581807828468, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623010366.0004861 -error 2.6341626478745303e+18 - y tested = 5326600510.288329 -y predicted = 3991738448.7498727 -error 1.781856723334698e+18 - y tested = 5072151352.996373 -y predicted = 4404422911.027941 -error 4.458612722135902e+17 - y tested = 7650055845.407672 -y predicted = 5846450565.353906 -error 3.2529920062378245e+18 - y tested = 5789616901.049658 -y predicted = 6064501774.593824 -error 7.556169370339245e+16 - y tested = 8224428196.629629 -y predicted = 7494484290.754893 -error 5.328181057236652e+17 - y tested = 4059018123.5159216 -y predicted = 5095248427.742899 -error 1.0737732433983341e+18 - y tested = 5947637003.818383 -y predicted = 4057760164.0341473 -error 3.5716344695528504e+18 - y tested = 997516184.7000968 -y predicted = 543388299.0279673 -error 2.0623213654503872e+17 - y tested = 6532788063.289651 -y predicted = 6683444442.241939 -error 2.2697344519015308e+16 - y tested = 1980229389.772511 -y predicted = 3494483645.8604527 -error 2.2929659520804454e+18 - y tested = 5035525633.343237 -y predicted = 5194394860.690783 -error 2.523943139800614e+16 - y tested = 5026691733.102776 -y predicted = 5313076005.224005 -error 8.201595131840624e+16 - y tested = 1014996574.3865615 -y predicted = 1240620751.9546506 -error 5.0906269503276616e+16 - y tested = 7665772326.561901 -y predicted = 6791840230.473001 -error 7.637573085743393e+17 - y tested = 3029054692.61153 -y predicted = 4763992346.733038 -error 3.0100086636886415e+18 - y tested = 4062233415.93208 -y predicted = 4808479652.089534 -error 5.5688344497916666e+17 - y tested = 5822958761.806049 -y predicted = 6330558175.519007 -error 2.5765716480173808e+17 - y tested = 6611133148.221605 -y predicted = 6345263490.6877165 -error 7.068667479718732e+16 - y tested = 5377240292.736961 -y predicted = 3027874808.269024 -error 5.519518179609266e+18 -error squared vector [2.6341626478745303e+18, 1.781856723334698e+18, 4.458612722135902e+17, 3.2529920062378245e+18, 7.556169370339245e+16, 5.328181057236652e+17, 1.0737732433983341e+18, 3.5716344695528504e+18, 2.0623213654503872e+17, 2.2697344519015308e+16, 2.2929659520804454e+18, 2.523943139800614e+16, 8.201595131840624e+16, 5.0906269503276616e+16, 7.637573085743393e+17, 3.0100086636886415e+18, 5.5688344497916666e+17, 2.5765716480173808e+17, 7.068667479718732e+16, 5.519518179609266e+18] -Total loo_error 1.3113614341926707e+18 -iteration 283current difference of loo_error 168428786176.0 - getting loo error of with lamda = 0.013922771629199552, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625834367.066983 -error 2.643337388865125e+18 - y tested = 5326600510.288329 -y predicted = 3991265457.7455587 -error 1.7831197025494034e+18 - y tested = 5072151352.996373 -y predicted = 4408153731.90484 -error 4.4089284081521466e+17 - y tested = 7650055845.407672 -y predicted = 5842491775.262652 -error 3.267287867679229e+18 - y tested = 5789616901.049658 -y predicted = 6063421901.7985735 -error 7.496917843511371e+16 - y tested = 8224428196.629629 -y predicted = 7490658361.315199 -error 5.384181712173661e+17 - y tested = 4059018123.5159216 -y predicted = 5095804984.202869 -error 1.0749269944930966e+18 - y tested = 5947637003.818383 -y predicted = 4056764107.5232024 -error 3.5754003099437256e+18 - y tested = 997516184.7000968 -y predicted = 547248218.8380992 -error 2.0274124108150106e+17 - y tested = 6532788063.289651 -y predicted = 6687453585.584656 -error 2.392142378678664e+16 - y tested = 1980229389.772511 -y predicted = 3491570672.4203825 -error 2.2841524726357133e+18 - y tested = 5035525633.343237 -y predicted = 5196137627.793263 -error 2.5796212761215348e+16 - y tested = 5026691733.102776 -y predicted = 5312833624.296643 -error 8.187718189600322e+16 - y tested = 1014996574.3865615 -y predicted = 1243963700.1588733 -error 5.2425944684433656e+16 - y tested = 7665772326.561901 -y predicted = 6789172936.815968 -error 7.684264901029431e+17 - y tested = 3029054692.61153 -y predicted = 4760482585.954293 -error 2.9978425498453596e+18 - y tested = 4062233415.93208 -y predicted = 4803343066.117711 -error 5.4924351359826874e+17 - y tested = 5822958761.806049 -y predicted = 6326446944.855527 -error 2.5350035047046422e+17 - y tested = 6611133148.221605 -y predicted = 6345208397.5615835 -error 7.071597301359475e+16 - y tested = 5377240292.736961 -y predicted = 3028150194.769837 -error 5.518224288367194e+18 -error squared vector [2.643337388865125e+18, 1.7831197025494034e+18, 4.4089284081521466e+17, 3.267287867679229e+18, 7.496917843511371e+16, 5.384181712173661e+17, 1.0749269944930966e+18, 3.5754003099437256e+18, 2.0274124108150106e+17, 2.392142378678664e+16, 2.2841524726357133e+18, 2.5796212761215348e+16, 8.187718189600322e+16, 5.2425944684433656e+16, 7.684264901029431e+17, 2.9978425498453596e+18, 5.4924351359826874e+17, 2.5350035047046422e+17, 7.071597301359475e+16, 5.518224288367194e+18] -Total loo_error 1.3113610048120876e+18 -iteration 284current difference of loo_error -429380583168.0 - getting loo error of with lamda = 0.013767436044839713, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623096049.7911432 -error 2.634440786577097e+18 - y tested = 5326600510.288329 -y predicted = 3991724117.2669225 -error 1.781894984645841e+18 - y tested = 5072151352.996373 -y predicted = 4404536484.192414 -error 4.457096130481272e+17 - y tested = 7650055845.407672 -y predicted = 5846330392.623508 -error 3.2534255090214354e+18 - y tested = 5789616901.049658 -y predicted = 6064468545.064759 -error 7.554342621780405e+16 - y tested = 8224428196.629629 -y predicted = 7494368127.230308 -error 5.329877049313422e+17 - y tested = 4059018123.5159216 -y predicted = 5095265339.751504 -error 1.0738082931559937e+18 - y tested = 5947637003.818383 -y predicted = 4057730153.855796 -error 3.5717479015355095e+18 - y tested = 997516184.7000968 -y predicted = 543505517.4919418 -error 2.061256859387941e+17 - y tested = 6532788063.289651 -y predicted = 6683566988.144502 -error 2.2734284180384736e+16 - y tested = 1980229389.772511 -y predicted = 3494394828.7224803 -error 2.292696976510553e+18 - y tested = 5035525633.343237 -y predicted = 5194448095.466159 -error 2.525634896721156e+16 - y tested = 5026691733.102776 -y predicted = 5313068608.507892 -error 8.201171476679738e+16 - y tested = 1014996574.3865615 -y predicted = 1240722299.0496483 -error 5.0952102774675656e+16 - y tested = 7665772326.561901 -y predicted = 6791759180.549811 -error 7.638989794019505e+17 - y tested = 3029054692.61153 -y predicted = 4763885469.291903 -error 3.009637823717425e+18 - y tested = 4062233415.93208 -y predicted = 4808323158.571492 -error 5.5664990407174464e+17 - y tested = 5822958761.806049 -y predicted = 6330432509.389788 -error 2.5752960448668378e+17 - y tested = 6611133148.221605 -y predicted = 6345261809.714528 -error 7.068756863954484e+16 - y tested = 5377240292.736961 -y predicted = 3027883368.356757 -error 5.519477958133212e+18 -error squared vector [2.634440786577097e+18, 1.781894984645841e+18, 4.457096130481272e+17, 3.2534255090214354e+18, 7.554342621780405e+16, 5.329877049313422e+17, 1.0738082931559937e+18, 3.5717479015355095e+18, 2.061256859387941e+17, 2.2734284180384736e+16, 2.292696976510553e+18, 2.525634896721156e+16, 8.201171476679738e+16, 5.0952102774675656e+16, 7.638989794019505e+17, 3.009637823717425e+18, 5.5664990407174464e+17, 2.5752960448668378e+17, 7.068756863954484e+16, 5.519477958133212e+18] -Total loo_error 1.3113608585361065e+18 -iteration 285current difference of loo_error 146275981056.0 - getting loo error of with lamda = 0.013918064490279557, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625751489.1375532 -error 2.6430679041620137e+18 - y tested = 5326600510.288329 -y predicted = 3991279357.901313 -error 1.7830825800121892e+18 - y tested = 5072151352.996373 -y predicted = 4408044601.968102 -error 4.410377767613256e+17 - y tested = 7650055845.407672 -y predicted = 5842607900.070018 -error 3.2668680751053076e+18 - y tested = 5789616901.049658 -y predicted = 6063453146.656891 -error 7.498628940826486e+16 - y tested = 8224428196.629629 -y predicted = 7490770566.336739 -error 5.3825351848697965e+17 - y tested = 4059018123.5159216 -y predicted = 5095788675.195189 -error 1.0748931768293335e+18 - y tested = 5947637003.818383 -y predicted = 4056793542.8646765 -error 3.5752889938313917e+18 - y tested = 997516184.7000968 -y predicted = 547135038.904123 -error 2.028431764884943e+17 - y tested = 6532788063.289651 -y predicted = 6687336795.555823 -error 2.388531064508104e+16 - y tested = 1980229389.772511 -y predicted = 3491655742.7342863 -error 2.2844096204273329e+18 - y tested = 5035525633.343237 -y predicted = 5196086825.362171 -error 2.5779896382541076e+16 - y tested = 5026691733.102776 -y predicted = 5312840696.853734 -error 8.188122945574733e+16 - y tested = 1014996574.3865615 -y predicted = 1243865706.0248022 -error 5.2381079416842344e+16 - y tested = 7665772326.561901 -y predicted = 6789251098.73142 -error 7.682894628374548e+17 - y tested = 3029054692.61153 -y predicted = 4760585217.053152 -error 2.9981979570730793e+18 - y tested = 4062233415.93208 -y predicted = 4803493193.884293 -error 5.4946605840976384e+17 - y tested = 5822958761.806049 -y predicted = 6326566709.046929 -error 2.53620964524173e+17 - y tested = 6611133148.221605 -y predicted = 6345210005.204278 -error 7.071511799221391e+16 - y tested = 5377240292.736961 -y predicted = 3028142309.443743 -error 5.518261335112265e+18 -error squared vector [2.6430679041620137e+18, 1.7830825800121892e+18, 4.410377767613256e+17, 3.2668680751053076e+18, 7.498628940826486e+16, 5.3825351848697965e+17, 1.0748931768293335e+18, 3.5752889938313917e+18, 2.028431764884943e+17, 2.388531064508104e+16, 2.2844096204273329e+18, 2.5779896382541076e+16, 8.188122945574733e+16, 5.2381079416842344e+16, 7.682894628374548e+17, 2.9981979570730793e+18, 5.4946605840976384e+17, 2.53620964524173e+17, 7.071511799221391e+16, 5.518261335112265e+18] -Total loo_error 1.3113604761680899e+18 -iteration 286current difference of loo_error -382368016640.0 - getting loo error of with lamda = 0.013772000543186374, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623176613.138142 -error 2.634702317168081e+18 - y tested = 5326600510.288329 -y predicted = 3991710641.102664 -error 1.781930962854522e+18 - y tested = 5072151352.996373 -y predicted = 4404643248.689011 -error 4.455670693160088e+17 - y tested = 7650055845.407672 -y predicted = 5846217404.673925 -error 3.253833120268754e+18 - y tested = 5789616901.049658 -y predicted = 6064437328.04372 -error 7.55262670931988e+16 - y tested = 8224428196.629629 -y predicted = 7494258910.187847 -error 5.3314718686290106e+17 - y tested = 4059018123.5159216 -y predicted = 5095281239.658061 -error 1.0738412458766172e+18 - y tested = 5947637003.818383 -y predicted = 4057701924.928535 -error 3.5718546024183767e+18 - y tested = 997516184.7000968 -y predicted = 543615725.0669519 -error 2.0602562725518026e+17 - y tested = 6532788063.289651 -y predicted = 6683682158.831217 -error 2.2769028069307216e+16 - y tested = 1980229389.772511 -y predicted = 3494311344.1157756 -error 2.2924441644679196e+18 - y tested = 5035525633.343237 -y predicted = 5194498128.452517 -error 2.5272254201269936e+16 - y tested = 5026691733.102776 -y predicted = 5313061656.274798 -error 8.200773289755026e+16 - y tested = 1014996574.3865615 -y predicted = 1240817770.9694486 -error 5.099521282612692e+16 - y tested = 7665772326.561901 -y predicted = 6791682981.048114 -error 7.64032183940721e+17 - y tested = 3029054692.61153 -y predicted = 4763785001.036841 -error 3.009289242969377e+18 - y tested = 4062233415.93208 -y predicted = 4808176053.970016 -error 5.564304192429948e+17 - y tested = 5822958761.806049 -y predicted = 6330314406.250677 -error 2.5740974994982355e+17 - y tested = 6611133148.221605 -y predicted = 6345260229.723261 -error 7.06884087908273e+16 - y tested = 5377240292.736961 -y predicted = 3027891405.139412 -error 5.519440195655843e+18 -error squared vector [2.634702317168081e+18, 1.781930962854522e+18, 4.455670693160088e+17, 3.253833120268754e+18, 7.55262670931988e+16, 5.3314718686290106e+17, 1.0738412458766172e+18, 3.5718546024183767e+18, 2.0602562725518026e+17, 2.2769028069307216e+16, 2.2924441644679196e+18, 2.5272254201269936e+16, 8.200773289755026e+16, 5.099521282612692e+16, 7.64032183940721e+17, 3.009289242969377e+18, 5.564304192429948e+17, 2.5740974994982355e+17, 7.06884087908273e+16, 5.519440195655843e+18] -Total loo_error 1.31136034960627e+18 -iteration 287current difference of loo_error 126561819904.0 - getting loo error of with lamda = 0.013913638310064612, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625673552.2373316 -error 2.6428144981729987e+18 - y tested = 5326600510.288329 -y predicted = 3991292428.314264 -error 1.7830476737852572e+18 - y tested = 5072151352.996373 -y predicted = 4407941958.364121 -error 4.4117411991774234e+17 - y tested = 7650055845.407672 -y predicted = 5842717104.87438 -error 3.2664733230324654e+18 - y tested = 5789616901.049658 -y predicted = 6063482553.239097 -error 7.500239544914667e+16 - y tested = 8224428196.629629 -y predicted = 7490876086.149477 -error 5.380986987898853e+17 - y tested = 4059018123.5159216 -y predicted = 5095773337.136836 -error 1.074861372970148e+18 - y tested = 5947637003.818383 -y predicted = 4056821212.179899 -error 3.575184357909467e+18 - y tested = 997516184.7000968 -y predicted = 547028601.0667665 -error 2.029390630077968e+17 - y tested = 6532788063.289651 -y predicted = 6687226920.692584 -error 2.385136067592351e+16 - y tested = 1980229389.772511 -y predicted = 3491735764.3444524 -error 2.284651520371614e+18 - y tested = 5035525633.343237 -y predicted = 5196039032.816534 -error 2.576455141047426e+16 - y tested = 5026691733.102776 -y predicted = 5312847349.982058 -error 8.188503707156242e+16 - y tested = 1014996574.3865615 -y predicted = 1243773547.8667655 -error 5.233890359476196e+16 - y tested = 7665772326.561901 -y predicted = 6789324607.234019 -error 7.681606047150455e+17 - y tested = 3029054692.61153 -y predicted = 4760681749.8917465 -error 2.998532265504943e+18 - y tested = 4062233415.93208 -y predicted = 4803634405.288993 -error 5.4967542701940954e+17 - y tested = 5822958761.806049 -y predicted = 6326679381.954962 -error 2.5373446316320493e+17 - y tested = 6611133148.221605 -y predicted = 6345211517.517955 -error 7.0714313676088664e+16 - y tested = 5377240292.736961 -y predicted = 3028134883.453915 -error 5.518296223922868e+18 -error squared vector [2.6428144981729987e+18, 1.7830476737852572e+18, 4.4117411991774234e+17, 3.2664733230324654e+18, 7.500239544914667e+16, 5.380986987898853e+17, 1.074861372970148e+18, 3.575184357909467e+18, 2.029390630077968e+17, 2.385136067592351e+16, 2.284651520371614e+18, 2.576455141047426e+16, 8.188503707156242e+16, 5.233890359476196e+16, 7.681606047150455e+17, 2.998532265504943e+18, 5.4967542701940954e+17, 2.5373446316320493e+17, 7.0714313676088664e+16, 5.518296223922868e+18] -Total loo_error 1.3113600087080402e+18 -iteration 288current difference of loo_error -340898229760.0 - getting loo error of with lamda = 0.013776292596728138, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623252362.3844292 -error 2.6349482317160883e+18 - y tested = 5326600510.288329 -y predicted = 3991697969.2164173 -error 1.7819647941602473e+18 - y tested = 5072151352.996373 -y predicted = 4404743614.372527 -error 4.4543308957499603e+17 - y tested = 7650055845.407672 -y predicted = 5846111171.279037 -error 3.254216387317065e+18 - y tested = 5789616901.049658 -y predicted = 6064408000.016562 -error 7.551014807143918e+16 - y tested = 8224428196.629629 -y predicted = 7494156223.505981 -error 5.332971547299056e+17 - y tested = 4059018123.5159216 -y predicted = 5095296188.181206 -error 1.0738722273064269e+18 - y tested = 5947637003.818383 -y predicted = 4057675372.0988693 -error 3.5719549693718876e+18 - y tested = 997516184.7000968 -y predicted = 543719341.8877158 -error 2.0593157454648486e+17 - y tested = 6532788063.289651 -y predicted = 6683790401.582953 -error 2.280170617004498e+16 - y tested = 1980229389.772511 -y predicted = 3494232870.124252 -error 2.292206538517184e+18 - y tested = 5035525633.343237 -y predicted = 5194545153.587799 -error 2.528720781881071e+16 - y tested = 5026691733.102776 -y predicted = 5313055121.645677 -error 8.200399029777251e+16 - y tested = 1014996574.3865615 -y predicted = 1240907531.9591634 -error 5.1035760751369944e+16 - y tested = 7665772326.561901 -y predicted = 6791611340.980637 -error 7.641574287124077e+17 - y tested = 3029054692.61153 -y predicted = 4763690555.937764 -error 3.0089615783375503e+18 - y tested = 4062233415.93208 -y predicted = 4808037772.2787 -error 5.562241379455963e+17 - y tested = 5822958761.806049 -y predicted = 6330203407.433884 -error 2.5729713051810723e+17 - y tested = 6611133148.221605 -y predicted = 6345258744.611842 -error 7.068919849484723e+16 - y tested = 5377240292.736961 -y predicted = 3027898951.2937584 -error 5.519404738614148e+18 -error squared vector [2.6349482317160883e+18, 1.7819647941602473e+18, 4.4543308957499603e+17, 3.254216387317065e+18, 7.551014807143918e+16, 5.332971547299056e+17, 1.0738722273064269e+18, 3.5719549693718876e+18, 2.0593157454648486e+17, 2.280170617004498e+16, 2.292206538517184e+18, 2.528720781881071e+16, 8.200399029777251e+16, 5.1035760751369944e+16, 7.641574287124077e+17, 3.0089615783375503e+18, 5.562241379455963e+17, 2.5729713051810723e+17, 7.068919849484723e+16, 5.519404738614148e+18] -Total loo_error 1.311359899648619e+18 -iteration 289current difference of loo_error 109059421184.0 - getting loo error of with lamda = 0.013909476318751385, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625600262.114558 -error 2.6425762119159864e+18 - y tested = 5326600510.288329 -y predicted = 3991304718.517773 -error 1.783014851520156e+18 - y tested = 5072151352.996373 -y predicted = 4407845417.095823 -error 4.413023764727055e+17 - y tested = 7650055845.407672 -y predicted = 5842819801.414784 -error 3.266102118707062e+18 - y tested = 5789616901.049658 -y predicted = 6063510228.198387 -error 7.501755465660086e+16 - y tested = 8224428196.629629 -y predicted = 7490975318.384725 -error 5.379531246057347e+17 - y tested = 4059018123.5159216 -y predicted = 5095758912.3635025 -error 1.0748314632603044e+18 - y tested = 5947637003.818383 -y predicted = 4056847221.9245973 -error 3.5750859993139507e+18 - y tested = 997516184.7000968 -y predicted = 546928504.4491068 -error 2.0302925759396845e+17 - y tested = 6532788063.289651 -y predicted = 6687123554.66931 -error 2.3819443899400704e+16 - y tested = 1980229389.772511 -y predicted = 3491811035.2542496 -error 2.2848790709572803e+18 - y tested = 5035525633.343237 -y predicted = 5195994073.08497 -error 2.5750120153146372e+16 - y tested = 5026691733.102776 -y predicted = 5312853608.404274 -error 8.188861887607032e+16 - y tested = 1014996574.3865615 -y predicted = 1243686878.8586724 -error 5.229925535954677e+16 - y tested = 7665772326.561901 -y predicted = 6789393738.6996 -error 7.680394292635206e+17 - y tested = 3029054692.61153 -y predicted = 4760772545.284074 -error 2.998846721264807e+18 - y tested = 4062233415.93208 -y predicted = 4803767227.405801 -error 5.4987239355874406e+17 - y tested = 5822958761.806049 -y predicted = 6326785380.255956 -error 2.5384126145866752e+17 - y tested = 6611133148.221605 -y predicted = 6345212940.119211 -error 7.0713557077220584e+16 - y tested = 5377240292.736961 -y predicted = 3028127890.6868763 -error 5.51832907746552e+18 -error squared vector [2.6425762119159864e+18, 1.783014851520156e+18, 4.413023764727055e+17, 3.266102118707062e+18, 7.501755465660086e+16, 5.379531246057347e+17, 1.0748314632603044e+18, 3.5750859993139507e+18, 2.0302925759396845e+17, 2.3819443899400704e+16, 2.2848790709572803e+18, 2.5750120153146372e+16, 8.188861887607032e+16, 5.229925535954677e+16, 7.680394292635206e+17, 2.998846721264807e+18, 5.4987239355874406e+17, 2.5384126145866752e+17, 7.0713557077220584e+16, 5.51832907746552e+18] -Total loo_error 1.31135959536902e+18 -iteration 290current difference of loo_error -304279599104.0 - getting loo error of with lamda = 0.013780328467092479, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623323585.5051877 -error 2.635179462986865e+18 - y tested = 5326600510.288329 -y predicted = 3991686053.6128063 -error 1.7819966066413064e+18 - y tested = 5072151352.996373 -y predicted = 4404837966.230664 -error 4.4530715615672064e+17 - y tested = 7650055845.407672 -y predicted = 5846011288.052547 -error 3.254576764922647e+18 - y tested = 5789616901.049658 -y predicted = 6064380445.237677 -error 7.549500521476136e+16 - y tested = 8224428196.629629 -y predicted = 7494059676.074783 -error 5.3343817581747424e+17 - y tested = 4059018123.5159216 -y predicted = 5095310242.379407 -error 1.073901355618572e+18 - y tested = 5947637003.818383 -y predicted = 4057650396.3535166 -error 3.572049376396556e+18 - y tested = 997516184.7000968 -y predicted = 543816762.8167659 -error 2.058431654172687e+17 - y tested = 6532788063.289651 -y predicted = 6683892136.158437 -error 2.2832440837535348e+16 - y tested = 1980229389.772511 -y predicted = 3494159104.4687104 -error 2.2919831810401157e+18 - y tested = 5035525633.343237 -y predicted = 5194589352.904765 -error 2.5301266880748492e+16 - y tested = 5026691733.102776 -y predicted = 5313048979.386348 -error 8.200047249911042e+16 - y tested = 1014996574.3865615 -y predicted = 1240991924.3336048 -error 5.107389819768656e+16 - y tested = 7665772326.561901 -y predicted = 6791543986.899642 -error 7.642751898686303e+17 - y tested = 3029054692.61153 -y predicted = 4763601771.411533 -error 3.008653568573626e+18 - y tested = 4062233415.93208 -y predicted = 4807907781.927595 -error 5.5603026010281376e+17 - y tested = 5822958761.806049 -y predicted = 6330099082.49494 -error 2.5719130486843066e+17 - y tested = 6611133148.221605 -y predicted = 6345257348.651088 -error 7.068994079726202e+16 - y tested = 5377240292.736961 -y predicted = 3027906037.377883 -error 5.519371443403596e+18 -error squared vector [2.635179462986865e+18, 1.7819966066413064e+18, 4.4530715615672064e+17, 3.254576764922647e+18, 7.549500521476136e+16, 5.3343817581747424e+17, 1.073901355618572e+18, 3.572049376396556e+18, 2.058431654172687e+17, 2.2832440837535348e+16, 2.2919831810401157e+18, 2.5301266880748492e+16, 8.200047249911042e+16, 5.107389819768656e+16, 7.642751898686303e+17, 3.008653568573626e+18, 5.5603026010281376e+17, 2.5719130486843066e+17, 7.068994079726202e+16, 5.519371443403596e+18] -Total loo_error 1.3113595018120863e+18 -iteration 291current difference of loo_error 93556933632.0 - getting loo error of with lamda = 0.013905562747488994, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625531342.0039144 -error 2.642352143566125e+18 - y tested = 5326600510.288329 -y predicted = 3991316275.088156 -error 1.7829839887741107e+18 - y tested = 5072151352.996373 -y predicted = 4407754616.72271 -error 4.41423023171096e+17 - y tested = 7650055845.407672 -y predicted = 5842916377.004763 -error 3.2657530582595497e+18 - y tested = 5789616901.049658 -y predicted = 6063536272.174557 -error 7.50318218774601e+16 - y tested = 8224428196.629629 -y predicted = 7491068637.101013 -error 5.378162435520056e+17 - y tested = 4059018123.5159216 -y predicted = 5095745346.618943 -error 1.0748033351229024e+18 - y tested = 5947637003.818383 -y predicted = 4056871672.0811186 -error 3.574993539699528e+18 - y tested = 997516184.7000968 -y predicted = 546834371.9231062 -error 2.0311409636795446e+17 - y tested = 6532788063.289651 -y predicted = 6687026314.674628 -error 2.3789438190295464e+16 - y tested = 1980229389.772511 -y predicted = 3491881836.064668 -error 2.2850931183810632e+18 - y tested = 5035525633.343237 -y predicted = 5195951779.36793 -error 2.573654832833628e+16 - y tested = 5026691733.102776 -y predicted = 5312859495.403036 -error 8.189198817993842e+16 - y tested = 1014996574.3865615 -y predicted = 1243605372.7022185 -error 5.2261982667328744e+16 - y tested = 7665772326.561901 -y predicted = 6789458753.166473 -error 7.679254789170637e+17 - y tested = 3029054692.61153 -y predicted = 4760857942.873134 -error 2.9991424976166554e+18 - y tested = 4062233415.93208 -y predicted = 4803892156.43853 -error 5.50057687369614e+17 - y tested = 5822958761.806049 -y predicted = 6326885096.5124655 -error 2.5394175081064294e+17 - y tested = 6611133148.221605 -y predicted = 6345214278.298406 -error 7.0712845381231576e+16 - y tested = 5377240292.736961 -y predicted = 3028121306.4380774 -error 5.518360011789896e+18 -error squared vector [2.642352143566125e+18, 1.7829839887741107e+18, 4.41423023171096e+17, 3.2657530582595497e+18, 7.50318218774601e+16, 5.378162435520056e+17, 1.0748033351229024e+18, 3.574993539699528e+18, 2.0311409636795446e+17, 2.3789438190295464e+16, 2.2850931183810632e+18, 2.573654832833628e+16, 8.189198817993842e+16, 5.2261982667328744e+16, 7.679254789170637e+17, 2.9991424976166554e+18, 5.50057687369614e+17, 2.5394175081064294e+17, 7.0712845381231576e+16, 5.518360011789896e+18] -Total loo_error 1.31135922990114e+18 -iteration 292current difference of loo_error -271910946304.0 - getting loo error of with lamda = 0.013784123445286314, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623390553.2136595 -error 2.6353968879927864e+18 - y tested = 5326600510.288329 -y predicted = 3991674849.1600604 -error 1.7820265207387453e+18 - y tested = 5072151352.996373 -y predicted = 4404926665.915967 -error 4.45188783049546e+17 - y tested = 7650055845.407672 -y predicted = 5845917374.886201 -error 3.254915620815553e+18 - y tested = 5789616901.049658 -y predicted = 6064354555.219677 -error 7.548077861884504e+16 - y tested = 8224428196.629629 -y predicted = 7493968900.283188 -error 5.335707836189381e+17 - y tested = 4059018123.5159216 -y predicted = 5095323455.873935 -error 1.0739287418736521e+18 - y tested = 5947637003.818383 -y predicted = 4057626904.468488 -error 3.5721381756446e+18 - y tested = 997516184.7000968 -y predicted = 543908358.9774373 -error 2.0576005955683872e+17 - y tested = 6532788063.289651 -y predicted = 6683987756.532814 -error 2.2861347236826624e+16 - y tested = 1980229389.772511 -y predicted = 3494089763.285168 -error 2.291773230491882e+18 - y tested = 5035525633.343237 -y predicted = 5194630897.27908 -error 2.5314485012094412e+16 - y tested = 5026691733.102776 -y predicted = 5313043205.805417 -error 8.199716591897163e+16 - y tested = 1014996574.3865615 -y predicted = 1241071269.8080523 -error 5.110976790991983e+16 - y tested = 7665772326.561901 -y predicted = 6791480661.830332 -error 7.643859150190988e+17 - y tested = 3029054692.61153 -y predicted = 4763518306.875435 -error 3.0083640292054083e+18 - y tested = 4062233415.93208 -y predicted = 4807785583.65186 -error 5.558480347916636e+17 - y tested = 5822958761.806049 -y predicted = 6330001027.428437 -error 2.5709185912748416e+17 - y tested = 6611133148.221605 -y predicted = 6345256036.46142 -error 7.069063855793803e+16 - y tested = 5377240292.736961 -y predicted = 3027912691.9768267 -error 5.51934017569337e+18 -error squared vector [2.6353968879927864e+18, 1.7820265207387453e+18, 4.45188783049546e+17, 3.254915620815553e+18, 7.548077861884504e+16, 5.335707836189381e+17, 1.0739287418736521e+18, 3.5721381756446e+18, 2.0576005955683872e+17, 2.2861347236826624e+16, 2.291773230491882e+18, 2.5314485012094412e+16, 8.199716591897163e+16, 5.110976790991983e+16, 7.643859150190988e+17, 3.0083640292054083e+18, 5.558480347916636e+17, 2.5709185912748416e+17, 7.069063855793803e+16, 5.51934017569337e+18] -Total loo_error 1.311359150043708e+18 -iteration 293current difference of loo_error 79857432064.0 - getting loo error of with lamda = 0.013901882768634367, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625466531.5912337 -error 2.6421414450523244e+18 - y tested = 5326600510.288329 -y predicted = 3991327141.820463 -error 1.7829549685395213e+18 - y tested = 5072151352.996373 -y predicted = 4407669217.056532 -error 4.415365089831737e+17 - y tested = 7650055845.407672 -y predicted = 5843007195.973878 -error 3.265424821420499e+18 - y tested = 5789616901.049658 -y predicted = 6063560780.112474 -error 7.50452488759831e+16 - y tested = 8224428196.629629 -y predicted = 7491156394.172552 -error 5.376875362786506e+17 - y tested = 4059018123.5159216 -y predicted = 5095732588.855903 -error 1.0747768826451629e+18 - y tested = 5947637003.818383 -y predicted = 4056894656.557469 -error 3.574906623725712e+18 - y tested = 997516184.7000968 -y predicted = 546745848.713178 -error 2.0319389580575968e+17 - y tested = 6532788063.289651 -y predicted = 6686934840.092535 -error 2.376122879871817e+16 - y tested = 1980229389.772511 -y predicted = 3491948430.970168 -error 2.2852944595195638e+18 - y tested = 5035525633.343237 -y predicted = 5195911994.559511 -error 2.5723784864197204e+16 - y tested = 5026691733.102776 -y predicted = 5312865032.903136 -error 8.189515751862712e+16 - y tested = 1014996574.3865615 -y predicted = 1243528722.4204278 -error 5.222694268497298e+16 - y tested = 7665772326.561901 -y predicted = 6789519895.2931795 -error 7.678183233043456e+17 - y tested = 3029054692.61153 -y predicted = 4760938262.353547 -error 2.999420699142353e+18 - y tested = 4062233415.93208 -y predicted = 4804009659.496011 -error 5.5023199551581626e+17 - y tested = 5822958761.806049 -y predicted = 6326978900.52623 -error 2.5403630023551e+17 - y tested = 6611133148.221605 -y predicted = 6345215537.037626 -error 7.071217593779385e+16 - y tested = 5377240292.736961 -y predicted = 3028115107.345091 -error 5.51838913664239e+18 -error squared vector [2.6421414450523244e+18, 1.7829549685395213e+18, 4.415365089831737e+17, 3.265424821420499e+18, 7.50452488759831e+16, 5.376875362786506e+17, 1.0747768826451629e+18, 3.574906623725712e+18, 2.0319389580575968e+17, 2.376122879871817e+16, 2.2852944595195638e+18, 2.5723784864197204e+16, 8.189515751862712e+16, 5.222694268497298e+16, 7.678183233043456e+17, 2.999420699142353e+18, 5.5023199551581626e+17, 2.5403630023551e+17, 7.071217593779385e+16, 5.51838913664239e+18] -Total loo_error 1.3113589067745539e+18 -iteration 294current difference of loo_error -243269154048.0 - getting loo error of with lamda = 0.013787691909630194, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623453520.0003397 -error 2.6356013313309184e+18 - y tested = 5326600510.288329 -y predicted = 3991664313.4187856 -error 1.7820546497125207e+18 - y tested = 5072151352.996373 -y predicted = 4405010053.180159 -error 4.450775139204683e+17 - y tested = 7650055845.407672 -y predicted = 5845829074.484822 -error 3.255234240914693e+18 - y tested = 5789616901.049658 -y predicted = 6064330228.259972 -error 7.546741214696093e+16 - y tested = 8224428196.629629 -y predicted = 7493883550.597804 -error 5.336954798457646e+17 - y tested = 4059018123.5159216 -y predicted = 5095335879.057657 -error 1.0739544904510606e+18 - y tested = 5947637003.818383 -y predicted = 4057604808.678132 -error 3.572221698666676e+18 - y tested = 997516184.7000968 -y predicted = 543994479.1895375 -error 2.056819373692065e+17 - y tested = 6532788063.289651 -y predicted = 6684077632.522548 -error 2.2888533758675476e+16 - y tested = 1980229389.772511 -y predicted = 3494024579.982858 -error 2.2915758779039813e+18 - y tested = 5035525633.343237 -y predicted = 5194669947.129884 -error 2.532691261062271e+16 - y tested = 5026691733.102776 -y predicted = 5313037778.656765 -error 8.199405780440738e+16 - y tested = 1014996574.3865615 -y predicted = 1241145870.7469523 -error 5.114350424429986e+16 - y tested = 7665772326.561901 -y predicted = 6791421124.270204 -error 7.64490024948937e+17 - y tested = 3029054692.61153 -y predicted = 4763439842.391331 -error 3.0080918477767025e+18 - y tested = 4062233415.93208 -y predicted = 4807670708.496167 -error 5.556767571452768e+17 - y tested = 5822958761.806049 -y predicted = 6329908863.003082 -error 2.5699840510368192e+17 - y tested = 6611133148.221605 -y predicted = 6345254802.991085 -error 7.069129446251971e+16 - y tested = 5377240292.736961 -y predicted = 3027918941.8385606 -error 5.519310809787087e+18 -error squared vector [2.6356013313309184e+18, 1.7820546497125207e+18, 4.450775139204683e+17, 3.255234240914693e+18, 7.546741214696093e+16, 5.336954798457646e+17, 1.0739544904510606e+18, 3.572221698666676e+18, 2.056819373692065e+17, 2.2888533758675476e+16, 2.2915758779039813e+18, 2.532691261062271e+16, 8.199405780440738e+16, 5.114350424429986e+16, 7.64490024948937e+17, 3.0080918477767025e+18, 5.556767571452768e+17, 2.5699840510368192e+17, 7.069129446251971e+16, 5.519310809787087e+18] -Total loo_error 1.311358838995223e+18 -iteration 295current difference of loo_error 67779330816.0 - getting loo error of with lamda = 0.013898422439573635, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625405586.0394926 -error 2.641943318857486e+18 - y tested = 5326600510.288329 -y predicted = 3991337359.8958654 -error 1.7829276807960072e+18 - y tested = 5072151352.996373 -y predicted = 4407588897.928805 -error 4.416432566854331e+17 - y tested = 7650055845.407672 -y predicted = 5843092601.022896 -error 3.265116166557556e+18 - y tested = 5789616901.049658 -y predicted = 6063583841.566572 -error 7.50578844961985e+16 - y tested = 8224428196.629629 -y predicted = 7491238920.597091 -error 5.375665144891178e+17 - y tested = 4059018123.5159216 -y predicted = 5095720591.047894 -error 1.0747520061868794e+18 - y tested = 5947637003.818383 -y predicted = 4056916263.5624905 -error 3.574824917633791e+18 - y tested = 997516184.7000968 -y predicted = 546662601.0802087 -error 2.0326895386289552e+17 - y tested = 6532788063.289651 -y predicted = 6686848791.252296 -error 2.373470790038027e+16 - y tested = 1980229389.772511 -y predicted = 3492011068.6972895 -error 2.285483844732622e+18 - y tested = 5035525633.343237 -y predicted = 5195874570.697315 -error 2.5711781710582124e+16 - y tested = 5026691733.102776 -y predicted = 5312870241.548575 -error 8.189813869626272e+16 - y tested = 1014996574.3865615 -y predicted = 1243456639.2224953 -error 5.219400122483908e+16 - y tested = 7665772326.561901 -y predicted = 6789577395.258843 -error 7.677175576411699e+17 - y tested = 3029054692.61153 -y predicted = 4761013804.624467 -error 2.9996823656846413e+18 - y tested = 4062233415.93208 -y predicted = 4804120176.26824 -error 5.503959651620832e+17 - y tested = 5822958761.806049 -y predicted = 6327067140.6201315 -error 2.5412525759056214e+17 - y tested = 6611133148.221605 -y predicted = 6345216721.02778 -error 7.071154625152922e+16 - y tested = 5377240292.736961 -y predicted = 3028109271.3224177 -error 5.518416555772137e+18 -error squared vector [2.641943318857486e+18, 1.7829276807960072e+18, 4.416432566854331e+17, 3.265116166557556e+18, 7.50578844961985e+16, 5.375665144891178e+17, 1.0747520061868794e+18, 3.574824917633791e+18, 2.0326895386289552e+17, 2.373470790038027e+16, 2.285483844732622e+18, 2.5711781710582124e+16, 8.189813869626272e+16, 5.219400122483908e+16, 7.677175576411699e+17, 2.9996823656846413e+18, 5.503959651620832e+17, 2.5412525759056214e+17, 7.071154625152922e+16, 5.518416555772137e+18] -Total loo_error 1.3113586210966088e+18 -iteration 296current difference of loo_error -217898614272.0 - getting loo error of with lamda = 0.01379104738023454, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623512725.107753 -error 2.6357935683162173e+18 - y tested = 5326600510.288329 -y predicted = 3991654406.4820614 -error 1.7820811000675346e+18 - y tested = 5072151352.996373 -y predicted = 4405088447.217501 -error 4.449729202661529e+17 - y tested = 7650055845.407672 -y predicted = 5845746050.989907 -error 3.255533834231876e+18 - y tested = 5789616901.049658 -y predicted = 6064307368.998424 -error 7.54548531819119e+16 - y tested = 8224428196.629629 -y predicted = 7493803302.230123 -error 5.338127363162901e+17 - y tested = 4059018123.5159216 -y predicted = 5095347559.290946 -error 1.0739786994537805e+18 - y tested = 5947637003.818383 -y predicted = 4057584026.36108 -error 3.5723002575952164e+18 - y tested = 997516184.7000968 -y predicted = 544075451.3192097 -error 2.056084986889968e+17 - y tested = 6532788063.289651 -y predicted = 6684162111.302465 -error 2.2914102411785876e+16 - y tested = 1980229389.772511 -y predicted = 3493963304.1735992 -error 2.2913903636080412e+18 - y tested = 5035525633.343237 -y predicted = 5194706653.074142 -error 2.5338597042570936e+16 - y tested = 5026691733.102776 -y predicted = 5313032677.050864 -error 8.199113618108245e+16 - y tested = 1014996574.3865615 -y predicted = 1241216011.336807 -error 5.11752336540861e+16 - y tested = 7665772326.561901 -y predicted = 6791365147.249669 -error 7.645879152327739e+17 - y tested = 3029054692.61153 -y predicted = 4763366077.39728 -error 3.0078359793974656e+18 - y tested = 4062233415.93208 -y predicted = 4807562715.945781 -error 5.555157654589135e+17 - y tested = 5822958761.806049 -y predicted = 6329822233.205412 -error 2.5691057863901245e+17 - y tested = 6611133148.221605 -y predicted = 6345253643.495641 -error 7.06919110333242e+16 - y tested = 5377240292.736961 -y predicted = 3027924811.998243 -error 5.519283228038596e+18 -error squared vector [2.6357935683162173e+18, 1.7820811000675346e+18, 4.449729202661529e+17, 3.255533834231876e+18, 7.54548531819119e+16, 5.338127363162901e+17, 1.0739786994537805e+18, 3.5723002575952164e+18, 2.056084986889968e+17, 2.2914102411785876e+16, 2.2913903636080412e+18, 2.5338597042570936e+16, 8.199113618108245e+16, 5.11752336540861e+16, 7.645879152327739e+17, 3.0078359793974656e+18, 5.555157654589135e+17, 2.5691057863901245e+17, 7.06919110333242e+16, 5.519283228038596e+18] -Total loo_error 1.3113585639407816e+18 -iteration 297current difference of loo_error 57155827200.0 - getting loo error of with lamda = 0.013895168649896693, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625348275.072147 -error 2.641757015009112e+18 - y tested = 5326600510.288329 -y predicted = 3991346968.0360713 -error 1.7829020220972022e+18 - y tested = 5072151352.996373 -y predicted = 4407513358.029926 -error 4.417436643530187e+17 - y tested = 7650055845.407672 -y predicted = 5843172914.501843 -error 3.2648259259988367e+18 - y tested = 5789616901.049658 -y predicted = 6063605540.990318 -error 7.50697748165329e+16 - y tested = 8224428196.629629 -y predicted = 7491316527.726865 -error 5.3745271908139635e+17 - y tested = 4059018123.5159216 -y predicted = 5095709308.011588 -error 1.0747286120110281e+18 - y tested = 5947637003.818383 -y predicted = 4056936575.9571495 -error 3.574748107914652e+18 - y tested = 997516184.7000968 -y predicted = 546584315.0819465 -error 2.0333955103732054e+17 - y tested = 6532788063.289651 -y predicted = 6686767848.244799 -error 2.3709774174833544e+16 - y tested = 1980229389.772511 -y predicted = 3492069983.3934345 -error 2.2856619805200663e+18 - y tested = 5035525633.343237 -y predicted = 5195839368.445046 -error 2.5700493662293148e+16 - y tested = 5026691733.102776 -y predicted = 5312875140.776066 -error 8.190094282749664e+16 - y tested = 1014996574.3865615 -y predicted = 1243388851.4345431 -error 5.216303221516199e+16 - y tested = 7665772326.561901 -y predicted = 6789631469.61427 -error 7.67622801212929e+17 - y tested = 3029054692.61153 -y predicted = 4761084852.878695 -error 2.9999284760751e+18 - y tested = 4062233415.93208 -y predicted = 4804224120.609885 -error 5.5055020582826624e+17 - y tested = 5822958761.806049 -y predicted = 6327150144.851217 -error 2.5420895073699923e+17 - y tested = 6611133148.221605 -y predicted = 6345217834.685968 -error 7.071095397275608e+16 - y tested = 5377240292.736961 -y predicted = 3028103777.4992523 -error 5.518442367223167e+18 -error squared vector [2.641757015009112e+18, 1.7829020220972022e+18, 4.417436643530187e+17, 3.2648259259988367e+18, 7.50697748165329e+16, 5.3745271908139635e+17, 1.0747286120110281e+18, 3.574748107914652e+18, 2.0333955103732054e+17, 2.3709774174833544e+16, 2.2856619805200663e+18, 2.5700493662293148e+16, 8.190094282749664e+16, 5.216303221516199e+16, 7.67622801212929e+17, 2.9999284760751e+18, 5.5055020582826624e+17, 2.5420895073699923e+17, 7.071095397275608e+16, 5.518442367223167e+18] -Total loo_error 1.3113583685384084e+18 -iteration 298current difference of loo_error -195402373120.0 - getting loo error of with lamda = 0.013794202570224304, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623568393.4485521 -error 2.6359743279345183e+18 - y tested = 5326600510.288329 -y predicted = 3991645090.8240323 -error 1.7821059719570967e+18 - y tested = 5072151352.996373 -y predicted = 4405162147.925531 -error 4.448745996810335e+17 - y tested = 7650055845.407672 -y predicted = 5845667988.687923 -error 3.255815537477688e+18 - y tested = 5789616901.049658 -y predicted = 6064285888.007818 -error 7.54430523966221e+16 - y tested = 8224428196.629629 -y predicted = 7493727849.883542 -error 5.339229967348519e+17 - y tested = 4059018123.5159216 -y predicted = 5095358541.085433 -error 1.0740014610881492e+18 - y tested = 5947637003.818383 -y predicted = 4057564479.7450485 -error 3.572374146256946e+18 - y tested = 997516184.7000968 -y predicted = 544151583.5440905 -error 2.055394615813447e+17 - y tested = 6532788063.289651 -y predicted = 6684241518.823513 -error 2.2938149193147548e+16 - y tested = 1980229389.772511 -y predicted = 3493905700.6725516 -error 2.2912159741799565e+18 - y tested = 5035525633.343237 -y predicted = 5194741156.537665 -error 2.534958282607558e+16 - y tested = 5026691733.102776 -y predicted = 5313027881.369133 -error 8.198838980401342e+16 - y tested = 1014996574.3865615 -y predicted = 1241281958.6857867 -error 5.120507514744804e+16 - y tested = 7665772326.561901 -y predicted = 6791312517.451073 -error 7.646799577501464e+17 - y tested = 3029054692.61153 -y predicted = 4763296729.518199 -error 3.0075954425741926e+18 - y tested = 4062233415.93208 -y predicted = 4807461192.176808 -error 5.5536443848666323e+17 - y tested = 5822958761.806049 -y predicted = 6329740803.786253 -error 2.5682803807362486e+17 - y tested = 6611133148.221605 -y predicted = 6345252553.5192 -error 7.069249063930454e+16 - y tested = 5377240292.736961 -y predicted = 3027930325.894548 -error 5.519257320305102e+18 -error squared vector [2.6359743279345183e+18, 1.7821059719570967e+18, 4.448745996810335e+17, 3.255815537477688e+18, 7.54430523966221e+16, 5.339229967348519e+17, 1.0740014610881492e+18, 3.572374146256946e+18, 2.055394615813447e+17, 2.2938149193147548e+16, 2.2912159741799565e+18, 2.534958282607558e+16, 8.198838980401342e+16, 5.120507514744804e+16, 7.646799577501464e+17, 3.0075954425741926e+18, 5.5536443848666323e+17, 2.5682803807362486e+17, 7.069249063930454e+16, 5.519257320305102e+18] -Total loo_error 1.3113583207043963e+18 -iteration 299current difference of loo_error 47834012160.0 - getting loo error of with lamda = 0.013892109071724803, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625294382.1098797 -error 2.641581828247054e+18 - y tested = 5326600510.288329 -y predicted = 3991356002.651325 -error 1.782877895174785e+18 - y tested = 5072151352.996373 -y predicted = 4407442313.811459 -error 4.418381067741323e+17 - y tested = 7650055845.407672 -y predicted = 5843248439.612335 -error 3.264553001636875e+18 - y tested = 5789616901.049658 -y predicted = 6063625958.01348 -error 7.508096329820325e+16 - y tested = 8224428196.629629 -y predicted = 7491389508.42927 -error 5.373457183985036e+17 - y tested = 4059018123.5159216 -y predicted = 5095698697.240318 -error 1.0747066119375443e+18 - y tested = 5947637003.818383 -y predicted = 4056955671.5822115 -error 3.574675900066345e+18 - y tested = 997516184.7000968 -y predicted = 546510695.4053375 -error 2.0340595137400534e+17 - y tested = 6532788063.289651 -y predicted = 6686691709.801942 -error 2.368633240978021e+16 - y tested = 1980229389.772511 -y predicted = 3492125395.4669423 -error 2.2858295320347758e+18 - y tested = 5035525633.343237 -y predicted = 5195806256.600638 -error 2.5689878191781064e+16 - y tested = 5026691733.102776 -y predicted = 5312879748.884317 -error 8.190358037697603e+16 - y tested = 1014996574.3865615 -y predicted = 1243325103.4911418 -error 5.213391720306117e+16 - y tested = 7665772326.561901 -y predicted = 6789682322.081853 -error 7.675336959498509e+17 - y tested = 3029054692.61153 -y predicted = 4761151673.629999 -error 3.0001599516532956e+18 - y tested = 4062233415.93208 -y predicted = 4804321882.036111 -error 5.5069529152463366e+17 - y tested = 5822958761.806049 -y predicted = 6327228222.161297 -error 2.542876886469725e+17 - y tested = 6611133148.221605 -y predicted = 6345218882.171219 -error 7.07103968891157e+16 - y tested = 5377240292.736961 -y predicted = 3028098606.1582994 -error 5.51846666362164e+18 -error squared vector [2.641581828247054e+18, 1.782877895174785e+18, 4.418381067741323e+17, 3.264553001636875e+18, 7.508096329820325e+16, 5.373457183985036e+17, 1.0747066119375443e+18, 3.574675900066345e+18, 2.0340595137400534e+17, 2.368633240978021e+16, 2.2858295320347758e+18, 2.5689878191781064e+16, 8.190358037697603e+16, 5.213391720306117e+16, 7.675336959498509e+17, 3.0001599516532956e+18, 5.5069529152463366e+17, 2.542876886469725e+17, 7.07103968891157e+16, 5.51846666362164e+18] -Total loo_error 1.3113581452704663e+18 -iteration 300current difference of loo_error -175433929984.0 - getting loo error of with lamda = 0.013797169433906136, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623620736.4657009 -error 2.6361442956108216e+18 - y tested = 5326600510.288329 -y predicted = 3991636331.1577015 -error 1.7821293595619105e+18 - y tested = 5072151352.996373 -y predicted = 4405231437.083998 -error 4.447821742405699e+17 - y tested = 7650055845.407672 -y predicted = 5845594590.795453 -error 3.2560804193967027e+18 - y tested = 5789616901.049658 -y predicted = 6064265701.411223 -error 7.54319635400471e+16 - y tested = 8224428196.629629 -y predicted = 7493656906.57846 -error 5.340266783630504e+17 - y tested = 4059018123.5159216 -y predicted = 5095368866.276727 -error 1.0740228620208724e+18 - y tested = 5947637003.818383 -y predicted = 4057546095.6266675 -error 3.572443641228985e+18 - y tested = 997516184.7000968 -y predicted = 544223165.5431647 -error 2.0547456121640682e+17 - y tested = 6532788063.289651 -y predicted = 6684316161.138689 -error 2.296076443774767e+16 - y tested = 1980229389.772511 -y predicted = 3493851548.5590105 -error 2.2910520395695032e+18 - y tested = 5035525633.343237 -y predicted = 5194773590.327694 -error 2.535991180372347e+16 - y tested = 5026691733.102776 -y predicted = 5313023373.18628 -error 8.198580811290966e+16 - y tested = 1014996574.3865615 -y predicted = 1241343963.856886 -error 5.123314072003072e+16 - y tested = 7665772326.561901 -y predicted = 6791263034.3814125 -error 7.647665021100192e+17 - y tested = 3029054692.61153 -y predicted = 4763231533.450782 -error 3.0073693153032084e+18 - y tested = 4062233415.93208 -y predicted = 4807365748.416371 -error 5.552221929134808e+17 - y tested = 5822958761.806049 -y predicted = 6329664260.901186 -error 2.5675046281325152e+17 - y tested = 6611133148.221605 -y predicted = 6345251528.876089 -error 7.0693035505793976e+16 - y tested = 5377240292.736961 -y predicted = 3027935505.476478 -error 5.519232983445025e+18 -error squared vector [2.6361442956108216e+18, 1.7821293595619105e+18, 4.447821742405699e+17, 3.2560804193967027e+18, 7.54319635400471e+16, 5.340266783630504e+17, 1.0740228620208724e+18, 3.572443641228985e+18, 2.0547456121640682e+17, 2.296076443774767e+16, 2.2910520395695032e+18, 2.535991180372347e+16, 8.198580811290966e+16, 5.123314072003072e+16, 7.647665021100192e+17, 3.0073693153032084e+18, 5.552221929134808e+17, 2.5675046281325152e+17, 7.0693035505793976e+16, 5.519232983445025e+18] -Total loo_error 1.311358105595703e+18 -iteration 301current difference of loo_error 39674763264.0 - getting loo error of with lamda = 0.013889232113003025, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625243703.4590716 -error 2.641417095362485e+18 - y tested = 5326600510.288329 -y predicted = 3991364497.9782414 -error 1.7828552085697446e+18 - y tested = 5072151352.996373 -y predicted = 4407375498.451438 -error 4.4192693678594886e+17 - y tested = 7650055845.407672 -y predicted = 5843319461.540319 -error 3.2642963607900774e+18 - y tested = 5789616901.049658 -y predicted = 6063645167.704369 -error 7.509149092578526e+16 - y tested = 8224428196.629629 -y predicted = 7491458138.1781225 -error 5.37245106586405e+17 - y tested = 4059018123.5159216 -y predicted = 5095688718.746273 -error 1.0746859230152512e+18 - y tested = 5947637003.818383 -y predicted = 4056973623.567406 -error 3.574608017422051e+18 - y tested = 997516184.7000968 -y predicted = 546441464.2672365 -error 2.0346840341358314e+17 - y tested = 6532788063.289651 -y predicted = 6686620092.236049 -error 2.3664293129765364e+16 - y tested = 1980229389.772511 -y predicted = 3492177512.379367 -error 2.2859871254543962e+18 - y tested = 5035525633.343237 -y predicted = 5195775111.631639 -error 2.5679895291704896e+16 - y tested = 5026691733.102776 -y predicted = 5312884083.09925 -error 8.190606119650442e+16 - y tested = 1014996574.3865615 -y predicted = 1243265154.9863203 -error 5.210654488902855e+16 - y tested = 7665772326.561901 -y predicted = 6789730144.310646 -error 7.674499050835411e+17 - y tested = 3029054692.61153 -y predicted = 4761214517.683537 -error 3.000377659593485e+18 - y tested = 4062233415.93208 -y predicted = 4804413827.132493 -error 5.5083176276961446e+17 - y tested = 5822958761.806049 -y predicted = 6327301663.463511 -error 2.543617624522685e+17 - y tested = 6611133148.221605 -y predicted = 6345219867.398211 -error 7.070987291826161e+16 - y tested = 5377240292.736961 -y predicted = 3028093738.677669 -error 5.518489532448647e+18 -error squared vector [2.641417095362485e+18, 1.7828552085697446e+18, 4.4192693678594886e+17, 3.2642963607900774e+18, 7.509149092578526e+16, 5.37245106586405e+17, 1.0746859230152512e+18, 3.574608017422051e+18, 2.0346840341358314e+17, 2.3664293129765364e+16, 2.2859871254543962e+18, 2.5679895291704896e+16, 8.190606119650442e+16, 5.210654488902855e+16, 7.674499050835411e+17, 3.000377659593485e+18, 5.5083176276961446e+17, 2.543617624522685e+17, 7.070987291826161e+16, 5.518489532448647e+18] -Total loo_error 1.3113579479049272e+18 -iteration 302current difference of loo_error -157690775808.0 - getting loo error of with lamda = 0.013799959212060588, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623669952.942203 -error 2.6363041158167245e+18 - y tested = 5326600510.288329 -y predicted = 3991628094.3020806 -error 1.7821513514441613e+18 - y tested = 5072151352.996373 -y predicted = 4405296579.462991 -error 4.4469528898425875e+17 - y tested = 7650055845.407672 -y predicted = 5845525578.320084 -error 3.2563294848352026e+18 - y tested = 5789616901.049658 -y predicted = 6064246730.525776 -error 7.54215432380817e+16 - y tested = 8224428196.629629 -y predicted = 7493590202.547028 -error 5.341241735946807e+17 - y tested = 4059018123.5159216 -y predicted = 5095378574.186158 -error 1.074042983713416e+18 - y tested = 5947637003.818383 -y predicted = 4057528805.1075406 -error 3.572509002833946e+18 - y tested = 997516184.7000968 -y predicted = 544290469.6124083 -error 2.0541354881674666e+17 - y tested = 6532788063.289651 -y predicted = 6684386325.641428 -error 2.298203314807823e+16 - y tested = 1980229389.772511 -y predicted = 3493800640.299942 -error 2.2908979304231713e+18 - y tested = 5035525633.343237 -y predicted = 5194804079.168116 -error 2.5369623304388816e+16 - y tested = 5026691733.102776 -y predicted = 5313019135.196346 -error 8.198338118965333e+16 - y tested = 1014996574.3865615 -y predicted = 1241402262.8377054 -error 5.125953576303642e+16 - y tested = 7665772326.561901 -y predicted = 6791216509.596933 -error 7.648478769872621e+17 - y tested = 3029054692.61153 -y predicted = 4763170239.920352 -error 3.007156731418176e+18 - y tested = 4062233415.93208 -y predicted = 4807276019.406928 -error 5.5508848099258e+17 - y tested = 5822958761.806049 -y predicted = 6329592309.83939 -error 2.566775519928511e+17 - y tested = 6611133148.221605 -y predicted = 6345250565.635593 -error 7.069354772260743e+16 - y tested = 5377240292.736961 -y predicted = 3027940371.3039846 -error 5.51921012084499e+18 -error squared vector [2.6363041158167245e+18, 1.7821513514441613e+18, 4.4469528898425875e+17, 3.2563294848352026e+18, 7.54215432380817e+16, 5.341241735946807e+17, 1.074042983713416e+18, 3.572509002833946e+18, 2.0541354881674666e+17, 2.298203314807823e+16, 2.2908979304231713e+18, 2.5369623304388816e+16, 8.198338118965333e+16, 5.125953576303642e+16, 7.648478769872621e+17, 3.007156731418176e+18, 5.5508848099258e+17, 2.566775519928511e+17, 7.069354772260743e+16, 5.51921012084499e+18] -Total loo_error 1.3113579153532006e+18 -iteration 303current difference of loo_error 32551726592.0 - getting loo error of with lamda = 0.013886526873580527, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625196047.5469477 -error 2.641262192691355e+18 - y tested = 5326600510.288329 -y predicted = 3991372486.2091246 -error 1.7828338762864568e+18 - y tested = 5072151352.996373 -y predicted = 4407312660.879983 -error 4.420104865350323e+17 - y tested = 7650055845.407672 -y predicted = 5843386248.521214 -error 3.264055032313878e+18 - y tested = 5789616901.049658 -y predicted = 6063663240.820606 -error 7.51013963418541e+16 - y tested = 8224428196.629629 -y predicted = 7491522676.081836 -error 5.37150502049432e+17 - y tested = 4059018123.5159216 -y predicted = 5095679334.912643 -error 1.0746664672145188e+18 - y tested = 5947637003.818383 -y predicted = 4056990500.619456 -error 3.5745442000583316e+18 - y tested = 997516184.7000968 -y predicted = 546376360.3795334 -error 2.0352714108798883e+17 - y tested = 6532788063.289651 -y predicted = 6686552728.436458 -error 2.3643572247709596e+16 - y tested = 1980229389.772511 -y predicted = 3492226529.3942432 -error 2.2861353502243e+18 - y tested = 5035525633.343237 -y predicted = 5195745817.236293 -error 2.5670507326724656e+16 - y tested = 5026691733.102776 -y predicted = 5312888159.63587 -error 8.19083945603129e+16 - y tested = 1014996574.3865615 -y predicted = 1243208779.7802446 -error 5.208081069064859e+16 - y tested = 7665772326.561901 -y predicted = 6789775116.586526 -error 7.673711118846415e+17 - y tested = 3029054692.61153 -y predicted = 4761273621.050708 -error 3.000582416042974e+18 - y tested = 4062233415.93208 -y predicted = 4804500300.888236 -error 5.509601285025157e+17 - y tested = 5822958761.806049 -y predicted = 6327370742.671756 -error 2.544314464408658e+17 - y tested = 6611133148.221605 -y predicted = 6345220794.052236 -error 7.07093800998963e+16 - y tested = 5377240292.736961 -y predicted = 3028089157.4750433 -error 5.518511056302359e+18 -error squared vector [2.641262192691355e+18, 1.7828338762864568e+18, 4.420104865350323e+17, 3.264055032313878e+18, 7.51013963418541e+16, 5.37150502049432e+17, 1.0746664672145188e+18, 3.5745442000583316e+18, 2.0352714108798883e+17, 2.3643572247709596e+16, 2.2861353502243e+18, 2.5670507326724656e+16, 8.19083945603129e+16, 5.208081069064859e+16, 7.673711118846415e+17, 3.000582416042974e+18, 5.509601285025157e+17, 2.544314464408658e+17, 7.07093800998963e+16, 5.518511056302359e+18] -Total loo_error 1.3113577734450898e+18 -iteration 304current difference of loo_error -141908110848.0 - getting loo error of with lamda = 0.01380258247453089, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623716229.761049 -error 2.636454394518817e+18 - y tested = 5326600510.288329 -y predicted = 3991620349.055694 -error 1.7821720308847122e+18 - y tested = 5072151352.996373 -y predicted = 4405357823.859362 -error 4.4461361049899066e+17 - y tested = 7650055845.407672 -y predicted = 5845460688.989666 -error 3.256563678567327e+18 - y tested = 5789616901.049658 -y predicted = 6064228901.530727 -error 7.541175080821494e+16 - y tested = 8224428196.629629 -y predicted = 7493527484.197153 -error 5.3421585143430106e+17 - y tested = 4059018123.5159216 -y predicted = 5095387701.773101 -error 1.0740619027369636e+18 - y tested = 5947637003.818383 -y predicted = 4057512543.3443823 -error 3.572570476082133e+18 - y tested = 997516184.7000968 -y predicted = 544353751.7139835 -error 2.0535619066989363e+17 - y tested = 6532788063.289651 -y predicted = 6684452282.225904 -error 2.300203530554385e+16 - y tested = 1980229389.772511 -y predicted = 3493752780.926548 -error 2.290753055570416e+18 - y tested = 5035525633.343237 -y predicted = 5194832740.199644 -error 2.5378754294958732e+16 - y tested = 5026691733.102776 -y predicted = 5313015151.142481 -error 8.198109971793982e+16 - y tested = 1014996574.3865615 -y predicted = 1241457077.4496539 -error 5.128435944758886e+16 - y tested = 7665772326.561901 -y predicted = 6791172765.973194 -error 7.649243913819593e+17 - y tested = 3029054692.61153 -y predicted = 4763112614.700492 -error 3.006956877159489e+18 - y tested = 4062233415.93208 -y predicted = 4807191661.966178 -error 5.5496278833419994e+17 - y tested = 5822958761.806049 -y predicted = 6329524673.835441 -error 2.56609023230169e+17 - y tested = 6611133148.221605 -y predicted = 6345249660.104295 -error 7.069402925342801e+16 - y tested = 5377240292.736961 -y predicted = 3027944942.6382256 -error 5.519188641995542e+18 -error squared vector [2.636454394518817e+18, 1.7821720308847122e+18, 4.4461361049899066e+17, 3.256563678567327e+18, 7.541175080821494e+16, 5.3421585143430106e+17, 1.0740619027369636e+18, 3.572570476082133e+18, 2.0535619066989363e+17, 2.300203530554385e+16, 2.290753055570416e+18, 2.5378754294958732e+16, 8.198109971793982e+16, 5.128435944758886e+16, 7.649243913819593e+17, 3.006956877159489e+18, 5.5496278833419994e+17, 2.56609023230169e+17, 7.069402925342801e+16, 5.519188641995542e+18] -Total loo_error 1.311357747094629e+18 -iteration 305current difference of loo_error 26350460672.0 - getting loo error of with lamda = 0.013883983103912357, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625151234.202408 -error 2.641116533758752e+18 - y tested = 5326600510.288329 -y predicted = 3991379997.6147623 -error 1.7828138174642627e+18 - y tested = 5072151352.996373 -y predicted = 4407253564.858023 -error 4.420890686712708e+17 - y tested = 7650055845.407672 -y predicted = 5843449052.843691 -error 3.2638281029383153e+18 - y tested = 5789616901.049658 -y predicted = 6063680244.04716 -error 7.511071597496661e+16 - y tested = 8224428196.629629 -y predicted = 7491583365.851812 -error 5.370615459977669e+17 - y tested = 4059018123.5159216 -y predicted = 5095670510.353674 -error 1.074648171136409e+18 - y tested = 5947637003.818383 -y predicted = 4057006367.292909 -error 3.5744842037687194e+18 - y tested = 997516184.7000968 -y predicted = 546315137.9745541 -error 2.0358238456622544e+17 - y tested = 6532788063.289651 -y predicted = 6686489366.921343 -error 2.3624090738081556e+16 - y tested = 1980229389.772511 -y predicted = 3492272630.2840652 -error 2.286274761176682e+18 - y tested = 5035525633.343237 -y predicted = 5195718263.927996 -error 2.5661678893664988e+16 - y tested = 5026691733.102776 -y predicted = 5312891993.756899 -error 8.191058919848813e+16 - y tested = 1014996574.3865615 -y predicted = 1243155765.1566398 -error 5.2056616332856984e+16 - y tested = 7665772326.561901 -y predicted = 6789817408.501832 -error 7.672970184736224e+17 - y tested = 3029054692.61153 -y predicted = 4761329205.81057 -error 3.000774989078971e+18 - y tested = 4062233415.93208 -y predicted = 4804581627.951045 -error 5.5108086788775456e+17 - y tested = 5822958761.806049 -y predicted = 6327435717.672879 -error 2.5449699900066342e+17 - y tested = 6611133148.221605 -y predicted = 6345221665.602579 -error 7.0708916588648664e+16 - y tested = 5377240292.736961 -y predicted = 3028084845.9534717 -error 5.518531313152538e+18 -error squared vector [2.641116533758752e+18, 1.7828138174642627e+18, 4.420890686712708e+17, 3.2638281029383153e+18, 7.511071597496661e+16, 5.370615459977669e+17, 1.074648171136409e+18, 3.5744842037687194e+18, 2.0358238456622544e+17, 2.3624090738081556e+16, 2.286274761176682e+18, 2.5661678893664988e+16, 8.191058919848813e+16, 5.2056616332856984e+16, 7.672970184736224e+17, 3.000774989078971e+18, 5.5108086788775456e+17, 2.5449699900066342e+17, 7.0708916588648664e+16, 5.518531313152538e+18] -Total loo_error 1.311357619239933e+18 -iteration 306current difference of loo_error -127854696192.0 - getting loo error of with lamda = 0.013805049160269721, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623759742.6197948 -error 2.636595701482076e+18 - y tested = 5326600510.288329 -y predicted = 3991613066.0792055 -error 1.782191476196008e+18 - y tested = 5072151352.996373 -y predicted = 4405415404.070745 -error 4.4453682558975725e+17 - y tested = 7650055845.407672 -y predicted = 5845399676.246421 -error 3.256783888891762e+18 - y tested = 5789616901.049658 -y predicted = 6064212145.158071 -error 7.540254808695878e+16 - y tested = 8224428196.629629 -y predicted = 7493468513.137424 -error 5.34302058891024e+17 - y tested = 4059018123.5159216 -y predicted = 5095396283.77749 -error 1.0740796910671525e+18 - y tested = 5947637003.818383 -y predicted = 4057497249.314334 -error 3.572628291556628e+18 - y tested = 997516184.7000968 -y predicted = 544413252.4593158 -error 2.0530226720519386e+17 - y tested = 6532788063.289651 -y predicted = 6684514284.371899 -error 2.3020846163899116e+16 - y tested = 1980229389.772511 -y predicted = 3493707787.2644544 -error 2.290616859674781e+18 - y tested = 5035525633.343237 -y predicted = 5194859683.44865 -error 2.53873395229944e+16 - y tested = 5026691733.102776 -y predicted = 5313011405.754235 -error 8.197895494723904e+16 - y tested = 1014996574.3865615 -y predicted = 1241508616.2047737 -error 5.130770508865549e+16 - y tested = 7665772326.561901 -y predicted = 6791131637.022498 -error 7.649963357979622e+17 - y tested = 3029054692.61153 -y predicted = 4763058437.695595 -error 3.006768987965563e+18 - y tested = 4062233415.93208 -y predicted = 4807112353.637543 -error 5.5484463183721894e+17 - y tested = 5822958761.806049 -y predicted = 6329461092.956167 -error 2.5654461146050368e+17 - y tested = 6611133148.221605 -y predicted = 6345248808.812754 -error 7.069448194288141e+16 - y tested = 5377240292.736961 -y predicted = 3027949237.529693 -error 5.51916846207688e+18 -error squared vector [2.636595701482076e+18, 1.782191476196008e+18, 4.4453682558975725e+17, 3.256783888891762e+18, 7.540254808695878e+16, 5.34302058891024e+17, 1.0740796910671525e+18, 3.572628291556628e+18, 2.0530226720519386e+17, 2.3020846163899116e+16, 2.290616859674781e+18, 2.53873395229944e+16, 8.197895494723904e+16, 5.130770508865549e+16, 7.649963357979622e+17, 3.006768987965563e+18, 5.5484463183721894e+17, 2.5654461146050368e+17, 7.069448194288141e+16, 5.51916846207688e+18] -Total loo_error 1.3113575982722573e+18 -iteration 307current difference of loo_error 20967675648.0 - getting loo error of with lamda = 0.013881591166226217, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625109093.9801502 -error 2.6409795670661335e+18 - y tested = 5326600510.288329 -y predicted = 3991387060.658865 -error 1.7827949560714135e+18 - y tested = 5072151352.996373 -y predicted = 4407197988.110123 -error 4.42162977473547e+17 - y tested = 7650055845.407672 -y predicted = 5843508111.794344 -error 3.2636147138234516e+18 - y tested = 5789616901.049658 -y predicted = 6063696240.220799 -error 7.511948416048968e+16 - y tested = 8224428196.629629 -y predicted = 7491640436.712789 -error 5.369779010839411e+17 - y tested = 4059018123.5159216 -y predicted = 5095662211.782959 -error 1.0746309657389972e+18 - y tested = 5947637003.818383 -y predicted = 4057021284.243818 -error 3.5744277991024517e+18 - y tested = 997516184.7000968 -y predicted = 546257565.8865527 -error 2.0363434105350755e+17 - y tested = 6532788063.289651 -y predicted = 6686429770.94052 -error 2.3605774329875212e+16 - y tested = 1980229389.772511 -y predicted = 3492315987.9970055 -error 2.2864058805301238e+18 - y tested = 5035525633.343237 -y predicted = 5195692348.643323 -error 2.565337669001881e+16 - y tested = 5026691733.102776 -y predicted = 5312895599.8272295 -error 8.1912653328029e+16 - y tested = 1014996574.3865615 -y predicted = 1243105911.0305676 -error 5.203386946416852e+16 - y tested = 7665772326.561901 -y predicted = 6789857179.586039 -error 7.672273447017468e+17 - y tested = 3029054692.61153 -y predicted = 4761381480.92521 -error 3.00095610150919e+18 - y tested = 4062233415.93208 -y predicted = 4804658113.813509 -error 5.511944320243314e+17 - y tested = 5822958761.806049 -y predicted = 6327496831.246876 -error 2.545586635150762e+17 - y tested = 6611133148.221605 -y predicted = 6345222485.314085 -error 7.070848064791689e+16 - y tested = 5377240292.736961 -y predicted = 3028080788.450604 -error 5.518550376578925e+18 -error squared vector [2.6409795670661335e+18, 1.7827949560714135e+18, 4.42162977473547e+17, 3.2636147138234516e+18, 7.511948416048968e+16, 5.369779010839411e+17, 1.0746309657389972e+18, 3.5744277991024517e+18, 2.0363434105350755e+17, 2.3605774329875212e+16, 2.2864058805301238e+18, 2.565337669001881e+16, 8.1912653328029e+16, 5.203386946416852e+16, 7.672273447017468e+17, 3.00095610150919e+18, 5.511944320243314e+17, 2.545586635150762e+17, 7.070848064791689e+16, 5.518550376578925e+18] -Total loo_error 1.3113574829446666e+18 -iteration 308current difference of loo_error -115327590656.0 - getting loo error of with lamda = 0.013807368614995675, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623800656.7017775 -error 2.6367285724344904e+18 - y tested = 5326600510.288329 -y predicted = 3991606217.7837224 -error 1.7822097610198756e+18 - y tested = 5072151352.996373 -y predicted = 4405469539.807636 -error 4.444646400366219e+17 - y tested = 7650055845.407672 -y predicted = 5845342308.301282 -error 3.2569909510150574e+18 - y tested = 5789616901.049658 -y predicted = 6064196396.403872 -error 7.539389926897467e+16 - y tested = 8224428196.629629 -y predicted = 7493413065.263389 -error 5.3438312228640186e+17 - y tested = 4059018123.5159216 -y predicted = 5095404352.854133 -error 1.0740964163618751e+18 - y tested = 5947637003.818383 -y predicted = 4057482865.5919843 -error 3.572682666254381e+18 - y tested = 997516184.7000968 -y predicted = 544469198.0350627 -error 2.0525157212626765e+17 - y tested = 6532788063.289651 -y predicted = 6684572570.159295 -error 2.3038536525661056e+16 - y tested = 1980229389.772511 -y predicted = 3493665487.21074 -error 2.2904888210290568e+18 - y tested = 5035525633.343237 -y predicted = 5194885012.267125 -error 2.5395411651007384e+16 - y tested = 5026691733.102776 -y predicted = 5313007884.685343 -error 8.19769386570516e+16 - y tested = 1014996574.3865615 -y predicted = 1241557075.1058683 -error 5.132966048618303e+16 - y tested = 7665772326.561901 -y predicted = 6791092966.250196 -error 7.650639833552928e+17 - y tested = 3029054692.61153 -y predicted = 4763007502.080356 -error 3.006592345464834e+18 - y tested = 4062233415.93208 -y predicted = 4807037791.425134 -error 5.547335577535981e+17 - y tested = 5822958761.806049 -y predicted = 6329401323.060233 -error 2.5648406784969766e+17 - y tested = 6611133148.221605 -y predicted = 6345248008.501631 -error 7.069490752391037e+16 - y tested = 5377240292.736961 -y predicted = 3027953272.8953147 -error 5.519149501596446e+18 -error squared vector [2.6367285724344904e+18, 1.7822097610198756e+18, 4.444646400366219e+17, 3.2569909510150574e+18, 7.539389926897467e+16, 5.3438312228640186e+17, 1.0740964163618751e+18, 3.572682666254381e+18, 2.0525157212626765e+17, 2.3038536525661056e+16, 2.2904888210290568e+18, 2.5395411651007384e+16, 8.19769386570516e+16, 5.132966048618303e+16, 7.650639833552928e+17, 3.006592345464834e+18, 5.547335577535981e+17, 2.5648406784969766e+17, 7.069490752391037e+16, 5.519149501596446e+18] -Total loo_error 1.3113574666348344e+18 -iteration 309current difference of loo_error 16309832192.0 - getting loo error of with lamda = 0.01387934199800711, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625069467.5224538 -error 2.6408507740028667e+18 - y tested = 5326600510.288329 -y predicted = 3991393702.1054225 -error 1.7827772206179853e+18 - y tested = 5072151352.996373 -y predicted = 4407145721.50712 -error 4.422324899124202e+17 - y tested = 7650055845.407672 -y predicted = 5843563648.546464 -error 3.263414057320433e+18 - y tested = 5789616901.049658 -y predicted = 6063711288.546593 -error 7.51277332573199e+16 - y tested = 8224428196.629629 -y predicted = 7491694104.261135 -error 5.3689925011908077e+17 - y tested = 4059018123.5159216 -y predicted = 5095654407.889906 -error 1.0746147860807002e+18 - y tested = 5947637003.818383 -y predicted = 4057035308.4679546 -error 3.5743747704619146e+18 - y tested = 997516184.7000968 -y predicted = 546203426.6888446 -error 2.0368320554372317e+17 - y tested = 6532788063.289651 -y predicted = 6686373717.628495 -error 2.3588553218690964e+16 - y tested = 1980229389.772511 -y predicted = 3492356765.286446 -error 2.2865291997786614e+18 - y tested = 5035525633.343237 -y predicted = 5195667974.3717 -error 2.564556939007666e+16 - y tested = 5026691733.102776 -y predicted = 5312898991.366374 -error 8.191459468276614e+16 - y tested = 1014996574.3865615 -y predicted = 1243059029.2015486 -error 5.201248329623802e+16 - y tested = 7665772326.561901 -y predicted = 6789894579.899482 -error 7.671618270984372e+17 - y tested = 3029054692.61153 -y predicted = 4761430643.005751 -error 3.00112643350428e+18 - y tested = 4062233415.93208 -y predicted = 4804730045.9303465 -error 5.51301245558783e+17 - y tested = 5822958761.806049 -y predicted = 6327554311.935104 -error 2.5461666921004368e+17 - y tested = 6611133148.221605 -y predicted = 6345223256.259765 -error 7.070807064315775e+16 - y tested = 5377240292.736961 -y predicted = 3028076970.1883965 -error 5.518568316007413e+18 -error squared vector [2.6408507740028667e+18, 1.7827772206179853e+18, 4.422324899124202e+17, 3.263414057320433e+18, 7.51277332573199e+16, 5.3689925011908077e+17, 1.0746147860807002e+18, 3.5743747704619146e+18, 2.0368320554372317e+17, 2.3588553218690964e+16, 2.2865291997786614e+18, 2.564556939007666e+16, 8.191459468276614e+16, 5.201248329623802e+16, 7.671618270984372e+17, 3.00112643350428e+18, 5.51301245558783e+17, 2.5461666921004368e+17, 7.070807064315775e+16, 5.518568316007413e+18] -Total loo_error 1.3113573624852495e+18 -iteration 310current difference of loo_error -104149584896.0 - getting loo error of with lamda = 0.013809549626602082, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623839127.3063226 -error 2.63685351110032e+18 - y tested = 5326600510.288329 -y predicted = 3991599778.2270823 -error 1.782226954604065e+18 - y tested = 5072151352.996373 -y predicted = 4405520437.550082 -error 4.4439677742875994e+17 - y tested = 7650055845.407672 -y predicted = 5845288367.247578 -error 3.257185650224346e+18 - y tested = 5789616901.049658 -y predicted = 6064181594.257895 -error 7.538577075653366e+16 - y tested = 8224428196.629629 -y predicted = 7493360929.897593 -error 5.3445934848705075e+17 - y tested = 4059018123.5159216 -y predicted = 5095411939.697849 -error 1.0741121422201393e+18 - y tested = 5947637003.818383 -y predicted = 4057469338.14076 -error 3.5727338043731953e+18 - y tested = 997516184.7000968 -y predicted = 544521801.0706872 -error 2.0520391159978877e+17 - y tested = 6532788063.289651 -y predicted = 6684627363.219758 -error 2.3055173003265028e+16 - y tested = 1980229389.772511 -y predicted = 3493625719.0575805 -error 2.2903684494935224e+18 - y tested = 5035525633.343237 -y predicted = 5194908823.741656 -error 2.5403001381578804e+16 - y tested = 5026691733.102776 -y predicted = 5313004574.457384 -error 8.197504312454923e+16 - y tested = 1014996574.3865615 -y predicted = 1241602638.4028077 -error 5.135030824893507e+16 - y tested = 7665772326.561901 -y predicted = 6791056606.5528345 -error 7.651275908309797e+17 - y tested = 3029054692.61153 -y predicted = 4762959613.491153 -error 3.0064262746505713e+18 - y tested = 4062233415.93208 -y predicted = 4806967690.607039 -error 5.546291398756383e+17 - y tested = 5822958761.806049 -y predicted = 6329345134.822199 -error 2.564271587764509e+17 - y tested = 6611133148.221605 -y predicted = 6345247256.10855 -error 7.069530762475525e+16 - y tested = 5377240292.736961 -y predicted = 3027957064.5945582 -error 5.519131686031191e+18 -error squared vector [2.63685351110032e+18, 1.782226954604065e+18, 4.4439677742875994e+17, 3.257185650224346e+18, 7.538577075653366e+16, 5.3445934848705075e+17, 1.0741121422201393e+18, 3.5727338043731953e+18, 2.0520391159978877e+17, 2.3055173003265028e+16, 2.2903684494935224e+18, 2.5403001381578804e+16, 8.197504312454923e+16, 5.135030824893507e+16, 7.651275908309797e+17, 3.0064262746505713e+18, 5.546291398756383e+17, 2.564271587764509e+17, 7.069530762475525e+16, 5.519131686031191e+18] -Total loo_error 1.311357350191782e+18 -iteration 311current difference of loo_error 12293467648.0 - getting loo error of with lamda = 0.013877227077661503, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1625032204.9610462 -error 2.6407296668897213e+18 - y tested = 5326600510.288329 -y predicted = 3991399947.120957 -error 1.7827605438824678e+18 - y tested = 5072151352.996373 -y predicted = 4407096568.294982 -error 4.422978666542138e+17 - y tested = 7650055845.407672 -y predicted = 5843615872.996222 -error 3.263225373925882e+18 - y tested = 5789616901.049658 -y predicted = 6063725444.799264 -error 7.513549375652974e+16 - y tested = 8224428196.629629 -y predicted = 7491744571.272108 -error 5.3682529486704026e+17 - y tested = 4059018123.5159216 -y predicted = 5095647069.223176 -error 1.0745995710781338e+18 - y tested = 5947637003.818383 -y predicted = 4057048493.523106 -error 3.5743249152605153e+18 - y tested = 997516184.7000968 -y predicted = 546152515.8799107 -error 2.037291615308187e+17 - y tested = 6532788063.289651 -y predicted = 6686320997.204217 -error 2.3572361796414504e+16 - y tested = 1980229389.772511 -y predicted = 3492395115.304708 -error 2.2866451814743158e+18 - y tested = 5035525633.343237 -y predicted = 5195645049.804934 -error 2.5638227528034244e+16 - y tested = 5026691733.102776 -y predicted = 5312902181.097901 -error 8.19164205415706e+16 - y tested = 1014996574.3865615 -y predicted = 1243014942.6512578 -error 5.199237626609463e+16 - y tested = 7665772326.561901 -y predicted = 6789929750.591793 -error 7.671002178819544e+17 - y tested = 3029054692.61153 -y predicted = 4761476877.036004 -error 3.001286625086067e+18 - y tested = 4062233415.93208 -y predicted = 4804797694.772541 -error 5.514017082098543e+17 - y tested = 5822958761.806049 -y predicted = 6327608374.861449 -error 2.5467123195696483e+17 - y tested = 6611133148.221605 -y predicted = 6345223981.331646 -error 7.070768503611225e+16 - y tested = 5377240292.736961 -y predicted = 3028073377.226726 -error 5.518585196927873e+18 -error squared vector [2.6407296668897213e+18, 1.7827605438824678e+18, 4.422978666542138e+17, 3.263225373925882e+18, 7.513549375652974e+16, 5.3682529486704026e+17, 1.0745995710781338e+18, 3.5743249152605153e+18, 2.037291615308187e+17, 2.3572361796414504e+16, 2.2866451814743158e+18, 2.5638227528034244e+16, 8.19164205415706e+16, 5.199237626609463e+16, 7.671002178819544e+17, 3.001286625086067e+18, 5.514017082098543e+17, 2.5467123195696483e+17, 7.070768503611225e+16, 5.518585196927873e+18] -Total loo_error 1.3113572560275287e+18 -iteration 312current difference of loo_error -94164253184.0 - getting loo error of with lamda = 0.013811600458452367, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623875300.442118 -error 2.636970991115333e+18 - y tested = 5326600510.288329 -y predicted = 3991593723.015035 -error 1.782243122065762e+18 - y tested = 5072151352.996373 -y predicted = 4405568291.350514 -error 4.443329780731667e+17 - y tested = 7650055845.407672 -y predicted = 5845237648.226144 -error 3.2573687248775813e+18 - y tested = 5789616901.049658 -y predicted = 6064167681.452408 -error 7.537813101975906e+16 - y tested = 8224428196.629629 -y predicted = 7493311908.981848 -error 5.345310260638734e+17 - y tested = 4059018123.5159216 -y predicted = 5095419073.162387 -error 1.0741269284280951e+18 - y tested = 5947637003.818383 -y predicted = 4057456616.11442 -error 3.572781898060705e+18 - y tested = 997516184.7000968 -y predicted = 544571261.4545465 -error 2.0515910349391754e+17 - y tested = 6532788063.289651 -y predicted = 6684678873.62611 -error 2.307081826466621e+16 - y tested = 1980229389.772511 -y predicted = 3493588330.8578176 -error 2.2902552845628406e+18 - y tested = 5035525633.343237 -y predicted = 5194931209.080496 -error 2.5410137576126988e+16 - y tested = 5026691733.102776 -y predicted = 5313001462.407469 -error 8.19732610945267e+16 - y tested = 1014996574.3865615 -y predicted = 1241645479.2984254 -error 5.136972609774714e+16 - y tested = 7665772326.561901 -y predicted = 6791022419.650907 -error 7.651873996407936e+17 - y tested = 3029054692.61153 -y predicted = 4762914589.269422 -error 3.006270141238515e+18 - y tested = 4062233415.93208 -y predicted = 4806901783.62267 -error 5.545309778389683e+17 - y tested = 5822958761.806049 -y predicted = 6329292312.820845 -error 2.5637366488325232e+17 - y tested = 6611133148.221605 -y predicted = 6345246548.75611 -error 7.069568377532462e+16 - y tested = 5377240292.736961 -y predicted = 3027960627.4969697 -error 5.519114945510128e+18 -error squared vector [2.636970991115333e+18, 1.782243122065762e+18, 4.443329780731667e+17, 3.2573687248775813e+18, 7.537813101975906e+16, 5.345310260638734e+17, 1.0741269284280951e+18, 3.572781898060705e+18, 2.0515910349391754e+17, 2.307081826466621e+16, 2.2902552845628406e+18, 2.5410137576126988e+16, 8.19732610945267e+16, 5.136972609774714e+16, 7.651873996407936e+17, 3.006270141238515e+18, 5.545309778389683e+17, 2.5637366488325232e+17, 7.069568377532462e+16, 5.519114945510128e+18] -Total loo_error 1.3113572471840543e+18 -iteration 313current difference of loo_error 8843474432.0 - getting loo error of with lamda = 0.013875238392230923, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1624997165.3529036 -error 2.6406157871341394e+18 - y tested = 5326600510.288329 -y predicted = 3991405819.3696017 -error 1.782744862657556e+18 - y tested = 5072151352.996373 -y predicted = 4407050343.368822 -error 4.423593530075878e+17 - y tested = 7650055845.407672 -y predicted = 5843664982.550941 -error 3.2630479494122834e+18 - y tested = 5789616901.049658 -y predicted = 6063738761.517078 -error 7.514279438612e+16 - y tested = 8224428196.629629 -y predicted = 7491792028.4592085 -error 5.3675575491143686e+17 - y tested = 4059018123.5159216 -y predicted = 5095640168.080599 -error 1.0745852632774516e+18 - y tested = 5947637003.818383 -y predicted = 4057060889.73904 -error 3.5742780431273503e+18 - y tested = 997516184.7000968 -y predicted = 546104641.1184646 -error 2.0377238167875187e+17 - y tested = 6532788063.289651 -y predicted = 6686271412.214756 -error 2.355713839726556e+16 - y tested = 1980229389.772511 -y predicted = 3492431182.1628227 -error 2.2867542609084713e+18 - y tested = 5035525633.343237 -y predicted = 5195623489.007488 -error 2.5631323388291452e+16 - y tested = 5026691733.102776 -y predicted = 5312905180.994802 -error 8.1918137754242e+16 - y tested = 1014996574.3865615 -y predicted = 1242973484.8823295 -error 5.197347171919539e+16 - y tested = 7665772326.561901 -y predicted = 6789962824.429303 -error 7.67042284025749e+17 - y tested = 3029054692.61153 -y predicted = 4761520357.053811 -error 3.0014372784714353e+18 - y tested = 4062233415.93208 -y predicted = 4804861314.821092 -error 5.514961962083084e+17 - y tested = 5822958761.806049 -y predicted = 6327659222.507483 -error 2.547225550322389e+17 - y tested = 6611133148.221605 -y predicted = 6345224663.251361 -error 7.0707322379170696e+16 - y tested = 5377240292.736961 -y predicted = 3028069996.4187794 -error 5.518601081103655e+18 -error squared vector [2.6406157871341394e+18, 1.782744862657556e+18, 4.423593530075878e+17, 3.2630479494122834e+18, 7.514279438612e+16, 5.3675575491143686e+17, 1.0745852632774516e+18, 3.5742780431273503e+18, 2.0377238167875187e+17, 2.355713839726556e+16, 2.2867542609084713e+18, 2.5631323388291452e+16, 8.1918137754242e+16, 5.197347171919539e+16, 7.67042284025749e+17, 3.0014372784714353e+18, 5.514961962083084e+17, 2.547225550322389e+17, 7.0707322379170696e+16, 5.518601081103655e+18] -Total loo_error 1.311357161949035e+18 -iteration 314current difference of loo_error -85235019264.0 - getting loo error of with lamda = 0.01381352888068808, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623909313.3842955 -error 2.6370814578256026e+18 - y tested = 5326600510.288329 -y predicted = 3991588029.208928 -error 1.7822583246377782e+18 - y tested = 5072151352.996373 -y predicted = 4405613283.587677 -error 4.442729979710719e+17 - y tested = 7650055845.407672 -y predicted = 5845189958.641512 -error 3.2575408692121974e+18 - y tested = 5789616901.049658 -y predicted = 6064154604.22743 -error 7.537095046612674e+16 - y tested = 8224428196.629629 -y predicted = 7493265816.3194475 -error 5.345984263808507e+17 - y tested = 4059018123.5159216 -y predicted = 5095425780.371646 -error 1.0741408311891729e+18 - y tested = 5947637003.818383 -y predicted = 4057444651.6714354 -error 3.5728271281148114e+18 - y tested = 997516184.7000968 -y predicted = 544617767.100041 -error 2.0511697666463456e+17 - y tested = 6532788063.289651 -y predicted = 6684727298.726423 -error 2.3085531265110936e+16 - y tested = 1980229389.772511 -y predicted = 3493553179.82835 -error 2.2901488935489692e+18 - y tested = 5035525633.343237 -y predicted = 5194952253.973029 -error 2.541684736543569e+16 - y tested = 5026691733.102776 -y predicted = 5312998536.637266 -error 8.197158575013739e+16 - y tested = 1014996574.3865615 -y predicted = 1241685760.6152062 -error 5.138798715300517e+16 - y tested = 7665772326.561901 -y predicted = 6790990275.557905 -error 7.652436367587576e+17 - y tested = 3029054692.61153 -y predicted = 4762872257.750837 -error 3.006123349185597e+18 - y tested = 4062233415.93208 -y predicted = 4806839819.028974 -error 5.544386955328939e+17 - y tested = 5822958761.806049 -y predicted = 6329242654.683303 -error 2.5632338018694634e+17 - y tested = 6611133148.221605 -y predicted = 6345245883.740662 -error 7.06960374131593e+16 - y tested = 5377240292.736961 -y predicted = 3027963975.5468917 -error 5.519099214510137e+18 -error squared vector [2.6370814578256026e+18, 1.7822583246377782e+18, 4.442729979710719e+17, 3.2575408692121974e+18, 7.537095046612674e+16, 5.345984263808507e+17, 1.0741408311891729e+18, 3.5728271281148114e+18, 2.0511697666463456e+17, 2.3085531265110936e+16, 2.2901488935489692e+18, 2.541684736543569e+16, 8.197158575013739e+16, 5.138798715300517e+16, 7.652436367587576e+17, 3.006123349185597e+18, 5.544386955328939e+17, 2.5632338018694634e+17, 7.06960374131593e+16, 5.519099214510137e+18] -Total loo_error 1.3113571560566195e+18 -iteration 315current difference of loo_error 5892415488.0 - getting loo error of with lamda = 0.013873368407032655, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1624964216.1498327 -error 2.6405087034966134e+18 - y tested = 5326600510.288329 -y predicted = 3991411341.102754 -error 1.782730117510466e+18 - y tested = 5072151352.996373 -y predicted = 4407006872.58848 -error 4.424171798170862e+17 - y tested = 7650055845.407672 -y predicted = 5843711162.869301 -error 3.262881112134649e+18 - y tested = 5789616901.049658 -y predicted = 6063751288.183839 -error 7.514966220943304e+16 - y tested = 8224428196.629629 -y predicted = 7491836655.18998 -error 5.366903665889218e+17 - y tested = 4059018123.5159216 -y predicted = 5095633678.405454 -error 1.0745718086389325e+18 - y tested = 5947637003.818383 -y predicted = 4057072544.413779 -error 3.574233975163824e+18 - y tested = 997516184.7000968 -y predicted = 546059621.5024298 -error 2.038130284542491e+17 - y tested = 6532788063.289651 -y predicted = 6686224776.82202 -error 2.3542825059614164e+16 - y tested = 1980229389.772511 -y predicted = 3492465101.4593787 -error 2.2868568477010872e+18 - y tested = 5035525633.343237 -y predicted = 5195603211.104565 -error 2.5624830901933932e+16 - y tested = 5026691733.102776 -y predicted = 5312908002.324159 -error 8.191975276700725e+16 - y tested = 1014996574.3865615 -y predicted = 1242934499.2946005 -error 5.195569761138282e+16 - y tested = 7665772326.561901 -y predicted = 6789993926.290424 -error 7.66987806382067e+17 - y tested = 3029054692.61153 -y predicted = 4761561246.793383 -error 3.001578960283077e+18 - y tested = 4062233415.93208 -y predicted = 4804921145.503583 -error 5.5158506365607424e+17 - y tested = 5822958761.806049 -y predicted = 6327707045.44401 -error 2.5477082983546694e+17 - y tested = 6611133148.221605 -y predicted = 6345225304.579903 -error 7.0706981310180184e+16 - y tested = 5377240292.736961 -y predicted = 3028066815.367224 -error 5.518616026777423e+18 -error squared vector [2.6405087034966134e+18, 1.782730117510466e+18, 4.424171798170862e+17, 3.262881112134649e+18, 7.514966220943304e+16, 5.366903665889218e+17, 1.0745718086389325e+18, 3.574233975163824e+18, 2.038130284542491e+17, 2.3542825059614164e+16, 2.2868568477010872e+18, 2.5624830901933932e+16, 8.191975276700725e+16, 5.195569761138282e+16, 7.66987806382067e+17, 3.001578960283077e+18, 5.5158506365607424e+17, 2.5477082983546694e+17, 7.0706981310180184e+16, 5.518616026777423e+18] -Total loo_error 1.3113570788149745e+18 -iteration 316current difference of loo_error -77241645056.0 - getting loo error of with lamda = 0.013815342199668219, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623941295.197315 -error 2.637185329976476e+18 - y tested = 5326600510.288329 -y predicted = 3991582675.23924 -error 1.7822726198991565e+18 - y tested = 5072151352.996373 -y predicted = 4405655585.674366 -error 4.442166078581511e+17 - y tested = 7650055845.407672 -y predicted = 5845145117.427039 -error 3.257702735979578e+18 - y tested = 5789616901.049658 -y predicted = 6064142312.11054 -error 7.536420131814654e+16 - y tested = 8224428196.629629 -y predicted = 7493222476.862653 -error 5.3466180461994195e+17 - y tested = 4059018123.5159216 -y predicted = 5095432086.822291 -error 1.0741539033364172e+18 - y tested = 5947637003.818383 -y predicted = 4057433399.7983603 -error 3.5728696646502835e+18 - y tested = 997516184.7000968 -y predicted = 544661494.6653883 -error 2.050773702864319e+17 - y tested = 6532788063.289651 -y predicted = 6684772823.925301 -error 2.309936746547573e+16 - y tested = 1980229389.772511 -y predicted = 3493520131.7940855 -error 2.2900488698882076e+18 - y tested = 5035525633.343237 -y predicted = 5194972038.928372 -error 2.5423156254019516e+16 - y tested = 5026691733.102776 -y predicted = 5312995785.96652 -error 8.197001068620594e+16 - y tested = 1014996574.3865615 -y predicted = 1241723635.4181514 -error 5.140516020402227e+16 - y tested = 7665772326.561901 -y predicted = 6790960052.080379 -error 7.652965155835347e+17 - y tested = 3029054692.61153 -y predicted = 4762832457.597956 -error 3.005985338361326e+18 - y tested = 4062233415.93208 -y predicted = 4806781560.521923 -error 5.543519396121782e+17 - y tested = 5822958761.806049 -y predicted = 6329195970.284645 -error 2.562761112482012e+17 - y tested = 6611133148.221605 -y predicted = 6345245258.521829 -error 7.069636988900059e+16 - y tested = 5377240292.736961 -y predicted = 3027967121.822681 -error 5.519084431577638e+18 -error squared vector [2.637185329976476e+18, 1.7822726198991565e+18, 4.442166078581511e+17, 3.257702735979578e+18, 7.536420131814654e+16, 5.3466180461994195e+17, 1.0741539033364172e+18, 3.5728696646502835e+18, 2.050773702864319e+17, 2.309936746547573e+16, 2.2900488698882076e+18, 2.5423156254019516e+16, 8.197001068620594e+16, 5.140516020402227e+16, 7.652965155835347e+17, 3.005985338361326e+18, 5.543519396121782e+17, 2.562761112482012e+17, 7.069636988900059e+16, 5.519084431577638e+18] -Total loo_error 1.3113570754347195e+18 -iteration 317current difference of loo_error 3380254976.0 - getting loo error of with lamda = 0.013871610037112521, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1624933232.699558 -error 2.640408010460614e+18 - y tested = 5326600510.288329 -y predicted = 3991416533.2435374 -error 1.782716252557147e+18 - y tested = 5072151352.996373 -y predicted = 4406965992.133464 -error 4.424715643063189e+17 - y tested = 7650055845.407672 -y predicted = 5843754588.558657 -error 3.262724230494332e+18 - y tested = 5789616901.049658 -y predicted = 6063763071.402036 -error 7.515612271887499e+16 - y tested = 8224428196.629629 -y predicted = 7491878620.158126 -error 5.366288819885788e+17 - y tested = 4059018123.5159216 -y predicted = 5095627575.690186 -error 1.0745591563370276e+18 - y tested = 5947637003.818383 -y predicted = 4057083501.9976344 -error 3.574192543246696e+18 - y tested = 997516184.7000968 -y predicted = 546017286.891411 -error 2.038512547224582e+17 - y tested = 6532788063.289651 -y predicted = 6686180916.129478 -error 2.3529367302340988e+16 - y tested = 1980229389.772511 -y predicted = 3492497000.7769456 -error 2.2869533272930598e+18 - y tested = 5035525633.343237 -y predicted = 5195584139.987678 -error 2.5618725549248452e+16 - y tested = 5026691733.102776 -y predicted = 5312910655.687646 -error 8.1921271645644e+16 - y tested = 1014996574.3865615 -y predicted = 1242897838.6001391 -error 5.193898623014692e+16 - y tested = 7665772326.561901 -y predicted = 6790023173.631255 -error 7.669365788587439e+17 - y tested = 3029054692.61153 -y predicted = 4761599700.290978 -error 3.001712203634981e+18 - y tested = 4062233415.93208 -y predicted = 4804977412.077172 -error 5.516686438095812e+17 - y tested = 5822958761.806049 -y predicted = 6327752023.022067 -error 2.548162365691027e+17 - y tested = 6611133148.221605 -y predicted = 6345225907.727251 -error 7.0706660547322344e+16 - y tested = 5377240292.736961 -y predicted = 3028063822.384425 -error 5.518630088858e+18 -error squared vector [2.640408010460614e+18, 1.782716252557147e+18, 4.424715643063189e+17, 3.262724230494332e+18, 7.515612271887499e+16, 5.366288819885788e+17, 1.0745591563370276e+18, 3.574192543246696e+18, 2.038512547224582e+17, 2.3529367302340988e+16, 2.2869533272930598e+18, 2.5618725549248452e+16, 8.1921271645644e+16, 5.193898623014692e+16, 7.669365788587439e+17, 3.001712203634981e+18, 5.516686438095812e+17, 2.548162365691027e+17, 7.0706660547322344e+16, 5.518630088858e+18] -Total loo_error 1.3113570053565112e+18 -iteration 318current difference of loo_error -70078208256.0 - getting loo error of with lamda = 0.01381704728565138, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623971367.2272017 -error 2.637283001303125e+18 - y tested = 5326600510.288329 -y predicted = 3991577640.823658 -error 1.7822860619936842e+18 - y tested = 5072151352.996373 -y predicted = 4405695358.720887 -error 4.441635923057266e+17 - y tested = 7650055845.407672 -y predicted = 5845102954.351369 -error 3.2578549389325066e+18 - y tested = 5789616901.049658 -y predicted = 6064130757.710817 -error 7.535785749898363e+16 - y tested = 8224428196.629629 -y predicted = 7493181726.042529 -error 5.3472140074609056e+17 - y tested = 4059018123.5159216 -y predicted = 5095438016.483735 -error 1.074166194539414e+18 - y tested = 5947637003.818383 -y predicted = 4057422818.1447687 -error 3.5729096677217654e+18 - y tested = 997516184.7000968 -y predicted = 544702610.2301948 -error 2.050401332242095e+17 - y tested = 6532788063.289651 -y predicted = 6684815623.415832 -error 2.311237903791947e+16 - y tested = 1980229389.772511 -y predicted = 3493489060.662484 -error 2.2899548315420298e+18 - y tested = 5035525633.343237 -y predicted = 5194990639.591824 -error 2.542908821786178e+16 - y tested = 5026691733.102776 -y predicted = 5312993199.89007 -error 8.196852988455622e+16 - y tested = 1014996574.3865615 -y predicted = 1241759247.6036267 -error 5.14213099645495e+16 - y tested = 7665772326.561901 -y predicted = 6790931634.348262 -error 7.653462367528396e+17 - y tested = 3029054692.61153 -y predicted = 4762795037.174691 -error 3.0058555823659894e+18 - y tested = 4062233415.93208 -y predicted = 4806726786.016126 -error 5.542703780991001e+17 - y tested = 5822958761.806049 -y predicted = 6329152080.996913 -error 2.5623167639346352e+17 - y tested = 6611133148.221605 -y predicted = 6345244670.712257 -error 7.0696682472239016e+16 - y tested = 5377240292.736961 -y predicted = 3027970078.5926876 -error 5.519070539065482e+18 -error squared vector [2.637283001303125e+18, 1.7822860619936842e+18, 4.441635923057266e+17, 3.2578549389325066e+18, 7.535785749898363e+16, 5.3472140074609056e+17, 1.074166194539414e+18, 3.5729096677217654e+18, 2.050401332242095e+17, 2.311237903791947e+16, 2.2899548315420298e+18, 2.542908821786178e+16, 8.196852988455622e+16, 5.14213099645495e+16, 7.653462367528396e+17, 3.0058555823659894e+18, 5.542703780991001e+17, 2.5623167639346352e+17, 7.0696682472239016e+16, 5.519070539065482e+18] -Total loo_error 1.311357004103077e+18 -iteration 319current difference of loo_error 1253434112.0 - getting loo error of with lamda = 0.013869956620401577, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1624904097.7765172 -error 2.6403133267001e+18 - y tested = 5326600510.288329 -y predicted = 3991421415.4660177 -error 1.7827032152505267e+18 - y tested = 5072151352.996373 -y predicted = 4406927547.8957815 -error 4.4252271087250995e+17 - y tested = 7650055845.407672 -y predicted = 5843795423.831412 -error 3.2625767105528474e+18 - y tested = 5789616901.049658 -y predicted = 6063774155.056807 -error 7.516219992474027e+16 - y tested = 8224428196.629629 -y predicted = 7491918082.017866 -error 5.365710680085382e+17 - y tested = 4059018123.5159216 -y predicted = 5095621836.8836155 -error 1.074547258567692e+18 - y tested = 5947637003.818383 -y predicted = 4057093804.2654896 -error 3.5741535893756923e+18 - y tested = 997516184.7000968 -y predicted = 545977477.2681389 -error 2.0388720430932333e+17 - y tested = 6532788063.289651 -y predicted = 6686139665.545513 -error 2.3516713914440172e+16 - y tested = 1980229389.772511 -y predicted = 3492527000.153048 -error 2.2870440623626826e+18 - y tested = 5035525633.343237 -y predicted = 5195566204.037807 -error 2.561298426824383e+16 - y tested = 5026691733.102776 -y predicted = 5312913151.060836 -error 8.192270009792262e+16 - y tested = 1014996574.3865615 -y predicted = 1242863364.2706354 -error 5.1923273932072664e+16 - y tested = 7665772326.561901 -y predicted = 6790050676.926786 -error 7.668884076396466e+17 - y tested = 3029054692.61153 -y predicted = 4761635862.454327 -error 3.001837510093834e+18 - y tested = 4062233415.93208 -y predicted = 4805030326.460056 -error 5.5174725028990675e+17 - y tested = 5822958761.806049 -y predicted = 6327794324.024642 -error 2.5485894488056253e+17 - y tested = 6611133148.221605 -y predicted = 6345226474.960908 -error 7.070635888457126e+16 - y tested = 5377240292.736961 -y predicted = 3028061006.4531612 -error 5.518643319104864e+18 -error squared vector [2.6403133267001e+18, 1.7827032152505267e+18, 4.4252271087250995e+17, 3.2625767105528474e+18, 7.516219992474027e+16, 5.365710680085382e+17, 1.074547258567692e+18, 3.5741535893756923e+18, 2.0388720430932333e+17, 2.3516713914440172e+16, 2.2870440623626826e+18, 2.561298426824383e+16, 8.192270009792262e+16, 5.1923273932072664e+16, 7.668884076396466e+17, 3.001837510093834e+18, 5.5174725028990675e+17, 2.5485894488056253e+17, 7.070635888457126e+16, 5.518643319104864e+18] -Total loo_error 1.3113569404515361e+18 -iteration 320current difference of loo_error -63651540992.0 - getting loo error of with lamda = 0.013818650598825628, printing X, y -[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] - [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 2. 0. 1. 0. 0. 0.] - [0. 0. 0. 1. 0. 0. 1. 1. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 1. 0.] - [2. 1. 0. 0. 1. 0. 1. 0. 0. 0.] - [0. 1. 1. 0. 0. 0. 1. 0. 0. 0.] + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 1. 2. 0. 1. 1. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] - [1. 1. 1. 0. 1. 0. 1. 0. 0. 0.] - [2. 1. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] - [0. 0. 0. 0. 2. 0. 1. 1. 1. 0.] - [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] +X = [[1. 0. 1. 1. 0. 0. 1. 0. 0. 1.] + [2. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 1. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 0. 0. 1. 1. 1. 0. 0.] + [2. 1. 1. 0. 0. 2. 1. 0. 0. 0.] + [2. 0. 0. 1. 0. 0. 0. 0. 0. 0.] + [0. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 1. 2. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 0. 0.] + [1. 0. 1. 1. 0. 1. 0. 0. 1. 0.] + [1. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 0. 1. 0. 0. 0. 0. 1.] + [1. 1. 0. 0. 0. 1. 1. 1. 0. 0.] [0. 1. 0. 0. 0. 0. 1. 0. 0. 0.] - [2. 1. 1. 1. 2. 0. 1. 0. 0. 0.] - [2. 1. 0. 0. 2. 0. 1. 1. 0. 0.] - [2. 1. 1. 1. 0. 0. 0. 0. 0. 0.]] [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - y tested = 0.08333333333333333 -y predicted = 1623999643.5645733 -error 2.637374842027195e+18 - y tested = 5326600510.288329 -y predicted = 3991572906.889891 -error 1.782298701835777e+18 - y tested = 5072151352.996373 -y predicted = 4405732754.158034 -error 4.441137488776548e+17 - y tested = 7650055845.407672 -y predicted = 5845063309.36925 -error 3.257998055154413e+18 - y tested = 5789616901.049658 -y predicted = 6064119896.528383 -error 7.535189452679315e+16 - y tested = 8224428196.629629 -y predicted = 7493143409.1404295 -error 5.347774404131239e+17 - y tested = 4059018123.5159216 -y predicted = 5095443591.888527 -error 1.0741777514913743e+18 - y tested = 5947637003.818383 -y predicted = 4057412866.8670797 -error 3.5729472879133e+18 - y tested = 997516184.7000968 -y predicted = 544741269.9307941 -error 2.0500512344434934e+17 - y tested = 6532788063.289651 -y predicted = 6684855860.865278 -error 2.312461505950197e+16 - y tested = 1980229389.772511 -y predicted = 3493459847.9334197 -error 2.2898664195058737e+18 - y tested = 5035525633.343237 -y predicted = 5195008127.042503 -error 2.5434665796536556e+16 - y tested = 5026691733.102776 -y predicted = 5312990768.535275 -error 8.196713768957982e+16 - y tested = 1014996574.3865615 -y predicted = 1241792732.448318 -error 5.143649731157323e+16 - y tested = 7665772326.561901 -y predicted = 6790904914.375413 -error 7.653929889058825e+17 - y tested = 3029054692.61153 -y predicted = 4762759853.959382 -error 3.0057335864841825e+18 - y tested = 4062233415.93208 -y predicted = 4806675286.78468 -error 5.5419369907852006e+17 - y tested = 5822958761.806049 -y predicted = 6329110818.985398 -error 2.561899049868869e+17 - y tested = 6611133148.221605 -y predicted = 6345244118.068511 -error 7.069697635575309e+16 - y tested = 5377240292.736961 -y predicted = 3027972857.3668447 -error 5.519057482890486e+18 -error squared vector [2.637374842027195e+18, 1.782298701835777e+18, 4.441137488776548e+17, 3.257998055154413e+18, 7.535189452679315e+16, 5.347774404131239e+17, 1.0741777514913743e+18, 3.5729472879133e+18, 2.0500512344434934e+17, 2.312461505950197e+16, 2.2898664195058737e+18, 2.5434665796536556e+16, 8.196713768957982e+16, 5.143649731157323e+16, 7.653929889058825e+17, 3.0057335864841825e+18, 5.5419369907852006e+17, 2.561899049868869e+17, 7.069697635575309e+16, 5.519057482890486e+18] -Total loo_error 1.3113569409874378e+18 -End finding regularisation parameter: number of iterations = 321, result = 0.013818650598825628 error = 1.3113569409874378e+18 Last error difference:535901696.0 ----> end added for lambda exploration -Train set, energy by workload : [8.33333333e-02 5.32660051e+09 5.07215135e+09 7.65005585e+09 - 5.78961690e+09 8.22442820e+09 4.05901812e+09 5.94763700e+09 - 9.97516185e+08 6.53278806e+09 1.98022939e+09 5.03552563e+09 - 5.02669173e+09 1.01499657e+09 7.66577233e+09 3.02905469e+09 - 4.06223342e+09 5.82295876e+09 6.61113315e+09 5.37724029e+09] - ***** Training the datas ***** - **** Predicted y test = [3.70379494e+09 3.42310550e+09 4.20699794e+09 3.49119859e+09 - 3.05355572e+09 1.77363662e+09 5.56866636e+09 1.85364014e+09 - 3.59509876e+09 1.94348618e+09] -Start computin r squared, result = -column mean vector= [3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387] - diff with mean vector [ 7.29420550e+08 -2.27434581e+09 8.80728397e+08 3.84686602e+07 - -3.63854534e+08 -1.25063214e+09 1.78914733e+09 -2.25912945e+09 - 3.98059224e+09 -1.27039524e+09] - diff with mean vector squared [5.32054339e+17 5.17264886e+18 7.75682510e+17 1.47983782e+15 - 1.32390122e+17 1.56408075e+18 3.20104816e+18 5.10366589e+18 - 1.58451146e+19 1.61390406e+18] - diff with predicted vector [ 2.94877502e+08 -2.42819942e+09 -5.70176486e+07 -1.83478038e+08 - -1.48158359e+08 2.44983130e+08 -5.10267146e+08 -8.43517703e+08 - 3.65474536e+09 5.53704729e+07] - diff with predicted vector squared [8.69527411e+16 5.89615244e+18 3.25101225e+15 3.36641906e+16 - 2.19508994e+16 6.00167338e+16 2.60372560e+17 7.11522115e+17 - 1.33571637e+19 3.06588927e+15] -End computing r squared, result = 0.39797093085645974 - Kernel ridge R2 score = 0.39797093085645974 -printing plots -Start computin r squared, result = -column mean vector= [3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387] - diff with mean vector [ 7.29420550e+08 -2.27434581e+09 8.80728397e+08 3.84686602e+07 - -3.63854534e+08 -1.25063214e+09 1.78914733e+09 -2.25912945e+09 - 3.98059224e+09 -1.27039524e+09] - diff with mean vector squared [5.32054339e+17 5.17264886e+18 7.75682510e+17 1.47983782e+15 - 1.32390122e+17 1.56408075e+18 3.20104816e+18 5.10366589e+18 - 1.58451146e+19 1.61390406e+18] - diff with predicted vector [ 2.94877502e+08 -2.42819942e+09 -5.70176486e+07 -1.83478038e+08 - -1.48158359e+08 2.44983130e+08 -5.10267146e+08 -8.43517703e+08 - 3.65474536e+09 5.53704729e+07] - diff with predicted vector squared [8.69527411e+16 5.89615244e+18 3.25101225e+15 3.36641906e+16 - 2.19508994e+16 6.00167338e+16 2.60372560e+17 7.11522115e+17 - 1.33571637e+19 3.06588927e+15] -End computing r squared, result = 0.39797093085645974 -Start computin r squared, result = -column mean vector= [3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387] - diff with mean vector [ 7.29420550e+08 -2.27434581e+09 8.80728397e+08 3.84686602e+07 - -3.63854534e+08 -1.25063214e+09 1.78914733e+09 -2.25912945e+09 - 3.98059224e+09 -1.27039524e+09] - diff with mean vector squared [5.32054339e+17 5.17264886e+18 7.75682510e+17 1.47983782e+15 - 1.32390122e+17 1.56408075e+18 3.20104816e+18 5.10366589e+18 - 1.58451146e+19 1.61390406e+18] - diff with predicted vector [ 2.94877502e+08 -2.42819942e+09 -5.70176486e+07 -1.83478038e+08 - -1.48158359e+08 2.44983130e+08 -5.10267146e+08 -8.43517703e+08 - 3.65474536e+09 5.53704729e+07] - diff with predicted vector squared [8.69527411e+16 5.89615244e+18 3.25101225e+15 3.36641906e+16 - 2.19508994e+16 6.00167338e+16 2.60372560e+17 7.11522115e+17 - 1.33571637e+19 3.06588927e+15] -End computing r squared, result = 0.39797093085645974 + [0. 0. 0. 1. 0. 2. 1. 1. 0. 0.] + [1. 0. 0. 1. 0. 0. 0. 0. 1. 0.] + [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] + [0. 1. 0. 0. 0. 0. 1. 1. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 1. 1. 0.] + [1. 1. 1. 1. 0. 0. 0. 0. 0. 0.] + [2. 1. 1. 1. 0. 1. 1. 1. 1. 0.] + [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 1. 0. 1. 0. 1. 0. 0. 0.] + [2. 1. 0. 0. 0. 0. 1. 0. 0. 0.] + [1. 1. 0. 0. 0. 1. 1. 0. 0. 0.] + [0. 0. 0. 1. 1. 0. 1. 1. 0. 0.] + [0. 1. 1. 1. 1. 0. 0. 1. 0. 1.] + [2. 1. 1. 0. 0. 0. 0. 0. 0. 0.] + [2. 1. 0. 0. 0. 2. 1. 0. 0. 0.] + [1. 0. 1. 0. 0. 0. 1. 1. 0. 0.] + [1. 1. 0. 0. 0. 0. 0. 0. 0. 0.] + [2. 0. 0. 0. 1. 0. 1. 0. 0. 1.] + [0. 0. 1. 0. 1. 1. 0. 1. 0. 0.] + [0. 0. 0. 0. 0. 2. 1. 1. 1. 0.] + [0. 0. 0. 0. 0. 1. 1. 0. 0. 0.]] + ***** END in marginal_effect *****, margin = [-318832172.2086933, -750825726.0535247, -1136889782.8201854, -1461095066.8930154, -2851620839.593662, -219090685.044323, -3311012110.96559, -2884690358.215931, -2511497256.669151, -2563406395.758262] + ***** END in function marginal_effect *****, pointwise margin = [[-5.10523534e+08 -1.41625518e+09 -1.67344442e+09 -1.04082275e+09 + -3.44149051e+09 -7.25531315e+07 -2.99657378e+09 -2.94384429e+09 + -2.24649110e+09 -2.56686254e+09] + [-1.11360280e+09 -1.05605535e+09 -1.29392967e+09 -1.35515487e+09 + -3.26149048e+09 6.88320240e+07 -3.86722905e+09 -3.44235349e+09 + -2.59526092e+09 -2.58444145e+09] + [ 5.93800348e+08 3.16091309e+08 -6.50921558e+08 -1.98856145e+09 + -2.73423785e+09 -1.62193613e+09 -2.77577401e+09 -2.58796925e+09 + -3.24159571e+09 -2.43765313e+09] + [-2.00421968e+09 -1.38432156e+09 -2.24035789e+09 -1.96939821e+09 + -4.05397611e+09 1.87420925e+08 -3.72767219e+09 -2.55214812e+09 + -1.94084327e+09 -3.63281144e+09] + [-2.99364933e+08 -1.15909128e+09 -1.80415121e+09 -1.25211893e+09 + -3.01063207e+09 -6.21606716e+08 -3.40082982e+09 -2.89676181e+09 + -2.72201155e+09 -2.25149297e+09] + [ 3.46191104e+08 -7.31893666e+08 -6.71697015e+08 -1.48605480e+09 + -2.05710861e+09 -4.65506824e+08 -3.39521045e+09 -3.37045509e+09 + -3.08405772e+09 -2.02112504e+09] + [-7.89337337e+08 -2.11695197e+08 -7.33620469e+08 -1.55946210e+09 + -2.85206163e+09 -1.50345710e+07 -2.37631504e+09 -2.83588545e+09 + -2.43312454e+09 -2.23990288e+09] + [-1.25701739e+09 -1.17500014e+09 -2.03103647e+09 -1.78498397e+09 + -3.38147948e+09 -2.43670858e+08 -3.63096825e+09 -2.52298435e+09 + -2.32769889e+09 -2.80516850e+09] + [ 3.58321443e+08 -2.68775488e+08 -1.36185054e+09 -2.34995219e+09 + -3.19489919e+09 -2.95253707e+08 -3.65308057e+09 -3.10316937e+09 + -2.53641756e+09 -3.26225227e+09] + [ 4.06663760e+06 -3.59756196e+08 -7.36606843e+08 -1.18984287e+09 + -2.37852061e+09 2.67322397e+07 -2.37537528e+09 -2.83289908e+09 + -2.72039007e+09 -1.80917447e+09] + [ 4.01948157e+08 -3.99533561e+08 -1.12466069e+09 -1.26704085e+09 + -2.08872676e+09 -1.12807152e+09 -2.04521057e+09 -2.31324288e+09 + -2.79550443e+09 -1.88989715e+09] + [ 1.21813249e+08 -4.26524090e+08 -4.07109525e+08 -1.46694565e+09 + -1.67941552e+09 -4.33050808e+08 -2.24823810e+09 -2.70552922e+09 + -3.14221562e+09 -1.49728626e+09] + [ 3.08344432e+08 -1.55036310e+08 -1.12438578e+09 -1.98723673e+09 + -3.38069198e+09 -1.58084980e+09 -3.07791169e+09 -2.66204470e+09 + -3.21795894e+09 -2.78123286e+09] + [-1.21439384e+09 -9.06954424e+08 -1.88656277e+09 -1.77673243e+09 + -3.99101504e+09 3.19574909e+08 -4.31015683e+09 -3.26430098e+09 + -2.36018443e+09 -3.80366968e+09] + [-1.41958547e+09 -1.11198740e+09 -1.90973481e+09 -1.86478154e+09 + -3.73999186e+09 2.88223696e+08 -3.23509675e+09 -2.43591019e+09 + -1.67954338e+09 -3.29754887e+09] + [-1.43527089e+08 -5.62585664e+08 -8.49824437e+08 -1.47065947e+09 + -2.85728389e+09 -6.98483832e+07 -3.91642770e+09 -3.74692366e+09 + -2.96834849e+09 -2.55109431e+09] + [ 4.10188608e+08 -6.32165134e+08 -5.72144644e+08 -1.31039026e+09 + -2.61190317e+09 2.78798452e+08 -4.68893424e+09 -3.81264138e+09 + -2.45912901e+09 -2.55901586e+09] + [ 6.48280636e+07 -4.85767505e+08 -6.62639438e+08 -7.89219422e+08 + -1.82362383e+09 -2.35524026e+08 -1.79526428e+09 -2.19639045e+09 + -3.17773775e+09 -1.54051655e+09] + [ 5.01853434e+08 -4.83497012e+08 -1.48012039e+09 -1.84663144e+09 + -3.17167552e+09 -1.20496737e+09 -3.62353424e+09 -2.83509669e+09 + -3.47706545e+09 -2.65729167e+09] + [ 8.20559391e+08 -3.91515094e+08 -8.41143028e+08 -1.26752154e+09 + -2.35619899e+09 2.04962696e+07 -4.44387230e+09 -3.50925961e+09 + -2.64859020e+09 -2.29774947e+09] + [ 1.38783406e+07 -5.12567640e+08 -6.20367210e+08 -1.30125097e+09 + -2.41078676e+09 -5.00254148e+07 -4.20342842e+09 -3.63031216e+09 + -2.36306604e+09 -2.48635154e+09] + [ 5.81646907e+08 1.32343402e+07 -6.24361204e+08 -1.26593839e+09 + -2.31760418e+09 1.14125166e+08 -1.88659398e+09 -2.30057864e+09 + -1.88459080e+09 -1.63700875e+09] + [-1.11086512e+09 -8.65775989e+08 -1.97006733e+09 -2.41110266e+09 + -3.94152317e+09 -5.60103242e+07 -4.01115424e+09 -3.07440596e+09 + -2.43179839e+09 -3.74789643e+09] + [ 4.71901316e+08 -1.50308554e+08 -7.79521102e+07 -3.55745098e+08 + -3.06848948e+09 1.62973185e+08 -2.08428497e+09 -1.62202605e+09 + -1.04663717e+09 -2.53514861e+09] + [ 1.22135505e+09 -7.73155821e+08 -3.53212171e+08 -1.34131383e+09 + -2.88473801e+09 1.54713186e+07 -4.06223158e+09 -3.48911531e+09 + -2.57980377e+09 -2.84589374e+09] + [-9.16592646e+08 -1.74895661e+09 -1.72668305e+09 -1.44271626e+09 + -3.05767041e+09 2.83634859e+08 -3.05531437e+09 -2.53584934e+09 + -1.89393329e+09 -3.15664392e+09] + [-1.36153779e+09 -1.46648587e+09 -1.59246162e+09 -1.17084735e+09 + -3.40109694e+09 6.54435078e+08 -4.51554029e+09 -3.24335224e+09 + -2.07296381e+09 -2.85624953e+09] + [-3.78159881e+08 -7.01716044e+08 -8.84164669e+08 -1.56230629e+09 + -3.14121902e+09 -3.01487913e+08 -4.33752075e+09 -3.93621571e+09 + -3.03214062e+09 -2.66479632e+09] + [-3.11325906e+08 -1.42160249e+09 -1.47374634e+09 -5.59521172e+08 + -1.46039107e+09 -6.37490090e+08 -2.70744554e+09 -2.30708709e+09 + -2.49169744e+09 -2.42251617e+09] + [-1.43186326e+09 -2.00142611e+08 -6.58066180e+08 -8.75013170e+08 + -2.22381491e+09 -4.20851702e+08 -3.16909603e+09 -1.83527664e+09 + -2.06030628e+09 -2.42278939e+09] + [-2.44533958e+09 -1.31922745e+09 -2.10128997e+09 -1.67647443e+09 + -4.18535539e+09 5.03878449e+08 -4.00671195e+09 -2.74590476e+09 + -1.91595651e+09 -3.74291241e+09] + [-6.24556804e+08 -4.63318389e+08 -8.20171347e+08 -1.32040559e+09 + -2.63724641e+09 -5.52451043e+08 -2.61257672e+09 -3.14023301e+09 + -2.72424518e+09 -1.91460132e+09] + [-3.04753377e+08 -1.15788135e+09 -8.66030967e+08 -1.48609353e+09 + -3.01573700e+09 -2.20685138e+07 -4.13786584e+09 -3.04684515e+09 + -2.31432916e+09 -2.93676147e+09] + [-6.76328142e+08 -1.35291486e+09 -9.03583912e+08 -1.34461925e+09 + -3.61571942e+09 2.26285541e+08 -4.43909413e+09 -3.50503825e+09 + -2.56797174e+09 -3.30472645e+09] + [-3.40229435e+08 -2.29575723e+09 -2.83215636e+09 -1.15887704e+09 + -2.65332011e+09 1.36238763e+08 -2.49965613e+09 -2.59004794e+09 + -1.91376700e+09 -2.05117060e+09] + [-2.92762999e+08 -4.96243953e+08 -4.99167231e+08 -2.00484469e+09 + -2.29058142e+09 -5.84858963e+08 -3.12175471e+09 -2.47712034e+09 + -2.87371337e+09 -2.76389869e+09] + [-2.49960718e+08 -5.11019809e+08 -4.47095007e+08 -1.66189081e+09 + -1.70242613e+09 -1.67136927e+08 -1.65522080e+09 -2.06899492e+09 + -2.30506637e+09 -1.35480063e+09] + [ 8.59528681e+08 -1.05218312e+08 -6.95293477e+08 -1.55914054e+09 + -2.28744899e+09 -8.32312174e+08 -3.72929462e+09 -3.50002005e+09 + -3.19073978e+09 -2.07908969e+09]] + ***** END computing marginal effects ***** +margins [-318832172.2086933, -750825726.0535247, -1136889782.8201854, -1461095066.8930154, -2851620839.593662, -219090685.044323, -3311012110.96559, -2884690358.215931, -2511497256.669151, -2563406395.758262] +pointwise margins [[-5.10523534e+08 -1.41625518e+09 -1.67344442e+09 -1.04082275e+09 + -3.44149051e+09 -7.25531315e+07 -2.99657378e+09 -2.94384429e+09 + -2.24649110e+09 -2.56686254e+09] + [-1.11360280e+09 -1.05605535e+09 -1.29392967e+09 -1.35515487e+09 + -3.26149048e+09 6.88320240e+07 -3.86722905e+09 -3.44235349e+09 + -2.59526092e+09 -2.58444145e+09] + [ 5.93800348e+08 3.16091309e+08 -6.50921558e+08 -1.98856145e+09 + -2.73423785e+09 -1.62193613e+09 -2.77577401e+09 -2.58796925e+09 + -3.24159571e+09 -2.43765313e+09] + [-2.00421968e+09 -1.38432156e+09 -2.24035789e+09 -1.96939821e+09 + -4.05397611e+09 1.87420925e+08 -3.72767219e+09 -2.55214812e+09 + -1.94084327e+09 -3.63281144e+09] + [-2.99364933e+08 -1.15909128e+09 -1.80415121e+09 -1.25211893e+09 + -3.01063207e+09 -6.21606716e+08 -3.40082982e+09 -2.89676181e+09 + -2.72201155e+09 -2.25149297e+09] + [ 3.46191104e+08 -7.31893666e+08 -6.71697015e+08 -1.48605480e+09 + -2.05710861e+09 -4.65506824e+08 -3.39521045e+09 -3.37045509e+09 + -3.08405772e+09 -2.02112504e+09] + [-7.89337337e+08 -2.11695197e+08 -7.33620469e+08 -1.55946210e+09 + -2.85206163e+09 -1.50345710e+07 -2.37631504e+09 -2.83588545e+09 + -2.43312454e+09 -2.23990288e+09] + [-1.25701739e+09 -1.17500014e+09 -2.03103647e+09 -1.78498397e+09 + -3.38147948e+09 -2.43670858e+08 -3.63096825e+09 -2.52298435e+09 + -2.32769889e+09 -2.80516850e+09] + [ 3.58321443e+08 -2.68775488e+08 -1.36185054e+09 -2.34995219e+09 + -3.19489919e+09 -2.95253707e+08 -3.65308057e+09 -3.10316937e+09 + -2.53641756e+09 -3.26225227e+09] + [ 4.06663760e+06 -3.59756196e+08 -7.36606843e+08 -1.18984287e+09 + -2.37852061e+09 2.67322397e+07 -2.37537528e+09 -2.83289908e+09 + -2.72039007e+09 -1.80917447e+09] + [ 4.01948157e+08 -3.99533561e+08 -1.12466069e+09 -1.26704085e+09 + -2.08872676e+09 -1.12807152e+09 -2.04521057e+09 -2.31324288e+09 + -2.79550443e+09 -1.88989715e+09] + [ 1.21813249e+08 -4.26524090e+08 -4.07109525e+08 -1.46694565e+09 + -1.67941552e+09 -4.33050808e+08 -2.24823810e+09 -2.70552922e+09 + -3.14221562e+09 -1.49728626e+09] + [ 3.08344432e+08 -1.55036310e+08 -1.12438578e+09 -1.98723673e+09 + -3.38069198e+09 -1.58084980e+09 -3.07791169e+09 -2.66204470e+09 + -3.21795894e+09 -2.78123286e+09] + [-1.21439384e+09 -9.06954424e+08 -1.88656277e+09 -1.77673243e+09 + -3.99101504e+09 3.19574909e+08 -4.31015683e+09 -3.26430098e+09 + -2.36018443e+09 -3.80366968e+09] + [-1.41958547e+09 -1.11198740e+09 -1.90973481e+09 -1.86478154e+09 + -3.73999186e+09 2.88223696e+08 -3.23509675e+09 -2.43591019e+09 + -1.67954338e+09 -3.29754887e+09] + [-1.43527089e+08 -5.62585664e+08 -8.49824437e+08 -1.47065947e+09 + -2.85728389e+09 -6.98483832e+07 -3.91642770e+09 -3.74692366e+09 + -2.96834849e+09 -2.55109431e+09] + [ 4.10188608e+08 -6.32165134e+08 -5.72144644e+08 -1.31039026e+09 + -2.61190317e+09 2.78798452e+08 -4.68893424e+09 -3.81264138e+09 + -2.45912901e+09 -2.55901586e+09] + [ 6.48280636e+07 -4.85767505e+08 -6.62639438e+08 -7.89219422e+08 + -1.82362383e+09 -2.35524026e+08 -1.79526428e+09 -2.19639045e+09 + -3.17773775e+09 -1.54051655e+09] + [ 5.01853434e+08 -4.83497012e+08 -1.48012039e+09 -1.84663144e+09 + -3.17167552e+09 -1.20496737e+09 -3.62353424e+09 -2.83509669e+09 + -3.47706545e+09 -2.65729167e+09] + [ 8.20559391e+08 -3.91515094e+08 -8.41143028e+08 -1.26752154e+09 + -2.35619899e+09 2.04962696e+07 -4.44387230e+09 -3.50925961e+09 + -2.64859020e+09 -2.29774947e+09] + [ 1.38783406e+07 -5.12567640e+08 -6.20367210e+08 -1.30125097e+09 + -2.41078676e+09 -5.00254148e+07 -4.20342842e+09 -3.63031216e+09 + -2.36306604e+09 -2.48635154e+09] + [ 5.81646907e+08 1.32343402e+07 -6.24361204e+08 -1.26593839e+09 + -2.31760418e+09 1.14125166e+08 -1.88659398e+09 -2.30057864e+09 + -1.88459080e+09 -1.63700875e+09] + [-1.11086512e+09 -8.65775989e+08 -1.97006733e+09 -2.41110266e+09 + -3.94152317e+09 -5.60103242e+07 -4.01115424e+09 -3.07440596e+09 + -2.43179839e+09 -3.74789643e+09] + [ 4.71901316e+08 -1.50308554e+08 -7.79521102e+07 -3.55745098e+08 + -3.06848948e+09 1.62973185e+08 -2.08428497e+09 -1.62202605e+09 + -1.04663717e+09 -2.53514861e+09] + [ 1.22135505e+09 -7.73155821e+08 -3.53212171e+08 -1.34131383e+09 + -2.88473801e+09 1.54713186e+07 -4.06223158e+09 -3.48911531e+09 + -2.57980377e+09 -2.84589374e+09] + [-9.16592646e+08 -1.74895661e+09 -1.72668305e+09 -1.44271626e+09 + -3.05767041e+09 2.83634859e+08 -3.05531437e+09 -2.53584934e+09 + -1.89393329e+09 -3.15664392e+09] + [-1.36153779e+09 -1.46648587e+09 -1.59246162e+09 -1.17084735e+09 + -3.40109694e+09 6.54435078e+08 -4.51554029e+09 -3.24335224e+09 + -2.07296381e+09 -2.85624953e+09] + [-3.78159881e+08 -7.01716044e+08 -8.84164669e+08 -1.56230629e+09 + -3.14121902e+09 -3.01487913e+08 -4.33752075e+09 -3.93621571e+09 + -3.03214062e+09 -2.66479632e+09] + [-3.11325906e+08 -1.42160249e+09 -1.47374634e+09 -5.59521172e+08 + -1.46039107e+09 -6.37490090e+08 -2.70744554e+09 -2.30708709e+09 + -2.49169744e+09 -2.42251617e+09] + [-1.43186326e+09 -2.00142611e+08 -6.58066180e+08 -8.75013170e+08 + -2.22381491e+09 -4.20851702e+08 -3.16909603e+09 -1.83527664e+09 + -2.06030628e+09 -2.42278939e+09] + [-2.44533958e+09 -1.31922745e+09 -2.10128997e+09 -1.67647443e+09 + -4.18535539e+09 5.03878449e+08 -4.00671195e+09 -2.74590476e+09 + -1.91595651e+09 -3.74291241e+09] + [-6.24556804e+08 -4.63318389e+08 -8.20171347e+08 -1.32040559e+09 + -2.63724641e+09 -5.52451043e+08 -2.61257672e+09 -3.14023301e+09 + -2.72424518e+09 -1.91460132e+09] + [-3.04753377e+08 -1.15788135e+09 -8.66030967e+08 -1.48609353e+09 + -3.01573700e+09 -2.20685138e+07 -4.13786584e+09 -3.04684515e+09 + -2.31432916e+09 -2.93676147e+09] + [-6.76328142e+08 -1.35291486e+09 -9.03583912e+08 -1.34461925e+09 + -3.61571942e+09 2.26285541e+08 -4.43909413e+09 -3.50503825e+09 + -2.56797174e+09 -3.30472645e+09] + [-3.40229435e+08 -2.29575723e+09 -2.83215636e+09 -1.15887704e+09 + -2.65332011e+09 1.36238763e+08 -2.49965613e+09 -2.59004794e+09 + -1.91376700e+09 -2.05117060e+09] + [-2.92762999e+08 -4.96243953e+08 -4.99167231e+08 -2.00484469e+09 + -2.29058142e+09 -5.84858963e+08 -3.12175471e+09 -2.47712034e+09 + -2.87371337e+09 -2.76389869e+09] + [-2.49960718e+08 -5.11019809e+08 -4.47095007e+08 -1.66189081e+09 + -1.70242613e+09 -1.67136927e+08 -1.65522080e+09 -2.06899492e+09 + -2.30506637e+09 -1.35480063e+09] + [ 8.59528681e+08 -1.05218312e+08 -6.95293477e+08 -1.55914054e+09 + -2.28744899e+09 -8.32312174e+08 -3.72929462e+09 -3.50002005e+09 + -3.19073978e+09 -2.07908969e+09]] +Predicted y test = [8.72914106e+09 5.11042990e+09 5.90897364e+09 1.98803396e+09 + 2.17233720e+09 6.75728539e+09 5.59093977e+09 9.17237990e+09 + 5.47630373e+09 5.69062046e+09 8.49408156e+09 1.07322561e+10 + 0.00000000e+00 1.19791093e+09 3.44056828e+09 5.33970198e+09 + 9.19434560e+09 6.16021143e+09 4.50888782e+09 6.99905229e+09] +linear model parameters = [1.14636041e+08 9.68638849e+08 1.20369835e+09 1.15687473e+09 + 2.48468001e+09 2.51237790e+08 2.93809270e+09 1.77297002e+09 + 2.31663675e+09 1.98803396e+09] Start computin r squared, result = -column mean vector= [3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387, 3269251890.3245387] - diff with mean vector [ 7.29420550e+08 -2.27434581e+09 8.80728397e+08 3.84686602e+07 - -3.63854534e+08 -1.25063214e+09 1.78914733e+09 -2.25912945e+09 - 3.98059224e+09 -1.27039524e+09] - diff with mean vector squared [5.32054339e+17 5.17264886e+18 7.75682510e+17 1.47983782e+15 - 1.32390122e+17 1.56408075e+18 3.20104816e+18 5.10366589e+18 - 1.58451146e+19 1.61390406e+18] - diff with predicted vector [ 2.94877502e+08 -2.42819942e+09 -5.70176486e+07 -1.83478038e+08 - -1.48158359e+08 2.44983130e+08 -5.10267146e+08 -8.43517703e+08 - 3.65474536e+09 5.53704729e+07] - diff with predicted vector squared [8.69527411e+16 5.89615244e+18 3.25101225e+15 3.36641906e+16 - 2.19508994e+16 6.00167338e+16 2.60372560e+17 7.11522115e+17 - 1.33571637e+19 3.06588927e+15] -End computing r squared, result = 0.39797093085645974 - R2 error = 0.39797093085645974 -kernel ridge coef (lambda) = 0.013818650598825628 -number of iteration on kernel ridge coef = 321 -leave_one_out error on kernel ridge coef = 1.3113569409874378e+18 - --- Actual line: ['samsung_galaxy_s8', 'samsung_galaxy_s8_format', False, False, 1000, 0.013818650598825628, True, 'dichotomic', 321, 1.3113569409874378e+18, 1000000000.0, 1e-09, 1000, 0.1, 33, False, 0.39797093085645974, 10, 10, 'base_Y'] ---- Total execution time: 13.152221202850342 seconds = 0.21920368671417237 mins +column mean vector= [5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385, 5579264603.921385] + diff with mean vector [ 3.31642455e+09 3.68372400e+08 8.64158916e+08 -2.25786616e+09 + -3.56064486e+09 1.68374344e+09 -5.52572871e+08 2.65769629e+09 + -5.43738971e+08 1.37696679e+09 3.21650639e+09 3.58731040e+09 + -5.57926460e+09 -4.56227684e+09 -2.27154405e+09 -5.20865385e+08 + 2.78788596e+09 9.39852708e+08 -1.19383825e+09 2.43694158e+08] + diff with mean vector squared [1.09986718e+19 1.35698225e+17 7.46770632e+17 5.09795961e+18 + 1.26781918e+19 2.83499198e+18 3.05336778e+17 7.06334955e+18 + 2.95652068e+17 1.89603754e+18 1.03459134e+19 1.28687959e+19 + 3.11281935e+19 2.08143700e+19 5.15991239e+18 2.71300749e+17 + 7.77230814e+18 8.83323112e+17 1.42524977e+18 5.93868426e+16] + diff with predicted vector [ 1.66548089e+08 8.37207109e+08 5.34449876e+08 1.33336448e+09 + -1.53717451e+08 5.05722659e+08 -5.64248035e+08 -9.35419005e+08 + -4.40778093e+08 1.26561093e+09 3.01689435e+08 -1.56568112e+09 + 8.33333333e-02 -1.80923168e+08 -1.32847724e+08 -2.81302759e+08 + -8.27195037e+08 3.58905878e+08 -1.23461468e+08 -1.17609353e+09] + diff with predicted vector squared [2.77382659e+16 7.00915743e+17 2.85636670e+17 1.77786084e+18 + 2.36290549e+16 2.55755408e+17 3.18375845e+17 8.75008716e+17 + 1.94285327e+17 1.60177103e+18 9.10165149e+16 2.45135736e+18 + 6.94444444e-03 3.27331929e+16 1.76485179e+16 7.91312422e+16 + 6.84251628e+17 1.28813430e+17 1.52427340e+16 1.38319599e+18] +End computing r squared, result = 0.917576058264038 +*** Linear model R2 score = 0.917576058264038 + X header, margins and linear coef numbers before transpose: + [['X_0', 'X_1', 'X_2', 'X_3', 'X_4', 'X_5', 'X_6', 'X_7', 'X_8', 'X_9'], ['frequency level of Little Socket', 'Core 0 state', 'Core 1 state', 'Core 2 state', 'Core 3 state', 'frequency level of Big Socket', 'Core 4 state', 'Core 5 state', 'Core 6 state', 'Core 7 state'], [-318832172.2086933, -750825726.0535247, -1136889782.8201854, -1461095066.8930154, -2851620839.593662, -219090685.044323, -3311012110.96559, -2884690358.215931, -2511497256.669151, -2563406395.758262], array([1.14636041e+08, 9.68638849e+08, 1.20369835e+09, 1.15687473e+09, + 2.48468001e+09, 2.51237790e+08, 2.93809270e+09, 1.77297002e+09, + 2.31663675e+09, 1.98803396e+09]), array([4.33468214e+08, 1.71946458e+09, 2.34058813e+09, 2.61796980e+09, + 5.33630085e+09, 4.70328475e+08, 6.24910481e+09, 4.65766037e+09, + 4.82813401e+09, 4.55144036e+09])] + --- Before Modifying variable -318832172.2086933, Type : <class 'str'> + --- After Modifying variable -318832172.2086933, Type : <class 'float'> + --- Before Modifying variable -750825726.0535247, Type : <class 'str'> + --- After Modifying variable -750825726.0535247, Type : <class 'float'> + --- Before Modifying variable -1136889782.8201854, Type : <class 'str'> + --- After Modifying variable -1136889782.8201854, Type : <class 'float'> + --- Before Modifying variable -1461095066.8930154, Type : <class 'str'> + --- After Modifying variable -1461095066.8930154, Type : <class 'float'> + --- Before Modifying variable -2851620839.593662, Type : <class 'str'> + --- After Modifying variable -2851620839.593662, Type : <class 'float'> + --- Before Modifying variable -219090685.044323, Type : <class 'str'> + --- After Modifying variable -219090685.044323, Type : <class 'float'> + --- Before Modifying variable -3311012110.96559, Type : <class 'str'> + --- After Modifying variable -3311012110.96559, Type : <class 'float'> + --- Before Modifying variable -2884690358.215931, Type : <class 'str'> + --- After Modifying variable -2884690358.215931, Type : <class 'float'> + --- Before Modifying variable -2511497256.669151, Type : <class 'str'> + --- After Modifying variable -2511497256.669151, Type : <class 'float'> + --- Before Modifying variable -2563406395.758262, Type : <class 'str'> + --- After Modifying variable -2563406395.758262, Type : <class 'float'> + --- Before Modifying variable 114636041.36645955, Type : <class 'str'> + --- After Modifying variable 114636041.36645955, Type : <class 'float'> + --- Before Modifying variable 968638849.2592059, Type : <class 'str'> + --- After Modifying variable 968638849.2592059, Type : <class 'float'> + --- Before Modifying variable 1203698350.7748914, Type : <class 'str'> + --- After Modifying variable 1203698350.7748914, Type : <class 'float'> + --- Before Modifying variable 1156874732.6674967, Type : <class 'str'> + --- After Modifying variable 1156874732.6674967, Type : <class 'float'> + --- Before Modifying variable 2484680012.8657327, Type : <class 'str'> + --- After Modifying variable 2484680012.8657327, Type : <class 'float'> + --- Before Modifying variable 251237789.89416486, Type : <class 'str'> + --- After Modifying variable 251237789.89416486, Type : <class 'float'> + --- Before Modifying variable 2938092695.237851, Type : <class 'str'> + --- After Modifying variable 2938092695.237851, Type : <class 'float'> + --- Before Modifying variable 1772970016.057762, Type : <class 'str'> + --- After Modifying variable 1772970016.057762, Type : <class 'float'> + --- Before Modifying variable 2316636754.615268, Type : <class 'str'> + --- After Modifying variable 2316636754.615268, Type : <class 'float'> + --- Before Modifying variable 1988033960.003158, Type : <class 'str'> + --- After Modifying variable 1988033960.003158, Type : <class 'float'> + --- Before Modifying variable 433468213.5751529, Type : <class 'str'> + --- After Modifying variable 433468213.5751529, Type : <class 'float'> + --- Before Modifying variable 1719464575.3127308, Type : <class 'str'> + --- After Modifying variable 1719464575.3127308, Type : <class 'float'> + --- Before Modifying variable 2340588133.5950766, Type : <class 'str'> + --- After Modifying variable 2340588133.5950766, Type : <class 'float'> + --- Before Modifying variable 2617969799.560512, Type : <class 'str'> + --- After Modifying variable 2617969799.560512, Type : <class 'float'> + --- Before Modifying variable 5336300852.459394, Type : <class 'str'> + --- After Modifying variable 5336300852.459394, Type : <class 'float'> + --- Before Modifying variable 470328474.9384879, Type : <class 'str'> + --- After Modifying variable 470328474.9384879, Type : <class 'float'> + --- Before Modifying variable 6249104806.203442, Type : <class 'str'> + --- After Modifying variable 6249104806.203442, Type : <class 'float'> + --- Before Modifying variable 4657660374.273693, Type : <class 'str'> + --- After Modifying variable 4657660374.273693, Type : <class 'float'> + --- Before Modifying variable 4828134011.284419, Type : <class 'str'> + --- After Modifying variable 4828134011.284419, Type : <class 'float'> + --- Before Modifying variable 4551440355.76142, Type : <class 'str'> + --- After Modifying variable 4551440355.76142, Type : <class 'float'> + X header, margins and linear coef numbers after transpose: + [['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529], ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308], ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766], ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512], ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394], ['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879], ['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442], ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693], ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419], ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142]] +margins and linearcoef summary_to_print : + [array(['X_variable', 'meaning ', 'kernel ridge margins', + 'linear regression coefficients', 'difference'], dtype='<U30'), ['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529], ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308], ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766], ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512], ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394], ['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879], ['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442], ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693], ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419], ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142]] + --- Actual line: ['X_variable' 'meaning ' 'kernel ridge margins' + 'linear regression coefficients' 'difference'] + --- Actual line: ['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529] + --- Actual line: ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308] + --- Actual line: ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766] + --- Actual line: ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512] + --- Actual line: ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394] + --- Actual line: ['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879] + --- Actual line: ['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442] + --- Actual line: ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693] + --- Actual line: ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419] + --- Actual line: ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142] + X header, margins and linear coef numbers after transpose, ordered by margin: + [['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879], ['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529], ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308], ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766], ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512], ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419], ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142], ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394], ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693], ['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442]] +margins and linearcoef summary_to_print ordered by margin : + [array(['X_variable', 'meaning ', 'kernel ridge margins', + 'linear regression coefficients', 'difference'], dtype='<U30'), ['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529], ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308], ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766], ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512], ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394], ['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879], ['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442], ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693], ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419], ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142]] + --- Actual line: ['X_variable' 'meaning ' 'kernel ridge margins' + 'linear regression coefficients' 'difference'] + --- Actual line: ['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879] + --- Actual line: ['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529] + --- Actual line: ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308] + --- Actual line: ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766] + --- Actual line: ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512] + --- Actual line: ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419] + --- Actual line: ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142] + --- Actual line: ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394] + --- Actual line: ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693] + --- Actual line: ['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442] + X header, margins and linear coef numbers after transpose, ordered by margin: + [['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442], ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394], ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419], ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142], ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693], ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766], ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512], ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308], ['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879], ['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529]] +margins and linearcoef summary_to_print ordered by linear regression coefficients : + [array(['X_variable', 'meaning ', 'kernel ridge margins', + 'linear regression coefficients', 'difference'], dtype='<U30'), ['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442], ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394], ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419], ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142], ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693], ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766], ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512], ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308], ['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879], ['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529]] + --- Actual line: ['X_variable' 'meaning ' 'kernel ridge margins' + 'linear regression coefficients' 'difference'] + --- Actual line: ['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442] + --- Actual line: ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394] + --- Actual line: ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419] + --- Actual line: ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142] + --- Actual line: ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693] + --- Actual line: ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766] + --- Actual line: ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512] + --- Actual line: ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308] + --- Actual line: ['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879] + --- Actual line: ['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529] + X header, margins and linear coef numbers after transpose, ordered by margin: + [['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442], ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394], ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419], ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693], ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142], ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512], ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766], ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308], ['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879], ['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529]] +margins and linearcoef summary_to_print ordered by linear regression coefficients : + [array(['X_variable', 'meaning ', 'kernel ridge margins', + 'linear regression coefficients', 'difference'], dtype='<U30'), ['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442], ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394], ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419], ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693], ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142], ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512], ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766], ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308], ['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879], ['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529]] + --- Actual line: ['X_variable' 'meaning ' 'kernel ridge margins' + 'linear regression coefficients' 'difference'] + --- Actual line: ['X_6', 'Core 4 state', -3311012110.96559, 2938092695.237851, 6249104806.203442] + --- Actual line: ['X_4', 'Core 3 state', -2851620839.593662, 2484680012.8657327, 5336300852.459394] + --- Actual line: ['X_8', 'Core 6 state', -2511497256.669151, 2316636754.615268, 4828134011.284419] + --- Actual line: ['X_7', 'Core 5 state', -2884690358.215931, 1772970016.057762, 4657660374.273693] + --- Actual line: ['X_9', 'Core 7 state', -2563406395.758262, 1988033960.003158, 4551440355.76142] + --- Actual line: ['X_3', 'Core 2 state', -1461095066.8930154, 1156874732.6674967, 2617969799.560512] + --- Actual line: ['X_2', 'Core 1 state', -1136889782.8201854, 1203698350.7748914, 2340588133.5950766] + --- Actual line: ['X_1', 'Core 0 state', -750825726.0535247, 968638849.2592059, 1719464575.3127308] + --- Actual line: ['X_5', 'frequency level of Big Socket', -219090685.044323, 251237789.89416486, 470328474.9384879] + --- Actual line: ['X_0', 'frequency level of Little Socket', -318832172.2086933, 114636041.36645955, 433468213.5751529] +X_5_d linear model parameters = [ 1.85338041e+08 1.42944665e+08 -6.21882706e+07 -4.83852878e+08 + -2.44693261e+08 -2.76565385e+08 -6.45658982e+07 2.46503048e+08 + -3.16474218e+08 1.22364297e+08] + --- FLOAT version of d_X_i_linear_coefficients_ [185338041.39682832, 142944664.77740052, -62188270.581818655, -483852878.29017764, -244693261.0900952, -276565385.3744161, -64565898.18780776, 246503048.44622064, -316474218.4838966, 122364297.14268036] + --- Before Modifying variable 185338041.39682832, Type : <class 'str'> + --- After Modifying variable 185338041.39682832, Type : <class 'float'> + --- Before Modifying variable 142944664.77740052, Type : <class 'str'> + --- After Modifying variable 142944664.77740052, Type : <class 'float'> + --- Before Modifying variable -62188270.581818655, Type : <class 'str'> + --- After Modifying variable -62188270.581818655, Type : <class 'float'> + --- Before Modifying variable -483852878.29017764, Type : <class 'str'> + --- After Modifying variable -483852878.29017764, Type : <class 'float'> + --- Before Modifying variable -244693261.0900952, Type : <class 'str'> + --- After Modifying variable -244693261.0900952, Type : <class 'float'> + --- Before Modifying variable -276565385.3744161, Type : <class 'str'> + --- After Modifying variable -276565385.3744161, Type : <class 'float'> + --- Before Modifying variable -64565898.18780776, Type : <class 'str'> + --- After Modifying variable -64565898.18780776, Type : <class 'float'> + --- Before Modifying variable 246503048.44622064, Type : <class 'str'> + --- After Modifying variable 246503048.44622064, Type : <class 'float'> + --- Before Modifying variable -316474218.4838966, Type : <class 'str'> + --- After Modifying variable -316474218.4838966, Type : <class 'float'> + --- Before Modifying variable 122364297.14268036, Type : <class 'str'> + --- After Modifying variable 122364297.14268036, Type : <class 'float'> + --- Before Modifying variable 185338041.39682832, Type : <class 'str'> + --- After Modifying variable 185338041.39682832, Type : <class 'float'> + --- Before Modifying variable 142944664.77740052, Type : <class 'str'> + --- After Modifying variable 142944664.77740052, Type : <class 'float'> + --- Before Modifying variable 62188270.581818655, Type : <class 'str'> + --- After Modifying variable 62188270.581818655, Type : <class 'float'> + --- Before Modifying variable 483852878.29017764, Type : <class 'str'> + --- After Modifying variable 483852878.29017764, Type : <class 'float'> + --- Before Modifying variable 244693261.0900952, Type : <class 'str'> + --- After Modifying variable 244693261.0900952, Type : <class 'float'> + --- Before Modifying variable 276565385.3744161, Type : <class 'str'> + --- After Modifying variable 276565385.3744161, Type : <class 'float'> + --- Before Modifying variable 64565898.18780776, Type : <class 'str'> + --- After Modifying variable 64565898.18780776, Type : <class 'float'> + --- Before Modifying variable 246503048.44622064, Type : <class 'str'> + --- After Modifying variable 246503048.44622064, Type : <class 'float'> + --- Before Modifying variable 316474218.4838966, Type : <class 'str'> + --- After Modifying variable 316474218.4838966, Type : <class 'float'> + --- Before Modifying variable 122364297.14268036, Type : <class 'str'> + --- After Modifying variable 122364297.14268036, Type : <class 'float'> + X header, d_X_ 5 values : + [['X_0', 'X_1', 'X_2', 'X_3', 'X_4', 'X_5', 'X_6', 'X_7', 'X_8', 'X_9'], ['frequency level of Little Socket', 'Core 0 state', 'Core 1 state', 'Core 2 state', 'Core 3 state', 'frequency level of Big Socket', 'Core 4 state', 'Core 5 state', 'Core 6 state', 'Core 7 state'], [185338041.39682832, 142944664.77740052, -62188270.581818655, -483852878.29017764, -244693261.0900952, -276565385.3744161, -64565898.18780776, 246503048.44622064, -316474218.4838966, 122364297.14268036], [185338041.39682832, 142944664.77740052, 62188270.581818655, 483852878.29017764, 244693261.0900952, 276565385.3744161, 64565898.18780776, 246503048.44622064, 316474218.4838966, 122364297.14268036]] + --- Actual line: ['Variable' 'meaning ' + 'd_X_5 (Variation relative to frequency level of Big Socket)' + 'asolute d_X_5'] + --- Actual line: ['X_0', 'frequency level of Little Socket', 185338041.39682832, 185338041.39682832] + --- Actual line: ['X_1', 'Core 0 state', 142944664.77740052, 142944664.77740052] + --- Actual line: ['X_2', 'Core 1 state', -62188270.581818655, 62188270.581818655] + --- Actual line: ['X_3', 'Core 2 state', -483852878.29017764, 483852878.29017764] + --- Actual line: ['X_4', 'Core 3 state', -244693261.0900952, 244693261.0900952] + --- Actual line: ['X_5', 'frequency level of Big Socket', -276565385.3744161, 276565385.3744161] + --- Actual line: ['X_6', 'Core 4 state', -64565898.18780776, 64565898.18780776] + --- Actual line: ['X_7', 'Core 5 state', 246503048.44622064, 246503048.44622064] + --- Actual line: ['X_8', 'Core 6 state', -316474218.4838966, 316474218.4838966] + --- Actual line: ['X_9', 'Core 7 state', 122364297.14268036, 122364297.14268036] + X header, margins and linear coef numbers after transpose, ordered by margin: + [['X_7', 'Core 5 state', 246503048.44622064, 246503048.44622064], ['X_0', 'frequency level of Little Socket', 185338041.39682832, 185338041.39682832], ['X_1', 'Core 0 state', 142944664.77740052, 142944664.77740052], ['X_9', 'Core 7 state', 122364297.14268036, 122364297.14268036], ['X_2', 'Core 1 state', -62188270.581818655, 62188270.581818655], ['X_6', 'Core 4 state', -64565898.18780776, 64565898.18780776], ['X_4', 'Core 3 state', -244693261.0900952, 244693261.0900952], ['X_5', 'frequency level of Big Socket', -276565385.3744161, 276565385.3744161], ['X_8', 'Core 6 state', -316474218.4838966, 316474218.4838966], ['X_3', 'Core 2 state', -483852878.29017764, 483852878.29017764]] +margins and linearcoef summary_to_print ordered by margin : + [array(['Variable', 'meaning ', + 'd_X_5 (Variation relative to frequency level of Big Socket)', + 'asolute d_X_5'], dtype='<U59'), ['X_7', 'Core 5 state', 246503048.44622064, 246503048.44622064], ['X_0', 'frequency level of Little Socket', 185338041.39682832, 185338041.39682832], ['X_1', 'Core 0 state', 142944664.77740052, 142944664.77740052], ['X_9', 'Core 7 state', 122364297.14268036, 122364297.14268036], ['X_2', 'Core 1 state', -62188270.581818655, 62188270.581818655], ['X_6', 'Core 4 state', -64565898.18780776, 64565898.18780776], ['X_4', 'Core 3 state', -244693261.0900952, 244693261.0900952], ['X_5', 'frequency level of Big Socket', -276565385.3744161, 276565385.3744161], ['X_8', 'Core 6 state', -316474218.4838966, 316474218.4838966], ['X_3', 'Core 2 state', -483852878.29017764, 483852878.29017764]] + --- Actual line: ['Variable' 'meaning ' + 'd_X_5 (Variation relative to frequency level of Big Socket)' + 'asolute d_X_5'] + --- Actual line: ['X_7', 'Core 5 state', 246503048.44622064, 246503048.44622064] + --- Actual line: ['X_0', 'frequency level of Little Socket', 185338041.39682832, 185338041.39682832] + --- Actual line: ['X_1', 'Core 0 state', 142944664.77740052, 142944664.77740052] + --- Actual line: ['X_9', 'Core 7 state', 122364297.14268036, 122364297.14268036] + --- Actual line: ['X_2', 'Core 1 state', -62188270.581818655, 62188270.581818655] + --- Actual line: ['X_6', 'Core 4 state', -64565898.18780776, 64565898.18780776] + --- Actual line: ['X_4', 'Core 3 state', -244693261.0900952, 244693261.0900952] + --- Actual line: ['X_5', 'frequency level of Big Socket', -276565385.3744161, 276565385.3744161] + --- Actual line: ['X_8', 'Core 6 state', -316474218.4838966, 316474218.4838966] + --- Actual line: ['X_3', 'Core 2 state', -483852878.29017764, 483852878.29017764] + X header, margins and linear coef numbers after transpose, ordered by margin: + [['X_3', 'Core 2 state', -483852878.29017764, 483852878.29017764], ['X_8', 'Core 6 state', -316474218.4838966, 316474218.4838966], ['X_5', 'frequency level of Big Socket', -276565385.3744161, 276565385.3744161], ['X_7', 'Core 5 state', 246503048.44622064, 246503048.44622064], ['X_4', 'Core 3 state', -244693261.0900952, 244693261.0900952], ['X_0', 'frequency level of Little Socket', 185338041.39682832, 185338041.39682832], ['X_1', 'Core 0 state', 142944664.77740052, 142944664.77740052], ['X_9', 'Core 7 state', 122364297.14268036, 122364297.14268036], ['X_6', 'Core 4 state', -64565898.18780776, 64565898.18780776], ['X_2', 'Core 1 state', -62188270.581818655, 62188270.581818655]] +margins and linearcoef summary_to_print ordered by margin : + [array(['Variable', 'meaning ', + 'd_X_5 (Variation relative to frequency level of Big Socket)', + 'asolute d_X_5'], dtype='<U59'), ['X_3', 'Core 2 state', -483852878.29017764, 483852878.29017764], ['X_8', 'Core 6 state', -316474218.4838966, 316474218.4838966], ['X_5', 'frequency level of Big Socket', -276565385.3744161, 276565385.3744161], ['X_7', 'Core 5 state', 246503048.44622064, 246503048.44622064], ['X_4', 'Core 3 state', -244693261.0900952, 244693261.0900952], ['X_0', 'frequency level of Little Socket', 185338041.39682832, 185338041.39682832], ['X_1', 'Core 0 state', 142944664.77740052, 142944664.77740052], ['X_9', 'Core 7 state', 122364297.14268036, 122364297.14268036], ['X_6', 'Core 4 state', -64565898.18780776, 64565898.18780776], ['X_2', 'Core 1 state', -62188270.581818655, 62188270.581818655]] + --- Actual line: ['Variable' 'meaning ' + 'd_X_5 (Variation relative to frequency level of Big Socket)' + 'asolute d_X_5'] + --- Actual line: ['X_3', 'Core 2 state', -483852878.29017764, 483852878.29017764] + --- Actual line: ['X_8', 'Core 6 state', -316474218.4838966, 316474218.4838966] + --- Actual line: ['X_5', 'frequency level of Big Socket', -276565385.3744161, 276565385.3744161] + --- Actual line: ['X_7', 'Core 5 state', 246503048.44622064, 246503048.44622064] + --- Actual line: ['X_4', 'Core 3 state', -244693261.0900952, 244693261.0900952] + --- Actual line: ['X_0', 'frequency level of Little Socket', 185338041.39682832, 185338041.39682832] + --- Actual line: ['X_1', 'Core 0 state', 142944664.77740052, 142944664.77740052] + --- Actual line: ['X_9', 'Core 7 state', 122364297.14268036, 122364297.14268036] + --- Actual line: ['X_6', 'Core 4 state', -64565898.18780776, 64565898.18780776] + --- Actual line: ['X_2', 'Core 1 state', -62188270.581818655, 62188270.581818655] +Plotting d_X_5 over other variables +--- In function plot_marginal_interactions : plotting d_X_5 with regard to X_0, X_1, X_2 +--- Total execution time: 4.789206266403198 seconds = 0.0798201044400533 mins diff --git a/kernel_ridge_linear_model/loo_errors_according_to_lamda.csv b/kernel_ridge_linear_model/loo_errors_according_to_lamda.csv index 1616f7f..f3dd9f6 100755 --- a/kernel_ridge_linear_model/loo_errors_according_to_lamda.csv +++ b/kernel_ridge_linear_model/loo_errors_according_to_lamda.csv @@ -1,115 +1,6 @@ -1e-09,1.7701392351567278e+18 -0.001000000999,1.7631034014803666e+18 -0.002000000998,1.75630810493316e+18 -0.003000000997,1.7497423380035264e+18 -0.004000000996,1.7433957629900836e+18 -0.005000000995,1.7372586621168689e+18 -0.0060000009940000005,1.731321892027267e+18 -0.007000000993000001,1.7255768422148004e+18 -0.008000000992000001,1.7200153969993341e+18 -0.009000000991000002,1.714629900701021e+18 -0.010000000990000002,1.7094131257030085e+18 -0.011000000989000003,1.7043582431272842e+18 -0.012000000988000003,1.6994587958781345e+18 -0.013000000987000004,1.694708673833322e+18 -0.014000000986000004,1.6901020909863864e+18 -0.015000000985000005,1.68563356436358e+18 -0.016000000984000003,1.681297894557157e+18 -0.017000000983000002,1.6770901477328317e+18 -0.018000000982,1.673005638982404e+18 -0.019000000981,1.6690399169067794e+18 -0.020000000979999998,1.6651887493244145e+18 -0.021000000978999997,1.661448110010651e+18 -0.022000000977999996,1.6578141663829176e+18 -0.023000000976999994,1.6542832680538255e+18 -0.024000000975999993,1.6508519361821788e+18 -0.025000000974999992,1.647516853557631e+18 -0.02600000097399999,1.644274855361357e+18 -0.02700000097299999,1.6411229205493076e+18 -0.028000000971999988,1.638058163810133e+18 -0.029000000970999987,1.635077828053585e+18 -0.030000000969999985,1.632179277389266e+18 -0.031000000968999984,1.62935999055885e+18 -0.032000000967999986,1.6266175547881994e+18 -0.03300000096699999,1.6239496600284314e+18 -0.03400000096599999,1.6213540935578112e+18 -0.03500000096499999,1.6188287349181537e+18 -0.036000000963999995,1.6163715511624302e+18 -0.037000000963,1.61398059239107e+18 -0.038000000962,1.611653987557093e+18 -0.039000000961,1.6093899405214472e+18 -0.040000000960000004,1.6071867263412493e+18 -0.041000000959000006,1.605042687775345e+18 -0.04200000095800001,1.6029562319922831e+18 -0.04300000095700001,1.6009258274675139e+18 -0.04400000095600001,1.598950001057071e+18 -0.045000000955000015,1.5970273352363763e+18 -0.04600000095400002,1.5951564654932436e+18 -0.04700000095300002,1.593336077865553e+18 -0.04800000095200002,1.5915649066137677e+18 -0.049000000951000024,1.5898417320205425e+18 -0.050000000950000026,1.5881653783087708e+18 -0.05100000094900003,1.586534711671138e+18 -0.05200000094800003,1.58494863840425e+18 -0.05300000094700003,1.5834061031407478e+18 -0.054000000946000035,1.5819060871738755e+18 -0.05500000094500004,1.580447606868436e+18 -0.05600000094400004,1.579029712153596e+18 -0.05700000094300004,1.577651485092099e+18 -0.05800000094200004,1.576312038521866e+18 -0.059000000941000046,1.575010514765607e+18 -0.06000000094000005,1.5737460844045056e+18 -0.06100000093900005,1.5725179451123443e+18 -0.06200000093800005,1.5713253205466253e+18 -0.06300000093700005,1.5701674592935532e+18 -0.06400000093600004,1.5690436338637658e+18 -0.06500000093500004,1.5679531397361162e+18 -0.06600000093400003,1.5668952944466314e+18 -0.06700000093300003,1.5658694367205775e+18 -0.06800000093200002,1.5648749256448796e+18 -0.06900000093100002,1.5639111398790047e+18 -0.07000000093000001,1.5629774769021358e+18 -0.07100000092900001,1.5620733522946657e+18 -0.072000000928,1.561198199052482e+18 -0.073000000927,1.5603514669318646e+18 -0.074000000926,1.5595326218238223e+18 -0.07500000092499999,1.5587411451562179e+18 -0.07600000092399999,1.5579765333221632e+18 -0.07700000092299998,1.5572382971333857e+18 -0.07800000092199998,1.556525961297555e+18 -0.07900000092099997,1.5558390639178941e+18 -0.08000000091999997,1.5551771560144722e+18 -0.08100000091899996,1.554539801065683e+18 -0.08200000091799996,1.553926574569248e+18 -0.08300000091699995,1.5533370636215933e+18 -0.08400000091599995,1.552770866514712e+18 -0.08500000091499994,1.55222759234984e+18 -0.08600000091399994,1.5517068606669883e+18 -0.08700000091299993,1.5512083010895212e+18 -0.08800000091199993,1.5507315529833462e+18 -0.08900000091099992,1.5502762651296801e+18 -0.09000000090999992,1.5498420954110838e+18 -0.09100000090899991,1.5494287105098726e+18 -0.09200000090799991,1.5490357856185539e+18 -0.0930000009069999,1.548663004161553e+18 -0.0940000009059999,1.5483100575279951e+18 -0.0950000009049999,1.5479766448145574e+18 -0.09600000090399989,1.5476624725785956e+18 -0.09700000090299989,1.5473672546004726e+18 -0.09800000090199988,1.5470907116549903e+18 -0.09900000090099988,1.5468325712916393e+18 -0.10000000089999987,1.5465925676228902e+18 -0.10100000089899987,1.546370441120558e+18 -0.10200000089799986,1.5461659384196756e+18 -0.10300000089699986,1.5459788121296445e+18 -0.10400000089599985,1.5458088206522685e+18 -0.10500000089499985,1.545655728006526e+18 -0.10600000089399984,1.545519303659602e+18 -0.10700000089299984,1.5453993223640556e+18 -0.10800000089199983,1.5452955640008515e+18 -0.10900000089099983,1.5452078134279798e+18 -0.11000000088999982,1.545135860334405e+18 -0.11100000088899982,1.545079499099202e+18 -0.11200000088799981,1.5450385286555945e+18 -0.11300000088699981,1.5450127523597908e+18 -0.1140000008859998,1.5450019778642842e+18 +1e-09,6.588560192002727e+18 +0.01000000099,1.7311586609842025e+18 +0.02000000098,1.5875384951283098e+18 +0.030000000970000003,1.5366952179085604e+18 +0.040000000960000004,1.516697931116677e+18 +0.050000000950000005,1.5116267365279708e+18 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_0.89_base_Y/cases_where_big_cores_variation_has_negative_impact_on_efficacity.txt b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_0.89_base_Y/cases_where_big_cores_variation_has_negative_impact_on_efficacity.txt new file mode 100755 index 0000000..f84bd95 --- /dev/null +++ b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_0.89_base_Y/cases_where_big_cores_variation_has_negative_impact_on_efficacity.txt @@ -0,0 +1,141 @@ +Little core frequency level, Core 0 state, 1, 2, 3, 4, 5, Core 6 level, core 7 level, +2, 1, 0, 0, 0, 0, 0, 3, 1, +0, 0, 1, 1, 1, 1, 1, 3, 3, +1, 1, 1, 1, 0, 0, 1, 0, 0, +2, 0, 0, 1, 1, 1, 0, 3, 2, +0, 0, 1, 1, 0, 1, 1, 3, 2, +0, 0, 1, 0, 0, 1, 0, 1, 0, +2, 1, 1, 1, 1, 0, 0, 3, 2, +0, 1, 1, 0, 0, 0, 1, 2, 3, +1, 0, 1, 1, 1, 0, 1, 2, 3, +0, 0, 1, 1, 0, 1, 0, 3, 2, +1, 1, 1, 0, 1, 1, 1, 2, 3, +2, 0, 1, 0, 0, 0, 1, 0, 0, +2, 0, 1, 0, 1, 1, 0, 3, 3, +2, 1, 0, 0, 0, 1, 1, 3, 2, +1, 1, 0, 0, 1, 1, 1, 3, 2, +2, 1, 1, 1, 0, 1, 1, 0, 0, +0, 1, 0, 1, 1, 1, 0, 1, 0, +0, 0, 0, 1, 1, 1, 1, 1, 0, +2, 1, 0, 0, 1, 0, 1, 0, 0, +1, 1, 0, 1, 0, 0, 0, 3, 3, +2, 0, 1, 1, 0, 0, 0, 1, 0, +0, 0, 1, 1, 0, 1, 1, 1, 0, +2, 0, 0, 1, 0, 0, 0, 3, 3, +2, 0, 0, 1, 1, 0, 0, 2, 0, +2, 0, 1, 1, 1, 1, 0, 3, 2, +1, 1, 1, 1, 1, 1, 1, 0, 0, +2, 1, 0, 1, 0, 0, 0, 3, 1, +1, 1, 0, 1, 0, 1, 1, 3, 3, +2, 0, 0, 0, 1, 1, 1, 2, 3, +2, 1, 0, 1, 1, 1, 0, 0, 0, +1, 1, 1, 1, 0, 1, 1, 3, 3, +0, 0, 0, 1, 0, 1, 1, 1, 0, +2, 1, 1, 0, 0, 1, 0, 3, 2, +1, 1, 0, 1, 0, 1, 0, 3, 3, +2, 0, 1, 1, 1, 1, 1, 3, 3, +0, 0, 0, 1, 0, 1, 0, 1, 0, +2, 1, 1, 1, 0, 1, 0, 3, 2, +0, 1, 1, 1, 1, 0, 1, 0, 0, +2, 1, 1, 0, 1, 1, 0, 3, 3, +0, 1, 0, 0, 0, 1, 0, 1, 0, +1, 1, 1, 0, 0, 1, 1, 3, 2, +2, 1, 0, 0, 1, 0, 0, 1, 0, +0, 1, 0, 0, 0, 1, 1, 0, 0, +1, 0, 1, 0, 0, 0, 1, 2, 3, +0, 1, 1, 0, 1, 1, 1, 0, 0, +1, 0, 1, 1, 1, 1, 1, 0, 0, +2, 1, 1, 1, 1, 1, 1, 1, 3, +1, 1, 1, 0, 1, 1, 0, 0, 0, +2, 1, 0, 1, 1, 1, 1, 0, 0, +0, 1, 0, 0, 0, 0, 0, 1, 0, +2, 0, 1, 1, 0, 1, 1, 1, 3, +1, 0, 0, 1, 1, 1, 0, 1, 0, +1, 0, 1, 0, 0, 0, 0, 3, 2, +0, 0, 0, 0, 0, 1, 0, 3, 1, +2, 1, 1, 1, 1, 1, 1, 0, 0, +2, 1, 1, 1, 0, 0, 0, 0, 0, +0, 1, 1, 1, 0, 1, 1, 3, 3, +0, 0, 0, 1, 1, 1, 1, 3, 3, +1, 0, 0, 0, 0, 1, 1, 3, 2, +1, 1, 1, 0, 0, 0, 0, 0, 0, +1, 0, 1, 1, 0, 1, 1, 3, 3, +2, 1, 1, 1, 1, 1, 0, 2, 3, +0, 1, 1, 1, 0, 1, 0, 3, 3, +2, 0, 0, 1, 0, 0, 1, 3, 3, +0, 1, 1, 1, 0, 1, 1, 2, 3, +2, 1, 1, 1, 0, 0, 1, 2, 3, +1, 1, 1, 1, 1, 1, 1, 3, 2, +1, 1, 0, 0, 1, 1, 1, 2, 3, +0, 1, 0, 1, 1, 0, 1, 3, 2, +0, 0, 1, 1, 0, 0, 0, 2, 0, +2, 0, 1, 1, 0, 1, 1, 3, 2, +0, 0, 1, 0, 0, 0, 0, 3, 2, +0, 0, 0, 0, 1, 1, 1, 0, 0, +1, 1, 1, 1, 1, 1, 0, 0, 0, +2, 0, 1, 1, 1, 1, 0, 0, 0, +1, 1, 0, 1, 1, 1, 1, 3, 3, +0, 1, 1, 1, 0, 0, 0, 1, 0, +0, 1, 0, 0, 1, 0, 1, 1, 0, +2, 0, 0, 0, 1, 0, 0, 0, 0, +1, 1, 0, 1, 0, 0, 0, 0, 0, +1, 0, 0, 0, 0, 1, 0, 0, 0, +1, 1, 1, 0, 0, 0, 0, 3, 3, +2, 1, 1, 1, 0, 1, 0, 2, 3, +2, 1, 1, 1, 1, 0, 0, 0, 0, +1, 1, 0, 1, 1, 0, 0, 3, 2, +2, 1, 1, 0, 0, 1, 1, 1, 3, +0, 1, 1, 1, 1, 1, 1, 1, 0, +2, 1, 1, 0, 1, 0, 1, 0, 0, +2, 0, 1, 1, 0, 1, 0, 3, 3, +2, 1, 1, 0, 0, 0, 0, 3, 3, +2, 1, 1, 0, 1, 1, 0, 2, 3, +0, 1, 0, 1, 1, 1, 1, 1, 0, +2, 1, 1, 1, 0, 1, 1, 2, 3, +2, 1, 1, 1, 1, 1, 1, 3, 2, +1, 1, 1, 1, 0, 1, 1, 0, 0, +2, 1, 0, 0, 0, 0, 1, 3, 3, +2, 0, 1, 0, 0, 0, 0, 3, 3, +0, 1, 0, 0, 0, 0, 0, 0, 0, +0, 1, 1, 1, 0, 0, 0, 0, 0, +2, 0, 0, 1, 1, 1, 1, 3, 3, +1, 0, 1, 1, 1, 0, 1, 0, 0, +0, 1, 0, 1, 0, 1, 1, 1, 0, +2, 0, 1, 1, 1, 1, 0, 2, 3, +2, 1, 1, 1, 1, 1, 0, 3, 1, +1, 1, 0, 0, 0, 1, 0, 1, 0, +2, 0, 0, 1, 1, 1, 1, 2, 3, +0, 1, 1, 1, 1, 1, 0, 1, 0, +2, 0, 1, 0, 1, 0, 1, 0, 0, +1, 1, 1, 0, 0, 1, 1, 3, 3, +0, 0, 1, 1, 1, 1, 1, 1, 0, +2, 1, 1, 0, 1, 1, 1, 0, 0, +1, 1, 0, 1, 1, 0, 1, 2, 3, +0, 1, 0, 0, 0, 1, 1, 3, 2, +1, 1, 1, 0, 1, 1, 0, 3, 2, +1, 1, 1, 1, 0, 1, 1, 2, 3, +0, 0, 1, 0, 0, 0, 0, 1, 0, +2, 1, 1, 1, 1, 0, 1, 0, 0, +2, 0, 1, 0, 0, 1, 0, 1, 0, +2, 0, 1, 1, 0, 0, 0, 2, 0, +0, 1, 1, 0, 1, 0, 1, 1, 0, +2, 1, 1, 0, 0, 0, 0, 0, 0, +1, 1, 1, 1, 1, 1, 0, 2, 3, +2, 1, 1, 0, 0, 1, 1, 3, 3, +2, 1, 0, 0, 0, 0, 0, 1, 0, +2, 0, 1, 1, 1, 1, 1, 1, 3, +1, 0, 1, 0, 0, 1, 1, 1, 0, +0, 1, 0, 0, 0, 1, 0, 0, 1, +2, 1, 0, 0, 1, 1, 1, 3, 2, +1, 0, 1, 1, 1, 1, 1, 2, 3, +0, 1, 0, 1, 1, 1, 1, 3, 3, +0, 0, 1, 0, 1, 1, 1, 0, 0.]] + +39 where little cores are with level 1 +36 where little cores are with level 2 +56 where little cores are with level 3 + +46 cases where the big core is on level 3 +21 cases where the big core is on level 2 +5 cases where the big core is on level 1 +59 cases where big cores are on level 0 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/.~lock.linear_coeff_vs_kernel_ridge_margins.csv# b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/.~lock.linear_coeff_vs_kernel_ridge_margins.csv# new file mode 100755 index 0000000..1f6c6ec --- /dev/null +++ b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/.~lock.linear_coeff_vs_kernel_ridge_margins.csv# @@ -0,0 +1 @@ +,DESKTOP-D49H2V3/lavoi,DESKTOP-D49H2V3,06.09.2022 14:49,file:///C:/Users/lavoi/AppData/Roaming/LibreOffice/4; \ No newline at end of file diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/d_X_5_linear_coefficients.csv b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/d_X_5_linear_coefficients.csv new file mode 100755 index 0000000..3fd0e5d --- /dev/null +++ b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/d_X_5_linear_coefficients.csv @@ -0,0 +1,39 @@ +Variable,meaning ,d_X_5 (Variation relative to frequency level of Big Socket),asolute d_X_5 +X_0,frequency level of Little Socket,0.0,0.0 +X_1,Core 0 state,0.0,0.0 +X_2,Core 1 state,0.0,0.0 +X_3,Core 2 state,0.0,0.0 +X_4,Core 3 state,0.0,0.0 +X_5,frequency level of Big Socket,0.0,0.0 +X_6,Core 4 state,0.0,0.0 +X_7,Core 5 state,0.0,0.0 +X_8,Core 6 state,0.0,0.0 +X_9,Core 7 state,0.0,0.0 + + + Ordered by value of coefficient, the first has the best positive interaction, with frequency level of Big Socket + Variable,meaning ,d_X_5 (Variation relative to frequency level of Big Socket),asolute d_X_5 +X_0,frequency level of Little Socket,0.0,0.0 +X_1,Core 0 state,0.0,0.0 +X_2,Core 1 state,0.0,0.0 +X_3,Core 2 state,0.0,0.0 +X_4,Core 3 state,0.0,0.0 +X_5,frequency level of Big Socket,0.0,0.0 +X_6,Core 4 state,0.0,0.0 +X_7,Core 5 state,0.0,0.0 +X_8,Core 6 state,0.0,0.0 +X_9,Core 7 state,0.0,0.0 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with frequency level of Big Socket + Variable,meaning ,d_X_5 (Variation relative to frequency level of Big Socket),asolute d_X_5 +X_0,frequency level of Little Socket,0.0,0.0 +X_1,Core 0 state,0.0,0.0 +X_2,Core 1 state,0.0,0.0 +X_3,Core 2 state,0.0,0.0 +X_4,Core 3 state,0.0,0.0 +X_5,frequency level of Big Socket,0.0,0.0 +X_6,Core 4 state,0.0,0.0 +X_7,Core 5 state,0.0,0.0 +X_8,Core 6 state,0.0,0.0 +X_9,Core 7 state,0.0,0.0 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000..598e78a --- /dev/null +++ b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,53 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,-292753999.7652562,201976182.4201647,494730182.18542093 +X_1,Core 0 state,-235420744.78682944,1060944296.0670272,1296365040.8538566 +X_2,Core 1 state,-349166162.2549529,468235150.7606225,817401313.0155754 +X_3,Core 2 state,-1442183823.090297,1604553505.4900584,3046737328.5803556 +X_4,Core 3 state,-408581218.88735193,255306768.86347324,663887987.7508252 +X_5,frequency level of Big Socket,-0.0,5.713381305281466e-07,5.713381305281466e-07 +X_6,Core 4 state,-3506794385.182414,2961837290.3257966,6468631675.508211 +X_7,Core 5 state,-2266195423.7737036,2087745954.4442053,4353941378.217909 +X_8,Core 6 state,-2288882810.2056246,2258075397.76685,4546958207.972475 +X_9,Core 7 state,-2891630710.2438974,3517869796.0262566,6409500506.270154 + + + Ordered by kernel ridge coefficients, highest is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_5,frequency level of Big Socket,-0.0,5.713381305281466e-07,5.713381305281466e-07 +X_1,Core 0 state,-235420744.78682944,1060944296.0670272,1296365040.8538566 +X_0,frequency level of Little Socket,-292753999.7652562,201976182.4201647,494730182.18542093 +X_2,Core 1 state,-349166162.2549529,468235150.7606225,817401313.0155754 +X_4,Core 3 state,-408581218.88735193,255306768.86347324,663887987.7508252 +X_3,Core 2 state,-1442183823.090297,1604553505.4900584,3046737328.5803556 +X_7,Core 5 state,-2266195423.7737036,2087745954.4442053,4353941378.217909 +X_8,Core 6 state,-2288882810.2056246,2258075397.76685,4546958207.972475 +X_9,Core 7 state,-2891630710.2438974,3517869796.0262566,6409500506.270154 +X_6,Core 4 state,-3506794385.182414,2961837290.3257966,6468631675.508211 + + + Ordered by linear regression coefficients, highest is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_9,Core 7 state,-2891630710.2438974,3517869796.0262566,6409500506.270154 +X_6,Core 4 state,-3506794385.182414,2961837290.3257966,6468631675.508211 +X_8,Core 6 state,-2288882810.2056246,2258075397.76685,4546958207.972475 +X_7,Core 5 state,-2266195423.7737036,2087745954.4442053,4353941378.217909 +X_3,Core 2 state,-1442183823.090297,1604553505.4900584,3046737328.5803556 +X_1,Core 0 state,-235420744.78682944,1060944296.0670272,1296365040.8538566 +X_2,Core 1 state,-349166162.2549529,468235150.7606225,817401313.0155754 +X_4,Core 3 state,-408581218.88735193,255306768.86347324,663887987.7508252 +X_0,frequency level of Little Socket,-292753999.7652562,201976182.4201647,494730182.18542093 +X_5,frequency level of Big Socket,-0.0,5.713381305281466e-07,5.713381305281466e-07 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 4 state,-3506794385.182414,2961837290.3257966,6468631675.508211 +X_9,Core 7 state,-2891630710.2438974,3517869796.0262566,6409500506.270154 +X_8,Core 6 state,-2288882810.2056246,2258075397.76685,4546958207.972475 +X_7,Core 5 state,-2266195423.7737036,2087745954.4442053,4353941378.217909 +X_3,Core 2 state,-1442183823.090297,1604553505.4900584,3046737328.5803556 +X_1,Core 0 state,-235420744.78682944,1060944296.0670272,1296365040.8538566 +X_2,Core 1 state,-349166162.2549529,468235150.7606225,817401313.0155754 +X_4,Core 3 state,-408581218.88735193,255306768.86347324,663887987.7508252 +X_0,frequency level of Little Socket,-292753999.7652562,201976182.4201647,494730182.18542093 +X_5,frequency level of Big Socket,-0.0,5.713381305281466e-07,5.713381305281466e-07 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_big_socket_frequency_level.png b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_big_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..d4846d39c21ef88d846ea367a5c5c246fe3c745f GIT binary patch literal 19544 zcmeHvd0dX^{{Nk96Io^?A~6aTg-S^q4S7N(?OG(!qD>|3Vbly_JW8QerR8an_B}!> zq)q!qY2Ww#_r5YSXTEdJ`ToxN{r#KQIb%@wbKlo}U7yc;`}C`lf*dOg2Ma|}thA#) zDO1z}H;Q6vTDlm2B2rS<f?xLA9M-ToWpUodPXCf2bwc09@}h;!MdP!ZFB@L6HnuPq z5)cvCvvaeNjg6(XxS*ifpI;zgap{6!mHuEBF7ln_QB7-#TB%R|&lDjYZcI_fUekU$ zsB*=xr`}#gb!2vKpi+PF)$3<2DOo94ecJe2;@-mr(ZX3z&zpRGEj;|xYyB99H|qoE zgnNui<plc9oYs`mOTTz6KKVnNigMZRg~F_>j>}Z#NKf0FZ!d{nvGJTVmuXK@Rp89T z#Rf+~$+p*<cDd`XTR>56#;IxPxFt$u*MiOXZNVyviK33XQ%fo8%-)4E_?!D%D14#s za;8-jm3wZf8~$jUEVYoLcCY{c-|`=?*q7$c1+nK^TU*5)h9ed%Sa2?0LtAGBMWrrx z*KaS6JQbxL7f@IC&VJ`@YMgzeq=QOxb91Z!Geu2*CwFJ#$?J<*wRPN&t)k|xxw%oa zwppe{ix;P-a!?=EtX>`5-F@-KjT^>|+0L;7OWb~7TeD_|ghbt}r1_DBxj9YK#*MkT zG7B~<<=x)6Us-x?I>Dqe_Whhiko(@D*3)>$5xLgIl5L&eQ$eM^Lxpm9!9Q&M+dEgf z`pYj%@sWH#{`j&YjB+bmO)&*6z=w+4c6zZaTc)GKLWyzyXImt5**Z#K%l5h39MYMk zQm*3<nFOL2Q-0UC&Tp-})#QdU?T3U%N8$_z`Y+k?QcX7VceyL2?unM3rnb&vO64Yp zBg>WEx-^r<?5qXM%xvq{MMOmGaGvZ4A8pNY7@@yDYvsG`xNp<To7m4$M?57LR0SPm zmK=H~ls?(XFkI)pR!}$kD)SPP+GI16vZtQhy!-a430?S*cz0lE$XYcGi=g`S&EnkC z7FiYgvytHerFCi6NmgHuI8wtyL-*gGw?1r7MWqc7+pt~e@vf6>H8bt)yhP<jnsoCv z>GAXPmz9PcQ&mw3#a%g0(Rq%kge!0+nboR&_uY5m&XbAD7z>sBmv0nP+Hav)HZT@w zIscd<qf3Lhduo!7ojiF`-1_V7>6w`%r-@5R=Ji^1n>K&DsFNW_$WFQ3TNl|;7S6wQ zt1OpO|BJ(w>e|}TpFf|SayoeMV3-BAjax!RJ5}}E@R(U+w$8-F#AM^#jGpIup(Bxz zktX%&NpJ3QS@c!L>Kwp3j8qJi62H<P^hm^1t$FhN`$u8<T&|f>g-a+ZVvWe;nrA*f zK958#Vn6sFF#Qy*+4(W}x~@Y<7|Ya=BS+-vD>jN*mW=RlbMKIrZj|EOe<@VCb1}a2 zxX9$vCJS#Lp96j`XOenqQ;yMJzI-Vl-cVb6x}l-L`y>ZN$#_S`Gwt58<>1WJn0lT& zt8HgFFVFVvrZbZxT3HTBD>g|)w6vV7cN%)n^4)hO_<RxDP8A*3nGy2Z8OO*Cs)+2P zHXXQpJVfrU+U3j1(Q1sE6pOeDhC0KdF<bmn%P&$>-9lO8pKtN;@hM-qlIp&E{gd@V z=Tp-!Vv*$44Vas*Em|g!zEeU%8%v|A!HT;YIT>QH0Q)BQ#<y~J%0Q8cIae><u1`0K zrrp}PmkLrwp$uBU#Kd%IXw=$vJ*C7ewrKf3YG(7A-IU6i4}SX#r%Z0uWlpcD>bb1$ z!%Qh0rWU%fyn84lH=(I{X>28GYlPMR_|E^Z+AcZBEVC#!?JEbT=yYrE1>1j|5;-pC z&^IgNZ2tMCe!p}jwLoT(c}CAZ!*JK_cG8T_6*L>${Zy06{2}`kb6WM1@Uh<6EwKWN zD8D<Wa&Z*?yMljZl`y5USxQP*NV@7rQ9)^Sp9PeHy1`uvFHjvDLH*2`AaZ8e*uoU0 zXUemuu^u;X-8yyj=r7ptBIn+&YW?~({n=Tng68CudClRD%9)hf`3j@s$?C?+A^cIO zSRw>R&#e0S;Vj3oPq|l_M|x5k<>^lq{G;wl&uSDs*mcUpB<jv4$*33Cmt>@x;9VD9 z*t0y((ss2fkC>Q7vE-QF>}X0(M-(Gg`O>B5<iBb3(Vp6HwHPhlUAs=yXV~RLkD!vi zHA&)=me#v^^{Tg~IK^%>-Cww@W`(p+?jmo>a$9zeY5(fnzn%B6@Nh<AqDo0g$*9!o z)vHaao&}edmTGJ8x^;d=spk`viW&S|Hov^FM;aGCH?0&neE4t&R$*{#ta7lms3P6g zl$={#U0oIymP_qi92`-8etx%N<5E*KUcY`lI&tmVwL(5lw_8aj74n+%JL%;0)Yqu~ zlwZ^lE~bms&%=@}8e>m9-e>&z)vp{v=Wma8R}Y0(ikg1fsTrd-wPw?%-d85yO5+MQ ze2z&&W}3KNZ?tB@`AAuh6*%5L=Mt(_l$D=kW=eR>rlqAlufE8xqj%`gwZWmGp0aye z<@oHEVQcus9a)mw$R{YMZe<mZE9_KMR16CZt@1HEcW#G}&?!_hcFw+@9y8bIcN5=H zRFnKEgE*$+M~^Da&CXOj)0g!Zx0Np_DA3Ar$x@5c-NmSgvikCd7rW=hix(`*mzTE` z+{aF_t+u03*0du{E>aSgyM2$`-4uhihi6H$Xw+q>$El(F@z4Y_`>)m2)d^z{v9YuB zZ`*ccZgwn3M_UA^x|I>nWclLSA|LJEFJD4JL%Df)cvMdw#xqo0kBnskqM_y+n9U!D zK8|UjTh8aamD1(A1Y_^lN&ea7_&%mtU$C#t8E0%^YLb7$dj{Y77nsEN?Cfh6ww@{Z z@Rb)Y&mT-}=A{&y?{58TE`^2k4A)<#AK6*YAGwX>WB+R)<;F5THC6PvmH(Dc9OD=h z75?SKW=iR*^VDeMKpwvi>5nXT{?@^9i1S3;@KwfTPdi>c^1n1Rpx(2g&+3ocaAV0F z`fz}+F73!+N98}C^#1|z@$Ej7OHCwoZ)rTQ^XH*WIR9Q5-G*(|s-Se+E|ZTz2Mgc6 zwQMhAs0(WDT<c-{^5^daqSndS4hGIm%c--<E4@8&Uz=bGa^g{!Q69?Pcy36#+@t0F z;6apLjtk29rFQlW8yMIHQ^Jm;7ui)&f0aZev~^?*HIq!d^QJdgWCr8Y_#`EDD)n5m zvg(VA756=ki7LWIvV6$lxUfG3dzpuZjkcoa*n^!Xu@%dc%}%42wGVfcvFpfTOXC1; z+=lYOe*zd{+!P4z(O$!w4#Vxi$!4`RwSAdG3L+-uM@Kp<%1D25p0vTnZ@<1$D#B6{ zPhI-uuC%VIA+u$$fKGaQ{_VU=V{tLh_6Vk@Z=@{wPA$w$O%>~D$U3d(JmM`oH9qjA zM>@r{QbAu|zq2g-E@^=1$2!jfe*Ssk>-_xMwq-0VIJ>&`H<&FS`uT12W(%;KFZ3o( zl%KFMT`gK8STKA15Q=2#xyH9|kJ3s3a`=|Jq2msYj>dY4lQS=mMRnIV8f+=h%63Zo z6sH%r?Zl($Uf(~OG+&xHc624_%>n`nIGmIHc`M1g!za?{6(-(sadH29Z@$GKy;%ai znbiE!G!MzSnkR>E*^JfO6%`d73v?cRsOvOv7zdjdjaSxvdCBedLfT5Za7-)ku^)He zJ|?ho<w|uE6B9O7ye=hY->>`Ks56T%eDFJ|t?hT{(4m&TzPK&2?mI+9D=Q3{BF^K~ zDqTPBFRsevIvxLD*XgI_<tm&2($|-)ylksUMd5|BtfSs-Lor{rcBc}GzQb7Wu8um} z;ux)@Qf#h@EJr(b^`$}SO-nbUd81&mWE(#>X%zcZ5vHAtc7vVACoW#ouojTpopl4> zu3hhMcr!(qi!H$EPQ~dNDfU-W_ZjeLX=!<jrvw&T(GwgTJSwNp<n{`<mZHkggJoFt z|4~^->*}<tFYc>cvnWXGNBrHQy?ghnT$*0u9WY)(J{HSYR91G1mzQ@m`S$JQhUd>? z;}_0<Z0h1w6yL{iMJ~e&h6VM~Ke2vZo00BUbT&y##Jo-nyM-T(4t?v9g#Gg;PoAVQ zuXAHwu$d~~{BMe+&RRDULi|L2xqJ66olf`i@@nZ+rc?|__4?1)po+D}O0Ea5&z7K* z&h=O2Z*n}21{kHvcmT=~)81}mR+HFq&4ph*R^{BeP$y?+)r`w#*sJaIE|KN3zyA6w zsKkA2t|uWONv?CV(%M{9<z})f*%MzkR0NK@Uo_AKQg)@?TDxnwlM#oj>HyBim8V)6 zjC55h=HKN?8MB|88N-p>;mLVG?ZD;kk2w1=2XId5UH+1e$+|8RhVLJXDn8z4ri>TA z=7%3b0Q*%&w=r2RW_Hzbamn6N@V2<v4t1OFU`Pl5ZTFSV=N68n*Y+=E5o+nx|JlQ1 zgQC<#XjU;^jVDS>N&mpWo@>{ydsbCxd_j93Z56Gvyl#b?I1p{ulza7!?;eBMDMt>G zy#WrLyawG>@$NY}Ijc8qGM{dfo{JasY1v(GnaAqt@c4tPx$|iC1u*j?#>SB+b6lLi zj8y97blZCQ_-xqs`2CgMw6<<DdwYBLl$4Z#4+r|DJ8ImbUXG>cTP|D$N+oC;&$4ee zF1m7sdX|;7x1V41$B#-h<&!7xojrS21uN}5^j=ge`Qk$YiBCKd?pQe&&=%;btCMb1 zf?{UV=sZTy0xI)w+-41#n)Ko73xT``4xA<&Be3QHo&Np%KxsWShAOAH4Zfs4U6o)D zYwJ_t3jS->u6;T?Gi5r~ThFdj94zbMb^m?{-nirA3KLblY#^Xn6*DSoEqbiLlg#l% zmSm^UAYFsj#@M?OrXG<OiUTI68s`LP@(K!{9tvF;{`%M=%B(iIvpyq5*Lg%WYvj}E z!uRiIWOKUkH=mrx>chXje{4EA+!1vu{0>m-c3OI86oZ?#Wy=;o6_yn%W@Wo{<Immz zq-;gMXV<-Q(6lmE6*Zol*62Ey6>43{^1*kHEWcW`5-1lKgP=c7%FB_~mX@P*$)$np z92_Qki-R1%g=H3fEe?#!6l{D@DBoHZA$!Alw6~tIf>S&KaB(zwlcYmLW@eqsaPK9c zk%rlX*Jtm&KVKGakUy(EkYn}5Q`BT?w5R5o{&n;8j&1c;`JAJ+;8e%xvm<e?#&3Vy z(pi_5uy&Ug_pR4Y42vG@ZyjTfa3S^VDi)$sWm3-7Uees$eDCtS;F!e3;cG4d0Rbz9 z*4}!(>BDT4R+34i{m|FWhOCUWJ2f_=YVOi_CPT;j*hV8vFDnPT<<UN~sCVz)u~c42 zsOIjt7UBm$H)=>liJ~A(-w~4Tj(C=(%22C`H}JT5^Jcf1p6g5!a8x-6B&|)M@%)7g zwLU)H-a3Pm={K*~+gIm{%i7zgp)2#y{14bYz$fIbE-Ecm=9F^M@Z=DQvUIw??F0a% z7oC3Af`7-3k55lLUc<)L>czpNB7o1-zV^CE-M))G($emxyz7TgD8D^&#YgUJ<mKYx zA~ZF_uJ03ix3K--Ib5&M#aX+rAuH)pt9*=hnlcu%?A5P7fLo4vm_(dTiA5y=66OPK z09K!S{sw)e14tr#pLtybm&^FUj*gD>wg5*jZ|^YdOnExkhlu{mg_4u)AzBINJyCOo ztv>%mdp>qA6gtN)z3k~asdx=x!@@O^6D{}gRd*8s(mgjxYN5|h)weBK5U~kB1G3qL zwTgO+bcJN>^#o38Hq%&7t1AAm?f7rppxnmz+Vr{Esfr|1b@E%h=SM;p?l@0Nj@5;5 z9=L2Y++H%+-~SOc!xmd)Hkd;~LSlHZNYM1_yNB|}kC)q4>V%`J&Gm}e+1a5tE8b!k z`~=1n`rB`-Y<p@{^;{;xY7&hN`o`+4iwpAdWJ8X4mI~%fKSAGjo}Flm(#c59Qap0R zUAEt;J=jA9YQ(^oe11VeMM=lea#ZD(FJFc{l3CqMHEuWR`duqhQ&QRt{5?JGMARi9 z6oqn#CWeN8w3pi2l^{MhR8cCkbN0{kU2%}c{{eo17y;4!L`)x~U+#&5SXB{oS{?FL zdQ-vlKQ-^^=1Nhfh=*E<Mq7%1b01t9+lPje+kp!lKXF18eV)9)B-6?$&?#sF)>qDS zVYNmE^0`c_pBu`bI8jj&A}4aC{|vhtYf$?5^iZ*CU*FsVvsYkOVWsQcgI~S+2?9q! zWu-dUSWS-WT;H8z^76`G-guIlfOSHhOJj*z)U+H>B~~j*-mcL(1#23Dv)%3~+Msm) z{L|91G9DUUpw_c9SMg>-8nPT~8(q`%^A?-crIx&|V3w(P_-`AFw#~bYzHG+$_!Y9* zYSL{P;x_F;zP{_ivvStSv_{1<^{0H0&J{+hrh5eh#NrGcmXoWU`st^iBJ}gz<&Pa> zSaO2$@$J}Q=}VPg++VP=tEI+Xe4^Tk)85MWkgV)TjcHtDM8r{p{5z^LGHyhuA*@=z zuD3p;BFEKrVrq(CSXhPZ4gC2zy=)wmk?!hKKqo|0A)*=}QjHH6j_%r9hf(XVnr99i z!2=T_$UfsVnXo+X<1NAL2*@TzXlO)xX>b}kLBQ4AnCqNfiIw%&cPB4ijDB;6lYvTX z+K_1vU|sg|#xj2`F1JGco0NvGZY=Mqrx9{@H$icW;pW}GUG5KdyWtzVWvLYU2RYTP z4r7j3%wiY*_PwA|a)~vm11J2%PU4O#k}7o>F{e`q3E&Vh@lpts+C?iYDmsM%Q4x7+ zJ4Aukvn(kGdQ<bVKRkKzBY==8^Z<Dp?cU?ZkIi#tE)z{^y4Q84OV6SI#gZiFsmn=5 zC5N^ix&5&^;evm%na2uFWd(&hd0csDb@%SwV`qH~swl6hXt(am*RM~})WVmjP~LfK z=HW4^RM7h7N*%uc{(G;$K#RaT8~1+>Wnoeg-70rSr8nbl#PF-t_7!GNf=oS%gi^Ed zWjJ^tP)>J1b5z%JPWt|bA8bFr`mU!g?G&BB8gw)T2S}N00GbN^;>OJ{Z)l~M`)5z} z9-x)}wnbJLJ6^=1K^sM+9E*$tBG6NvkRN<!373-+^Wx=71Rjllx!dKz<?<2u-!Iv} zZLUdjuJ`khz({^SDIw3FKbIC>EHk3~g}Et|c0Un}6>F*hEcPs=_ToNoFE8zW<!|6L znWeI|rzZv)vd4Ea@4X&9iW2fjiJU%uPa@9btOZJwI)s~=B-0BP2e^Lzpf{InkiUXl zYj$>al=sIU57E2B?Z^5W<5q7y5&`lFPOpOV$3uJg@Zk#EMA9#<H8gzl`k36Li}ETK zsjSW0O<p&uuy$8voH`oG#s_x2b(&~;c!?!=er|uqYI~eapjz#dd)-V5KY#5Nvxt9N zR#v93OP?7w)7K9+&l*vaoa#<skM45%B?I80BI4xMtkD`%qMu^BRDkH=DaD3!%KNO` zhg|!=e*IcwdO*4nU7IBzRYtD2x0hXFUzf7040D7oO44meRA3EK)BUoG7A~w(Jf;z& zHZeI_Xp&@7muhwM?p<|D%V(ss;O3#{L^_W33dC;8_3nOT8e1~emlKC3SCseV<=yHZ zwkzy_bQ_m7`Y1M|SDaRgO`uv~C{KSRZ2aTn_fNgN);Ko(-ZjyfUa{n(=SEt$eIU;t zbnrU2|FSSJ0(`YHo9c?DxQO_0x3&-d3>0qkoMRx5qaF2jjY(tn%{SO>igu+Kq4%WE zPIeh4R1d#c!j<~Wgc3Q3@~RLZ5sBB*{@5bB1VUMo!-xq%&8YaKcYtIGyUsdsido78 zy3VG3{_;gfnE`O`#d~VF<-THP$X%(@Se*=EhhZb2r{Yb$+(b!s7^zV285$TEaOg>@ zOuRC1wx>Qr9Z#ItxSlm=k`XUQvF44}OW_}RRAT(Yrm`@1XJ-W?JT7Net1MhmJ;!B6 z1$y=oPmYeKkIm^gwL90|dLW<^<vRU^i<A#w*hn8e7flHLmuOilC5L|lXc2aqz5;em zfFvN1x091ow=+m;d;hw}D5M>r*667!IM?EryCZ;gbSw>)x^)(u)mBhGbOS8^T#}Y| zU|=!p78%yEf8X^?`{&gjmD_)H$RguKuTr^stD#1;sb9SR*lyRn<e5KjWnh(}nxx`c zI_=x^bSs<lJPhMC5+T*(=&qy0n1F_7L(w5>n>Fn#UVu{A*4tJV<mb!5|9ONq-FK(p z-Mex(Cgzs5ws0bypgD;{?O;<`ma9sHW09W@9=tj^(iM)fM0icc<(^UkFoJ?MdvZx< zzubeD$+7#4+r@p4_g$<Cf?7gg49*fMFpMk9C>1tHMY%j{pjXMUzv3O5cp*Mmx)e=_ zfu?d-a@3bNB`c+;mCzjUKO9M)d3FFGO$Sj-x9NBSn665TAqonO_Ul>!?TCG5HAdt8 z&6D}kv%&kVzoH4kTS&Z6yeVsDw6?P<K4fyNFK&Cll|wWdjXl$6oy_|e^J_J+<lr&o zo(5MRy<0oHeWsth@ZYs}x$H`*@gRb?uU%WPODpjxea*&=(Jx;fs=rjUtFtyGuEAx> z420z9Sfi_}ce&q#2T!}=a?o6KN0ZTKNe!5sXbS|>>|x0VjQh~cx@pgzJ&(k!o@CFA zo`&TRDQ~hwDG7MH|G>1CHvdXf9a^dL*v#08&Dq)6d;$Uw-k(oM$r^aG0V-!D+yYX) z@r3PgNy-63`LjMi7ZEWoeHGl}^sK0$AaXbLwWUS7e==F`E|ZcFtg<HMI!Rj_eLtti z+FJwP_zw>iSE{WG{ZN}>7YDbZuYXfL+^eXFHI%>xsPnlzsS^t$dOzm3t}j&zPmWbW z`?78SxJBJZbqlHk6a$asp`jcp`3d!WDs_-t|9hMeCyqq5kG5OcE{`1>92_i#j?6>D zD)901Temkxsq&Nd0t6PH0@xBSZ{m6LW+}U#6QpTn$6A!{isyz!w>Bl+#vkKQ+jLj$ z@z?|P02IPDta5p-2-e5)yH=iXRlh8~3(M|w4BHutyG*CztntuL0ON@#1%+Z}xJ(hs zNQJ*$125<dNHJQIT%gn7ud{8gv*Ge4SrAHaPQ#$`cGOzrR1kRNqw7FJ#Tb<;@)1=3 z>8GEav(elMc|i>bBTyM-?a>|s_s^d{xAgSr@Yph2GX0IL`$fCVOuBQ+_6E2=4y^bs zBfNRFcH@;+Z}o2HJDdm35BJno_K%H;a<A|D6eF}eZ#VepZGgOWSfL~NcQ`$<dm4W` zcM;X4w5tI$s3hTnVqR@+ZG>J<_P{%#VzHfiiAMJZYVXeGd92(3ze*IO!xK$>-Aajm zx0700S{+FXVhI`7z}2<a%fy{qv}n<Dt(d~%Vq$nOikO;yYU5)5(#!Q^vDK}f9*@BF zmcO2)Vi!8OT0@wka(~yI^Q<X2OBOjZ$?h{#%QPh<{uE>RK7yl8#PVJG)7nu;cA0U2 zfQt1@OJ74ptU@{Q>jofH{bq$Rj@{#iWMq=-#soli3a?VctVS3z$SB=_)PADk@7}Eh zD99md?g#OO5pkCC_Jrr7bQR2_%crjl7Oa<I-l(flw2zN^lD(&vrsl)N%hzqjMr7Tv zZwJ%?IByTa!@~nyCOdB3*#Q6Vc|yYPLahnZ4i0ITO#1!%jAss%_nV59KW5SgHq(N> zK9^ov^FD8B>esbfgNDr9Q8Po#>(k#%PYikDY=7y^=-UV8?g{mCJ=r|Y-6(#`X>W?9 z=Ps^$ljb3KI!4W)B1-iLcFReI+ODnJw!INUBMP&~-yZ06HZ?76{r>&?N0Za6+c>a` zk62k*-7tWpXK-{c(UKf%!vkGRG<L4t%FoXzHC@cNp|R2Z1xouk=Z%b0EnnGp)VA*@ z!r3+jzX(vqPONDKplwB*o;3KVe7Is@cDp#BXUyD0;9Ln@;xHn+0@4sj$)7cvm?#Wb zra;s`QiWh7wPUkqwfmwj+jf+`Zdl97xl2@36oObJK3{2KzWii%?mPK0DX(?CwjO-q z!GQrHNv}a$VZ>!?K^_yg`usD_nSF_^*MkSJZ0tKr!)_555NZw$h`?Ld5e-gu{QkMX z;(~&-c3&)-c%uE4D?7x*#-A8a+M4qpLx9^{b$z`Kv=T^Y{#iXvLFkHAhbx=WWw7Mc zZF#V2tLKW_8*_4qfC8-*6;I5zo-$c$zJSTCQQyki&M!ry1<ZQ4APxJET_-<oDv--S zY(ljgjXd3DqLtmF5pqMK{m^+2mwCN`Egl}y&t(Z0iaX)zRDAuqmU3m4!*+Kkr;IQc zNIDF7+;n1_LzF4n@-apyL+$r6bffFnn>Uqpbpyc2ddvtU0ghu^zg{zK15=PZF=Q8` zI|TwN$KV>qIMu{NKL5@)7$Up9qvJ99K8uEE5PY;m8Xbiz?6G+|Ej~WJCeuD4dv?;4 ztRhagI&g({+J4IKXQGDsW@KbQR^I}kOI$htw$k>J5E1LI#~lNKR)_~578W*|%yaC) z4xnA<$>EasqK(l3l8z>`(-W~(3n}m1vtm;}dYOC%iTa4BML4u%!wVNoCk9(NgpGc4 zo&Z*hd3}rhz-_$Z67X_?DZ4d)bsj(Pamt9mGx-M<pPkaQnh#E}xC!;o=v==`tz}~) zd<~c?-6)VeS9NvuXa}lr<VzN4{@NjL8Wz=o4vzFS&e5GSv$E1cSY>XwOb^J3xLgTi z6u}HX35!<u4$eITC(#5JBH8>vZraaX|7wJI8Z$SY5UmdtZFC~Kv;!ndZ;%3re~jqp z?k5J=KRk>IlfajGc?_7i6xBxXscUh6bKW;|gIK_@MiNoGMv!87xd(e4@HwTJea)Ix z@ZEFS@)PAKR|d!e(e~y822wCEz#MGAfse!CO;vcB`P46LPI>fmWTBIO#GTB&$`Bcp ziP+Joo8?e&HeT#FgqUZ7()NR)gbRQMGeE0qlFc6HjblGZ&P@-gKG$gjvx`J4B4_Q~ zxt2v1%Oc;R5h7Ky1xge-!l*tpHWikjy$Ijrz*{)EUBOQYgayW%5^E+1g?Lh{EZbbF z98=};-+E%_PPRYWuA-$Cg?0p5{x;YZ#5nKNqVvT8W_qLLrxZKDEr<@_Fwz-@?l|?_ zbAu=nC?{Ym$*Y<@YH%LY0cGtfk>i>#IKi?@UcY*!Jy`#0!@i3je_6d%7~(zv*9kms zDY!r)Xa*l+gWFJf6{Vq}5rM@ug+4|P#bz+Ze-yrZrvf?z{p~3}s1q-NkO(;D6`A(d zxN>T;B~@`V!y;(9_Ha>G)RDocS`~}T0r$N^LY%tyx6xc&Tp*{8c2r(iN-!AkE93C3 zwWO%yxBN8H>VN+32Vsi_iL{IZ*%qmL-y__BGsSV>ax^)KkR}V@yDeiE$ZYo|eO|QQ z=03R_D5o92ZV&h<QmGw6NN{22;wEAknZwja)l-J1%uPT6@Y#J3<ksHaSV)bX$+hOE zKyS$^*n$)i4Q!_3D5Z1{<cFpV1}6J2(l*YT;Pk^lfnD9z38W|hbqUgduan7JfHS9} zIrEL;tJ~NlX1#y^{si<Qh%XuKsi@>0d*EQT>6t8d>twuXSXhcStkcP}9j<fiOB1Sm zq5H|diW^xokmiZrq7tVoNkA9jG}xF@<4w%8QrOASzy7d23Pw9YO^|GZ047WaKEKAt zm0>9p&%ftDhd4~wVYHfQm|5O8zP|T{ySsRzhr2uU7iV@(pZoVuHTxnJARqa|ypDv< z-_!Cat!8FulQSsTik>g|cT?u-{wd<K4GJGZH6D9Na)MMN6s~sAQ*w)E4Gc(O3$I@_ z*y^JvF0pD(dT!z_k%PjcH{^PIq8|D*x74Ifwl;}sr5Gfjd|4J`Ln5JvGA~&XfoEc$ zhe?Ph2wOJEux^sjz&51=9k{RHjDi>!UQrizjD5=XV`<vf%Q(`PpdOf;$I3QBY(AE~ zzTkYqO!FQpDvraEbu%S)U4NZ;+T~aUSD&XJn-wEz_qXL7`0CUi)gHM3PEREQ6C;KE zaYyNeg@rhAd>wTsw)i-#o8fBh>SCai)P_TTgkADGbB-T_^r<c{e-pBSKzb}XjK>~& z;^m&2V|SR8oUMq3@?wX8a&t<Ts$Ku`H2aC_IQs;xn8A^e3UFg$r+_AFqGi^kS%;IP z31~)xOG19!iHCa+6A;*087D~VED7;waOm2FGO9S#R;+$^lO&(>V{m7Y^Y7M?_X-eJ zM$|M&Q{dX48ZJNvhL)90$|jBI#kP5@qV3qLm0*2|HXX_&<$^244LdNYEclnGH}sYQ zjs)z1-8i+L<hGWsSg{W^-V>{^0kwtEZ>>+jQi^%~?dQ+;I-Z6nw8y4hY3t_Ax$W?o zp^Tm8sU5>&t^=qO&dkibjTW$egQ&TUh6`?Ioxz*iRz{9}S!1_hQ_N##_-D7h`PJ2E zF>VP1GiK}7=B2)hd7c^yl7>)5Yg^lp+NvP;^?-v?RnOGTU9P5geli{%%`0ARsjo`; zUG1|_U}BcJ@nEOslRwi+sox<D@wbdAf*Ecs!@c#V<?J?josQXDeMF*XK4=Fdqja?| zdrBc}`|}oEZDLjCb`VDFqonJkB`x82%lWy+&YQpdV%ZLPay>LuUT*H6AWCuUJ@-qV zX&J%4z-_Ad6H;PefPLL9B_Qy@xNj~?8@!a9PKXF=)~}BQub%7mg)>9sEC?3_GfBZ1 z;EPxzV+emTx353COo{b#gYxy%6fb}On7Hi8Lj8$<Emcnqh6gyvqq>z6Jc&~B`pugf zA8@jhSkh8xD^Vua!+^hhh``*Hnv6&`ua5#z*?}wz5KTtAFW!*Rt6x?V#EzSOdhq&U zV_<_CxYynlthx4ARt@XrUgy60h=ISs$)LY3Q{R+i79~1bm*MC-wYeRIQpdJJmH2Fp zv!kN4(ro7`xB>h?F+{UUpZNONw$?0#WHM?%Pzk}uUL~;$_-76?Bb60l$9(u|lcAmy z7Xr^36>8nLV8zOnl|XePhzh8Sov(VP52L#DCL4dZ8M0LBxOFI&nS7BOEZ4$2fMcH1 z)m<z%Vo+*i_<ln;AtFLTW!XEC)xdq+ymKcx<?x>p_<e5B--873eF%_bV9jb9S4%(y z0V`z4=jlOo03zh<w1pE%%6G%f(6F%mx9^4e`ufhF?QaaZcN0sReN^WPXYCg=y=4IP zHjr9KH>QVzzoSm@?%45GU)#ti;?ku{+%!lY&tS-uM{5cZDH551kAOHy5VRx*-)?<` zFb^@+AT!HCD)&y8l%5&BkL6y&!QoKizz@bV<dIKBWMi9Jez$g|V8zXL-njG=EwzaW z*g8J|F?VE*HDq+#LPbR6kw~>lh^iF2k-0&3)J^ySRyu3x{N$mu9|{%TXuy?9++ zU8fSy6?`8aLyB^KE|tr*YR#HZ9L;t#b~-n>8N6D2#Qu$o-o1bC{r)^m1XKuRC8ggM zuh<xYa%PGxGdMh4{xMkA+t;@}Q7Z$l8Q7t=O;%PGa_=s{U5^Ye*Erpdy34aAsL6sv zCgK9}iGW?ew{z!ldO1l!IXLj~@Vsu=4j2sf1062?%rsmk(nhid3)3FU|6ZI4Qh;6j zu*_s+WJGo7>-(Nla4S%0$W=TXkP7jp)0OqJ+5oc2y94yny@ZB)3$b9Ot7sjPnKlV7 z`@Ld?9%i)Y$1oDY6*@<2^}K-2kKA6jrK7H+{$J(B!r+4FJ!^pX(0+BvCMB3iJTys% z;g5u|0ihWKqN8HVg;|_N)bP#i^&tQQa1_lQ241t1_%77onyK5w`0J{yL^_U}2B9Fw zJhgc-0gyykBf{ja)5%7-lDDp)oBWw3#iHV32o2a4$oR?d7zsPyXlA$aZ|>!~__jXJ za%|-uq({ypHk%vV2)piV9ZaVqU^}eR($Zf>Yb``UpanG`*)Zm-FxbjyGESgD`^VrT zShEsDKDLUArj(`>?Oy)HTU~b#$G(e3P>9!~wFtp6YkxNFzQKGqp61KP(FVu9^-#@r zlbQ|+w+`8hXu1~Dg)dXJyRWQh(#y5}+3isbVq=0vQ$3I#wC%@dzj6>$Z$7KC2=`)} z+_c?)mqf>Wg(Wqb?;|Wt+}59|6Ov{6d*ICSJHx}$T^<)K;uXIshoIo2QlM7PQvw4K z%|4^>1_^cj$^i>QNo_Fwv}bpGV_rcJ^?D60!@Ed66E3nekg-U|{E`7{UfRfZlvI zTI1V1kz@xeglt=yYV}10!1pj4v*kY0ERI<YB}6sU3)Z%=vp$bR2$)0MCPFp`P}^f{ zd~#x<+SR2qGTa79V-jG1sICfto_w+TM_Ns)718xViL|U5936d}d^&u5ye(4Hu}w%6 z2WV{ga6Y*KFf6T%%Q3)hBA2^0ptkBFDy6C{O0|7Pf(RD(=WTX#HKWF_Z?c(uihf8o zjR)ZL?|8a+Es_7+S8~PT+!{@f50GLTY8~hD7^MY$d%K<87+-aOi0LPz;s8m9sh*UI zcmp}mH$6p(fuE7jK{!*n*%v6z1g)LaWl-Tr(9TY5i4r(cwg48Ww{F&?{Ow(D7)GvP zi^B32<Y?#V=jVP!-wQzt;X?o$f=04n7n0plbJNxkh}1}=67+$G2DXk|W>)!p(Rcsf zbPW&jkdP2~@Id$bR2|+U8v15&E|Eo28XOoX)!U&5&Q0aaS!<ZDa|fhnLqtJOPY+VF zDYBrkylZpWnuqN+z@7^yig+-=(dAH0Vr;uU@!}pWvPK^CrgsTU4Wd|TY}&Mmtm*?n zz1T&|)*9goTA5ekH`%wWKH<CjAa0?8)2=RfdU{&E-W~PbqknsWRN(#l)+KvzIa{Nl z{(dD(%l^Zt(G4(nb|M`Pj)2UQO7kFWz%Jn5PnbeTG%nkQ<vj+)7=irbZ0amc@+VWR zJ&Aw~?yx`cE?ztSl0X8)7a|EMhKN~-63at_eMrJ{%^qCDHAB1a!fCAd8|KCxZj9Z! z(5+C}fcXrbVuV;Lr~)}>9_p_nWk|%}&2m;u3ZOby0)a+CZ_~95T}5$sT%6tGKcVk2 zi-_x-`9IQr+Sx`WKSF#ohFMEuwToFfxRJ_b<rG(eK4N#in*CYzMPzAgjSfg#BvcEC zf31o)SYZa^q@v*dc0qC2f@%iLO<@}$szXGZZ^poMhmRcjBl0GIt+(c~BK?quG!Koh zE=jG|MU8dc?k2l@bHtWO_T=)5=inbC$>0DDmfJsrKLs9sY1-pM=m&m@i`Z^`)0sCe zsE77U#y7A$dN#-Zrtb9Uv*&uh_G0Rv7U5^pSz;a8rHRmqs*+OEZju{FzQ`NL;3yCZ zy}CR^`$mS;shDKvmgeU1;b`=zPOwWQ2Z!_(TvE{hQb)0FpOB}r$f^EP`Ske1CrdV6 zkwI1W;T~x(ktKVJ@Y{)@HU>;;?{posic`>vNs_FmDqa@n;S(~7YuMShTUc1oN^wGo zJsTaplcvm2i?Jy?AxcI_9*bIhB7rk-6=OIc?0zejSQ_p&q^2Qw{3(m*=zQ<SXZf}N zvNzjCAJ?gD_MJlz>@Ng5KSfI-7?ZFGGN=HhWBgh+`DnPfB%f7Xi=<{K4jA9wy~<#$ z4#OpK{I;j->g$u>;HG6{@bmG>+tu6pARpah+0zVp#rxhped)ct{uxF4|5={$*5Y?7 zH24;b_kMpi-spEtio1g_LL$<jDBE^dl{ECBr6>W#jg%e}R80-Qun7Xzf8<ePfhj#M zxG+Vm$4t-QwdB0w=~;-W6{q1%VIm_kC+CFy!e>|$NC}W1;!~i98iAJ(xX><!^+eu8 z{5WOu6vWiOCSL2X<EISh*_P=XQ+%nAgFO!P0|JNQ1dvQ40C4#q9wgjyH8{k>Z@1o! zfbKII@-y|WC)i_CX+iYPv?-4WwJzOnsd$tkbm{gt8!Qrw^YinM(MhuxZMY))Z|y^E z)xC(LdPl@FJyVa<O)qctL?08n@S!D`LDc%=_MoVg+e1{>+;f=p2!W_{<L95>Ha6-Z z&zjcMvpMJWRN2)>H$a-V31M!<d3qq9r0<kZokD3o335D6H@M;|u9N`jvg!Lmg|`1F z*)g1BP*_Oh4>(Rg!Jr~SUEa{)V%!0m7ilD;$poQo-Yf&rCAz!^@(XdTgfD#9I07C8 z5#<x2xQXBLEAcP)WJ+^J*aN2aANbGn79{TvW}kSmdM~kepj%EN%osV=;HXF^_82q; zBS;z~H>|3r_B5k6{TM9I3K)~8B5Ud2axNZr!E)aqKD#r!c%R}DlT9RzwgM=5jZKfG z{o+b>OdEiLk<lrTq)zg#&z^mv;3pQ0hmfaBNJ@?%<-j=RBVbY*`YS2F1g<d$abw4x zBq2>w8BGhlcu5H!Cbr0A@?W#LJ`U`YfzGbtK$&<+Y^aJD$+`EsUN%5oBt8Ymk{^r_ zz$_ufe<dMb2`NM^1Y{sdLy|v6wcrPBX||K-&t*0#d2)j!6?bW;DnTVssCS3QphZ#; z9Vt0nZuZzHK?_bNUnG+ngU>~LUcax`e~6?Y)RDYQo8Iy`?p+X~h}nstKsf39=)Xip zgQmOjlQj%EgdXjnn8bM<Fxh_GH;BOXa5N#PCXu0`KY_ulaJII#hRM&TT|6<`*ud)) z3E)mLeqz<6D4E7(so@fVaIHd7zq*=UTxTE7KrpTxD$y?8ObsYim54X_Yso=KgC1`l zNEpyJm@l5WO!6DZ$LspbvMF4K+C&mIL{}pb6+(|Dk<r{Zi3tlbOG9F7Z|`jtG5WX} zuxapG$j=|n{~1y?1!zUIrV=fP3<LqL*G_@?kwQfOz}YM@H#<y<H?g%LyW6{pTQ1s4 zEpWSE50=Csapf7n*;6o4e=(~=<k6fbz-EPEa?K!2s)l(l?vBQ}*%WwF+sS=->ozVE z%nUkho_3go&e0A8L6)%QxxpkT2b$G0L<+(-#eitA7zP+Gs7}jFM=smDv)Y|E(*7cF z@bBLJv7(i-d_wq|MYs#UXdrc?PPm}K<sZuYF8frB*GAk?i`9-SBXc@-z5Z#G5~t<7 z<M-c9)2_U>*p21(x;=-6K6QINzMC^Y`GK{NSrp*dyMLFpUdQ}k+P}K=yoiEG*^VKl zr*$*3D$<t&;73y71gEM5J$t5fq(E@5yo=QzQ)GWn^r1Rne#D@Y8m}_AJFl%H)*UN= z`JW)=hqHTj!^J8=`#K*u*1vm30Ct0jUq{&;4-XHd4qz={1@=CbTC|fkHP%PWmGVU6 zQv^VRFvbdCCI}aqTzUo};f5<;Sd%VR6J+gxYDuyX#t0O%EM1x!L_7%e{+=Nq8&ypK zH$I{{dpggUYD#3zkBaz5&f_O|444RlCTUV0aSwP)60&#iwb?&rF}!&eSl%P=KPmfp zYWi|aI6jqLG;InCl$>994NA>}7`A|bRU1z7TUIx4`>vc!{pzqsZTp)JB2TEAT8AM< z@Q)Qgpc8n%DQAM|$E5=LPOt{rQ#<gR&o^e;+*wMcY5<1ZOc;$43;!&%fU@Kf8WC|r zYYzc)4TizePNvWR^2vNDk!E5ASlw<B$hZH0j&>E6Gg)?&hQ*Q<4k~;&i6KMEZ9VGB ze?GE(N_r^=C2$^DIg|UTg%yUBOxS$D9wW&uUwhjAc?ad8k4NPC?YH(Ct5^$Bl=oR} z&wNL{NlK<K0<D7y&s%!A4p9r0zWl4bhwAgcPD#&iYi;ZIBI4%bMfJs<^DGk^PU$K+ z_nut3|CeoDce&QAP+?915VV4m-u@45kYof~j2>XW&u<UTaJPT6PPaRl&nPR?A*k(y z=L48)0(s((jVVr{re(mMsw6=ka!nX3H{sKv)oAOG8P>2pwv->%fr#hefn-=0-+v#p z6;YUWync$}^E3`**1#|woIgw#Rn<c7Uc<?WFn1zLJ|HC{HML3#-ylds&NHI!ER#yw z;NT@1UEhm=q<ohDTwktt-}IaTf(6>YcKPn3W=YC|pZ^rZDp^PT3-cE0&A!mzJCKdd z36hkM$W%62*yPX(3jX$%T~%9*V0!FY>H`_D1(a9!Y5x8xtDEZ)G+0Q}Jwwon#9@>n z@kIvHH8e+*l$3({`z<lf`xEwgtU&miv(oCUqt+E?$S(<7^L7&kO=4daVX3!`na{wo zX@NyU!YO~m2J^2tIu;>95xffz^;|ylEKuGc)2T&O#j4k5v_<BBnbtcmIcOJPY_VWq za8MZ`HmE>IjQ=UrYiq2>61VQ{SuH~&F9E|8V501xa3{blpOD-a)?D3ZF-0jEALpbz z&<;R6`1kBN3F<<kM(~+zUwCdwm4Mwq;Ig3Di4|>seHbB^qO-men~d<De%RZC899nN zk1^f<F_-5{MiR7j7Eq}RnO6Cjq1%zccScdf0MLm3+{E;hQM2{|yWa9=`gy`gmSeI+ z9)*JbZbtWGp_-OfXXp3Fw;(G)w;Ao$WLLk|d58L?Xb^d21{7CtG|AvlI;NaO(|eL@ z3AQ^CAfbsmhuMm)USic~$%KZGOcpFml0%-ID0Y?qKF%h3VWZ1b41uyF`Uy97qixJW zcl`*!0gO|h!f?B)t}dCRk~&~XTPUOb;N839WM&j2bub1o_A7D|B$MbNXr87}l^wd{ z^KHia^$*c_Xo`yJAVF-1ACTZ3Nu-m|ge(6l*CsJJNO{CrN3<>yd<i)hpp;UiytH++ zJPqPCT3TCqAZJaCk0W`$iT*0bP@4lQXEQ5&2x(C=goB<z({mcQA<H#eIBkmj66}*W z!sKxm<h_xkE)aoLP4xG|K)Rs&li1q`&k?YKnyx^yY1{?xJ?|dA@V21fB$j-b1j7M< z<&Pfyi1%ePIc%)%qqda{C18Wk$M`Lq4{=IdQ9`zp<f3eiBc6_j=JD8H@pIHXj`|&& zJ!w)8f<B4!C1TgB?TigW7dzCt9O+;s9|4{2t9<}XfC=}3+HUb@T$-8GlJCfIjacU% zj8wieRG3jiL<oFvn2|Gi%oh{Cje!9LQs}|lA~3%T$c}!d1ksvtjB$@VG*A}<dc|aI z<LpzYT*l}G-4@zwm{!pRoTHkcsgukjthOMWa(*73!$8{*zUZ%3=SpMbzZ$Iwi!+*Q z2U0;MiB>pQ75jukz9POO>?e{R0s7M^b)8e{s7?q+Pe%9&zOgxtj@#ts6%(rxIjq;r z$5I;*5I}4X?rJ@0j1NmegN=<UV(f9r2y`_A7p8OnKAl0tA@pVN@Z5(BReqt2E<v>= zbCFPWl0YmRr{eP5F~<d2?FktQYI%DvokVaUU?Dnt^z+iD)>OY4rv@0IHVC$njU5yu zQ!F(V%{@BQN_<%|ij5d7$@ooH=FEoS!0-RLkErc<lMds}9;y(caeti<>+T_jxQst% za9X!&HVJ~NGOFB32#RES88F(?v&JyJ%4JprJd<!H!~#B&G6L%bkW>Z{9Y31Pjiqke zMv=qd6&Kf{ufeDzQ3nLGhUv@metUg3-s3)u=EJD|YRDVGY)CruVgbk=@lEXvC)95@ z))wd3;@Eh5dw0x?HIfMHFn+}txYt%UpI}HI!184XTB~5Hi*$B!6ZnY|<a-=*kn!e4 z!P@uu1j)Cf*AlLVs8OTsYrU%i+b;&r**UhnT}^ZfSa1P9Zrz$>ShRLQlVLg*5o#!j z)FCHnY;3HRb}5V`Z=44UwhKgWta!v!Hi_8DZGhsMHtb)MI{P;NH<*SqSm&<qC+YYp zd#9jav3@sn0>;y~98H%-tufc*Jb?jw1EizoV_0xVRa-}NJ9<;UtoQ;zl~l~m#<spv z*D)p@W{Bfy%&O_HYa4aOgpzlq#t)Ft)<J67ho2N-U~%mDabZ}$CL1NL^k17zsk?Mb zKVIWDiU#o(qYIVej9l@vX{4O0^k=cpRh75K9^c3$91l!H*nD9@!9DH~v^ElSha8UF zq;wHtOLUcQgDS8xr}X@Apad9G^49yOs?Wynz;p}U2FYW-{rfeE<$)5YqcP##0rmeQ z(ol)6b1t;D*uD)?PN~pPxoJqP60uZOS@}m;9vD`s^lsIS2eq_?X_y5&b~Ks%qz!)l zV`M}(s|OM^aWZgO;s_H_bno6$HXgluvu|C@fjALK>Ip0(Cuh*Xs&zB<=(mA6#RB1r zRZ6Jz74W&Bg;Ck~YuL53!V|C-O(Dag?f;gMap3OTapu`}7ni21OYn$6U9lMoC?<BA z_3G)+KO!Jz!*hC+)sx;8dkXRi4-K0)9U*B{+t#S>O>Y-{M+TDb;O?>Sch2g}(R`-l zPT&OrZ;boBF>KcRwP1Sk(LK}HG-5cExy}x8aZ0;rm!^d%k|afz9vBmTwg(TH{|Rm2 zXPc_Fg^fId0VvcUGtwM}3$_Q6$>Grh%20b%LCq`IYRYOWRP`b%#wcX$5g5D6VLqD6 zb&wMNE^oJrn%XwR+>lWuKbr-Kb^24qz*vL@cJT7jK&i`Mr^G?es_AoIj@eI4M&4rN zTzVGB@L<HI%cIZU$KejJ|GFMjKnLyR0i!6&YH2M1#O=Z}dzPE;itd0XXzChdt)}(> z@lc{yo$wb|J@xeXNz`+q4g+&Rl<vGIx2YuJWQex*h_}a#wj@+$Yx!t8nR6t@BJt!1 zC4qv0k@~26RmGOu76kozJWxspyQoyhu0D(enV&gf;#4BE;=8Ki-TW^v0}bV^Cxc*o zjgaahAihVTkk=qiHj{V|9TK`+PjSdruW6C)3%;Dep(f7)o0nsQGv)0bMo5epP4pH^ zPYyqindMX}ex}HYSG$+v&T0euJPKd9V2<DJ+k92?A^Z%czy6GYzuV;hH<Ug9lMVhm kzWM*Z<-c6ycXP~IVf$_?D7;U=%c5w96@H36bmrRs0iN~<$^ZZW literal 0 HcmV?d00001 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..c310f83b196eb1d60520a549fd5a31310ebf0107 GIT binary patch literal 13307 zcmeHuc|4bS`|pjSMQK$iYSJR1LZK`zDhb*5rA*oPEz1{E(<&*E%9iZg7YW&wN>Rx6 zwT2{nWZ#|lt(j(?d1ij+dCvLsoL;YJeBJl`xj&!ly57rm&Gpmr$CoW(UqTSXGMN)c zl?Z~~lOX6?7BS){!XFwx<D00xw1&O1)p>iTGq&dlxij|G=2rIRCTBM}p0l+xv9c88 z7v|ryYm>3Py|tZ~fPlr1U*Na0H4>;jGnk8;EVe$OX-5z&XUM;FF_O_H1R-cFbM%nP zg`mDB4;9sOc}3sK=vE8;!hKtR?~QX>Q3elx?UGx1B;a9VrlINVjd&6NMj<7ysNIPN zBD^Kz!gf@aYtOzhQ=%2y?yx^qaa7ktR*qxoAt|AShZbJ4n=^JkFaP+#lEA(p_rx^y z5F^Pc(Pm0|OY}@{u1{f?z1Tvm$?$@PF1``$taK{~qG0y|Df~y_3WAOxn2!((2x2$$ z|Nr3sW=kqxcGLGJq^GN0UB1!R$H!;G@~hSD1mWq`VlU?K>E+_fSFRKn7QVAPv!I~F zy0d)q<*Qe<brE^b7BI1Js`S((Ch`}q!e=dQZCkoJ@}=_f@>taw3T}xx_QpJZ{L|%M ze>E-(5myUfSRa;?qtn{jO7$p`J4)m*8%0y_XR#;2|MtzDEe^f4d(zD7e4DpOF$hi! z^3iW1G&*0c(|?+^fMDD^RD2xocxmNdj(t~EisA8z$;mjwqFZVK^aYy`9m%Jqr7z0| ziG<y_u_RuW&R_-ZM0lQA<cS+xNs%T_$;wvtWi<11adD-YR-gR#?OT1eQ-6|WhHd*v zEJE?)$B*5OnW++!om(<S<fD~iV`G;rUaXjU{{0#bj(Ez{Xf@3ew-Q>CzR0tOmPC7b zef3CtfWB!{mV=nxmz!U6$MjUy)IyvB<pTGayu7xOeZOT;x>YlEeEh<zq9QXIRhKG} zYE)KJB9NbO^Cq*!#~e+Xo@?T#PoL~3hr6!S^5N#PB0=)emEAwN$5&J+k*g#hlt0su zUtMQZn|vlNA))G_u$hj9Q=`q*$B!TT-MO<lx-z!B{IvM&c-zCh=WcMvCM29Xbm&m= zyLVLst%V+Gw+07oCnhHF<C{s=^wu(38J3AJUL3xB`Eu-|M+M!s#Fl~n47pNbR!LLy z0r%VH=D8e-t)1Ok4vwB0)^+Qm8yj_GDt=*LQqj@rttl!iQ~2=V163klMO8Htcg{ej z7Fe2(=@z7=r9C|8{N!uSkbIL%Phv-(x{gl5qeq)E((z^Ox^>w#p%w@9L-kMM6mGH! z@<+QBIMz!{gf;Z^>#sMibKO5Y)o`ae^nt&Je);Z%*#lR23muJ!?eak}y4j8<6NBx` zW<T=q@a*K}wc|tlnGdjIyZ8eVONnh;x0<|vC|sX><`Q0x@;vYP^XEHxcx=pgd3Y49 zt&`1W>e6rDUXdZ8sHo_0tE;_ztAIdKNi73m9dPGPm~ymytY+%@`5;OcVd%6M^Y`<M zsE$|fNiCC5K6><JlI7~vtHXPH%`?&+dTMyKZ9C?>X64GTmKK8yiT3vP`W)xfcow26 z<Ip8Wlg{!mb|K^2)se*RYkZ{yf>BX6fWLaGKVJY*M-z5&cXy}GnQ;o9zxm?D3%`5! zw#hscGV%SI)x-b(f#7ilrsY+G?ImdrJ!-k%UUT?zUo8xKdv|-!L`SIl)M(#YJk}`0 z`B+$3*bN__jGrY@3fV96(YKf-<!+Pdu8j84p3=6;jb!3-JMHTi8Y;lz;}KHcTbCMr zk6$+~I@DcDL43roKEo<0Az@br$MGn+z^LNllXCZWA1d<UQcu#$ed^e!<?QN8o07n- zHD0mO4V>jvy?^(voqR)i*b!m-&hjD4Hfs?fyDz8S2Z;{Z7BhIt-U|qb?(Q}fwy0M@ zCZuL<Ag&}!6AL`!t8Z^Ua$$v#C!>*9pcD?vy8XW|-UD)*2!pVuY^Rbg`{Gt>4c#Tg zCETUpu!Mw!S^!ZXb&8IGAl6?Y77>KO`Y2C)V%Jfs>g=59Mxpoz1(`dD63mBy7E9j; zA5cfoFIl>D3qfzZ`(Lj6bD`Kw(EoA6KY!4As2odau*{Z2DO<wK{4{F~!HD1Xyeu)^ z!VoV@7;M7xe}L0XoXeGE96}cc49G&-YQ2M(x98#vm)pQ0(G9ok?#Ty>WlkQP>P_uP z=&wyN6z^Y*Vl`sElHld#UCYK6J3Kt>)jd}sD-atK^CoS>!3(EnXJ^^P>|?a^$xBBX zp4k{u{8)$%hi1wc8I@yAPNCle&yt>Pw}B@k^LpzKGc(iEpF27_T!Q`mBT*}PHgA5O zsDF2x+?ov=++KAr@N711NVnLzYnO_K#{J*JR*!ml>AIc!_NiIaKeaJy&aetSeB?+q zRri4R22mx{l64!R<Kj*t_AQrU%}qKZbOVTv$?-NHVfX0^8Ka$@#^=tTH|?uWbLmT? z*|!wXjeKp=Mk<T+YnYgrP*c5-21{62lKKa+U({#u5(K|qjs{KFDfm-cTT?v~^ZG|& zN3O;pb#8chRUYS}M6?z8^fWm&i}!2%sRkr;bd%Q~)Yf6R5R1CW%BL0aA^do}NoCZ! zUe_iET31w{WyS2wR9Qn&Nr|kUo}PNvDXf^$K{b?4C*M7Hw7)sYrtS5NX)_>$f(=By zH}Nb+tR@(G5gLk$VH*!P8W-K#=o^95B>zDT+^3|ZBy|4WeY<q+XVzhl!^0hV5;H<l zEsOnlv~bJ3xmj0io6Ov7{~W)9f`a$@J&*Oq$SP@?exLqhmP7pHXkU*@a8S@L8TJE? z33~+vRaI2%OE>16J9kbi&D3Adr7KdbXxEM%<=0kju^;YKT*$~6huoYTED@ME?1(g~ zPL(Elk?cY89nLhP^XEe<zjSm&-`%bN=xHwr(7#@R7ceg(X%kiL?c29I1q1?;l9I^N zU4)<QvLE$jC5%s`KU)kEMW`?T&Z3YIo+Nq#Pk62tZbrF^FQGG7R7wW8W!}VjoO{=o zK&$lMqW<r5<R6pgw-1soG7w91=Vqtks8qGeD7i%bg`S51&<0_aO<9_{^aR76h0J6o ze^0#o^o+#PM9tJ=(elAcz+oZd@=f!r!p9n&VOKeo&YTHDAyqkj+JH>-=WBN3cz;9u ze_RWwKqIh%k%cn>z$v<6Id)z**+X9b)`sOpqOvwNDcbqN!}e(w4QikSH*VdkxyPs7 zZ6koqVrSA`P=JyteeBpyaq*e`78y?cdTZCN&Ag|UsFhihsF89Q8~#v&l9g`J5cTHG ziC3>)bpeLev)r(-W3O0QE^>ZP&4IuSv+6j1YWCMGF&bH$u3x`?^2CYT+~<D&xwDW( zvg)z4*YM}N3VQOHg!Kolr^e)oq#1vB(XB+Rf5~b@2q0|y4j(>Tm8368`SxlZbreMy zImxqcUrqIw*4D7vT8;KEU$hi=5=Z*#Qje2Rm1^WeM!_3ZHsZ+P!ype~s_|+j)p4pw zM)gn$%2SJmeKHkywj5VcRt_hzyYJ$~i=~<J1Ny3}s<AmajTXqaWDf09baQGO#q3Xm zIO-(1j`qg(=S|5EeR*FwH(fTTGx!Wi{&0`sYyTZ95%+u5+t~`ThC4qTnHuX4;9j_3 z!JEoT<*i${T2fA)JW1A}k9&|)Dr#z9w3c%o)JPI$Ac!g^L;99m8xO2mwdyAs)B2~e zSq?o>z+l>BeZAH>BO~5z+rH!&UT}7POQX>&=sZjIICQIcb4ls}&eO;cO?kD(8g#Iy zH<){)h_%!K$KKod`T6c++08s#w@L#Dw4VHYo!ew~dg8{lYo`%k;9w@X6JG)+dsEAX zyP`w0UZ0ScuR&$5&UJMf!Rm)P%GA%Di|nBq5XOs2?(r#qkG<hfUIJRW%ZVekKM@FG zRq#ZITzPr<d)(d|52!tO@L=c8ol5TRd1e#`hcr%)X`8jItZ~jmU%D$Iy=F%<@-w~n znAh(1zjtq^u&^q^<;IO074>OmWtn@Boh_!QL$%QgT%y6HL)5Z&@9bU0E$W3pF#FVt z<W8Q%zE!l}V?xI8zSdy?26~46l_~#4IT?Bt6%Ym0rY!}(OnxikYVYs2a^NAD4-<gM z+}X*Ve+Shc7-$gowJAFu9H{$aZuWdN+5ZdSc^M^IRYSwrfsJ4;WRpUY{8t+7;39Tn zmyqkIdGJAJrT2mRGk%~d=Y<x!e?wJf<pLCoT-UK~&>1D*SXI~&rawwTi0fCyzby&C z)&1tRkDgy*;uR87S$_41rl#h)-noyi{jvJ_?m%-tRLHYu&kn!c9{Oy=d9==`-CCsa z9wM-&O%LxRv>c@0-{1en&6_GNE|bzD&8Q%gBR$bR5|byKot?WIGLp!G($|oYJ<?MZ zdl$#3Q}WuIqbK~g%%>5{*YB2MU}S#QIg3zoa-HdroYU;jpUVSM%qoE7I;8D4sW=Mq zsvZZFBD9lVu@#i4YHP=@-Y);9xw$!!(ws+GvTT`Zwqu`=?dKEi9Ua;#n+ZayFopch zk%0VZY1E=DlviB~uyjZO6=bN2ib@2V;Q1J*{*Q>O05><c?s@!1N>gd53L|<4kfr{P z)l3DEvH_;AZ?d_}&5WTa@TyPc%kwyORY>Dzrj=3NA1PzH-W>a>r70B^6+(uuZ@MJ0 z5yT@2-D>56k^lkP__wx^ui5=z4x<+-N!ee;n(Qm(>hnG3oTnlpB4QE}-jO_J;A8+w z{ONvbJ@L%EZtqrZZsWQq=h#K8TareTVq(gjnkmt@Z{Hpo{Wdu0i&JR;A2Zkw@TA7X zSRW8{0-flqO*sNKG}+Ye9_{D11{r1g)_1F~d&ns8Ispi}Rr>hx_-D^Fe5(>P1%X^L zzEP(hJjUtABXz{=J8wrRg#M1stxhXEQ}QOed8@0cP?;*f7g#!L2wd`1dmL<SpKzP> z)~1mAsi=6TVPlR}&bKS>lU>{8!0&N5_GzJg0x}C1E@a<x_SajS;&BB9QX}2fvij~5 zk@O4<9Ot76sjQX+2BK;m;6s8k`KHT0#A&APw3C{=d}-3HOt*=_k_5Os1tHXWGg9fE z-me`*M^b1Gs~l3!qVOMHz3o&oNv<~$K;-kKL9yRe9P(X=B)&h0=YQsk3~VwclFQ}x zH*rf!N@D4nKbUnWW%NPyR$})Gq#A_tzrZM!4rPL5fyZxcP?VDL{OH`V@kjO<&rFW| ziAgT{o9lnnlE2>g`v*`9gvO3NdlZ4lgF{29KWYJv%hF*n!ThrqPs=ineZ~VV&yfiJ zg{`O6)M}C}@7}!|P7-r4ye#M@{|678<wO4s!l`cG@Iu}o<_4(aKW*9K9}?oOIK#3* z<Pr33oK<sPeTw1LZ3-a?-`a|L?kY&wjA*8uz3hAUt}tcN-l8F0?#`V%Bq41ryxL>7 zANOKk2q<Lvk=AT%Yygw;AW=JRnf=XfsrxJ&V^HaN`1$31g`B?XY~8kPC-`^T`>R~; zG16YFT_`p=g9mVQ<tJ)CF}GOx2L{FiwlmV7Jre<TpY)B3kM|D<=%^_wEIg8ul0uar z%2z<+@<A8YBx-AuXEuMK>YubWE<gcNh6{7w)YP=Q7nVcF&@FA~^|-j5w4TAiL0)YU zR1Jn_I~fcpGT-Gmd+*E-F<xuXPl=qi<>Ie-)oXUdUBY`tqiRHyMl-swr)XG7GSrJL zJMY#j|4HVgpXJsS7MCSR2&X?xoYpjX6Ph_WU1wpQPm^;}m8WB3Vv3K5c$t_O5pfjW zkZDcA1A2P;&s|-bMxiY&Ekm~geSIH4d9s&gi{o^O<(e-g{&c&cW$NncEG>|L%BN1< z<c<ZO@2*J<)DHcQ{n?XMuR!N<%kTOFz^kUBLb7x6{31fRhMpJ}Ek|{fot${rcz=(f z&J34J=jNF<uDSB3CY4W($~bc;yW?HJ_eW|CeKIGxw{JIlesQ5z&V>}m{*Q?`9SxLv zYW78(3{@@t8RI|J0$%2mN=J|WDlt89M0~W?5Y#=OD$Bu)<Pp^41t%(!&lIX?X~k7l zslWl@-MRB5Tp;m|*YGnv<Gm4w;9Q^W#mchts8$o5p!Bed+@IUr_4W1h^Rv%v$Mb7% z@XaUp@8a3ei^qU?rj<K0+7K5P=Nk|Z@PpS^fhYU}U<L(kpb2}PVq!4fK^kS{F^b_3 zd@;$%yVtH+qd~Hl-GAoYVB~+Fpnvm09#q7xml+;JGQH7XOgc~xl9aH53tlNME`|<` z?y8K|CLcGi;g_=RI{h83abI>4+W)7grl=C96cp4USKIsg5}`3I>YlXcP^N~vwp=Z= zDcx(`BBdS*>ti5jWM*p2>Y6TgFZregCqwGlS4*~T-_E;b%Mk$CLrIT3SZ+^2+~Kcv z2hH~9j)fr4bd!8gxk1^NZ4|3Y)SsK38L82>%G7gpcCK!g$I680(?uCXex&iCj7D3p zy?ggo<v82%X+4c81t85XS-#wnkBnQ8;j+b^s7IDFTIuF>E3(094cJiB6Cix_^g=+~ zbSyYIId6D-t6ExqmG(}tZaut=OG1Zq1hrkEMW6*EN!<ZJtr;qlOzKI>&nw-7Gl%om z?xL%w=f2pLfta(0YVLxIx@6I!<aypJO&qlSd<~huX3d(<HJoeKM2NeNPIr%Lr<;GE z>SjO1b23JuiF?NK=W>7g>8D}H>aN)6kP1&a2EV{SUIm3RyVt)}1%4|dqD4PvsPw=* zEd&J$Fl&8rnRH2AhC5qpB;3ZWX`u(4z9#VNW_4cSusn^0f6eR&!5w5|6akz)4zOZg z6c+X*StI6M47|(;hWQ#0>+8EJV-#N&GBN2}H$YSI>F4RRz4o4}9y6g)gHb7-dd$s= z(XjvDIsUxzSWp1dDo#7YvbeO=F|E3$X6Jze+I#lwS=Z>;UhI$EsX%DEk5HB@Swd=O zc+fhI?{RqE{(SV0xDf?^lj!rZ%bQK`b>Fr-sjU1uG2`Roc9y*{;3BA_q{Z6}15e%2 zG5rcN+hZWIqK%EsvL_0JH7ZCv1V`4?*X(&EYi_r!<?mA7p=rG@X~(gQ9faeoXVLgf zF%<kkw9VPYr5guZ^XZkB!}PcfjG}H((rUXh@uF1V`hBbX88v7Xn4a@km?B5`fk|;g zJXL4%Z{OY#l)ikU7}!KjT|PX_N$5rD&(3(=bb~;Y34+jJ`;WRNhVdN)eL?j$C=d`x z(+`g?|0pU#XI?D$hoS<H|2t(;-n@A;Z2p23;4H+_Cikg6=t&x^cFW(T#s5*SMt>m_ z!HRRPQIMR8*d{mb!2GCnfP;zHHP89~>bHGY24Jw=pWog!{g{(EuOCPY1KdKxxc;fh zcW$ztZiUpPl<GCsE-qR1=@z_JR#qU3W)O58eSr@i!24)Tzu@YcJz^skd{RzM^~8y5 zaNMH+%i#7&c}_^=0;TlDp1f)arxD;_CR9)Zp1pgO5EWu>;{(na-$q7MK@`m<TCZ|7 z)}RNXEs#I`1hwL+^U!%+*S<88M4%G(xH{pCb{Pf||5#Q!a~ec8EJu!H--8~fiNWlj z80zSOKCOYfS`{g~j!*N+QLua^H8nMcUg&L4VQ8KBdEO9>MXLv1y?XVmp&_V+>&HH5 z(W)pp4s>$N-rU|i2|q`tXF2%Kr%z`y_P{D!vvDKk<DPgF89lwP=~!GXP^#s-A<*W? zsNf4f0F3~hj(w2-<)lS1JJsKVlUB2^NOXY_aPcC&jIG6(_G>g-?uLejnk{Bw$#2xf zrWsq4<>M!SJA{KGybIFw&K>*c3h`Bi9B_YY81*NSutW_ap?o*q<!|am)q0waop+XF zUmPmEtgl&i^WG>RAuQh}RxCOj4v+aCo`JeH7WX7Ib?xfac8Z2oRaM3vrNMCe?r=*V zJ-S0gq}JjcIvHrkOgt`v=1$(yaBz{BsHi6FQq{4qP1WJYS>A_A>Vp#eUMY^9IdcYm zjJw=0!IjBYjAhQZV;d#ibp-OpAG?pYGLcS1MVZqgg^+`qWs-9_r00I^+9L6xcY>sV zb92j4&0buv+sJ4GzvDgzg1Vq#LBW~AE3r?Xs-Ww%lb;`i#;=B|+mm&Di=?DJC+FP3 zFlY41z#!uwYxuO&RWdA_KxVcz*_QB8C19l~gVSz1b^j5Z(s<Z~S`dk%EH@cFC!e63 zFrUE<3#4S=xBz;Tf_rRjZ5#E<0{1Hbsj^!xKoJWXl~%obAef|b9b4!f!bfs_=)&)< z)|-i7AuXmuMUu0MlC$IC(=#&yJ))7sfc89+bGeU)!C8k8J5Q$ki~q=n`xj-wxnLQ= zI<KEL9*6?&Y5mY6<evVM9wAdZ2In-0j06As!%l=|3Kp?BjB56KcksXTCFBzL3F6ef zzcz@(819FJP+{&BH#BI2P1HX*SK>UyuaPVTPeKhvr25G@*;lV$hg8lzXX5fJY_-;& z9P8I_&ZZ;yFEK8wAiF4}iAlC6apr4z)pj7#Dx(!>xaS(!{$TzaCET8s&WehPlG`CM zH*E(gu=C(S9pp+9Ho0kXq`z5TT3VWV4!U_+3e-Ds56BR7z=^tQ^=kjyw;yR+W=cbh zkW~<#xQfx7(?{pyJ_iS{p=C%mPDy?mmzbyuNYj=S5D=KJFWB^bFTdhu8n0RDlC!e3 zU~7P$IHWmWxUd7wfXvLyb;7UFj&k_&j%{LUDm$&?^XC{Ch~4F3mpI+W&ukQT8O|{T zJ^AhwdY0TlX9(>>cntIE5<Hz#)b^;burScs){JGz5|qqu(%#=*u2$F~Bvi$B6n?zE z?7dxzSl9XY4<ko<Xl4bTba6-tyPHp+3PH$c-WwPgkZtB6ZVUbVX2nQvo$`?@%qb-C z+4G6NWu4xILog!L!9sF!b9MU)ud+DJWTGKNnr)WPS{d6vf9`}wBx)1{+W>4JTMuPp zH9Z~S*#{kE07ZLHTwGO2=~IoKlG0;{l%<waq^%;5GjLI2W?0#wtD^lPr6J8M+S8Nh zYtGLv9RbHf^f_o_<9f-B`%SDgEZbmY)p_mub<uuDvgr#*k4`hA#kr1s&7YKj;1+Wk zj)8qkJ<&v_+nxVCJvoNX2Xz)Mc!glu!EngOSl|v>DqvWnu5-&E*dK~H#N|y7%2MFq zkjM#)uy6C;kKZcwr68S+7o}%1TBDJ?laEi;)HDu2gsUR4uq;dFw`FAkSBoTvdeKgd zf|)$i%Hm<oVT9ha3+ab-b;Ty-&uV$C6R3ecUdzrN=h~mEUM4;kl#`RgZr_a8VE45k zS=QFASZZvk147s`DIa#!(p%N=VJL%dx2wnO#qUiezb7jML1jh)|1j)Rs)aoX>$JLD z*9<gs$Z3S%I~JeY+6+ng|MJgu<;;@xa1O!8A$Ut@G<6v7^CV<m;5261!IUHg4*e!i z#=<{e_b+AV&(Hst59aGpR$qF<8ct3s{G8th3N$(|u}CD7qX}p6{J)s1g?IsjFt9;| z$jC_G+GiIjVj0<+WCha*{ErHx_QHaHGcNdRJwR@|Yg57z)zz7HMwH<X$1Qt;<)f99 zmDjFX^%%(l+g}YW;`lOhW+pkvg1+U(T3)}Ppak#?GiWB#xYW@JS`LX}H1~ftpiqwi z1vGR22etwcB#=Aoi;9;Ns~p`8dNCjOq&4F))1$w2#%<IJj=RfbSF|wF7uh6@bpL=} zpP#>fwWlj1AV1ms+lGSQS{YlnzWP%uqb5_%(vk{0rl}qRPN(&2!7mJC{F|F6nB{_N zpch9PC~#*&1<$Lhl4?LFsie4=TLu*<AjfK*lD0!dp93XVfil@Hp_AZMN4qlZ#y*u2 z(_@#X6xtfOp-^_ljeRhe|4XhwyWn)9F!V*%tSisd*>)qf0N#<*idy$C{E;DEqWhMK zmcF`4iR_M*HJr?Kchrfl)D&oIxLC=ELk{*03fyO5YZi)ROg-+y>0oL1UYI5lz^~g~ zb1x+1t2z2Ul^Al$AOEy8n!5vU-#Ez((dmq&rHOtS?y3y-)%gC0da=Fb`K17MIrB2K zd^o&NwK7s~VAO*2?j2@EXeH>0Yq0Sj`>wJa23ihbC<g5a_k~3z?jq+$4ZHW)i3N+< zeEJnF+(iCYdqKkJ=;#KAhgD=`u4}vE%f(BVdK$Nhh>TyHDVxoJR|7V0NdZ!HZ>ap< zHMO*W$ZWEzTPs8l)8*LA<J1GU0%ok=^%lJ}MC;MWVe!2uujDo%s#L*B{DOn~Oyj?! z3mo<C#%<fSy-v*MPSnmQt(N@hr^9f#Eh)t%C28=+hHjzlZ7mF|8{Fh?`z@<ht>Ts; zDI*%xu${SOVER{JIgz4vUyRYk(8_bmOt)-`+yC*x5#P_4O>iFkS$uAK$h0|cUf#YF zECaZxVA@BmZyRi{+*CPY!#?x-;BWp9AI5?C0!mHLs|G0fa>F$$DQpYfj*dicEGZ^P zrmd_X9y!|AfX2LR#z&X<_%aYL6-~|9#jCe<!t?H~jt>A=gOccHY?iDd0aY$kVkXGM zO-O!&z*Ot~I+mh$I?JOgKf6AHC-Ke@A{gI)cXa-kWg7?#lAzRguNvSW%`4wJeG23L z1yVY~vm?)&jq>%^dN%;0Vdwws!1nBfzQ;@&<_n^(a=M&=tE7r%7x!Ul!*uA&W$2<| zmy|3l_?opAuA|>%jwLC;SI;=+!<qQ&uM5y^$`W6-$h!=0Rh{qQf$169kdP3yfJ<J< zu49(ooZ?z=8@ub%;z>Ci9pZA*chOq!)1cAY<Q_&e&&`fu{)C42p2%Iaf7-$`k>pxv zK-X~14lse7o~o{{b{Tliq^hN5>R=Lcsj{oe&__H9440gcA-ml8+pcx>H80jha_Lj2 zs=|FFNS}-{{jG><rTi(uwapd+zON};9poh%os{h|lcNn*Bb5r0nmTOkOYv3~{U37& z$Hr(|d=5T_g3yCnPABKTz^Y>6;)=Tm2bO}@g12XZ@956$AOQ$SSpg2Sb>#w%crbEd zbX)+&wjvuyQv*+lHVUPv`HEy$y;-neK_?8_s?y*C!XC43O+Y(xz-qQla`p%qc6!!9 zA^Pc;FKW<Ki6%X1G-rI>m#-&j7CCN%zJP|##@XsR!J~Fx-hIeuc8|w%<6*{<4iw4M zF{&VYR_uc*St491`)(fyme=)|8JR>wQK#n$3m5gv`@o*~q&(Ad_Esv@@QbxbRigHO zhrW7M^p9xdet~?&f>3DXx}@bzeBtnllQuj={Az)+RovXHAAZbR2^b$w86RkkgPDOj z3hwKIC)Fm}{T@LS!Xg5$h9Bp2J_@@P8uy;W?6_g>XuTP7vl92-6~_v$=JM(KcKeQC zr=76nt@0+KB0Lxe^>ST!L_{>e2+58TcPtXwm)pa`!|cYs#-xpc=u}5WM35?r9EPH1 zeqkq_Ep&g?y;%7Yc5U<~=vH{wV>fU#k?>DsY+3A#qJuzQK}7h`?|+@f55`g*Ab4_F z{F5h2h%7a{$Ucku&!$dd!BoRh{kakS$?2i8>TD+~86_BQ4&WiyN3LByUlx)GziS6v zA(C!~&JJ&<%uaMz9-4(vRYw4axDCpnb8buy?KyO>X%4l#<0X0?6Fr09zS-n{d}b4l zd4ejCc;1u8wp3t3(sM{N(>8K;NODej<;s;}&Vvy!7Jd;c)ImLmOB->0_4eW}`)*(n zEY1ozaeOiL=FRR?iLY;MjE74(F+SdjVok#oz({AfPl#PFtSuc6chEA@i58z3u3V<O zmpfS0?igy0qLPv?7O;kuH45ymD~+b73@oX_?2U{P1_;-JjBF2eQ#x{Wc{OluWU?oT zch|0WpTu{Uz2X#<!5jIJoh+0eT~uR`uGG&xJ!WS{jF}gC8v9{^_MhLZ%pEM|CE4ff z>{xz0x`HrkoOGLini<jxkevPIgIqw1A(*rU$oRq#4r~8qX9!0!T3|lN`hv{Fvq+3f z!2&7AYpE(LZ((6!!61dIx_Xb7Kwh~Yk1}a9@M$C$^l|YC1({JZk3}nl)*z_JaRr%* z)d~m0+-D|D;P+A629eS{n>I;-U1p(s)}3{UV_E-Mp9jN3{cq6`=0)JK931de-5P$! zMkG^eiMI+EFHma)4yG<5N(ovSb;({nA4)JYO3>8IER*BIVRU%O6Im*d^9ZwgGnh`& z!oUuhC%9>uLl8OZf=DHYb->ox_x^nCmA@er9J{#7)0za$aMVUwUp?pcwWQZhPWh3| zF4185CXcxpaw6eX_2H~%hHB`~Duy4k;bAU)p6_S;6zke5Lux^U$5YCbBW#7b#4=>E z@VVkOV5+j86xXPUPR-rPpK9uViekGFlU)^M`<WVHo7p0`t)^?Aobw{PP%tGRaPAJ! zP8>aUEDmjIlHJEA;>4(eG8pmfZqAo%O<I|G-*BHn0r7&X`z4!{&`zWLxXyt5WXG?K zvFiF1)%}gum&o2HQui2|qg6hVvoWBHHpc@myF0&o?ZYJ?10+;7Fn9zHyc*h&g1Vgr z>l;bJjqSOmxrOXtp!3hWdGjGCywh4*4_!vOBcaFQWec6H-&x0s=w3YbyvsgImkU5F z2K1<R7_&n53&WBpr*{&y(kd{8=zs|e3^T3b-ZfZaIEtLWe5Q=T!Ee8kV^|=)(7hUS z<3*BWw9|qggNAHKJ+^cA?$f;LRKJXj4804j3%%KeZ*2PT#)f<<!=e%-kAi8%=Z>j6 z;9bHtpN?8I=jo!NK*IS(g!W&+^lT^^iNcsy#FfRxzTQrGhG^9Im<)b?OO9))CFv#R z<Q&AvXXgW>5F7DMw$Xx-r=x{?3at(iN5e^J+L@T~k#v<wsgdCTDqYz;JGvj~_5N}9 z>42ph1-m+8rvMV#r`d>>!;3tVbq*c+h1?;G>G6n*>mrZ+xih+?h4|Nrod?QV`e15J zNMeDMMk(qB>bnve58NxKdp!*qiP2+tYOB2%+WsZ9U+NYWF%!MlzYjNBu0tdIznFQK z3V(8@kdfp9m={G-BN-;&8|FZrU^YPswof%uG<W=ymwMi54$MSiJ}DB#7Cp|B3JUoV zeXw~9$yP6m`0#DVzWPWqn#dU+{kcgRuTCuGn;f*;qYq@c0RCWbPuBt?1(TJbvk~V? z?sb6}kzpikR<moQtMa(-Z~+5LC;TNXR8zA+bv<Wk$YM2jcZp_gehirrL?Fy5B@q03 z0{T=^Xrjicq6?E|)hr<+$#fJxZH5Ku#KK~n87O2?^K0xR=Se*+&{x6;-p7h!e_j#~ znyd?#kw8rz0qB~n?;1=o!#hy`%E9!gCXpE2@q{n7Az@ek2jjC2U}MBOGej(`h7ah8 zf3DF(yOg99zJB-b$B@%aB$_-BG(tIz2LtV@GYa*;%G8m^O$x~5JFuHz<zvuJfjr<I za$KvcqleK5CWhqPL>Z}4kYVs3x5|KNnhiYU*fM{iH##zLQBlXPvT&(^%m~!dFd79y z<V$WLIn?>fFTX5PJRg3XfOz*l366(c>35<0F$0l>8Aoy$1pSL+;2DYl39zm>j7pK} ziX140dpn#zH<eG$2g`>_^ktp5Mx&nft7_W|Ljw@va44$qJjzr^rG#Uz1_n2~aY`-# z&9tB2u7abt6Q!B-I5G1WhA{5|#IYZ|Ko%GtxY76Tub&z7n9G3p;;RjO{d=rl#+LpU hvHJh=|IsltckhhZ%hnZ}jvxvN8EN^W)WZfB{}&tLdM*F} literal 0 HcmV?d00001 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_core_7_state.png b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_core_7_state.png new file mode 100755 index 0000000000000000000000000000000000000000..706c50a26a6f7ad5092648d9a315aeb4469c61ce GIT binary patch literal 13468 zcmeHtcT^Vl*6x6c9W;t43RtkvRX`9ytRNsr@68xQdI#yKQKBd)Qi4>K-lcbl1W;ZD z>Aff-(xr*?`wW=Glk%PKocrHh*R>K8%Dgkb+52gG-<FjTU%!TN4M7m=CC;6ZCkSdc zf}rYLMT4*KSGB&!Uq`Las#+_UUADHnXsJg?U$iziHnTQ1_<pCYo~4z6nJF(fKldTd zomZ@_&8>uZcuao(0d6x(eV)dPqxrbVYV&hyRs=zJk^F}$S~SXlAox~GoH?m@HE6KS zRh8bRePN`5YSY1+d=GTIpG@tM4&&RXqQbQ%zt%d}x~`RvyC%Wckyn2BBe%4bRXSh# zfoi_A(H>=WWj}$NrnetOXEsH~7_DCQQ{jn&CodMbj!z7P(ED!QN*mhKmGhyTcP!xO z@YFhU?brI3J&RK~rEp6JZ@IUvz~5n)Hxg6?vF<dn9A8{VwSgdt4lX}|?-XzN|KIq( zIg*J1?xJ8{fB*iERZk6TqaW;`b#Ln?2sg=OPAUD0AUSjMWMSb~!VF?W9<8_+v(l9- z(QSJ8zR~@FfS3=j16#CiajkM|cr5o+%-dy(YII^EJ)4p6tt)VL?0*0Lz<~qjW<C$5 z=I$W)<CBwRA3uIvQE9PhBau{Ga#06=sCRaXiFxjbQHYX>vFIwD9ipb;of_q$-br-j zeR=0$>rW6FhsVmr@uqM5sRZ0CnlsIKaE)}cj`ksWqG$^WqLhuDy*hwbUr|x<2Rk-G zcP*|&xLsW3h6~)X@E`=OKAdl}Y0x4c^%1{O<S#c?8ZFGvsc4zKe#CFsQIMaPpI;ZF zu-|#~<$i7o7p2;VO=0uq&8#deEG57G`myNRvbyx`xK{dgjpaqsfkzBxzl=2J*u)(% zZH*r5sq8P98B(yY7}0BJO40KWySw%Ap-ZJ#8WOb_g|8;l&@sp7J5CC<yb2M~Si6N& z*3vR1!=xp0yIG#xvuDqQ?1nU@2e#mLxpw&Jso64&7<Kpb#HpoTZca0J=rYsNq1<@6 zG5I1pH+TK?M1SyDj!l2$ix=ni?%z*I;astDW&g|lp|!u>-n3U@#flYcR;`kil)Q6` zj>V-;XwBNSxKz~j>(m7@Ys~k&4ir$awaqwn>XeVKub$me!f<P7hp8paCsF#%o6mVa z;xn*pI?~(Qd*}9TivWi0+vCQ^ttG187Q6cf2KHB%R#sk+las4BvJev<e&*)Qo7|gl z&$$-4!_?e7JPkjt-ZUQAF)NnY;WDGw(*5BB`_7$3dfF#WxLI0R1ygt`ay0`N`0yHV zdV>z-;!IVeF<v|YlU+J93w;ypskE{hiXVD1_qmo%Ia4PFw**t|5OvA>Jk%EF%b`;L z#c}_>eX(I-MMw26U#`Ep9<QQ-l2AdEmX#UJO;0rE*{41dFmox%xOVMYIfY^s;P3Ar zRaA7MXVhct`t|FY&1b~Kl(VFHczEpX?X}97iRks-4<Am9Rf<x|%E}h2$kc-7O$uj8 zSy}%Ly5nycbetY1Cnv`xZen6esI67>x8E*cs%UMU#>&RYc^;p_ZGzKHH)%Pdzn!qD zaidzsXZ=xj{nmp;zg^56C8A#7lwF^o5hZqy@n}-j*w~oWJj-mf+|$k9efI>_D(TJa zI%_e}S0`ol;guZfG2OCTa<K8)>9q{pKCDM~&`SS&@Fef$SF(XeOg3-X5~&~Rto+L_ zzmP@6HM5!^WH+_$CJN@K`@O^4^Br?vx%MYyj(;kqlk)c5adbDGmuv8wf%g1dKOUV# z{SbSx3!-yrsHvyvMh!Wwf`{!#f1qbzFlx=R5OSVQa~S{lc>VSxFIrl1n<sJYB5u=- z1jktP^R%=ysSoR!gcMJ^)8-Ed(Yl|miMr4*-dmFtB}|y^+q36%L_|caPGJEG*%(D7 z+l8B=KB2_OcVz?JbsAm1%&gTwZ$inPSVa)JTfgnhT?92jY`yi5-!P-5(hV9eT+sH@ zd->M9QELs+c%4{PBzTXJKP7iLkxYNO2v@%K^)kD3iPC^$c8O%!_xH#B_~Y_i3Y8n9 zII&zeDBG%s{n#;$UAuMxEyTWGwe>$`67o@kjt%E20Lw-vCo^+56Ui&6Hn>?FpZ#<? z7o??eX!*K7o)2eW+McJjY$dHCpcLp@pQz<n@|jL_7XMSWSE0<4DcB^$aVT5LFVn1} z;L#+GsK^CJ?&0A<zj5Q^@bGZS^iWaP0!vHFAcf19Bhj5t9-ns4N$YQX_Eai2sbD%* zsC=a?rPXy|?vAHt{oG`S*&_1cxWjb{UHTf5bRt@2rlww2R#r|q3^u0=+4T9md-qPW zxh_uS0xDQZc|S3kY}F&9r?1b!%KGbXh5N~YOFK{X(4j+yRZnhGX7LCI1O-(S)YGe9 zJlJFN{>1|h)2MF|AZCo}6If(=yyn8hi#=Xhue|Qukp~7HF>VZN&~eprr(;pB3=y&U z@G5{}YJ`7Rq<XlxxU5;fK4EAS>>jHbOy?%$&s`@i&=wA0&V4o9kQ920mMQkrC-aih z(!Pfmj#u^8M5Q}S^ifPX4jqyM&Q-AS@}@qDTS*Yn4yG3CJJTT?r2IImPSc5m10{8y z4U$&_%=UHua>L)GtGjzI4^L7oiCJM{b-lc9XsK#^82{y0KgVTofjw}zKzzkzzPP2v zGA?ReIk^Y6!|e%expq?Cv@FNt@gK*`n$Mj-UyBarRx=xUS90gho$5g#-piERoAw*l zL`qMOl(D4iQMSwt*%dyFii!di$R*66$aMuWw^Fx1yW~DS-rMCAeE<GV2}TizG<kV> zpN9{vUNYt3nH+}mC;43GXV+u~`1(d{+#~i8sE%4w@nRN9v*}kZ*uhK?we~0y$H^fs zN(y(b@ZP=M-u5_5A;-@HdJSsXmU>D)(1)G2OFbxg?wst!i;tb0od>yB5XL9TPVn%5 zK)A)UzS{>eMJO^Ywc}Q5R5!1F#fub9zz)A*?TaBxBCOPc1_f@KJ9uPjYN|J*#WeM6 z)&Hl>vn1S{=ywoZ@fw*jUjd^n0-OhmzFU)RrT^C!TD+%;{)YaZP**=MFE5&PTXh%l zh5VJVk59e6HgtJ;c?yI^w8c8AW&b0ZEWu3XDz`uZvwBcE{f-@+?!}J*huY7a)zu#@ zHm0d*qEv2pIBU9blYD!7JNbq`54OZv@ZhuzSK^mTN=okh^pmW-e07q#88Ey2<x2}0 zs0b@=jdVlb@4owv&!$gtur*s@<Hn75?%k_<cBw2j#|c!aUc$w^ye&yb6wfrQlGG5d z#@l9HBTdg82+S(=WQxnm5|ogKI5<B4<r0@#%9#ry6SWgQYs37E8j~M0@*9TVTED%S z#K7lV6@+#iGysaGx7~5L4sA9Vq@%7Ld-v`-=oP^p`>R(E?As>>GPm_v6Gk)Gl6e7) z4dE2Jc<6mU5bM^gAwLVhEs{Uk?uc$w8g9=|2OLOLk93tODJw_1xe@*o)YR16*)pFx ze0_YPlat@*p_a`BOb;!eHNv^c09LFDhQKkjOhV!QIxcEvg>#?z&Fs+SkB*qAEBTO+ zA1Gu`le}9i*R~D~w^srJz!$ACIy$P^{Jy)J?cl*rDJ^I##giwmS(U$f6<_~|M1>oN zsLUsa+SaUD<IP%^q@xpj%ud<RFxCnLo-MDSK+nYF++=dq-u`7nLxUc5r^`O+N8#ek z_GcdMlTIPa^rpr-Dh7J`qm}K88YbOw(v;tz`b=i4rN?)hHu(kzC+Jc9B)p+zqmq*k z+6*+x^;87c1ez7Z@DzMG73w;lZMA*%>eXbI=2-VWNz}?UY|pcY3bSpeUl%r{{_Ojk zDXFRSU~*`Ms>OE6K1;OzLyJG%Bkn2a@9*c=2eqaM6$W|?1HR1-FU%)Vj^NEk&dxeX z2OK_|ot=H>?%i5^g**EYSRpJC`n56F&P>hErm35ajg32L|AmnFmk;;r*yN6kjNI|^ zDr_G`b++C))IjoSC&RySNLeM9bcrzbiQx_%TuBiJHt;(-2((`<9{P?bQvUm9x?2+= z#lUaYuBnw{{cI5o1g;SWWzaM@i$U&XgmLk<6S$ZE$eszWVsx{(Tp5y(s$Us<@&=8q zKQ)oDlb}9W0VQ_DZZ)CHam(!+8wk?Bo9epYqLpQS65>fA*LHA#dnIAGgQVl3>>lPN zLOY|Tre^EEjNtc#Fu*Nk;q5>t($MaR?(EbB%q3{$e!er<;kw}5<~W=Wp!H8mN_z72 z=|q!$Xm*-CuJqnqP%{$kuhONBE7a2diJv=gxuN_?ZPGQAzjz@Vdfb`Myz>N_f)b$x zhWCB=uq&uwx-YKp01IBEvW15cF*DI0<uW&|lrxuSKc=Z&`04pt^-R;?<I^Aav{{rf zRZNjjq^ql|<O>njxux~py3Pr9=xfNu+Hi?Y{!=SycgR9gsHYo7JlG@N2Tnesgf5e{ zTKrLm-Uxq~pzw}``N;}<=ygd62{{}PSmvogO=OIIWk_?bT@uhl@vW_-q@<#}{5vNt zRaMo&bbzN~x)2ND54ngRHE7GRF|3adu$nKVV{><R=U``-<Wf(2(^nTqlIEIB{v|P= z&};<8iI%Z(Sar3#+}Gj#1MxJ62}8h;=ATIT;m<!u!;AFz1O%wn?Ik}hS7<w-60iCg z$d{n{?9|-MWTD~AlP9~Ggsjh<Jb7}7w_)}CNkQ6{RkFbxq)Z9OE_SCg0yY>{hu=2M z?%uL@-#(HHD1KZI$0^Cf5F`Aq^G;{ao@EmdQ1O1>)wM@dR8*oGY|4+<lYXV@6fA9B zZHz*9Z*L5Ewsw}5I$Ey7Y3v@j<b7|i!IF?#<#x<=fPASzNt?d=j#c8RxR)|?4HTK? zP$!D-F}G$`7_ia^O21-?p+!nwS=o;?f1CEpyy)oA5pfuQ1NGlMJgmceY(>!#6`>kB zVxRdp-OO;h?W}=;flAwla$k<5RCW~Eq@sQj725tp3Et;ULNVgzT87x@=yTBKwOJNj ze-wJ;h0w%-0ppuL{)i}K>+Pi)|4&kp#kOnCFyX-AtXRJM4|T2MG;*_TFX5H|2L5x# zV7?v}{qByV@?~BuDiAyqL%GAvTC_y1AcRDhadVnPQ&ZEL)vK4l;a}wWKdSt1zj1W~ zAFj`IOc~TRIyUy3;Bd2ulnFLmgaT4W{iTg#`@<t5dMl0%`@r~_=1(X`gokTZ?_*<= z;L^zO$;`}r^5jXH^UUX19!RJ#KOm~Are^$4Kdsukcdt_H96WAap{wgeZ;g1a-EckW zWuat0rdA%e%24}9RyPvB`!ZaC8ybROh3Zu4{rvLfOW2Q^prcl-5}9qbf#`mY{Mk_o zlz=bm>)>N5m&!bqG&O^)g1toNRY}FFa6v?A;uzpfRw}DxTagZjh=>-%H}}~0moE8+ zgm6o+b8#t&iQSUgPDe*al6wmgoeQ(e4e7EN#C#P5^Xgy@*njf?h7B9So<Bb|H#=5I zYJSu-yKyQ^2E{ZJx*bnk(Eu@^q#=kZTOa+9Dmmv>&`|}v%(!QhMpLzA+)1vpMhiOm zGH2PFWt8$&^y+iB@K0&`IxjqO;K`jF6Yc02x+J%)ZfZ<ZtI*$9PH93hJaPW6%7^^e zI69-2;lyLfsdUl```z7^En9|+spl|!_l1Ijg3*x?IeZMdPVHh~QBe`aRNxymuii(h zc^R9-gqXNE2S0zEUVG`i?cjMXiLdr@pgJ-yPctSars4?w$mpmy;F^L~=`@Af-9k@q z07z)gcgzgeVIE5X-7_7vJX6i1{{im1+js$ju`hICHfkTp6P3`L-k@CrESvas(*?m6 zR#w(4RZq^U=UB%SEX+HKd~Uq-mFe+bRI*F>{}Bp;F3Ng8fBt+N!oUCa{*X7bQ)6{` z_Ez~*9|9}Hi_TRiUo7?s4NYQGh&%u=dhp;uGrqD{;1<az{NG6VyeDQ;AKP*>Z3mle zN(PZ@a2!8A??3@cnsY#I!CJb-F2$gCA#9eNP;%%AwgY<a#@XgdQ4ty>3Pjlrw=ZUA z|6*_tE?-w92$-obBDT@e=<X&vb@nZttL(poL9$(c)9(K}Jn2|YT_or<vy!NRVfeE* zDCUP;=QU~OL&)?384@DD^hLS89I>5R+LZ@OD(V!x3G2Vm{9n`FE@i5Ne`#q-#vqPu zQM*Hp2b(ave0eM7HwnqR&vpfF=7{Oo)}NK)l-YLeI*INi1wEK|GvY1K4H>ifr@=x` zDyggYIXS=kb@kaZXRdsF^O$>Z`tx91X1fDrs+mHGo3@3r3fp2H$m?d+Q&HFW>=Lq* zD5%~8M~|wlXXJb1y;q9exC0Emf`&#Y>fUw%Qpxx)KY`cdZ;Ss;yxoQ#Prj!SM8&z( z&`_blW5UA1n>THGIzB!wX>tjUlJU4xmTBIInEw=B7)ig30;ch~!vz|Mf!@3p=+Jz7 z<Qvw$y54bFk!ile1S#3;(hL+9D*-}B*kv{geZP6bhR(yHJ9nNy7@ONS-I8h6fS@S- z>d5#0Q|N)ZWpu(}5WghdlHm{_EDD*Qy@P{xN-zY6A=09TOkToxauMaJiN<m+>dp!E zysOUuEa8yEIj>l7!($!6LN@YOuVz8XB&4PBwOLh)_#5v>Z$m&Yf(>c*3!am*{+fp7 zvPRq~J_NF+QqM(OJA``KvZO3i3yWvUiJCD;PBkZ-NqG|~9Z0%&dhW?T^?Lm`c0l_N zJ5XW+PxaK>`@1<5cUIrb4|;mN;CwiUoFURu7;?bAdHdYIA9mJbi$QO7#Ps~k@I>P! zub8YXRSOFX?{K8q*{!UWRqskX_^*EIlrkMSfMg(C;vs3j=e~4#NlHuCg`K=%ji8PF z$dL@O&#T=;h6-j(N&8^e;heeXu3A4Z7F{g9#U?7MqY!ys4&r$Co;~Roi)ni9?GpFg z@xa~PD5R~>wUFcn=lQ7~f8)xU8U;A`s_F<So9S@_GSn@Y8LB}%S(!>)6B=@7aUq)( zPqL`g-yWfo^?ujYMbE;b^EPEMpd-zgpPo`<ds&%ysPktvB|m^E<l|*B=^~VFe9N)$ z&wqqw-+rUD@2DFgOCNbY0Cc&V-?;J3@A>*R0n?zrY61Y!K^Ykt&n4Lu6Bf2}F>xz{ z2Pn<%Pt4uS$QYYDltcOLGXJ4507Bq5J}H?KcOO1_6pK_eT3cj(IrYI!u5-lJC^*W0 z06U65PeW6xK3>%_kuRM$mRtZC96sECL3s)F$PnSZ^64T82?@idlnCVi^z`%*Kn<M? z6No${c9i#ngM-zjDV(G$gBm5->-_n<v^xZ4+j3D(x*VCS-QtuJ<WHTt4s{X>gUY^p z_bD>cw;gEIYZ#fBP{P?*P4`BHYWg7o`-kw~W|$V>ZqmAssQ5!42w8s&d;k6i{wr@z zKqO=@=B~)>D%g;!XTM6}M3#S{Qh4kx&3eXg*hr|H^Q5M2PB${r^}?wQyxl^ToR+4z zZQC|7&aW8z^hp*sUtLqfldBC8t)6z}@tZfYK(2Eg&Xd7bO<!aF6lthIC}%C(KnMkP zPEP9pT&?vU#vWZ|UUBj9ue#TTutF|^%`%_c;PayPO8H%ZS6JjDZSBONwp<Pl4k_=T z{<%jc6%ZDPrz+U^_{JUV5Zi~9!X)Qysj8}i1@S>&AdKY6UzneP{c6BO#Nu_!`ER0t z=Xc1yy@gK)7?h(+;QqPC#zsdsZ{4aIW729~ygsMP^O*Ig&XW?BiIYYdy$JgLFbrpj z_@!Vv9ua;|-sq@hL}VnpkWh|%%K;9K8YFjds96blRn?z?L0TDVs;bc@Eg4D<fq3Yl z7beWhk<^7%Jr$2bKH1lt9!I7H@7{fn3`oKovLfRC{SB}2h~9k8)7Ccq_0r&rIGNDn z35W#bMCZmIGTXo3C{ftDOZejR<*$D}blRjjO%5Lxf(}KK8-42h#ddI?8>9IMr>ma$ z2GZ*X5`xB!2QjuWD)(V4fBjnNhabX`q;}@r?t;}D{q&__^=nY5!9e3P^1EH7_v(<I znKY%G1&W(z1PI%w-0|?>H*FORKJKheS`acxu-D~t%h7`+U2GW3K;nSJQgo1Hu7>1` z(obeLJcYBP^qD>8g5=XkhaS(5m4v#Ao@jl?cmn6~TUOX=2uz86&a&`DJXqLXUiuMV zcB1|bYPVd({s$|{SX|?mY{`<L_%D44X`{Xl2mgozJa`KJCJy*rCzKjskcX_3976sf ziQt{cfhKDHx4iN1!S5eYv9C!BS}hITNGfWez@oRgsS!+dUQ$vXrn7r+Fd;hnfJsNe zT#5+;mwI@Jh+{0Knue`e&%Xcudv1dT%w#BU&9lyfa}$Qz2;EewWi+J7U_7YnwnQ2G zh(z^tNzmmZA)8p+q1G696EgcIg+|5&DXE&DHtrek_Sa#DJHP}YXSiU-CpdVpIuW{l zF@fYzj*tE-F<O=vVccPe3PB|(xYIKE1O>$dD6YKp-b<h1I@xA75hXe&0WC^SKHHtf zq#@Et!5t9{_k>0WRzO)9eQ$@CZrt@xIKq*B4|z==^e$<`DYM{xexv&H2tR5rd5J{A z18drD{~bfJLJ>_yL`8Az*;BkUXxK=2v4|$7q#OpAWWA!p+|tz4G$Lc9V_~ji4K1zh z>IbAkNztSD0Qw=*5J^a5s1Zuqnby)*0lesuo}g2wPbWD?5sjDMgq`d|4vEKH8UXJZ zqMq;9S%}5-5C%#bQEtT)VgtMRT$I%sIy#m9`UGD;zetQ=db|f&ks$2a^~+RFa`OER zNK;xpq0``IV}wOS79ETz91QSRMRPL3U%OgoVOoV`Zd|AE`xfN{^%&fp(A7`6H!1mf zdGGuC`ws)RvbIBSAna8^u&8C)nRWHFxV81TUPGXWV@8PUyuC?d@=4@q+21OaSnnJX z@%H>LlnUFSLsd;K_3>&BpPTg4e|Y&F8Ck;vlCXekXN^JSBipM+1ToR&CCbjvuXKZE zeRV=+du(H)s>bJyK;wN`ule1IZ><MN7m&2y+Nyb0Ow15psn~w{>kzTKiJamfvu8Z~ z!%q}jlInUw9A!d6LYh<cz5KYfVlfcpz=#Ni6-quA{?vUez+=?1f+4*(v#=z6`SN9r zKQ57-HxHwfl*NU?x-)KDNpTyvZ^k@u5hfJZ!<zgtwvRI+sKVHtAkHz|p><!X8`3ox zV2c0uVx*!q+e%4Q^#CYfFDq-~@4>_?FzZq<fmz|f@BYhNqSd}97)sW+u(0qqEV(=O z)}5tU3)1+`-yj|G*n<_A%q1b)otl}k64^=Y!8*fMeN;qwMTPRYb3ZL!=pUWe-#Q+S z44u@=_sA^>Gcz-rzFLV;r_tLKOG*l#UioI^CNH4@kst^m>#`YwZE+ifw)h|5rQ^Tb zSs295!ijrUAS`S!+(Tpo3ElVR@eK^tN#TVFM)>p3SdLKXC~!vd&e~?%V&Z_Nv4L^z zt5ebO9j7!E+K+wc4bTs%f~eli%$$fwz8CSGdakX>`XQ9YiPx4MJ%pd1A3NsEw{PFB zuxDmwhM<viaB#TU9}YZ0*Xn5-8^`muG97nPMfsC*hkJ5tOhHl62Xcqs>B}dn3^jTA zCol#*{m36B<S$-)%Rk)W>*F6}W3Lr3IaO)HE?;FE+m~+`%M&}6&ptE1(5pTjAM1Hm zDdxOri!&#Cm!Y$&w)W8MaEYF8TT<V2e*E3OS^I21#-#L+zSt(Fz8LPIPmXHa`0Lym zGL6)f(~Ud0R84mtJJ#a;1Gu?FZyqKh9)?Ldt75%Ct1g#LL93p&yu5cEra)NZ=<iP| z%wSc6gtIZ=#UerfWZ{DI&6XgL!CpKz`6q_<d_X`z1EX|n2(T%h3-(c~g53`*JnvsV z%t74HZ7vuzws!4WdWh~<ug*_RPdCfOR(*7JtXlZowYAY>KC`3F^O~NTkkyB~*Kgb~ ziB7a7v&g@CF%HfBn91B3<e3)$>OuK(n?R^>v_^s*@({p$Ajekz2`vo`Pz~F0^(PC1 zWrva(=FAE?n3jo(7BVJA+FE!7o&a1YLDQ1dax`fvxxuJ9(LDI$$1DDyz0)kZ#Pnz2 zKVg}3(y&)ii+L?~t~4q(rwAi1Nm5yhc`+w&Yvn{6H6$YR3IU_Rc<+}W)gu;J$b}M# zYM@)9cD{oF)Mj5tVIk=vnU2|BdHejPH!D)I)tmNRDZRT5^Vxf3QZtZR$qux-v63#s zNB}4m8w|qyTfYWoI`?l^Df&LQnA!b<?t+7G)=GD<w>RjkjqzW{@bvPVZ%#|p^Ow4# zoRs&DVYrJ|U0W8XH(`B$m$?)fB|Fd9Vza7I>sHnL+^!CW!UlSNeNbXEjAWbMRt{cX zg`Ub#e^y^#-zLp_0bh0`GlWt#coAPX2Ab2QNGgq2OI^&ikBVVd@utnLBf*{7;T)Q_ zyt2~HewHq_0q=^8L0<>(iXT6I+}8h65N6(SC`$6Q5l2o`y3Ri=Jj;K#lFD&po2<>p zbaGwng7C<X<opT)^gfId6;dz14x-5N;$=J~PyWUIUF57xQc7w9G6-RF$53^jFePQ& zzi{?!;Y`~wpKcN1{N=5CPPd;1esQiMR5a<=U(c-HcKD2r%TxsEgvjZ7ONNQ9|K;V! zR}PfvpQzhSC|@srD~rs498cfd#w+GMj<F5f{{7+@arpkq;`S&RBO-F*=Q>>zYCZN^ zpg-8Iy$Y#DnqeI~rkRae+QA>p1+CvcUqNn$ISf22W0hcW`g9HX(Mob5>YZI!j-H-g z3`&FXi1E*?2J^F1*mJ9k3UzUKIT`Y_Z{(=1=<#K-Tj;JA+<~>g%=IH=3275>R_S<O zn3~6+E_2@A+CGk`p+zflqfCf!3<%i>fecxXtOgjFs3+@QBezKSO`2;ztm%*RC|m}E zL9#7|uj6=87?H|i?*^BXyl^2i_m$A_KvSw=U99io)Cf0^6+D+Q6&+_K;6z`2Lf~uq zdMzi~T3RO>#Y1bkF{UtYvd89GvT5O*t<l(r*Vr>t#!iV1g)39l6&q%TX{9-dPcF$S zD_>Ug)58vw1}T-)>ah`Lgq(!@agh21!<8_Pxk9HY%eV`n$Ccq5^wbK+?Vx}YFr*OD zdD^En8+;YBumsb#oNP{y+qa*=FX^jonbQegsz)WSU7ZW$%|8;fctQ#ZSdMDFrjoVi z7y1k5rO4Oq@Ogku0+ZHka*)TpJaM=0Q5t0Cb!2YkGUw2f0`1cC#-sRcboTZBpGgH8 z6BSY|#glLS(ngPA#`V{qHmc`4kh>xgcqf?ht!EZ)v=?Wea~({qU0_%!6`pLhLQUOo zcbPHiNg<;(*n<aW7IczuF+<4L>8YO3z1g(Aqeo@u*lQMWhD_99;c&SJgoM-?xHa#C z{%@_@_JqZCwkmtJ!!>MvZu8jln`^O;c>Jcjd&3XeHq~{Wznp#h_AO?!4PQpOCaT0) z41T%30<@N}d-ra`f{#M1d-tA&C&AuEJQ7Jh%lGF7n^L2mXE3;~L?oDYrE0ec)`tq` z2F;98T7{wx&td$FDvWN>c9bTgKtz~)pxykD((QdUQC`x%4NOM$@p4$VBV`=j@h>O5 z`#W5YuZ(S|n_k$BDwPq*U7M_dm+r|d5)0$oGPO1j=jp#za$#<PlkCok1|6e!zuqRd zezw5GK-D(MJ8F#>dHq6KJ)ERTYnB|AdFnANEo15EzmFvq5y#J@tEe!d{1#?G68r0^ zSqko`=nvzhRKvFO!TYA0wyC2|$h9Yv_O+8rP4k6cI(D7D^#W2wBh$1Fdr@KV&m(W` zf)R3A&wjDUA1&t)vUvC7{QP8L99kN>%jR<~Yfs_Sj%fA5jD@Ln(TuIjpXe|rAp;PA zo0r-nc2^d83%MRCx-eCVC5`(atZ*IElV;G18OBXdpu!M%y!cSw?^(`#<Ey>&p0~Mp zB$0F-3v7sQzV4=kIE_k>nHr3cm4V%}1y_K=U`L@2wxQBu-sME3%()^fZgU!YeMCtu zlU#R1kGd|*bdW+E61opEw=kS3bXncgl(|X()}ewP90#~R43@{FEl26}t#wt{hoFb* zAzvzHwBD@99;7$zJ5TQH<k$^Y@Ho@Q4jgJMaL(N)6BLb+j>J2L!ZljLHxvt9oF(MZ zfZ#LD<^gPXV7;IgD*<&GCK}Im=wpo+ycqc<qtIa^)8{vA-FiTxk1Vg^Vmwo#RAR|{ ztFURs#X}S-4WY`rN;OlcbIBY~SQj@*iN0!J5JN_msKU7q0)=uoRWQKf`iYWdaPgsJ zm9u0$eje^fTFHF%#KM;{QC11^-$7oQ2iVviFT|~a7P#Yijn#Q(Fw<c$y`eV8#z;Cy zP>#%+AY7A>!<CnnxnGh!3w^SUA(V?Eucj7&$`5MTAUyu&G<FGtc(0zThLf(1RpLNa zBIS)e&M%MScJEl`s1>uoMC(o#GWqex?1pO1TxT?}5PQu1WA8%0_(IFDWm)IDwkR@| zCf6!a=%hDAgV)0uzaJj1JQPhm?#d;%hb}N?F9>IN)(*2<q-{I<{WMIUY1?<xld23z zRWH!tbO~^*hO{wVIbQXmN{r2xvLbDjepgCLJXvUd#cz|bJ$aGTbe@O%Ij1{ZfLW*` z<s|KVY(F3D$BJ0S(^o<s^GPCi*SIlAhX^+z?#c|g`tG)rAC`O+>ak8~5?#)@^lajH zw_eQ0UceDWJz88$MTiC|9(-P^adi2P@xr;gIWz}R@5pv!$t43HpKw1e4M}epW7fIR z<T{VjT+z%+SHiJkIAA^0deq+0u|?ww(^(viB#!1jYb@QIj^kE(0=v$5!l#g?lJ8bl z(Bk*L5p;_`!2|cz-QDeE<8@DvhSYkvh}R`u9^9H34H*nQ+%~zDOqpx`w5k2)NzgZ2 z{I%?V*}<CcGl|#ES0_`6H(}Svd=eqrv%a-9m&h1cHf}Qm0|)vOd2K`5JUBR(+<pMC zlFTsCY?RcCbfi8msX)ENH;1QyTsf^(2WgUwjt%UAAQf1Eg{jbmsyp-?)(F|#TxJHb z3hw8CT{;PePrt0RnV+>!P)jY%uHZ<@dxH45AAy_GWU}BgG7vcL<dg?HvAChzlq!y8 zSS9!xo6aICiNfV)V8r}woSdAnSRE1SGX2ui+h}pK&U`xp|0)f${0P)vG+@lIEhn99 zW@ZtGk8tANtYpXohp2+pCM+&b6w`@bfpYQ=4+`3GjFQB^7(Njv^vFhH=ipF)3ex)E z@8k3FL!g--E9ttB?^I*`*cx{a$xq@=1I91=>F6q)CCHQO6a&FP_{AWA!O$g#liVf? z*Gb$SgooF@`gR4ts~p=37^`}dpkH_Ob^1m!Q_H${Y$)qA6cFO<pFzv^B^mJinC(Ac zC6_f2;i8C>ZXY%hAzgd45<Z5^VSD<&+0MXvK^)!_*6!sV@#=dHWp&Xawt*o~0y~mg z-4huQ$#Q*|;X!`(<Xtw0s68^IH2D0IF8p7DH!_;z&eNKQUB^FGVVR|BYOII<Qt3J} z@rI+vh$@Ced~&x1fG&i&7rEerH8f>EJvI=w>l8(2Gd;ataeJ){c^pKsImfy`LWY00 of&A@w<R25l|98Lf^TNuXvV;#;yx4jTM@LAUl{u4mO85Hz0kpy1?f?J) literal 0 HcmV?d00001 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.70_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..bc0f4a04182feffc3a0aeb539efe86e76cf3ec08 GIT binary patch literal 11950 zcmeHtby$_@+V2Y}j2MhcI7-YYouVKO7Dxz4HwXwwcc)^Z0!oRrgmiZ^f}kvsW+B~3 z=b{#I?icpB_qS)R>&*VX^Vd1&j{#>b*1O*KdG7mH_v3d*?$&YAv!n=u9G8;3sfZwi zJ_tfE^b;|>!rR(62EPOx#MK>?tc@L<_3exhS$zi^3u^}pQ-fcfjO^@9t*tI|@^W&s z|9aoS!Ny*Yi_7xIA8=aRnQ(RMFIU1vj@U?Q*dqv;KKdU)ideEKf^eRbx_M36C2FqU z-9^?pes8HcKxR==k@b{Qe5b7+UMDi-+S4Zn;ct@@IE<(}xj8R1#kI+?*ngGcwz@p( zrYtLymf*W~zq3`@MOk9T>A6zJ>ZxzRhkR%0e+t6kYnx-<-}Jr5p)t5V<GR*9TZrw! zuUHyP2IF+hEdz}-!r-RvzWg<r2!7Y-l3#^iwRaE#1UYtt;1GgbJa+hJc;n*#f8&3$ zB)3(PiIj~$e*C!AAh!GN)vKRfg=v#V5ya<G4!ex2tE*Xe&bx;Xzw}W_5L6KDZ8V6H z)6mR0977PBb8=Dq?^05jlMVSF61tFFzkZ!wXNQ3F_;E-6<9A%^>gt%;*kq2M<!O0+ z;Z{@tQO!lKYQ5Ih)(3;5jPc081M~K(ckkYjUmc=6MkA<f(j21_E$FyWOjN_oNLM9J zaOiHifc*qN4FU4fc;a;+>^*S;LWm$|o)G>7WpRe|SETnNd<PGYGB-E3+${p+f&xO& z%_%0P2Y21r-0Un!ik$KL@yCddzP1ALhFv4R$g-E1^Aq*CbLmZye1i^=jx${>jEoYz zW*v7TuUM|`;um^DD50=4vY34o6cpUXL)8kL7j);o<=+YvUVcV={A^<FQ?fyu9i4Kg zsn1NY9VrS41>SpJ$7zMteM!i=-raa=A$J1qQ4Fo&_TN~q_m?^HntY}9Kg&B^*6`%m zFYyl_5?b~Yu;k3XdrGT_Uz;m*m}<LJ{bX=KO<g_Q&fb2LpKXZprnva$$(7GDIM&OT z+o$-EW3>y`Z)OR$i{j(YXX=!z9zJ~dxxatqu;A3x)O3Hjv!Bt@(vq~ieD#z)6(wck z!up#MC=BH*S)1%ba9^xfuBcLR=_=3l6c*~&5*J#0TYfTQY+}N8{(O90-m_;v8JU<2 zuJQ&22lE=%zqG>~>&wC?SE-HcVzXDBnU5fGm+YEoYbKf^XKEf0^;EhSd*RacOzWPV z+^XKgSKE2|CnnO5PfQS7G08<SV<$-vB*)i$4N=Y3)sc<hc}?#)-60k0wUtWAshwhk z3DYUIx_2+p&dyGn9rO9K!o7QAvU(Tz`PF~_{r7RIvllzsl4Kl*KOFAN&}g4xM()yM z$!iu^IXPAJ^@oqsz3}%}F*8d$b?Ou$rpT&abDG;1X~g;v5Jd$bh=jd3!EI@2#cHn| z*qRID<Krw04C1DyragH^FX&A-7KfMJDy8M*!sunA_!UIlR$KZ??K`Wzz0pN=Uz=@R z9>+ve1G@TfK*h+%2&WF$K4pVi*4NiJ>n+MGviKG+>bWHubm`J1a`M&eTAI<3k&vLE z_`%(^Vz=SPR2>DTN|t>k3Yl8PPG(T7NRjQFBQjUx_-H7k(Tj3%pwiuOs*OPfRt8Gm zPVfX$yNK^)a7PG~Iem$bk6dp-hJM9r6Qclc^q)grEz<)er++fmn-h~aw&W5OK!`}h zBZN6Rl9JEbPa-w<ZxaBb{?SM8eF(a(1}a>a@jKAEDh3Ae?Y2k_KY(gcB%gJRhiGht zE*AhTbq)DNSQ33^AGoV0@BXb7|N0HiL&s~JXoQ@U9UKZi)YeA-aVP!d3so}?hmebB zm1_QUwE(pB=>Ta29j8O!Qv$T`<yX-cJ@IP?4IxN#7<pOu-@G3`Kfi-#bwmN;GsWSH z0s<N{*laAolybhYEI^@YSB8cetVwEbhGwDkg<Apax$IDy&^;O7OMI42ojx7CUuPf5 z7uV)`d9C{Rcjm0U+q*Kg95<JZM7F*surf23OgRC*H8wVq_El|8oQpgKi_YIb;f{!H z4Edf~SIg8)+QQA4FAP*}4U>7RPdm{D-g^D|H3bbBf(&JiJQwj942_IrlS<Pno|na9 znwznn>;1{!zuyN)m3&G@S9F2)Zbe0f@aB#el(+!8Bx7ZS>e|{Fj~*Qo*<P$Q1K3HO z;k6#nW>d@R5L&26=uB5jFDX&CwY6>h@`c?o^23Mgn>)Lw_>kf(@fVb&M~^DKpyb%E z7dv>gV*hh|a!*gtw0(^hvM$rLu*fhlG$dMwV(*9-Kgyw1bh{egzhG4&YiE~d{3To= z%N5{eb|Ov0XS5*@`(8G(z_Ry>xVU(KTTy44iV|GOVS8gq5i13~X=P<K<TO&}C*%)I za#u)gmY{%L<}~B&mM6#0g@lE@ulGMUxNJ{OK`}M-yRX}9ZiBQA(*Za*pP~S4wgqe+ zt@l@wmVQ3qI!W{R(IaLdA*~>CO3L>UyyntDPsr#vv$5%8WA~)mzP!DRYq>#|DizEq z=sX`a@#SrTb=9Usv+&AGLm)bUDK^rfAO;zFDG~QI_T244tZqA(*V0ibMG1)~4<GLG zj(V=mYWUNNXny<lElnvo017h^us;=0%;_UEsm&uc(l{fH!E!lGO-(=i%49Qkdvk@2 z`6S$EKSl-G5q1<0?DRvqykvtazf)SV@>QtJVJaw1EqmU99JzSv@XtPTaP_f2_Xf*d zq^P&RG?-JnBo3a?tj32xu7Lm<1wGVl^(CBpdD8<>4Yt(*;N;9x`1Ai<EET2elotVw zE0;T2CMO_1uQ%v_Mv8>&#tvX(_Rpfr<`}TBY>cqRKj@nWSPsO4k1e2t#ri~~b>lvP zDIx?l1pftffW7}3GXC|AVE{r4EC6$~fV~8;^nSwvqt`fL!Z_>&36V4YfBBrShR*XD zpiCU+`@Zdyha4fn-SXL4i%k#FWJAO!x0~n>4FPunARinY+?gap1!a`twX=0r*d-@` zR%ENP7Z6+y)J2*?!jql?(}eXw@4+Vpu(Dt6#0mPUJj<a>ldGZkd&(TsIrXYCZqa!v z11%?6<(p$UMK;HR&+?jutSt;?|L#j-zBu%|pu_i9{-4n{napL!*a_Zr6#|f(#%5>F z^%l=O726&@j{W7*y=SDPqy?t!?`!g&(z;2)TUcO2%&H&=DBz&RrY4p9_wSe9BWWDj zO<f2r*~78z&`8_4$H&Kyt!$3r+(O^JopPW?o(!)S%d8<@YF1WR^!=;$67B8no#oC8 zr!XU<qoFY|y6?WhvqVjlVQR>!sMvn{?HZZbc8+GTmCm#ql=|~$&zN)B&!4{z|4y<} zQddv;@Zm#^XZ4`><O6sFi-|Hqet<q2K?g}8=Xv(^NjW*Wu9v@DZrpKY(=>|Z49TMN zRTgL<;D1*!K-9OWOE|=;Mp3gg+F;)PUbZLK@G0D{RoTC(fP1OE^b8Cvu;?~}3+rrx zf?Hp&6A?#<xEFnm70cEvG&=yg=Y;n)!WeId#~nX+g_(mx7NBZ(z!LB&G$JDH(W6H- zd9Zb$c#1kKANu-IP*ZEuz9vWz!F4Ff-9nIr(s(2Qz>S54#ceX$nH+Qke*hOd`)ywH zt`Pd;bfVh2*=nCZe-29YJI$1KE08uq$T@3keIdKh9BbAbBcfU5QThjTd?nP)yXOa* ztux<5p7(ysuQu*8nZ<-N_wL;T{mW(}#>t6(5BiawLi6O}K`*Uyd{z}xeivZvt%d;R zjY>oGH8p!2F|^*>wj#S5qZF@xs%fGYaZ^^y(pCWI?5uFL-|s4@RFDW_Tdjd5Kl32` zpD6a}lUe9ro96E^v*?jSK69cwt4b6U6sgjotUvT~)-_+^{Uzc)j3P5Cv!O-835oBP zk7M4jfx3n@=*n*voq+<ocmf41<F8RHvCT}`SQ!8al8gWPxxXhCj$R|m(aAS%LeU#^ z=sxu914!#FIsw!G)c*z58=}DXz2%*t=T^aVXL>Sh9X|~T@)GpY-EwFd%s%q`kCZ~f ztw2?19jN*r8mfPFs{Mfbo5&XfXoPrdhOY8jbl(B)-rv<NkeSOa!r1=2{QS8iu!2KB zgK!185342z<XV<A2gs6^k&#i82}nZ`0uFX)ekg)v2>vfsuiC4)LT6_S=h!T=9^#EI zeR&9I=z%Pd8R@Vy)9uNDqPrW0Pz@5#o<9$27*$YK4ry0FY9zD15xJzF<+&f1B=aWC ze)20TJA21-3bqcY%DI6`El^<<!&e?ZehjZ4>s!a~IDI^fAk2LAl&GXncU_ryfCpW$ zg&*9@+FY5O@#h;T8NLEN5W#KuMCT;*JL{t*rJBL6LUT15F|Ue_hTx!}kjTh$CDHu0 zAL<>Tn8$0oMSS?|hH40)4dOZ)eD@pA!tgvi#`0tYVR&q;p20%Dnx1D85y^=ZtNt>x zj+ECyK|ugot6MYKGC`E=>Tv+6=_=`}WiCtcsu}9<0!6nZ_g2LAMmu1o5R2gm!V;5a zTHJIebQU+aLJ*HZ-A|by(lj(Q8b5vdN!Sa7_09xe_3P$IC3wA~$WqI5WB4gU45+Uf ze{CfM1U?HUPukN18jE3G{_Q1krT4c}hm_&!&UC;N|I8J#-Vzeuam~=J)P!Y=QXxZ5 zKyT&fK>zPofFbD_xa2?52dMfQC)oQ3hRE9!#0X0E-B#T>`u`_r8HjvQ>Q}^~A=w-8 z$^S3Zb<khKXHc;Y`vfRN0X;O;o-FjE7528W_kx-ygRwJ72%!%Vbn-u+@NXq2wU6Tn zy0ZWT|IulaKa>in<k3GXl^>3~S7iCq1+&hyP+Hfqllx80kD?BA4P$I`a$leJ{%e2n zJhrj~eLxSyC#X|E4mOT1-3O^RST3un86oI2n=&+Xm)ErIX1Z!-+F}%Jo1DEY0XsAE zopPtSg8QxUmooP{)$~%m_jUmm-khN3k3;qF%9qPv|6~p`LDk!YnSUjm$7aWZ{#Kj7 zz2VeJgQ_#1?<);Tq~y@NKlwE}Ld?4gNRo|}5sG(IJD+4xH7Pkc-FabvA?#yA1Dl9Q zWrrmQ=J9pBOds3>>pAQ!L50e{vL=u<6{q%{rU>5bUPiDOmyN&Vu*J{EZt42r^{U&d zug9!A#o{HJm1vu_VzT#ij6T~7HEVTER?!qkCbKuM^nan)%(oTVTVPu@*)3;XHtEc4 zoS96j=-#}ntIK-H-e|itJ7pcwZtf;@5rQrX2@gM0vapV)fPCie`8d0XE0z(<D=R90 zh`E;>K432zKYwP)WoKf#1>S_O56>h8ew*~f2{02wX3e7bjD3SxPfK(L;*pMyj#H?; zPV4Sge|ic!qq~;(@I{~ik`vS|4~R(Ubt=DL;CIOD*S}3oug)zF*AmSH{&HDD&ucU3 z{q48$;GFI+jeOj~=<UW&#<+j=+kmAivIXdj5pnNGSIe&1F>jdmKf`?;Hd9emRW<II zv?A;^ZoqwEs&q1@{lnv<Ku}2(Y^pX#&eRY?le4n2Du%MEbi`dFI-taVcJ#JH>~bp# zcZ1c{gh~V@uQ_$fKK*Nea+eyrFGAxi{vI#=sAN<mu0RX226l8P>y+AwtE4Ye9zx`X z`l)>8BKWN5|J((rUYC)QY6UC>G~?J;9zXPYV+hLuFhB#^Ab;V3|2Kq=vVX6*ghbc| z*Fi8^)SGV-_-Ai_a2bALAZf2njNUXjA#jsfVH{c$KiC_VS_EXVYo+dfJN`HEVIIxF zzU7;!B+Jq4UkBxHKGY3dKzv#cF8VT^bSPf@g~Q&?db))FS+~XCNpSG7kh1wSm2?Oy zr2Bvm^bIwkModcHBUQLAE$Q30JAiQutp`O>0)>1_&~+Ik;-e=|SW$6>2a92G8>QJ} zK(jz%rmNpu&kEQjY8F|fqC}{gsi|3NXO!COB1{VlMr?KR<jE_H#9t^*pH66LxdQ<r z|Gsg4PUr%}G1p(NR_VTeg8e8dsUjG2R3lG2ZEkLsEmYwl_sj$eo`Ndp^Njwdb^f=+ z5dwupxMir*GAlCOn>QbU60k0jU72Vqv>TVM1jnaY=~nps#S025s^l+Uz9{N30XTrH zf1u^y;7}TX^3(}%x5XDAuY;UX4dTJhgj-~pdeyqa!^7}k8V3@YkB`qr$adtBzaMmF z<5RXQBK2%t5tUR$aRC7VhOo)8G3HB`@@_XPWNPv{es8(f5J<=67!BZgn1p0dK^0ax zxzvE{E>LM_suEMu`}f3Qa7%2wyehf5xkhdQkTTK;yWD}aAtfao{@VF4xb%?3y1JWa z!$u1^t75Zs3h(|-NI_11f9%uiphSqtFpyTl;{@^8Puvz+ZMk9AmgooZK{7<S-y^N7 zS}!*XkB&i(gs?`LlMcQ5?S{j22a9av6<I(|v%#uLQOHJW{C@l8mtROpx3DLg^G%w~ zU`rdnepQ92tOITo;!7FG9vlvWH5*yDCDc+tvcTuT&cTscw*xI_zPr77B@xo%lJb%f zU`GTAiB4Zb2vexT0PK%aai$nIMf}jbR;ZaqZNZ;4FI2-cc&`U9N{Eoz{ZJZ8;J>7@ zcc~#k`(f<=laa*#^En;3L5Q8EAaGZMXnb|Zmuxy%UbJ*-Yo;qx>GtiH00-}`SoVD1 zSsyHBVF4nx2mLnaHp9Wd$Y{2;I@MEb9gBLZjSZJ*VOL1A7oaxeMK==xU6OY2>!{;K zz5EFp!F%?0Pz3I!?~$*OeDWadyFR_X&<TQoL#Ir+(5$nqF_g`^WEc3Rv)Eb>O*A+( z3tASu)`c8ryA`~*+G7tQeJ(X^l0_(po^t1G;9Nq?!-o$$%AKu291Pk-uC6-3t%a#m z($QsuBMsXU{6lazH#LRQL)IoFsaH1gVTECSaDK*P-PLN$DW*Iggn(W;dt=a~lO853 z*0<Ml?wm-ob1@r6&}hlCSxH-)dc)dpe0=q?UYIZ+X7Y+N-d)Nycg3WlLiyfA`3~Ok z0tJqCQ3o4?&C4Kl-Ie~`jv%(#L@Li|u1CdSbL?|)W|mI*fK4Q5F%7Vy3}NtWpVGi= zq-J0C+;WgP#b?!5Vmn&jbh!95lU$$ck<>)(T#^<}DJdz2wX>8|R5L&vW$Od(<4Z2o zw^f(6y{h9A5*$bBjy!(yM3AO|k}*Kzl6~L7&zIj`a?9}16&q<ZVlYazPma?_PYSD% z*SO)PQKPx9KZHSlfEMBFW4v@}IjrkV;sGkXQFj90)2I7gnw5vABZcqh&tJG@j01Y> z(4UdqkqHI1Pai)Pcr`IU{5<$7gl1WC(Sj_zyu3LXkZPu;rtXhJt^j;7z%?NN2rCnX zs?jPjAd90%YX*iD(|x7+WlnQxhmTUG#Km0&h4Oa|e{d~SP>M|!i_eWG$68aBl6fq9 zcwlCd4zctW)GqnSlfOxU2f1^nrP|4*{^Lh<>VSqrxDQ9UQXtLgDX~p}aAmIJ=Xo<w zT@f%ta8w$yG9C$MxZGg5|FbE)Nq@Qo(`cx{7)x{<{5P!{H5yg<<o)~X%TT+*rFH73 zBFv{xujns`EkEZbN=iV^4?zPdsH%pwb6eo%UOdplduW~xU#r}m&2Q$p_vvSU5NC8A ziw{5-GL+)qjJGD-;spnb&Ospd&e|)8H?P_lIa&#OjpmZvhN2!DIq&77S*7Y<Zbm@b zT!XdRUDrOz?9;NlgGXBh<gJWKnzF560LR*VfBG$2*PHTUI|UK})UZNwp(VFpX}#U3 z+}&Pj#;vx?qXK%m<(;ptCr+hu@x#%ezD-OX>>ZR{hrIWe5;{UVcg5o3hzY)@1c)#F z@lh%i|Itiph?`H)d$)p7J|@E(U+jI<gEdsEVM~XEjJBiMYwa>hN@&jg_Oc0R3FZgI zA9Ce?dol_{n+f_q9oD}K>~NO*mrN+%&P**n^VWFrF0e|O$uVw?XvCZm%p@;JlldWh ztFnk4<2LHgmjR|+Bh1k;Bi3{6ZD*p?>6uzGu>y8X-t*_rqh6}b%f$$rf*a5RJUPKG z<hGiE#{VQrDixrl*%v*lz{8@XpAIP3h1K)6)Cj|SecgetPnM@+V`QwKVlG<Q^iXXG zpvh#A2~&q5L@`VU4PX_zr_@6O@O$hxQ-x^*Aq_+mcfd&LpaLTdrIC@*6a>sceWfxx z-&+$<Nmn00lkUDysRo)_RaZA=06-F)pdd~5b$FVvMATG6_d`4!0+9hsIeE-Fm@BuJ zF+pQxm4+Yz+JRaf7l*EKsOMY-%bmg~8<7~hGi%b5qwm|k#QG(aP0eApn;WQ}8De<o zYNcYUejd{{da3!|UM-lK9H$ZFS=_`y5ZHm{?Q6Z(<-3ak&>Ac-poMv2tGw6pX%4+A z?cO5GcJN&cZ}X{E<w|Fw$&8%l=sv*&4uF=Mfu5cj^0K3p>@5&6r6<RFX$Ij3co?Q0 zkkGb(aa{dKr6*Y?Sf6Xyz{<doRJTNLrQf)|6}z`>;)lnQW*TXrFoj!cpd+DmAMs;S z2I=j&HI-as%x=whHXoinSuVQc-3=1-IjeVZ**I+Vt_o<GE-;!78;kl++f*|^ji$M; z&!Y(?eJUi55j>_rXjed})I97ko(&5LiES*5rckw8x!NWJgR@R}0$vb3kd5?BJ)?LJ zq90~JKUF+^3Q`pm5dd2h{rZlAn!-l)JwTpc!Pl_R)88~~2tX&9AV-p58g2eLhykUR z-7RdjAWeQB2(om@NzPue2#0wJrTT8&X?bQaU<=iIRf&z2e6!`=J7qiWI?Bq4Fz?ev z<6DV9+D!0El3Qx;=DIQ?&tJFzDmLrJ(-TrbaN`W<I4SG$yM>l@e*yS<fOtWd#W><) zXX4=9DL<x|7En{DXJkqkd<_!N$k=#bF&79m71#uZ%Vbe~XgGyVa6{b!yPN8@tGzt^ zX@pdv+dE;h9`fo{9F#kYkWhJtC2KGQQK2Q?bDpJ;#xIgI@m6njW&=>3bRlb4Pe980 zK&utnj!Nj1*j!WmY+yf^op|Il<9(=+>4C~}dKOkzX*BI*os%Lo`eg-b9fa&}=;VA+ z-NVD<ZhvD5Uk0G~kt0V?w+nYjp>CxSW?qdA;&ETIpb@aU39NAT;$0tIk0o(SnBCqy zxx3lyoi#FIAR8^H0?K|rxrdnw1oiyk+iRglU*L!WDO|8`u+%=eLN|N5BX#uVm{5^% z)7j1xg&PSH{-o4JHvUE$=(x<oqXIny!8hok)YkbhBs!WS8#@Dk?Uc{0cN!ctY>KE& zHS94=97CPHv~^BxztMG*0v{7`QU4+2Cl{v7mVy(Z+frblv;`<#04r8w2m|xf0`Cri z2ZY}ZP%#8H0^R=&nW^576TN!abTzI;9E_<Q$3C4bwCwGw${8QS*L%pq!tr`-yP$)+ zy`90mOc*GTp|k@k$;5fg&K6n>H{Y+-)>$c5z1d`4U^D!oCM510td|2I7rI_Bx_g72 z>5RMP%VYfI42MSEO+D`&$GerFq3**7<oU~&9ixF_S*X>50cq&+n|m4!>{1YPpzR5k zo(mnKb5(7`U%zo9`iK_^I>`XYs@$4R2g}<7Nw!}@_KpYHnTuCp)ZLbzU6qD5GkBf# zKKsB5UF)RY^gU0*Dn@>O{zY5^op%PPJMmk$*ucxQ`D+BN&3;P&U;iE2%?;P7hDtcJ z1L3@f8U%Vo-eaqCy=p*8?b+Tt=1{x<6XLf5sNW$2q$F~}4~~NwG2zgy=ysbc#AXcc z?XGu)a~o#7e0dBq!I<ODb2DJ<W)cEL^B`%uzca=pmJ3flCOI!;n{EiK0QT!Gul|Qa z=3p7R_I4NcdSXf|X1jB1A(@pQ+J$vKpp%s*J`PM?1`txowEK>w*xqJyrrz%In+JFp z52<QvN8u*L_5^Zfdw$7*kUtlWL0B}a4>VqyFvq|s%`#IXzkdGN_&kQI8l@W;SsDUA zhw_{6m7Cbn3E0(vsZA<$!<lJa4lB+J5a8l!j<{?R(3zzp#KyqzaV=_m3iNH)!^1}j z*X5)5_0f@Z7aTj_z?AJ;%mW|J07Mpp4l?sx{>)TloH@(v!x<JDYNXNCX}9=7Z#%wD zEX{fazY_+pz$RG0afa3+4~lmghN1v+L*{(i#P@&&x}Kf9KsdSw&tlpXBhq`8+u){O zZrPN(XVZLtc_x6G25{R^c6=?}?p?>Zp3Xd2L2$pg`g7LmAdTh3*`1-UXR@p3%Vc7; z+e__D%)dqnV0C&XTHf8rs_biOs<+Tkdl9Uq?H&uC74+IJfn8=}<KoJ$6P#?0EoPsY z#;-fm-S~F#@T>urldPrE-5DA}6~DfKg<Fux$ai120#^A1vm_uEC^@_HW~D4M;Y_j- z^woo0sdlm4#yfi~F@SJWE6rk982HfZh?KsQdBd5<&SrybGsSw0q%Gih!FMXfihA<6 zE|1mZ!KG(_l3vk^-@KV(Jy?~dTUn-b5~HJ0-<PddE$zxa)1)1_>pqqAroiCi^BO5a zI6BY)W7}19q7j~D;4v63w!L@*9lk&(op{f#Hz?|a>&`VagC6q>egm#2@#71sbilT2 z*RF+b)iE-;vZtS-rT0<P!GB6#s9K@}YyN_YtBcHQkqFR23JwIQf@Ol$OMvfDo%X&8 za=gr|51n$;vj71>c7RGc0|SHA`SOJ{7^lL~1Vu?n$t1dU|0qF6X_N&~Qv?A&0~1ra zR<RYFk#Q2#e9UbNz~#G>uACaLU;BiGi%TBO_h{W`xuMT6Q}-$A>$s^PIbdd%<f`7z zLv=ZouFEy^t_)OZpcD)N!!6+D>~?Op!p8C$A_n!aB;Xckh0hS~0>HTeM-!QRC^BuA z0N;k59Z&{Zfs)cfPb|5(xFm5LI(Qy9lhU=ZG>QX3IRn2n3+}%L6_yHLtVkxjcy;JD z7S3lWPumXOc5x|z0~yHx?B7GxbX#-uYqj+r-KNe@todce<ZDzbcp@IBS#>q4-@s<* zMZOgP{RV20*JHy507Cr@m!4`cqb#%c`0u|@nS=ye)13}_`_>fVkWc8?0tct%xO29_ z3aSRuie!Mm(z32tdUBc@6Y6JJl+o58;=SvEffC~2Xo}#sjYk#dz6eE&{f^>f$#D2r zEu)@rcs>j8Joa6%-O&LC=T0|l<FI;Kw1EwfJ765?^!<by$a7u@?`^N3ki}!seGzm* zcAX)p<MyX?UMVa}@A*Tr48r-1rzS?jvgEvrP21}q+`Ia*{EEo^Q>PoWK^verCoL(- zY+HIRgp4%q=sja&kO5Y}_@R(@C*l{X^@5~tpDy$FGYqp5oo7`^JCubdL28=rAUZX9 z?5Kj8?kP;CUw`u}YRM)7&LMZI05J?S!eGVNa1Cz#tfw2;-wIhFS2yGKj|SCeT#$xX z1kUZixZ(KUIH+l(_U%uZfAKc8H{_NbRi5t9_A=}J&anW6O1szCxY1~{B%Pd`93@Vu zf>uk*YS$HGkfHl(6VBijxGWho#fs^n=DktCbo?WF4#THBtYNej#2$~!;!sT<fPLl0 z$O|`sYd9+)PzXoKU=FDWBOV4Rc@bO)I@5<vIb5_kO1GB+`6k<i3%<?rRB%)axyo=E zs1}UBIY0wS-K!g;f$0DSTO%*H=yf=r!GS{NTv_N57{{l=iIaN2PtG*xeW&oi$+6WQ z^K4T%p@Rw?uSH+F`)!F*(;(P%-RF3v6hT;YW$R@_+zb+M27m#bK-06Zv0*-MIQyr` z!Rb1LIUP>*rKO}u!dI~6R^;T|L3@lIjX?Lucmzbm-$5gw;<V21G;SHg#m4;1Qx6WA zz^TCVpncL5lb)ld4fZ?4B?Ht`P!=s8zj+t?&ZPHlGUS#Nw6s}p3sP-FWWsmdC(2Lm zfAlO&{O>3z?Dri2;h;l5T;S6TPC977V@393eLbtNa9=>Uv&g|7jZIFXo%#T;=ZOnN z$1!D&Gie(6#%Bc`Qs9_QR;m4D8pu;P_7b9~qy!pL3%4++mn<LK)oWdy34?;^k&iDP z7!ns-56%yz%yaIai|bQqYimO%2s2@U2jhb_7*FFCfRf#IaM<ycO=So}(F78mU!rF> zfS=8WY963!mmQ-BhnaRq#ddFyiEhLZC6o#s9L}jtMWe~TdARK$T>sA}3IDfzVwcV@ Xirm{mN@*6>43QF-yP0+U?!*5DR&DwB literal 0 HcmV?d00001 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/X_5_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8__X_9.png b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/X_5_over_X_0__X_1__X_2__X_3__X_4__X_5__X_6__X_7__X_8__X_9.png new file mode 100755 index 0000000000000000000000000000000000000000..3428af2981113b975d260ef11fb84fca560e8184 GIT binary patch literal 235151 zcmeFZhhNWa-#`9NN(yCUr(rd;NM*DU84WGk5|yUX-h9wfRLE*6X-88#Dl!_1w2P={ zmv;T02j_X+_v3fp-|t`W^>|#@d2;6Sd5`0Gy`JlJ_^O;xT*|zjnWCtrM-CrQqbTM8 ziehkLV#J>Wt6Q$XKla!k)V4oqea_y|=%NXA+{oU>!rI=#><pKK$wfOeYpY#CyM;t| zaGBcM+t}?D7PkD)4+vRbJTKf}G+clWS!{FolpRH}8j=6e#mhV~qv$B=$N@QZrw6}U z9M#no+ZGKD)b3m0<Hz&f$1mN`-={&9?~H<|s>tdkzxA*4d}`2%ju$<w5_3kPe8F<# zK)scDa>cE5%T@SB<~qJiKkI+CBc6L`(&IzNe%4)f=fAh^bL?N?xo`7Ic_y~y|MOSP z_M?dz`(zLNFTXg~&>!->{y%?7+b&tVmFIu{ntCN_82Ued{CfAw3NO|F`Qtp%${YXR z7yNx*|L+m~XMOzFDvDqAP}+U{@%!Sm^mNg)JJ$*6=BPC4O+C&qtyv&=I)k^*ikgsg z50|js^x(mR$mHa}7ngo|1n*_#*t;<N*j0sV%iM#fl>BG*XIXqvGk4Fi`>|}vk|j33 z8q(E%Ue-N(b_>5&O2Fq-gF6md(mD4ftfTev97H4}t{vO<@&?B~rM#mNq3!L4l9H04 z4ic2xgThy@UKN*>F}!&3g7;+HJJ<TLsP9#tA9s6lE?c&2aA=6HUfTXw!*Y7YCA{_0 zRPpokRfZN80S2D4nHhQVoNt<Q?K(O;eP(86YWta8e*g0I^75+fXLR2pY*2V5FmUOo zR0D%Xy^=5it;m>|%SZ1Bg*j;bT^sRh*NQ0p*`Df37cX9{E^u|+?>V>8f3=|ev13bq z_4OUi(;4NoZ7-$^*dVd&{k`1^>gub`y}zen`UThj`s~ggMMcF$4h|08U!HGI(ajyM znV$Ooe#4Ga&lZmL)?W?}UsoB*clmUtxlwzucaB3}qoVb^f_9<Xo=+)yI!VTH$M0V) z58M!Q>iId!ODk1BN-2!r#@4n3Pb{?3vAde?`}glTp7Vv}mUu7n9j%p~joH?zDngQy zYpq-JODe+z{4Xt=XONSVoA{YpBx3jd7#?J#+-1htmaS7k_`dZ%moInx`V~;0sAXKA zph3I+aPK94yzWQR?x&N)#Vs1V%KX;|#I_ZAa-Mv0Vz#1?_u^=`sy)7$T|o1Sw>KT$ z;}Qb{1B-^V4o<UqcMchkjrhTXr%&H2uh_WHVacLp8;d7~zQ$%)7f!}iN45rTkdWUN z(vde%D4^L^TU#q)(=My6qw}(%VXdG})~j5*AFC?0Po0YLoS(b9-}z#Cug6d)1J<X? zlM@_w@7^u0u4YR~Nm(o7;g;UYKELpIioy{S6BDD}x~Bu|0eZJYA3t3qtZ(??!5;j` z{)~*)xsao}x*Ksv_>9oX?OV5&ynfBp^5T+!=DuC$KU|53;KV~(geCj*<dcLQ5*{;7 z7A-H>@fkZbXPdIE6|XJhP|315)!oxm^6ArRIyyQ@r$NK?-pK~dByI2hmb{pYU6sLa z&N3}qHWxWIKlL+}rmu4x>)>aMySK@kTU$kT?><=dNQ#b<XL53KDsF6CkKdi-mocs8 z>hA3|pDBD(RaMcLd7<OSk45|T?OVHH!^`@5_Fd=R6(?$?uB!Z$bZTX5YwO*eCY7!c zYyNhSSvz~BJo>*qV?J@k%9S^7-SWW;jKMRDZQ+;-+T%3Hm64H=cJBRpTsQkEeFFnd znVCU)ic3Objjylo^?-m^h3?ZfU6t$&jg1SadlJ?+e*Llt?5$J(oT8WRIH13fk?~Bi z7v1YOZ%Q&Rd>(u&Toh^cF%Bzl($La<$J;x?ieH|Y>|UniH2iIGbWF^04i3TCb!*oe zmie)peoo;ySM?}xaL|U&`fGV$L$)>NZ9$!FEiA`164V!CYib^L&0a=NPrs0X!KkB@ zwsx;Q@7bNF(i<nTD?fZF_g%T2ZT0G_+zMAi9UQx5zE?*nyv8HCwe_e<tWwx`igNu- zuF*?I-52(YHy;X6;dPy#bH}qNE-C4_oXn<ox1m9Mw7Z7>($7z2gB>r8jEuY=Ki;xY z+HEbK=b=>n0%`MU&eEZ;6?m53*rI`2J`YjEPG?&s+gKM(e&1lxoU{Bg<I>Uy&pE!9 z#EcBFfQ@@rEZrb}z|=Ipe73Tx>RNWTgphvz^>pKkXp1k;$YwpAVd{+=i#D%MQ2T=2 zWz<s}i*>?<eXVh}CEKb+{=T@S&Gc_e`+-&t`bEpGJbJWgZe~O|>C|&ZEV2r03bFp5 z73vRus;oG5>Xcf$$q}s!!f)2r)&<GTU2ksI#rse)vuw&bh#L@b{cVBYN8`iQ^i559 z?Jr$Qx9_PvlR5HUqAk*GayVWqb<^*GHUraKm$BX`T#j~{A)Uum&l8@X?DFl2sfDFj zZ>p*KQUU9CGk3kcQ*n6_YnuDCLxxq$`idJI3LoQ+``5PxnP3yWe*IcD=1|~Zd&y;1 z{rS|QIlqCT`MCn0L+9V$qgl1QC~0e(zdXj`G);TC_2_NGZ?A7wfBM8oq3$K==B^;` z;I61K8$0{fFd5s<g__ByX{s@Y%w|&FR94Ej6}s0vKC*JjdNC$(adAof_tKXyhnlR5 zI`D1G5t|n+U4I3=fJanx`G*f5I7i+7!lCZ3hQ+*pHi9aj^UQ=OWjY%4DLgz}L|lCC zwN&){t%@Mdm(|rOUyDz0aB#RycHLn%JAO~hJ1B_t_pdLTEx#nj#xl^;UuOMO_3?@F z*E<FtCGWy_iJH}Jq2&)0PWQ(ojgDETS+(r#?(Q!B{8@`zPlGyggg)%syZ7(I`jh!l z0`Bf}6k4%jg&4EuRJMx5yp;3sLh6Sqe|Ts9wcSHeKdM+wP>$kHJ>NDr@s%~!@#@Ta zH}g$09syFWzqxkqRO2p4E1q4va$EbGknIh5j;R^)kGG*s`h2Yj+AJ=vd0KEM7Z-(M ztl;F7Q_7sO+q}*zF;Rdtgl`)k+`sQHr1zq|CPq=xzMHMNrG<U?{D%j=d+ffOHY;C} ze$}k~;O8KppP!#kL_|dGNRep`&##ueHCWNNG<!ll<<4Shmd*JbR#RKCapT6p(Vmm2 zzKMbx*x0<VV|N%7ZrrwQoB3NI?KJAb=ajPR%QvUlbjZ^Ti__9X&^u%mf6UJF^`P2R zfBY!$X;)k&7KBi;(CNBdcXN-)t~LAdFz|?&dv;&=^r|7<SoFfD9SavNdin9=$~}Ab ztd+Fk`t|FVdWyZyS}7^1SgM1Lo)KGDj(NT1$GE`I&vC~$XlrY8?cKW`tI%~mWXm6D z5*>6yr*`F^mmaoYQsx_-?0A0*cgUN^>>=o1MrY3Wyn1zj0D!o-xQR}GVJcs*#B8Xu zEM6mVHDHHIite5(SFUjF-mMYk!M*U@ySv`#qofg#mV+J8(cT`JCLitQ-{P38m$!On z_>wno-Z1yLj`!29U0W0o7-(c}&TMUMty}1Js;Bwbv12v^tx^-y(=T7WTKMVHr?tDz zEg2pjUR7DC<&dbCCyuW)w6qNT-PiOLON*kEm6hwBo>c7Goupr|H$OkW&cKvizsQ4> zNcE>`3{z86Y0sa(%(4ACI5l?RX#igK=`4$<_7)x<()^l9@oBX9xbXugb8~a=O1tlU z@bF<&YAWlZMT?Hz6FU;+iHlWLRek;LU1%1UaKA$jrBdkTOsOy}!1@TT>~q0>b(P$+ zrv!~NaQ*Jmo0}D@qYwJ?XiX^{JGPKA)A{X_k(p^^ViFtdFgN2&I{UeE=R`zB<$iuj z9;)E<<mC`xeP(ZC<5gHF&99MgMcRETzC~zi?B{3TF7MpjJvTUImdQS!{?Xp<g~sr8 zyv_4Yilgd}0^^EhVph%CCR{J^eTHYxUO^?Io0yl41<blFd7THn2=Gf?r~Li<rMGY2 zZpgKJa_CZdd3h;*fA#8BUY)ERg)_rPoAVr%D<fn)rP0IH)YL+6Je0KM866#6mGTw) zr>4-|_3r)qFYzuPJ$fYR@at}=?eLx+^z`of#5Fs1><C>D%X~XCJ9`loz_E|KSpdfM z_0O@tdzyC$3f4S7uMBjk_%u)>QM2UBms5Q?!WM-)ex2g~aA{(CpeVL}5c|F++uGo) zi3#7B9gu@*UHtNZfB-{umhbQHe=YW=r@SH~xk3eXR%3-LRiI%m!~W26cCWAbmOF%p z6cQ3r`Bi3q#!k$%TDE7SSnl?Fr_nXgEg0P0-O+;2pujTI^$r)Wq0+LlH1i6c$F&yx z0L(6aB;^`>>lV*@4qP_b@ax4bn5gci?9@Xe6Vv$@(EMxCj1<BQMAFjJRVSo&?OGY5 z7<BdFLypn0G1UT>OYb6NIOUmQjq3yRN)IS1DgcZcSKJ7z^>f)4cj6&`n4`UYXv*ij zDqT6(-@oLntWxAvLUc=tXE#V#9Tpf|$|;@SkXT^#<rza)WthSpA-%_97cN{_xNxE2 zj}H%-2dtc%@*D>=ouycAS#RI8dUf2zWn#N_y~Lttul2k4+?#b|-H3wjHOGg0>=^a+ z^~oz;vUF)jclY(w!YO7d_`!o642p*i95_5~Fqc0!`6B`_>S{>HO0s9MirvQQwU~A6 zF6_Ljw0F_gty?>)WaicPe6p~x5IO&0<CZO3P$y1zu<)RN2|ep~eA8xo&$KB^aObXF z%h#-VlBMh5APyw5bj_MIJq2?qtp%<z=svXrq#vVx7@3(Z-n@CUm|5*Y+`FpeA!$x4 z^!_%tk)_ymO!!avPD2a4&JC27HZ(Qeaf%&%@L(g5MkL;wh=_<+SQtCXZ|u)i8#e}^ z2yUVt+p47{PmcVE0aQwR_RJ?Lio3bFInCtlYMM9}FS#t>Bo2eYfmBqM4m4u<+>2e2 zsi{F|<sH~+b@B829DaFSzI?edZ2xxUM@!D1KaaZA{{FrMY2m2*SJ0tSwB<TnTwM6I zLi(C>cTw%V^@+?qAV#J&(X{di;lEune)L~CAbu4-;&7tivJK)(L`6lJSXe@a?d<G2 zy1E!PY}i272dG!rjSc%8cHG;2;VRmAq;*@Nc9Dk^D%C0<@3>>(KG<k6Cm!y-`<Lxi zr|9iFd+yxroGN_Y;P2m8eSH^ye;0lkKlK$G&&JVFi@EXj+qakR+*y;9lqBLg=jP<% za;C(GK|9ktOg`6RcFO40_2s1IJ=kL>VpO_t?b@}6>3j-Y$IF4be8Io?Habp?nl<Ox zD#U28vk=e)p#Hrof)!L_hfda#xw$#*4AbQ<qutzLKWkzZE#s69xW>xKztI!yq#0xd ztv0k)tYG`S-nJqcatkO}#x>Cg2S-O={rd8py)nSo*BiAR+hqC5m6z|{T`LB{^!i1F zw7cIE<%mwwUx7#t-PpKTKtNz(Vj^D33gC9_&a+IU2!f^ntkB~!a$Lu)Zdz8-Pk}=Q z0jXu0pr|cjWo6aPcUlhk`|{hHkei{QS5^z2ZpXi><=zoCAb<7kZ9#=RhrYD4Z&nZl z1l%o<q5S2`m%*{IGJ;MyIfZ8xa<+|IlQyRQbcL?2?&F_&gU;?+Cr&Io5g{Fj8%lha zot|Ej-R9wc<;ub(9D7$KY9^Pa8NE~iw#)qdL`1@>IoKx$ML7tsX3gH;y`NK4Rb|V8 z{+6?`QI?jL?;c5Q0B0`FvTSPa?-ycdVOY3Oc3X(i$oKb36?h)&`WiDY(`XD-J0O{9 zYyKYnd?#;ot#|i!vzVEgnbs$;V_C%7yJ0)s3=5-yrXERbD@?>2B(I0!5)om;8qv;o zvb{O>?!lgw?o*?3KsM=s6ai~R7ZlC@-T?BE!lse~u7Y(+;448_Sc!}>GDYLeXLj^o zVq#*FJ#>hXkP0s^DoHO-(=06Q`gNw!{+10`_jkoD*8?ROo<F}m`P}C`N9+BrzmJ(s zcVazs;<C#gDbl@vbbphS3l|^XV!T^TN%5^)89Zl(u9ZHB>yfIdLvI!ZsUvk5YqYyD zQ$RCC*B4xzZ~y1v_B$ZDT-&xC;%?|uz~)gv2T%neH0#G*iJI5Nb0?RIgTn@X9~yW5 zj6(4h??d3?ht=}MRaLA+Cz$@-NA6cWRi6W;w=7;YW>w|t-TmsPGR@hie)stU2^zNM zJ5yq=+g{lB@K}x&0JHVDJk>E80&zwmxz#E+a5~3^8%>98#R{L`U^evx^{3hbgKr+n zcy2-?)?)r`ji&VM*|X5B07pAJ1+eehJC?2JL_(Bxgu!vso#)>c44glv;pfW1>;lk? zC2;NAx3kCYiqK&pzFcGA#_hg3BP*-ik6nPuU#cC_<~cdCe$AR|I@wlHq#R^ftRuP! zh)OhWLe0=h)wtXJJJ;kI6=v5T;{$D+pu8^$)?dGVs?~t4MjgL5GBwrywr{?>CdO%Q zW)HZ?R!iHI59m+T8D=McwH0wjMMd4+W4BGez=c6ZM#iG8Q19u?XwS#=^HrMy*6m_^ ze(t@`qeuGbZ8XkWydy%`KqNaM9VlpPuO$MK-H#7+PSYDRESpxN`l1<b<|x93s!P;j z1$=x7dPVdcuylci@5%vQ!Gkw#+EhEl&CN}<>KAQ0eveC9dXvJ{B_)69CHv^l&&oZ! z0{Fopgzb|Eqn#Y?%JG=pE3cp+YS}1e-`{-7EOYwSt$96lEP~km5)u+%qDPpSw*3XF zo_pl}67yIdZf-e>Ej>M*xd-yg0<XIwMn3XWfL{x#bdOmV+Nk^VZ@$Me9y8kD=!*d^ zZ$?B2hus%5yG3#N`1m}|z&?xWRel*C&r2t}W$V_(+*iQH*i0%ziOi+KJ3iQ<V1$Mp zEHp5mVfGPHL86v&PHygzBF_CzDiqtxt4mLs8?+99!5SGFa+L>hrUuJcG>8~kSnSX* zbOXGU17a%u`0?bF6qdKCnVIiq#T&e#{s952s8=AjSJ>ori#+rwHms17yld94=LhgT zps9JAO@72RIzc!=H^&BdI6FPAb(nM4xd4i5*{1!xu?!3hi;azqGsoC>u*mj2IaB7> ziGs^)()D#Go(L27tDm1!X<=burVVLP&=+o20�nyu%NMM@DE*o;;zr&_lK_pr<bb zk`yM0uX1X7ngwj(=H0uzu`NZO26yk>^8@rcYIZX2*mCL>s+W3}*5Lj##>NK^9lDAV zzslt8ZT25k5qBzA|CmF)NqlV=HVrhVaU;TU`b*NOU39VyU%vPT1S|>c_4ur1;J%fB zp)9Kwe$eFYkYct|*HLQ1x}aY10<qM8nuKU)WNf@yS5NPtgF{y693&AY>I}p?wZ<P2 zo+*R6EZnakAuXhaJ}S!``9YXJT5PPycBoT}p#j!pS?cf|m)_36$Y^dqcjU+stOyC~ zNAfO4V_UXwXF)L*g*rzYEt;D;3g&sZXZV6jww2xxVFb;%gV6HXyph=EyehRLDKBxw zu`1^Q!N`Lgod!Oj0YP^+=RQZ<J;^Izy;)dT8Aaj<ln@1OPlzng+<dW@7hl5Cx>8V3 zFq#)vb=<|}MfK;;Yp^3Vc_keCbqS-|Bm42s%YEJEjpBbYXIq>5_(O`zV`fN^@3_aq zi2csdStpLaEp)A-v6VJ8>6k<)M@S1&*Rf1v^Ka>olw#8zqSydXqVW>W41asm`TFK& zCF65Y7I4d=##iNC0Kl#s+qTkkem0v;{<-b;D{Q}i|0W-X)q#yj{u`*d7H?wDE>Y{& z{b5z7jDWPlzQ;Kx>*lJtaP~K(E5x|8nOImPjXq%Jeg%+>O=aCCO&bM=W}(ht^PB%n z)=GT@N%?a;Ygzd7w((u(j7arsEOgJKxX?iLOv3@Om?)n8`*r!0=faaBfjv%9Y-k&| zYneAFl!aebpZtE`dLflLFocG-SWi!nP8MBD-qQV^ilY>Bf@bo)?&_$^jXRIt-hpKZ zy0_ch6~JbJSLyj4tS#VNUU2Nkd*q}!_wL!l*BsNifBYVF3eAb8INnRWbvM7qmM+<} zU%RVKQJyy_Tf(}PNlQzsCP70WaH>AlKt?r6o?!?Koi>U)WCmyp`+7=f`*uahE3xCf zdDtTi6qqT0e{*h3mW3^<z@fY0;l6cs>aqDyteB`yAP&wXsXwKOX9{Y<U*V*tsP40Y zXY!ycN&#UvSej<BuhAL_^#c7reE2X$y{f4AiiHJrF1~cNAEY*3TZ7Kd&fwd(uND`} z(y}r$Gi!2eji2`Ud~33N>+Iyz{wZ0fb^wcvc5GWn)<U7ft=70?``)_6pgzwtl+^Y0 zH;G#|F7))AKVzB7lwWX_C>#F%{-w?t=Jm|f<B@pH<n_IulKtU29I5!;)n$ar13W}S zpHPq31`3SLAwcmae-n2ZHKkM<`=3jKDX^hU<>W|`h9aPqas^;?ufwl+hptrUyX{|| zpI<9t=vDe@%)o7kmf`YvFDT&j_&^033}JA1=j%Wpt`-zX5iptD9Cqi<H7In&ZEXfd z8-6mg^G8B<mvkA8&oHmS4XQ$hHoH{p*d)L!CB=aq@)Awfrn{P()^}BAbT%Z!`f_6b z6kd?_>C+3G@}#m8l7H?_C*bDVwHU0T?v^|WhyG??$R373S+%_u45y%X?Axc)mG%81 zl$;W*;N|PrGeaNcYiVlQAS5Kj{54H6Xp^Mt?;YrHu^D(ea%f}_>K9Nb!E{(Q2OtX$ z{`#`3XYcuQ=b|CINxDslpq{c%4ffBdsttU4ZrLRM?Z=PJTwJmpkAOfof$fI%=gzDL z_B?E~VE{rXSoEEEVb0FIkg3UIt9_mZ29LjFj3TF$SpO!1K~PZ8ZK!NbL*|7wJ9qAU zJOk)KxQ>mz{f<x0rc=#Wd{J<I8uFc=m;P>o<S8Gr?YK%V{MvhME04cv^Cp6A&Nj3! zuki3MuJ2=FyWD>y5Gn|aqyVgB1N43@LYf0jI{tKKLdIU6!QUK@VJ;cHyvnyx25+5- zI}P$QbuTc_=lh3;{v9u`8AGO=z&?FEdTam6djKh?ZVvEH@;e_obcjFO{qq5kK!E(P z+Ah2EDBSWd@|97rG;{|1*9aS$n<uDp`t3UZHf;2t^1y#GZVA;6QIM~u^4D<HS!%Gi zUSPlb)GA1bbd*{B;Y+QK%kU-Z?CtIA3M<~fd-vG!2yndEo@Cb2(o*@DbVk{)L%(6R zM1yNGSAk|MW?Z)MI>450?!|*qZYnClrBYLOs|vOe<A(?)=ww^>7PjX;j*H{Ln!>%W z58TbY5Z#CwY=?<^Rr!4osoIYp>pzXmOxiJVi#=*G|CHnl3CqmsTrYqY3q*#A-%ZxB z=d-wu{}BIYyE|6%y<qyInJu6Fh|3L~^B%x=9adJp78n><X$(bjNqe6|5v77&MRNnM z4_q*#esex1VSn1N9z-DKq77@;@>;TAz&=4u=^2N}29T^IXGiP#_=FXE`3ew2r1Qx4 z>p?*k=ptgRabqnbIWA-7QB4h%soaC&Y*w|8kK{NGYyzXcj-}B7YQwDa`GSkGSlF#w z3$UOdfF0y60PKga7hrFFR9;7CgJole>fxUa>6=kv{on_jffPmiz1T}F0=Ll)txmNG zni&D(z=50gJ9)Kv&U2s$m*DoI5)=Kg0Xo2VUPEMt$rg4aRW*hYyTSIy2adV~4Hh^c zwX0toTqk;FA)qI1<VRHulxb#X&Z)VAM8n|bJOGNTEqRW_hyi{hoNxdB{jG^oxnPCH z_(a_99iMZpeIW^vLVG5qv@QvQosqTM10IxTTo<p}kYTnG=yD<VLV%K*D1}94`oUG4 zz=5=^@JEkQL}b_{uBVF(e6kz)ew>Lr^t<97bQg+N6$3uQO!vM__0~@=)`ZZIAF*+9 zrSIM?!6jGM*2?2u*JrgnQRalgvWU1-psO~sQ<ok{xvsu>^XAsQtj8k=(=kM|CG_>4 zxTPOn8ve7UQIp>B0pB?04Mk|pHWx3tq&jD0xLwb!eEXIK(hQzeDK>q&*~e`M4jn43 zs8|F>dKuOz0GQ#03yG^FHDeAfrRF^?cXK#WgTPY8@Ue);R(^vc(OzG6=#g)yio~Mx zXU`foq#4CS=tQv+g`GAt_>#5E3W_{iszH&alIK`&SZHd3a_@J;_P!qpJ_gTJpGew? z4|+t1vYc%GsS^C;$@UixeSY9~J5FaXK?CzDDv|+th~3FFrdJgqqj=!JLUF6+__`{H zfILC-)po)BK=9tTZ?A?OD~cL{KKT7|oz5!mD~F7idX=tWt^?eX0~ZggW%;lY?xEU? zgmIC<p-0ov$L@<SMIn{XG_P;(?e#+ok8vDmo%r><N^I{Ou?Em4Y&uFAXrcynml(YO z7`OxlmlB!{NTz<f=B%`qL^e^kumYuk4Q+?N9ZAy3US{AiX>#*Y!gD-MH`p@WpHm~$ z(kAoVYrpONn*&kpG5*KJs3{6AEG(=|(3_l`gosxHUazs~q&C~*y|mdFyqQO8O%xj> zis7!e0%5{A!&?T$C5IG-hKGrGM0^Se7aOrb6u?x%d^mT5Mg)Q083Xk3kM#Ze^?1H5 zMv?W{1IguNEo04#TemJjW6rQ{(~l}-byxQC?B~=GfT#f>=_@R=`NOWoP3#KL#C%iq z@}jXdP|$b5eweOl{8{&OB_95D>!R7!GP9#0rFLWK{Si>YDBgvK*KA=`zX<jzFTX%~ z`qwVE*|E=(o^vyc7IWPU`U*5I&_!1B>(_@Z2T$0dkPsOJMt1q*BO!xOzuNKi@9sK( zL;aAn=ezq7%0{%$KCOD;eF|d(EiTx;K&PbkhmEKo(R2~)-+vlzS%YqZkoJKv$OQzt zkf(qh@yERB>EY($iqsyX%3Q77+}(|!KLgE>c17+6?kKVHX;adpQj>LVuX8IQAfxgQ z4i3t~*(6jGYE;6~Ru@hz4f)fj*Pl6a2IM=MZNKKN^YSM(H8p7;N+@Df5}5()v?0fK zGX$z2_^Q#6LCVaZ$kUje2HU;WUhIGW>60e6UhDQrW-pp8+<Rz*q!!VtwsDqLOaz=F z%O1f8kX!N`3{gZHiaccsr+Ni;z=nZRp?K4n3!V^IX$345Rqz5>;aoB@oPAB%pG{*c z#~)sX&=w4D2(U9O(cY>lYblyiX=j<gDvG<4tE({-hPz^BYB$|o4W2%IN@Fao%+1N6 zsJW@1!Z0#C2c_d(Sm`-`<bFN?SOTVX{oy{xPH5W`9oIP1AV{DpM8jV;50bk0jR`@D z>U?KA;uf*<t9zxS2t`LnLwLH%({wvx8vEu{_k%<soBG<?6+6R|s&fT}g;|O1nVc*L zNAD`66(cYc_y?-F{PEj>Dyvb`aFvO(w|wL5HvH4H_KEzHXzG?J{qkiUnw;sUr0_;V zepgpl%35oXFK0z-$aZD)HPu2FWoRCyGFuAs7TkaSd>2(*ULJSA`(A?NzJ12?bF&a2 zavL=c5zLyXB@78^wcYo3CAbz5!(y)$46%Fn?fZ&{WeRcUrd;@q8#jo^PZ}I-Xv3x~ z%faz+E$u!fP$NEkIY1HV+O<l@slo1=&5vVakBt9TsC@sv4E?<R_hM>pZrVBn!IzF4 z^!-4svo3e=h{&F3&Uao3_(99e+zmB{l<wGPq|k!BtrGi+90nkwS=|j(JfhGLRCezk z7&N<@zHPsOt&bA`?h*wB1;_zU-^~N`z&D`()ttK$z88^bu+Y;DOBO)Zk^AbvyxAb^ zgoc;0n%b?>2DO78Rj9uy83}_xZDHj`L7SwY)%byo8-p#0?A+;-nwlCa93k`W-8<<9 zfJS((Z1Tl5HOs-D1u}F?oHN>YgRjfMIE1^oIhOr_A`8F8rrF@nuuayXc;#H|Qi}4H zxCo7}1R@u?G^9f4T3cJUo-Rq2tO`Vs$j!}-ZNmnC8p|5O(XiW8m^OVJePo)@J|Q@< z%x&cR(p$G~%?*iaH#Dn0*wdv@bm7~2F;l92{_+%xJ4DgcRTEe}yZH=SIgeN9VXLM? zUeC$Piy@#FDBXVEf8^MzasO4o&9syUf(G8!;Ars%MbZgcsW$+fjjAK%P?hp)?-<rS z)yWpRv2hP_L2fjzcUVfKIGG)L+s1P6{Yw<(2{;nzsIVxWs+M0mKYU5ZA6P5Ue@P|w zNXRzR+Q*B}!FdJIYWEi|EJjSHrpR+%e!vrq%wxJw0y>Z((Fa~6^p&$Des%xB<y>rn zmr;A3XL8K}Xt6<9T(W>W(BI3@XV})RohZ@#sJRu!m}7slH~ibii~armX=!Q2Fg^nC zo$Qm7jjgSP)m7%hZkOhkMl2={7QCs^z9!<Ok*zCwsaKuPFe5Gf*`=SF(A5pG`k6gh z4;(zm7p9?c4GZts@#8n|+|i1*`&?7w{rtIIRD>{$9Y4SzW595cUAq(z&%#spf-o6s zdT<EOB^pATX>}wWT1S$D)iEU{pWC-TEpiU}YsuDBJkhXU{txPuAZjg`UYv47O6Z;Y z_XQXP-el+MW?6)n^4l|HQ@2CrV=PP9x9$4lh9s+e0R8~hyu16tYUHazd!5li)2p7q zduEg8;^C3!8)&H?aT)Iq1Og>q2;ADOt*1p%4N)dvqGg2*KYRZCW_bA1;7{mtGq5Zt z@V`H_xv#rx%<Q7FSbe&&B2_uARLGN%o$Z+3D^Lj?lWaa(d$!|l(`pLkT)V(!H=0-M zD7HtUUcvExZ15cS=`1xD6#o+sB<WaKSm2Z^;C&I+_u=8bn{cnfTt~Z?BPB&SIy#y) z)uCT@qKq^^V^Awd(A570n0y=07RxGtQ$}A&_`~cjaq&+R9=*N2(Xc}$?Y;-7wE}ky z&5pMjzYgZMv9qJ6;5J0!fy3-|NzZzV{1dHqb+J6tySt+F#Z5nc>p}M+8IAf+O_6f+ z4Gj$>QxG+We$|P`q4YHk&kiY!a<XO+hQX&5;~$mKg)gHrqDQ6fl+4{SqIl#|Pc1`Z zV<UoYD(eO0nIM}lDQ>zzoNHWfzVpZ-{^t&Tr(<m+%{RS=tkh`r+gNvzr>7^RLZikE zGbMqZ0#^@jZ*Rn()=IlcA`UX9KVoY8y#NTbeQtJ|v<{o0&V#Ye>L{E~QBGx*m03~Y zG~%s+WI;sc+eb`QVXtdg`3rg;5)0RA9oHK{0_5qj`LWLibTjjs-#PX<9KdoyFk>I> zA}FHIv2EZH9Mmf7W;$!F=Qo0a6v6Nsvn&N#K6dV3S(d9$4Px7FhSzVVGoGKnpSTKW z#kFH%;^O7cOy1h`)NTc`JRCFCg~;MnFl!?ec(q0-PRloJU;*Wd6|4ugWdTM4TS$EE zg6A0+zUzGFE8mq$lk3*41M#3&nc1TgHqK#OR<Mi#sD?jqgEQB&88;Mlinq<v+2(6r zMdH*uorbk8ZF{;$s$>>XVFPa1_HY*X#x5ZjM&3{`w?f^g=|aQ;eIPQhPkxZtxw90S zzwKDB23ap%yYf+e9_+ouT-@YLKnC+yn20L@KaqN%2M2tbRZu&3Y_NY;41RqWzs9OZ z4@=Aava(<|hL<vTBE$f=a7}Grg0w^>{Z+_r3B&%%_a00W#qwfOORn7_D5#{+WT+wa zc1aZSFd_=;0dsde>-YI)cMV^IP{$n}`ZstY{tz`wnw#^r`~JnS?aVQM)$aM_(2|)J zFD`-9YYV)b0S_EhCdYYX8wgN3G<o}<pO*d;l^~uhCnqP#YXB8iz?TinT5N&X7?Jde zIf#@fc|6EIF@crRxMWZ)lC;woV2K}^of;#a{Zm+1uGLU-W2um6wAvNKJgkj9Y70VT z_OqJsQpk_Y^TGP?!g5}`;1L&J4Y^4cfBmTaQrNG7K!e8U1<<-=VKf9o_Q885&KIy( zQAX$bL2<7$*m5M>fhrrONncC)6znc0W@du^A%rm^*g@V-O-;=ofY9+g2PK4b49YtD z)v*&N4xy3)xh~(dNx$0`yz4H)l~<Q>_yJP`ol<x|+IbFwNObt?j`g8%kj%nf`)&&M zA@rk8Jelh^Zj?h|Pj?zR!*~5mdBD2s{{ENq^7g@xh=R3&C`Bg<7A&(A^&fcGq#Kfq znSuKlJG|#X=mozTGg-h5`RNU>Em`M-U?bO#9ZL`!C1?=X{r>$8B+0mL*SSat3M55v z`b}~qZj&27Caj+yyg;u@hjv@oK%cocROi{*#YB35%5w&=#XR*XvJ*ehxUNGIBvBR^ zm?(bx2*~rMU&Jr9{e0D<GIW-jrzf{(j-l$Efm(z3g7AJRspa@<WcOh+*x1+<LnUUf zY-(sA?@b$S7Zj$@1q(7WGQb~YBC+R5n1}dfu&BtB!Ha{6w9a9mHMwR_kua=sQXp4u zKXKsV#ho*=vk*r8ko<$IL=tzepgc!H8o+&WZP~Ig`E;f{5Ku6TSqRrO4FT_L9V-bW z0r2-jHIKFC*v80vja9r@hRC8EL<V%TWq2uw*^#u4r2CYZ1q6Ep@t!83qat$~gc2Ld zcQWpkcSza8aR`u1Cr_S4Q$NIfo9{4zjabNpgW;EHTcH#HH0eJCKm$MQu#HS=E~T-= zw(s5}D3~mteaFGh?j^FnBIb3xVipZ-&}4}Yit<fFBUER=!crt=(Z)1$JKLuVFYLY4 zyAUqJ)0TJdjzPIKMsp+vO9oF`YN{~OM81e`!Dk>YzNAe%MI^}On-3i>sVQ6Mco8>Q zg4cyy5Q~$uGl|~;1$>+c4_?%8jYf;YJFKp+rvV?z+qlR9&sEpd$ho=ghpxpNE3Efo z6&lh@Xrt_!s$(M~m*La{3sj>StD~}2|2zdBqoo>2KY~)UQgr1AYIB>s_^qq!>5Tj_ zq;mmV*;^lCH$X`|prXPCuF2Bgw?7}ECAd5zcB-PREJZwFs3gc>t=k}O;RRb7@axpC z|Ej|W6%~y^f?<Q~!j{6C_eKooB_7BWPav`wWZ?n;MxlzOWn^4I$_j+N1~lf~!+mRz z+=<st=UKK<GV&rrd1-m|^ar^UCr;R0x^xhCN~jp0-W<ctlFN$(+_F%Mct|oE3ZD@; zr;=UtUbx(cAu?!cuJ+0{P!INe1fe&(wD%F{9<a4MIt+U+0vZe+^Rte$;%eAyognli z)qx;kb+V2`C`4ISPU%<JIySv^5Ia3KQY0ENGc!^J1WSK)=?2E5M~@=Ivl%uvRCWz* zBh4_@A))31R}x2MYVWIT^PHP}V$XraRhQyn@ci6y64tk}vcm1YLIeAgL@C<$&DaDA z&EW8`4;lreOyWK6(9K~3msBJ=^2Cs_+x+Z!yjm<X$*9sCP)OJ~IfDS&OA&!4<fu7E zv~c#f4iY$#wqMI3uv6sWqL_b0Js@HrwtW2~*C!_)66FF}BHpC$d+fVapx#=1*-0D5 zE~ssjhT2_YdhIGGD^?x%?%nLf9!FVUHT>}5!&q6f_CBcz;3BBu2`c@F0h@k#wiTKI z5N;h$)884GXwP7PMEr_YyBQqJMP0`>q>Unt1(#E|+ZLU21@6BTaZutJf>Zh9dVQh) zA2mT>554P3yh@ahh?v+a2u*B&!7JcI@$m8<jw(c+*AJMU7>}xuu!)7g96?s<I*LlH zw5zl8VgLl<tYWPlw6RG8mOFNH7DZysz}&if0KNc_+o200>-z|yuGJiS?b)!CH1>MH zu7MM_`+{cF=kI#|c(B}kSmmTR61_zpAOtB$CYZ~3QrwV!!+HtzrMRZX2MkR2-D_T{ z;jX$BP7v;Z3ELi`rvPG=uYgd>{=~-Fcb{k#WRdNt!0Jb=_cTg^KxkOdTjWG&qp?Tt zFoVS+MJT*}xA_*VxNUgF2LS%-vu43(hx)SHn9<sZ{e&j787aC0c#^N6PlQ%R>~lPU z*R^=%%9YSmwxG1|Apn@7-VYRe1_(A9bX6XInYfP#c>BUt;(t()SM?e3Mwp{5j%`QG z?ll)dH6ejY;$Bg!oP{~1T(&^lJ#g$;Kxh`!20Ga;XBet8lOqgNI?6!irMJK*N735! zFcZQAbA)_3x$3iLA0r;F#SbIhiM*#U=LCz!j3bBuD0lz-$$~8d$HL$`VrmIH@}Nx9 z$&!_Tw0oGzhX@&AlDL3$as_NJEjxP+lB=D_Z-i97{^1K0WLj5&w@oKY<S6cfco*Uj z!->R5Oge15)!>*Uxz`EFj=2jhQfMOw2MwPDs^kp^Cav=P9#K(MV$0!D{4prt3l8TC zuPUsnc3SsZ>G$uPo-?X1v{tWPO?>!QWo3L1$FXb}C{ZLz!ag4iBP-e3IyE%qjos#P z+y@gCjS@!7ig_c&mn59vHs0b`T2^)tlLUU`;}Ot44I6<!l<$L6$Q_Nb7zi#`RHQr$ z-6qvWd+U#)Lmi@2y63@O4g!JGu$L(=NH=wl&fBIq%MqUrb1F}492{07fmw>CUYB(0 z<P{pt7r22p^gZ$iKvt`=va;l1RH`SR)*w%&D_^xP=Q*ApS_5;%gZ<8G<PqaO{F9P) za9=rBg(Lx79X<6VZB=lGr*6wyyI`>+axXaR0UZqaT^<Mn>bI4T99d2RpjB1MmIVVY z&}@isiUiCGm^tJLJ-}4T(`Hn41}b*EALBjPj$o<093l7a@gwEMWBxfs5EvYTDc&gE z?C9pJSU2rg;Z1z=V3u3jxNzW-(`O)-1BQl?@w&Osi2IG~Ipl7|j_0v#@~FDHh)^uX zo~M(AW5>dM1^KQNVyqK;0&eme_yTK?chTbA{KRUB*_6JD353>Ci0tb>BA^=$_=+N_ z*>(OcvS380Q+=wo6|G41?CeEsb=n7ofx-*xC9M8LTVwZ<6^xdp@u>*Ftp>R|gcAA4 zMxZgX9{@mk1*EmAa_hEjeqdL=7y=<nzb0OF^APd}yrF!*?Cw5@t1946kp5ih`EA71 z2-#+CvZ;X+HY2z|gT0D~O`Oxn_dxY+5)xWSiK&CevV<Rt8ytU&mU;m44q3C9?O2W+ zG5>sdu0!8FWW91pRiswU&A}JFxpu!(8uEH8f$5{+)ewvE4F2N5N7E3H4x*u#A-5Bo zfffSyeQsuwKL~&3PjRgl($zjYD?c-TKC#rJbynx%Kx@GQFVKQG`6*Z>4Ak;<>z=CS z{Us5jRW}z$oeBC^N!YSSQZn+O|LR(1&3U8}ca#7jf^#PgRT_*AL4tdUSsJ|;_9Y;_ zNAvd0D*@WSB)lF&2$=FhzIrLiNF(9&@*1mfU;oULOmxHIrm*L87XW`2gUFJp5Qx5* znTZbS#ix@74GMo1=>E2YqsW<8Oynm>(bhJy$7@<EVYLyihALo<+Ar=fbr+Yt7=9B$ zass)b)Qr5#ENg@!u>vF=`!~YJ7Knu#QVb0gR%1Cp)zQ?;qxwLSHvl;y1fGmxSCA3M zWxy>a*(Yvy<Q<9RG=$)bf`LI%s0*p@_>~af#(CwRSw#a`CT~RRi$8u0DT$74$6jz6 zpN@kTzw(icrw~Kc&1c9BVV{sm4uQTDE`EMyytK7qrYdHRG^H9mtd4Kr7CJhP;~CW` z{^;oNCTc8NQfv!5Q2@xC5EfAs+YV-G@#4j6#VyueJ~;mpF#%DlW=U*!R!Dt#Vs6uY z+1;O#@5`t04mz+*1C*12q1cb2Q(Op5`od#A1IGm)s$1Z~UNkez@>dWF4)%gGw@dr) zsA{*tb%B5t1QaiyWt~h-7P*J`0^~5{v*^&r%2B5f#?fkQnToK3$4(}3u>Y>XZ@_=K zhQ|<jC~!S7#$g31<@rZEKwC+8FCiv&B{z3crfvg&cTrAhH@f%`81EU3e`tfi07+>! z>hVlz9aUC_c97M$6PnWeH5Y}5XJ`wLpFBwvG&VDPQ+0Y&jtnz6J3G_9|HSxLZS64U zuRqtie0dn-!`go8?{8F%9_@Gbfs+_@EPN+e)r!jpkNSc*qaml+_o$I^K@!e^6htr+ zqlnuUXyz*SIajS3jaWPrSG#8IS|)T;EFo3|9mrzzEP$`Q8QEsbbtx}pIZJ^xtD*8` zngA>2MDKHFBjZR)N=i|aC@J$#g<t){$KTk{{vGv=_6(nxaLSxSsm376cRUN8=y^e) z?-H=d`rEKU-s8`vLZzGrDZDGqKPi0lp?Q^{?voC`8bmV_x9ezY7r%es_up=s@t>FV z&r|s4AMTwQ|CvYoyI}wQ|54k2Q^?n^cY9)jiWfqSPGbv2k<>NThd`fIwc<te04SC1 z;ICLO#ArY-bDEvXEU)<0l+B7-L&KmU64V$Ml-6G~zX*kaOHwi?Bag2A<v5W`@ky7F zd55dhJ}@vZ*NY`2h@Za|5+ZZhJ@%l-CO}QTOliW^!NLL5@tfDjQ5sM$g!-)hKECBO z^KAdQ!5Y^i2)i9V%!CbYXlO`5fe^d!X$i`Z9ELf~99gMg_-x32pjolvPXGt50)&y# z5=c4j!Q%aGMM21eb%NGyP5FwrO&RnXnZur~Vc?vc9ustkM%=3PnCMu9?GIEh@Ml5_ zcOY`^-P*vW9Jk4xFB}J!ZQs6q?YebQm@^~sTS9i#9cCtmCg!FGh7bS@{8{z(Eg3n* z1R5Q%4sgcHk`g*Z3kB=jV;m8d<AfEt725YQ@KLmXM$CZ7+uMs>VdH!ph-GAmc=1+g zX#oKiOl_8-+eqUQcO&VD(T%l$2=r9G%NR2VqPM?43p}J4^+Hf_G{Oq3qoZ~D5JwTm z=YlmyV($5HEFc^*!ltN;PeI`%DhH4Rxm?7o>5YxQt{C&58=sl@8bre6M1bq=HpRYv zR{e}vy+{suU@y00LI8xc6T6(VAeAWFPEL|wYe4l&5XY`d)>%V}`q1+U<@*qhv0hb^ zj1j+p62U~wp<;w+&`EuPrTN0%!?b{8iy0p;py9wKhz%+^*~1agU-?2ezz`+Fd{{B; zKR5oZvDdFFDLwhGvHW>GG8zFw4Zs|P>6c=}0?2SJ!T_QUzqAP-1v=*Mv*N*1#FIaW zH!FhiPAIeO0OU-ptQD|JuOelH5MF`S2A~JxVIvtvi1CX0A%sObVW`jZ%Ee%Pc>{41 zR2>UlhZV{a5ukvM3{6ZJ+AY1_!ICpNfBqWm@xUg+I1!9Sqz@K70b68r)x*O>JNM#N zLe9hbVAsOWNdw!4)1CbK#q;OSYhsVCA=?UkqXN#WAs!P<Dhq_Y@nulF#gT7U4@exg zC8-yf;RkV%B*XLV+cz#Dp=Bi{B_t1v5$Ca1OXBZ<G?ijXOv&C2(NKG9oea~V)>*!8 zRC#DunoI}8MMR3x9mvoCiJNzHbf~qWB9pitN%EsWZ8f(8TtNasE&RNpA(^EibQH@> zaQKuAq!uVaBJNZ6z|nCBW~1iy7O`$R08cC(JRz`B>+eh{BSqF7Q5V1qF#H&V_5nAC ziK<2*eDv3sm5^;XA4h=ZlYK;*JidlR=CQcQ1XwyoN)hhOeO2{U#tcKZq_vd`<mw|| z1>aH9V<so`oU!p`jM*7tP#br42tl6EY?y6i5Ebk~$f4bdNT|pk&=6-!;G03n)|sT= zz=birV36Ls{SQ;+;o)EWpE9HB3oDNZEFd2h5ElsL;v=penLR=d`q8+RA`_`77~e{J zbqPt~4pd3g#*C+-;)cZ(xX@v_n23vp+87GJ077cUvv3&62+$Jf3HgZ;kdB&@kv#{s zu8cXj2bmfYjtdq)`<e|vmyF*s)5V-VeH!<>fn;A%xmT@wC4qHK)(G@=HRfBGX80^A znaGPF%YlM>-_A$4$7Njn0r9#WtOjKA%+zQP^jeQp@wxYqffjLaa7;{1@juQ+EW5yE ztQ49s(faUExDlQJfjEF{GFbiT=-*_d1^Ig7lVQZ!uX5*qO;@U?@Mu?KAJb8YJo7#4 z!}8{f3}SNH=OMOk-$e+R6T@$X*=s?$L~%1@)Ex7%43z1G3!c@^P!c%c^6e)>8R*P> z-*6pDT}s6fKEPg(rPd+NrFwV(vmxZBX~HUa4aC#vu8n2EX7g*&!~*+g+Oxa0U?0#o z!}je@&SWe6)7sQGHs5;mPq|P!i-qGfIlL9?CWdVXzgDag`w~uR-6<)wCfEwsu<J6y zCP>TyX<ph_?ELnxUoWG8#-IiPW`}0oI&t*qOY9;HF)YGJ7?Dz8P|JCE6gC$2_Vn;A z^sl_s-@J~pLHdZNN&@>3#vmxk5=639Fy>|EI*$Dk1qYt;LIOcarwU7aH3clZoXEkD ziLYXO4~RtM;<v+R&!0a!25kHlYitok>$}hejhZOTBpk)a$jGaevQb`MKKS0f(`Va2 zLdZZ&!V<q^474Kb<Bz7-352S}6znX~p1Orh527F;W*(c5;1myLE7l0<s_0Yzsingb zMmS%y%kLhHCRDP3(%xvuM2c{549}fo1neP0$A4xqY$3lRIr<WX@CNi6R8QVIGK!8k zBK)hhaJVsQRF19ce`$_^AOHb@#MiP(P>;wY3C80<<`8UK3WVYRXD%R*ryF7tnVt(= ziMvH&fcL>p6J}5@Lo2Igh^XU}xe!TDklC|m9jpn8i{WSG*`2g7%T$yHGTaR4j>kdR ze7VlHfrfN?zy%CD`Kq=4ooL*`Agl}!q5Nn+IcXs(R^u7Q)7&O(P)OE+SI}<T!gGs_ z-3q$#G%E!YK!+1qU>33=f{HS#_6UIC18fyAWy~)gzDNIGGoc4v$}trFM69U5V|G1u z%$2{sEx_<K)Ea)hc{JLdN2|qP_J)<zLxa2w9Upv;G(Frjzoi+b0`S(WpP3vb_yM8} z@d(u1A@G#~h^Qu?-VMk_j4`t0L29_KVD5|_GV<eLNeEkT&Eg9_B&^z9^yAw%!eP+Z zH1__+VGtO7D~6c<SnN3BWU!-1#e3=r9#R3dhWiRN_&fL3o3l{oi}9{vfAqGr+a4$4 zCKVYoGXGQR^^Zif8$LmVSAaNZ5GcUc$z>uQ$$+<5n<ID(dH@xP5RH;E9zUe$lZW>? z4MvJ_-Ufa_T1#!RKOd1os4k0ibaV*hK}vy~_0i}o3>A?e9GnzD^mXc9iwur-K-&kx zI{G;;exx<sco78P*wKw|0J{zyLgG?yy&`ZoH0=`jNA;hcen2M4uenlx&PvGK<DZhv zGsX6AcpBjUHK;3C)Z?9OC&S=#0;#V@>3@kq7n1)XT@Dqy3~?s*O1x4Ih!MmZ^P;0C zTlK7oNePCbfhQCIFNx)aB4-S95n&;^)x!F^zwDeQ2Dzz7U_SG=dO#P_($XZ6CIVE3 zoBfInQV#u?qTpv0qbZ7*RIXaGQBs9jH^ksR^iO<22Oz~&uq3GcG}tK}xZdl5feaKe z&~d@=kQAV_sc~YLr@`VS!aPc{0-_znXMKRFBGk{zDJfP_v(VKf0j0qkpX{8!Z(Ue| z-o1RqiUqE&)8os6-@JQA0=7^n(=lsA2F($pR^k8g{W~LtVO;GfcluUFD-`Q!Ac^&v zo|D5SWIrR(NFX~xF=Wz;jK-m$DB_RUE3ZL!0<niLd2@j)30<vPwNO}Cm;@eiGJ<yc z83qV&wwP27D{&jZc@c-so!f>^>q{b_Xm%5j%l&l)9pUUXJTqar3d;*3M<>Kdq(gX9 z^b7p3Y@lc^>FMbq(oV*+g#D5uSk}a>CPo&5*<719(_i?M<c-uVd4K?^<cb6|lZpZ3 z1A$3Nkeg~v3E(gC07O<ms}Lnaj2ku>!#;!)Sb;7WD|<l$fd(6lF_Iu0|A?i9#UO-L z9=J~^)n(8ah`^9JZtxKAjL7|1Ga5{fPsTz(sNJP=7lsWP83VK|#Y+YvW`f1VH;+3Z zb^sa15-yrqLB?`1CQke$<WI2-*vP8DW}rbi>A<@p2C%)`{M;<DC7}VbKtC)4(&*^x z(~Gvdb070p+ms&#VA^FAQ(UB!!6PT(F02B5qs+I6T_7pA2||k;JQ#9J0V2FH&<w~` zP+SOhk>!aStA;C!uD1~eIo8)p;DUDKnaDMw8WRtYNL%$q7?;FYtvng)tUc@TxxW4& z+#@3KCgH#ckh9t$jKCH{P9ZKY#rsLB<_g;aU|QnS7J1B)nHZAvCsqM0Uy@9NoV9t| zHb$iVUm<=KYx(^`U3^qlKdgU(V3C;kfyJv9`8dJwgU_}T53ZBhP3V4zR^~Vj@nFam z5${BvsyD5zo2Wqy?{r|5tL9bO!S^9vEEw3ahkM!KY?6c(7SmPS&ykT1v~MEBA^c?o zL`V+hA=d*Ig#E|Yyek(?Ga875jJ^@m2SKz8Zu3~s)kU73V&-*+PnW!CADK!alfbAH zNGKIn&Y&_G!Nt5Q<tmPp&L4=3gMt8%b_}~DTpVndLoMgVBZo<`cF)DfrEAQ{sTAb= z9y|{t2wz*x{r>?ahmC#y`M3DH*q#g&v0wu$4gS}etuIYY(Cu&_2eSz-TL_7aGPJr? zwcC%~<wAcigRbZAz6r7H<%sI=AX;IWi{-VL>IBNC-QMFqmGMVL4jm>Vh_&$d!M?-6 zPHxsRvToX;KKtVydKku~Aki`Rz-KraK9_=(p@xHgo(ewqocExUrP!d7Y3gM0Li<tE z10s!v$JL3XB>!6gpg+pCr8^OysaN>J-R5l=&;T6vh4RYRhniN3g^DDsu9Cl>-wNtV zUS8g7oYzsiYv;}b;X6%Uq4=)qb)OiF0(I3=5`G6v8vB!yCEiGkt+|zz5H2(+D<C^N z8%SJBsp|cEb`n=UeDwHncI>g0Fx10Be}8+k@{cYoP+#-n(goE#2g@Oh2aslFAZFR9 zP6TnwA`<?ilLfa)s@@5$jHE#qcoFdwJH!0vj$@!nM0>s~X&cQZe;tkto$Raf@`N2S z(EQ2B<k^B@TU(S3nmue3I$1O+{>K%sUNIpoZwov}8wFONlLg>C#xyiPVu)jD<Z}te zZSe=C2^*KdJd@Fl!zWIx2IM+}xoqYx67qzR6GKJ?m1SnP!~#{EMo-qa?`zahnnqj- zE(`pv*xw_V!TWdY4+T%<_4vrhN_1tlTrvYszM#kP_z%a){h8Ruw2KJmtb$8gJ8-X+ zI8r9)8vo0TSLk;jSfKydtU@0XmJiE^BcM=U$Lr-ImJ|#Y?pIBdhhbwOh$;|zfA6IP zO6A)g%+2{?W3o`Ct*!bvLBt<&AIS^wg(d4`ry!`X9FdfeT99{Ms3r%H`+b}Nc1|8s z?0LoO^PKw_B2qyWuVYg!#wPv~*An~_z!DnP?dtsc71Mw|Sg==cJOjlASh%WnX<5h5 zp8|Mhn;|K11I}+o@P8pil+UoPrpyc5G4HDyo%OFw;CK1oQ%RPqrWfF_0P4>~$t21z zJ4L*E+9*T<dJ4j0OmIIcI2su(1LfWcJ+QQN0g|9$9$+1pQLCUd=V<>B!D%V*>b@ca zrJ?Pu%<epgb`#ro(?6!&?-ux%)6^&*LjBC#3t?Uvd>bN0l!SyLv6nxz{2kt6ZVF5s z#w-vF#CRfP@>wo!1@~V1A;AXYH?pwXabOb}Nr3;({(>WY#v|e6gQ4618GGWy3srN0 z|4@yj>_#aU^#o-rD7zqdw>^RY9H97M@Qghr8}2cT4Bc;Iw^^1fIe^b4r-fl5(mCbz znyP}cT}E=S6I*kA=E-2t{0u(>bSkLSH(-sBlQ0@<^&b+?7}EIP5$~(^{dlM3*Z`~6 zd|y;Xc9$90u#{|{Q^=dMwF#jSo^!dC7^or+B@gV+#?^(q5G`K=1|Y)c+elA=JjDvu z0NlfyUz(GX!y9l1A`qRInEtnsb|jQn-QW~GbHI1{zYRo1^}&gc!TMA(u17U78dHY- zg9^<A;p0{<EI&VV#4~7jN_}s%qLMJ9hT9H+I&;(+;|L_aL>$I=y<|1^<3GmnZA7iZ z07!_v1>8-9n^$RyenNJr7wCb8=TKX)LCOUJ9FG36Mi%ik^g5&jNYBJa5gG;wItCB{ zXKNjas+h%G4=UL~vdv#4Ovm{l$#CM)eqSI!%$Ie!lb#6CfcQF%Q?qF7IW`>&5D#P5 z44DOJtR}O4x<4?*g}sRk$w3?h6x!(Ocnq<DHBgVq311MKW7(CxSv}{!iG@c%ek1&d zLKZr+G%rdLt)2$cJPK%iqBk*>jDEaCW)oJ&D=@sU$_v9ne-G*5As~6H)IXvy`+bCS zC_pKNm|;FXJ~F*R0&2D7Gy?coTwAvu<Zh{{QGI#?aJv&(MNpi~N^uM&C8-)vhR8RP zp{{BaVfpM2Lh;!61fh}UNh}?dfI|?TNN|Ghwc10B!jLI7GMJ`z@+A8(8lM0DIq<4~ zhn?Jxf6!x6HAT<g1YwK`v?1SZas|P>aOiJdT3wE_1>xpWUZ^0E&;rRR4CrlPK3A`> z9b~-2em<WZ@&o{i!Il?l`k)v@{>9;*k$B%~Q+Z$e@MR#7+u1)wM59t3l~V!gC#M~e z?F}@O*m9fr{>YB`K&VEsK?Fn*o|z&yrTGvNC<*#Qqft0<;znpnZ?4N{;Mt|z3kfvC zbtLW>K`f9b+f-Ac^?w~s^82MDhx`oDR10z5Payq?E_Z$_5o0-E2lYnHX<Qu{%erY7 z;<m}n@vVi1vBpWv4FXzW5KtpLH8C-9&=sU9^g|o!k|$y$qX6GLL^tN(7@P0OL8&5h zP-Gg&`cK#ia$qDdJsCOr?g+&Pt%M!19D>}4P7371jSb3e_$T@q8oCPe9{dc+Z?o@v zj&o>kgv)D+^PWas0R}qy`)@EVUEhwHSLVaO!rZqK=59i4tjSFSw%}b*nvp3Hg~#^z z@#A)Q^DjX&NsItV#Em#6FSwD<;skVV8Bo!o;jW|P%odFJtk1;aw8kJcIUa@ApfF#) z^;)6lfSQDiAP^O*&NYy463qqP=hgdqi)2{$T>PUPV(alOw0b)|DsA^S-@JVJ&A5M0 zfjn@a3=oJB3kbU3Q|$_~^-H4o?+Ss<;*QIZaZulM65Kkl_XbKOdQy8|A4$^&PTNfk z8X+%Zhyq7W#3Qo>SUMe$bIrB5-a^Dj4Ie^W54q1xSc&ix%7G`@Hf~I+@rwnFAjv%K z_o<PkKIY#LSO{I9!E$TSYa}J<Ne&t%lwGsT%>Xo%uu7a`6Sc}d6r;K*T?tb9o7|>Q ze4?Ofa6VRMDA?EfZF~!6{`rCz%ii?1r}aSm(@fP5gr+W#9I2xMppU*sj)dDNX+we2 zkaJqnfYEU}l$_-TGG=3ABZ7<_(Z3<okPtiS^dX?zo9>|z(~t+4`(j?S^Fgbpc<u8| z{tks9-2DHW4a!%uiP;OPCkG0J!&z96P@|_dNxLz%TUKL6Z70}q5?l4dd-s@e8c$}) zi-UX?RtY#@3$}9n@Y;R*^3G(RY|stAbLUB27NjH8PYoFCj2~BvYdvL&6gY;5EegRa z$)IQxMEO!MIq<^ED;SDbpZ6HRft-YW;whK5wQ-^fU4_Mg(S{h6wrhpk=eHnzgPGVh zu3f*zk--QeW2%^mA;%LDRS`i#w~XJ2kN8A*Of4q%G$1AWu=J-{0dtQRIPMflrH+At zAc!C@QCy(@m!lOPt!vHuHtT_8gPOj%x%tfj`F{k4XjX5!f3ma()OkRuv~fBJV&~qd zjJlSm{@c)rpT)mJCwvwMb=HCuqLir_ZO!W3>pZ+=uVa4zHWQgGE@Phgh^mXXMZhYN z)RA+QN0^Z$&R{9Z)8`Xl2-BG!%0K+cpwJX^hN{wD#6J#!{DA6cMjJ}t^d$29z?W+^ z^DYik;o!ui86b6|2qOswECYf(vBO)r+pf;G)T<A)<XuB);SE@<LFf|>Ho!n!%IkWT z<m6;Bg@pnk(1jAa6d3;?<Ayg{UK#1>&Z$GcQ%X}V^TQgIg-wWfD-J&~u1huG1g{HS zaEN7tfKHYLPSRS5`WL6N4Inp4*QnyHmS}x_y<kl)l>c=wnhq-|sfEwu97Jr0ML1Dx zJE2jCoI#H!XS<LyILiB)3*9%6vj-|Qw7PWcpTxyQ!?;y*L2bKfoV*2bE?b1w2{W)% z$#>fnn%d6y#60OVrnChGkMqs8gzZ2)4RRR(b-CQgL0boha+K(sAt5p1*FQrkLkdP4 zrzaIobg~dt8ni~p_Wr#O10==>Se1sEKn$$>K|L%iCli!I{tguZ_F<7L7=_h92t6{% zc^bWnoYRq|T->DL&62Wd2B0p}fQ{D=$wypdtniiBO{jf1!fppSq0ZEl2_|J=(czs4 z+7SVnM7t45DIGC*Fs=1qT3~)y&S>N#WP6H&esK_&Le7IF9tZ+@2e4IkTRjm0=2;Lq zb#xOZCYj}`{`GM=kJh-x{cHL@6#*QE*g=jPbwV~o%>$j{_Ks5vsBYK`6feWdH(IPC zzkdroD}bu-K+;yeOUVGI1p&oqxXwT*g!Dk788guD%b4@kGuPjBi+zi;fa#s`lGE~q z8Qy4(3gq}iu*ts=XJFSP(NARchyxUBjCi#M<8Ag)q$CuW$dQ};T}yET@=U}^DsC!n zK&>ULAG=*mXCP1Aa^-`NkjrF;VsXF-kCT6tF9QWcLnjq&m~qKkFJyxc&+gzw0cTmg zqZmyi3ghM^5&>DFwlbu+sr?&l(&Cnug4cpw1^M}qt*?U7@mcf;je`zmR;;;Qgz<iu zxLB-3)y5;k!=Ve5AojqL6A0Yh-lwg~?v!Aj|8T$aitQ&JsPG~avQXAJ=?jw1;LyaX z+qB;)awzvr&;Mm6WKeuC|34!kV~<3Q8MCb0QU*7BN<-qg26}$9DuhI_{Wf0MinE=( zfSrwC6(~7Fw!qPV3n{(^M;!dfY@*I^3bSsTp?Vr6PJkU5q5(5^p^PoSM#byqO<uu& zg`A)4=Pr#+S_b=qG+Vx|f~G^r?%3kU*Z`cP2Wq)>S%ScanUvUAat^2wn$UG$Uvhw4 zsl({-6glFq7pnm;4%s!R<#34obSJZOP<sZ^r8DWS0K#3pabp?6=TX5ay@gLNV$<Q( zsq;y}LBMvt>2ps&J>Cm7n+Hh<qrx2fo)w7aauu{86Aqg{2=6M<ZB8Tk%s%Jgv&8E{ z+DlzBsIyrHHZxC~_eEfzE7+=)bC$?}lW|DsXpe>2uRvi0Rl>2RrP!Nd=JZa};T<jY zUUnBR5`hlkMON%7_17dGa^_5@VtB;Ae6O{P{oga$;}2j964MZKjPzu%fb@E#@KE{M z0o9<kA`>b?ks$s5abAG=k&4Ox$J?8L^}M%jzrV~whKwacGF3u@F(j#wSV@L5h9bkV zWNe8d4HStck)esm6tT>bL=z&5%o<3D%=7+SEiBKypZ9s+y^nqD`*`2`xz}1&{r|t; z_j?WJd0yv50+*^4&WTj7O3J}l?IAM0vxqIR#~b%};a*?^#JcA662iV<Y^D<xaBQUA z4g|;~>{L7=fP)re>VyJut@v8rxifxO3?U7h-<1gox&#L?>Yy1q!=T=j^ML|X$uZ^) z>>8&stffT{=04DL4ptdMNASO!;@ETfE8t3MMn)|e$jsXn8Uo?8P=*k>K(=ER9Ha$A zE@mJ|GHrVdoRrV?@wQYYVje~z8Uq<22)ATW8Mz=XTi=?Jo|d*9*$3XWTg;EaL@-e7 zAtt2IEuujp>Q`fCgr-);gn7Ja&``0Hl10z|4;xkkwVRwLQaZ6@3dOeN7C(9rnQovk zhyhkb+t?v-&z`v$@sg~ogWZnM4CzJ?lsGN&XOJGL!GuN!2MZgO*U<)kT@2qi<J)<c z;)_XY6#uoVwVMnoqL7z(E=IaU3Gp65%l-gzk7{r`7Z%FO3RGRYO`GA!v3>Gt6{(yM zUkrwdA>L~uqGUEj$bUa(IuI|ep&UJP@nTI_x3d@@{PFJj_;Du|4}bPX2Coq~ym**a zTeoMAf5vG=IT(8Q=!E|m$|w!n&~FhzwBhU<`&(0_H7*yDiIO*ltX->w|FT4WAVmNb z*P8rgqq)}y++Vqf4IPRvgvJ_N+dr7H6j1<L>4Ef&g1c716q;X2Pc@MCtiq`mE@IR! zqQw?*0+8B+x7`{U1lW-o-|>&<w|gaQW^6%pF?=6wm^M7~#1osRLI_)n%0s4X(oDEN zAMfwjy6h~YqauI@BGF>ji8IEF9r>3pSrs9uIgT|_RcLB%YA`<aVNMxz!x?Ja`Yl_o zMcv(TPxIY4x`q6YGY`8Pgj=B86Q=t9v!=@4iKo{RDKHkdeYWd3Cm@v>c$uPo|KY=S zST6yI-#)(+z;9`CwA=-pLn=FnIQ$*X;Qva-JS#5Ea_FcY?QY_SAucGwL|nnd2ex$z zVo1Rqb$S5rNJ-5#lim<CX*n@i3n?-E?Z`1Nk4(Bloh7%2y5(h2_{1iqUrFJuF)5?p zmhoxmZZ30y`K9B$#~X~=tgN5gjp6k(U>jolr>fcAMz7<yN|ul*Y8Y~s*RH)wCV+SY zW_(f+)^HN0(D_O{MaAJGz5*dZK|y}?&0Uw(s$18JqK+Zl*mv6B6aJMY4S&=DWx^<k z&hIRiy<%I2sOSnqSW;pM5}GiM{*`E1A7Qa5gvDfw*RB_$W-huM691m0JutS0b01m^ zhb7;R*+WKHr;b2cdJHCZL0~judaDiV*H`f}_e9omZA$^tnf9=fZJD?6;j!&cPHs$R z{gBU5s|a3Im%#%O%vMp<5a+L~{}3WJnglP3+>lOVN2#hCn8^*=9$4SJu()_NZ>AQb zICu%1JN~W21q~~?V5mBVJA4%ZbOr01i=}w-m!{_aoaR;Bew}fd#MM=#qSZiGapjCf z)d$ECv9I2%ksl~VEV<Mc_%W>Hi!-lVU!Zc(0ed~HTRQ03@6<Ylvv}MI&d_R(jZPc{ z*=j^!{W;||U|TEn`_G<Pg21PNZa2=@^53iMZQJYVSu6F4O{3gRxvOV0Gl$Tl)J7Bx z37`+`lg6CKwF%;2RD*EoL=A#Hc-%B?{yikKyZgQcx0+1Si6)o{WKJCyz~l9&P3ai2 z<U@HJBWU5Gbyl<(xCRU6-wL4Ksmbe;fdRVd4r24H)~He2(BR(aV(97`!rN5xLg*A; z4wG!jRhH1?LmSRaO*CWvYSiw-Z+W&}DfJ>us~Y1ncKMVAyyqaieNQP`1o%-?zxWIu zG^oB}fw7m}UDBu}*D-XjI0&K)Xb3?TiZhqMRx%}_cWW7{W^s&QGAvA_+@hoBZE{-u zU%#H8fdA`Zaz}&+$VFC;nKw1kz><%(UoLEZ6r&Xx?SPRLW{eTNy<NNDKSo&aA-{>d zU;Z7$_2STl5#GrQUw1dt1On35*SCq>2aeT+1JRx@9J;n%ojQ$`a|lcACuol3xrG+r zd6-p3*M2r9XP8o-%V&Gj7Z2x=6YVelqoEJkQVIjOnpmN`Mt4C$q0E8QD$_>2!?2+b z6Pc)56U`ky{Kc^K`drH1G_1TV<*C9|OV$O>*(G0$*lc&}Evft*>OKqVUiMk6kw=W8 zK`hmpV+NQ&d2vDpNJP>Nd?8Ol+=vp!SzE7`#&19KDF~#_Uc5M1zU>L<fd_qRnNCFe zs%>Ck3yk6q)Q|JfX-`0^hIBGbsi&KrymTq5H&%JjGJ{;HMVivm$(X8MkcQDze;_|S zx98!#nQ;bAYfOx7#5s|RN&6GP&)BUm&LqG;dqeIf&m2t$qXT-^ZASR_dTUTaqt^CM ztNxJOSZob}Gf1JCrn<GHtwr?>yICD?7$1J9{Z8Bd)~DTyYJueXAbPAy#)!Ky;Lle7 zlP-Mp1;|1*u@=zO9BX}Y$&mINS_^-YeE!>NtQsd%B1ox%M8O(~`6~pdVj3nzhrWK| zq2sUiU8A)I+R|>{KK{`0708dz^62TO>>ZsB@rXtBOUX0Z`ed7b8vW?sf=9V7^7>Ix znwr8)i1PQ|vQM*J7gbfn*jQD=$fEU_MvBzR#1`W*ulsfG)2BJNUU+}&;~o8RcZWNt z&yQXAm5P7>r$$EZ7`NriJA_WP1fbzPY3MuFVm3ZB7gd3(g19}c->r?`)^VGi_|wpH zy3h8C{&VN}<A?3`KPChOM@6lH-VL|A^!)=q9`SF<>py4@O5un6u^E~FOu~O^^+auH z26)ZR?)UKbf#&~aJLjv$x8%lFt+2aCfD95|Rrp+56A?S+KEM8LGlkn^^qA5tijz9D zwamE5+6Y-%kbmb>A<TsMH_gbDg&*h674mDo|7ZBil8}Yfe>}a%_hvI|z+c&pZO>2~ zJk>WFzsDQiKHqh)tQJ$cR0Q8P=B%?8*)tZWD)=4ik3SZIZocr~B~x#z#bP|f7;V|c zt5Ro#oib&3{`gOAWipybJ|pvUc%{?dw=g~SY&iPg%}dD?ggzX{giZy|pR>%u+jHl@ z*SY~gL8CX#L5m4?@^!$;*4lrT((j5dMZS?t6S}#5^!xKiGPU>kUu|-74gL2!{`ju) ze;*f2{%#s1kHa+)OrP01GuK6xg*L%nV;M>Vbp2nviSAX2Za}6X3rEWsA#z^y(%-#F zEi7UUe@YP5h9?a9AEnN}#o>F+98g1KOVIe=v=&T2sv~72`i51d%o0}SfPL=&@zq{F zkRX~AgC|1Xg2Lb>{D8qd>mr<pYaqlC_v#z7)6&ypfSsv`{Af?Um(aTR=qTXS(}{CK z=69}IR8-WO*#!{=qoBgUP4v5T8V^x|l#T!9w|?_xRfbr~r%~u2W#&{);ZU_R{R+w^ zW7g~|dLbVP83lDK93tdCh!SJf(fn>}XSzLG(me`F%FGclA6Z;v|F~P&#i=qbW4{m^ zM=AUO0^T@Plr$CZ;c=S{HCtP_F8V>O`+r^Zj7EY^)DL+bGRVplJt9P<oJ%8<s9_B* zPJ0V`gbMy9NGEa?0)n66l=CMRMUfUoSj_067b2LDops6C;L0T@R}8CNK#R*f0%C`W z)=S<zX^i|C4%eF*ElIbE7lJ#;$jWHX5mWcu78mzn(cdxA(J&_c#19wAgv`*B?uQ?k zZ0S?#fv14HL@bv#Wq9=;N?9s07Qv!%V6H0@hmMX?pNk`tjM2~}iOsOZ8_z-CCv%x~ ztPqbfG}5~2@Kg2pu2Nz-EBo6sxadv#qs*v<vaRgS))hQ|FCy~;vba>jaj&@uQxHmw zL7Gox7yDW)r0CesiI%FMAZEBGJ&*agahvV_WU&&Bz85D<1dVoo@(;vJ28Q%~-<-f7 z7vk~O?IZGAX#K!Xzl{g7k_L}pJ{P5gq=O7iDruqP>GmF-yrpI?<1*wxkFsN4M|L+G zhWQuTt8@~l>7b}@3xitqJCAs-J|ju%en*H*#u6?_)EJcfDktvj{X|r%pzT&zLK=%{ zw7_S8zr)8K1_)*3ERC2mq`3jl>4$(;#L<n)`2pyaqZ{OX+KU>Es>^fTF|mL_1ySyO z?ajmnjT`$=y2dadSgS;?0X+Rm4#^pu*q}DSH3hx6jCOmCx21~2E4_W-HC1rP+a;qq z=w^S>sjiPw{}C~-^jrCpq~@w`#9UkCQjqC7h)PF-6Oy>YmmzqN5iY4BXKR|W45gw5 z=m|`Re~5U<i2Vx!Ls4|1q&(Fe-8^zqF|VgUmVHa$!GHgCuVH%|Gk~Xn7Ke_^EwDmj zoO11&lpK;{8Z~0H%u)2HiU|H(YtQ;%EgafP7V1#mQ(o2s%@+Sh>JGavT>T&G4_aVQ zsZ|8k*$nx(3?>r~M05%-sXM;kNceSc3UeNimF_+|Z?RDjw{Y^XDDVYJ_pR4zE#+F1 z(q>o$YtuiI0hw)p1botc@C=p)$Y{l38>i=YPX?fy6y=U}O0*)2&3FqsiJh57{O^`y zG(W;u0{r{Tgo7Xu6kp~os84+S{$p>*(J@OeWo4ZcZQ+6}9=X`|aKCC&b}@onNm`se zR;9!^3d@Qe8s~#N;%-T=MtjWD>rSo|(57w+llwSD*nL4lyS|bh@Lk8e;eP~t5|<vj zRSBxW!D`qm%w>pY&BxPtcp^uyWwg<z^>~UKBcld_<kvd%ujDac!5aHs3!X6P_i2vU zds@4fKN9q_>`vXEhbaC0Pvpyg=e4JIPim6RM22ov1V9i3fhqnTSU?ICF1`pd^#v<C zT4xC|OaidT-thgDvw=~3Rg^8ak1wi+)(0t!5d*|)X%ioU*;iP_FYU?4L8UO4+92*s zw*_$MBF!V9irJ@f_xFTld^r)D$q)mbugqDo4W%YPoT8LSjanONv7j>T+qaiROtJxh zJYV6n?nO#~VlN=@<Yq+h2NW+1py>7=&}aN;%W;~mjr#p8XGm;NlPh$P@NTv4y!Ajd zPY~#Wcv3u9<t6f*noVqVl!6D8?LJgn8inaxcEo^JO(J#?vuqvrTmyBKpGmHI@Z^bO z;$eXmIJd8#-x(WIPHpAOp<!G@@O377C)51=undqzD%(9Mkb$oZ(R+dt!u}__W0rt` zO^QZTXHKwaEMG{M4ziL*ZOF^z)Qb$Ar0|QOQ7phfSNGWq<|flcoTOS@?>@^ut0O;< z!4Gul`;i|=NaLx9%gu|0X+xF2xHiaPmh-$sXe-bZk?H~3E5>}z;0W+vb*MlwEfuZ4 z_hd?gGkU+c*q4b!=6)re<GWF@fd-Jr{L?ZXkZ>{NsL>lI?jF@iKwQ8iU#bE?K0jGS z0aj=^Av{_bD8;^7AanJpfS70*QkmDhcf8a0@UI;mWc_`L3w`bix<3^&W-kWEl%qwb zp(KDc&c*Y$jp7dzXYC4NTFHytx7GY6R;IPlix5ic_`GJAxCTJDAcV<FiD*q>`Wt{Z znAd0xCV~=(!5{5U{m^(jk;rMwYIka=so7Bx8CTp1Mik->Vb3qK>7bzP;@p=ksZHY? zmqfp7&UjYyUTzkx`(oFm)aNUVxaEm$)Pv&U_`_K|(W;7y8J+on**DK(q+1ieDQUP- z0O+H-)E4{ve}<hyk>viRXu%-cKRwK>rLN*nSvJ%D?*CR1clJvT-6!J|6%O({-y!@s z%lXs&G9HD7Y+&SRHx^@;$#exWgeRX_Xqp*8Lx&E{o1S=m*T^BP^3aPr%{T>Bx^8Sc zjOo$bh&R6OGZIK8FPalOolSVzlbZB6oE8i*glq{7Z3lE^3CW%Jwxg-(1f{;r%p4Li z991!by-k}o<xd+bOOB#RZepJ66XyE&-Y8DW`6Wj{EdTk>>jQI#{Q2Xh>oo?6Q52@l zXV`z`)>T!w^46`Fg2@vkHcnW_C>5WeQ7#@tBo49g5{BU;gG6-%;)Ie<UMdBN@Sv_f zmmkVRg{*05+H~~ODJlX9e*6afE~+aC@pWvt;PNzf_W*?iyHkN0^_e$^B^Zj#5j=Y- zRk)9jPrebF>#7P`O`!Ob7fch%VLW1S_tn;}MB0(oOf~?BtXAd;v8*?Dci$=-7oQ$p zZCnio=@0fv%6cjKaqE3#2WfE$uGViZ)=@W5AYXFJxU++X3>m;6``Nw}dRCOd0Vk@H zx`bvnWc*Ah&-X7L$P^4gBks{Q16p>LcBKM=$!JI6hf_nS`W)|cBOA&m2fP-KJW%V# z?w>LH_ya2?5e)OsHsr`=AwY)n92pEoCq9<%T3Jb+VhdYB-=}yHoI8&DwEiOuig+T1 z?heSf_^9EJHx=#K``3m8O@C!2PC0Xy2E}a1klIX~4IjiLRv%G~Ar|qOj~Xz}L{wnp zw3PgO#|O|I-4!n!Fq`IorDZb!K@=j2^0(QWquY2>_Pa+x1<p4^#quI=^h77Hv}UbD za4yprd_;byH&Ya{Qc5wSf(}l<hZ&>HzM8xPGElMgeC}rMZ~jWA&EP{sdo5Fb)UVz8 z7+aQ~xq%yk&ujjR%DDgyir%NTa9Vdp%{_mg+$(1TY^-BZ9yK|@4+~G%ntwb#<pssQ z;ssizdq+UI>GSK|b!J9G8X1J>DA0f3UPLitNCbb1dY+I!0P0@kE`2=S+r})E$s9D! zC`%htDaZmPUZzYl&*<}2(ZZ;t<hCa>q*ATL{CRCn3NiCOA5JP!rWs_CeCGV$pGf%R z)R5o&@=Zghe*Tfy#TfdR(cRal(eukh9@wzmfwfn=8tlHmdb1l}XF3%UUBQlWb@vys zdW4&F3K_BZ5yggAqix|BJ}}k+5+dFoMK3W`5FMHf;z2e|hG8Hqm;(&fZ_#4U+i~D1 z_d$>0tHpp9r%4$q0V6P2_IYt~N8=`a-cd&X<6s+5YejNWlHGA5XYqPA_3)=HaN@8> z^z$?oHz*+N#y5|wpneqVuaJ(Thqb<Q{(Lnh<fGQN@u!Zt&Lt!NV{^*X=#d-gO^far z>YV<KfGnyYJNFh*>%Tm5{BUv!I&GPJoPHEvB=-I_71%<q66B&xbVxb_Te)`F5DedD zOCJrf*b-YPLZlet(J(d(>ZhQ<ny~%v{B!4GFBj}dOcXP?qm;N>;5V|fh^=1;&J1WA z=<7~jIMuj)@7|hX<P3fsa(+sGtXbPN^ZXI)EWUO9_13_JqyQTJ@$g(t50+)k$jrZW zs}008oTCMKD)u#9r%c$9+$;}2LKM#7w(hvPNjlV4FfRxptZosAR&8`3XDJf$s<lK~ zox*p;|3Ty&)E7dZQNqQ5cl%UJZD}&U1{XaQa8^bFbo=V+4o;Zmw4mp|cB!jI4VaJi zo$Eic_=gd)Se$XXV+dPfgbhx$k|Wc!WBptT5kBoX&P1cb%W%tNS1*@)`-#uZ8Z~bi z`Gk=I<mMHV3e-fi9YE@dq7V34*6u`2Y*I%B_dmjUQSMed9X3_9Nio0Iu2sN8zN~n2 z6Zrqaa!z&#K+jD=4W-m-)la%?HVKFezt3yhW}iue7ZlW6tf@0${k-t%?{+nNr5G?m zsGQ-($N;7+Dv}Wm4m?8$mnO42j>^fLIGvB9<kDT7z*YG_8c*$y9e&M7-8h<p#9-7D z#Ou&4>d?OZWE{>EFKl)yDF7vjwpOPm$Kyj8{H$t~D$<|mjc#E>D95O1d%A4tlDhf5 z1Hu4>DR*`GtNaxwwn4J#R?zL2Oh2hAGD)a-A^*J=F8ljbbbe3&B721=o*I|Xf^sHw z?2_vIbcj!kEtBmgFr-6btNpCEB1dP?(4nC#8WxcQ>$6aZB?pthF6?AYt1p;<6H=@h zrAxy-O3PL(U&ZYgyb%yaB+?mMu^K0u>Q#0Rm`n!-UrAG6nbC-ic0dlMP4vfjk=ez? z{ku(OTw|BzM^rM!vI|`OP}))_Qu22dg-8T-zX{YAG&<Cia!>}tW!4EvtB-k5Hm2la zXOs)qE>1yf`rUtqYx8H7IqCP0-%3e8e_o8>YPtHXae_JLP)-33WDqmX>d`1$N*QSp zse5&beiZ<0yF;>&*;mk$#dvGxAFF*39-nh2gso55;0oGb8%oMCy892X!T;;vaZW$i zt6Q&u(iF8bMwjA1At*2K%u8N?4D#?+*ke~s0ST{;<vZ<X=poBbm;n&{>frZ*U18FN zw?gJqa;4DV1DS|6j*3zW5y4DBTzr1-H2(CmrKn0KwjSED=NRf^N`l?9kBjVvV8w0r z;g+^WEy3ZIwN!C=h9JMPN=BxoX!GDi1~NY+>y~Il$QCu={k$>Il;JO>)r;;1bErqu zyUl1MYX#|;s2OBXOB}N0(o)ol=>griY>LMGH4tP%W>$UP-a~d^Vqzj*U%dV}@sxT9 zxpITW%21ba^V#P_N7b5&2Zq*+w3aua)lpE%?YKDzphC5?nx419sGh+r!j6=YK1@E$ zg)A63=B5!)6cDV4C&&ePhh@~dEq4jH@y6lVnlcd&63^veWoi>*!-i2iHzSLoRb-Qy z43I)vOyc)0{_?RKDDT+9qsZr_Ly`>~g1mtA$XM5rIrjwg5i3b?Q}SuqkM4_KBo;T2 zjbNNc5)%P!boU>VjcR5*W0BYZ@tU(ukx!6LY1U}e{rPzIG3ahE<-DrMuSkKiAB_(x zgL^V!CzDq)nMJ?TF|ktZ6HDVW|I^LSmx@(9A!H3F{JHGN75GkiW#~Rim{hv3ye$K8 zRug$<jn=WBFuGd~OtxKQ7m!`{qo}7a91@Q<1OxWfs_d4n5mH=m+I&{68oXU*A6l<8 z<7YI=W!E4}3D+=$0TSA1_w1hqTaeYi{ZtY_iVVippkEZqmN#rk4mk&%d5-%T>&93; z|Dt(M6O&pv^l|MvFle>Y)~ZHpArTp>$v8||CH7>Nh`_}WjY=j_@B`BLDa?t69{3m) z64F-jhY)M*u#f{S?a0~l=dEPMhvq1Nw(2DyppP5BunFJ;5oWAXpNB$gCJttiU0t=o zrx+;RgH6w7G4V9lfN=azN;B>R3CN#0{))K}&Kw(}WlbYFcO}Y(F6GUcrL*82$K5Nt zeN-5Vm5}2ZqG88zaSVsLvBRSNGzC&zix-j<JQ)9uMddi`yEm2iRIihUq^2_Y?8=(W zlEnvEUMo#VYX-K285OrNYFpV-1xSKUf^AXl<hRMYyO|UxmILM+nO0XZ+e~NRyySmP z_r9ISwT|Y=ah@H8s}q`;xsd>pR}=TONVgl)^om=Vd;|F605Y2pa4^11M4?e>!gO^d zFIk*rUPE|%ndy~GD3l!MoR`_NHIP!AksGy4Be26p-2IAHZ+-dy+C{Bnd2>F+|Hu!P z=b!3W(GHVf?Z)mUW1dC5q<fM!OHBJ{nwsn$|L>U`+<xV1=NdnQvj1Hfh!T@S0>A*c zd>BF5a3I?t`R;m&2FGx|aP5{uD;qkwUdezB`}Q_#*l<Mt_!JO0SwjlEqqoPvaqqZZ z^sd#ZygSC-{aGCA{#el<f5$aZG#&lkKJRU^`pKNi?+*?h)PYOnWmakXB7gh-CWFdG zuJq~}++Js7LT>Qg{;t|B3OiU@toDia^3M&9&#k%Awo>bxWuFG#bvW#NaMP@$XCF2n ztZp=KT5-<voIdlWm1W_w<^;dnea}GfZ-I-^6$$J!Z5+?W_OCyjC^~OiCC3Do%W@gA zj(|A)x!I24RIHMOWeRh?uOw(VhcuvW7|gnwc_PTD_|Jv<z5n&^8Sc9T$rzDfXjsiU zb+Tjg*X<q*$V`AA8us$tJHOMXJ=^E~_&5D^UL8pNXLpo53+KN8{4fg6pQ^ECS8Sjg z5MLu5+cQ%)0yj-YPrPvif&cq|G$;A}@FddK&iDgdF_k*pCM*FqzkQzXxNMp^*)JcV zKVtu+{*Cm<7;KpFv;GbFaO2;s`}4#2`(L<t^yaZjKmXV-|0CqUum6V52A-fgWqZ<s zZa7g^CM$tm-nu^W=jV&IIa~LK?%Kkl?sGzoWb;~0^lPAMX3_0^XsmN&HtzJC(kCUh zyYpo4BY&(qT#e}4NNV`O&Oi2ODVI1<vqxQoK)=1}bL#8InWW(kcNQ2HBPbFF97ABE z?ESx)eyE}sS_^2*Nar+#$4+}ahCj|k7h#;&fE2-`j}EG>;qf*a;<g2=5ott$Ak>EG zm)BRj?yD!SpyEHhnuPlM@9FrH)w6It$P~7CFEi*Odn~1jCy5J$BbgaURg^koM~{$^ z_3tdPEQk=}FVex;-eo7eDYkdayel;`=k5=f6kH)X4t+(i)&+dsuy@!FT~~}aIXU9a zkiB2%Q}P{N{%07^s!23d%)m!hH|?^P=qPq2f6Oy3%l{?-H8qRQxW5eUE-C9P@C2=e z5cskmiRN!c2D4!;+gXQ5+a-IpO84sj_@-(%Thtpn`X_DfpIb~(APh1WU@l-uAsOEI zxpzI&GtAAbA$7zp>7^}*FZ@Y|@vm;ug~)(|sPecQC40l$9K}IEMw@7uAFIB@Sprb~ z%C`QM(M?u`#so^jRRXJ?bc%zl=P)c3##NQiudn`gVN2iM$~K}ZdgAtU_HkF84pB(z zjNH|Tze@Y%ICb_4iv3~wqU~mjmNs4Vv`mXVp5J6-BR%^Xs5f#yN3m@~#BpHryf=>d z89*;l$wrlMi7J+5lD+4gcv+2NqH7B^%6p-n3Nyp&@#l5ych*PEUoF`&YR1xO2)cOb z@+CQ`i{C!oXjyukLx%l-Yew2-%nliFw-#EX_c;3S^;Hx^hjl`&<6iB2hr(kU^wWh6 z9qLh`!-9!)>q(#ZlYA@DsLD{uMpM$f@mCORb@m0*ILK_id=N5_@#1fRH~DiYVuqtc z^PWqcGm!f(c(s`12q#Kr5^E&d^qlB-ItVurX<P{Fv?=EWS4{KSi?LL^;w*RHd*{#V zzPVMa!N2{u;)UBNYVH>m`G7q~j5OsKQx8}HD~fjO^T*PCV-C915x--4-kBM|hFU;u zqD&U-0YDthQM6s0^-jlRJwcZc9cr<nrYAd1FdYsMH6n*xw{vek8lt@cP)_x!^=Ot0 zz=?Hiw<#=&lr=${5<h|AFilcf%&3TH)z*C;^oGty_FACL(Gz6>DOtJ<oe3v;dKK0U zMjvKQIS%r%iaJq-PFOE_27u`0m4U6C@b->$M!u(t_iih(NLO$Y7)T|webjClG?z;( zwX0k#VJ8GSMDFu~_!N=oiLZwggnbsjIP>^DA0t{$BxsR1C?N5ovq@oMy3pf|j6b2; zG!+8@_D@W2Iaub7;g|;OsBEan?jrG2lroja<Zwv;M;zC7(|>AU{qr?=edlDLtz+{Y z)D%&~l4Zrp2$18b%X=2t1d3@sc}dtSzJCnG^O;5Wmij>y&&XKz_U1I<=?R}cc%;qr z4Z_?Hq0|}VA?vzKG>ysZ2ML69&I_v(WO9>$#%rjmN+_QD`Tbm>pkR;}u71O|Qv<2c zMSFAS&YkHS5pN4^E3}Uc9UFHxHNAVk?k0*YA!o%k4Xv|^LW9TVx19ULI}_*A7(5Gu z)$i;3Hh`deHBNzmNzKkrwW1KWOY{U`5f@}A>)0_aoDE46%6+^7`io1F{-*WR(1@qh zi4)?%t0*}1h`%!+)lA#3KyR|$kljfUGj{x}XtdpCd9?j8F{u_@d38WQWo2r1WL{!9 z@35L8N}y@)QBbI~?PoN8?D9%g=bHpnk|QJIt=Q{6fHI35O@b3AbH*HW(~9~r{!p<n ziu-&Y`((L-2Ry$mBUcrmdNFqRMuYhP8wsI597=cpcKqODVzV&pq9>4%R={7oD8zNy za&kGU@duydxvZj~CA(bs8t9C!%*dhrz_ra41qeB6SV9=Q(?D1c`bd8v`awZNN6di5 zq(f5<*zE{;?(y^NSmdOpUT^#pKhe$v22ln*|2%yyZ3c#eb(l=a)o96b8u_4<swSzm z8|h3k2oh$LaVT8*{I59E5_L%{>e!+?|ICYYJk$5nr%y3xn`B6JT|@+G#DX3ApWc-E zkyE$xxGrq!(M7hJ$mKoJG2t);;=>KUnTqjw*QnWzA^(Rh_$a>u_|(;LkxznOUzzy? zw6y>ak--Nc91%7TTCnA#L;+Hkcz8#q-=v3Z$+10Oy_JU-q4>#(bn7U4z0kDGpO;5F z{lAnMI@sc|=p=;;q92)ad+qX%L364r$&RwrdkP({)ec>|*g>mbWfF@OE#ynp3fzjb zR#7s^i{lz}HCalWVsPJc64>gEgVX8>2QI`lm9ro|7Z<Ez1Oc#5T2)vrc7(`alK5#$ z8L~5P#)hkvFP2U?Hs6(H-kFczldCswHU)2j-?N_kne!?usy;J)ECL@{bVKJ^K(Mh% z{ym>tzmo2Kx=DZ@;*qt)k&0^+<r`|EyQs%M*4*;lAN`sQ>+XVg5f6>ESW1CoM(S&} zY+08t%|nkNTtz+rda$H)Ag7NQKY`OEAORSn!??dO;?zRBNbA;BeNpN4PV9<mLq2Q& zNN7kP;O)G45*~KJtz@VZ@kAp|k@W%Nr?4I3K~Cm>u;<9#T-DRK+xEX1QjGEJDw1&w zIxg2^n$r$UPTSAIoR|Wcxs&xoh@6F&U)`kBYMO*-c3?wF+pk_UzFRR50zHP2`d2z7 z#ccBA=$t=_`d<Dz>}SIqJkRamf~r3gn9gh>9_!5ei4Ps$v75Rlr%7DrmCFofC})_i zoS&hyC~FqW5_e_JWIupBB0$n+fdOmQbbB1QbDuOHfcatxlD%K%cHj?pj@VK6_H8@U z@fr;q#=JU$0~GX0WksCG6qb+wHlpclVvsVwRn4skj2Jf3&`-Z~>C)piPXH}~0Psc4 zU#);j?j-`5Mx}KX=^Fqua2XpJ^+5DA#5mkJ*H8$|cw*rB)q_te3~l#b6PH@9Zj?d_ zoPT#8fe*{=n!Ex_+_;B*Aex{WtxsijXnL<78N;G*v3>N?u%8&3fAfrQU*Gi;po3}0 zUy4;Y(kgs5k)iV{Ybki`orhVua%$<4@A{>RSyiyg$%r2!-K{Jvr2b^sZ%0m&xC>w| zabLm&KLBfMq3A!eOh(**kox~#ex+EB8Q)x11QB4XK<|nz?AI^vCSrFWtD}d`&8Oyh z0M{jtn1bUE$l<K5{aR6u_GHKsxPV5c1s$6hYsoqb3MN}BR)noFtP7;fIz!&uZkHhL zO58O%_+~;NKz}QWBsnw-FBoSRvvjij-?y(E;_1mXX1Kwt$32gRJbWQgWK5WI@Ni9! zy9P&}169ao47MTd(J)11A)g)%qG(|k#Jgf%EPM;8zBMI{ZqC?S2wp@nB#x?lXLQ)I zTu?+69wcA&zJDGX_5sK{2EG*%bdSpo5sPgzQ;|eSonkce=+Boo_1iCP)rAysrIN3~ z`~O33qr1C!-%35sb*)NCs9X$c!>VW_9;45<ub;%&R(!@}SEO#`*xOEx6uH{~zv7tm z9y&{^EN#ox+d$n!f{`@!;^d^g#JjYCt(LB&DJ>wYNYN&Nmy8s-`FFmw1e34t3+iE? zqD^!lL!V_fg0*J5bdO9<t0kqp0Cw!$iZ^~tGi<<Qq`V41S@|?V6L2%1%vWE^LRZ-_ zg^*9+L|_{6xb!MaKSqn9NuWuQaePu8{b_yCoG@NWV4dXF0^il;)I7Y)Ws35d8!9PN z6vz}O*SCE}t>@jKo%J@N44sbOMfaJv$XlXD;TCCAWO6IhByCWLJ`Op~8<+A<>|uEj zd8+;96{}i@cV0t-FBXX|U4BTT{r#V6{?g2=Ij^Ai(x6bGlxiwq!PwE&W#m{?WL!t{ zI6GJ0F09j}Oiv|Ctm`<sv*z`6KO<D)sun*6+xUA%gPDz!)rOS$w+^+Ge2<5zm=F`K zqUM6@4?qGV#Mm$3g1=FvUq8^zqfoVNsJy0bynOkx&8|8>JGoxk3;&hTYA4NO_P8Qp z8TH8<^7FjK@BamE2xjd1d2=42bCM0Ej!{DQpMS2<|Ce+5^XvSd0|fv6D;F;Qif{~X z?+Sj(VRkN^p@q2=)W(gIOOEW>ZT|CDZ(RAyGi!dErz%Sf<$#c9B?3?yuA)X@nEUSa zysNee_PVFQowq*!zzT)B6iBIDx2t`E81`$1*W=(t;{)*yG!Xj+3XO5bPbp58TgROx zfvIMYgjE0yn6TSFy%%9`06HqHYQ&HSvFG*seGxxfaaLcJ?ARLbJo4w)x}cI^VKHlb z&7Xyc^(IQ=?fickDFihezRO-0TLRg5EF7L-!34mY$08Lk2HrC!-5~Uf!MUjNSXMCi zSg|<O3&ij}p5=B8;$(;_x8%wE$n}I}zHmzvaCxdrUOuc!Gg_6M7@yIx120xlxT?~c zTnO*d3e>h*j~=h~e!0h-w%jAy$@|QjS~6lq_f(rOB8JUq#3GYGNe8ZK&~86<EUZfU zv5x;9m4)fQR+G_(&=@vDe(8_sNJg!A1J?sT-S@8dg3CFDZ(K5At^a)t-w20;|Moy^ zJK5kV6*lkZF+ciP@$544yB|+T789AIo;-O{JX!FoQIPMZaEnzGe00tblkjJ4d9XM2 zIQY(Rz$*l*W3GOXNG_FwL@F8HA948qKX5>FaLUC+rzq47C{3&L2nA)JCG~dPbNH{X zVs^`0mRUrSSDfQA;(-wJI2}oyNHUPQNyUpgK+cHbMZ+|+<$`^Eo-C!_kd24sg%>OH zQ%Nb4u`Hwv%FR0cpZLIzQvfKIFnH3ZQ&&1sK~^i<YA7Tsqv9m<X$E^`9Fs*o5(?>< zM0zLDTv#XC$T*WZX&|(7LDUd0T3>Z&q%bBH07Nr|Piz(b1*CIDz388(+HKj1f8#~4 z_eZK$c_BzbvJ=ahm^~*2#NpXvMcO7i<mI=*NXx!M6K6C;{=!Uw=!kGsDn5=|3{|CY z$q=L7bOZ&+&D1dn`TgFhHIN5m?7w}_6=f%04cq1X4!N5A41!cd_u0+73J30L#p(dy zowH--ob(Y~f!Q`;+KBIUl}JzUm#R>KlEKjh$Vw*qe{WWU(1}-848Y$-nD;9bP+g&r zkX^rGrZ35gr%@o2!qjea*=gs&p5gYTo&e%>diYk|e*B)3=tNMEDo$_!B09qzJHED` zG2CQtv*QgDk(bG6sOS^AcC|O|gFuh8be<MN!a_jU_w@sWytO{R20L4BsGujb0TCm= zf}9h;y9uB`!l<lJWB5@giuG7U5B~SwJ-Xkxd<DnLP7UDobxV~^s1zMlfgH`rBq|Ck zL;G*(<1W;hydsJ-<0UOPsB(abZ{72f<m_MsfMT*XnmO;6(EFl!Fqm_<kC;S|`EoU6 zXJG04Sd5Fih%$uK`as4!u#*zL4_W?0Gy)|4fRxv=<zN|mby4|@H$Fl6C`BBrKqn^^ zJST(Be?Dqg7uqfXC`8q-h!;`UsFB%3`OZ@_!|DJFT-RtxUqQ8{qVOyd00AeZtWdo8 z8^0uy;0*<BO1=+}`1?1P2d8LJPq>8MV{MZ%iG?{PsX)QCw2lslKU}G5Er7wQUQ`%l z;AX;olEl02BM-G^zC{);TfVsm#3lw*G{<p{rr@-od>S;h)7}~#a$VG9X?bBy3<bQT z3I?{Kh&11I6(N%bA#WgE&iv~qIjD*kKR9x;DXEQOsC_2ZftAh5@0ca`j*HBs1(zMJ zB7VU<Mf}ZKg(K^Mm{U*`DBr&~S|wcN2k1{|`EOcp@=IEGGeeKAtnb|~l02s=+&0l* zzAxUM+I(PYG~b*Td|CCZ0;1IW=f}&CAw<6dcxkDKWWnWcPpUh@rjJ8VO!f6;zK*ej z)WngC0+>KiT}I0fhA(>i)Ip@p)bE08f(jIOj{die=UP-Noxs1S6z@6iAKUXe)uxn| za=*dE$+5Syx?SzYY|M#wcb7z%E;U)*NOwh#yNfF$U|n2x@||+#{@yrg<VQySdK0{V z#dPI+3SdezKIO{%;)SZ$PPN%#zGsw7n+qFz#Wf^nL-Cj+zqi0M?Fu~n!Hh>)8yjMH zTwTP!geEZr5)%m7c}|VHX*0ZW6BsrNPJ4Ts2rmpRXm&*ro=%zp3mh^2l;a*NP+UWV zNHGPkiZZ9UeFP)x1C5^cQY6@vOD`}}f)uV3fxRbd1lH1080Q^xef9eFIiaZ0_X{E` zfMl??<>jOErp2`Q|GszMbu?zW;~fOPQYz4m(IjPU$-(;;SYiPD@iu@>rd1fpY9!DV z=|5!hv>SA~tvQxJx~YWDIE`ftqI)OlX14*sU<A$zp~KbrJ#y%rWcQj?dQ{K3mBfrp z>~*0mS>#pWX99CRw_=QZ%(7-ZxXKqoJ2q9cxJBGHbLhZ2&kc5+sGfiC-_po!*soZe zH&B*3RIu2Z;+6LIq|e-ase}|W&a{d`$#z9I=C<KMAoGOI`#=}PV3wCU)1WhN5ZeNm zyd}H=PzjfQYg;M=;Q3!!>o)*5N<|?NS5e@SU7ti}-?`Jm>v@|84I4BNH&gE-{<g+a z3x41;QM94xxjktdo&)d@E=gbiA9U#RM8_oZ2CADn=f!`7o1){86zg(>sTbMO8B<pI z-}~EH?r+j^{!t7x%?lR!QG8PJIhE@53gz!?C(R$;Tg@vlArqapE$LOdUBdXNjgP2N zx7j89!HSmMS(iqIyrJ0+$bRwyoS6|+O@ifNhZZs>(;t0Kw|-k1I#f2+pJJG*pRRha zrHgv6-qW)8bI!#lSD<rgfxtDVAl4XjXu29D+6sE8`yjuH7X*SBgG#L+tuisbH5>py zjv(c50MG2h-vNuoU~Dan6_HaIp8ITI6?NMRZ|^!LGvcRmhPbssmJU~WyMijn7!VVJ z%bE3<goq3W^v%W3Bdky91SQ-9{*sE2rmivfPPM2CY0wBMu+%N>;yWatUWkJzJ$ zrG?BjNpDP)Qz{Z0S#Ce#6~TK1co#T<S&|KJ=1@+dDwg$@%Hoq{t%yxx6f2}3i90WZ zpxsN*HF9<V-JRj5r5}MdFT=)(9ud%NAV*m|gauY&;2c>a=n#S(n@4*SKzIfs;y%DJ zvJX#Jy_%*P6L>#S!==lOx(A!za=M<X+Gbk1YUY?MgG|HJL_ZBHi^9L8mD1TjhgD0Y zThw1N$ic4k>xt=K)l|+9f`W)C4}=f}aHan%Y?Ns=aNq!%%L&9xsp(}t>_bY=Htlda zqmo2o*{4#aO6xj}?H;1<P_d(x>}urk;kq34M91WeXjchx{5XLYt0>~$25@IiqFT3Z z-6Y#n0JnnrL$G8`umV1rZ#uT<4dq>FNB}z+%*`u-5zV+_Qa^5`hE++5YUa2s1MTrS zTb!gx=b^1axj329^*s%MJSyh6TkyAgfuQfuJq|`7c58I1($EW!$R?5oDAf#RIv|Ox z*dxthD&PXKK&ie|^o)2=4r!rR&2yKrTgi<4{0GG@UrR2s&EO2@9X`Mu;%GmHdjfB< zJ>*JO2k;3&%wPsyK!1vXmTZaQKpvR)Xc+XR=2nmLihbe&0aJ5S%PaxR6iW@_j_lu- z+7z_Hmr}NXedA`#4ZcKT@*pP2H1|X}m8OJp8<#Pt2c$dz^)At$L!gsuz^b*`w&9cm zl@)>HuP+G!5Cqa_L6Aws5lWV1z^_y$0j2Yos$vtY!p@xj^XDIOcy&qj`$L6Xulvsv z&N8sB=Q5^vvag!j(Iyql?1en3=!D`SrHgm-*wKE?vnYIJ0Hn*Q_mvR+B!s;yFF#8H zQpDDUeet!hjatD_Xk9pp0Th6WGUw!*CIFJzkvooxb0P_H8;?r9JNhQhPUlJdQDIW} zDK5#*&LI*3AR=78E&dbN21E%$2wqpkf9gLN-MqkC++-;oK=LNOa){`N3pg#^6^;0Q z_2BxmTZHgzw#`e|ias>Scle(MsYXqW0|$k7oH~XY72Z6_KGPi@iUM608C-M|o`3G< z)2I6}qLKK@JIbxYMt!2IqaPe&vy%s>&EN}6d0ltoM?p}9-n?xXPaKtL;QsDkjuGaa z2quxI2L`IkMEP{1L>SWc;dAs-h0fyO3cFyU5oVWuQyLKX$ArBH&3mWH$lnGh+L+zN z!xC2$-L}zV0aUKdd4Vir(*kX0U$qi9A1-|A!irZ^GWqA%@xPEP$jb2c&`V6|P>dyn z3HU{#Gy2P_a1en`bPWeJleo}QD(CD+6uk}LUKn5j_Y|r*Zxmg5Puzuu!}bRfQcPRs zpYMc>;c2?PNu*fi@$ZY{Kn_CH(in~}>pf~g8LR~46TcH6uGV^^68))@98M&ns`tKh zJ%TD$jy_$(wv?bVZv#K|`*cn<=Jh1sn>}12-u&@x+SUlCke1i81OUg!ubLEXm>&Ip zRW)GMsuWJdel#<FUk%r2xb(gK?PdoT^|<P{oZkNWm&RGAB;I}Mr=3*Qlnov_4cQti zy`JI)9p0Z%_WW#ve`K0+o`L?YXpUdz^e$7BYcsmh(|E6MH$<|U6i<-KGVBobA)toz zH1yP>rWPuQ9*WeueV*kF@<8BMbqZBIlpfx_FH)CQXJX2WHMvPH*<uHBzoJwvX5JUv zI~w>!h+q7YOg}zu!(Nh-kdeFdBAD9*39Q3G6%&8@-}4|d>;Rxrgp6Es%8!d+Nxd=j z^c5=^Yy7{r;39>Kw@I*zleuSa*Ss0s%8RoDIA>2(jUO2sj;1w7=;bd3C+k>IZqkF~ zCTyh&AUwkm7-zR>s=u^Pm35!}t+bB5Ozb)TaeY{>lopGzWAw+llQoLfk@uYi^$6sk zyPi6t%R{QAOm8`0yHq)-SWHrd@1?hq#ZWZ9JI5aB3=ZUCuqSsXlf7Q_YUIbuxIw^V zYo#5NZz7r)Mvv*vDxEoTsS6(rz%>oaot^HdM~p3-bLvAiLZt8M)2CDZ;<2al2FQ9< z*Lj3TGn+VtO1Vj2-w|Uez;-RtTn*X*RfbTh?!n@txE`U55D9KCw?Z=vWo70i`#rQA zh^bJI)voeu8xXoo%B0s`jsK`7RTL6c;nwCdKonIHvNRWvNs4F)+3nmBm%MPJdd8}e zZ=8I&dWNaFD>SS&uF|NM{m~$G{!P79q3Y<A$8L6#cuTcz=ONXZ*9VQaJh}=&F-W>` zR;4V144W*2>DT=<;sc%;9R9CA$S^g+$u&i_jdqezYwc*8c{KhS-DZR+>xj7-;5J3L zN;Opr29a159v%*0V~qjBR4^@0T{AVc683yTs}DjrAb-;cQt;)gR~xuQ*5>9bT)vWy zRw?Uv1ev_qSR&K<4!^a$7~IAWc3|j;-^mt}^(zsmbd^GWS)>z9ty-vcJF1_<5?{dt z+j9Zdlli0E2y+cNxVl6~imL&L;Pu5IM@gaxh$^xeIIy<jdTnPg7~(*PMqLJf*O99N z{4Wpyt9l80V{%n|kSm$JIu#qsWwisq%Dx9jl8XT2<(oI5l#7|5S8-^gAEL43CtMEM zgxMoH?~5ow78Ji@M!uGE^Mw0Bmx!ZVS1lWFmy36>iWa<JC~3tSV6dte!fd+{E)+j@ zu<I|&%hz+0D;^~mp#7r~c9tRt3g=K|^3rIT+sK~-c?|>Zbj_gawpA|hNxG#1jI>o^ zIp#*-6XJz3_0pE{n1GEKzoWtkzXX#V_Nrw}y@>+BAGa6LFLC*F$aSGK#{Rr9JjrZE zNYiQu7BhFzqHq%6MKB*{a5p<N!Hn#N<ov0#H4h+5c1AS7kw=F6T_zNJETjAjXUtW1 zRANN&mr;jDPr*wBgUNyH!&pCgBVz4ZN(lofM5GVYpF>ae&`rP`k%M4~%(JRjVMgc> z(+`CWqsq1%=0Fd&x3}N*YUEoLCgMZ5VwsGz%TEJ;D+E%})^>v*8=hcqgbvQT1dv*X z^-5Php9HOa`TBJTTyF*xPiL^DFsz^bckI|9N}Wiz4ATUQRSj~nA#*r1Js5|C%V!t) z7&SB2*D%hiZyc!MQqx8KW~GY1To>a!hP9hj%yxBgiRkR2Zk!ctn7ZCDRkfF+?|~LB z{u<|1=Pk_IKQ+r>K$d|^M7szl3kwZz0j-QSepNYP?y9v$-Ozm6doGy1BK5yX>S;=W zs0Wl$4biN*=Ekl9UmMyhuK$*>YUOYyZAp%~SfEF_EqZ=Cm<$#5!1@ad5w?vuOujX# zUW|C>@@B2eJFfNa-hI@GlP8@K1e+A_cXeP3${`oMU6V_C$jR!+Xh%6MNNLE}q^aC0 zN^1@`fJ{}d`0aaT$1TeKOx~mAxzCr*jTs;Kfzw*Wi@JWqwD%BTZIwdk#7HOWn7^B6 zOpE@Ov8l&C)Pi<95|>r}KqP6<ytzKF=9=sMy^hJ&O6;*=Gm;%K#!7HKfo@|k;aP{m z%s}TBQ}?`(Ypzf4u}qmbphvkC=5hnS-YQ<RZXM2kTz=?pVdOx08_I#;j1Rc#)#Sj_ zR~@;#4jp=0Sjd!k%)M4${>0I0QzbKQC?#+o!<lzKvM07Rt?>qG^$bMAv8bOandKju zGv|;88U;*0(hK|0<hG@*lq0<g97z@Ee}}S;u4}sQ$UTmE+fw#;RvNNr)DSAJIC>3} zPq9F;L(sj%a>65>I56Ch;?p&!Hk7w)D(Ap1%OI&S|HEc$8<!iJb569TrXBL~4MGRw z)WAuE-{vhiO7WM}j02zjb2vK6-+e9dGfWCtXH_W#F65kms5J2usEi2DJ`PhZ^fq@( z@`EU~>b0z*eCDpmVk4l2`7QUM!Moq}Z)bo8aeJi8n;-U!(F0<|%&<K}-A{N`h;*@O zDlX%ZkWicmn$@oAy{U^`K0U&IW<dRGRA3SaUo7Zfah02P<xg?l`w7;?2w1nxAxOAU z3KFV`7?*q@+!+!f19_uOcUe~K(Y`qUzv77s^;)>)tE<KMPm>L08d7G~g;57~7F8_S z&U)@K<V?bE(e&lI+oy~EbKACU_Tjssu2FXiPb?@THQdXT>aApoO-3xyXm}OAdq;w) z=(>RdvR{(|ttic9FR>Uhnw2lw!Dkewsw+jVA~hE64fXqdnki|oT{b88>t{)`qC|Lj z+Uqq=ns%wK0>iuO%D@E?(%_tdY7yh&6Q7<R=YLk%JW&d0ES*1?sdo`AP!%_N<jypl zj7Q+|BxR|~V#-n5#4(0ZWlprmf8e2?9WzRq#K9ECi^r}gg1&X0cq$NaI*VhhUYYho z{tDlk23uMs*>TT^>R-N8?*%YnY?Goo#aCL(x2p*-BW}#|Wg1E*Eh?zIORB~z{)s!B z#j{(C^}EgTi~D@afP<A2D1To5m#$OA5evE&P+x7h%gYxp%*Kp~$k{JKBO3b)8;y5d zah0lDp-!x(Y(qU@Qh-Z#){M*Q^B7)LE_ZGF27%P$&(C<13_(OW0oaO-T5%Z?NG<MO zq?Ng~poi3|4+*p9g>VoC8OlEm$bD1%8)kq{^uN<6V@Zv+t=<RWiXan%@DXzXY~<PT zPA_lV+H32oqi8%;7^Q+V8Z>P&fC+F*{D)ar5!SVUalEQ=9R|2j=W*&}F(HyhBsNsM zP3VeHbDd3eUgGZVM1n_I&{cR6z#}y(|1@fWb?t^U@pzLr`Y%TQM57@slFh^ui{}z^ zKXZ<NrP>nSSD<%@NPbEVE#L--3xsu;eu8mM{?@IgMX_rQ1r($N3qYFaM3{Qa{yyfg zgZCEc%E%#+umB$3j2blX`rvOCE4mjM_jv2jsN*PAIFo?lGAev05O*$78*+11wG?0g zkyd6e>wnXex~5Z_v+1(WW2Swx-)6S_+Ncdr)s3Ha;~0>MG{{8F{!jl(ZTLsw0D@ak zL#)`e>3Q~6ifs{aamX~H+Q(UK)zxj$wnMvi8v2@w=uR1R@Gj3Eov(6njp0mJY&+q= ze58w#cK8(9L_BMob$y!!{5$+t#g^;Wdo1!0(1OlER!qy#0B#!(=?|`N+?w34;hFgb zX_1uFwuhz<7xD7Oq&`|7YF(t}j^;ASV;6}DsG{?Ya^YZQB`hwMsA$*ZEDRmKb)vY~ zKHgkES9agXdMS2n39BQ6+5keWgu<bT&pl)_JLBDZ6f@Nd7>cWcR3dw1N=Ya+qlgNb zZmsb3#I*x2pngzfk@0~^-^e?@IgR(^zuu>lJnGAZ?h#J=3{#Ej^1Q<)WEmLwYP_Wu zD3DuJlBU{b%K!Y2wWn2x%@%eBCl-3=uE(pP8>$DP<xtk|o1D8WL^dDSse2=|V+3{p z!4#(1e|+iqj;c&Wfzh)Wk$NqH-bV(d>a{ZM>OL|KOIE>OcsQ~evSJ+t*h1HCXYuKl z1wAN#d*oS7Cp+1)<bBrdzts2*=`t%zo~4H>$-1=p(z$Vb0zhDy)&SVttFa7ES6J{F zrekMX+t{1~x*U4FCcV(7IWk2w?HK;(V&3cO_&d+lmMH)sU|3=g!BGQqS@9<KPQul~ z3&(``2ThT&QA0)~Z-#k~rYA-&B^|49*4aIWnD!eo%(3v&)>de&nBj}O@={<Xxtyp& zg@}?dYLc}tby0I@ZG$DfbceTGFeP!hC$M`|S(stQv}N)eckhHIo&KUPRC#5xfge*F zlO?9o2!Z5xEeQRBPq$az+g62(Bb><1B<AKM=7AOellxPb`_rc4DxFs~u5KLolyppp zoZ`FD8|*P;+3yKWX*tKvK>LQ#hD`T+&jlkQvsP8E?H*mvA!%v~@qR%|6)`*UE(xhT z`dP;(VB)^?P^BR=xibKb253^GuAXE{p?+lXQeInSH5uWrbH1eCF%cJtyiIf(ViJzf z`M_d#v+^Y}fc7iS9&aqeKJ2ek7q<X9QL{%cH8VbEeXz;O6TzPE)=;;q(@8Y?krQXg z3R9j&G}%r!%)MYu4~(1x2}NxT4Tl?hP-*H;Fx)9CW<=(s>MKL5a9Ctjb6zOB>}2Rb zus7hOzeA2MdDmGcM}(JrHOP;<c^`TepV#9l9&7r(6?LcV_z>8PyEfBzY&i+(!^SV} zE*IBVl?egli%tg5@lX??m<%B^L8h1?0Js8fY_qxNmFV=ub7^T0_<$y<7FD(`eXHSB z_-xcYkm<D`+#5HSQ9>;j`c~8rukIm9W58?9i@vk)%;3|CafK8p1P^hkbn#&KG*`%w z3l!5~N^a6Ot@KphsuWlG5l)4Jz8?k~P2<4kHNU@d*D1ciZJa9pOqRiHu*GQAwiXs4 z33Xfc(NU%n*G*E7<E%*)ZM6f`D@a*Kv=-dN8LMa`#s_GMf^s}6tWRR`ZAk)McZaZR zOEO%~$P?=<HpP#li{;=?bSu2jny<fsp57V-Nn0^cy+B{r)%ou|V>?ioOD+0=k>jZV z1xE1hx)diKFH))}T=(R)M7Qc8rgbh$QKWQ~28OJc$w90W-(}=3nr#}gO&$}I^Aa6K zNWuM~Hxu%}uljnS)?nc})b!y5mqC<Y?ZAQEfXt#wVD%@`Ev;w2!o@9pk0ZZP*H68D z$>MZpUHRzBI&iQ|gk0S`kIcH6yKS8Hy@pd>z5cfybtV-X;goPOs`n9Ta48?UIfs@N zRkWUBqx(<miChzoWG8BXA;>bB;>j#bBJqP!P7NmU35!!mowW{i@F4zxvW^crJ!4C+ zc~+o-ZK;Eepb0k;s?jvr!rc{8g+;pYjDulg{F&v(90X3sL7QeN43zK!`F{Jsmib## z*mPUP3qPj8##y&7;flX3+Ad)#ZEF&T=O%-h7vJz(;)#$K;a$3=GB6ScU$Y+TgjE3n zS9QM;jQoLfpfa)wJ(63{SDOzQPy|mBLaUwuOi%<_&`8Mzwe~K@RKLDb&OeMbDFX+p zr6jOiO`rrhAE5XR)YMv|X*SZC$WY3~$Zorpb(G`H_Uxuwlmmh$u_Lwj1|XpfN~d<5 z?7WZ>ZyORpdVE@{bxWFsKsl{h<e;&F=lmc2m3Br?nU@H;n44?XM9qQuc#tM~o*?A? zBSG>yfz@q*$#TsA;&W|gMu4_s#G7{zxYEzBwCg%c3)Vd8@{O9%o?hJA?=(8?A@lx7 zykj=%$?g4418S<OHUd;x6&M%-?Awcox$8}j>t@4jY(hYj2f?76yLxp5CRMR;C~nlj z-X+kdot3FHce<x~d<^VnO*b}`5NVe*b+Divh{;y1UcH{Ow6v>BBWv#%u^i}}P7b?W zt(?p^mBsUR=tGGN0nGgTCJ&gba9MYnYh?|uoQ_&rW=JY$ULIp~ov*yH$DA#ElK`L$ zEV2eOlc`VbP!5c<Y1~`HGtOd`4UQwHSb!+@X`{ayh}Y3%+pm-s;gB7xIRy-gSp&%w z0k>2u0>q02<B_8x$N~_D+!%?_)B3(XvX7RrrsA-F(sGxGUR&=0(r^;nM_Nsqv9*Zb zn3kG4fNE>EMt68El}YnYTCUg3Q>Ic>wtuuo{B)7E4Fl6ShixvIwjH5Dj`xh@{B57% z-rJ$7wMy4Gh_9V4)*&3<!611>QH$;d(>Y$6ev_D5Tagn6Hlo>S9_+I#JG8ie@(g$s zL+DHw4C}ss`O}^f7O7|cNt9|*;hdNMlBTxJ&jTlaJ@5?CRO3fTwV1j@Pp!?n#P-_S zJ2=<NL0O#`dp*2&b(+i@)$8}UK51kiEbHv?Ey8z<+Rdic6+|q}rLi?th>$HMS;2qZ zygo984g`R1xkyVHV>-OI?(j&1)C-OgP6<<d)f}Kc5`8qnOkC817a0C`e_JiM;Je7( zPFwr^!+<Wfyvy!uXN$D%^69;t@(Sl%a*FdN>t0^mu7~8|o*wV_@7cYAQ>{(tKy<SY zNoAp1gwx?P)ghWL>S`)k24iWt>KF(5D=rax08f3X4;169>!6*GmfCLPS{~l3u#)MN z$ZkEqeQHJ8@Rxxo3|sau2pyNpud2{iBVfaZ;k;xv;h*pYGKU|YHNNlh(0-oFU>dcD zUcGyCUV7nTndGciEwb-v^vp?fZ9*<aIK5r25!Rj5^!ItygY~lZAEJvp+TA5$>7<I! zb|Kj?^(h?oY=N291_;b_;rZ>;o~<}?R-9nj{fAWR_Vtl&gL%lpj1qDEAi}lD0wQ*Y zORUAc9y|JyZc$Fut-|-<w7m*r=KGJUX`E#W_teTb@WRV~e#<MvRR89!{@cIpKWj+4 zkMFK?9<;SL$$~VSwU>~iScm8Y4^F0_k{^TasPTXN_l3j%?_{$VmfvA*9GIyrx1ec< z4w)kI0Fp4&$<1TU6r=dg_m;kE0SHo^-~_%%sT=P;fm7)RkpL2yJF>%)KQCR4K~2EK zWXRA`F)T&GbuWH_;)US5^~6&iu>Qd!wGDB_U}r5#kN$f`-8!Zx`f|aON@vtp3-*?o zPC$dT1hxEQdNTISwy0VE{If~)+`%zPJ5&pLSu%xkUS=}uJ|#z-LtRv{5sK~T0#)zX zZBbVn`~!^GFDQr^`EmZ#24|U)n0}MGpD*<Q(}E_QrT`O)tw72P@Te(_I75EeHk<ML zQ8{?>JQgqR2?Q8SToO4NY5!74(T=|XMa0Yx*7?p;S2nWyg3?W*A&PWjj>wA#0-0MU zqZLyJ6e8~*#{}u`y2ZVe2^~tf>f{8mN2DCsF`_;9MI;9BMJt(W9n;lQJGXJurhY{0 z7)nnlBl!X{@JnG>z@0z5cgtGF{V^BRL_&+6V*pX~CB61o=eySlrUTbb;(L@F8>8J0 z(+yEA;*nXm$C1MJ@3;oYImC>~yBzq^8=W9q)n{IDlV8q3ZiAi%y{wgSQ$>6=Nv98~ zQk(3ntrncz%Q{RXKeB3)-xo}c!y(vxWTI@cgQ{tteRW4%)TF&YSYqFWC8QTI-o+h? z1^?3H{Xg)Lg$*Y{bpJGY6>FNBQX>rH^0EkeC9@&hI5=|9RWrEv>b(5(jFFsvy+>Vb zxJgfI-)HOw7RM2|@cZba;Vz<y6Sx~5&I^0+M5754e5k$ZNicv@k~!<cvm8X40S}U^ zn@NCKa$iT|Eo*?cgI~(U<+Z9YizdvE2wC!t#`R5o{e@vno&f(35O8@;&n+X`YP-21 z4zCL+Gp-!E@W!!b!)6Lg(q*{ovttym1C<LrSG!KfaZpv!LUZujfk4MSVF(Ha+t^%F z6^U}-^$&>dDw$D|%rwZ!FLj4sk~Bwgbdh7|j4sm1B}?6vh4k<_j<b7xl<fyHXOnRP zcNTr65D38KH)Bd<=EwYV43Zr?(H@2K*e-~WFqMQKi)v*(@z4F^>jcXMr8f@5kbEx) z$czj(lnc7r&(BW`xlM{_<lFLI%9&S|<M!t>ZnflpAtL|~GI+RC;U05OdwL29LdAOP z*y?7mGIngh6Ecaga8cMJKz=E9kD^XK_GpgYz^rZvJyo<gT0<5seVx6f?^t@bwzvXL zTMUGl#!>^ey6!ao42luP3Mpv1c*{%`Erv*P8Jw}d7sN5Y2(&fx%I8)7iP^zPPx;=J z%xX35tk0!Qe!uv3bD9STo+Dk^;<9kXQ8tZqrXptszhBe?Xw3$S8_-wO17wbB$Vr7t zxtS?eB=6t99|WW^RT>TY%mmx*E0lG3^yY5!AbH2phqyYn(vE)Z7OTph;q_287x+X| z<;5VCl-w`W3H|l#Q0Kq?^i4Z=ZV(cTBH;WmDP8FnifBR`LzJ<{-bm*X=WQ%MYb+zP z*jShgiR^G-vX6}8%3chj0wJ#DZvE6eW1F$ev53DJ)p->!lFhwss+V*dsP*dd>2Xy& z@?9yi3z>i)l)O1E>Wt1t<3;M@S#Gc^%B*qmeD!YUTbcwieL9AMP&k`v1vuT#OfGtS z(An<_a!6tJJjyS2s8)a?7_fh8Fhynde%%rAHIxtczI~lGoSngMMyqHcZMv+A&v`gl zNdj<f{|~@><%K<mHv>bqmJdzMU9Clur3I@z^?BAw8A*wAv-VRpsc3;xT~|eVumufm z_T!*wVM*`m#^6U8OkJX`%5LzzP^g268{JZoQgu<L0#Y{VGBDwIud;MX`ZR{xP>D=_ z>E`dBm~tgazjNndRD>373zpSC^r)2{KfW{Py@&eV=4DMgIoe}%tgEe!Iz*Vs0lumS zrfWbx7{2dcPLW~<NQ}v*v5pKh(2fDQH4X?HU=cE5ZI}~tz%kV28mg7G01Sq``)mo4 zD~y?9@Hj%E#MrrqRE>+_!q%e*2C>^dvN&CJ$!sK7LdKxRu?7MB_4PCvZt|k!^r3XH z)<JhYzb(biC78JF8c#+&BJDmEXBrNk(mcwC9CMzq9|t4%5MLOscnDc$Fbr;6))S1d zI$FAVSt@nJ%t~f(unESWX-RYAhicZWRjUD-X({6Yc+|%qVG)9*>E{;%<o!w|O{Y^t z4y^VDP2-UhZ?2DhSXR~rxmhT}*8yY=><ZWrrN+oc%vIXVA;?ziJpUTkDJ~}f>>(75 zrayg?yd}`}LQ2Uif!~N+=j6>GP&Am07^)p1&}7lWu8)il#I`BocyxVJoA|KkuKU18 ztIvTpHS<_x(`{XLiNUUK8=2<Je!R$DcgHt7lcTY3`u;YUY1=r0d_q{m!KUs;=yP?) z?B9m#sP*E-e*tycu|~?t_WHGV!_F=CyTWkXYMQF~Pj3tdmT#w>FsGsJ?9%vQR?L2! zd7Kwt>)CG12u|veN^>C-4&H4un>O_T(#1^j$^u``lY^q}VG2&ot&IEdAj&`M2!;tN zTEII-OCql&nYDGF_zdb-HU`Sxc5+4>S_|#<9zGuk>v04(c||mCAw1YjxV;hM7gA`p z<tbF_XNMwGnu#^fM<=)Fw`?3Nh!#4ChtHmMqA<+G%}g!WeqJHzQ}}3I+ihObR{({_ z!YP|98Z|2E{1_|U+{oUPMvavuR3tG4;ho0DYp@ih4aO~@5cbVZj1Du{k@^^{q^i(( zow74qYg^YFm}xZI^+W#`@Z$2-FNSsum!Hj*iUZwhfNibz<gR`p-ET67R0LfX4#y-f zSGa1@{q7ATiVro+n*FJi+uoE~RfGEH%1cyZCzW+X_PA2ls=C5$E9)3rh<bnoQrdj5 z$59S-)q;;U@0EJU`O=m<iLd%mKX0PpSJqJ%m8wqjRSVwJbBHf6y)`A<<{7<QB0g}9 zaiAJQ0k*T(=oyJW?oK@_y;S$oJx64aQkWp&<sds|*v11Zu&ycv3|U4z@exd(d4)&V zb=Hmg;617QD#1X-##1nAtkRYHLRbMs+eTZ|l-WQA+o(BugO2Bpdjz)g5L7{E5krK6 zqR!&S;KbBUHb8S8OF~*1Oj59}H^AFnbc85?`{OHofXFs<BY9^#A_)Q1X^U5JvmemS zinLvXA@a%DJz0qW>`#WD89xLT5x|x;oSLY+#~!L!Ps;Wyv6hgwTX+(XoS-9j|Ew(^ zpPmBVthy`_;Alx7)Ag#U=hx<}4e5ld3p-Tmo`E_Z$JnMhrK)&_$u|@VNDLFGBZhvl z3Tn9q-eoc=TRuxI=H`jv0bv^=89uzv-IrYe75#Bbx<(>o0f(Z(KaSI*n4w#?+Z^7j z%-vc%R~RCdSzziYBZo)a{K*6hF$onOM%JIptP~m!^rs7l9=&#I(fOw+#iURsY`kEx zl~^?-&VI;9_F1THY?b?nTQ|S7x{`hRyvzVI?nXo1!{n<B>4OCbYD*KHnwnY}h|u`M zU3KZO8|m6rL4$9S+HvGA6xAeJF^|Z80qp5t1MSWV!jI#LKH8(-p8ocwp7Meh5;^kj zW_??+cmpnApR);?lbR3~%EeD}olTkdKSv87id~sLqvW#!1h5<T73Nv=<p6Fas{8B{ z8u0qWEOGn%l3c4DCy~<$!3jYpzA-#vneIEl=!%l?Na{WrsTSvZY8W>A=*zz>Ck{xB z8j@Ap-J~<;Uzq}=KymKpa@P#qApcA8BIc^M*f%v>CShe3m;)rUh$%~)XJeM*Mb!_s zGV6~lON$VV=AANg+q7=20*!M{8i`3~6sV(z)a*AHvV-?f!$+O3Cq?m2z65hbb#TJC zNf#kjT7*$GW-Mg*6_JjJxE^qP0QrX|N3Gkkuo&Q#8IX08!}4fys9?^rIza}2<tWg8 zqiNeZ^6qKoi7-$d{i>H9*+b^+iHQX?UxzZ1{Qa{YsA{}L93e)`SKkh%+chE;vi*Dj z8h07K2dLGCXGR5_tD9btX|JgU@Q=~@Ldbg|c)L$2z$jJ7MOPU750F|?pL2#M0Ws=^ zRkVB^TuNK+22)<BsJ0xuZ`^}XR6<e5$C$d8TR>^H7rI;5lM!w}v}+m@u>TSis(4rL z;J-)ji+fWy2BI#MxLJC8qz!5Wri)@BW~;r~$96&(%j_2*Ew-TH-4?7~vnCWdxOK%u zL4#d=#{<XI+1uy#;n|xU7WrQ}eXEF<n#N(jKO>7?aR`F%uBmx5k_%Z11oRd&;&-A< zC9`E8OFF0>cxr6;sBR38W4-aTVY+n3IZKjI2dik2lCP*9EHr%OdNg&X|ALl-=R9As zWj)Bo1U>{meY|*W3!upP5c$@yqZBX$ltGua^j+ZV`TEMhN@lV;Q@hx+>`<8jW8tF& z!xQ}WQC+v<-y4SAy|R<DOzAQ!DT^%DZS?7!jmGJTAD)QrgFu!(={>bhRWHC}3`r=g z!FM-x?=&>Cjhi#KG#q)%!3@XsRWt5vL(aP0IEc!?L3w<;mxDzig}SlHIF80vxZ%`E z@9Bf9c!}4d?y%z`Pd84tU)#s?>+MMq<u?|!^R%>E)^_Qi^B!^S)s*(FuFfyc(vVN9 ztOMWPw0Uc<EO`clXz&EsEMWv`xMNSpFxP{x7k}oHRx+a#nw2!pI>@|hm@^@ntchaG zzSMbe@2e5?-_)}hsM+b0@mol_q~yZZZFqI?9N!}i<nQj%cjIFUG|AIMqa*p{a%3-P z#7Fd;8?CH^;M*iq3xT=U?I*yu_{w0bRi;s@|Ai*ayQMNSvh(H<%%!bShT52RvR$d+ zA}$jFpyd#Yqb<%Awy?5XJS^D%f`jwZ*)|L+yP&U%I~ve#ok#i}dS6WIYeM#2KEaC} ze$>sGNzVF;>|*(h5dATGy17!_t^%jD;_eR`F<u;z30d2Ckc-O;SGn9IsZECr6MX~a z@DrP>faG-G+4s<#G6~;6T$~)XqS={*V{x@bHS@N}LV)*Z?8M?E8xxG{0>SJ={bN}w z0gUsGQ~88PeQ{T`M3>X8Y`b-wWT5?+SIaFn{(?$SkPoS157reiipkuERb*xY(N4*U z4v4|}i@yfmWC6v~>SZmxG{O#_r{=&OBGadAF+?~fiJO)?Z`}CW%D?6}9~mvF<W+pq z_}!8nvQ=4zKIE!H)<pKc5a+zfU^E&Mva(H>a4GSf>on^+=&Bp?5d0LK4aT`o<bN*k z?YQ7ioXnWxD$KyRXdTVy!HoEJwWSb`It?ij$N>hpnK<p9X5+>TW`47OcQWjGt3$er z^dxXnS~|P+I!|{v{p&XtZUHzectxuyvi2ik*w(wZ;VPH=`BkSl9HHN^etm^{NpZbb zeTOAlm3Ju?Q;pY#IhSld6hm^BRh(n{oLm@26spDR5(6)SlFO*DxFb<mc~n-~-)fY< zNJ$<Q)|V7dH-yTk9)RJDLmWK+St(bHpUR?4;M59J3~uLC2bTzEoV+TeJ|c`@nh^_y zX!qQ3G*W6eSH!s7;BLGmp;ycfP<j!@z1W(z;i^GuRu3GYC~Yr1bvH=$_ut%52KgOQ z#5;hS)0z^Q93}L({uXfouq9m5N=T5V85}e^ib`VJt9M)<6$QCje+Kb#N-4F{2}V$l ztq)4*e5H@NAo58$!2SS>7fh))(_aEQg0$(BHn_TpXU8=nGF9=4uRMK5kVY9aGnCVQ zHuEWGDAZ+0;>4?*-d4TeZ*)Tz<6nbjf7bq%Jj%ZvC@D;|Ko73!zT_;C8+%X-?r_+P z&hu!<rJNg&>}mC~7Z03#k)TPvJQ>6v1&!LWPtSVLP&D8R_UCWOw6SurEDBydrA-Ws zQ-wxg$+YM1>MDZWk)gLi4hc+<^R82;TPxdHv`w2UE-AQjL8^FD^f}?f=<4Xp`=a-B zHTX;jiF|qf$<&gC12rzSG!C3Emd|8Sm(b*{waEp{<i;C6g&batLJEb5>;9lWQ5Nj_ z)M3cGdikI`tDt}<!MjiiR2O{)xLC8Ot%fKR&Y^%89|sPlR@=4~^K4#oAnbP>v3edG z4@DwFmw=MgW0CP|54g70zFmF8RVUwGbq8i9y%r-gq@XJZhg!795-_N|r;n<ua<S<s zc)@A_8ZtKvdAgjE1`Ibc%GvDWt&Q>djlNG9+9KWo!5ejT*l)W5^Q3YByGf<6Sx0bb zRC-Ro&9oHNdCk{uc0#ORMqz3T(V95sfOcLvLr1_QwJ8|~@Z2lL>u2XTB2kJMI`H}` z4Xd0L8pS;cs31;$GC;u5km~gRqU){0s@}G?;l)O=K*b=W6r_<9kVXX&5D*XnDQRhG zX%j)|Zj_YnMo{TmNH?gI!~$tyfxKhlKHu}4_q$&I*k|qQxYzo{oMVo0-}kr&dSf6L zj*auCG(qEie!ycv)1^8R5KAx>Cu*rfKu>Rq3WBgJT4V?agdV{w37&8eKADYoMiw@x zlOL9i3{-{RU{Eh)Q|TFsJMlcA?#DcY%?49^_*s^}>$_Y|>6Ju2Kb4Dt;yXtnqq-{W z?<pgOt4cQK>(k(6f@UyS4h?Xcaswy_FaI!f^+|!Ojw9w&P&F;&uYmRQJdnUu`JypP zQ0^f!bfhRjEn;Bi{`2em7ua3Qf+rKUF=R`WAF#F$@O)5P1d{tf0SHFSMQJaX9*$xC zkiHH&stO?J#zDs;I(tmCACw-mKYZj!tf(^TOhozWg!>u^YRx_+{u={%I6wTHWtSav zpjfSQet>2`BFqaqmvCWV)9R9@?=}`ehNT02c6E^5qINxc2>tit%Yd(%38*^`-b|3$ znRAwYB|me<z%Bu<p?~p2acZ&G*EA3a0&W5#Wnxr=pk`Kp3sIk46Ywu8W6Q`B3zpVr z<O2uL3er%Tms~)YyUB!woU1)ESWQ9DM2A+F$Tg^1N%rv*`$*h@^kr~le1>%hJj#cA z3lX}AzjeKSI+(%m-vzt_FCBSRAdfQ?YETUUHiK|E?cZe7JOEby1WO0GB%;X)pyz}L z2J}JlkS0;e$9PH@wS7@Y(64U;P*o(9Kn|2}UNJx?ALOb{5RFxGwB+DqegzBC05lv- z%br_MaF;SSn{n4szlLyHyZ`4cxD`Mr7@A}vfIn#uRjvh8K&Z@u%R&Z`!jm9@xD%xx zP^S!o4!}4Wwe!J~MwTE`uYR`Y_j<swjwT<1>e?1uR1cgppH3OR21G8o7WXTTo;3Ju zYuJ&Av!oTLF@;b}#p?s(8U%-;8~|bUkYxk$ei_86y?)ER8KKZCf8R6)PElD98N$IG z+O`AWjDvTMc7+P28IpWQZ=2y_SxhtJcnbadQ1ksGdCQMNpF0;&j59C-bsG;z#H|5m zsA~_9C4kSMhCGi!=w@h}fZ9I5$j31q_)_ScNNy7_0kj8_SJ;&qFyAW-Dz82>DJjIL z4=W47nNDyKsEVr=J5Xq$CIqlF(10Lz3ATdpWXIkezrKd313f&Fe}66qbX5M{y|9_( zuyIqvc2+l}K<d<%LWJ+Fg<bHcgG9I~fS)3Ad}~zOYi}bG69lOM<WRts9DW)HBXiS7 z;e8!?3LXOYq}un#ktzcyTvmW4RG@T2AT?;E9yMweD!_J?o~=rZ0W<wO(8K}}?t&j4 z1UmHq!J$i}r$;z8$hr`0(zTlA4oUQnr6o@2FYl*B^U(+{?(ePzVt*lk4bu$l0MH{W z_QodO!P`i{1NafMl440VqvlrtB>)WPV}Ybi0zu~xe9|*&pcW1XL9Z-;y4YWkU-;(b z<pC%8C21S7YefudeUQF9O$`*ldrT0b<cVt?=0dJ-LwR%@10E+aibLx&Sam%QMhrra zz{cyx4<y<^HwuKpInrP_IiOcRP#e4%6xv_`fg1l!Mdp)@`EY<7ELQ!RDS=*$O*W1e zNF{l=v{KFkwJsS3Nnkp-K_iTa_3J~B7tH}LgUtt?0xo`lHBm+6bBI$KPpd5+H~`{C zMkXdXI4u}qC@x%ql#~%fHH1V%WHx&+ejr{qg6{Z?h%5I#1i^$hCWW?3g{JM?_!%F{ zO?aoMMPaHvS`|*$u$gTi?m7<SYIhWageRY`L31!Wu&(y?#C#^;Q237|Lan<TK;@6Q zQv+agmTJQ6IbWYRa%2%2b_@xg;H)r!Qs_5?qOM#Wk!olhiIF*n8i~fo$Ax>~xcmlt zw`ka~9vVG;fL=hp%0H8pmM3aYUEIz^p7C`+%Q?~(<s-AT$*S`p;6r1zARkKMa|d)% z*bDXWBeNwa5&g$)?`W1XqT(OwKm*W4#>kAaNiB1xfIY<xKp>F&I~r?XR$0Y@DYhQF z0G@1UK;~y&sY8(c3D=>N7AAEd1myrPs_}4(Uzzb_nsEg&SrAl$sOXvnq;qo-K`LD- zvS;7UMCt;=fzj2A{{YoFzwju9{Di#+#DS}>>cb#)Abhg-BplLmLJUx}P-Frshk56+ z%&|RAAPKw|3fB<X(E#fhnPJ!tDeK~CDZtgACWXF&?uVmK2?#IJL#6}sIlv79s7I*1 zPI1&!>A-m%92S;he|Q1l1vCusUat1gw>Q&&O{U(%SCCz48V391N9%4d84D3`!|!fw zcGB{;_m#j{N@zW41W^W>`ubu860gsog(J{lJ^{RLAfypUq4rQ4z`#s=GU|YYpbT#R zu_lA?^Z5{SKoUd@p0})uc!<U?_ROHa3?o@2&N}U5Cv$giZet54*^2L9p9v@o6tVsB z@^d+ITSh(b@TT}3AvkbCUB$P1@&d|LK(%)ln5y{ikf3}5r>@ZVZA^uXCQ*Bji#g;2 z0n`MHXr7o|r}8QozB%+G@4QE1@ZXd0J_3aWk<#jI*0$~utRGCrfR>gn4yd<iQF|N2 zU$doqf<T`lhd6K!BwC1%0Zq<Bco)b5296D*!bQkxQN{IwgTd}TY=`fUC;|H6L&|)p zN6=KvE0qkOq7;Q{klU5^F&xsEcWYsno>Jb*eNAa1L4BppPpni7S}BnOT#frStQ73I zbYt&mQ(&ryxTaftkZ&0v)Q+v`4p4FW#7U+(D>DL3`L!x(71jm{XYf<Ktm<XfIvrz& zA#-5^?gmMzZbMYku708n$ubk>jxG(+i6w5f5ck)dpbba31nLVY1U8QnJme51WeRR| zi(O%{{1y?2L^?x3!2*;;??IssM+6eyK)Oi}^8YZP(4d_t?DH5C<YeriWk-Aou*E^p z_lQW&RDhOMz@O*dLY~)aWzyh-iXHtXY*S6tIR=$(IHcnjva9UM<bk}a05s#xa)yAR z^F|!6@f%DKticwDh{nLh@WLP`R_*e9;M3|J(gLIu0(<m0M#yC~<?|DJiL>@_TdO;J zS^p2km}v{mEx@}yqM`Qx%+AS){Yi5xoSh8>4m#V=if;rx2Qju#hX;XvTeJM}dl<8% z3llu@&JFZ*Z)s}*YLP1W>>pm3Erax5;PNdA=@<v>f1+hX<s5p73Tp&;Z&$(H3$I<B zbxR-BzlSh(Sr|tEjpoh3Ixy4E*dQMVGPqgj-h7h{JwCvW*{sS9qX9pUALoA_lP|Lx zVZuy7%oB_<fg0q;%nTE125Z?;)q_&K9$tX>pWlX>l@1wTilhLQ#}q`_t1Kg6Ns^)a zu~K@i^C(+*>rcEhpdvsy7hm^Zls7S<(42vD2oeKMXy=74M^ki{99pG!U<qFaRRNfk zk}7E07hO!PBJlBnhc1J;4V0e|tYjq0q`dkl2+n4i14JelvOUo4p9gdKNI1`sz!A|~ z2gLB>@6TJz0Ft}{BxwXB3oWo+jbXQ_fNK5N(W750PMFFGt@dl#pi|P1R_p<4umhjp zFv!#{j6Pd~<M%A48>G3wWcj1F0Pccp^mA=Aq`~l$vVfpFc!N*K4cNTK(7i)64L;e7 z7$709WPnW~Fj7dJh;kf)ivW)H8?8Yt;@AqumMTy;{LYu|VuIi=Jt)?ucWWRn@(Ktu zrcWA5hoOkdnA?z>Uah+`1QK0@=@Ffx<$xxW5R`+#mW5rwVF$5Jp#nDCTY$jO^c^IF z6mnXO^6_!N4XdGR0s$7<PQC#F5g=)UJf**)$Ug&!Yg~KSRhaXKTE6-2xIDNHT5IA~ zb}N6#0@8$S_RJ9F4e$;B6PQ>nlU{AdoCs&z$fEISq2mz8>{Ey>x{_Wom91~(WQg%V z*hl~rPacji)T<WbWC08K@Y611(0xTiE|ADztO0ujHEtp4rzVin?mKhoXUNEyfQZge zY$KKznRc##{zoc5`8mi<Nrl7@Ohb70h*qJQ=I~QsP3Ed$aizc}rKeB2pJfczUx@31 zHIMoeK{0+76VoUs*H)NP_u;l(QyT#LaxlXVG7=<Gh1#wS+L|3&t;Q<VKrPP+v0eq( znjts?pg*JIUENPW;8LON`mwNpf=4%y0!T7>efBzOFi0<MgQkEHysQBHpoiNC2e@M1 zAt)by%%>UIjb_}>iGd8@HfYt6C^6kI>BbxdY9dWue#^t^*gab5n027N)+A%Ue@FcH zH^St=JQ|2{m>>{gq?S|Li=VX@@q6O~YJcU{NG>k8zz{JvCl@F#ug0G{Z#Ksr)4c%u zmw#CQDhR;AQQ#u%6G(_0=8-iQ5VL0h8j4pG?SIl)0<)uKP}dwRl(Ud={YUBnhcB@( zNe$5Hje&GrhmW5Nf(+m`gm@#!s&3K6#|>{O)}lLt-?;)cSp+1`78k~6EMeRpoXU}K z=Dq>IQ8Ta(NYHm!XVgTBULs^RJ)%UKS}<f8?aEo6mKjJ8BcZyz4QL0FT|nu{0?{r0 zdIdm{=yD+XMv2*2jDU9~pfxukQ-%O~Yi$csKct&ng{H8dan$x|Fj~i`0*dq&pyN`2 z5kap9(k-N|rWCSEfhnI_>DfY>59g<HeVSp@A{jQA*<XeuN(CBPD8VX8lU!F6M&6;> z0I&hbfRI5Qh?>!BP~XYJ4!#U9(SL|mc&!(x(^JA2KuVp69OB?BnV`z+hJ+8!gNW;| zm4l}OBw+=dhZBpyflev0f0R^q2{XUEoaeH8A3S@}d}sh|7$Bh+U`dRMVu7a<3Y!mH zO=L6I)WH;nufejv6V09hWL$@M=JUzqgIex$aAEsBs^%~d#LB_mzYOC`Kq7?H-73&m zzYWqPhgO~P$JfVQ7p_2&Pl}15y9AP?%aD~JA<luY*>dnM%*Vb6i6v2>;?+Jy?lPQB zJLEf3sVXgyh$K_?Lr*MH&_H7#MSL3AF91!S$LG%~H_|!Eu>iP%j`q`AVWd!6epcq? zfF0N1k@d$#$D^Hljdu}nAoL&<s``MH2M6_w5H&)8Kc);b^$zBP5}HV+B_9mbZbQb& z2sJwDn1(;yaLe0(%&F+em_)fyn)qd$OlFM-VH15*`Wc?p(L?m~a(v-(uRtr8496Ab zDFR?X{rVYV3V$G-8uYL-z}8!H29z0)iWdMJ!H_#T_*;#D1cJj?NOV?E639xZVX7Py zLuHO?98LgsK>~3Sr7B3!voL?!_yauIB#i<CWQU9N#0&FiyfpH909yPX&}zo^qJg%O ztKtv#e+fc>1-HvjP`U-csu)gkb*hWz^J6JO_IYrR^>8Syz?vGW6h`DAV(<`Vi#iZ< zvTlaygMhO?6ui@sNh<`cTXf9PL+Ii`+4B&p2$;Y73jUsvBS=9PKm%$Ft;fL|gIeAz zs5G}<%SSfPaXL@{L00?{5S#aq-!QdRR#h=TErxjt=SVW-BbL-!EpU*22a5-&xk1V( zMVSk3amZzi8(gJhohdwE!aIPiuOMHoH;I=fkj%MHhyh^rDWr)|B2x=wy@i$uQcX_4 z8{oR?037)W;sJ%%j#|-RQU`o}+u154q?Iz8g(g(c^ds+gWEloOYSXg=l-Uu;y-j4O z>?qs0lZrv(J46Q03AcEq?tqV|SV1Dm`@evi+lBuU6GBxF%jO0EV!;sKKqya#<^q7W za0M8TWaxlK6gBc2hK}xcpt1%X909P@&k<(`sHX;4njw-C^#B6eT(~m)amL4)0(J2t zoE4obsCy4?*?57Cbf^S`d_MrZWoiR=3kvN^OFp3TAOHoamU`WcHY4a?uLC^@iXzLx zJCIy}>vyy)KYgJMycT>YAlXp5#&Ddapm@~tw#8?W0JO7z0LpF$!Em7j{2ls2jWp5U z(B#{Knh7uz)d1RoW)_$>q^ARazJmx0?>!ZG{8d;>Z+x23K?6FoA0YjJtXKtdWOQbe z3^bR6R96<XC^=dB!C*4Fvbh-n>Bwz}s%WKbA@QDrSK1z^6k>9+qD=rtKq3~1!GTD1 z0syX*)D)0gD6<_bcPjnPMtN)MD5!X%=i$8h{Gv3MDR>M7tV4-mrSiA|h(A_33iPq) zh0(#{bAea9iTs+RB7Xe!WV}5I<tmb|xA21a$$3!3UNMTB05(zM%VTH1LI*oyXVF%G z6a>u~1>U8%U+pqIxf9Szabj-$Mrh0wNP3J_{9!9`tU+mosz9S?a5|xf=J)7(3?MIF zL)<{KGH8)~npOTC1;LpN8%m?nffZRP!^wbTpe!2s7a_Pk1t}r&TP)3mJmG);QTBfP zA9HlxHsF7hKis|a;yYl20LT_zM_2H_|M0$kox?6EHPsC8EIjvD@FUPk4ZB%NYJFeo z5Q6Rj2>Uj(xpN@{nS{Z+y9Mt?aT`s6fK?i;qY$g_NlH4D7sl%cegR;dOwQMS6-bfb zJp=FPMj)6A^<ag_oj{q4+-oSN5d8&4XQZU5-{63i1|)4}89LP8!T(hbhM;gE5UIUU z0~~1FfgMUGv52XN(vy<fRFbG;p#-UQ^B-suffq(PBw-R|i`E|=G1>A5);q!=jXy8B zN}vHbh`+^6DN2PLMNgsC!>)3BG%hslq@d}A>o(i$0i(hP-@wPO0bb*`+1c0V8XyVz z4O>VV=rgK5fi<35A6~Mx=iLmc#K}g{!TO`#zCIwBH+gW&lw$3z4+}0zKaHnO<$y+q z=%M`J?-j5FB7@?Guc_#nnM2&Wn<x{?8A9BDv{Lpn^6v!R-T@%^E;w6&k!I(+MSyef z!bWJ%j8Q;8cXI7{_N%~cKF(x5zY%WebcI`OYbG{?XRLXIul*Vv9k4=;<l(Lh59Qec zkVen@;(^t|1&zp}oWKf%lfY)ZKnydqxyL>6R#d$ZK>dqwdhu2sJ}Q%z6E3D&bnxF` zhc>scrQ*Qh^O}y#ij3@lyMC~}!ND*oIK2B>)Q^a?HMp?#EwGpAC_soovshqEfYbpw zb^|g^9?<Df_51n65v)CLF0iG74KGu_3)dq9jXdx_g(QC+D|xR^Z6q7T`NobcINCFU zFk2F;`z|;P5oQFCiWDfpxM2sogY398mzGqBd**Pk;iSMFkpBB@!-$!HH)uOb8Hp%5 z9X<G<gY`6M8X8ba1WSH2CKA%OcK{4L0z)_CJPTc#LzU)IQ{Un|yyh1dWTqA;Y)$nf z=;_s`7xB)2Kg}%SpB#LG5g~sY9!P^fs^lJWijev7Q<XM&vVGww#_P{^`e#s9HX=JQ z<Y<m^4h0bEv>G{W_%t88hOg;WTYat_S>#n)L2{N<h}m?ajIS0Rcx2J?L^Sj+NEt2v z?F3*soNISJzbLUB6j{`u?3Y>~RQm(dAy^@Z6On=s^$maoNG#;wW?imN4VJ^V1v41H zOAk&)9tyD3$^P1Zr+x}o)E0s{RJlWy$EBvG;yffWABS&T9++gCuu|7lg1h|AhIjn? z=?5F$>EIK+o#@|?V)SygnL<!dYv8hB#=WNxaHHxXphq4-UsWGPE*0PpYmQWieuf<W z$p*U^E&wOA{T_W#9xm_pr4Da(%ymitvnkZN`Qkgkvy6}zn7p_ES8AwxT1ddU4&tv5 z+OJa|V5P#J(x$&Nn{NH854V2+_YAOy33oLVr!W`5mjuR<1qA#*ZkqP*P0!i(g<i|e zABSLh9ZnGvZvgPWfs{+&16(Gr`k>8)$;<@>Y?E4TTW;mJloa-h+ScUXPxWeB(+8iV zjB5YBisqy0BEFMs3$XyFQ;WL~K16NR!O%&KwhDE8)}qAu+|rt<U2U8Q&U`^$YARdX z%4_N1Q@gfR;=w1l<j?=wViyWh?rBg@Uk>(hVfMS1Ik3_4!Id?z$#%1e0P?>R0IW5_ zS%Ib(U=HRT17rgDd2eG01HDXL^+h|&+}}Dg0(YVtfWB<j{6zs19RBu`_%w^7Z~|{2 z!LNK?{m|Vk$NheBS);|5!JEf8OCD@Zg>SZSSoC)dA(jKpU;<M-pq()om^j!7nF(sd zpc)A9p(a5av|`?QNNpgNH-W*3BAD+R4}9}~-mu5t8FER)N!l&h)f^uUgi_CH4Ko-1 zzL{wZYZczFH-NL}09Z#o5Kt2ng9cVh-QP!>V(t0g%Wbx`#lu{Zf49CI-M?F(UX1y9 zvC@6k(a~-_=2vz}t%I@!#r;~*iKV8UA$nWOggiVgbw4IU_cvB#|I`L{E__e(P8IO~ z11&?J2FQ;dBiP*y(d(arybg3ygcy;xXOt_sxp=)pu6HI70L?G{@z2$on*NN)ini4a zk9fU)EO#NNI(~(Vuk`!6b#0nae`$x+HOBy0h}f4+?<g4<csYs+7q;!kCcnlB@tFuo zNkQv-8wGftwYPKPjE#D22+*$e`Fr$d-_G&$_=hFgtGTy!M^osTaZaewpFjQ4f&3Z^ zDKQUn8ch>D4qCf`j5>@43!Mk$X9Ga4-%UFB{G_CquBqx89dc`ZxBeq}wz=<G&*q88 zR06=IPL-GM#mwBHY=n4eT1U+1e-Pm!{+;E=ewS9A!65dmOsgyhPWTsA#2b-bsL2ZA zPy_hhAH)0xjUQ@#L57YHKMQS1e4B@Oxc<!`sL9Lpz%}R|IvVNe7YzSKb%*Yn%AtOB z%BqTw;=U2%SqX{aC5bZKT5XWufPUmSbW~~cWrMB}jq(9j7;W3I_i_AOyw5|fV}IRt zrB@Ff#|@m*5)DZ}M?LzLHDf97q50r-*mF-QO~fsrr|j=EG0MQdkFdMBUtKW0{(-s} zyF|!ryV=;zP&aUZ${-nd@f|Uv@Gn+(q3`T4Hi4Y-8BNK-*Uo++X0X#9^}K?P*1}Uj zXrt7^r}>PNgAbetQbrPC?2!uo>RF-tHcHGn#jG3MHD^Q^GyI*&pmb`03Z2-SOCuix z|55@uPjeSM8tT|Ak8~X?4_1%3D|J3`#{#cISJ^?n<>O-+=zK6Vp)hDumffx5`87s3 z_;!YS&Ucm~)1|9s-G`9p0pLW(G02A&4KqQL4$&?)g<br2<)bV9pYP;-9j_Y+jRSCS zr7135>y~AI^(Wa*g?+Xi=?;*z5t3nKZ3A{MU?Ay_n%tqfIXD6-&=F|gw_KQ&D;V7g z1y?iWe@BL2e?zM4z09dl(MH9oYs2vMo98>1mb@pW7q>_y`XeBsL62}tf8RxV=1(Zl zq?PKMHdsZqf6s;m$nk_2CPw||Xr+7d1SGstMpAOjIa1WiDd9KpQ{e@+SY#Cf#wp&| zd{9#+LH+dz3<MDWM%Cx%LrrrKSB9O3`}!j}X4~Og@BG)dy8S(KQkn*3sYz$cFAR3z zHY$JG&xEQY0vQa$uX;^@JqjqNJ^^C60u%WFpfZG#NFe(XI)wh`8Kh#*^Zx&y!L{G- z;g}*-ZoHd&{Qk8O8uQ|Trr^ABfdNRV&^Yyu2`GE7Lpg&OFEr363MQr?9Y)=SGjOb; z!)niJFxr+Xt@oO}H>nU6?Ta)2bKd@Y^iaO{_|e)$=bNmwPb!2hwq^xD=p<~at6pFz zivcdt8)Qkq{jAM^14W^~xr|hRA3Dt7tYL{RGNlME`u@K|E$***c`zxP+N!*e+4RrA z`mS_QdYK&0kGWV5Fzo{_HKx`J7+)ZMG}p?YhYcVntGj&kb`I?)=$q2q^Ws1Dd|187 zSf<b0s7Xth85o$xY}#me_kZ^Lh<)MBzZ>5+6-$WCg(?e~8lc1)3P@0opkyg#1yGk8 z0D4(!+@!ZNLf<{}H-jjQV@D^%kN<tyRxX2o=YejvQ|8&-XHmDSdJaHh5|j-8&I9uS zu^{;O-sVFy50JWz#NzhfbG=;qdz0K#iTfe8tu)u-H}LN*C$QB4Q^WtYR7CzwPoA$5 zCiDF%|CzmD41vfPIr+jFO#!lAVX!JkL*A2sN*BnaAr&Ho^)cD)$?=iTb71?LD{sSj zVR=GqmB-nN8z^tG|2J<s`ETANDO51oE|DaR-!W_ZEB4WM&_+!N6#`NKJVEZ$IaE8j zTM(l1qkY27Dz`9U>cM|qqL!j-vNOE-q;+Llt)DY9ae+a~S)l`MXi>wunTD^xUaufb zFS4$Kn`ta>O&%_xlUMq`cG|yt!szAZsr1$sc2l8><m}jyeY#`9J(b{<B>*?I_IT4O z>UJVK%&@%HQ>t+2@6LygVH5#3pR@w7?bCd8k4`Bb_u2`!@!gl59smbe&g7=!-oERw z!h$FN>+Ru$hAtgsa66Qc`EUfX@^5IUBveC+P7FJEyZnp5okQhIHKULo#GUxxVR7-r zL3Id$A<%Eks;T3OOL_9RZ&R<Ktj=_b8dT(6-$8~07%j{mX`lK}3P^`8qgZI(Su`gK z^cny45dXiB(Cf<zy^vY2XmC^Eb_Q&z0feoSw$x_v-N?cIZnQ=VV1+0e04)00kn04! z++ny>7oi1#J1LKgmrMBpQ~$q`rC;kjq(UjcaKJnI2f$I(+6mH$vU6?V+IAe;(`Kh} zxOm?ZMtT{;`Aj_=`zxC1`G>gB`)P`Igj#n}nxLWvZ51sN$|IQ%7_d>H&#<){00Hg- zp(pZ=h9kHmXd1HoxD#v7wSBXUqxfv<q@GT?=jC*$4UF^&0eA&TT(cv0-6FVhz`LS8 zzYI<VCrzPdLLH_ccYhA3gCT%!2TD>Hj{yk6g?J{|{UGP)-L;xuvXhd^P*&6x`f|Q= z@!C5JL|ua-2gwmT@&VI9qId)gAbbcqlMG?584_%(MRx4c+ljTGup`TjIVe`C6WL8r zrP?e6S0h4okdIF_qdb@z3#C3nFOX^;lW){=W^uUW1WM<TV8!7A0Ff|Qs6CsBRH(dH zarIGRwMrIltsv2SW5G41NPI_KSi&u0x6+Hw$5)n?j4p9EFHmW9-@{$^lpsGxiP?G+ z{x_zkM)LO2Z?loRh2E$g7Wg`%I*4XSLhug;rV#`{fz>2@qW242wPO2QzxPJq2LEYo zHbN;+!apz1ao%{T(A`6CHnN1bJwjWkF3yUIse8tJg50f>Tgx<Zb3a;tGf`iZsDolo zjEJA9s1!Hb=@@uZ^{4zTsgp0k{-)?9KOYBQk-Qsa|DP*px~&RoRi3&FZjH#f48(~l zd@wJZ1fFk?!#d9lAY?F#={5NO15bm@ZopNWw_z2Hb%E<v%~66SZwzpWqIBv%qhoq{ zE7`<F{J5;x9{U>|6BEK41w<C{_uy~R)%^Z(;)M*>3ue)x9#;(VfCD<EU-R2ORPq%9 zrk!v79x72nFWjG>LM9Yt`mh!G+C8DAk*AiU2^Z<Jco@uFOjr*pFwN(XN;SVnqF4aC zz-T`b`wOHkpcOs=gA5-Ov!GH8It7RTYi|S~QW;2hz@5mT)8JM*1kvL_bJ%R`oQ1J@ z_VVJs`lr;z)=sLXb%1?6oV9h(U2+%tSumd<po5h3FjCrK9)pt#m}`H|Y%_*n3h6^r zJ+T`q4ucK#y%`Z20S0awya(5(+=%j4J6A|&q(Pp~@1>q~p9C<<CSVzPz&9hg$B)`U z?$|Ph0E3a0x_(dS46xO*j^of49V60Bni^@>m*V514*JDBr8~b4y}}LcWX}4PS8mU# z;$1F(EI~tAkc0q8h{xcSgpmXa6pdwttm_}lFF>2MY@W@1LTe~uO8OQx)!^C~cQGsF z6mejRvotnNAN!<TCX7_O!XvhyxX97TY(J55#+?$5%(av)ie3sWF|a4pJ_XNvhT~xN zM3NuMe5dY$I+Fl6Vd&&jH~kIt0<=Mx_lpAc^&GI~NdR#a3;aOD2|C(tHFbJ>7WF3c z{TvU2FN3njaiO%WYB_S6xU<woRIO^AJItxPKkT~_YfB`&re(gw3FQbXx!r|cUpV9# zRU=!V4Deu`KKyXckkBf?uKHUmjoKm!pgpF-GYo}fr8c2J9|HPwI`F!}<fgpT=5tCD zA4-!82jPW7ziHs}X;RA7^>rz53xb%CN11j%3(X{rXJ=NBg{k9c+$<DOruX=L@2Du= zfX>U>rvuE?VNKCd!UXTdbgQbH7hKHstmMr?6SkDLEsN=t3_Cid@UJxt+vFBR<NKi9 z;Mm4~tv*6TTGVd=;wQvqG4;wRpw@L`r^$bvmI@G~HF-H#F{PQqnr|p0cx6Oq7`jdT zmophkY@+pZn;?g6dIwbkm_<|nJ;{WhpjC4X*1~ll>wh&;*}MZXIf~EpB&<kp5NHr$ zknJ9%iRMeRf&dUfXZ2y&mp33^HffJ~2Hed%;IvD%N$jpS=6aUQFx)Bj(ooe6u-nKg z>h@gTknobvb?E1^@jt7Un*tlA95OfL5(jcgFdn$>7nh-$aqqT@=QI}6&PCsyo;b9$ z)WT&k{VG;#b+@>Q)fxNHI|!Uk(^jGawMj?HrdXo%z0qklMFAiFVjKNHTS-klMj9hz zh73Xo^eYhFUnARfkk9;sfxs>CxMwH)U^)&Mtt0vatYE;d<~xYESd^1q=G=d#9kfZK z%)3+nd~>%%DM4ecNyIdLm)i{IV(xtT?w`ItwHapNom>pH5?I&n1(07uYhKsx#C?ES zu*_mE`tySq8P>jBXd=SKkcaU?zaRDYsKBGm<-|n-7G*XSRu!}$2}9{^1<`@MD?$}E zKGYB5V8D4Z2W&(%1OTWIG<0uaK8QvoSMq#;)oX=mHjVN3&7!T7mb~+Pd`>@F&*1`& zP;P8z06wTB(zf*iZ`$+w&uLAW2diH~3}5)Qzb&Svx~8Q&$gq^GFp0luL<1hnM@MC1 zO>(wgk8r_{^3>h24<l~7-Og=yX!G~TSz}R%A*qMa2`LqJy*Tel$;O!2*r)?tqQSz> zwSO!G1H!lTwrl^K$EMNxCyzZG@X~yn6-SKV4rHB&Amj$vjxatx5W27+GF%YIrJ<|~ z)izq@*bBZ`Vn~RqzWYaDOWAx_GcQbmm8;v;@)HjD2NxqFZ)2lafconp-uh5Smhf>D zK~|wVgtvil*hY!ylxz+t2=y~8jAYl{V4XOIt6Xt2h$|T<Hy-Kxqxc9W8-!T(4>CA} zb$)$7^2GFyII>bkb9qsDh-9{aPJRM}*&miEqST;<Y6QFw+1F{QhX=XP%=mP-jV`O1 zHxUiHypKQCy5Hl<@!_Kw#R%EKRr)rIT6PADwfPXYwF^Li($>6XQ#*%y^zIwP0I8kq zaQ(D2)ju6R0$`!I_$qmC6H2(vrhv)<z;b`>1XIh(wj9}(m90E7mzKM#lBSl{Q?nDo z``U?_*=?R9Qz3)AmM)D|A|&P2s@UC9V`Gv2aqAAV$LaTUHN7`?d)8d$og3|MK{|gE zx<OWuWdpQnqHzZ?SIwS-!NMfa4`}ukYModxue`d4Bg)5aCM9N#E(e#SMv$ikkc8O| zPbh@TZE0|dH9g;9e!CHw%DpxC>HO+*mXCu83^E4(5RuV4$ZZ`S$+L_5U@1S`l$P-^ z%*C9}=0dClf-(N-j?`xj?_5N8Y1yDV44C57ZxlP|MS{9@QZa3LioG_AF_l^8G$S{C ziQT*s!$Wz^`IoQ8oJp+<NL}_Xz+USg-z*mSLXb!GOKx(!8`~P8n}PEQppytdy*&_v zSzwemqSHXI_ZhdZ?vAF@f)vQ#VlJk5O-a9FIe8OqtY~yAm_MrZglZGfj%KiC)AQlB zujBpgLIRIpRbP}lQ99eKoXT9cn9%{en7WZaPQCVuNylz?rxb2d$+}ibD)&kbWttwg z-wOQuj0M~*Uc)XlJOF2?445frzu%6RKEHU?Jmyc}g^aG6!k&;&)w!JH%~k2A^-`b4 z#&$dJ?Z1pEa{c}566gsCkiR>!9RXt}6L)BXL7n?q^A#L>Rct1g4M*O3z7|R<zRk*| zA}ny%n|<2Kk>k<giW$5VZALC1j?bIaLY2iPQDUXQCrp`l7wxfmEp)Oo%%^e4XQV&q zfIZRNrx~L^yqH7MNSxgMuoDM0rJXja(~KAvFHdSy=M;Uofq&^;Rh465=vD0XjawQY zY|-ivt)Q7^*O1<QtT_%h+Er6#mfEeQyjRP*_Q*M^NSch5?qk78dnq%04lY0A=YMoC zyzGK1!esa6-+5?1njd^Ra;(b&R((<a<+{a>2Tw9I0;i4-ur6)p!YQU8ghe~D0)|SA z(~dlZ=yE&Y>q(#+n(7fE673gn6c>0!LdoLp(yw>ghvoB9`}Obbw<@}o8w_@Itg?$+ z>CCpH0R(_xVm<-n^0mxH4`ek27}QYGmRWHQ7g|+1KFf0O{OIN9W?%g&c=ks}8aJ(R zcYAz+jy%o5@*A7Wb)(}W_EVPa9o#Zzz}z*5YZUIWO@`0$#yZImrqb>>Q%%Djof1}Q z<F*R;N(7F4B|;BGpc<e)h3ZjbdZ!Ruak<Int_ca8H!YQOUh4W2>Ter;VVh5!H4W9> zE32sVj<{Xx3ZeumHEqoqNhDf9&ct7oIT>Q<VJFDA2z~+&7Ykx{BzoDy_D5VrzDkfC za-e&k=3$8`SJXWn{RQ4|axZT?>4+!<+w(KlwQ~0d>q_5!^e`WYMX}g|CtQD+Is;xW zgN1Fc6I6&o2SdhM55eoLE*5!ujZi#hJgA_`&s=a2w_P8&Da-NcN!^(4g0&TBfr=f^ zYsYMEeNC{t8@svrMKq=OtLLHU8+eMZv|PN<nfbv^h8Sn{bmR~zJgHrkR&E&^^rX&5 z4SR;ut%Tcc-q^QJmZPcIgHwsjkTUJ@6x!k4b(9A?oMQ3kX;ile$uUz(Ze6~Ts)+9@ z#D3~Mc0oOD>>1JHIHIZ>Rey#h$b{tfT2{=K)fe~hX<prt&1d8S*aF{lFLN9p+%I^i zqK-49W)xZUz%#b8z_McJj?fPnpV9XY&bn=e@B8y-#NIRYo+;X$SfCfr1&qSGQg*#| z^Wa?_LB~?qGwPgB;^l0U8ozS+sLe_Bb~6n#L5iFWmzA#dMzdP3fZm7dkDQ+qI?!$0 z3Ja!YJ#xPNrW`w?$k-UbkqT|jtbBnaVaqj}uMS&V=kdL0BAR;B9cx%R=pC&WMz#Z4 zrxkc1SNvl*lIJ9IUZ$DLSQ7&G{w!KQ7uNai?0b_11nKWsapRio`RbZguwPHEJzRz* z|N66z0I4#OK7<aF9QJ8HF@ZaH55Y~!M~UlqF9gbITJT?X;jIgbrGjzoqmP{HaW^ya z>>329mQWw_k@LeYKbNc*hJ%v7*1UaWkYrt>RY)?pIw)Dy^MO~1k?V=2WG+(<PRMQ0 zdnkcHe$F(is04+I_Vu!f`ueHbD`FBx3%e>ap;65!R;WEPjk4>?NiO>ww!w4%6uoL# zm4mRWNPCCBAloH+yK{?dl5oBc$~L;BZk>!9rr}v%{{0XuswzD6-ouVTEMBHW<n6WL zEx}|niKGG2IlWYcu;4IUgR;`;jC(B$?>xRlvM>%;WO%(+wCAl$2q5v>8~kiYXeS*} zJiF*fW#Sgl{ytG3+mGHXA7AMn6C<N@sYCtlKOrK1Y}*a!3SH)wC)C)!^|3dJ2Zlr) zh4wwSONaRU+TV|wjXe;2S#UUYDWHZHqV!7%57?m?Q~a}64yhYUNv&>~?h=><-76nd z=5#-1)@B#?M(V0wsBC4hqYmC=unm*>Sn(VUSB3Ks^At%#Kt?W*8@#5f=p*bZBM(DZ z>GY*@74RYkEi0i6)KotwQeVJ67)dA^u!_P76~5fuYKa~Z4X6~CO8aS3J5&03k-s*~ zl_j3382BeC?5o;>(;rP*Y~#fEoTy=F<YwDv!`Hxq=ZE^O$+x*Bc^F(0bKbxD8s(1W z8gCN!ELwGh*Oe%Q&g`9iBrBWS<NFOz0yM`EgL>VbfHjf7#nf&bu4>wH;bwojhr04K zK536a!EkY7P%<M=#S2#$5a9ta+S(1PTc&?_#NLP#M{GYM5SW~EB3P)nOmA9w9cxD% z^Y`6Hn=OxoJH6#Iit?oLqr8>TW&K)+P#up0EIfDxaRc{fERTG44|~rkFLKC2qPvqU z-Y5K4niEaC$K|)l6RZOd{KQVycXSkt(;2F3Rdr8ZM+r1k0LjoIbea^+S%b6gR$Bli zA5*BstUL9d^7>BL-X%H(CDtylb02QZJx)#}-*mTpmq^|^F}yI#G9(jrKci%J(FNER zoDi?HTkTT26)lc#nMPm7r~Q5Hp1JAsWV#n@)8!C-gqZgxG{OX;;QCe6rvtVE97GkO zI|pr)0s;VArMII#IP;_-DDHBYjV?%#HAIAo5NGsNI{WcR3w{1RPa<qM;wZ<Q*Pc2? z&=i;DS3=cqrW4_5`cLYg+^@b5p(dsfapG`V8a)Q63XEL(R9E+lTO(Dapze{dP@7Ka zhS@}FN8gsO(d{a}R8Nziv#&NiCq|oIvF$$);aU$QDHb_u)_Jq#I8MakvB*W!@CR<# zu7KsCgydcpyo36qHI@-#KEJqEo10ntFWg-Nuk(deG`*9PArus}t_|Df<*W124&D?W zi|$N*<V-(Z^UTk-bRz70?)nHKnGf<0b_gN^53%@%3+%e826JOR>&sy?Z;F*Lb3NiN z#@N7Lt<}Z*{Rw#m#*Y%eb?3gW2psKNk__q=23*MQKG?N1fY20!0U7IHt(OF9w48i^ z*l<(s6D<_eZh4E78*7q7dhCIHSG)Db9(qQHlehkYDB|k&gd(Ev&-MDTvF$Q@JDs#) z`v7<M&Q0p*q<H<@uLrwXxuz4v!?Z1mt9;RJ#F-A>aI{8$CIh-5vzV)zzrWEgVvS{Z zK{lnc*G38ZNzKy@5)~sShnS~6%>_bk$$=8wF<X=tiE;VqbfG0?&b!>{1v9OQ9_BQJ zK%ZdwhMi-(J@bn5p5GsrkzcwN)a`p^k3D)r$-qp{(Q4l9gGWPAmiAnRB2K6%%mh15 zDUFvZEy`uk#KwuJvrLYTIeIOYrdQwf{KmaOGq7LqVuV15N_8Zkk9xwsiqT^@URo!$ zqps>)NYU4EPu2NH53xKSa-!UbTXB)RF*!hMgqxLBX@3`e!y89=YiDsK>7IpM!$bn4 z3M431(0o?pd{Lh{df?8-Bf}C*BY1p@ds>F$1;@>RuNgdLHt#nB*ISP<?qP5CTmEKe z&h(2vr~1dHB|J8_|4}WB2LhS*3ovUT#DHnxGmu7H;^pmb<hQrXEv$V=79y_dOxr6V z@D;1)*8VmufMne(o7ql)wZt)Q`ga0ONY3}qSkxU`Z-G;_`%`zMLY8ZyBMk3q(RNZ+ zu|GC%dM7J8>e*6RTqGT=N!hr}8@$v|mQnJVdRz2Ofd@(O7qume@8-2)kXW4g(|c3O z=x}cLH~a97JHADLZL@6j)~Naw@aFDRSm-HOo}9*tNUjD_?x@q79>Q(2OC(`hHu6)( z(`pE@CNSUv3gttn6Al4gU}^OkjSB(+l>u1)f)(FQ`|#zUtZe3J8T^vsjMLSk*=lY_ z%XfE9z=oMMTol3iHEoSL$;M_7%lnF%YM8G*gmXf<rm0a_CC!OAb1!PNJ%ytOGDO3> z##M0i_P=uwZu3)&8(te&`gLonHO#6rL?B9x?nO)wk^S_9M)Ng!FE_h;xtnMYC4Wa; zXZ9zxlTJFuVyXt_do;KvqgR{9+QM>I?fW{%x;yXTUq)0_eLuxLyw+9oW;kw39X}OW zu#L&fGq}IRYp^utRIFrP@g+O~S~Wg_$-WP?F<yWfs_xfdwysTbjF141Za*%1Q<hU^ zWJ0x(yM#`ORc29)OGQNB+ZazXB_&=_WO7BUOs6{{La}QzK|gJVq`Wb(aOy&sRhI@8 zM+xphRox@Gkv#r|3^6ZN8aI_zu2hmnTx54!uajYR_Nt95@10uWcUnh0(_7A)+34-W zt%x2M0ZCVYYt3hsfA7<FHPHbkzPx64pziW~Ni=7-j=ed|eDx>4JZ(>!$7{^=%V4nM zZ%IzMe355mL+xv8^5nT;iG-i~K1p$YDru^^tq#L&D)W{tIwwX)wP)8Py#9zHLGp|5 z&`SIXm^I70471;w@sjc@m$~NnoI(Us4GCphP8dRg%<SSD=euc0bRPQz1qjMIfm6Yg zDodO(5xcyldk@x@ly+#kHzJKQbsJaZ@tnz0W{?mxvIrUZ6Z4gbrGmyW&Y#gLf8TH! zTgQ==`C>m$OKt3~0-wNG4#jigThgD8%@Q2(BlJBZt4s3xqIoazb5ezu)jkHq7rVIY zFE<8VV?TMCA!b1E%|rKO3I5}clAaTsp+ENG;#Dz8XOdb8YqFB1B@e9F>^R@zcf3o2 zXXZ{n4K_m<pZ#$l!64&BH_=TR$6@_~WEvvOcY{~Tm`9S?G`@~zgo2T48!H{w3i@hd zRbO7(IAuGISOEv(v%8*74_&)-Bc%#Po}SZL_^8`_5{ZfAL(Y1^BvevPBRSg>FEV$W zbBctY-F7xkU&=fzloJEiGOiUc$8!48DVOHvN$6iJu>|+D^yD{sCkFxyKCy6oBpbyN z33Ap`aJf4Y?hQ**!Z6Y4iT<1oz2zF97EA)N=1p@n`LeTqO1y0I*JmAAHtYPn+K`_# z+dx+LCSgMD^<D~3_VS={EwlHloDVgcf}TUy`Ia)1Yj%T{uPtr~jNhqrP2%z#Y8n=> zqUlY~D*WiU@JKA|T+?p~lRUSNGmSat%+H6D?u{l9m}d(dpNf>3yAjHh-8N_}VYs)m zzVI$%iaN73WBC}ypzbMpPMqP|L@kRPCDFEOrQU<(1+j*d=^YjYaxyRDc@_nh#sbKK zyC$-1EaD0~i}<2ETCT?SmP!m<4##R-sZ!r2B2NFwpXcIVy;+hMPGwzwJz+I09Z)Zc zy&j2{s__j@q3JMHSMkbg(-+9?Shzkk`o~+3UEF-4->IbTJa0giQDQN&@0UB}n&|h+ z#yB>t+&F51lx<c(X~akWQLOHoeVViB@bBr9w0(I!VH0M*=ih}*xY}{mIvQ$(5;_-) z@>AA54fC^j(V%-|qvUfX%S3(tHHSW?W3rqcN|@7BM1KEZ%##fy?wNX95IdylDURr$ z%jmJ4A7M(LHy7(!Wh}4^kxx`jC**gu@mSC@249!Rt?F4ZyJ53*$gdzGGTV6JN2WpY zy0rcCN1uuIFGkn4UL8`S7{h-Y`Y7;TT7ppmx>p^qC|y8r+=KY`GdBsFO3w*rV)o35 zo`e^-@m2{nh8m>vwzr>Yk+(5QNYk8CON}WbRN>AgA#<ZC&L$!9DfYUu9{-xcSsU~8 zG55oBn7b#!cP?33riS>bOKbILm5pC$j99m_JA%=amSy*-{#luy*RxM<rDL3EsAoa7 z<XBpi8RFh=be}w{al?$8qM2&q_br!6stJ~@QTsp;jl$eWF*>!;VG4(CCzt5^ky(Tn zEtlS$R}&U$Y<OGR=TB}u_AV>@w1ADGsl4mUj*q43S0djxaO+VLNe!E=73XBY`(X0d z_h{n8i}7$+TF13q^7MVF<Jq=e!swB!;;%0$_h$HEMwp%+RrXuEF(cvyH~F2g@RB;F z^AE(Z;qnt_G4<XA$(W}PC@%Abxyo1!O=ujkpndYtxv8h5ur`m&%-B@0itjb9wz7!- z?S+j}(q(~fIHzk){Y478=lR=JYjbso&sp749Z;Z~HXfclY+1dY6LLxAithS*>+1aJ z!nX^F&)9z6(4@@8i@$H;E+d{DPq?}581#U+$VdP7GhA;ctEVH+!?0DV+Au?kpnq0b zaF@Iro@onXE}kQ%fFTVL_6_6MO8Jt|lD59O8#8!3nN{#4*1D9$vCrs68&k~a%coYK zs)`ayUNnrIk(ub(i(T-W8nGd-m<;%CsCNIQl|lH>_I8(M!{w^(K4%w#wC}lZzE|zf zuiY4BD>kowyg;PWOL~<kHUA3>4~O<<OhSq$ojmbEGBJa0Mnk^%oeOn40Xmy*1{#BJ z=HEH$D($YumY$sN891J7wTwMWZ$NQc+>NV~G4KZdM6Q`#cR}yu=oWDf?LZS-<)rv) zCyJ-JJg{z_#@LyCOBZD+J-#(sV!Jp(-z3nC%brb|NEEsDzO~@D$?Hl!i4B{yCPPy( zaw}iMi8ir_5{o7}Ep<Cq=Yp7ZUFFp3tH#<c8F*bQy-+KMdzHhAe$!!7b|Rvg^>2lj zMXahR(#@-XuIf^&5XX@5aJYx=`rm-zYT<5sv?8&^9cM$#MntVHdcQvrs@uua#MNpe zRuMkY3y=K5DoZnE#k$koK*Fc46x_!#A5yVwFRgM!f7a|*I*w)Eh#F~)b(*<&t4zE| zmOXZtHFm>NFL|G9{&qoUL0(A<`<9KWK-G|f?%dkokK-P5ZsAXpR?mclozbSBYgDXy z^YQ{YSEHGTZdiO<`4iINR$9rkqr9Su9~^5kn{wl$tjz7ZZ>ncKo#LMR>^ydds%}Rm zz2odo1x5`*%4EvvT9#Ut(3`}BDi8B)rD;<s6-w)NG(3XG8s7xVAHftqLyI@#)zuHF z9oWv#l18>XfuGL|ujChB=9RJ1Pr0-x|6nLO9`<S#;o~f(c=w4BsfgJ6!ln;=;vOyR zrR6vD-n7coxlbSdaC15R0t4(idXM_INn5OM$?H$1H0yMv-TCQQW1FZSSgUZU<Wy|X zYRZw3XmK;*6Vl-Vr?N^eowufOh&%TqlBS)o+|EZ|l5JExLVJ}(hZv)jK@(w4WqD?* zn*d{_fAlC!)oci{jJwY{D-<B&^NA_vjfvB+QMh^GO13YXo=Q7Y!6;>-YjsgkUupSp z^-!&A{_X9|PYT(WMI|JJvz}Za*L|WtJ(~cXust3W$2Y{zR^I-=mr}BuTFB@zzbH0D z&h=)UhU<;4s-P~0C(F*N>HaLcn?x%w9DPi_`j;+{*HsE9$}ZUI<V;;%DzeM0Yv4@( zefV4pqc=gurNDo}7$TwX+ew2i>t_I-dRQM**$Btbr`|V2;Tr{v9<jyW=~O1O6@;k- z!Wwl4uD&-6Rg&gQ!13#wx|i-%*_%o%@GPthPEwb(2H5oH3MdL%KH3r;b{cn?RdXGG z$o=rsBYAk#x80{xl`g;j@ouYcXeho+l}g?8D68)8gypy7e0+7`l9d{ihQrr;JWf?! zYM~0Wjek<mzx`%B{jFk~0JGRSTt}v*Ti%C`v&ptr37lB=4T~dtJ$*y1^F|pBc?}KL zPM^#eyd8xue(t|%A1n{6Mt{MmVoJGk-q4KKd*dTKD5j2^FH;mbKW3dbG<!`TDTac~ zoh#wjjVA{c)2PolR>bGYQx$A(eWT(qSD&8a<I%ZV)H6ob6#soOHatEC#+Vc=-@L6m z<ncva_r~<dtybpg)#tA3!vk)4Hm`^$EN=LbbLv(9BH=JUA*<`4KUzX<AD`EWz0hi- zJzt-%ajt>;;(6<uFI#J2KO)5@N=fT}{AjaDrKq#(=%81aQXalZ{PswN14i;Fy^Syd zrt(&Uc;du$&e=Ibk$YhR-5w-P@nRg^UIxR~-zP;B#h6F*hx^(WgDfX%baFp#KG4+A z_=&$8LZ<p$e!KO=-Fm^Jsg{y*KUcmqmHm+6n5O)Y^m9ik6+3J2l{)NXZ{~$MgQ*0q z$dPVBtHKu++N_OSMD6c=xNIVi>y4khEgj%;PEt)r^J;{vQlGXf2aI_Z(*MMQ!JHo& zO3n~m#gVaRBxVK1lW_0~OEwA&Mn=9KNqW`4{Yb=%oLola{$jR?$Weh;Y807+(EnJy z)0Y<kHhawsv@1s|=F(z;&qxVX46(-wrOzh6RULAq(|RsHw930A^wg%0X=}%aRkvKC zY&JEJAcKX<J>*7w-cNp^{^bHbtu3y%`UR^E+`*#5qPG*r_dT}Odw)d!;YgX3x#sRt zb?*17lO&tvN#RIQxm*v9U+h)1Djlh_-CKt+1>gILF(0m!Hp;2mQL%j2GUg*+GN&1S z=UCPn?ch{YQ^pk0xYyH}gD=Z3N*J3g_4SRrzi<s#+%pwpksHjOSFPeS<~V?-lbHXI zJQbR_YZNF$mY4L5xxjfa%u4UVn#+5gnnRELR=(_M1~?K-T}c(DyIY@AmpbS>+sHlt z`1UK^rlpNI^IbM!y{V4KGI?Jvn<FU(+B8=iDQ5n(i^)iaD?IS8_{ht7igdw+K(cja zM;wEZ)K<CksV}@OQ&dRso2BW?*touzN@GI_)`mk?yZG@Y&r)n!|LpyEP29;dj_OJ! z@w`I29TNDV&Q@lLZCRJ@(1go`_Fn>@)H6&$7y0r^^N$&=!xvvY(Qj)jUwtDwXY?HU zEM;D>&pi3gK2TJ|E^$QVn|0Hb5R>@M8u3@Z{Y-v3Dxa%UN#eQl(v`aV-PTI4J=v0^ z@(*&3*iJc3YZs9erICjf)5^u1$A9PMQQOVcb7PL4BD_U_DVfsEa6WP-?Kl4G8ruW? z_0kckQcKe9IVI^*D=Km5zHQ#!ZB^gm2{!Q*m*6T~uA!$A@L4R?5}D=VbzR!Qe?4?R zJ|(<nyhbTLoafCMErDP)M&D_sJgNI<)Hau6e{3vPLhF|?aCIVLH6VHoCP?{!-LjCk zlIGJhh-^EY$r2rVqxzRvS=Q7BSV-@eTIcM$ZowkFYOk#(VbKwzuOq#GNqdRks_c*7 zN8*L;L5hB9%7oJ0h`CJ5*}LBMIc-y}<G0%$atj|FZp?-)n-hq|I;na>60FmZo1-PO z@IIkeMrG9ZD{JBQZ10gqdM;_(ORp$q#LL?7s{fPT7mqxoXCDaj*JGXS9$P(zIeO&a z@hBH4Nhqst3XYc-R86w<%q;7f+Aj_ARG$ABzpcF~QrN=QXEa-_z*a6>kThA?!X7`A z-ICWJ9Srjh6brK$0<PVt`SpscS(Z5-eB$>ncD?1Syq&N+#k}S6NV!OsQ%hIn-E4~Q z1a<4N`7ZniEx`}nEu=TA^8=kL*cyjR#@rRjRdV?nvFg^UIcr0c<{|;9_dKP$uhf-x zgx<spqzjzt7Np3oXWNT0-;IgYa>;&M7^^}ozg=T}<n7E;wOhgT6Ayo$TVv4~PxsMZ ziHatL@RPBY5+^^fLyfs8I+{T6jvzx&_nd6T`Iw8ht+e_J&o|gj=5~KSNqr@$vuo=S zo+4b~;dz=wn{Tl;Z-c_(9s4y`pOaThdj5Jr*Zk$nbM42U53jzU+m)>Ovys=PUc1v* zbBgPMtCep`_%{`67g^jcH_eExdOAn_87`^&36ZMRlH!)k2@xar7Tk5H*?;_atIyhJ zzqoz6E+}Sb=)2^LB;Qlg2EKYr3xloXoX(##TJ40CrW&jX6U}KE8+Q0(^wsYv@eE|U z92LwviaB}$UeY^)ipy3imgRTqoNCg(u3Y7udvE=b-|x!Yh>?f_&T_Vp_Z`W%npR(h z{5hWAx$@3mpDt^wZWgDDDdg7dm<!Fu*-z!yoecH*{n{(2Nqn<l)!)Yb=1Gyod~_#E zk`?!OKG1SfF<6>PYQC1dvvQ-ej>)y^!6g`%>QI^@GdTJ?+%8^;&Ss=|y6g^}R(E=9 zDWO!i^~A81w5pKACmNr^@+cFUdu=xAO{2Gn7c3yVuL$)}Nt=$N@V@ucF+1yITAU0i zW#jD7(6v>T`xEdD*j%#2RgaHtYCi}t8z?!w5OniPBks<ZASMD8WybGGFZfT1=8qZ9 zh0?Hq8nH4bHZXo{)H!LGrdQQL)G1a_;lVWT?>%sUim2Vms-4GkhlJUgDx4%VP)-~d z+z=PeO*m&*eb>o2o%4tEJYmV{lOx-auJKAD0wbJtVH4K|)$pS_=T-FEq^+%JQ<RqX zM4bF4X80O^GxF|k|43@iR2x%xK=0jfDfQS%wL#xS$wf=i)=Pl~>Qy#WJRF=(|G2(c ze0c;T8HJKnlIGMev2899wxJXmmSgJ0=DJwl+ag*|Y`Z3&Btk^jIrhGFdGKU^uFA=# z4%dE*`=<Hkh3rRUXdJ_;cc-}`Bdezv3!7-&);+Fa&b)h3Kt`@k6f>m8DD}gSeDgOn z%}tE>5=pXUT250LQuZg}OE(XPounusv{A8`n0Ik3DLni2yrAi&5EGiKWpRfy<z0gO z-yX}p?LWRS1};Kx^quaqx}5u+QbYL9+tUP+zYi|?QP!6cr^!-IwoT6hn=#X}`MRJn z0}T<q(UgGLubHa})}|jv-Y>iPd*oc1P`fZ9urhP<;@9)V4vc3e%xNlLb>Pb0j@mZ; z0vAnhJ!s&Y=<LiB)!iH{A1DW)gl^0`En}$bAleuAD27h_!A(RY2Z}$?{j(a`c0%v> z4b2jBH9oqa3V{&q_w`>imRBA{#_l?(2Y$5>D1GuiuY`tXv#9E4{s2YTmx%T3U!<>- z)GX36)`sv;J+H9W)fA3M#Rpy&_*KBuZv8sy0sj7xhQ`zXDUzs*iAUn3&pLjs`4L(3 zy2{_iZ;QT|y`O^LKllDn4prR^U!6@JsHH|_<rHR>Z}{q4<9X{>wbGWa%-OTn3ctJ7 z5Eao=e-h(!{$T4VU=J-M+iFcmMIF1J5Y^+YV|lDCDZrLJZOtr1M1D}PPBUe9E7^EZ zr@(Y{;a(T!lE}qJ+Cl>h{WOvfO@$UZ$F3Jx3<O9t=3WiISM}}ri77C94CV6LZd+Xm z^wL(m_We+Fe0;dxUY}k#baCqjh^{u9h_mpy`U{r$o6!-@Wcqku4#${IzNkuid9tQp zYk^*R<%{COD5Fp7msh^zGG)#hPE=*7&E9x(y~iM5w|qUObOJxGy|YGNx;rfJxfmyu zx)mim@4oY=lvX~SB#cHoBdg1tSpL1of;IVYAH=1v0#vmQsdzJ>`kL~Rgg?+6mEV1S zUds<^xNLC)jVN~)r;nwozWSTh&B=F|HdeC+GM1j7#-BU|lfIU$$uLjzFQ0S8ywmHs z=Tve%znrBoKfjx$)L(1j;$6MjTC2<W@w~t_dFi32$`gxSUx%>8Nwqe)Btly@*96P# z&&a{!OQXqE^Xzo27>LDd*37>38&{8rRKHJN(iHz9I+}93L2p-j``Zx-7Vr$u+MU+> zlj^>pH4$P8`Gp7FgJR1wy-vFQ9;f_uDpQkc^!hI6EN{n@$1{;t5-!=XvVTy_JElXB zG0*>_>a_)Bw}q3f?fTxE`KLRcOAD4Xw%XOdXcC#8;9UO6cx-ro>~oU!V)v?P+wfJK z(B5o~SD$d=a<z)i$3q)K6yF!x-+uJ45YZoNIVZU|dhC>dsj~E=l{RPhn4<gw|KEqh z4QoOuynDk)W~jF+gAAhzmr2SkImb%tRKAtg`RHLzbKa*o{M7pnuh!Rif;j=B4Ln;S z4zD|*S{7k{r0d>yt@li(#<eh`w=w^WeBX7yONlpQM~N!2r=5<h|Gwv<sOmmF=CoAV z*@yRMqF*FStx2h$>G*CbJK?QmT_Md`^V?wir;G&K1b%#L>X_1#8zOXJ1kU_Vg#kRd zXwo<3XC50>*rdi!RyqCVGC4=p^H*+SL-?FL>u*lie&;F&&n-N!A?U1mqJQM${L0Y6 zc!DXpv83VM<67MeC!HkU=<rl!V`mi`&9cNymrs=L24t<x?Y-Wlb{{P_8W9!nI&Fc! zFTy%zcgBu*LBwfj*;jw%>rR>?S>ahvz%4E{aOu(Xo_u$7d;G<pm$Z??XAFo>Fggu2 z`RMDfO)Fbcacoim{c6yftl?oJn<y+8X+5G}U_YV{wd?=k>bt|K?*IR}-Eo)Ekd>{- zUeyuD2w91Y%!6ZeGS3lm#BtCqgpjPFLq;m=nCF;BBIC%O$2mF`$3A3les6s~-{1Np z*VVbw#ryqwJ=bGAMI3+@DS~-~@5&V9=cnFVz0wpC1o_*;oF(51v?FU^#mT;m49l$` zuZ@^wPk%}0doQRM9}mWU`_xxM9uMk~7~kNfG*3D!Is`sJjyCHhk{^xzy%^0-7eZwK zUUFA59Q<QL52l1OPO57TwK);hqn#-lP+J!W0Q(Zr!cM87r*n!RLosTfCuk_sGQs=2 zFc#;ylHpT<Q9%hjIK(^77fVg}B*r0-)A-uEvCS`EelJoey@3?@GPK%mzc`+4@m*Hl zeskGPH>k{@3CgrP7pc!Zvb(`sGil?l%(6y9#PWLYk8*(Kn3UKYD^|S`rVsYFer`go zS=gn*xJI<yAKtdcN`x_@f%yqsFZd#!o!gB~#yc|E;OQD|(2|r%C=t|0b1;1QGq@eE z)mFwuR`kB;@Z4eUntNB_7s>2~cw60qIkew+TU2b0?2>RPI&ci|{p_iVYc9^?LQ+a+ z_Y1lt$$mwlOw&v6MDe27Yp--|U8+Al7z5<>Fu>3uJ%h0E-XAc?>OOBEFz}7vy;qJC zdCQ*Uob{5$cCinw<z{`|VZu{HxnArQo%c1yk<ZWz`T^@{IS}DVPaPOxTMAejHQy78 zkDp{G3;?nHO#b8XXFX-@Qk52<(A6%4xrfd1Ts|9_<1X~@ds%<}N-j-MGH=zZBN5|f zD@%vS2_t0|%S`_FJZy)uV|D$e-r_q}R`Be#y*TKlhB%3;34fD=zv``2qN6S}EV%(Q z-;)tAckAsqvUA0>c?rRW*QDuS&wm~PmIcA+ivIHq=Olnx@U2!NbJuvU9vUIsakX;2 z#DrQ=8Thkz!xuu^c4b-K)VNl@T$Cqv$Uc4MDfaUH<LC)HFJbI{gTK3E(iF$|r?pUO z#XN(EiBp}C>bC7@nc%UVqo?$z-*tUx)9m%Pvz>R#c!F5tUfJpux3sB$wzqnt9uZns z3|h1SpVtP1LuITRR^CIi;&_%9OhVWQiBC{Mj;vD5Ch=`gYD2gE8$w=`>XNwNI-Y&= zemmCuBjYnp;cbd9rf|U<_MgZEcvX+(Fkz%`4X#HOcjcY1zSvA@nH0+pHaxV;2{db1 zPj-y$$<8os^oQO%_-n#|O;?yW;jGkF?guX~GYgwCOE=!GX?0aB6V%rLj#1mm{QoJ~ zu-(zBx>!!KNGQKy!h<C8hB8kr^O`DL8L?d`llFr0d<mSm3hp1|XdKo~SNl=#WmkdO z+Y1lk{<Lyqs|FNoMO$&hZwz>w+q|d}Y}z{(P~WcWON)v+wM(=ih>bzRn*@R=ewDxy ziSF>jvG6V-)RL&TC9x#1K=!G-4UKC)$Z9}LkEukDm~@TSCSC-D$??BGb$YPG2u{QB zid8FaP`6|1gU0^Zg%{!bN65wNkQhG}t62xFTlPMVB)L}mF;2cP-)^0MHXm%i*3)0n zg27(%GAFNj+hQ-{tNb1IamBnd-qd;-O|JQdrN2xh<Dr>M{rk;wkbr=Ezx+P6kDYTO zB64Gyc#*K&yJg#J4t@NdQr-EfH7z;`E>>jcROrXby}RaM*#}l+m*FX(=QxQ~>2o4) z&RKKGxw6QQkLdHs+9O`s<q<d>(F!BOOE%kwSLyv6^Y-+}{q6ED%$qj@jQOw?m*Ww; z8y)CGh0_m@2~&x!j!!#O$|q}r18zbFRcKmAQ(Duzec=Sk;~^7&z{;pAAZOo!gx;Q{ zIj)3cP=cuFHNtiiw(e}JVeo3{FFQSc8K#|a#?j0l#6!*JUQ2g)f#7880#@)*uh0qr zYi0t~rN#~J@mbRBIO9KiBZ8^@rxLWKe2kJFk(6!jN8gCvRND0x0H`wC=NmNgAkmw< z5l-6#Z+mcq-a#E3IbAZ&1&2{G5-js#<0RFkRDOJmyy53L$U7ReR7vG*{bJ4C{J8%k z;%9MRK)205G#fHhtX2DFKtP+qeM|0E3oft!iT^+OGYq7>BBQuli+}{s^`8V#>_;!} zzYmXL{O?(e1&IW954^+&;UgcUXXpWP&}~~?#jXf*G{(ewoLWa;!aUw8t~~w1^C+<n z%CzO{O1kn=q2dGuAwRGf3zFMCn#sIhE<>stdkuaGKsrxa`KO;>PJHQIR;LeG*909; zHLuAui(!L%yhGG0Yj2<rtDBTRS4$)?1$z98kG<lXj7w?8<x6Zn@Z}l1O(jb3R*S|g zGXIpU$DuhFbspf)C|tVR5932ziw+#|dt=Nd(@;3sOO$4^qJ-FT(#d|bUeiwAF(Z-{ zpXp(}_RY*j?6!GWv5-whU_Z#!HX{<T)b^g8e`5Eo*)w|uZ&oF?Po9<RqXulOrR)+q zy9q`^^m5H%cuZ7!{G6NFMr~i0_*q5~fj_6M_S$*3cO9NK@@>5oQjtj`)X<;*mTkMr z=Rwf3&Fu&HZa;SrzDsatexE$=Y!23)K%`iL$Z7?Xq^vuVp>%I(3O4+3u@d0?BzFiO z{9x$@G#-?1F+ajU^IrG|(s%Oqn6=~Y%NXm$I-}TNkp^_Xh2wnzfr}Qq-Z~4BQs___ zi*Z!hA;D)*8<WVfy^9oQ+dhQbmHT}eW$DJf`pd%1ItO3u)}hnAIXL)xXI9;=SzgWS zxr<-F_xn5Uuo2KbOZbCrUdrhJ7(81!7m52T&?**s?V1dEd%|i$N4DACoemC*E#PXk zNPvosxY`2W+u2eJvK{C>>)5V{7qIq>WDMl0Y1Mg-!iAaF2##_s_%WEB9pPs1h&Abt zOFjE)KFjyzi+>Wx$|+Zh(8Z<`Pk9N`Xp;N*-%-9Ih66<@R?h}MFUB7&FP(`I1NY56 z=3i!IZOz#>M{fAy$`ucs@BvlZ0vcDhoeH)i1TN(o8yi=CM1AMe+U>gc06+#;em)<Z zF@4*woe%07*^X;Oe$EDaBryi?cC@piH0GPEA3XkCeFU|6r?9|=FLs?9^ITwF4!9lN z@s8<qs?!Rg_Z&6&uZk)eLM_Y|znV~?fp2WIXovGHheYu|!xC?I=7EwBs7Zr;TuF~* zLBi9&Z$XRN6$GDs!k#WYSctoi><<3LQ&e=J)grk&SnMn;I5iLST9euysp<Nf&fnkB zQPa|y?`(k+EQIB*bTI*$OmxP8fnh}H;y(=b@2XDIze!U?-uQ(A4+t5djoA)j>3Uuw zpv4uYm38Ig8n|c;k6p*}2l*8FY<Um(MPI*Mt`Kr$&vDy2EJLr^04(w`i7y8cEWhVN z9o<m#=tB3*^t95!h-Sy>L~wKxux#N#O-t(laCW7wR(7;EwIA*t96Vx8++56>44dK! zU*(|zVvUS#V3iHvkiyG$vMYNHhi@`*+WEo*+SZo5>q?T#s;)9CI9#(x-H^*X?Rfoj zy^Q^l1?iQhmA!EJ>KDNj#NxkdX7^V{(Cw^(l0_Ys!!4DyH#6UDePtCv;+zUNkFQ66 zoyZ;neQK|lXR)g0Yuy_Mz8Pl%*{tse^?mtrr%}dRn1me?_)y8Y*A7R``FCG``ESvx z@#13u7{E>ueJ$gN*swAP%gF2|SM%+OSQj+hD5uiM)%F{JBpR6uy_bw8g?um!YS`o2 ztQdc7FCLw2&{7?TtY5sGA$j3@QJys>#9<CH$aIV6Pa8hOoKIh}M83RBN^b<kE=cI1 z(;kt}dvd~n0$^-zJ&w7{V=8}c^Y_`tfO%>G@mn)UEtMYe*{|!X8k4c*Y}V#t8A!Tv zooZvV(%-R!sy0ugxD9hSfLR;nR+b^EN->p3+1rf<z@OQ!+!!HgU_m7IB;l@22_M^T zO$I@C+pcO3Z2uH@qcAMm-mmM!M@^dvga&E|UMxE1;VY$*wB46Mo5ZreX=TsNt$8*^ z7~>a$LCa*0v*cZ`tLJJ2ha570V5+MK#cjR=?xZUUFx5~Tp&D2?{VaN%8~|LQ-Y!6# z=ENk4!dStF7HVjwMFCXH@EMdTX?14;zr5c-%QuCLp?yV=Q@=7GEH#|$#D#Zz6P{BU zG>+dxq0b;J;$gXQMM^#v@OyioP_k``1#M&P0FvZW_7!g#k49JqUxczf4)WsTX?5)e zatB*sRlLDV1HSixSII~74J%T&9l$^+IBDix)LM%HU{Nf;7&Bs`%q9K^{$&(Coe0sm z&q9!sue^cgYiP>oK1zrW8*>blB=^!QwR1&Pw(1{tSNQg0v#KpJuT%;a6Dl?66{Lc6 zLD?Va0U8|Sr$w=+P#QZIegHd`!%Iv)y?TfJH5;}(`)6JctRc4r((+0dAd#VsV8dzz z!VgxJvBo)hpzZHgqq*)Y2|%F%yIq5suH5dH-qsI_2(%o#Jm@kNwf|bdX}ta&hLRho zu)P_$5RI5EEc5wUc8gA47;0yQbnw~ePn<i!TDM=6llH39b(6181k_t3$&npP+R`j` zxr`csS~^%5-&8~;tG$J<*H*wYw@T3o*q$lPa0-IYq~>dc*^79<6)I))bWO>^A|<w5 zZ0M_k3e|Zrx1N{@Ig9%<MlrNklBEH&G0o_a5vxSx1>hZYP9nc+T64FC!prm2=B@-^ zM1>+q#r&<nh(Lam7c~DM=H*`Y0^#aOJ;eA|1T!h^b$f-(`8{Ty>)JBEmp^|kg7lna z_A${)JQQp=osjpm6?c9N8B@7ZN8qw;4=khU^G{|@OYzGt>|^R82Pk&Edo^Ca>gINr z*=8yO{Epi}ErpRn{=55qJw09B(4#fN*~@l%+s%2Xe26s#MXIKt;22c?QKOHz>U0l} zg3siw=7j(`2+#0Xx`|rm#t!9nrJ(u(n5Su!UN`<k$<u=WpS1J_8f}1)Jhi-^i=SOu zC1Wo87p>>Mg-7nG{SL*vB&faZocmE#Sf&7;Z{bi2NTQDNcTdy=PEc;K5r1VQ2qJcC zU<Su4GvJNI0@e5yXV@1E`kPz_Va+=!Z6``>%GK5iP4ie3ixw3}2)#$J0evsU9|YfZ zbP{r09nLWLbfNX3dsqIuV9`wtMuuM};HSrP36EmyY<h_S{5n#}P+u6U{96y&I=Vrl zls3j$i&q+P?Aya^R*Nbp(@iXDWlAp|(&?)c-k<3rpL=7)@CUVhQXyx9A_`ILsp7cF zH*X2yR()SpJcjB0e(>+=lrJ+|WWD8Dw;jNYx)r;=-ntTKZhA<VtMJ46g==bQ)wB0p z*92;ItFYyGr;WUMO<7%BWTD6BEIAdJ436YIboe1@F~D)T&qwu>vIxOL&uPEP55~Of z$5}KnpacdlIY<`kl1AQAa`u@qrWPu{OV5~D3vJG-xfou(IL<Zufu34==f5+CkWz0- zdF1E#Y^^el+4c@UifOMAIbf@HsX)KM9+_1r*9@zdCfB99H1#goBx6|O<5Kayn;`++ z|8{z?$rQKNrI0B*cBu-hH64r9!4cziK;(WWcC_X_mC;~dj!q226dXw7WgAwz<(dg< z9vQ2~1sL8@8jgSy%B;`hwf<TwK(7w0EmED3?l5B0^`fYK;P_T@sWom*a!YlqZmKr; zA}t-JlB6sjJ-@ZN=cIJfP2vmg*;$V1N}}%tCh{<x<38ymb&1xg)jl2ZzJYAiAFqwv z|4n0mC1r2a1GDL!SJvj|Z<u_JRf5@^s?-{qetOuP<q$+Fh%r$Iy1GguqwSCYmS@gU zCJPJ4RwFHWgzajYL$m3tC)v+T5Op%>i<lJTE8lTNl6&;8*KUcQHX2);MdCBlZo`mf zSt}uB*E%QAj$?7mHe|QKS;bDF^oBhsUsHRv8x@`4D5ZN09e(Np&96o{LuZTmWo1iB zUYWm_zln&jAM)q@7<EMAeQ1Llz!G{p{pfXh$|Xc%xvz-HfLER#T@|Q(W^*@><R=1C zsZTDBOi^0$tjKu6*bDD&06iDV-#^l$Lm<mbfu@J-pQPfUV&Jo8Lmj})AY^1El~}L@ zvMi6pLUHUf9Ly_fVX^00U6ti|%nM|rNk}Wq+eQ@oJ~R2^*K$7~m!=8!+uexfqM38^ z=pmPQ1sgrxq7}kC4jddV0)E6aRkhPZLZM`m1$XPx=*G0UGihgJ8ns2*zRuyt_TPpf z0&6~J2~%vTjYHd=qDs7N7mRl_f;;5h;a9Y>_Gp!a>Ns(p0=bx_M+9*N-Xt>?Ap8jn z3@&W*D@0`2c;bO4KOSAm@ox5~ar?Z6sGhM^VTzkHE`{*16-L=aT)lg@eoud3f0T5l z%%k69Kvm3lnFw@P&r3>VUBYJ|pSqfkHYXs!#V$3;S*#rUgt_RvD7w6f<uvg5Kp^15 z3c>$;J`{S6fq*8p8JFJ;<ZU?!!^X$5t2$<~<24M3im7B(kE>TFW+kEfxFof=ShV+| z7f6#Va60g2L7rq7>Ge<kzvV47!bmwht7%xHUm0sPU!OxI0lW#eTd$^cms&+s+96>1 zTSNbVPZ#(<Y^dRbgP<o-CvML+J;T7Je{?&Lv<3^hZ)bmrLv!RbD=z74hJpFk+l|Bc zU&{S68ckTj2W3$~RtD!&e}>^x);ycy1w|eWuFxCiFwW|d+w&icZh;lsB*d5Ql;YOm zWi5s!MrWXTZ6=+IRJ-Hs19&%y>b-PLbkb^;*ErU*E=8b3I#O?P|Gi-q?e0o&AhYuL z6)ej4F*y093jUfSJ}=1T9|s3Yu(<zr{e3+dO_RK(y|Mb1wY9ltDI`+b>|F4--sQ$$ z7hhf=&%1lt4JgZ6sQ2p!T18JjWx+Mp=X{`%96edi+10iCWOW?ftz+ulD{19ozgdM@ zUH;6tfG|u>fa27>!lZFKG$G+t)~Rvc8B^YJ*XJ(jnmN4D7fJP*9LvM%ah<(N-+J<2 zEV{h`MO)3gt<ua>6TD9*;J0WY_xd&)8ATranMtOy*ZRA2MR!UR5g)2t``F(n$fnL) za)s%-ol6Q69LfT)GxvgOI`WRU#pjjO800sjOX&Aa4jl%vTbv(5B$K^3#eF`QkjHWw zCSvFjQXzzu?;b1k2&b!4zoHzYbg(%u%fdBql~d({*~2_9&os@{ggF=(!fF>#bKG&m zyUx4Tei!&0jk-$5q8=YMa5}?%w%8+>EPlj8Cy*79v!OcD&4gL9_N_}*z}awhd+lrS z*hlFbkb$hWoK|Me>*=$=>Vs2X?%7h*<FFj|_Z3cE52HN_@1v<Ris(NM{OcAIrM<K= zQco9qjyy6PYE)FjB<4TG@wQy%#k|*TR@VI31o?SCIa#(O7y<!%_c80EY*uUzf7aZ< z(?>v^70^x;YHqj_vyZ1%!gf~v|6DUWYa^t9@}YQBa{BrJo6XCWVNIQg2KHl7AEXGa zRvShz&5|dztm$E{iGiv7^h1VoB-NJ1cGjkc)k5#a!g5k#LsRsC-0l`Bms8IL$v6#9 z&;}U1K9lyxo6CR)k>^ZpQP^na4Vl$=UT%3Z^P0(vs$#949(rS@i6m@%()``Z7Ucxj zw1I&?DElnl3_*``y`Sve?_YSNH%8ze^OzMAM;!ROS$<pX#_O79>~;dZx=n@m;^;ug z956u+H8otilf4yEF_vuTp!6-ww~rNISj>va99{)DdK?!=j$<ett^rG1N|5#j+vo4Q zct>GNl{v}A(1`R%f#nsp*US-*{ve>gte4y_$rcfr6DA6{i(izLUmKfju0y;L8w`)^ z9CP`x4_V)K%w_VNeBl3$$$PQnfrwZo5{~b%iH4)Txa050K!VAWXUgtb;r`{ct5bRP z<KHAlOuJ*9KKQzi!NZRfj=PwHyd=^HzTu>1wC)TKx=1BkdiTYqVsDNWq!O`)ngEKG z+vE6DZbR)Y`13a$HR2*E?KV9yTj#)HD_d8vn&7Y;zAT-ObpCjxKFTX`;hrk<Lit#O zTo&*NX85ANaQt(vB-j13#I*tw06lHR{C+7dp~-M-d~W&g2<DwjMHS-iR(6+1@iq5) zm(H+&M4KCBfz?06bh~2f-IN{2^5O%)Ktnw{D(dIze8oi!3-Y^#{*~{E1}aJjmg6>L zj?NQ`wm;!PMsFG3=;yg{E5pa9n6_sLX+{h%Y!JT!<#o|mbJ-l9&g88mU2HfEe1Gyu z%VyH>MU&T+bX5TQlW(0;6A$E4`)q&>2-4F^zPa!SNK&<{BlL*-<3?~Cd%Dg+C0tQ3 zLia%DJpb8^<BAT&<ll*W9<MMW&Hz1nqhef56741Vs{2qQWBu<4-ij}h4A(!G{@$u< zGU2@LLhD^x3E}_vl62*1r-zuEi_1>aq|jH1Yd$*p2~;3IBK*zqmm#*cBsD$orSZ(L z)Fb(a?gn6`C1SqPLAKAo#9oIH(~P|J@kZ6Ra`RdK)5!+JV(6jQZVhz*#+xywmiwW_ z$lBFD!AE>~m8GF{5p(Jt#?CA!evp&Lhl20!HS4WT$D$+b8@7+TucIh?;izoK{y!k< zKN+P%WN&hNRUR+5D<2YnP0qWo#&ZI|J(J|-EoaLX+`IM6*;r%wTYX5wAo)nd%S&1K z3MJ{99a#A22tzJ#>Y<Rq*|w%K%jYhl!YYdF5Nm*AK4bp)y?I022SZz>yZg34rVjI6 zm&9>g^8Ul}6_{3*$^!8+Jc|b?lKqN+n5HC-nM3*Yqt3Bh*-B;G;q7fa`R;gup{1bB zmhY6Yt8HdEFhL0sVtaOJP`M;lD$9pE*1P{B*!Dh&-db~Q#Kg?w>TWdqq@XWZX#I6Z zXBPF~q3V1=%5?Z4_E;PnwpmOwx))+Wjp5SZ-wyS=oNk4udod&4RBYQ=Ge-=1>w(4e ztgTZ%UZCn0@z-{UR}K#3E{TleXv$`+htl@iV=CkAHb@=mRs>rBSOP60ijP|3=RsjS z_$4<$rhE|Y>QZANrcV{ckKzjWn|*roijllZvQD4c6-91b^7YAy>&c%B*zmLYsN{o0 z($udfxh5s>GG{cUyCpziKB|8)Jd;}cd6(f__AqnuPVdziJ6{;3ATX^ZFP#JQ7UO7i zWqdl?H@#$KeR6g&E?F%y&_VZZl4VlET%-RqI4J1dYs|c`R~^1McKjK{TvsEec^9y( zRyf{-9*Ya_d}f)(kr65G>Qj9FbGb3Z2I?WA4%mafuh}R`+K)DDjMPg5cG!=cp{(nD z_h}r)E~jr?%Axl;pvTxZYB#DT<>u+TG$(^w_Mu8d0NU+C@5#4r-P{nMC@&oem=TN~ z1-jZ&iLS3ZJq$Eop5ZU1w4_P_&7zi`sy>$#Kq}NDyp7c?WOZO;&X0H4*$`~qsC~?W zkBS;tmn4=lSj+CN8NCNq`<w%x)X0&pw(xQeXvZ0u;sgo4jUe;D@{ipTpp9a(`Rq{@ zwgy}L>RC`-q&}Sr+Wz}}cJm~64`N<kc~9jZPlg1cc$CTfVHcv?!zSw6R|@4VK%r1b zZr*Qb20**%tNs8tp$kIYvnBycMrc5loQw^n$)JT@?=Oic2RR4&08aw^uAQSA$-*M$ zi*Ue^lj@2s?kDg#j<ScYenD2wSwBK@>2EhaeNEbLaN4i0>^Tu$>@|UnJOK3A={AZZ zo&J%B6iohBuT)|@<@&lo_wUF@FE4<{+Yz1^*Mq_Js#*4(f=jIt!$5s8W4_d+Rj3}9 z@D(8x#T%{s2{(}Cu*t*FF9f>55D`5d?RqB^02g05EXKp9y;&ffkW=$3_(lCx1gX0A zrrJxz+2*S3W~XDEzz!}C4<UH|Td#l=`RMy7X)^A6c1~yS*!Og~)^I#k-oHbzwFBU_ zg<*1p!?d)T*Pf8vrktjZLc^RM^ju2bTqKiCXMqQk9{Phx_~prL0x<CvxtjeXj}p4x zvu519VZ26eJ|wR#2Q@eBo;7)mN+4bFec>}WF?lKZ0guBa{_6bir79+u6eddeQ@^rq zkJk+4cdwNwd319pmqHeszoP-?=pF%^kv{vXhvH!s;tu0JED1<%5LfG75w$@Oi$jpV zR@{Yzbw9Sk1xU3nKQII<nT88NvO0Po<BR}x{blCcUp6)q|A*Yh52{{Q6}_Vx{Wa5) zv3&qVz(|THXExxD&uS#OuIpU8mcQFpcAc-a{)OY#wTUIxf2_Pz-N^va@*n<_npO1E z*|Mr@Rg(d7m+p^_-csH^94lQc6ZParfPz)%&I5#=o`l{ueAR@dN5Sa()5SoMSy0s= z{Q>N8AM6oov>-p;5`u7}9DNgHE1u04R34qEp$i9DnM}I*Hqb%4od%j>f39AK)=|a5 zn!<5q=r7Kkm$Mox!OA;1TH~=-vnBh&kJkAV?Nh)zH)mS%i0P<ggnKAnbzHv&bI{{b zp5Vk85FjICI2V{-{G#xj!baocSF!vGe?~jj3-o8Nx!8Z3%0-iKZw>di-<~Au37~Ru z`GSkI07w}-d`}|pk3Y@Z+P^rJF}WF~=Aj|gq0l{}VEMwOZsuXKJU{-nKH#)aBfY#< z+yN+7+seD9FSOqGk}>XZ5<V5-a9gwS)UC3krM{!PM>|Q!wum|!ckpn&ka+mshj8h8 zPrh)T$vK|C7jFN3Zxl~#KHhKc))iVi7d+PRU0fmbCo4ZVdpJd9`G+>Xg4;s3njT%S z5AH9eSXPvmzk2Nl?hp7SQQ&j6LGbz%K$_I&tY6*&!392`!>J%)#2`tcICS<+ea?Pe zPD<oiO<SkUBAc$0XSO(orOvAYa=cpgqtzr|+PZE$)Wom*DZM0CReKuZS67U3GpwjN z{pmY2R4^FS0=eFG>&n5CTp!i)+4uwC<}KZTgB1YwQ;1Nii>+RYsFk$R3!~(7Mhek& zV}1*(##eIQo?7S@j~0bWbtoQw->N7u3*+IA=8T7fQ-C{)pjwvr0MZnZP@v2|hq)KF zmf}y8`p^kbD>Q?FH!KO*u@lr+g8Nduu}#*XCtDM{dt=S=%}0yP@_;oh?qE>i@YNqq zfm@=gK4E`yg?L$bw^Kh+Dx+QKbWvLK=Gq$Zj%x*0z6j`Gk&9RXQa}*@A}+-|#Rj44 z1a;%IMQ$c}lH4Tk*v2k3nk1qqxYcDDYL-e&l{nf`zWKmEcyB1jY45GZ*0^q2?XS2Q z&5iJ9yv>=v$|%*1>h<ETFDi7CAT}(LmwXZ$NvI}!z&3;*(4GNKBnB~>_k<0c0BsIJ z!w`RN*ecSkiAv_hm6ux({?yoY2~+&<xB}P$Y;x~-jtJe)aAga)8d)gRe0z}CoU00A zelO7KDmV1niKz5#<~$EKz)cWBo0iam9_j<Mg|t&wHx8e>@Lt_Ydk;T(h8&SJnnTRL z49`b6b9QbA1568r74!;9@Ad;vPophrc=(?jK5Th!a(-6<J#P%qXyw)btn=uoBYUIZ zYFEDSp+_*lYEc=f@Bx-QZczg6)zNVcuq2JG=am<rY5J^!H>W^9bO#>ZADWKj;C6Jl zTeX@GDVTdVAmIM@@_5DiyVqa8rsXtf6;}!-g7-;yvF89jjY6B+RT2rkpnm!b_xF&W z<2j}FwD7+1xx?M%hL~;lKwwK95ukvoPm7-A3qDE;KX3zxYia5`EoTw**E%nt%PZ~| zfEK72L@K}@L9dkUKlhDdpodm6>67nn0g?!T<))w~8i0@DIuWENcqX@lmD;!I9@(O3 z%Em0#u)Gl7SJ?KrkM{%Ou(}KN*b;ajWLzoR3vRvyh}dd}B5dkS+2ef9Cllv}R*K{9 zU;8jo$hC_7F&!rtUAOY7ZvZDhq0J^UHoW2v>;uxiE*9LTAoyfx%al#&u(#dlMwp#F z2OtNLnt7+I3;eUkY!F*sxmGbxfNVp;WL=IPNz-LpH<HRoL`3nnGCWJ#m1W2~S;V>9 z8$`JL0fU@4OzQdet<&5<P@KBcuF{CzZC4?Pet7Fo>~!lxeP5rh$~p9L>lhh*p+Npz zI(Vy+om80Afg$;DmFkR-5+j%Qv5>I?>1TRNB_pX{37cQ5L%YN=BR=jo$!(=hJbKMw zh$b4=Q1XKO_i$|`J!^6aG(Ks?v*g@7jCt}acCE;!$?F4SKJ{Qmg_ajD{|X@IRHpT@ z-w3<$e(us*T87bgNHg+0Yxf0*Ep@VK*n9O(W$_Tl38O0^J^Rmu6yg%?>WV+$j21Ie zI5H8aTL5BO$yDf;q03f9t0?JJ=|U}z0pJ*9R>rIE2K=NFF0RB_@X1@;z<uO(dtHPo zGc+ht`ewsznFLKC1UbUn%FA5GMoaTI`vvYd=>vqgPU8ioZ}PqU4}|o(Ut?^|+c`Rg z#)K`dCjFX;ca3*(Y?t5XbKG2yDvAwp7~_>a!>|gdKqEc^@=~p|uV3{@fW2?$6yT+n zDttI+@O_Np-!1ojmI{20$_Y3D_yKHRW$VcaK}oE~`rpZx=YbD(7rcvmqf3nWCzkg; z4Km$%QVZr*?C{%n0&l$s83vje%CZj?lCD(98E3xs=U<L&A)aZRdZ>X{Dkp=!O}4z- ztJMgj?$Uk~6_>sGpt<=8tZ`IuRl~^XcyA29RhQe2m8cbzTCTZnlvj+kwN3vqm}tz* z{~3loO*XO}O+N41_^1vb9XgNbeKSPAv%YJQ=mK!ctL3U-fduIl9v!yzG#3et&x78D zy|+qiU0<UFkj^&)Ya4-h?6cb~9!8qQ#qx5WMfJ>FX!Y-!bdjX-K0KZ$t_)3^$GN^n z`%?WR6K=%EAMt{WguW7>HcZX2E}qXl`z0gw7)203BxXpe>eGbus;_?|_T}KjmO!r- zd%r2%`7!Yf&KYS?lbp4<1>f>bjimIBt%*Oot?$l423(SgVpf92^dm{=aQq8Er$_gL z=xsA&l9$SaWGx8Nk2qyc_w^<9N+YC6H+b2mvr)^W`Bh+N4}_aOyk$6&05$noHK9-P zVnBC%DJuRO5Mid%`z7OfG)2F%QrFR|I^BLef!Y9fqD1jdjL8jjn<Ad`p4F#yyWFqk zm1@*Miy)a(mwkqYVLFK}f#0!mDedJ1w~WJVUh8{MdihDYL&pN_OHFjCVrF;SQN3$| zOYYfAI*ohJU69IIMOg*|Esv25o+(P-2p<IhwtwKjFB`2MH?n;uziv#scz9~hI_Rqp z!>uQV=b4@p0Xe5kRaKS$VktgRJq-9tWD@$#u;MNBJA!36gz&u6^8*GqG%Bc>1%kf< z*5NdNN#5UmWocr4P;-9K_{idE&RtU`$pAH*3<>{G%!TD8Q|i(~D5(k~KD3rL>jykN zH^RE3)AwEX|G-_I3-+Py*Rn-VlHQ-vhjiREEGI8dB)R9v-9t?bW$vC!0;DlkfrX*w z!Si75QAb)U-SAXVJ8KSMN^ih>V+Y*<ff?f^o?VPA<U*mPV|Zs|c&rveMcd0Ol}og) zMr)e{gr8B0whHc(FAI0Iy$Qt0HtZI_SxR<e({%#QAdKACQC^hi?ZCE9pBQ6ywY861 z@Ix180qVRzt!Ey<Z14)EObK1hfQHox1bkBh40x-nuK<4w{%QT?B)QYpx)n00hm+K% z<BF3Mv^ITJtL}FIk_6)+!7>~()i*GY?Ye?kUUBsxOI$sT9*h*tB+5yEp1$5IQonXh zjFt6B+ZjIzdix&8%4H>Nq>Y7FdjAoPQ-4aIhW9B4g0C&H!Bm3ZS7lA|<$y$&ke#)$ z3RLvxqh)l587zupUvt^pUtnjeEU3vid-a8Tr>^jx*-4U@7ZZc-PmDbnDl}P3!-l@E z=`)cEtGhn1$p3iBt-Je+P7~>PNa#Z)%@2v&yX%oPi~x&{wi7{RI2+bZSfI2Dcj|vN zg#qVRJ6Q48gm(>9qe)f)#i>90-E7m81r`>r%w;EB8*<>x1qfjsw%1#jJdJNelSb$P zvCyIK#V@&08ng?oKBmIKhQP-mq$Qsw^*Fj^6|9-Q1{wVT0D()+T10sXtKsco7Hh6k z5!F{TDW`75nX1w*27i@t5;YL;d#3*L^u3pWB_k9t!xlT~$n<VcKjSog$)Yi*eL^b) zOsDw2|7KQQ>%2?@>gOZ@^u~Zc;N#k@b-b?C4eZc9a!Q2CY@x-~YA*OD<(hug+}8j6 z%T@FA!kafgck9XTeJJC7tF;qLb5(+|1XDfeniu88J(bg?Q2I8k!;K|(?_$rA>>Yd3 z_7++}tn$Cas(#(GX(!dl+V^dOO<CQ{r8hY_8Jwm!wNHX#x90xR5QQbUO{lrOOI-7D zV76508If1ZKiKGV{kC@EPWOZRKvR0jMXPzmX-X#=UUBpp;CwDeypbS2f&!d%QK$)Z zXg|)yDyg)Xe(QYtMK|76R*`7Yv%t{6F}1+!JK7<~o=n4kyjOaME$hvBQbi<h^!$rO zlo!POq;@)qdgm~In3sT~ayOs*TTwj4KVE%rASqoTY&E`eHC(@965xa>yLpw|3np4l z1K57;+pxX)HJ0$-ENd@g)NgB^2(eDe&)%da59SBLOC{H--#W!qReb1o{!#5`%>Tr( z#%GYCnfb`y-FIR-?eI;yTvqDfYy<TkB%890?@~%$19YL^w$vTf`T?oaeB!n1zz>u2 z77)u|!V%wAi(feDT1`Dqhzbap>NW;g62_CZ9yU4*p~ZJ>5_qg0*X&thp5)FB;!>F* zg(4%o63X_y?P)Fz(hx(XZ+QExB8yqw?1^QMCFy9Z_b`#MEqL$AC0Cf1o#o{wD&_J^ zwJT=%0$4`T41H-#f}~kfq;xkaN=-7;?ET6osj0ne28LCBSp`cy#t0+$|6L;XX>3b| zI#G+`5-kJy8R5@L?9=+*87+QC9m*gI@Ad_aIob$yyBLQEN_wYQ#mBc|3Cb3L+7k2~ zuIyvKykEECo%A)RZy;x}#wW%0lLIv*90;%{m8bqnU(jS=#vdj+8PQ;p{?`27)whpy zGGa(smDGEVtgJMeZbEz%I*rHbDt8=PH_;(}Xayjga6s^JK2%M$*05Jk1~QC(eI0z& zxiCU68-LRvu`(d#r4~JjTA3>V1oor6xZ1guh^2;Jn_;{8bQg^y#~`>$v?%aD%-j&Q zc<`RBTCi23v}3bL4R;tes3xFP;$YdFQwq^rZt&ef%dZ;Wevsk#<v*|~1fN*;IA>xS z>g|$y3=eK7oHZ6K(`YOAH#rOg!7t71yFV<9cR|0o5-lgkzJFtaP?GuLKP5~(*|sRS zO=1&cY+(D`g+W4l=r4v#W;o(2kdNLM6IarkWEc}HJ^jE)3jVB~Y>lt6s@XqU91R?M z`3=4=Ox^YRviq5-K`UFHl%@daF@+(~p~XG1OX}-Gj$EH@mY1r9_75tx;Z`h7^GcvM zcb~Ta@m2!Z8_?+Uz0q!K-0dviYffP{W)d4OT$gl*$I8`3nD({k5^IC~K;*QCI%R+U z%4*)(ls4A=W1I<jU|{=QmH_kJ53WdLt)8<vA5IAv?z2|(+FWe);d63Ye)v*5D@EuJ zko=R9e*T?MOzO8@4wjzt%`b}u05STRhC9E2Y0p_8OPlSVI*%s=%rivn418mbh~7~X z@@WNa5CiR)YzjhOem)rmK&{{seS4;c8!akx;xSzM^jqc)dlSxPp@MS@Z}o~h>e!zg zdNnJ6g~+*6ZrvWFzy+Bp(VjsBIqUm|MDR$llejx3FulYjxKV$6XY9VLPeWsB6VgGp zI<ku~`DYW<ruEz#O{Z#j<`dDu$+kBy7cz!^g`Jmo<Z9=rt$^7!$GsTM&?#B3Q@RV5 znB>&}laFq^`49DD*6bKxuSR`q!>boWp-%v1tRrp8BF;ss11rGd?78a!ndIfZvs9UM zzV%CC3PYw(WT4+Sv6K!)!Ho%E+)LOazGwO`2_XW+42P)|w&WH0yn6v(nwhX2dZve< zFy`~CYy}9Efv~z+?<#Yqdc(F(1o?2ch{F9NkdoO(DAXW6+nu9p3)q}uXR5jTfH@x2 zDd9EgPr5C;6mo05Ry!ZD#(vK3jdSjpf#qtRlu28>!>_;BTv^N~o>J`#1NU{I!KW*F zKPdV5`OWs;6%@z{KyiS(>GqQG-6nZeLXKThVT{%`+w1*`KT3oEvC78Epf#KK-p$R! z4+$;~Npp8h<0Bau3jeU;Be3g@u>hj}#u?_5ADH=6Rn4s3q?4Qd!hgo?<Wz4anb~!m z%;^d3TWVQ#b3ty<566#1%sHFyf&ckL{49)45Nbx3d~%EXx}LqQzB?O!<gPmRE^<#Z z^})FEulAygZn>y?3=~utarIxue8V)y(n3=bzfCmoqoky|2!j=ItP`4dVa9v+X`>wH zy4K$&OEjgE<Df%cGGT${|69=+vr?+Wma=&HEaP;ZX>Y;YW(7dryZjeJ#JN8}(GLXE zd-h2qwGq0P&t5oHHhdePTH~IAjUui4S`hEeL58=$gCL)e+o}~^73M48S!|fqbn`J} zI!5c_E~zg%X%da^%tn=k1`2a}&dj1#<ko)2!~@Bh{ub-s{T7^G>!s73t`)QufT^Tw zLX&bAZg{dB*JAmC*gmQ5&E?a!!&bJZS+sVZ3LwW_DuE@C$vMq)dI}5koxfmHP>zc7 zV#fRw1kB!mESRC{b1DPUIHzn%30WjQxKipn>^J6^e@ykpN+cHTxzn4ri3JkROuAzo zrEJ~IMxNfph0Yb-w9met__4Ap`cmtLYKViC+b74;4njuz6eZ}zXUV3SfT6F`F-C5- z)CyzZ?0%r(yLPyA1gmAk>Q*m$)Wa|62<6?i39PMGl1&|d|J>!L_vPrQ@63zR(UXrN zJHwA=%U5P_<U*8!Bd>lbL}hZ{YWHp6;%%W#$>hUr-`Oe#hR>2GBWkAW=Zhd7!-67i zDV57{;Z_%n^}1w&kTA^cw1y@YG7kq$@m=rQVNa5JWsaL)4O*@~@`sP>hh7np{V-50 zj3qz8E#-b-im_f~_!5$=+T$PA<Lv~vN3J~S03-KE&WbPf8h9>9ulKb1N^>u450$X> z-<EycR|S`XGhKaUaHzfbuSq*AmB<TgHU_tRSPr!3Rv=1n)WD|N5n5OiRfl7xDw$>v zgZxg9NpA-}q}%KC%T2=LYEZjLUtkb}K+sS?C2~eZuj3uIO6flS@lvIR0b6_w=3+{{ z(N$%We|e+jJ?bzLVRb<3COFK~ED=mKdVjH1vUw`%b<7+;phWQiV7x)*s#!8F6*Qc8 z@E1eB<{yGf_4)d8GvBS;tS4TTOsyb`$u^r2{e>@I%3Hq49vv``#!d$j(j{J3Pqn6t z9@d#?CdgdYli^AgPh4u!PSWEvwIWt%gas+q(fj8s*Q<SvRpkM{RPfGiY_}k|Fg^+i zV?_5>%b>>lGOuu#+21(geW`$g27+%aw6hi$YZI-0=_PK8Ov4^Nv{e8awSh`A>*&R{ za?gd(t*TI^k`gurx!9#jW6eN~`|j9Mfo1ygw1db)5LLzKplI!A%Nqi4XNd}-g|Sej zY0)@M*5?>HmYB;vW2(c#!0^u>u7l`=b4lj2k(R&rCU8k6Bz?rl)MNfuRTV_QC0X;w z*~e=Nt))7MMsuJl|LL|(xeRC+WT2BBw=;Klg;380p1kX96&meTg)A5SMUdmav3mc0 zcD%LpqZ}I~8)2oR^uDvZ3Qt-9*!KEZVg_oZ$>v1V4{+E{r+nv!lg`hVH4Z04S=%T% zug_HD3ht$$<Ssh$PyNz^7PYaS5ASd%7s>(j0_v2eOw6LzDa6u8%jii{A~4U;#NXjt zuGAQN$hHXR$1S1*1DA%$wV>~TE`!SbC(QiWM~5AE$x8KNkcB`qG@^uFUPjzH8EcsB zd<EXR#ia7N|0ac*8ImO;@>7}Xcqu-P61ERq8+Wa&<)-C&?~P*={l=e*)3kL#b^6>1 zv;fSH7!>19kiK(pMc}2W<&STx!>6~B1qP=oJIs(J^?8}uP*a)n^-C-A&;CY{<BmoF zjp*;iYuN+z)eUWI@FBs&tah?YADcw5K8v)83?P-x(f4Vtetzb?YKyWbBfzUC8bAl2 z^78N3X8D8h1Oq~C*%Rn*U$ae;^yZ+uyEW}oH+MiyMS0(vg*Z@p^>q*k@iz@w3<Lo5 zVl>%DotH;puf&q8H2UX$og>LJI2e|e2r_2|^be<S95o@Ek6`lv^{L^GtQ>o{4pixG z5KeM}U1#d|!pJ0kR<hZz^Ar2K`plhMe7DGyr*c-mZ0-h{B@gVpmuxmmabT^WiN<}$ z!&4cndrY5n=CY5rD{+&`U3ShgFuaSq8*{*LYrT3^1q@bu)IQi&Vt5=Wzqw9VvdjED z!pJCEdb^(oud52n{HF`{$mjevg`VC>nDq*_12{1f{*VrL&fZL)q5YS|9^#R2kJ`gG z48pIRF!pJbfW9<fNh<Yt2PpIn>*n&}0TsgzY1|!aoB{B*V@zyldf>RY#4b%llGHXz z4Ed17MM}_FRo=;?13eaa2K>A3PGh-JYY+kOtw8mTotCP+P*u&gZ8tllywrYOgGa*@ zufZZ2RH;i`3ck?#@=Q<^u5#ynUs5i|Lc0RBz~-GK)$B^4`t9>;=MAGuBdudyl<+Or zqs>`PF))Y%gD(Il$9T?x5E&Ukh|cKG@Za?il*eCVm_R||>b7V>GnDMFHYT>UXM>ap zGVZSH?8PX;1KVn4geDk^2~$-a*d*Fk(9!Q0E!mau<9!;i^Ekt<>h|}1AZ+grB!vx6 zCBJWxxHZWb0OF2&QPxS`yx}pGqamciJ;6AtdYAha8pqVaQTW&fz2?V~j^t7ZWzwFU zm8J&MxK&<)n$pp9RlHBV(%ph%wH$?LQb4XojNf&M0*AheiX?C0PyOB`ry;@)jniLn zH~~roo>JPPC{Detc8p2tH;v1}Co&DA0QhA5^M}{{$epwP8oREYRrT|RiI12HPnu?m zUCLi|2OJyf4dY1AgJmk2LuBY#Dx?=~@Z9lD`KQ0rF<+O$(tS6b!M4LenyPiXGg-8k zx*WhH>iv6hQiYqrS%ZtsmEIpcZY-Mp%G1!ax`CLrM*eUIljE)VxTFZj+k6Uf*(;i3 zLdD>hmw<p)i+`M@4X!hdvYoX=zRL5>YU`I!%!48=?k<cy(=c%5wfJGWU=9jPW6wKX z!BI5(s~wwXWY-BvL)H1}^%Y^^mgYivcXk)|$Dc}!Kh4!sl1&3_82c#uw!p9X<c}+e z;ZxszUO~nB@^c0q^_ZXPDzm<y7yA5R_=R=x8x}5o#_s(y-#D(6V~XleB}!mJo3D~{ zfA)qTvBK1v2b_*uyHnPk6<x|2h#+J@8M$6CWG;8D28%Y~xcMU@xkGFHO<$)Qfb(Z3 zN+Xc(5>URw%0J2|e1qt(={zV(W`Q+@|EHVVv+wSkM_zcFD$Ebqidzm@ukm+Nj8HuN zpMmXuxpDt^LBos$#$~i4IRI(JpZsVsbZckn%uVaEO|6|e!Htm85BEC;_Aq3>vu(Zb zj9Pej@&L$oF3=48y1nd2;Y#Zn(j(F$Zf;_j@c}aGvsrEMKjcJN8Shlag3moSYL#T8 zK(7;AG8N9u3;oT&AoAsevYTe&6RlZW?sH0~q`x4FBkoRGw(vD*Or~T9;(~GW#7ei5 zH%qap%q-Wh-kVcwf5sy!)X*wfIk~R)8BWq;PN>q*omS!W6WkCGpAP%DzenH2;?1nr zC0&!6K7L!AYBRD0Oj0n(%QaIRmr9k-eMoxZ0+xo)KG!&V=&-<SXkuqqL91OjY{shP z$YG~?Pn(6H@A;R;0D{e2cJ99lX&gQkv@yZ!_O!i~VvZv003dr79LA*nBgx+?8&v*L zQ{^`9P|`x(BNdP{1KkmieMJg<Qt+NDJhCon9{3#@BKl9f=q~**9v_EGKGuIQIh~00 zgS3NQTs7*iuM(Mz_E~0vQJ!HihnO=#Ts;mfTzfmrhaP-EDfUyqB9z7Q(|&Sz#GvX} z^I|;oz_o6vvU^%^<w?vEKw<E2=X39L6W+J|^C_U8L{MXR#K})*%U-y2N2BDT+b0Wc zlB`&m_FgqdB%~3v^R|xdt##}L+f`gTOIJLCM?y;EuHITAGAGx;uYh-MK_RrmV$Gln zxP*_9K1*>L)w5>pqmvuQCJWLz<}@^YKj854sVQb{vUYyGKjh<TcNuXeEL#rWreF&j ziw4_1ezjQG4XBejC)M6&`7*kGs4&I`;13o8B;b)Xa0mWxf}usTe6I2r85pJ$P7)vk zzG9YxV<g%wjsC9sywC9phs8!yI|1hv^PF5;!}Rx(waAvbrIS@v95A_BvH{;L_*4)` z74%w`b}dm<yAw{WKh>lup{#bUY^CK9GD-x69!JGvFH2m#7rr+{GluQ~6qjUKxwCp? zgQ(28k;FUbZ;lDi+T`QL6YuPYgZsxFTX3>Y<NGzfdM_&L-(fjy@AGWH*XKu1p;KTw zlK5LgK78DEQu%w=Fd`4aonXq&S(_--y@99N2!VjB;pSmK{jdIWms~inoMYbJeiK)v zPh9$Jjz947`ORLysuV_2`v?h>YWOYXH8p<o{_Mp3wP=!dK0(c4GJsLXeO)pH3$?Yi z3#>-)mvpPg8T#=9?b{OyAaqEHk!l96$?ZSf$y%mUl;~oU!HGAAgr`!-(Q*QgIJ-~4 zcS+-O7kft^10YBG%`Jfd)6x1aub_Qez0SOu<(AsV1~CN3<Im+`zMiTp-inmkr|^*D zfmsHVf&FxpR;6IP$yt4mINyjGfWtYNQ2N;6OXcdA%C1hhb#-9V;Bf=FY^0RGUhuNm zQJVIomENRU1ij#a6@S4UEPUTe*e0Zhy!F=54}+!eH9>H6E$aTR8sHLPwjB7w^!F!! z%tmq_Z;(2&+-|^~QE44eweJS5CvVM)xd8FAC9h4Pmg3z4hXR6QO1(##@;_~z?XoD} zAeQ8~)DA^7R(@S_uNJ_dVc+SxV$qEMbC2>8K34(@(vv;$pMr9Rrj<zA*$AC+%-5AE za<q!O+UL=-n*~PkMd1xEUnLWdFq^fZOtAs(;9GI8)RE`RCT|BiF7Ia?_Rv?iGz_u# zu3fvPEV=6@J0bqSJf7_0={~xj&A-OrtpPCW(&WlF0<Q%9tYo?kf7@>)PB8rol4NUd zZx{7lMKNIFglbD%n6uxaa808zy9A>vQws^VN_<$FeE-c^3%oSJaVMw}69%QNqp1zs ztlLm?l<A7x@&i$#g2Sa&3gg3~lI1Dy^=eGt$HAG^Ca0tXWq<?Y-B@zaey*8FRDkhl zBK~mobzZpasX+x3fdJznTV8kWa28VDnl6ZM3`#brV7eXe`Z^t|QZ_>v;sGjho<B^E z%)g~C3Ap8ah`d*=P3aJMLn5t`6BeEM@D-T-2)>5*n8V{*s`1Az!-jt&(O3tTi`*4V zp6F{Ca#U(wmz+mvIMpxQ4bTmonzc<l-ts+0P9KAjOD~Jd>hEZ7<eu$%<DN|#GXL6x zX;~=~ut%0gseQK3!5TSJoevzk&mB;-^OvnRwn7H#e|*si3e-l?7gl!`{v~MN(34sH zOX^WKb#RafdJf|}Q$5r-)<Uvk<5#KcM$l`$Mm!8;l-SaJooTg;_1#8V1ddQBYDDn& z49>T1CizvKznyiMZXy)Wi7XDcDO?=z*5!G4jxVQ=O)1)L`HC)cmgo(ffCoyC>>Ln4 zQ@Wc2P~~ho)a8?uc}slsngMm<cMf^+|LZWZYr<=}Zyfo2G2s7<oXHjZd$did&dA0@ zc|KyKvNs(5cLV!G8UHk3n9%S27g<H5?aU26Pw=VDoAjl?lJa5}9`?Wd>#B0#ZyrNu zQD-5elq+^4Pr-y1tq{#A=7bM(UxC51Y0}{W_NYkx*ZHKECjiRYf=zRMOnzKe6TVKy zeN5_VE?YTncAETsjN{p<)KYi)xKc<@9qltmiF_QB34nyJE)WZG>pBl+(`bNeTc9;F zSws)PRty&TI@$#&&<@o+`H))qUIGDB<D?{BW?_^`9UYQ9P@mcZ-57AH?)cQ<?DiTc zmINO$7kqJAx96@d;ZB3f6ztGsnwOo$){-TE&D0THEk7!iJl7Bg${p8$vzaNpfN)Ic zD^GKMoD1Nhpb|~mXM-y;Fr1VA)7JXv;yoZC;Fs+Zp*~Dwpy!+3LkSQxg@Y({C)LVM zR9*$g)Pt1VXV#B;`{FT6^!SuK#7fG5(42diWkdQkDX3lqoqT3J;C<ET0#E6g52wrC z;tPW`=8f*X8Y67gpoR5^H!eXO1j1@!2mB)SH#gB|%W*4HW#u1bo|B&`zFXP^18o8C zaC<z!fOT75P(c{P&^^kv##Xu$TifF+8HYj~7x%f~#f2#`ygresBwo<6+V;rGq|w=} zIsyP<eCqfq<4f3bNNZu<YJBb@`Kz0Ad|X^P^lp&w`T1sc7aM4RTN;@FuwG!x1q@kC z<un`NvvOf|wBdB<_H3KN&V9kVOWj@DUjgXtZDXegACpD?c4*L}YAlDeMYh4ba&#Ra zEafeXzcEhX0Lnna|5m$84eXPE#RNRR$^-S?=n{TPO`oX7Pxmp|7MOG+{lCm_vGw(Q zDvySQ@@}8r?a@+ByJn{c_{r$wdS`sc;In67kKrSBU1R-;#U7Jq8#iii++Qwn_Exmz z<Gp`1)_a8uUOwhXa(=Y^J*^l{#&t#UI7yxj=|7pld61rZihYeNE_U)o17~k#u|Z`5 zh2jxRzXZYioF~=SVEP_Wg8-jpYIsj(+Bn53bUDR|r+%W**Ni}Kd(_=k%Qyt9XjO5Z z;MiGhYBvozM+zSCEWI{2Ro8K*05D{>$ID3nFUH<G8qPKR`<2*{Vh9l>YDglYhA2UZ zXwik}ZGz~A=ut*w3!+CEf{5t7Gx~@SZS*!6C0cZ%ch3FDe&6$Z&pKzVv({dFubq`Y z=9#(g`?;^{`hGv(Mw#M*EZ|NmDB-ik9#rm*RW=Y|63Ns*8Y2Jz7bD#K5Pme|8WfPj z_PdymPW?CC0%9w|m0)ptx{KmyyByiXQzMy>XlWTf`88Io8(mJ`SRG`jUqL#lZ#w*+ zoV;8_sA7wSbjEQLnay`0%hJZ~_N6s3<Y3O!_ZM`HWu$ud!uwocrM}t-29245IwqGv zA_^-(f0tV|D;Cb<-2h9~_4j9?^F+S~?$DJMz8Ru64J0D*Zse-1vxSqMOdCKe=f2az zS1+~pHU0eYW8s(D37zG?rrh7;a^H!HnH!qPy`I~5*-8EsnT5=CR370Q*vm<j$qk}v z<65i*E>i6GFMl>SOF+>nR$|^s3t?wQXCi)fv+9jIzPcPb#B~R8y-3T<tfhczL^JN{ z1GFIX_Ip<4qQq@i8;=NMuW}c^l9HZ5A1lvJ9-czy<^_V@xjB?dyGZW#MP7habn`JA zY#=g3&j%6F4L3M76)nyIuc3=@gf(v-2Qbc^jH&qFg;ueI8qnc-=h#YqKr%(R&ct%n zi+mg`_!lvw%`_*JP7@<_T;lS$&f8WuD=KQ;HzCR`ynb1PzUQ82H{4)MI6TGuTErXE z&*RCGPwhd!%xkReI^qs=l8RiUZN5mbu_<6w*1J%!pz~bY_x1LpGIH@prCaPTS@`=5 zTr;u~@8$S%+0JWTkrxx4F$%|ti8IIrC5x2qU-oU&qC*53uI5;?j2T^KHb^ymyk5H{ zOBB)t6g42=doEDbD`ll_Z$gYw_jo1do5-IIBW+}C1j|f&*w>cIS^nF6v`6Kf!-Fn6 z@r8O+qglj<1@4nRk5|Wf<}W_j`uR|_w;?7$q}sasz?GtikmRFr)(=Ge=zcl^&P9ho zzoxd;E#qz1CIUA3K(1K3<C25yoVkiskt|GMr)m{p1CnCoLacrO#jQ}|!?RCSX5Vpk zX`}%+t%MEBa~=cE*(iyy|Kdf4(M-WdkDh>58F&ZZl9D9&c0m}1c8o#{{lyNIS5=`t z_=rjjvmPI+!1lGeoGxFnxk1Fidh710-TTzh%IB5qPZxh})2|sXHBqRp9Fax778L?= z#78baD_IH|G_-FLCu9^0pa6QyL|a-<M<=j+O@K<TwkRsV_OciQot&W>tlx1O|3gSx zP<EsXJ7A&%0Ce+B<3IG6`U}^r5l8@{&aBfXS}7(J2IvmKr|IE-8s6AxZ5&XLLgwu1 z5)lK=9U)C{9h0Y*xHh(Fa|Em|3Jbg)vCn%Q$IR%I(ne^8_F}d{a|Q_`z5v-2(nf!k zbIAF987MA&ETe_aEeS&R^n{fGHpA1do&{@GQP=%546-mw+hwo~9MpL@og3MPar|+n zQF4d&@q_-z7BlVKgk7YQp4h(U<dM<bJfrvi6c?ks-k6PCVOvRlib<sq6~cE|MycE3 zlLGrTa5%kJY5!v=1Oz4e)buca7vI6$#)5i)BLVofZ$RW#f-fmZjB!nWwdaliEm_4v z=G7v%LL?l#7K+iPpEn1mR-6DSZWaFt%h^-ru)#5~sW0H|;zvUjo+4rZg#EfG8Y(Ox z8duI~n>N<%9d5BP18W1SvK(2{T2MoUdx@8Y5fTu%{H^K)cUQC!EUEZsevfZ=SNw=y zf9vum+`i`U3y9LY?6*KAhq>@0IiJNm>XwLT?4Zo^kySfZvv+%IlaqC_Ubufx^s5=l zXSAgAoI-eE*7og?e(zR@FxcW|w_rpiSz-tptlddQj&sikS9|9qd+p0TIIH`tdrBdx zJ6Tm#y<CGqL~5X)v7*2*%KNfR;o+zF6iA)8Sr-$iGwOs^;xM6EDxvUcF1JTIDAgwk z`X7X4gM+HO+e(stbI!&Bz$2JZlk6MVJzbyH_MPb(L9B_6W%JL6`Hg;h*DtZE#XP5n z1#Phbj=2~s{=PIFjDVo&-`|%A_&bDJl`JF<(b$D3F)g=U?~!7E$K&LlXJzpOJ@s{> zJ(5u*7(_+<tIKZt;#kJQR?8dBr1U>u^j|eQNm!`+&gCRHGDr8s0*)JarFL{$6}_y; zQ>Q`t<d4L`*3&bms->LVSx9>YDH>uS!7F#w?2W1^f4bRbI{RqA$WLCE3Y8uC*2A8- zn><E0j{A7?`U>%bm^)7}s0eclZPu}n8t-aAZrRzT*+EiKR}Dp=Q-EbNt9WOQ27EI! z131R3i~Hn^b>g-Gu8F((`bHUn#^_M>a%ArB-<3lVnK>J|>zn#Q-WRyx3<WBHAw5VV z%Ru_z0eiix%lO>f^b-X(UZvM_G&@_``J=+&k_VuDmuw<VOu(PVd4aNTi65gW17>>K zH%X9Mt~gshM=Pt!NMBa|Ahh0^4JEHAfr54&<t;`}TYUkS<jzUIlLWupK*a|QISt-U z`ECB7#{4;LA$@xM=3JbgZ;u2DVA09NjfLqn1`kZ!rUyKyB<DGNuNe@qJvv`KR66xn z_a<jtrGKNnG!S+<|8g}&h}UQcfacQZQTMcL>*!u3gigfJr)Zds!PPpk`55C0Z&g_1 z<F&hVbd4ESlQBOZ!5O+@s&ZEKCwIC@AIPB!NuJ6dFQp!<+^Ao1Cv2~4QN016-$MRY z45V`J3rR8nQh-Sj;2a8pQX&4i19W6u`+H5SMiP8`rYUmf(rf|`WEW!AY!+-D*=+76 zB^yFmP*Z7nTg-?=k2m>ymrqjn&iZ*jU3-iuX;gkaJl~rf)BQ_co0QNWKrYs??=Le} z_Rm~qeESV_Z=WtqeVi5oJ^x$$*6{wHb-e<1MOo`rKIsgEyR>DvdL#W&;~opc7q6Wu z)hBlfTXfSWKw;^|Q?cU-hY^>Hf!Vg#j;9HYmsjE+JMafc{hN)g7PmD$kTrXrM_bh! zxvQI^h~pf-k!uHk4A1(TiwXc$ew%j_{V|bF6|(+?n;9^s=bk_A#!m6gIW<dPs5tFu z0%LDW!ZPb0ZFXi;T|TzU!z-{hkru1)&WfOC1zx^M{K?FGO4gQ=nD$*%{BX~$oSD;+ z*Yf0^hD#x1;Bf2)CSg}1(aoAJC*jF}r^i$0{IK0s{Q5iFqutf>|7&DA{lgf}X{1@e zkl>Z?8E!Q*v0$owHEVO!pdFT@Z)Bt^@ME>I2v<Ku^80s?cBAFY@Yvzl*w}(K1B)p9 z45M=E_B~9OLWMW{W}~EaHwtA8Kl!=|(^eBtW%KtNz;NX@Y6`2|*1|M6D*r6ZXt$5r z;Mi%)&uU?~GUN=i+4_7RXiXla{V*Kq2Oy#))9lFS0O7rOH2OqAmnoR%zdc|KC5N=$ z1+~?a(dJCnqIkIvqiK03LW`awx?NQqbhn>8x&w4(?VLKuj@Ty48Mj4D{b}hVqhNGQ zc}v{Zq;Sg?&Qon^{siD4RJ{*k-{}HIgtrQ`6UfOAfcWUXZ-WGP%}UAFaBlEbBw(~( zbEuc~DaVn8(M>(jx0-M}slk&}Gb||&UD}~pQ4n0S7L);Yw~j_@K{*tDN~au#_i%-; zR^^ygE_xF8J+k|i$>YB>j>&%+fK5*Ht*tD+9k4(5RcO<^FxUX7Eg8r}x$GfOjCc%Y zi%s)L$ClA=AMAF?bM}`+BEl7EYdWN?bD(wQP1Pex1WWmng4IlzD%}*O`RM;NoKVCi zF#%`*Z$#TWZk7_eL~zAn0q%%noFDtu>Z+=#bz5MCQ?>ZM8}SJ=hT`J%%_KC|7_6&U zUpYNqzYj*wj*TQjt$<C-3$^m^vamoByt&Gmu&D9s>i2hLDQYy=>6q;=Y5R#y3R>BY zm&m+c9�LL{19W#3RoHY_v?AmVRQJxA`#3ldDCzt^n4he-FKmgwduMOFM;$EXo5M z?>`NDdZ3Ox)IhR=n6{9AmG9lr0dtrQKo#zFKJeGfZlMHW3!@b-rZiD35iFjF@F>aS zl;a<L%Ul%z$vjbDCsvSKtvlG=o=r;4f$+6*r`IM0M(V@X)PY6Q-X}pA?T_b1QoMIp zyukS0)&+u3kIu))@nb*m%0o-qN5~NyL|=uK42NRAA^zAxIVafPEwL-3B(7+;Zd9RF zJ8oksMT#UFkEj@*1$}S?X!6}m_$UAHSX`SfzcfBzz1$GyNCI7^cP=cN<(gCm6};mj zl;N0&J|P|7+c<Gb(s$D|)Vd{;L*zT<`u-4!nveZigvL8X0r8MOcl$%Yu660MH-OpH zAVm=jVY^)Fk^09u@%@rUAB{T|vl(MO7`V-S8;a`FtQpM=m=y8u(eg(+F){wd9)mg7 zg>h7Kpc^yr>=7LSZJ+FPGi%(TIbBbc&=9NeyTq%xXVIc>HR@HOKDkZ4i<D0DcD;f# zf;)=3!AH3D#B|cUG=H&b-T0bhZ?CoSTzr%K09${oc>eAKktF`~Z@yn}1f>49XO|i7 zLc+F$qi-SmXyUvh5zmuywbQY^q}Ov~VowdPUI0V3>t-O0c>G%kGQZHNPuwEX5wJ4S zEX~b_197r2n;bCamP%l?npB}}1pfx+Bgbyj+hXXvIkI|3Z11Zl3?Z7@dAxbKl-J&K z4~)z;#FvGqD}nPqP@GEi#TVdMB)CFy-f}{a+Qp$A@c)SBPW}b4xf%D(eqp7wRhO#Z zEtU_JKXY}}Pq!ipVvqcE#Y)TZC2j_O{1e^^$@CyQ8pk?#xtVRei+Mc)hP)8t$m09L zP1eL0--@xW!_MWDV|N#_J}4HB$eY+H;p$yme~TyoQ)I&4=o4;a+Vt=?4=)P-O)iWV zCinAhRF|d_lG6-nEuk;Dq)kNd;k?!C!&;Fs_z&u&-ae-Oi1tWNzsjEPLGGic<9q#s zXM(ntznvrnmHE_1?)r+}8De-deMAqM$@ASEFpCjE2eH0ne~pvHq|@x<LHG#@QpP%V z3D1w6?E}Iiv%U9Lf+rXvDvP`tz)Tbn{VJGM1Mtvp97;UCI@Uq;gW}9)8DYfEPPJK_ zQNIfSTKyViW&Jd4I?!!`QcIJ@>b*33JV5iippx(-fB!@<v;U$)A4W#OF$5kB*8!#S zZAxWWPgr`m%p|bh3;K-}!v1UZU5NiDkzdUW$S$-LH75$Qrq{c|zLrH6wxm50a$>yO z<NWWavhBk8hMNDag|Vk)ux5jn*b!u!g<KoZ*eH>45-7=D120J@@`btWigk5=Mt1(M zjJdC-__AZf2uq2JjcC#oW*s=zFlWFc9;KizxVV%OqfcGtf(6Y*Tz$TfwU{#8{=N@? zFLRWqA=zRt-;+*uA*}`8yx^{OK~o)kF&1M_%9|HxBOXK3{E9A37OT&_5qx~pK)4)~ z>Nwd`oMr_hPIEkO$zo1DAb5Ow+VWPy?kS@QQ}F6beFKAo5J7<vQZTB=cUz_M+%`+z z;~*sX(E^Q;TJI)aUt2*&^vW)l>0cgB%fVY_={LC1!K$nuJwsR&`}>dzq*Z$S0XGRY zC~XSbL3hI6Z3M%kp%<+fgQkdjy}ffBeX8#r(*A-c;sx9~_j{N7UmL!d45w_3pw;(( z8E$MyLUYgmr}5~r7@EdBJOLmOhHZoc_EDR{DVQ(d0kc|?5dc=RxU7fO8AKJ}>0uTS z^bjP$z!J3dd0_-(jDK5aGldFsV}du3r4=h@!R8)-Du_D-UiSIXkx<RBe!&8#HG?(* z;l$<1Cly;=bBE#}`)StAd){pp#E_vtWpFT5fw`Bo-*kU=rL;Q+VC1vb8-pVaSJUk{ zIs05W^MZ9gvS{Al*}pk>3I9;puxD`K+HDCoTj37S`Lymka_<0}<b7QX5G-R%B{ARt z3_?a3Y!x>brKj6zvHes1O*9tx-rBVuUt0Po080EH(px~ssA0yzR&y^jQD$Uk=)x{d zdl-u7d)8QFzjGF|K>Y??J@eMqmgC`KCKez9&tFIY_OHra`Rk(l2-aw5Z%Rg<qQ<%p zK`u2e+d@s8sjGIwD(<ez;nKf`IWMU>B~J*lduTHBKmI0bq_HIskjD$|(wN^Dxlmk+ zb0pmeKD-YU?;s*%x*$XjM%Yf?NI-zNEdwJUNr-#!mDkeZ-H87iCjH9`^ENXT3r^!L zJ136OrY-6P;MHj~pM91{O+|Gs_dPeFLHKC2-8g%KkbMjZo!~aoQf=#=3f3e!w_8VN zCw}kej{z)kPIgUssXq0}%faezScX@Zo4V?D!74ybdXj}zuO{9!`7HN!^+{SwY^J=J z_gs9EWHCM7SmK%&;e>j)vEJHy`7|={A&sX6NeM{${Znf$HBV13bTp->qk_CC@CF*f ztcZmr3%seW0X?E@H0fx9=XsUjlGBrQ`pY4|dp7ulgzncLB-B5ENMs*B=INIDH>8mK zxhIA!?z#U#=keOUS4-2i)EAnjeudmL|CUt0iW@Vz+c%fHHAmJcS#_D2G#eO=FJYF& zcJ}W{3bzF1_!a_5<1F*1Yoo6u1b_<}K-qPSp~<Ay$JM1|77h}5(W4xN$mj6&uFsq% zbR;sNmnXq5UAg_)tF$pF%pDsuRsX-Tn(*krj_z=8`1a@4*{9Uxx)my~Pdp;VUFl8< z<H-~VYdNaEtW$jb^Urx1=R-&e<(#BAG#NcN(^v4LAr6kL(llk>6j(dW#?{DG;==T) zIYl!IST!wA9RJ_^vFUaSC;YZe4`)MYhQiL}Y*<jY1i#GLApR4V$i?&lr4G|KTC)oX zI9IZnF##D{x3>4oP-EuUNj^gq;z-zLsHZy<d;uUE?5{S^=51HUzBVO8g^Lg3%EB2! zrpDI4Zv2`=l0N@d2l&G-orJgzA(LR*SsUD8clvdN+v)7k!iG!MxGVnQ;ve8$fGr@L zUK9a7Uu`SqD9CoW$FA>oMSW@eRPDQ?ig)@G+ZjS_py5w(?x&~`rtX^xV4CQU0JpEl zd$fIA>9(B2VpOAhn+$L@6Pg3|8mg6Y`a=Oz?M}9u<{DaC3iT65y*xA-cikREWBlOj z=jpk*kjW?wICv#tQq(~OTfoSQv1ld4V4Z~*npF%G+@(+@Pd><bfTX%7|M0>PsU$;; z?e?_l!T<ZQzoDib9>oU}87$d87xi@<%ah#$^C^6DZejAWV08=0+aBEfn2v92b10Ij z;RUs?Zwo3|W7hF2xM+HgU_lBD$Z*4)6$6qI7K?@OgANYGg;K%sJjon<@&61ZwU80- zR3dXPEgW2&X^Q@(dDkQ2j)~5e`cl@-w$c+2@-vOnJ6_UL;N{%e*VG75<noUQkO%@L zls8zefPZn`kNu<Rv&z{Bb@nl<Y}-j7bjkAa+iDUE&kpo^aiI!6DZHUsSyoE@xi5iG z`GJ1+Z2_6UikstaXTZmnjBIZYY^G-jrhCcB>8bka%kYibc97FBDoC<G!3!I{#cL}P ze@7lj*_$5x+`j~_hOru^I@<Fu|2GHu&)hJPB9iQBe1tV<^?V5YJE-2Yv!Gs*;1q3a z7jM}+6b$bcbX+YS_Ae5>)3GNW!)mNPv2=ywzqpCtF@YLYkBVMy54VVGK^D~WOAWB8 ze5yU@w2u)$m=`^ItxfQ!Gb5ar>ag8A7B9zaXU2hTk+`p1>C(WhEHW&+GwvY&-0X>C zh%v%VO9dFgp+qISkH-DjozZ8H)q~)MK&`n0qT`mlTq<vx>cqM{CO4s}enywapxj)< z4SZ7}U#R`%d7%^h9FXRNpb5(3Cv_40jF4V>dh{08VjT{IfpbZ%mUqUw2AsRe5BeJ7 zFEb9WJ2*4P+F;g6<IpESMikAZk8TC;9xjWo?it6w?N3<=W%Xap_#3@+rAyQ?O%|h0 zpdpI3CvN&oQQNMaAyXY3?5vTZ*i>Y$<~{QaM%Wjne!N7;%gN{}5!cz4d9zVkYv~O{ zC*-Qnu7F^hUk31Cfj&InmnPbCH|0&22@>Z<+)4!RRtY#es><@c;wK6B-cFr^Og&Fl ztyH7HYtVhKW|GSWSFj_#7xJiUVSk}-DnaLyBxf0ZAq_*z!#XoWvR$p}rw^>1!L7lD z2(bVf*;}%4P>fn+%CUy^h9Y_WFVkfq;F#!aYtj1p-T^GbRP_+!vc|t=W>C*J+B-Oy zQK3W|UoiE*|7?gzGG4S8z4d8#xQskEd?a6BrRt)v98&*~9-T@}eoo%E_r&98x023k zVMK%nPtWGhS^?gC@K?jD?>@Z`7V-{&yY{a3wc;Mu+&GB~v4u`|{3tJI^t!4?6Q;3d z(#Trey9wUT;rd~wVess+;2zS1+;gjosZRJ-nnwyh%|}j7SUvElua4c_oQat<7zJ01 zn{DYJvGa;5OXq!pg(Sr6Xi$+o9m$DN?C*+1egr@LIDnLXTr3`r!>%o*cz8b$Fj#6Y z_Z8TCExYt?kNy;M9l0PiHyzAFMIHfC1gefVu~146$U2N4du^{!{HY=3Ph6btVymLr z5nF6c;=m?f?mxE~&>+GEcIWG}*XeguvCp`9Im?}-zk0b}tDtY8uMa}=-Sd7nLX&Zp zl&Ea+A_iTxQU!utt|dHgODB<Kyd>iY0=@p@kA1Y4h(in?vj245kp#o-UZ;4|5{@e| zb%o=CjY4d!v8XH9%C=Vev|*imY!{izqMMq=(94SG(NpgC#d9+0WW=#C{v4=TEu)8D z@$X~#5@ypmZ&RYZlN4d8-q*24)DP|?y&u@$d<hb>L@WLGFU5-9V*RPp{DCR0wXVR) z(w8!k_>;*>33T)roBoyG4Q7?H3|3w%MmSfm&uL{L*UjiC?JT?#FBqfWbCg7WE^kqv z^HPt&SIxU(WYiPLt+b_yM!(J7_0y3Pes-%OmBo){YUZnH&V1mLDxA|2Z^$O`oKa~u zz|Z(Ep1r?W=_}(RF<1FsaLw}rRsFWhnpQ@%q0X91uJFoD^!LH{_5kRcn*p?gH{dGF z0fIDh)CFHgjkCYrA!rIaKa7++Mn~4F^JT~XLE(D_3)jANrr=Z(<jNn3tWw<uRNl32 z<$}<7gKm7fetR0r?^)p==^NH|b~;A<y>y<ON{F7v@iY1)cg(5^R6?CcY=pteyX8*{ zlNJ5_GR9M!&}!o+Pbib-<>14K()ImxLOXMdKsZfzs4*JWH0oMGQHx*zdZ*~&zzUYd ziiWWnLXD-|;2a%OK7v`Fzn@Qf<P1-=#80ApR8GA6b~VHn|33baviWS!_qMqwxh1~; znlRe7y<#eBW0gd-nB^7sxblPTFJo>l?Yh#MN@(v8QGL5_Mj!cbkY;G7__o)BGW(pq z{AceqD)-zXdQq~ONc*F54h%{r5P;m8AG%3s*{-_j$Ba8M`!fpw2JIzn+gkZ@64@l$ zpjm#Pzaq<k^}Pq0Y|)QRc78LgLQ<J6i+1iaijwo~UEa!uwt<7(3ldnJ!V5L(&s4Z; z|43GWdlzusWhB@|&gq=_ymvBf1|8Oq)sK#)EJW|_><9X>Q8*c71y^5CpIsh?EP#Qb z1U{9NBuasGb?XJ33dfQR)g|x_m&a}{YPV%P3UNoCIf$YRR>#|7Rh&u^;tT{oWGOF! z>sQx)d3Xz-<p3!amuON?cPe5n=0SE}v-J|mkbIMRh9Np+{&)0Cl?deoK@g@2)i4#4 z-k#mhqgma|=ps;`Zzz`F#@XA)hkC^?7dfXWw>wMT{6s4xn@-!PlT0Em?DA^)`#-lS zWi~h{n|MNAf^e|xMqP0HHm{n>SCPmv5qmk(aOOBJs9y5XDZU~C)Tee+Ypl6t$qRPb zH*X}iEs|1|>pxpO%O0NJ@@!3S(2M2jj}lzjIm{NR>0^z_IH)zKNSU;+KbehG<c<JM zYrm4(T22V}yasm|*a6-AEe0k-5!*;yvm_VK;g=rMWaZ7#eLHP20!{|Gs><Om;4kN% z{`puK79ukdA7*TbnqudL{pnp63$XdnASkEX&+&Q3@G=k&`KYSFO5H_~Mj`H3f<XaB zxs#nfM1<v~4&Q)w@0APZtq9+SH{W~;H$-S)qQm7Ix#2sVq%0iP&NhUG+R^Q1xgYqd z_}@65(uF^2`=+M+X5_4funbuUrDNviltwu*ak8_V*D+8~7X<q@dq~p?oPzs_UrWJr zfz~4xo@N7e!43O8C6HoGke}Hg3d1)YL%sT?xP|FQaq7F>!#H!6_eWnrHl;($Y{3`R zTR<pWhY18gvs(p#GT7qlRmH)Q?tvIaC1$lS-!t2=>DwdDCIw3-&H?BopL`GxhX8vv zcm}d~1v;f}jyVrO)+njTl<RW@|K(Ol3@Q|`ic0Aq$}BZ|`9^)Zk)nNHL<U}Tuoecj zm$H`Gs#kP{%%wEND8EMCD`tH#|G)#l%Q?=e8)q9#XUq^V#OnYHk8xQZ+Cl2b7Xvu? z7^S$Rt~)*^g55WF)%~|Y#zO_s1q*Zkr~uX~!NV|W%`kgc*L3bHpkeW6It7?a@A>bj z0XxA%(FJe=z%qP{WEcGf8Zednnmb~Wg}yiHU%WPeDc-yO3?>z{a;+gM20r@gqplqe z+)e*G`#&WL>%4xr;8w1N|CAp|zm=$J7kVqn06a-S))PDk+~m8pTEP7(%4BymPp`|V z2v`cSkZk+l`(^Rls>r36pmE{4c=RdK#9}Vi#c_Bu<!V31G}(~kmBBHi&_k+&V%+gv zhEK?rV0PPpkC^)|&(fM=>Z^G>fb7Wi)=<lG^FtY!Z^@ox-OwSUbU%MhNz@fym{s<T z`gS8a4+f3N7RE>4a+-@iZ;^p5(}BPZJgDa_YZ%*9g!!Uo>b}qr5g7lKYy%+-OIZkV zjbDC3q$P75F7Rx*>)(Mr`Fski8&%F($+QVYdOBG`3GTFZ^MR)ciF4~Zvy_Ez{XTw# zraBRzvme01a*m?{g3e*_>m1guMV6H4+TpW3a^l>)-&3AUkp@6pCm_mEV*0#%IThO` z1trkDr|O;W>g+WR=RaV55)C9S40jIGM4yHP8)Ndx0*%Qw+{&~&Et<Zu4Uso~`nP%m z8<b4SE_p0j1xh6}R3$ucG99jbqF{@7C=@OU^X0&Kx);oo5HSDuDvW@aPc0?nTUOLq zPFIfU9=lB9STnME!rRlONaWf;1C|x43})Lo3Zv_GM-`=|*Q%Gf-G@rQ-lK+l73ab0 zF_VNL(fD4zuo?v)y6gBbKkG=%x8V4E^r+Mk5$nP@OvzVmewlKCH<}^W)t?}{gg4Lb zWTF{W01Ve}HTW-(v8mrrA}5@tR@V~p{;35~t_#36`5&J>h*FA93GjL#c@p1wBiUBc zH4=3n8EW9R(_1of2B5p9u6>$BNIaOA*xhma|5wT`-(avNyJeVcYG*gU$<epE)F7zV zJn1|D9Sl$;^zm~2Y3`Hbsq56_5s<TBGf2Bu67ueyv%<H?n_HT*t8oc6qprG7%8~@+ zIm=iRrIU+4p)S0t!Zoa{v?GV>c5Q1Hj!td07yqCrkY28?+YUACDhXxYRc67h|IfVh zQgxx#YLE~F`F6bFTJvC(cQP??A8^KwjvaXO6hQRcegB4*I#Sj)i<`w}-xS7*%q&Nj zOD*R^fO&ng7^<0x@%$UP3L|!<Ae6{=bbj#&+<_li!Ez%5de-qdji^Ab{}l#PbYP-0 z2<HEPmxWY>V4<Hl-q<XOTo1O)?mc)wZ}MMUGH4*AWE#4ctm_82ves*AWW#IF2{Sn< z%aevt4Aw{!j>EQ_`8`tw>ODV|EZ{c)D3_t?V4Av~4X~(V*THeiHx_x?4X{eH5ZxZM zQQs<4tV;(0cXXfzQkCm+e~gr8o=><d=`fgfPs>aOP5T+m0DYn1wQO%;t~Kf@pn`#) zU{n&j(dk|c0%ka0gzv~+Vp`XHE(q6n@ss}m#>KIFrYX9NNRUqwm9NWZOX`J!Ujz}y z>>k|(?K~UAh-?s*Q_x7s>@N`PDf>C-{Lv@pD$X%v+#h;Ki7$X7YY7Te<^QhjFcf#9 zDWVG^09e^)*KU`yuV<rPz)jk_J~jmnS7cmgzIE#k{tD0G_z0f`w(_*zI&~b0Ijw6p zw0E5&B?=|w0{ZnF&0JRxufZJ6lIT9i1_m2bvM-{g?tPnm{GomlK%yC6w--QbGmiQy zJsiY%@COKej=r-ld12m~hc|c^CI&?f9c(*!Q4j<gXQc#s`OB3b>ZmakE_xAtif5hH zo}7!__Y)id*nQlT*SZW$iWEFj;u8h%NY)Tp4ZUp`PDs!c4qeu6Aar8xWsUjg$(718 zPugNju3-=#s09eNPxAEb8SI{)*`KjG_A58GtW`Y+0S?dWc|4R}ZzctQJU;FYrgv<8 zqko7QkeBuU@Ot+3%B$X-clJVo>G1n;iv|IS5uM-EBB1!OO@E=<XW|=ys^@9&EG&?W zzjh<kK6?Jiys#LP;g^iM^#haS@ryOtn|-rQFgPdR7lE|M-rXV5D*Mz_{TwdNCSG1C zQC=`(;V`Mx?{!1`O<k;PHyQ2-X`MDX(VRXi*y7?Ya7M?76)GdZ=(gQ;jhA!KOIG{8 z*mYz9&YLqM6p}oAnvMlPwLC1BDniV;(ce}4zO$x@PVe$zR^!NC81Mhy1t=6&ev1u> zZpfKcGYK(9+T!ZWJBz}@`3$(zJPa&BOmI&{+GQVZNDiW>5%aCDW!oLW6i`Cxh5wip z|9MkjLCDT_O(%0urV($^_xg2`q=Ibo>&S+b0+B~z3E#i<QbI_DIT;?02nd%H13)8i zY3WmNYkJ8Dm}%|LpC0x?bIz!Vy_}{W8SRQF9UV>Ty@P0U5BVaG_?~hhuV<$pdzr_D ztLo0_oh2hKiG|lpbdXgoMbVqL44FZQI0D@ee?y;6>25wvjLq?lIB`|H86+pB2hU~& z<Sj99@b`sViuj6$W<Y1@zhrT)(yQ!=<Atb0arPm-wu+V)7P%zkv^Fv(wEVPse0;3^ zq*SZH4E&>eIS$BCh#m+iiUsF43JB7}!UC+aPYuFEma@Krfpyf_`nDeI0o9OjK!FyK z1btAu&(P8D-&$JkOUv<0Eq2;DyeVu(Z&vTzGvigl7L8N!&K@SkbUHv0L^fkCiF)F` zz*_YAuD9PP(H(DNbr(~etks7mG>$Lt`KQM`XZCN<6sjk)7As&cct>!B0=fng#%CGo z&<Hxq9NN!X|F9j4Q5CnFGm1T^KXHu^U8504p9k75?8$@&DxEr!N4P9&p>r1Wt=r^6 ztaH@X@U)pB<7=kz^>O2@_nT}=Il#s5>(SVJI|vgR!(6|2)rG>qmDL%wT-3Rl;tN|r z7U!TT4Eya`3}s@0@TxhKy0o;>#@3;@21SrlgxgqIu^jh#`<_0UWFKwzw(k(B?II3N zt(CW?VPH|oC)EsW-jcWm3}WM>+Dyw)2wyH9T&}Mx@9?)!nju`w_OSb(GI2o_yvySR zip3hGi-x&iV%M4Ktm(Z&1NxjG2`-${#c2@{&l*emH_-PRp)0YCvii>W1$&NdES7_T zOOy8Jnp4>w1X%820)kPjckr@&jw11|<G0-`)(HUv)o{OnJmFU#Uv77KTb_u?2<@%K z>_-&U*iF7w*dqF&+&xl^CX3gG<T8=#FYn3R*Oj@(l`ZO2Jd$j8B=p<c-=GeWvCzwD z(jqaOhAJS3gCYHEH-S1YqKoAwa-I{!*ksk{B{BR`7yO(XEHcJVaS&)MH(2H#&5bQ= zeGUFY);Rs5f`Ll!#IDak1iB=i+tK3?d7~o{ND|g<7xvNo>}Jh1WGF>qISq(KV;1<B zd-qPwkDQeLQu)jr{%5Z#WL(TSsqdj}S#0_mQmgEh!|lMqvM!7SR;X^$DWhzlqN9|R z3hGww3nTWd18l}R^q~Qw%vJ!#BxLj<CW|OuumE<nw1;de%Go&*U-AMciMSRGn0!|` zwptKmzk#%qPEJ$5GlSag;ljZX@RcJZ<4JM70&J_UIn<bCd~j+Y?fltBK;A>d+TVwR z(2Ivg#{7eVplJ>wn+Dp_DL|)5337N)jVRRV>!M3Z5O;8hFH1NpG*IA9;(GE&+onCe zR!28lhEUw--K^9uYiYzQ&0g~XP?vGwl}}I0VMmcBniM9?&NrE_n-#x!XQXA65$fmC zu9$e?GJ+TyftT%%-K{Y7G^l-}-Nu$nEco-}WSKW4_yXo_@7^oxZ^|z1MTT?D)}sE4 z-8lp6M>$&{=UlBk$}!SQ_T^}o1;GRG#D&NH@kyJgNpUBt2S1CVXJT7taqAr&?K@_d zv&+>2oGQq_vOZOWN#!j41|)hnyMXctH@BI&j*d4MWwQ_u$xU>WSP=o5y&Cn7lu&;S zg0=X>Xk-r@i4eHNq+y!JF)5Zsp(jdk3l&tuYfX+l*uz|&GExDJ%y*?ZIAm-h&)WAl zb#M*gAxuT<Gm#AWH<T#qBaxG{wBjB&CQc5XyVWlO)~j=9dB!wRL0Zk9{YAek6&{GJ zgRpvoGr6DqW|eYuytcH_#y8{8QGK!9MY+7nSfSp`KrbTPQ}q{A_06bBvaOexO+`?K zSruGDcrFr@6*zA0y2EH?x-x*Di#H`-B+Gl~?g>ZJ!)PnhB1?SLHXrmbM$p3$?VDRE zKO)TQ4l2zbtHGP!B>5MA4kwnP(hH!?$rec%B;8*$eNldzzsjp|a5OLY%GuRb>+}c! z2LvB`mX15LFq9ZK66qQktN=bh`lI<^q7O?>oN)JIkahCi0A*9gcJ=p!&FT>qDz-!? zYkkC37&jc>9<%+Rv=|wQtKK2x5)yRK7iiPpKF)~>Xm=L4b#Wmw)VP1(V1-?CR9@Xe zb0URr4U>eNlwbBLZYdH6cIh}HiZua^`$<!zABuS$;%Urhv^8foZ-H7Th0|N}K|S;N zD*rD40vtox9Ka3`v`Mz+i8kx2O@wMCs~nQw%@2`E_2`J_SF1=^`)tpV#sdPqq#(>k ze9g-;;DUq!sLyZHx=pxeesS)TcLb!UwvLVvde4<&$A(MPt)r1hs;>tf7VS`MbVQ5M zUNx=_03<Q8;hnKx^82oAcP_X^rR=(6x=YHKb0?3)GZiku=~mZ5=2M*d!uTzYDX)DP zNcMMJQ~JfSM)eZecdKJGi>V?}b<j!ar(=WiHek_20n;x)w=uUAvEC%1+WARRQM+$q zOs6k@U}CK6{vgQjuoOK9&NxcYKM<e=n3%mD92F|KMC2PohwipLEgIGtA=9ct%4^#v zl0>HuaMap4H{uGspFS#eI_hc8d$H`*RP=V3)Kj4I?&FI5TzF=ig_0x8W%HJtKA=Ck z*%#`2OJP;3<|@L!Tms#242@Qr0%J<<7q3K-F95l#<Lwv>eYb1KSv5&J-}BT5WzoED z1COYab^@Q%-a*3Kv=Hs(c<<d=h1a4YJd#1wwUq;Ypx_SG_Mk=4q6puM$JNSCY=pUu zot+7ADfyL_Hk4fyE4XN2hF=mXZD?jlDxo|sF?Fu!d_z%hDSHLz0kn3Ha7lYrIhN#b z3$+n}$VQ)DVxHO;($Yk}?+u)LW$v^M0tnwh%e&*}?!&;VKRO>k-<UC{_y(M-g|!-i ze#(rQo?g4+OB_5HuC(nPW|aFjwt0iKV8+447uaK~l}7&I-Heoi(Pi4fY)ZZ1Ag`iM z>jRBHCHhg3ig@ahC%({-z1@PWaWl#qw)L~n3Tw}H@BmI1vVVz5$p1hoK45|UK0KZD zISi|<!rPIlGEs+p(tg+74a_@al}Aa5AH=RniNXk`AycW^{?zq%Z1Cf0>N))6DVpA) zi5y%;G6AC%QdGW}I9YSUdLON7?~j6L`Bs2@^C=*8u{Et&zhLe{SGGoVQDX()=ri^w zB*8ClPHf;qc;e0z?t?GYTV0~6($X=pv2)<QmedhXhhG}Zool%6{l=zr)ilUB%2CwH zD=`*b`+<fS+a4V1Ck!i+eVj%2&AzIs=;zN3LK5kvmLkFSH{&$s2j~F8GRFJr`CH<w zyYcs9e&64r`3;bQSo<q3FZ8`ZPZI<XaO^($uwLH!+>W<HKzX7rmqwNj)}PZ)N(=yR ztJ<vo7bGe#GE5K<q+-B5y4A>Y)#crcj`VC+YFH$c1^ip6UiWY`9JyjzvW_`|pjL9i zt7ZK_4wi5F6#U6r6lf@F9$HwLRpmL*v=clMjjGDxO(CH=ax(X2rp9PqTJ0_~_+Z31 z)?B+juW4b>vU0AxwXanJ(aUmGzvFGz&dx%GCfFbw?(yW=(K|@1Z^Dr@ZU#%>_f~G~ z`bae*3?g*z&FU<0@Yr#_Hs?1m>|9w-sL=zoEh!kqgNZJFFy$XXd8yaKlNt9$<>wCH zEWgSALY<>1>|eFPF?W6#v-@_M6gCFFS)FIgr1>3`eF}XMS>R_E_CM$$CG>e)^n=ZZ z4T3^~^V2_~<@fL3ual6w5g_U}{f|ovgWDHK@KG}9eblyx*%Nce>QAshpV`1;F+DxW z4T@<6hBn=U{jre`1sIEWl-Yb7wqPz+`<dMTOWH$#RF|zT{1T4;!EsO9z(Hm{X~Ybc zOIIKN%3`gixGT}QsFLP6=fIhbd$EJ~he1~|sye%NR@$a6(rA?(`Y8yb2`I#lTz)he zL0uF@I5jz(8wGz7uPD|fDK*;kGbl%X(<S`+trrOYvr(?5p3}%{EC2_KrbJMO6Nl8D zNED=L53vbI?<rIQi~M|+S0}PF@Dhr%)LwM*1`cSI<I_Uqs?GY@DU@G-S^UrY%`fv$ zo)^@gdI<0T@+F45jap^4J;?mRw|gQ4Fquc|_3y0wgwheY@-LY0%LINIj?`*rEgVC< zX-EH2=qzqw<bZg_vt0J>*w&eOh=Fs2pNxS_wWvvsCK}L*5lFYBlRi2dHc4*nnoDnw z5p4~}3&*j$2^cqp(g-S;`k?e+{qq+jRz4bYn4A0iPN}17JG3xt^Jq2o+{TD^a>Ts0 zGP-n}=w%G&I^)vGWn;x`_$`q93>r8KgAnscc%z9zG06$SS3qP&0J6o)G6GfPC(-rV zmk^~<<Mhe6-98kWu5dYItpv*r{;ARMhMQ^6+zhmlech`hH@SlD>Av(?tM}DsG7IM+ z<BBQv`0{v<gVXcV3_KI2e}?C61Mw`t=&9!K0eGS^ZGFa6f-nzXb)pKGON0iaXC7=j zJrlC6?YV%;&hODGQy?<CZP!$!hIvl}WE6YCKIym*3Egt<6Oyjh(Wlay3}=0Ix;ayc zc=){q-6-9c-5B_g;J!>#5v2^GNXJx94f;WYZk9KyFKcIjx!n}RIyK6N*BcEL!k_NC zpF<W4YStnlMcig(i<pYEGzQ=dTl@O@PC_Tx3owV)<mB#vOa8cbgQ}R)2u~1_u3k9S zUMFs@-5FHgKsqpozj5D>??oBHkvlNAGeHOojw-jm-3F`v483)f0?g)LRv82=BtJ^_ zK*VPI%L-c8r(~~x0G)x`D#CejZ?L#D6(s^G2>}ycEe@ohFV;%HO1G<3b`Diej(g}C zY*XC>hnL?RqQ;~=J{qTv3F@rio**6$OxXkkHZcLk^r$fb8KyPYh`@0Jssz8D9nWKJ zjJ9ac)k|mFs%PiT^*J*h&$tyZ&;Y&9txh3qBjfJF^S{Azo_Tvb#dMl{-XDE;w)ZZ! z8@cA>_~YvR)<<7AV8X|L8tKHum1P4%3i4QQz-5NVwT89+fPC@?TLLC8^#^~5B^j8D zG6D3`CeUFxX14Hv+;8FS9x45U4$u&z7^6wXX|osie7#&u7Q<uIG|@1%na`gjRr~$L z5`cu=L+Gji_~X{4=sHG#&NSFNkOx+ulP3Y_K*NS4#}IZfM`5-XZh8o(<D@KWc;Q#b z5TgJ~1;41nE1-bx-3POOR%n1QC*18G)&cBH(6*vBdOLOUbh6kqz`%30yaZI8<m9?_ z9_8ni^Z!CVg6&y<em4SostQLhv?LfjlvJ|uQ7;<0J|xrCp+WTUJth!#DBKyYXmX%L zL_|s5dIyr;*?HXC6lV{Y3uB?43;0S8=3=q;#W$`V0Fv(b=)6B;V|)s3XnI<KkAKK9 zbw1@$+G>ZT#6dxT20CL8Ayde9*&RHj)&2BwHReH@jPU*f-?_DvPuAcFV?lRmE8QQY zF<+m-<Uf7+3R`T5B>hwD+o|5#w!D$4RiLH{ZaFxj;PSC*+sXLTBtaSjjH}LyS%c9L zbV&wiYqK0Sf`{4QwbKU3u@9b}ERL77FnW%`nTM_w$$de+@>~IvJE9<QK~cq&Ym4Xh zPrOx=PE5-N$(5wU)xFR0DSPuZ>x>gg`4CUtaY)yqZBQG|1u4(=rvk9}iCsa6iRmda zx`sOOW=-~$78oh7{H)UA|FvahMd3%V&K0v6nZzW&0#4R6P__<ii-`y*pL&;lu}1Rj z(3oHDQS)b3A9Dv3?^6AN)c>G={8}TLSti^S-1=dwuKBe61d7WJETXZ&!<D!iZ>E{5 zrjImQ1#Q3)FiI3$1s+~FgT$Z3PE-l|ti!A!)OdHyGN2sza$ntu=u#u_DcWbRt`^X+ zeUxdNK9Q*Yz1_Ms5Ydy-(Y55-?ec#%rb+6%y06zKCBfZmSN@Bc<0&x@{ok7L=+tm= zy)f~^h2Ilod)LK{bQX@}M$2oTj9Oj&coVm!4!m&A<$V6l-?;RpPc0gv^~P{{y8Rsv znkRWc2tKVH#S809?ZVZ9`&Jz2m2sO@vdN~?H0q38eb863<ehX;KdgrSRgWxa__`v- zMf9$Z7bPclUk#nWkC%{n!ukWB7AIbQ;fE&z<4>27|Jz$x)=N#svN!S71lE6{5Blx@ zrqWxcs#-j^P8UbF*MXc8j=kVuj@-V5B?sOw*B|B&6z(~gd904Eg=fn}$@|r;RV#`^ zSQ8SVvD=Wm)(m>1uY2#+lsL@Dy7%}p4vbwk`*DJ=yjt+t;yQlDt^3}bCt-YY>AYz^ z@h-BK`R6yQ2%7Nc+`M^+2Pk-iGxp7hI|O4FX8IN~eoGF&bBF}CCo!H*!!j;lf3!X> z*{*(5v8&ANKf=&qB7FUodN$}Ff>QVwHa(N3u{E7gV*gy7RD$wwbA7#lGIk^SJkIjH zYfY&tnW)mSYC@|1slXzzv3;d?8Bi+$FU`Lh0QSet_N{=9dMDP%BOA)3-UJua%5|xb zNG=XL&XAo$#|mt(&Sxz0Lgz=T@5*w%GVcpUy7mW5bwcKSccTp{fIwx*K`zjKkS~#d z(Ibv)8ecLn-gUFc%U4FG50H;D3wydReEwjB%Wf&s>At*Lf_n#cBG)`vYv(4l*A~wX z(SFxl{Ac_6x<YmFRhArw{EiV(2DBwI^Hu-BU7-mxh3XTvF0sAytnBr7$9_Cs$xsF= z5CzNfvs!j+{roXJ?Qc)VfLCinzsYK3^)SsM_IEV2fhhnn)ranaffx_i@((B^3V07Q zbK1)j^<Y4Ip)tHXY>47Y-#5d$X#0}<=Qs2%L0JGaxM6+)v2$m0b~F$$0X*Hg!|*{V z&W)6}!;qYbfQ<Bfp2P3(NK|wTGv38IaDl(HG*!Rt!wX(CiLR*4$oQd^t1G{-Oyo7; zKb>nz5w4sE?d4GLU(bm{`FRO&JO@9WQwe{%@a%ddbSDhB6O<G~Nw@A*{4gf1r&4D@ zC5<4b$A)dY`jwnIQ<mSGS*pfrw&m!_#~KJ+CKcolx@2eIsO_L|56oq1g2C)BI3T|f zl^?_41nb}YMf#1%#A0jB74;LSu+%2%NScZs4|@+eh>8OV=z=zgt-3UH?;iq(5=uiL zs63?Ce~-r3?lly6FVS)4tQ@>Zey-w3d(&JyKxrJfT37&XdUSDPxu8Y`+y^Eb$<rG` zL1X9PYfY16B;#%Mb&o4m+&Yw?XE77=6D*R+J;o*uKN_O64}vs~&qZM$V-ws|h5hHE z-JXkS7OoGQ>MYFB5I8npgJ>)IQ!W+%ZXy_Z=JOs-uJC}5gNehs(itgMRK2Olx3kH$ zhEhNDM{@qX6>X_N3Pc@WZfNs(^ah_JXS|kPCfy*90OCKPap$PoIWGGM({M5Le5&Ge zlnzaNPH_<jtv-IZOS`<TE_%ExcE2`do${ijk><?>Up!h~%)eKcFxT!lP|V+@oNFO% zr?LQjO24N&Fg5)vrfy(HdjYH*ke!rSrXQj@zRbLP?zeN;T6@q^^ks7`t6<HA+zH09 z1Y#dRIB@JvX-*QT`Xq4YyOO4YGP;n@K52&ZF=A$a<!HG+MFC^KoLPd%#T6h<Ki`+x zgh|AKcwe#2-1@^@sM9h6TEO(~vk{<hsAvUoIIj;<pB|=SuJb4e#*9>|-J|j^3R+Jq zE?Rv{p>B(i%-L{{4_hW%`ZwxY^2$Z!HZK1Q${&UOU6|87402p5hbd9-fgW@4XYot# znHSLkSuAJ}Xu~YY)+j*-6u~|yQ`qvwoyP=O0p|)C_&r?<iBah=t>3F1atxN=&YaCn zC@8%u-XkV)LWJt@)RrYt)f+Ec-zWBd2~NKkQ3bR1_gt&WJg@tqz>!EOj$P1xf)gt7 z=0MfAbkvjb+wNX^PV*0p5-stOxZMY-!T|YYS=Sq?IF|;iiKu0!Y#Nv}6?FhZM1h9s z@N`ORj^;T1ojxj4psZHYx~$CWz1W@Y`=dP@gkMi+TU;`E8KVu(_PI#6=Pv!*rOh<w z%lV<2807wCuO5BlOjjxM=+4gk+RDQUmenIp(f-zxyprZzyifU44w3utpWa))-=Nbj z$A2<?F0GCKciR{`#-X(hWh$RTU8xP;ynnKjt%`yu`$#6e8|~%?xKKYsD;6rWp%Fhi z1H?nL$5*=6<Pi%x<N+nc{f`{rYT^L1R8RsI_o$&6$+1YrDRy>%KIVy73o8$Gg#x%T z^RjIo$IzH>k?}Umd}qhjWYRXOch#8kDUWrVg2;jB5s{tB|2euD_)hs?QsleV=1%U3 z_t^a6UQYYa1x;EsW{*NQ`@7xni&GJTg+}1VGXr$-^O8D1e4F_^+y#IYJtqTDAr2rk zh?Y2E$eGjDQy(5F<zP9Zhe+ifZsxuCfCgt3YYj^+y@3d1_IG*jK|d;J_van(m<D?i z&Iyqs%34f;54*77iZi%)5oHOE&hR!Bac`0h%n*D#_YGhHXG3{un9|4#SR8H{MrBpI zNc3vairc>PHE<T*Dz?u~nuiv#@bAy2vku{&UpRSqux<B~IJc^$i)ZXlf7^?QSM!G~ zmwjfXQUMkLboniwjC^82uAR5<y-<dDP|6Sm{TTd>6f2`)mAob4@e$stn}EB-3$w%l zd4M%9XPW2LA3f%F!c8=?+(5kqnco(^zj}c&^A|nJ&CMrlNB6ObQs2;MZ8)FD>5wd= zIeCugR;rOLs};c@Y3ffg0`Cu>pAVQ^u2lRV(Ya&)nw}gkTKEHnCld<lvp{t#Ie8Tj zd&~jdY2q;nZ;CC)1CDf^;h$RSf1}LjM#g;`6rMj@%87BiO{I64R@)!EO*}BXEky<B zP!Lyh;iEQ6#8P1+ScEN)zA&%=T~?qUzMNyHwNska_%m5yLM)wTXi%bx6%P&d#x>v) z3y$>CO7(pI34WQCSN6?i0bnT?o-iTutxLgLB5cKWE*kqWk#}_hK2)$e|Jf@;p3Qcw zQVlqP=*h{2|9mH$1AUf{dHNLv$#<j-n|@eJvcFT76Mpd7w3a}9YRI?Qa1wmL5)pVm zn1!^K_lG?OE|O<l!ao5yKw}9}$YR*E8olHoJmh2o>3E~z1OzWGL(?qN8FSg{Zmy$) zyR5qMok*nJqsoXv0}-{CswL|n=)n;%G25U(gKm$Z($_mngGeTIb!W4L>Oy8JmU~Ua zx9wco-*oVX@WD7TDN8_#YuXQ>9R)2iYJ$GVmoUOSdB?@#RL0AH#Vp&>7P6ypVJxfs zx5xLA%(XCu>hLmzi@v^Q&3e6^A)~(LH_xi;1f%Ee?aX43gfdcQ6}1Ak!DjMxq};?# zfm_>J&ARw_f=N@_)ud<><9@q3m-LmB6^m7`W<$5o(|3h+z>Qe9XB60*jTJK@;C0eY z$!2c`Kgg0G7`LEJW83ff&$+_8SG^+8W7E{X+E=R=ayoVYheJrQ;VzD!H}A{u&6j`` z?ovhab!EwG=de(n=&-W61qqym94BMK(S!sikdS4&)pdCBsUh>XK>svMCZb1h0|T^| zWrH%Lz5+do0~NOzE9!~_m4s{;b}Qp|L8O6hnDB3!bLBn|x;t*R-N)93>A4(tP97__ zJg2U=66I0{jZb`K@%Y}l-qMEf-rEaJc71&Gim>Hs7)9gsr)4oQ+?K4~%92%8Q=!K4 zh=iqjPD{F8fTD~FIJRJX!BX5&U519yexD9=GEp-E7r%L)j}esg9ZE@_yZNW#U+rq< ztj^=-uM;)K=__kC$#=2bw`-BkVKqeEWrc>UbG2JtQOkw(MxaqU1~O0_*XsbVU#Bfj zP`2qN@r5LV=}SNj0Q4eFMf6KvSv;A~bgI7G-!#VBFKq;G5+{un5HG!vyNY-?%bj_s z%sqdVfcIR>^sS9336hoW9+lvh`c4rV-(zD>^e^8;=#RI=Y)kZ)DRFb9mur6fs!AHV z6G|u4E<FDQ(0U<@w%6<(CNN4J+VRq`>gDSj*tu!SX{#57m!q`uTxO^VRU!RIEio3) z-Ut#u#M|E_0Ba#)#xc-X88;<4q{%?K5EQDL-BLKPgp+7p0^{hM1W>FPEWOG8M&fVK zOKS5xk%sCJFerL1o!<*b<4Mdd1a|Xnhb-9fTEL&)WnnH`ks6rzH30uYb!x1+YNMGB zbj2X&l%d;rc}uFiZ>Xm5&mZUr`k<HG8yDsL^g(cHBeJCkvvl6R7xcd7kSoWe|L;Xa z>73BqzRZE2Y5|V0>Pp(T)ml#g;cwr;T&f3FAH%#dU}y00Sl9(G!!pfeoc|`^(@#(D zzf)99eRMxzNHd*rAz@ul6;Tx8DV}}*{y<+}<as~i33L%Hx52eTwG9i4J#txpuJG)z z&{Mqnak<zXktR?Kz}_ga?!3K_CcVC>6@~M<!rK9nnGC87u0y||N#Szz4A{JYOu+3j zF!d=2y|s2uXlUoj`%-ZA5Ov|Uf%6H01YvyMFb_|-pcXatbB=xyI_#+vJh!mF+3uyI z)pr75314>&{_@%C-w`)&;kQ7A_Tc{;kXk8FH?6o({4jR&-?lVH9-jez!+Bz`M~&vC zT&fHx{^zF>uQH^rO62JSZQ9oP>elms+`mh^CJiGx(~Ft!2&rdYKJwZ-u#<9+pD9gJ zy~LEwQQchb^;6`I<Jiy-;po-t@AexvPxtEKVNXxr#w8}!oozf9TT<Hugp90~JHfF= zs#QNFwG5@>24*gO3QDo5wYx>i<sZt?7>&^BADWVEaUGJ2)AxP}JbpkQU(Ox1?0$z! zd2U=P+!)hMC@p)W>tr3EMnrJ?2|o|PH|8h}*K#!*y04>;5lf$KBL`3Ns@K!krG7FB zvsvfi`6wwo!#7SiV;zxDlZrWjzNCLfQBkqPv?Yu&jLo~hIRNxQG2F3yzHR9=;L8D7 zhB@l~QX$4OOJ0W<AJm~h#Nh$6{n}2V9^{nH%p;9u0b8$=-+k}1$>-CM5@L?bV?HqE zArq|j0Ut-?WzG`%7CKqj4sH6fC4+?gWF@Dijq~Ab7MsHyYpBUXZugj%z9 h{fk z;Y4xWUb0Zq=k^<EtIu(_LM<M&{FpN%>PwEl3BDkfP~!pzv&W!uo8I*t=BqjmST8~7 zOPAEAV<t7A*TBrp!6|iV2GZ;}{&hx0nA1BIPG78{8UKzejTz9K^5ga{5J)KSt7#5h z8E7_x2QntS9W-SV)tVHf)mV!lOdxYCbmyWLd`9_yQTNtyS#8_D@In*|5DZd~v`FcY zP(n~p1VI`>Qc5YM9~B7^X%M9(1nDjb6$AvNJ5@j$ly2TJANM|YyYKnE@4bJ%&*z-& z-jA@>Tyu>%@;kmGB}G0ppy{=|N#s4x((lJI0}!EoSXkId>lLn0GyzT=0CV+Y5<6?i z(YD&fKdRm>bCJeO{){em#s(mNB6`3>b~VbMhcxD_ebI|&eH2IKe6-wd`@@TT#+yMJ zei%0H`g2Qe$>J_4&Y7&EjU<?|R4_DJ-!c&m<5!<yuPP6YUI)fh_1v0>%a8XYr%XE) z`VA_X;CeT{6xn|M^dB0{dcEzO|IlcHz)Ag+Mw3G?E>&(iTZtu;=kY}1Q7+t3zjr?@ zsdd%&@p^Kwr=3?Db-^*Y>UAkznQ_7KlnY#e;U06t(yKP9Z6glla(W%5&d<&@#7%#! z(J?BVGk<5c$VMo69N%$wi*4EAAi+CV*%)31-;ngIH#OF5^RMY7nhWA)?oBtDnB1%j z5bqQeeOG)rg5=wacZ-m{(<xs}<XUp2lK+)X6mW+<FOwkUGAnG^f!FK~X9^c&#DG)s z+0)6pl69vmY89=z<gCVg7yZEPeUx+XM0)O8!JBL8^pu+5P~6&6Xo8vItOZ_(zacbS z{6z+HDIBH<huFDkifVlZ=#!q&nYOJ=-dlF#osE_%mQ}H6xLbJpGAl)nj^Il&b8uvS zyz9~u@ci=SiH0XM71Ohc>~-ZlM?74lWl`;!o)(xJ2ZakTFuo$yAXJjTnZj28u7;{o zdt~5x_5H1+ZqoSU(CTICL?}t<5;_nOp>OoyUiPXmW6Q9XHhc81W9!10WwO)2)Z{(Q z<#$%yQznfK#QyP(_Xrh#vbrn#K4B?p_D~0@&WYQ2H<O&l=I){HIdCjjr;59sd<r`* znnhHrdYzViaaA?UfA`Z7rHaqrjt6EQhrY+aI5(rfyk3293-(cJwZZ~y-v0by6OB{7 zFG}{RD2HT2pw53|+din)V!`uG&lK14jIDM-sgiMXh&mWkLYN6}e?yZoOkc;Zs+z-q z>f~#-O4G6X#9gGRSp*$0R1ha0=!Jd%@nb;6;xU1YORCSCZc^WG$1#SR`}t$ASc&o( z!muzkWAUdR63hzz*G%MkXT-V%u;SErblw8fmdwSbZ+@}#k3?)}sOmNeSew37jP5lw zo6c^omNZ~|N#RtA*<3$bxoBdPc`%*$UCjmJ$^;8%#xR&@LYmx3bnuK@=qU5Ud#E8y z$xG_01vt3^RF3xn_5V)U%&P_3#=qT0>>S?d-R6}_Y)c}{?ClYaFBKeUdzK%(ZD+o( z`Ftvi#NhsNuBcRA+HjR?xt8uJ^6zE)ezmC!0c%HAz*Y9hjTp5f*<_acg>|vw)4uwu zy0psFodkka+zRy>caNyhk=CjXxEKxr&Q$y`RZZtNWtzJRSLubJ9fRnZ3SSRnD2xJz zI+koGbU(zAw14{aZO3wtuE}y=#B;_QAv4olg&$t`IkR(SG|ca{d1K_#N>uWysuk~z z2!x()ymuv1<*IPvyzS1&we5sY%<?g`2M1z4Q5@`OJ)BK8updrE@flzJ;8K4%D!`9< zntjstBD9IiHg0t>3`dLN3A0phk$9E)>ZCR0fp`4(t=2?uDZkGDfJ>=ck2J9I8tn!q z?%$q}oXN$ft85=%PVd)OQxEOYEBJmWw)pu$(c8sWimiNXJ5+C~It}88WtsUXdZp91 zI;syJoGB2tR};csw%>$z#n0*4(QzNZP@X40DZ?sM3vvtw=KG8{Q#9S|KN2bdl9h>V zDTZqJ@jF*8d!dnww}S^-U6ox6KP;XHrm{QQF)9`_S=t-17=tX{ghI7eVJP?GWZFml z!pCtohlu$@OD8oO3EyYJV9WADjBElFlf-62YD$bX7xf$&DRxP&rvOBeyt4UC^VD6* zjQ;d-R|8-$($cFFNojS_IqN8z;X3lMI_qd17mU(qHm{IVSQ2ujhYq;@444TkLa0!< z!Is+Zn|343zB6}#DL(ynF7LZ))$aUUJBNaS+k^(UO)ga{bM_}3Yo-7S@vB#04#_!+ z-ubvDR&@8t>MSz2dng&YyNgy!xKH9{Z$|;{tV?QYjm_5T<lT|E075~}#Gw19JYRFZ z<9Cf{p1RkYsQ|u}5EOPXzACl4R4XmZBO2?OpAY1V5p87FP4#mS8ocV*pZD2{>xfg& zt*r6J?X{R44agu|`>ZH9z|vP}ePXQ#IHG&ot|xw=Jh-$GH-A`}-R|Zh11w7Xq>nx$ zAS2BgJHFu}6?x<s-k?G=-I>mBxDbFnUv^w+_CKL7pN;B~0#-ecIMV~(90j>_>88f# z8K&{aw(jwM>i2voM(^5`^7vCfODO#bUZ#iF3x0`O{V>s6ETUpB`3?<rVM*sl&&&gB zkJ2`<sH!<kcQb;Yw{uo+t?s5F3|yMt_!*~0ad2iuW;Ah5-L&3!4*H6)fDAK8>v`*s zs|?u-F_@?l9ShlCwt2XM+b0C+_c{ah1CIAW_XH|Ku*%?)2AwY?rZy)NqS6!R%-NQV zNcQvvM6*!WKa-24w>)ny+*Pw~T+idTcpXtoMFIwAUbJFC6vi;TtKUPZ&4AqY(pmdV zeAyVWXjgx_7&tkaSg$@FMrpu^jU+)<7Vy#++f2j>Yp(}CR=UVpQN`6BXaF2gEk#se zmj|P$JVlhJ5z_{KemO3#ZaJ^dWPIUWvf<6Q?Yy*yf3}UxwzmG%i+Rjvzd=qj?$)K} zUWTTY!FV~CI0wX+zR)k}I7~Zqy2))hceH`GX?ktnuqr=ACkK~h^~J(cvV#N+*DOC} z36NKkm2fUlOJ?+zWO}IqRw9`#U*vc|T*}IFK)v-bumPc(XkWC`g!f=1r&IHivRpm) zX_;cf<7p;}2KG8?i@f%<hhYuCGg63n837&=yH`wZ8`8uwzuOmjO6<*JyeRVTX)%^$ zb63q@WZ#WDk2nX;y>t*=S0}6BetQF6#Zx5Q_<Jgx4RtdDn}#><+!;KPb<5Pf?@7LO zKUC_e3RNV^&*ymM>i%wN-zI)u9SkXB6`szj9O-hK=^7!ie()G(yy*qv$LT@cJ_-07 z)Iz(z`aWR{!M_0*jgEO=zq(@ko$_SpW!UyF2`h_ab=F|<{<?D!J_(wvDev#PLHw$D z7c>IlmSVz+Ptq*GOld-yDaSeIA-3OK0-JL?TNOqCJ)d97bk}(<wyZ9^wb%yH$Ab=e zmvsYuz0oJ?`!ELR8#V}O`+DR%B~UM*d-6fkMXBgH;<l${e;4W{Yu2NWbyiJhMh3OM z=d-x@IcjS<j9D)t=QGQO3(aV79}GL3-ElKEmc1&r)K2ezk|dZ#%-2BwCjJ&=jBt<d zAye<sJpwPnJuayHeGj?U=pOjY*ENHFATZ*>I*R4l(S#`Hbb%^)c13F#i3_FwZAB{} zP}0!Uq*?2MvhXv+fp2NS+F^&ZALascxNuaX0zW-gpS-Ek^deMlwIe<#Hg}a+O2uFX zNi4p*JHET1srhyz#~Bj7FOBN5h1(T7b34Jq&qc3p4@+!Ig+*Bmzz~{GpFTxDXV-13 z_PCdQw--qTb`(8=LCCOc<mwY>DuwH}ESH_HLffSH6t6!{qCgdcM<B!u7GD9SgH09r zrCMl{+k;B@rwMcDRO%hs&R~-LznAKCqG_qLCAu5r>wryJ_?Xk6=^-$e+#KjSw=NE$ z>nuY*nmWEb2BApn%InzO*<=_QaQy+(tV?nwtVjkL*A-y25=NF4P}r1JU_rh8?tcV6 zOLt~c_E;8vlfX{TSDg~Sj&>C&b4cp#+1~ySBvQP;s3ntu3dx+;GoS9=^u}SBi_4zS z-TH*{H?BUlJKuilXBoezWp{Jq*a$-v9MPcuI<;p2x$icTc<fd_fzFdE>iOo*&o|!? ze{{@Zh9I^9HP=`>wY?e%)3OSzBo$RqOV{L|U#L7JQJTa|DEs87)+<RDBAg2%*T}wn z#*@4PW8gxaKlnTuh6VURNkUCpS{LSH5A1ZqTZ2|{#HCnN)ZO)(0Q=9U84(#{Zwh{s z2uMcIT9;<eNnvMO@R&*r=aL6--R>ZIEWjTje8E}7=35OBw9yIsJ=_O-^M=k0(TA{L zO0#&93o_hgs)Svb_c3^3_}9Up_P>^v&(5{tx*Jn!8WUd;cKmQqmmyUxJqSS>5}RCG ze0AGft|uBfYCt#K#_19%&^UJJ8P74f{q;Jr@e_~<geS~HgR;@^ahR3z7%>q&X`=o8 zfCCTz`GAb*0q@kCEuX@zLd%I`#U);%$LCGzj({q4gLO$h^VY*~>gYXSAGzBg!o$7? z^*JzNI2+-UPRI}ufkZLLR&imHX&{`yW`ckXk{o;%1Xa@?4{|Mvivt5hm(KlADN<o+ zyk?u8wy3#8QP^)FWi@sXJ5xUs9o@IKOESggT@18JV*xq+vlEaTz%Xw@^f37?@Ar_U zqLi-{;POH3rcMLZD=1``n5@v5rojyT{h?@RAgRbWL-F^gY=%2qD|2h6!vW?BwM(T0 z46Mb2^|oTxn4C<;$}jCET1+`;s_cB%0uctd8hBHtlAKzmS@uM@?kE_+IKNsWq3Z@y zwd?8b_cKCi(@Pr$<lto<G1U}Lym>W3aOeRJb*4;jD8&c0IVe|M!~m)U@00mECHDJ$ z;<mGqW5SSBJwvQQf=N#=wp|Oq!dWa$D!%%4<Amr)fYivqoLeCt!h!hOipQea0O?@i ze~CKggQTI^8UNj<;l#E=vjtY=4ODV?iNRvsZ(K*ru?^ns5dp${-w6_?&=h$ieSQ6; z8pL1&XM&tO5E1Ll!X+~faonLf;r#@|b^kX>i6toJTeT6shD|_DIGQ!nd0+}LYL@I| zBOZ6RsY16a(U6gaS)wZyJFX~sy&+O%I(nEH{Z6es=gP8n;}Ogzu-;WHd|@{(a>T~E z33550Veq!5HnAnV-f@>)m)_2j9-98i?C;z^3}X}>0(BgEWS$Fs-v@(jT}M!63+9*4 z^ybe;uaqW@G5cNPJje9UD>6_P_jlR;^QKspNyZ!@hCABL!KZA2<-q$pipm*KeHn%R zi%3*Ox0%WBdg}dq^y|3P38$Tf=%qB1C42Ad%%J!23h<v>tB2fYPt#!mRV2Muj*c3n zFpX)g%YCaWipVF98eTJA$Z=GlQLt<@aR6KN;+Q}_u-09(w{y&9ovnv?83_{f!J5&- zw9s0Rp_Y}`EC4F`>%{+4LhzM$KHlKYG`RtR+n%Nb4CG^xw$C>Q=eD9Z5ue+TR}edR zS9po~=Sf`ufYO^;5fORD(ydv00)o(lRm4{0@6;ZTQu{m-5)$(ZfPu?RV!m?lZ^i%5 zV>*Cu-E6RmC%3Is@{h6P#S%t<P;G95EJqS-R@GDFPLTgP__xVeK`)d8vPM>7uluf5 zd0O(WzwXNz&*y!9QhCuC8!m%9&N%#X%MJGFsX;kVO)hw6i0Q<BzQ@Non#ByLnu$SG z#NxT(uh`N0b<-5};$rpt{6<GxX4LwpKHZ<`CIZ%f)7y;#vslPGa72uN)RNhM1~5@# zbc!!e`aN+Sq6M9U;Z@EE^TW@JI$ng5#DpjRW6GKjM=4UN0NcF9ZJ|N+i3V}e+Xaop z<#C?TmfbDMgqvtsF5nflMpR<fL!jJ5C%WYV^fX@amv2U?Q`MCP!i)Ota!89GPUZ{| zIgVpApi-j4Th|{Yn56GC#ZlF;?YSc)eamK2SB}s#ec3J_nEJBCjxnKw2oo&oZjNwm zf9JxBIWTX@!GLXr9@P5|PX65?ukeI>+1v@v%<xuj{k=sY(AvHC7SMW}z68ge?+F;? zxL=oG9@TtE(s>!A<NyeEGqDQ^IAX&)<noo!$jwa`dZ$jW{qlG3pM5A|G1_ajpX{(0 zCr!ajwqHtt$!O0?A&Cga1jj966GES2q-zjo6n^dr(nq<CB3Hzhv;Fgzi-Fqf&CyRE z17`g|%6~F@!pa!bglo9x195tC_Cm45=PXuTlZ`y7JjIbBQAB`5Q;VT;9q>-w6p^M# zoi|6okm8>o58~m^E(@=QLVyTK5sviOXHeOF-vehYxXB`-=mhBPopEI2*$t4h@%OY` z2n&~?puALgcRa}L2ZR7Z7mJs1<^7IhQD`n15E{@sPcx#v0B>(Rv5Wg=jl0E+Ep$aG zW@q1p@zMH>&zzw$1v|Rwtq)eqTXpu_GZ&VuN5?q~q=<on97(fjrS=dEq*IM@{1E}x z15nvntqb9R)dsN-Z@VU;qYHR&&~!lerVrEP<6-(;OlWx7w2>v<9Y)LkNrkisdaoJt z%16`zGxrKT#)He2r-^kK1ozU}1@r@}&^%%>n9uSOQ^1Fqcxo#c#B;W(Ge-IV$WOp2 zB(`c*S&Z|6wRFOo00|S2CYG8-E?vQ0+Pwj3;9guuHd}ZyIeymN0)oE~0OtA3`&qlh z7Y<K48?*2-^mVORR4_H{+AXaMf>y`hr43b;q-dv<&7PR8i0P84jQMK8^6M~E(k*i= zUW@z=@hi_V!NvyfhA&UZ4=xE63GR~Q_12#`f$UXppaHSU2y-B_O<wK(b7^8#+=~y< zPSLVG+a=e@QP|JK#6&A-b==WqxY}=JC#@C=NT*f??hkc0b?2G2Rn?f#78YC_kWCzN z-3g$feB07v&-AS^BR3a|Ao1--7P53_BmTL_WmL8Oe7}5wP8iv}pOuH^e$~n<(o~js z>jj@K5%fHIu=uZa9e?cV4*QhHoKN-Ri1OwxfIm<aqn29`Jak%g_VHC=wV&Q5MW22A zA$D;HQT{agPa&2&F=)7+u7Ku9_mrj<)(uOeUMntcj=todt`sjvx67qEtCxtX#=!{- z2rnIBJwif3a?aEKSj8mOeQRhtw6WeDaL_=VAH-+hp>q~ajGwq-Nk&Y`&l+?udh5#} z4bXf{jcQMGs$kiKqRn@oQ(@v`v5!e#j+dPPoUyleZF=G0S#&S~7S*X`9g4a#6EnpC zPd@^{De4Vs0PWmKcx_>Fs)Uy%Jp2;vo^ql`>E3-~=8pvyWn~T++^Kr|0Y{CiZ7ZzU zvP6!|2#jwEX5}c_8NRkXa_wxzHScq2Q>*+}qnvM_&JJ*9#vLcCtOn_pd;wneepWXE zMW#!>0pyi0rGQHTi4`Zf&XSn`5#pNa%CsIWI|S6(j_(QS8DLiX+7`)o1hW*ZSW{d} zA6idu?fM%YooAyxTtuStJC3rtCYe~OmCgS>#IoT_<FYHC<OUiah{C~9sN^Q2+BVUf zX3{$pU&(H($NZ`{X?4CmgkN4e`G1x-GcF3tW5h477pNZ2{%3i7RwWZBi^07cMLa6d zL{hvynF_2bFs>~S3SeNq5#CpLV>);ArrYRELtxsN+n$}P6CGN+>R2m9k1r{fE~Q(C zBA*8;vM;u;CJ>3Hl7DNRq2S9Vd-dVg15yz}GPxd<$Z%f}bmw&taBl<3EX4uZji*og zX$fw@NfZX5TV$)D>fAja=zUCBGr@yOfZBix?<3eDZqT@UXpk1*IbLt<?7XNsFDosb zQS|+Q;}71LGXO+}UIA2IU6B}r&YKk@;K`it?J8Hp6CL!nMV~~?CPv@}&n$Kaaz?%F zl_sne+{k|xB`j*W%Mcm~Y~|lD7{REa`Sv97{Dr139G>^A@$NlLR^5mm2AvzLQ4DN- zCQ!-)__*OZd&T<%7%J@wUWlYNQGLB?$`uTY`5QQUf5^3P8tkU)2~wx5BB4zYv*AmH zW?4IhbED3Bw8b+E{Ke<KWP4{B?QT`Fa~Fq`Gm3aW@GijI*ImsHo8JfbVZrf!*Pm0V z&8bVn>nf2VW~-UoYkJ6DNWs_Ht~kJ5f-zL@)?whk4j`*sC!ZIikt{;V4cvak5*d%i ztX$ri$p!<C%MPXnRVVo;`M7&{b_qWKtH6Hgglpb$m!BW-R2I<XF6-ttkr=*gXE^Z{ z?)ux&We{)whTHVebbDB0F!Xc~EIjT3a+q-Y6>?-e6mKP;q*ZuX`jho?%1Qoio?UN6 z*G7UzpR#2Hn21ej<X8=eP~Uwm_|%#CZ-0DM$%}CQu+-X~l*>kJPLyz*zrRPb*G}F# za#(eo{X*a}t=#N0b<2<r#mLqGsi*iMMy%o5Ot4rxaKu<<fxG8-AoN`d^4FIvMk%SF zS;?0KE`@Kn!0x2*@?I_Eo-hxKrH>c$yjNps(%kw&>JD^|oIouW8{*Gc;I004t}wC_ z5WdqJz<U&WJ2d12P<ZhlA0S3m>Ck}kaHTubR@3>8rotM&tCP93fk~hgX66eD%M`)S z>jjt6>(57PrF34~^YkzOn?V*O{3I2JX@p#x9&jk%KgmuaoG=dISO|gw2w3%>KIHcE zG0N{SOYF?vujm8HLH~bUF!b_2F9@zN7E3g6@%3r>*FMC7S%;}Rp|$fK1uGxX<Ise? z`wu0Iytw^*0)|plm68ALG@?Ai#O1`zT{6|5vTlG3Gg#oS<C){>r)cOgxJpf&!pdS+ z%gB!?(bmO1{=GdfmDwtA*RHPE!Rhp1`{j5L!}wB@^^d49Nfq}ct-3WjkYg$Tl9|N> zbvJ^TNFpW3H{emlSZrL5tfGYvvC$D48Pf)W)0Ka&(Cl*Y=B~5<q%^_!S84b~ocRi* zJ#(~@icG5rk{|tRcY<uz_GlLmwAqU4VcuxQEtXsxo~5o!zx~SRd|YEgTBPqMSX}kD zKLt83LD!9d?Z?BGV03O@Fl9OsV9il+5mRUMi9~G>Os06b*Bqib7+v5)zasm0RQ>BU z>D~lZula+?+H<4D(Sn%AGtfzx!s%s8Wo?UBkB(aml&I=%P2Q}3$!|VF?*G68#Xo@V zZ<Rmw8K4(!3oVHc|9ph+GH4pXcn#hwl2qWk7g#57hVz|e-L0=fXTKNpNf%g<uT5N& zDX^sds}a8L=E}K1V>fXLF2J@i(F%A^7ic+G>`j=;Yr7hZpoSTx^OqgB7h>FZhA+|C zhm>y3Scj`z69Y(vFXc-056hmMdFwx^#ywZ=Z0*GunLPP3zfg5LOy|r2U;<uS`?ucf ze*<~0d--1B9HqQF>Y(F61rvVs?8UvPh+@r=DBari);dNhtf9LoyYKdyp!FeaW_8*` zf-Poq<kYDAHK!or2AOT|OXn{FTx=a^@k!o>*K-~zGw*U(5Z003>cz+^+UHcNvOXue zSpqXmZu_uZ7hxkp;ka2QFf3J&6Usic0>2|Ry6VR?<aEm0O}r*8BxqRVT4oA|IB5ke zx+i`C_u(^Q1{qf{C4WVQRbC>;$?%h2BrEVL@uiK~2qmk<Z|cW~@~Go*9<b9Fu8K^s zkOyw;_0feU%6Y&P6*o!w>dvlIzp)&Q?1U(fjK@Gdw-=F0$RC0fj5J+_qy5x9Mrh^F zy6#56mkvWGTp@=sz6&pcXOav({Yg8||9n6De2;0JhDj7FzH<r97iVW@uSF(M0w^R# zru247T$WPxW}vzdwo#UC#^Qy=iUJ)Y^06c-lPmfCosO5lyozQ%IC|}sXrxPfR$fR= zn$iG|5ejt)UM}S&i7BE^BMs=cLTR{d=)}1IJHjxuS}ln1h1xJ`lH*Uk>3wsuuZ683 z@ls%ahEIPZC1&seP{&w%fE1II*+u5?1sQS3klb2B09=^hd`5VH4Y{nEHYG{W36Dvh zwMl7%vgI9{l4$(!!y9-_CsWKn3ny{p8=hcdXJe>hXUBczzWb?~<F?N>Kb+Wn2%$<D zU_x$Mtvp3{1ztWevBCv70A_XRSA+Z3m|TT*nl#-ALhJMA>QL6m@VBPwr&&Qb6=*gt zy9y0gA^<r=14a_LT;BrUuB`ah#I<?=56!K(*!`-T(G5hItU8-_Nhp(rF(?*ynAwQx zC9ritiDjX>5zvE?Z4CD?@BP2ibbbitN)IqCh&z%bw#-mx$|xjmi(Ft1a|oo15{4cV z{!T~YJVu4oNwaKd&qttpu%mcflBAg50$tx4auooe0Pa<US1A4YgzG5efPf~%ZM`jK z+0pcR{r|kQnouHJ?dyj>*}U6U{ST=VcFc^2IlS5x5CZ4%!rFMhTt$37(7zVCuT|0D zdT`NDuO~pemR;=b{m+li(KRL1wcx3Db!GARULV507tS|=D~fX8UYmy`*iGG?^{)Dz z?V%kllyHFo4h<&a%-0<2RGgsT@TbN6%LX&PnA(7S@rDlZtcSr)%$J(3HFcHD2n0eK zi`%+NAb?2yE&ERLNL0*sxGE$>#56VePQS~n^(28&3Y~*%%sO~-GmsP*mLdTO{IH&$ z9)RhP^wYj7G^($wNZ0CHBVKXsN;6yD>Pn*?OkFyGd3aNGmj1<44wX=#3BK-Serdo- z`=&kM%w^~}Nza69#AFcd75IyU90bI0YyEuP+^sAdodj+A#Z6`LOPDwH@3R`-<1XV@ zq~tKu_{|zOi$XUbrd_nD5EQVS>9rD1ViVS;#lFiBn^VBOFuR8$+6$nVM(<i;6r+Ni zC^<WX7Xn4Jmk<E`FN7zmS`lC7oJ9$sN=N|xX-9rLSj~bc^{b>Z*(dX?@8tJRtx8B_ zCr=`{AOv_@+jI3q&kSsehiG3x`dbs>AZj7XxWntYl+7vzl>SHTi+*&Z*E}g@6$^NU z0J7HdF@&HiVy*wu%T3#C=2a87z7QUo{-KUDLkXgyoek(8$*v&$EZGPuuH^#(HUO$0 zv^j>AT%^m;XdlKs076(PumOu^Zy>#gF`Vpu&=zs;%9SnpYi(g+vL;)J{pvE&SB1Xq z#`C*Dk<b;qv!nmkGFDx-AiI+Q8~lqk7PtRPLjpgcQla;Y*A6(3bloz|M)3^`d<cPh z=}I?8xx!Jp2IYQNTund!=~n!e?_2+vPJ`i|y5xRSHeXzA^wPk|eU_orVFAxRYIDqe zJ1G(X_&E+UnvPA*gUpAVyDLY=U^2<Nc<Jds<yf-RrtCRnrEdhIhxPF4<HxXLYsPDd zIY!bg6yzebWO82yfln7&v4bIZq6J<7SH!DV!AnzJE3WF-k$3(NKlwpo9x!|W_$k;4 zT@BT%uy!TB$6`OEFZEE6^Gyf5lvsT%5rAsV$Tt>7t-)~lP_WLbDCK}ixM7i||Jx$p zMT1^dI5`ThXkXiJSAo5bW*M6BdTg`5P;^wAXfSiWSs<teC&LzmeF^WQ>dps+*K%!s z<XUu<YZ?C6T1TDepkkGL3V+Q*__J`qWVP6jKT4QV1(JW?U216S9Wi@t`wrFlj!ZXI zyjy|xGxcU>7_<L*WjqZ8Z_JtkQNUI2e|a^kH{4W0>K)^#p(P5FETS4a1ZvVq>tgo| z#l<0kxXa9(VMJ$?YS5%}VH7eT%vqmxh0gZ&+>WkVrY;B6y(^dzv~c6U?1#ai!#mD8 zuF1>L*@1ohgg0H>R3S~cd|oU(>|_5UeKWIBp&C{uvk^vqgbD`u$LG+Sx@T_cIwo#b z?5yk<LTdoN6EW}-eGgFH`~GYF{27~X9?kp8CxZL>n`;*1_j^SkO6A?qm|;Qt8mKB8 zms4Bc6MuX0@XZXI`W(jvW5@P*de%$yjtQkd_%j2+l1$`4M7rc^`oC{}PTlEI%HYea z`1PXz=uXPZ2FUA*b9rdsf*Y0(zW%kJZw5gq&x36X7hCR*pOca&{ZoZhK@DG$Kf4CM z!z-}EiVpQ5XPcs;bj;fAqjtA6MMhB5Uka5yu9e7O6s~RKLwufcC5%IBL^ab%_0Xjd z(tjV<sCioEI<A*Tq00pGK$K&cLafzexk8g>7P(h`A{*NxeVMaqQZz1d9jK)O+H(4? z`djxEC?crf3g8+4<!3)gbaPE|a~s#S0NqI@0PQ8<DvF5aHByi{bf#^$aU6dsN8erj zYU`#~^r6qh3C5^l13GBYD}%fnOmUla+G(Poq#Q-Y9Zz*kuTKM>$nUBF<_%FWgKluh z5S5Z!%Nr`tdkmy_y?4=J!%KwZWZ!!m69V7`cGeTU-7KzWvZmPkAeVQ~!}jU?E?vZl z4rvT@KBgBJpj8S;vyBg33Zwtmu5=}g3f>6Ovtw<C)8~ya{@9C;K$o*Tn9wg91w*mI z%hZk>Qsf_$Gh|Q&+JPr1Jq%Sbi(;TzMf3*6J0|GJ5RwW>E`yBI`*U;r%SS~#8m6Z! z#x+gRKJ7&&f&0nHLd9&})skv~GjanUrI6kb9DEQzU9q#xBlROg_1~9(zTl)yrroaS zyde%3?0tyAkiZj5<$z#xXOsfLw`&&;IJ{yPZtJ=x^vwfm<YNE2&Tn_Q5O2~5?fOEx z57U$!+v7t#@*P_CgV8(&)X4-XY%gMkhjhe5#8j44|CY*m2oRg;QaB+@eBVglvHQZf z1rzg|-Nf8}C}}sJa<l9*x(F2X!Z#sIc(*eYb$<{}A?tsl>GwNLgHbiYsslSG+)a#c zQFywNU)cR=&mQtB62ZF!7i5%f98mjkw)1R9O1iU*<PGUPGDq_%j)gOE=4;;n)SKCU z)+$|8dF6?s1DWBEg^k;8g8ha;3OvChKL$6P#OW7s#l`ZCQT@(CW08@zT-XkTb*q#$ zQ0tW3#wRz}f2nv8(NXV9g?fP+;#4?$_G~HVWz)M>yRp?{)L<vSO0<8&cD}EI>sosV zy{`b7SyI2rJJ$6<&r~=?c*tat9-!dV9=AVt(aV+@d!JbgrSE^<YBuzN4t(?I<l(@l zzUCq%ks5EFG@E^m{-s$JLhjMta_K}mj66BC4td&qC`l$?kC#2?e*$)%K9qe`2+qLf zQ#hvBPe@?k-0yAff<f&RNH}W)<KkYDdQ48fJi#SOmXcc7*udfO{MdUofIx?`C`Jlp zcis+^lU7w#UE@?9|L>0k_&<0gDcvRyqiQy?)Doq++edjKA+U0j0gZ*N!nu22Aq4eq zEC;V9MjrAW>0G-v5_g+<dnxJ!cAD?M|1j#P!$y4C-hQ2JziV|n$gh!TjDLWR%FY05 zg+zB8Z_{}dBO{}d(J(FL46xy2Ki=NB``?#{+D)+lli91DtJK+7O+1_j9?bTn&n__s zzSJnNyM<-HQGE3#_?ox|T<@iTrDp3AQ{X;AS+S~Oa_s9(LjYjlb|4wG={rmbb29aj zz~j8WiwZ=#5A0l9>W_;{-`N|`Jr?60{d4EE_J4gG9yHSiJK*6=!G`P4-5JuN`WDM( z`d@#vRb|8;b_>7?CBW#Chu&vtsrKmT=wwfB(vOCSVf$?O+rK}xXEIP+@lek0UC538 zLQVZ@_JHVDRweT8;1%&(^$XEG`1&v?0Sa9^Z4g~1j@E}yLH%T<$iuq^9uIr(j-Vw- zK7KzQgBa3^@1=~D?d_-MW}o{=M;)EL>OVQzO-gcq?_ON5al?z($oxVH<BnYqWGqu> z2i{FV4cg$n>BF!6`~DJm{OjNT1ocQPK=}9mH%_aKoodra`z#{bA4O|tf%&*X;a}t{ zj_?kL1pIRm;vZ)vCLtuSc)7uFdV%_X2`ryNU>BSq2KLBC&&kPjUUlE6IbGk#eA-KO zb5?dSK+^uI6VL^ibHs?=&u|!YG&yv6ccUNd(l+G&@Ne;}-f<`bV?7^^A;~AapL8+9 zB%!*=+updF;+*2{W{>?x_zbG{l|eRJ1nTCj@|k7JFLi-V#)D8kPz${(Y!k8s_~ZGv zME@4j0N#Tg4X+w^C*7{pA+mb?h?`d2rD%I=&fUB>&ukqc_p|c7z^S_k;aBqgxxqmS zPU-*pjD~nDNNwP1U)+PYF!{LV0Ixo|gX{WY3+&7sXa`@=4!>m)uUr07L{>-<9eB}3 z=3wP`JzUOkszKIR$f;(EI`cF45sKvNs;Y^=Fr|IMbuo~|42nTr&99|Yl`nP(g-<$L zHP}<wfU3gep8xr1Hon%M2x8w0k?60?%@Uc!RVTe8pKh?S>$Deq5a>MHlo>$eTT*QD zvGw)CthKL?57|NTdJ;mkW-!EO<zMm`J?$;9Og$CjqAcdL__N64L&!vNi!b{K5)d-q zf87fy1|=-A=Xv8bR}=o~ouPqlqo1a;#iAz<Y|S0_X@33iuE_8+-u5!*`yARuN|3$@ zVM*66R=!>RtOZzp-tIX_@j(0ISNWBG^?e$(NUURt?1la*J|oB&zn7XNN@sp`GtrJF z*N3K&PdB&z+G80yJ5z>dgHQ^1@gXj#J;&&ZV)S_ps9yMcu^xP5*XZ{o><N1LlHJ$6 z2>-e5+egR0*bp$Rrlgv?&7bpb+giUm+~Mj=$`?6A<SP<6pCiG*?$BdI$)S;x&^e!Y zCHziOl*4?i^ar)B;%ued0Q4^R@lM{wunMNizYW9*I4VE=J_nzgg0h#AjLZ|wJk!8V z+v;c3@p3GO7kEvZWBV!cNR5?MRi`aE=07_&f%3K~GBJpA>yJ9>HZr@2J(}$`&+Gsw zNh;VC=^>W|zw)&ov|^B`SclL(>5R%7(=RXiTVgB@T=q0#>L_kGgx|6|9_K1?-0`Gd z42+eyyNs1&Ec*4_&!M#dxA`5CNiMe+etZ!D@}7=DYrO&3Ei(!0=GY4_#he`$SAfJu z`zRO3)%crrvz9!Q@gTc|0*8N<pLZMW538DUmoRbvx$yob10BlluuLQbUsWF2nVVkT zxz-@%N$j&t?<0LfRW&q!h2-MzC0)ZW>0`LQ<csTGQq2MSk`Ds(_r2scqWW!mp-hIe zR(QdEA;=D#Kf}e+)>h?w>ml*Ite0cjyxH>}KAF`r5;BTsd=(M<g(^KG?5S@V=bix3 zg|ViU5!bCq{iVS1{_!y+jtmVS!~S1xBl)##zK-oqS4Na(fyG;tG(*G2Gz+bw3RmtA zdBz3M6j;qh1QOFI>M=T~^Lf~69W#-@9wqBlxam?dGV7YCyRwJ~t_vR&hNRfm>hC?? zYXP=#`=Td-)*448-Zqwg0Q>Mzz_gix&VBP&uf7*u-h*ETfVnZEIsYJQ8!(-3g+3jv zfNBwN{V3X(Z$s8tS$x*2n_``zLC)hse8j%G^zq?)eMe*Owx6oZ3DsK)9q*^|z#q7X zU$;F8^kL3zH&XLYhzSekwLI}|zyqYf&f9-x4L7X|Idi6KZ9Lw;JzcBNscah!AspXX z>ArnvX}U*6=bb|bTV`n-K=#g0EMx#F_&A5eWc@V~t-X(B+f07g@3--7B#yOu@<P9- zHq+BvLXe09J@UQ-Jj6I!d!g0+)I{(7h#$uU=x6_aU_=5MT>{txey}JZQ`0c+Qp33d z;5XMTd-GZVWE5ueejLEwDF-==VjH`(a*h2&>?cEho~z)upqnMKdg`0yso8AeC9)wI zP)J_ud9fkOV&tYPtBCdPGx$3nhC4qNIlk#hO!$?d@~fa>w;J9645D_(Yx$OaYL<Nk zU-~vs_m^h2!IJ`jK7>q#hJ~f%<>d{|sp!ni^@Uzy;_v&~@Kic2R!^t>f(cQ8CZn;s z)Iuub_a?s!UoL`$d4z-O$CB=?V64Q1YPnZQs0)rEA;lHCXwK{+lht!w3I*+=<GR#w zGbJUZ6&h+&q1bm5@&vvaZRuKqV%w|3K?%@aIRP>3V_o+xd)Hr|D8cT8^Vy9nA;TsD zXV+Hks!3<89&N#Ma5wrMsq3%3@-Py8=<@T5C%?x=B>4zlmMuQQQ9(y0AW&a2D^P!5 zPOJ(3$lwZ#0NplJ1hQ-o4W+W~a|7=RS<JRK*CvN5Dp)4K`)L6_DOP!a!>%{EZ^uJM z>Lx%LmAy#m`0jp{RD8*ICW-fCRG;zgJ%w-lkA*b)mI(10L=gBgycD_@2X-zVB3scC z)Opo5KU!};8hZ1`h}c$;{?ajbE8;uI$dJiiXyRsQNUmfYujOVas^#9T6Ttfn`Bd+n z$$5ViV3Mxskbnbft1ehd2V`p{2df8qq8Thzq&(g}oU=F;Ber>Zdvm$~j-e?i(^g<K zB-3#Kvp)qSOI<tAS?EI9apdi`_|i9VK_W3E2DSMXG4YQ*D-H#SK_S*MGG1kPj?nNB zwWr1K@hDA!9dVF}03Aar-1=9@4Fs@WD4S2%5TMbgV$lfa-lAh7w~BalYaKi$a}H;C zCFf7e-xV6G&N5^ilLbSz8(jN;csgIpaH=1$_o5f97x%bsw32sLTu?8hm2~PK^Nx+- z`k0pv4ovsQ8=3pt3U*0Sc}$ejzp<1N@-T}bg)hM4|Av;Z=R(D<B<BJXrNVPM`Wv*( zfdmY6jm1p0V{-R@o9YYDef3X|W^fq)Yx-tCpBRY-@3+}2%hS)ZM^fjbgL7h*C5Ym_ zH(4EK9}CJbGDCgQBri*6atr;wm`eBpdoO{!Sq-wVYF+gL-iRzK_umV?xo6+w|I^>~ zWV=>k4JcgPtKdV1j3D{$;4J^cQsP!FmqLKI`$98q0cp}h+OQc#7K^^<afdTk!Y@yC zU8xVhLMzzG-dA+}EZ5Mw^(N05QUCDpE0(=-GrjVPFGsB25g2l^kJY$Xj;$|gxeHj- zesQj<u#%B+(5r}x`=LFv3HSUcMaQ`@spVg9Kfpe)5=XlCJy&hkbUk0?0oHf@^|jpY zUsu1BTP(BwnCf<@xF++Yy?_Iq(lx{`S^J2a-ztK{$Fks8$!`8`%0M3opQXU>x(-M) zmI;8aw6?!hSpwvv84Rbzn^s7}bqp)7-+XcM$cXv8w2_gOp2U!l2_dHRAh~i>Hem7| zNXF5#JnVwC+#`fF)>d~R>cT19h02d)wP_l`&sXKH8+SfEJr<OJd?YC^Qq^!y9Xp`* zN(B#51h5)QtHV%_x$J(x{G^BdJMcfaJ@Pq^bj}dr81_#UpHJ)ayS0DH?KpgaVNZMk z|AX;dtfaUScC?yf;-SKesS*3FrLL(sU(QxYV9@HIGcyh(VqE~C8<Y9v!liJNC}2Lf zY^rn56si@){#5d+_gn8AJ}_EP4r^Z}pbn#rFjjwU8176>t+p!UX3PA_)kk*-z|+_W zJ&GQwKaX+nDZPmN@KSX8tEDh*eH|cb{IG2=j4Hhjb-|XEoe5}qa_&eZdjo6vSMa@y zrRg~DC)W^2S_SGCOL;PO!BxGG0x(3VcHFZkYiHy2r<(UInD~8NgJ5<E%nb^DIyyS? z>4%`7WN+fU#Mt={_`pTt&%h;?8@a(St^F?OgG<(mJKzPGK}y9(e7R9{&U9m@a3#eQ z{{HXJ$Z`BL$lGl^TbeR=3*!h@OH0-$xEFszmwsc%us&g3f>S<S>xyOHkL@tpwGw-| z*ZbQn^mcbaoJYUl454Df9L$>R{6wi2*~GL*mI@}VbsL}3>dFlNQ$h{Q1#GXdL-2Rd zzNr7LwHRlYeXiXQxWKrJmpn(WzM)n--7~5y>v>Gz`B497V?BfN=awrQH*SoKIg10j z0LGVLI3i!#`=f8QNync_CrnP>wZHR1UPeYYe3xlaW0Yu;%VxXEHNUkjC`jOAJPHoY zk*pgZ-WQ(}Ja9%Um+{#VIDV%M+rQbIl3Nl2kMjUIb(p9jm5tx9;C*C`B~McA+J#9H zeQXb8d}8fPPy;Bn_!I7%EmH=ovfYix^!s!{*(vC!ws}}O6EM_%bhvt`Z<(q4V}S%{ z6FB)2cM*pCak|z`p~8fw#4Lg7%94S7g12dGdzk|7Hm)}=6}Nouj0H{?3_D6OdAC?) z$VvNke`omrxC?Pzz`zd@gW_h%$HGzEGrf*FLH)KOd>^^JdD#2*$9@wMG(MpR?lVq1 zo-~{mI8_){YP0$oDgzE3uPFY2B2S(Vfc3?w_YY5BE9CxyBe{}9f}7sghQx>A^hf2w z{q+vJBwu)p_S1*WNEdk+Rgl6Lpoh^&2#nfW`r|p%c53!ISi;1AjcmV)p~#kpVwuQF zy+8sjN<Y$8M!k{x|8v9Kk+24kTdB}T&m4lA`XF@8SuU=X5~}jA+T;xEW6%E2)Nk!R zlD@A)JWn8R>pcr(AtC;mI`7n=QCoI#B`L;D6L9vH8NSD;8ikqJ$7CD*;mP;?d2rq% ziVDo|8Ije`9ij_E;vP*<bdE*s2ojq=rP6DF)=$`eZcxX%eC^F%)&+@`HKy^g=iHWT zU|0&cJIs+;BO}rm$@DVQA}7`FO{zq8?!EhO!_ux1@T<taTCK66dGb!?l^~stjs_<g zZm5trYgV|GmE51p@S=B;Q~shVb4_B)j)a;=x&jJ2`FFov^uIEpH`~XyXRBWhz~8u7 zaI&zUY&^t2xlmYw&Eb<``yO$VP;nTfT)1)l`j;V=(|&FyqN~ryrFBZ|S~k}fKpoln z(TS=7kPf%KF|?DClcS8{dW7)F^c^?9I+kHex_`bn5Fpgpg$w^OtO#;#c!A3JK#7Tq zL26vwtuMI5g<Tg`Af(sKEMHIAUhk?%kq<uUH2F3OC2Ah%un+mh@SkY6W!8W=_mRh+ zac*f%78w|uEWXu`IZ@!STdEWt6Z`lT^m7|*@>_q2ZS^McjWnV|^l4xnCV#xLUM_*0 zin#mkwf<Vi!(c-9{~6UjK%IF3d-Tl~!SeH}-pI3;O*?Uq&B^1#6H47=6s$ma)dJa? z^oN9dCt*@)CsYd4Q!~pow>DOgBAc~8=gJ|@{K(0Q<shhmfPWe8LMobFn8w%gC$ePs zrk<4)Tl0QDb=8rY{b{T-z$q7@8FCVG8aFgFH0;*A$(a|oH|A0u7k;2bl^5$`g|r4$ z!e2Y#{jZ%+{SG-UhSQJE-?|Z}uSIFHY-+#M*@(M1He35s%JHG+D)K>}K7H!pZ<+f= zzzOcgXVMsXKK$&1@44KjW3mz<CqR-_{^fqrWt<|yG`=@bq-89Zu=J?vd{L;iE4CI^ z9)IiwtIm=aP;Z|BY^Tq5g+{LN`q0jHcs<h|<v4cYkAF!31WA9mR!9>V2DWjtFM3*( zL~2C#XPkGPt+@G`l-{B4)2-_a!UyYo`U!n<nw!RCbI35vgWz9p=rJn9h6xuo>^neH z5aBDG@cnyw;njO#j$g!vLz|9Ca<bN4l!&1fHUSCe{!_wnn|R1S&UQ};uv%BKXJ%xq z{j#lWK2s4>_?qm6<xKm}dFzROq9>_Onb;#2cy1n0WY=&rQb}Q7tVfUYbq^1FzKbCh znQ{BKW->$dJBCyNT830KkBF~ubWvA>f?T@fNsx?k(vpN}pf!TPWS{cCvI~<#ogH@u zON+ZcofcwKOAC;8Bamcdt~|^Pz?z?d`aXgBn9^!(Ruv?wPs1H>3P_#N#DW{M4n9Ul zo|%fw{DYoqSaz~X(pCI-;LewpWp;I26^M?1Ec&8sRnXUv2X$Bb@#fdMO-*CM0|(PJ z^MhDWoK!v|`E%pf#kDe-wX)Hb`76Z(o}R|)&4K!Z@tcEjn}hStYpgsCSKOMom)+;C zyIBKz8vc&4vUF_4G8X?6b@pqYxv?b_Rh#1C;+P=)<`7-xo@@NYMdO^+=>k#hk3|Fe z{l;fD`UV0T>tlyX;>UM}Xy1bLmJfApx|J%St6Hy>Z7R<eeDK$MKYEZ_P3Uw*A^dMs z*Ug7`;i3}Hv#lZLkRh#*A!kGN?Lhq}m2-WP_%(;t&j;&cJgR>saxX4G>uWOP)O9H# z3;*{AmxkPZP@;Jd;WEtFTLY|CzV*Uhx{%cGfBy{p`E@_CF&IPhAi(Qi3<2S_CBU*| zfJ-x#Wdcy}s^FupFHQ{0{QAc))gJuomwq(GoY>ld?&$=`aZf@4Srve;tnzF(Guq9P zqTW0{B;K9M1egE&6JRT&3;r0CD#8)C9cq%6c3H_R`4&CODDPoa`b+lE74SI!{zzJ( zW<T({vW>scKwd7ba~`0yW*|QFA)o>O{@^xmA(M(-9ELEz4c!^ErNV!5Q-DrEF0cLO zuNr5a^MC&m{Au&1Y6`!)H6HU$_ALnTx}dnR2+`h^pv#vp+X0oX`DFWBdKi!LpAW7d z9okhTGqbnV{wFdaGnDBYbkjnxkIoLg@QOa2>(^hS_A`*oj_;p*S>++Qp&EQr(Pn$_ z3Cq5XmqUdQ=be4$o$KdD!yjdnxE=GTDEs$!qbu-TJ=dB$EnX&89%YfZ{p&j<C)kIh z=Xe)NKr#IBsf}XF1oz~R53V2OCI0wGzW=?s|M-&OD>AEpe8}!1`~AmfpAi1_|MR=u zcz5@o-(b7Y*wH^f1o$$=KflA_kP`ai^Z(mraR)wA!XS+=FMZ(#dZPdT@7#Mr<du;M zeZ~0ATBV^>2Nk1?E|~)%+glr{?l8=eQcBsXj>mrT#ta<1vz(lOmnh4bf0<c2|CA}v zTi0<kG_5rHX5`F+k-$sm*(w2?lb(~q1L-~U=+F=6;LKT8Y%N1}C%8-I0xm$mSjN-n zIdMHb5Ag+vT_~u-gn8JVA(2Bz9j0Zd{sSUzNF3W4szZDi!CaZ+1y#o#B-SH6O%gk4 zh>BKXdo>=F+k|a@B-@TP>QWvQ{{`6<e4q+rP?LLdO{QL&XULb#zBqULsE>4<1S=~m z9PwaCN9v73JlNo<A!t3Ah8T#-oLAI9qqoP&97GN(nq(~w$+XA{cY%I~KFbm)$MQHe zR{0#s2dz2rp72lz3uu{Zz?vTgNlrmaFmRpgkM|x@gVgpCct(j^^xzlyuUSOJTzE|M zDNWG0feL;|1A0m?$@XC^Ql76FYqK_)Dsk#~Gg{BZL+mZ{U%tdXCL+Bh+0Cw7st%nS ziKwI=1^o!RlzYV&=Igmqlau8T;-5y)N_%WQF)<NPf7>kby%6G3aOr}nG@gKLLkHAT zl1b@A<bn{&&a%JgTzZ#6*UxX2OJGk-M`{CUL><!Hw%1HtL2)7<)b2gO-ej#pD-GvN zZN#kK{zj43kDB*n`cgQD)*F=41Gn4S4*azU)S63jTu2G^L4cY(;X2LbzUCY4x~%c# z#X076jRf;|GX-rZb&$)x&0kkn$LF+YIsg#m^%-mTR5_NQ7H8~NEjQn8>M%WUF?@-o zqyqHUAg!JK-@cSALJq>b#YAgjPy&Rf?Zva}OH&;Q^1;W$_qpZRO(=(khbIjLaGW{Q z0_&)MVT2G~h^=o6%4l8P*|%9C;FUSc##XN>3}!<ShzC?&o_EXvZrz+0HCAOy&{3X$ z)_hJ?Znk2_Ei@#=v^Ie8T>V~Rs#qw7PoRoOZ6I?#j1n*f486$C=0ZNW+T#GiYg{dR zDQK-bm8&=cb&1xcF1^gPg|R6Zxlq6ATKaJ<lRHq~bRSO|WK(-8|1bXQ5RS44aCaju zAjj=613<pj=TvmE97`M=%}Xaz)6&|(_5i2!rMHmL7Xe@st30GRUW&VxpqK~_A#!}z zA@QFc%67B5v^-*BGBvXk#5(Ee(*tx)<FD7D>edcrr5DutH+Ae)KSrpc`IT_0%U8eq zz8GyfzwitJbCF_zvOxy|2^<n%jqNN@Ra2XUn4lv|zY<*cw}8x<gl6F~NKPAcre|by zei0l>0~C=Iq&V*M6{Hi9&?G!LNO?I3-dGZ}Z1H{@x(n#J4gi`&tRISc52u;WZSw(2 zRG;PGP))iT1;}VhRHkULcUl~OEp<pNuhTX)HMJxA_NA!1ANQZDZ(UPp%{Qv2fUGj! z_=2e}v73m4x5NI%1+-YMNmD1>Exu5@c5#_3sJ-0PS)Sj|qy|+WU<U!3#cDhd!E15{ z=78LAbSy@^vs*Bq{l?DrR{Vw~k1r)xSi-pF>Hep_z8xj@Q!k9>N*A7^xXSp;%eN2$ zA}lFn+Ltt&>}f(FRJ;x=fXuaM6r3W>au>(e9GFxnkE&H58yQeul)F5)Fx8sqE57=b za0~Fh-rHqUy|WcinCS)J2a15Evf+{6#>HJkge)u*FgCd*$Ee;8R+yZe?53In&XMUr ziT#<biMAwv&HOuwr=lM)rFTUNT1SKX7C%34lW*20i(=m;0IJKLr~uS5=)c9$aJ^2a zSyTwA_M@%Yq}xGtWvIL%_Z+Y$NVJf;KG$U1D1X9j^|h=YO(FodCZW^qa%ySq2_A)( z8OBP3Kz&1X*8u(6Q~!7WjRhDHVYRPd2fAS>uW`^caI55l?(PN`%-YyE{*r$II9OA? z`Kf;NV!g1tMo?gmiHJbTPEA?a0G!@@&}Kc5C9{CHo$b2ZQv-mW<E~q58ATsidahrh zGb$W(N`*#<iX2dN>d<p%u{hq+vII)W+K1`Z@^sJ1&*E@i#}T(p6Nonn4PPykjPzCB zC}eZ$l&Jesa2RybiaF(lhK6da%nr-|;5l>vrU41KtlkYa1jk>iVdEJ!Z#7HL*AI^^ zVY3~eeZL!u;FeHUH8yqtVUB>|DegP83#E|wtz?ne;rzTf)zt(dNVx^)qK=64xaqND z$Clp>Z8gpo4U<BPWhCerbdC5afXTE#q&f{6%ipmK!7fgI{_*7%rB2wa$zi=PLs@@% z%b;nGBUiIPVtXN(d?(1FJ4?UC9<Us@_nvUcf|65jq_C|;W2A7wgJ0i6GJ6u_k7yNG zM1aUNxUGKMtCe-@Asyt0I)TAPtHjRCZU8jYE0$Lh?rwHK@i73e1$03H(4c=pj0ff& zDWUe@fj3%e!Y|6_WZ$mo1@jweGXR~ILofNv48Z$Mhqv(=;p6+D)|i%;*N%?ExD!w_ z<kO2esY6f!X_HQ5C0_BF1tHiXN~2a;cr9pHc4vJ6FxM?uULNch^Sb7QiyI^_icpZ% z3Dv{#p*~^VBR!>#xuDhiAe$6m7bQAdRLKHey2I>;eY)4iVq)g4gB2>=w$ea7cNX2d z9c<WVk?W^(@6)k!8_|8_myYX0BKhrteU$Bcpdq*o+9Vgy^;LEC_32l_ISXt?FZ1$l zfF<RC%Yn|;n_7cA#M1%$P|J{>(*&z|e^K_*OkWp@SU{#;LJ_kKtgQtq62(smk0pS; zAMhlly8~-}^(9i6x3c1ZjURF91<wvyPw-x#Vz`GVjfh%}mRi=+=n?T_%GxX%Lv>3- zD(bNPJjA*Tm3IR4^U<j~2|;izLP1GJf4cdV?kXWV`#u`mkilqU=^;FHo-B70jJcmi zIhZ-LEVM{99UVHICbNL9q=%&t1e>?SJ%RleFfM~5`~h?heQy7m9q?Rkcg_sFyRYzR z6V$+S2eK;Ly0SYRU<TQ8eYwhoe*6Naqb~GDp_-Vwq+PfwI{}iEmYiI>z1HMjohAq# zT(BWZctu3G0^jY)GrdapBjFILX=s>1FAR6?qC~K?k^Bhk2EV)mG)z{pBL!m}G>vY^ zX-iW!aaTNeHRd^;Xs?!a*|A(J7eYsP8Aucn50C*(5wbe+DYmatfG!%U-YwOAU}-Hu zxR;UY(!39{4lj84MfEm#JSJd@@_|@{rDPh0OY_Muci;ABb&*(cXm};q)S01U4uIrb z;L4Y#Z8nZ@b%STWmioA|0fFVO6zx=nFMt=vC*KKq3axhzmYSJ#bLh0|0PuJjO4q%B zOE7`RGEF`w_^Qa6Z|le<M4pAq7pN-2Z_K1!@~1DjH(WhF5BQ}zmL5R*QtNaUS`TTG z%&wBAO-|nFgD`uhmf8QA@F^tdFlc5kE%z-+y9nE>G{QE9>+ZWBJR)YU{ElAzn_BJ% zPyUbo10=)>`hoVq0IxO0hB<IJRp9^px87qMdgbTW+mf!G0JD4t>ajryFk<^Usw`N$ zZ}h$BGv9=EztsC0Fk)s8_&ArDFFk+eIQRX#0ayvQmK6tEE3U6X(5tvqv9rasz5&xi zQouz18m{Sb%21gFMPv>M7H}8542^>lQc})-i4wh8=}Dpj0WVMQbI5m?!3j_)v>Grd z7zU>&IAI)`y6QQh0vrCLF^bmJ3V<2(jw9qKGYcTJmaZ#fyz*U;c;JvP`TFRfL73iy zZ%={};O=wOWzkyTTB4PfL1EtsKzVrk2L=~)mx+V(ozSFJboaGdn)++dO4a=-!z01h z)F34><uU}T28aDB9$o=Z3zQW`<QgLPXVb`;Ws%z!bZ5I96j`Y!3GEvI3Y=Tt1dXE> zFYDL3vo*A12B?;xJIhhvqNsq?)&96*s|7Q7KzApj%qj|boR%h!xw7}g#N0-ew~+a{ zBR<mYDXMJp%0uO@M+Q@v>5x;7vIYpfniOgCH2T5!{rLQ`#OB?PTH$$+2La{Z4l4*M z|MBt3!F)K=QE;B%NcwV0Kpvw5^xuoEyH(!gPE+ZHafO<J3B|T!04cZu$+1wDGB9EY z(u1t@F*Y^noknQ%?t;v020XVaIDqGjyd~V<yVr8_G+Y2Z^f^HP^bOECKNu=&vkYsw zp``eX*fs!UkH?Vez%kHG!tkT))I7wPO?<+vDpWL;m6hYb_vbY3iIefo10ptP%I5rL z8^)<~R(>5cCaXMjnb<ZA1NuQR^+Iqh{1nTX-hgK?Mke>gP<>rpJ9vaIj6l1$*M+jh zS8zcLLnmVAEpRvpbs_NIpVdabRy(j%#UW9>62{&FL&%gfXI9||-U<EkZIdMN<<lMT z7v3OHEX*@(M~)jpK*6@0%M5Qc3CiHA*i;6O9>rn?VQ~I*IW+UU-3pejYip-5KNn&$ zMy^33fPFR4gcW*FnF&TgH&PW)G}xMWMRQI^Q!}NWt3n$(<BQ98ww;kz){I<N@a@$7 zX!u(JGna{SQ6TKS_FX#WV(v)L?d|i+x7W>4ya--mCj?V%PIE&rKM+z$F^gd0lATv( z&-oi|EclMuO|r~`ewqNn{Tu%DVtm$v=b?M*D%kA1j|ZFXeS1PV2^O>!G;uQAOhP~6 zyXfKm$folxCM^(Nf=F)ZEv}%T7mY)J!;}gRu7dF!bmo43{m`=T$ab4b%*n2GMZ3(& zzG2PGi_Rh0ocH?s+N^YVsn3Y(iK&S)1NF5))qvH3cdW}?S-@0@UO2BIRjI6}r3{FO zp}H|xAXAj`kt8?+9{Ba^)1P9Hzn!5YDh5c#{V~C5E#a4QF53W*H+>~60ma^~8_W5f z_nY#9@6g=tv4QCS&MV6Tgfq-Uv`^qDRP+MSD>Xa(Ip{=0=u!eaN{7V<->M{y?_7FD z_4*1|*$q%(Z7{w^R1BteA%7G?g`*2jJ=+Qi?SA1Fy};p?2mNxBFwW^q{f0b0FN-?_ z@usUkzfBI7y`y(q)gJ)+CG1@BTFPq@g`dbD0ZZh1u0}OOyaHT_E6NI90e!vs=JudV zQm(~_zm#w<cUqo)JGA*j&}l5{emkTCoywA4<-(xMVgG!3tzw%*@QUMdAJL}3ffGTB z5emsupwZf(lR5*cHkZM1^vM{Glz4MBiiS77gTqbMte|eMbpYCEs7eRwlgM~7lJi)w z@vz^Ay-s^w%gu5T?e!=roHzcX)SlAl4Q2H+!kP4Bs>F65gHm$rd+@nbVH#N+DRgs& zgw{Z1_DV{`r;+l|4-g34QSFYRRzQdv@K@vNhfQYDj|a79=)7~{S2!{O9yBVnZNXEV zF;Rs+26K2cl)>OLsyn&`VPFRY!BZXk=HLe*jVne6j-kE4#rt5MW&l$35>T%YA0(l) zD$?#|W@Zgji3<@4sgPtzfuIiQ0&x3e!nrhZq+uCP-3og0AOr(-#c345G64p*?X?#@ z%|a<W!bLIX<+QF1fjjMT@NbY`@y&Btvq6w4@PgMtW#38P_*HWPvKXg(e<J69(0yks zZ_orxJ&n-aScFzY>1JqQ@D~sJJQgmW^a=hw6Ji|K?X|J}Cn|s|1EGDVAS6}-Z-W1J zH8HX;sB3`}dLi<LPEn7k3Hs2i#<*`gHk5~YFGRS5`;u>b9skF2C0GO$ymtb4A`a<S zh`SJyP<%F00+4ZG`3rkDy}&S|qe2IYk{n(fIw>NcL7CuW!QW)rfohe8gN6QPf&mH} z-=0qD?!mq$g6kj;Ck5Op<@6fhABs~=Rg(`w+*katA-u*7-o<;~FHW?Xi#5G1DlutC zQ~pq1rNIdS`Qi3&P;0fs&Zcep|HIgO$Mx91@8d5wvdSh&3T2g|l!jDxBqY)n4ec~( z8%0(rRA@*jO+{%VY40VKkThNmX(^50alYL5`+k2u-|zSF_}zbSYrL-OdS1`xIgaBv z&$CuN$xQuyy%;i)z`)f?0f(5+e`#_)ur64qfsN`q#?&=MPB_vc;uhG81LBrV1{1{& zYB9N}`Hw*DSgsKFrjwTtoZF2dqN{<l>Xb#+mvkNJ5XDq#CZvd&EJkc?$nJy6nbj@u z%hj|dl&7~#Q&}OTiZL{J3kijnu-oVJ(|k*o*lNNBWkTqzQK%N9@fhRmbkVN!F)4Nt zSP(39aBJ@+!V%gW$-ILmh`2agdadLB%U`lDGeO=~l7nR0EodD43hhBP3GxZF0wZ`+ zxb$0}X+^l=#}Fg9<`-BQ(=Ts5UM_cnKiq8dU5QL6V*6YCJm_*KjdW_WaYgubi^K#l z2$24*GYn)w9d}i28s0lWwqXZQE8Mw}YU+^GRKiQ0)R}<l7mw_sYAUx3T5F{F18AFW z{3-pMG$y4~0at2kCjCxrthODJJ^s$?k)^|v$LVmBGu`d^<{-<$uF7tJWN*fw-4Vde z#U_U{O{UidOc&o}^Z-(WWOR!nQr7f<7Rq*4AGpWwT!IOJrhfW>4wI1d*P)M$32ad? zsH_#=?SwP>Rs8fR;Aun%U=P2d2@zd10$&NhA#IKb?UE3?eFCa_igH+Pi&t;#n_L{2 zzy%Z&5Z`P~?MBvc0^YIa(VjVJcuie5WxC_x>>3cj7$7K84r<|*b4}05Er#Qr-xv%q zv<?T(kOm0@zI#;D=hWY(=W7Osw}05d4k1Pewvxz*6Jj|YU`~s@c6M@R{qn%iW<NO? zVnL9_OOxt?PtJYC0j)>`Yw;7&c(fV>NA>CFY+{D?4vBe*>=(rnNGRH)M?qatpxC3V zIouM_HIDg%emmpPtkcBid(m?O2k@>;7pzu_M|f64sWDvZ%~)oqKi1M)`2MC-o{9;? zJW&>p(TNXVqCrNgeU}Nq*Mq~K;8YS39#Lt5DJYtkux|CMl^>i2OCzo*fw$V0+LJYr z30&))w0-AkzcmMwplSYqB{~ftbrAgHo?3+ZF<nqY9MjS=`v-!6rsWi&iWGuvs{b<1 zzWQLWnXlQ;Z~5g0?XIp!W|DTToJZNNEXGL=qRjAdLpQygef#&DqeWY}0gljfU@e7o zS<{+mFZBsf=?Mh|`?y8*_ZHOJAtBF%3i(rs+=TOeDVryaR@of(IC1y*WxxQM#$-X% z;HMA!dNL>ucGb*JAKN?RK*+X6+B2}G@xU`aAm}oUaYH}R<FJeed}R?-&M4G4cFYi% zUB(Swxli5ceahT;{XEurE9{Fl<?gJtDOrFRdjIbp2E3U5@s$)V2qRoTtPsDGY#;=V z={vFcz3AJi$XdK$0_T(evIUjvBLfD>eQVUg$#q4Y2!UQ~a~U}fSWVpgV-*s#IcaTS zsKxHdycT=p=+Q;y3}jTAK-#)s!IR<TayR=F7kzSMZomzWMI*UNLSvtLaE=ROmZfp$ zDF=FEw6H0{0|IDpBF&2eHYHhoc`IEQ5^+8qKIp!*-81N4izz=xRQmGG#cB0OHjgrg z!AE2$CcvDoZf{zx6Slh@`HVS~$~CA25ZtigC4erCkZmqzZ!gW*bc5@1<!4Eh3HW9n zB<slW4bGzuM)!nFXZ%H&?mXy+^(mSp5?~Y4;G_KAg?+FmVloI{OvUfc7sqo@Z7s7Q zC6PcGY#<Cb7`!*oUYU!~=JwAFe<AggR5^^(R0_SYrr^4D&v6f=*EXc5j2R$)Rt9=q z&?prML^@%XUIIO<(y&Cz0h=z#{P6q{>T*61+(@Vu<$s1UU%lf{%AChfwq&XH-ICTJ zP#qs&;&{xb)C{N#t0%kz-$@WrIgP3kQ=E}pAN}O;hJ18ddwv_CH?#~!KorC5+ADH^ z)<=hhy#>;B3iL=qM@NSSQ`fmShu+H?XQ5kgm>NBwGGc)G0Ejezzepev^o-gJL~BaE z^xAQ!0al2<&*jpn4mhcoSP+fYlAtbt<X79xLeF>d(k`3+x9Q~lXWx-Gb(Q~ntC4dZ zo`gRHw*RrbY*6|pPN|J%V@%lxy<=6Dn;V6II-CNhwlp~>(!n9|^GBd}8N$kKN7dA# zupy*D>MZzFF{J`_Bo-<mRg9gL%MiW_oFE)0rj4*xWbLhXXWSiEWczH;Ki&v|aa!I+ zeUSEBMA`Fj7V5TpR^MQsoB*OC$w$u)=KXcnRg$GL@&f`PoU*_x^?v_+n(IjWnw(O> z6cB0s@Nv&TqJ3IeFpY9T+~E=04z;_=JL?jwBMz^k_M<wSQ>XKY7J>d6^U-7Qix!#w zzyI&Et^l#??q@0KYZ@QiQXC?uOL)t`y9Ec&YKI?kgz2?Ih{VLdRe|XYAZ%h{>e4Z! zAGQ#|IBKU~c!{^jgtY5ft&JO`j<=ze^(WPhan>gkc<pLlk|!n_z0pT+V29_VFOU_o ziAK9(IU4ff-^zPd&*5Ub#LabVNnZTO3R(lAlh;bZdQ>8kCMJz)4y1AFGlW&vVl(Xu zlD1>j+d&R^82Cd40L*991Osk-F!k*D7f3aqI6DKf%}l>Dd+uue<9dAAKfO_B;LR?` z&eBD=Pe2=Sp1n{G(k(gGtqntW;-0*6v70%1xG>Is1v;!Wd=_5v1#EL`<YopV9G~!~ zev%Ylf2#0UYA51t|NU>0+8>F<zh6PQnI>5?hGv4k7d0J#bI|~$0EA^Ib?<p9?_M|G z>#R1rV#>Ng1ieu@8IF<B(MtFcM8yRK%-t*J5uBucZi5Ki0iLoXaR|yAdIOu!{nRfl z`1}hA#Ze^Lgr+jX81f1!<0DMu{adhIowOHrWlfBy!eXWivoT(;L25=-Y=4S;{>Y7| z#{)dqMcv8+GW*4WVtX#Kar{i(`@;)}KpPdu!1fxJJcy(`4eBzSOXLCI0#3Rj6M70h zMHS?Zl1{;IMB>i?xlwfrY|RU_w(cMf3y*c*f5<Wdn?$-<;l&);ejnt#%m9Tbq8ETO zJ;5P*Q8Pl841jttNRJmy*<4qaO&mFPY;oczY`9pOLJOY70K8|YEBaYJnz3N@Y234_ zfx%;du+@l6v|&<4@U!W{Ix29oNBQTMZ^~Wfcc-=<EsSGRJJwU>%z*0+n7=mE2Nrw` zpPmdw5LKF_BD6fJs#@9aiX<9Owps7(B@HIJi?lwAh$x$}=7CSI(+1!U2q0B}+NtX3 z#Im3OUDtC((f}Qv)AA78;mSP)0yTg3{Z;SJxF(!gE|Be;EdC$_tmcMPVJ^1NxxWOm zm$8yEna+*kmY=i`h8=~+*zC~Vz?LP<b*vd7K`qsg@z{S*pdw3TGX$c?9DlyjP*#*( zeg!Hl26~$0jDHi8$l>ZD8vP!z!V~J?3XDV*HCoii7$-Ta#u2rmQ#8G(Q1M#{;<ac> zY>8W|-F3b+efax*4a6mgAj1jah-p=NAbFU4Q;`w{*$CMmQR~Hn+lKXvK8IrGJqzb| zI_iTEL;=kWc!}xJMp+205ZwS_FQ7_woi`mK?4kw%nb^|J@NueRUpcc5A&h!dNUi#0 z;qIiF(TV-Qe)jm&8dJrF=Nw+0xbqso5YvENJ<8(b<gC?bjZQ47AlxPA8fO%!0IsZQ z?){@+Mk)cwKcw85Tnx2Gg$Fx6frP{sbPp4$;6cgL4W_d=g{ugCGktw-2PlpeAJso* zxlK4`yuUDY7T)j_P|>>q^W<sN@wWpVPo&)H)~Y?b{W+FwlqVPubaNEGV1fpyUfb-U z(Tu{9Q-!anV+ddYH3W!ixi@+2uxTh@Kx7=(5AZ)XdJ8ILu(gy3%tx&FA^rx2c>Or# zDP_Ja+3ed?uGOrnDqu|}8?u0IzCcF}qBP14@WSFygJoD6977#NC$q7ak@gu`5W(dy zKTaP|@Kl5$J_3O7rR$g@VSS`VpcI_Kd%`0S`oy%!^P=3ScJ#I$;ZY?BLjnxQ$WzHJ zw3iaU2J$zy1AsV&&p8T+i^{c4D#E?!!lcavzgGc3ZN9cY+UA`g$<34xfVnD7;-hu5 zwzXHUnx_of<Ie3m|A)vrYH)d;F$!a9CF;!{0V-W<=yOtH+ALCr0obi@pES82s)}02 zhPs=faE%WA_>FdGHLt6G0xEPMP;?hT<J}n62i{JjqUPpB<Pa%3Jq{Se9)UBmu2$;n zl~q&?*@z_4b~!@|7{+2+MGe?h=tdUt*p?}5@;-=KNhC4(1x^Nu7AFj)K?c}Ch(OO% zP+&Up29DAWm7z5S8OSEuan8KB8YcX+Mt70Wm0~T*nYxA|fKVWn3A1QSrJ5uNp%127 z96o%D3^)No_crQXSb1yjm;^hc<4qjb;->dAt~u);FAbKh23H(lpzAjFlByhub~I^t zb;ec-<!1X`3*!mQAQaj4cYRY$8gE|d&s%zc)tiV`#eD`>P>7}d326>!yu+xB3U(ao z-r$9jt_@iRAFzxj8`37me+wugNV2}DQ$Gj4Pi7NxgU7J{x+KF3zn8WhyYT?@w14(O zDw%-?lNf&)5qlX~<Nf<NOew~u-fucypJX1h>)PV-Rzkz=(JfaU1_UPgBQc@KYg}W7 z&O*%*0~GQYGAa-t$-s1qh(rvMakv>P<~Hu^r%#F0xo%w0!q*Jf*i;DUc@<S1L#S7Q zd?f}@*&t#F{)Qx~{7!_!X`*}+@D191Z6p#g#+r2pc`Gg-he>CJ`oJ)pkggOJ5jXR~ z*Vp$_DK``*Fq;h&5BB$L1<${K;bThkC=a4I69}sWs-}PAD2925*px`s5P6y9>JrmB z4l@*Qo>cc9=X`!5hn>sn`~u%R#I?&d=;BCq!Fwe^zO;JeEO<bZE*a#O$|H^?Mn55Z zeot!GB=E^~cu7kWwS1BIY%{EbqMII#R)*+4ApU|e<|B|DAMhooZEXJAS73i9Q9=N{ zOK2gCN`vj;wyHGZz~fS`i*n?6P}ZiEPj2vFPVlDswfUIz`5>T`2vK;$MobPaH?VVY zrQ2~#Uu}a*HVt&sHHSfcxjYJYh2*@97PHV_BpF99k3Z-3I_(mpcu)aEI3Nmmsx<+* zRbsHLli}z#2AURUjpp#zearW&bXC@Fbxyq3cL=AHNUcQVI+|F24j$>MB9oHKi0u=x z;T!4Jk?`7o4>bA+_9DQZi_R+Q$s?&|z9z-SNCtUfrQ;_YTjR;oX1@SfO56*D|H?95 zo5kui{I5)$`PqV0JhA-Ip8DA`ohOhUClyQ7e}Ek{#LatWX4>4mHZcrC@rYS<r#+u6 zJu(Zi_pB`N`nF84tfpwgMyB!@po5yG_q|Xa1@Jq;;S?8{fvekOcjYW$MT!aVBr=bN zCb@f}wlt+)68W*>Ig10A*rP&_o$vfD2*Qk!{xz9B4X!_il0@*BVq(PN1&v8rAY=#E zJb20FVaZSLZ6j+9=>QAj0PloqgQXn639C+l!%l`YB^$0GM5C}26I%WBLtICUi>whO zULZC6TzSCyNr;>R_(9vbBf82Zp50J0>ld+u#865AZN#}{VxJ?!OWezU67g38mzd#) z+v|=*!^{#`8o*YH#Kh<y5C-6PC;VqJ@=r}@44ASf2*0F%)*}M4ARGr7Yc=V#uI*e& ztmdv-n}Vh^2TM5kY%?ID_HbGnpw)wHD-<{Nh#~#Q4-&w0A2KEo(3Nl+>@qF4j}#S| zm51$Goey+mUSB$Fu{xr25;Ytx$g&BWbb|;oM5Y7_qGHut0*;k7Grjp^v0BE4hE$oL zm;f3?@_Pz=P%;9JckJ7hhQt&dUPtr|5p4@~i?Kbbev##$QyLBi$Vv#s0bkNG&~nXM zEELfvj+}89ONXGHS_OpH<u_nxbF9c9c1&(GuiS}#;8-mE2b3|G#Azpi0GV0#@M0IL z&+RM#7Th7IfD&{hzw2rn5f>s|u&6=mBm+rD7e*gECm@Kw4shzJ8Xhsj>xv1K{o|iq zp4=Akh@akf3ieLk4Z6r0>tzpDw%h-4-|&Xx@vljP;2W0v%m#-PaLET9r>;Bwy%d!% z6*tkRNQJ<dL3ln#m-Ea{HNX$6^NB2{gm(-<{EXTxgb*=c%OQ&l>UEkFQI8}@Nkt>* zx?y`zU$KewIn0BMK_CR=?(}`&%H)fn7y(ayTv5@B6cQwPp@5X&DB6{mF4i=oiuFC% z6HC(81*(6XyqjPHQcEDW$^q+OLhWp{U58t+7HNTjn2^B?(|r#{^Gvx-E8MM-q2ZPW ztBWN0kT~;oXBv7fccIN&BJlHi+`uE<yO}^$C9J>g^`qug*D^gTCj}`#Sz`m!aG(D- zLMy)?XNEqHBb369JCh-;Ba;4ukf)4(U&1o@)ybZLi<@E73;UsX9LH9xPt#MXr>E*7 z=uI;~>5&61>MN1Sl5T?PuB}ci`1?c>I0VPr^=2CH3&;ZQ@tXoVCgFzNAP10iY6d|9 z1QMnGuFV=}`DRk_CF9kXfH*y7>Vi;7ZS<~QFE~jP5PJ3qwQ6y;?*`KX;SBj`6i)oO zEC)ja-umQSXzAx_v68y|wo`XLed7SPnWH6O05}*&bryV-S<wiJl`g_lZ8baxiK`jv zG;frsZi(X3UmN*p^6ojHZ|gBbrV}aARbiG9pDp<sZ9-Z#TI3MuoXp%wn!uP>uOu~| z0Pa`EvXb&O%I?mgp}vv9E>j?Nx<$?2n5*>GI`<lH_%L!-sASH>)ZL>5J|;YzKQ%oy z^&??}sDAWT?*XYRp*RS?cu(ChL{WP3Zpc>6aLb9%*Ss4&fUIkspFX8nw(1E{o~wO3 zuO`7j&oJ8Ye$EmeQT;2(k3PVtqIC0g`APsyil%crNv^<CBzgA739=d)12vj2Ywklb zsF;8>M((?11#x!K(Jv4S2L#q312JPMwqgdBcDv-dIBSEdKc=d>Ffk+0*|nsz*p?JK zF9$=;5-O&c@b&B0OK#q_N&qCmB^go86t#_@Wm3m>r#(1hng=9s7gy&~dy`t`7$dv} zHV)w4ISr<vb%{f)tuxHZyY%;%1$xkLVTNdOGY-XpS6goZpc<kg)SZ2@jgub1r=1Ow z0-c_q5%?9f(T*5{l12VO55&a)2AaeOP6~J&(w?t{U9~zNvXJ|>JVsVo{J+t_!vE)h zuM`aI0hRu%bAY*B8N)aQ1S|7p&_ZVZ>{rH6*o;AD5n20tlDrFIdl0XtXcY1s2dj3u z+vu4zkWU1U!2}*@^^d_GPe+8eI$sz`dpHvqPWtC$cDOI~{_X>$=IVmb(QEdSt8Q^; z^^cE?V{E57NzO*LLrP*!EYDlS_6(gLnw~i<Xj`)<+HWTI@`@dvq)iKJx-3N-$hQ*) zEn;99IjYFL4EIAM-UV^-C@TwE3E*&dcHdkUiS|5u-0)RWEK?-x8;+Pzhg98&0At{8 z_JqhmG(y<+!1_Y0Vg&LH^)*4ZzE~x0mmWe8AYLKLj*RpBt*vm_s{Hf4#$A8BnHKfz z**?gT4Q!q8(^1e<p>Ww?Q>mR?50N;Ka9ASgmQ3x05c?2xoX9w{t|v7Eh$q?{oo~Yf zvh*<F<0TBzo(WGtCS+uT;eUxm92q4d4nTl(Tj<5GdLLr>p&K=U=2sf+R8EbrrY_>J zbx&|1Xhn3=p@-{0p;{Tr_(QRObrDQOkQao9KcyG~_wkr=T%t1p4TTjtd^BFev3#p! z%uo>0f#uFW6b8B*HCZ?cyaNo|9?abE--fuT&5-~OnBX{8dP%e$5R_QNNKfgF`i2vA zgxhb<^^P0R>2}%UTciY&SV{5$x)FqaH@DsGDlIjK-vTpcP+*7MvP!W7z6~7C;kY3w z2ue32j)2f$9~C>pVNqWN6L{`a*g2D!p4-O5KU)SI<rtCF)BtY$fNA5%gFZJT0q;h) z!B7zzfqe6dlsDZvoReK}E<*AnjUZv}0TD+CSh+s=5t0SpaEO)m(N^1CdMEtn&!24* zZh$F)9Bbij(Y*n0I<{}P-Oy1K#af4ORFTsA#S*kldActeIJ~x%h+6z~`EwFIBU~mC zxj0-432@=-%ZSWpO2I{a+seV$1Jg`9igHtGH;ETe2}Z3S(obWo2V~dQ1+8f8Kw7N5 zzRKH%zy0UfKzkm9AS9B&qOb3~mLelre)jVuNH+HpzDp;$KLw`<Rx$$7m>N*ITA-}4 zsDP3ub3^3sB_`}Woxy8Ea3#-x|1O38Dv0R|-%@Pp`UvLPnB+B-)dKhEaLD={gzjl; z6+c2o7}JUaJXeXFh0s}4l8Ni*%|(i-fR{}yr<m&vl80nC4nTb3LDC}V84R;Rg%PFg zDC)s+_2mZ;qzB!zc~L2{rZ}ip_Nmy)e+Mn1#T19*u64ZAf_T_3u-)5j^i<4{JzE$2 z<_93wr(7M_o>5yO->}K@%%y9$ATI)HzB}uI2GRnu_d(7-^Ix(}t1-Yf5fvkQ`ZB2* zNZZvqPm(xc3y#z`jjxV;A~r;b4%qP}E={&_ezsB}+F_-USl#kmrfHMQP&MH(0Fky+ zC^HU8qbc=ug39g%fZ$7|>Z!Jo#2*LQe~hd-<#ks;46y=Bv;%T!0MQ$X3upm1V|fTh z@HI(t!#|H5K5RB%1fOtin{aif3{*dd0E%`vHvyJCC}vbr1sUy0wy=G56Qf@P)hlvI zNrS{p2RT(4m5u=5$W-WQfo@<eLN6U+x++8s96MiYx)#O9o4}?PhzvD|%C`DLppW{3 zYwG0NsIx2lVwBx-JfL<^>vI|%Hf@=eJ20x?V}XsNI|uD-3X;bJfi6Uw&rl_TnD>CO z>;x#!DgYc$k!S7(d`B<tMRy{2Qt6No#V572CaS8c;h?FQ=%#OW$jIKAjSj8vixY1y zXq0XeE2*5$E?OjqJ@2&)kOs-Q=hs|p%!@Ay3}o4uw(=by>y%QKb9sjHWshcCa@~!- zu@MW3f{ep31IiUR4DIJIxylw~+-dNM(qtTvW;bHUOe(w$swTFyBkzqS>#wlgbNF(T zXi=Bj#P1Ml>_eM*{knCLHZGz<vIOp6k^2!gn1E}jfFkA@nagsoTV8C@zO=XPo(eKT zl?hy;qG4Sqr->gCa~(%Vyhqf<4hn^`*XJh>0NOC_{O}xL3ax_mp|2n6tbJ9rwKpi< z6EnI=@*dMM+ok%wzT$k){?E@GLi*=KIq{5;1#)N0T<lbnRWG*9H%53zl^7%?N+m=W z{^c|lpQTzTXYLiRp9h&b+zh`^NZP}f@TF16p{N-f?Cx4wR5svXKH7bK$-F*C6?-{9 zXF$~zkeWP0=t-Vb1^JZCcrbGLO5iP<;oZnyBfyQL7{kc<<p*2pVdsb)ZU+egA>3EF z^zRjx#vvsve^c%y*?I$D)@~A6fzl;Gu`%?2(L+wDb{$oUC^$M5)1n;sAnN{G-q8R( zJwoa;u*FzasW|@8nf6f2#7r81`VL6CwynypbSU6fyJV1SC7cQz+a{u=%3F{Pl_NA7 zK=2m<J48GBZR?(u^C(Or?q&d(MhB9g$~e~nL3;i4#Umw2{wA^P$tT|YHTGqW+abiK zRCfVg73|_#M^|M5Kc$1z0Eo(e$VC3wHyeRw!1!QtmN7`YkJ#UK{pEY8(lHh2WrxuH z`!;sn*zv0k&jB6hU#E90TI1!_zRiDKWbd0JXK;Kykv1?5zScaVLN>%%Wsd&buMPLO zu67kVd+7(b{o0T%ZQB+K?_yB3+sa3;Jq7H+3!nq1;l^&NyHYzhfc6!DZcQ4!z?%8^ z=#76#X18%d93k*HbMkp^uDhAY<J(d9QRz0`N6iMwuvQ>P+MxIm>OYg1gBY10-_r7a zh%tAiZzo`4Z}maItaWhur(s;;QOQCHjX46H^4vW)ml>~lV70x-hHyb-MqSaVsi_JE z)Tj95-Qr-`dj2|W8Lq_9Kan-u(PQUgghnO&br}1h!hBA^32geZu`!??`+p6cMZ+E? zU;53WqPs}Jd^<tv$JpHWz2k-}u3k6d5QNH~w?oR`U}-lh4gw$jfQ@N_y0X|lDMLeq z2U{F&LwhrT5(Mny7r}0*Y*9z82u#*T5|5*F#OvJF#!~*n>hslEVtbO-*PMcFyAQ9v zX2dBW%VuR{jVzu)$u|QeOu2!t+32rcL&GHCsifn^cCB{o_F1u`qv44vDI$D3aSx(m ziGYPQ5NyRjvul_^#LepbVEB*Ifvav^A$FpLDU(}E*&=0@R9At`xWHwrU#TSkP%d*O zT*NI~ITyT0C0~Re#YIJ#V}qIqYy)ZAb=4kxjC2K(A5*|b(E}eK(xcoSu*|dQbk3h~ zKBDX|Wm%zqY|8h0(zV6k9>^gJCS^~|05#$k6c$e6;Fi$WI<|&eWlXX)(v~d5>U^qo z1F(ZC8l@+auA{ws{Pdv(xuQN!E=^+sQ81Po6#%)>_l=+A61sZ87w^jn;yv{Evg`a% zPOY=+aTWptIe51<fNdgMsk^&JjHPDBhH)tR35Eg{5C}zzegZ>8Z3nETXv0dXPWLE2 z$aQxgp$^~?@_(H}<vR&nfSFLifL|;c&*Xs&{hrMJJ4eJ7GMV15IhzWxkt|qJd5zt1 zdpxTp(DbU_@V>dph6xZjDBvJ5o4WFUe)XDLDWrQ6ZQ^<H{Xu8HdL7fz(P5_XuwW=E z`Con=GADG&&*~?%n?;p?zcoSOPPyhWOB5HeBJXvu%?OMtKi6M+%7k521z&GlEMCi> zeuG4V{ED=l;LIN5J#YCg!A^O6OnsMacY`__bvYuyId!)QAke0)WYbz@YU%(K;UQ9n zZS77*CqKVFZvw>dPq(&wp2ZG}DgdrTVKY#F#&P6LRm_esUt8eKQLkPd$6JaRSZ??P zImA1b>WuhxTv&~4AS?RMtsFz)7T#49ut^Brjun|p2A})R1$FKoX~f-Pjv1+=2rnE# zGF8Lpw3#<GFXH56URiasOm|{L4I!UHc?+8I1md>>rJGJ6w8RpP-}$krb+}}MDhb*M zn1Pzn!Zrx|`ZR#EXVKBubv$gL8Wj~g5U}xKjp=*0Sl_Bdql3h3;i}#g#gH>rF$~cK zuF79sRHd{BM9Tn0x~V}0|L8~2S&6C_1tY%~%qNxvVH^?Xj|WD)3ff+QRtI`6io+36 zbILMf;4anSA>%UY-?rAwH7`CMU62=0mk)CBGfG_m3sr+f5MC$KI{LpQgT6l>*nQBu z+zyi$H&B^muGxhh?ud0pJn9o(s+(eM5MyHjN5H=>RTiMUuStkZkostEDR!-6%#fn} zc=6`SX4J2!`M!WsM#G!%6~ejg;MsN-Izp|1HzwIEXw1$dtqRzH`Y;w%&!+5D(HFqj z+{AI<kpha;T~*YP7cGV3-+p<@?l-^oBH^Wk9L!+80qkl>^`j_`I7n0Rl8|+VGtoAV zTQu4V9^ye7r<B@EKa*HT3E-7bi0y;?N^wLBfePv_ufeANsl^)xC(W<e0kVRCSiK#d zi)LpT1T=%PMGWE+4ioqIW#&##@pteh{iLWy$Qd`#I2-MeC*7_663LkR*VX%n(fmr6 z5K<RlEt{Ama4i=!`GkH|2ut;d!-Xib4qojfB$Hx_Nr>Or?g%srUcXmelq9%*eFAV5 zmKCEBu!OGFpp|w&EjF4_7?Ubj?Q<5X9S4d}+{z}kCE`(m)jB9qqqu?aR|1;xcwQ-Q zBLeH7@n+RGA!V$Gb2&-F42dA19m+)X8PwvPML!oZ-oM6ApEw1Gl-^UhlnkiWPNdT@ zFS|+>Ex&f{8p(6_x0c@j@hq4CLB$00*nW-aHjZi7ab0N8m4J1s11zY)6t_o;OCUes zbQHzaG`G91Zr9SQGGjI&EFDZl>0mvWH52TZn#cP&A$B&184yi*+lERZb7+Gkj7pZJ z^}gqR6k;=4eR|QBRW?vwQgs!TE`s#Sfhk`~04?NfQ78{XjhSKsaO@^x>(dbAcfkd| z_=CuzIy8)FK@~9d=3A(2iNGU*&JlTrC??=ma?`uP*`4$?gP7eOJF*@V20Ni&_72>| z<>s8xU$LKf8WKXHh`O$*Vq)|`)U9A>U+sZY?uom4uLuPc3v@Clv3!Xh9Zt<Rww%0c zS(lJQ4gj~gqv+@%rizY^1;ICHM^O&e-x&2TF96vi(nx@0CpS6`-SnyAjZTPh*0z}k zR~RgrPx@B7?uI(jOd-{gfb8@?C@NyR_gVu&jW(_cQGW#lj==!k44(58@=02A(md5X z+%XL*O`Z2GJy3#Cxt3k*7W0prS*1br!l;<d;?)<ndejvlyEoh<)=FN9xDwh)%N^TR zP(7ikq2c9a)+`_oTib%jX*kTHK|HSp7j**;;FrPVNEQo0L=rZekzt^bV><0*6j7bJ zi*C1NK!dtyz+lV(bqMj(C!JYPTo)n3e)<3qSY?G^R*i4%4X<&!UtQ&ZW9$_B;k^9H z?3p1UqGsrnn1CvT@+V4xCrJ;6JfRW`6Af|YAhMEhXCSYEI9C<?br9F8#P0dy<XWGy z6HtnuXaFrnLpW&}iBwUf1z6Q$lONyj44X!bAAybl5vm9drwXN{LhwD)MMa~346n;x zMj}te1fW%tU0wXy6@3VwKLEipB`O0m3)~WjpQO@0Sm+s9GLY2sy&_?f`r;;eSJ1T3 zq#0N6e}5Vt{*LA^iAA;NktQ)ZI=Tp}69W#?9=e{ug-(J!Bew<oCOt9~pDgnKP#p#g zpqS(^@Zm<PdL-d36m+>%bNZ6)x-cp(k#$<o0R#8VB0N~6EPZ71L8>~BLFEJy7^LGP z1@opGK}u}b?*(FXmRlknZF&yui6jIRtCwAG-TZTYqoGWo{>9B`z<gMSu(1$3lv{N^ zK*8==!K)<e<*x&0ce~$(>Y{lznixu;#)gRoous)#0^a!#Q)(DA!oI|A;x=@Y@EsJA z#8vxTw>)vbnmwr#KTo<s64JV%odC`9evy!naJy#=t6L9xhK3>}A`#X^01I&WI3$4P zNGV9d956r>1vbh(6d}JS9VQlKPs~_Zw4r+ox&i^;vmiTSih6K@;0zC0hBcFVKOVp< zF;Othf$EMSO%OwNVzb7eR-guiy+()uQ3Wvf-s9c2%McR@e;Kh%@Abq2*C9{RY&Df3 z#IK&HIno<rVe3Ipc0x$5{Nc<G7Tbu!eE4IW_uC_TxjerS#Rbs(F_ol{UqBeeQc1(w zbO8+WR^Jk2<N8clM=TLlPL(8q1S(JisFwx*<M8fty5OOiI(at<HMym%!wKdmJ4MJm znw~v5=A!@R!qgfR<iY5jQOX1wx5XZVhbdK!Mzmm$FzzExyZ^?EAlCFz-Si?XEKDQ$ zb^(87Gr1X*R&r%<_&fa=hmnQo7jZrl#dHL<C)sy>l-6xJtgUU1Bt4$k4x*}%ttFrw zdZqNaH)z&vfS7N?<lpm->j%g|z4Sm)2ktqU6w!F!mRZ2SI+h8UpeWT>&rsY?i5njP z)NgO<Y~T~CvPa*Dpr#oY(!lfgMPsv;kH-;8Skek|#^?j^5;J637mym~v#u=za{*}n z<?7>pdefyvi+G`7!P_jak26A}D3NT6;JKx3PrtZ{>OdL(u@W@(a6fS^K;TvKdPe9c zm<9sXVb_#=A*#|Mh>JQCgeA|kQayI;8Qnk=aOZy5kqBUU)YsM)T@Q=_3lmtgZOg+? zR4;;ex(j@xNA0fs4~RLRLYCJK6Hy5d^VRMQpD{RsKOg%{AsXy%8%|F-%*SIilQ^rr z43`&j9KY!1A(icJMkGAm*dA>pZq!yNL--~&YBPZ&&`3Y~oOHW!*Cy-paIv8eEZaBE z|M@o~@9BJM&ZAHZVgn07H%ethM`AUh+X3OV&zI~wVl)5uXM!8x0T7^8A<*lwJG|W( z5FYRr@9|9FS`?lxg~Ipp<Mn7=>zn}l8%B^fl8~VnLe!3(FhP=|2j87s2T9~WEu{9^ z=$=6EFR}PICFeAPsbe>`qV12BoAWk?j^}NBjV@k?-1L`x-XO{z0aYc#=b#qGcqW{n zS`w%V_^UTxAzwjVB9PAAA%8IT(?6>UYUU@@)(HtN%v&MOj7TH|5)`_>M1c>X7}O4! zG_c5;H7V$!Ea5Z|$APoViq>4g>y!u6oQZ*4x$(n<nM3FO&F<EAR%cYSx?qVAVbiJz zlSZb|PC+2R(@wkIzgh{bLqzSjO-D;hsa5L=niYRRP52|CU#&?~6A3`!-1>Qk0`Q<e z@Lk9M`8QgG{y`J0SXCJ>T}c*WXh;<ms4%QR4~dh&_7bS<0ObIZ#DtzQGz5K~NI?!! zzgSV~7hDgdvir;8>e9CIM=`86G^<uYUXz5j8`$d+MBp;NUaG<KMB}?;9so}zVv<n> z>D=S4EjkYE!~U}+)~=)W%O2^`T^0q)%Cwx*@P!btiFxv`;8oe^N$WYO9o^Lb`)`J5 z4$U86Z2u0WcLm^BEC$q#(3EWS7Wj+tisT)%(N$upCYTbEgZMI^EF?v&xgabtsk_qu zr7_eWHS>QfVHws@)P}}A1d<dcqR=Bi?G}0MOczFvy9qHd2uzL<#Cv$2P59Sax{O1w z^5Uzgqnj41R~%!Zu&9tYcGpatkkD=9k2!t-VgY2POpVNZ-Vx+Wq%QO1!etobGLx6< z?h=Ib9^UNxufs^Z-Qy{+8wk)Bh^<)-UdtHR5O-9MOd@v8_MDwvv3JOtUdfiBJ_*M3 zxWAjlmG^BvDNrcFs8i6M%c0=;_^vm5^Aa|9sFhU;?L6r=-RSm6;?2;3gt>}3`-e_? zplP`o@W98t5>duW*uKOrGZep3&u2Ev-RkRNMK6JZKOYDcxWHW|>jOPe08wZ_ALzrQ zfBdBWaqKk)DkgBNQo?9^QC+R$&zE)~38T{(DGOhu9w|$j7O}r<a5&U_4ukJ`Xi(2Z ze9!&c1^bdY9|s}oK0%F+^bg~y*x!aKefHX!RML&6lJX{1QzyCM5g5PbVSXn|&dhkt z&0;7v)jOtn@vU3`F_m=Cd#|VReYRYd&0xr_%=*(-8sg|RCys7p{7^3Ac0+GYT*h;{ zqxQPC`e{>Kc;}1^PLe-9b!>Ebf7fL9jk89iw&5EXQ$gd8eWsR}y$NlQSQTu;&9U?q zKL6!m&MBiePAy@4-t&#~pD8nzw38C}gl=TUo2|j!u70bsXJ(=OO6Ru;mX{4=Ch-Zq zwbr2yrT_Fv#UqVpqpcqGu^d4kOMGzP^!+^RgzCM1%qYy{x!X0xJ$`!OIa#zrW$4Yn zYvXi0X#vgiz-!{0b-|g*J}tQnzZ9{dE%~s`A<mtL&OqutdIkNF|DKmaO;zO=Psz|@ zTCwgsVxFgn)Uv9n^LGC4wV}BYK2tYa;5@zc5|L*7AItntYg6d_<<ByA>NQ$SIe2`i zCEj8SW6G}MrOo&PW4dpAa3R{&q6e}SEr!p$rAfFyO^+Chg-Knzet4LN%&s5&Oa72Y zm-F(ZuBq;Pv+AW}&FbMJMjx`;)A`yg^)+l4U%%>BO!CjX>J73FG*4e@xx0eFuv~O< z@n1JL)_6tCTDjLcLxl6BC!Q99c-_AR;f$G+S+%19X#Vp&D~;RNYw4Zt-BxyXW|M0h zKNlNvVN}T?IsFxU9?8lJYr1y-_;ylva0lx{vi|pnFeDRsf<lyx#8;b+rgEpT2TWot z6h%`?)(D%|-gzQ_E72Jo^!|SMq$x1ht}pn+l(|v2lcRM+!aAtdMl&n(yHTAec)oiE z+*|gwv^<|Un56V<qS?19^<`C33`*;Y=b&r&Xn=>i=7+&YJMG?RS#|iMi#L$K@zGzc zs;c@=wc0b)cIDKht{bR)TjO);gE!Y*?^CZH=31^FmQIrLoU~B-r{EUrTYAF<u^ikd znGd@@wtRPCgg!(`ZJwcLi&$Di&zm7<XsBt=yk1pZt;y|`vi$U1xg8b8-wdNxXsZVX z)#kHVbWLK6&kGlt;-l@Mnq{`O<LR57o&ucV&1zqlu+0_vre>m0u<_?C`7$59NK)YQ zEucfU)yBeD@B4w~3gfoa!nsL;rzSDdccH&5Yedq29Z|mDWbw{@3!c<Ip!5z+_c^*e zORj4r$68S%hqY$t{?DjusS>$}p59ZYf$#TRo)vla3>tj@kohU-l9IPEj($)<-t)1@ zeXj2V)QMQWn>N_b*Gw*-e0@{H@V;FTgx780W$;N}2=-tkTsyC^mLHf5dNPM@^wC8N zH3t5sR%&!IXGUC|%6Ri_v)SXfCLdCzTC7WJl%B-qPGVf)d?7TY;cZeDx--vnZhzr+ z;kF)*%3St;k9p6c)8exj7v40+Z@8`Qng6cz`V<Bqci#5Dx5R%L9M+^1zCEK=@pj?$ zuLlZY+R_(&6Pm(5(OFx!n6_Z}NB@ft^jzzfGvrVH=L+s`Uz1Uo_xE&$m4@T>s~PTF zF5L5QUp0S5)9aHR7pD8F=2{&RyABI9>iwVNerO4;v()FJ)%~Wc%8XyEG5I`VcOQKW z=%Njysou3}ACfrV_@54$ZS6Ts-+BJ;PX0tnY5hR;;)AzJOXGL#(o7au&Y^{&vwC^k z<!4$3two#k&x$WZF0aUz^qlm%>EGY<c++}Rgt3;ro9#qd?9T6>mdlm?n8NsW&?j;3 z70xI16-PLC&duS?R*-3}3`V^BUk3S)(NS)$=}9iW!s*6+gU_6s!M6o3P<|^c*ZB8s zo)?4l6h6YI$-pcAJwR%Ro>G0Tmznv8k+CGM-Us!kRn=<E*4)r!$crkZc&Ki*IN+`N zVB~Pw(45x&v$0xBjk2D|qT}&`|N4->j!m7+u)JjK0|S+RX~nGbJO44)r%N%#>A#HV z1~Q^|r=;|9dcK#z(5eT5Rv3tozk`2%)z~)l`d{#6AqHbGrp)=*C$Xvkg=Sb!-k8VX zz>v3}B0jkpeT8oYhBn;|t}kE3{?-b=apCfRUfpLNmZiS*u$S{2UF6GK-+6j<%KF0W zb_#qE|JOTOOpVLMIbKsQXg~CV7Oy|5`Yz_|B!<`2G5h}67W=UVxYL)yOZuC+zqCB4 zHKymf^zSAAI0s4HP#KPf(9MjXH*&is<ThM*Va{;xoRNLv@HF)+suy%Pr(DPj(o>N0 zyohhiwg1m9W%TsEoWsyR@8qLYmU+m*at<y3N|=SDnbz8Kr-%JwpY?IuL8sY_3ts<T z^3PBQCxsLq<7f5W6|bi<B;Vef0oPHrfgW`2{Gh^YD|Uz$K3o3hLVq8JNm)(1S5<fI z8B0CDaBrBQDS;DuD}}Fi>iJMb+XrmJO9q(|lNcxewdCo!wQ>xfRm$0AmNyihrsuOw z|CLfcn~|5fvGL|7g~cm*6k=xmrQo|h`+_6uif;dXMKyVbvoYkGXpnIY+UyrdaocZf z`Ls8+n`%pFeh}(=?)HhM8Z8)kys6FN!;__>&Hi1J+_yJh9xYHkF17;4rGILQ@D;0> znx0c}cR2m>NmDjt<J?T2!|H*D&fam@%C8-$p9RS_K$6u`hiNMOp!#=c`tJ2h5t|Do zChyoVvYkGaV{+nFTzm+mTAq&n<--GCzEH1t<4rxrkF1S`ORxps$a|jCyqgN~2IF-p zYg~kW$CLXO6=-^3haMq{z5tdU6A?aw)+5nSF7bb{LFx$-JEZhv>Zi0PZ;oqg_Z_*C zJQN-KNuwlnX_A*k$a7bh;?e|zimQvn3neUW7ZjeF2r&y(oyZl4v@?w~*Njy3yN3aE zJ6#LolrF^_+02{lYn@;>=7^Rd4e5JEna5Q1hXw@KCmGrV^huqzQ@C^_KuqX#ZhVuN zP;Fg{tF|cnbk9)S{vGa=ym)7WT2Bt~xGw$UY4$1Scp1Y~Y##W3`m<jJ$bbO9Tec(n zx*-hUx`M<Uq)t%`0WKsB+)^D>G+GvB5EVrINQT!Ygx_P+J9Fm1stV&Ji{JY9c60e~ z7~85HGkm(W?oeBz@}x_Cx_z@gtqV6R_Ka_}DPvxkE+KmTl;jaKXWl+<kbPB_C}%kS zWVli51Ev4C!_R^cf~!HOn^b3bKcIzra8V1*OQm&4YzJE9Ce*0`1b_@Gqi@4Zsxlzs zp$PiXQHJOt1oYMF!3f>;RmU+)&{KIu(e-cpR2V*TuBCrMZr7cj<~f*EiE&5Od|BuV zPkpp7Qcs@7mdSr6jsqCMjd53$`JV<xQb`OJs@?>gOQ;+ON}_M!TLX)(+b-X--*UG$ zf5O1a4##4%68C>xvBKfg!!38T^dIs{)-AoQS#e4*F3$IGo?5oN)fB1h3m<|Dle7#2 zI5AFOuCPM!#-D<+fBR-WXDW?e`|q5A%nJ0&1Yc#E?<=sW5QtdVU|0Rqfu+bPRREUJ z01yG~R=l=q^fWuvYD&T`U^n}iF3nP6s}_iBMMWi#Hwh&@ycbd4VKGG}aaoXEbFIT& z1Dg{U{<wOl0|+<yTGX~lp8GzY@ld@j`OPDCl^L1(2%|cqdgFR>PyK~H*7IknI0@Gy zAMv=r9(7}M9|~6wt<8)7_$NPO_;~#lJZ&=LB{A+`EXo1AF4RUxu^7lW*BO4-Uk}(~ z1o(3l5@CsUY0yI?RM3#)_>$@35vY1pU~IInh7Bz|R5?_Jn!5+0qD*z-o|!OBCHn2T z+KURNFy777aLp;)Eg{MC;^<LvITibavi#a-&prsw+x#M0UPAJBRGRDEm@(C>JkCLF z8SZGMkzWos`F8O)+GBhl{<H>%Nv5GX&aD?_36~+$CgzZ(UV>VVRZIoC!#A8HX4E4H zZ(C52O4A0L+}x;}Bxxc+i#(%NK^SP@>3@I4I(vz58_gSEzkcBI4J`7!uA3DR@qM7d zTPjh23tftb7ln@&JlUznmiN6YsA2M+#=!lH!+c&1<^DPqw!-d>ne+2Wd(k=RMJua| z`AeAH&vRHk-LM_)u^ruet}ofNor+;0w59q&1rjt6O-S-0-+pl9k$K`3`Yi=_Sglvl zn-3Yf3cUj`TU5O2^m2yp$++cr+7@%FAcP;A(0`yX$xEm5i-l6HgZylcQ;a;VLq7$B z#g-&)Q!&s>O3@7w+PUHy@79jd`!T6}hj?*2xV_iB7XtKP+AmG!T6_&omys8Ig^P3h zH1`n=aOBjJ5=}v$y6m5Av^z|_@kZg!8}+IUli52=+@%v&ie+@DQWm-&+0)EG8&{nS z>9IbW0R6t6=7#ZgezT7tC-7aBt+I+**s*4TXe5nq!`1YWz~9pq74k<<3<Y8482|zQ z%thJ*gOk5BNx8Xp*lkoOPc^yJO0A>W?dzgNIiHkQHF`>LurcJ*m1Gpf^0&7R*;)#; zlt>t9C(L!-wMN9pDWz!RM;pxPSV3v+oi28pLIb&(T%OzS#AVtt<l|YrVMAlNd@w*S zBiP3Drl)P0^aC#M-ol`Xw8Fc}tK2>RV!Xa(v0C5PLwUBL=#LHRYXZ_LuL)h^{l+YG zWTfQ(`FLzSe0&W1{ui-*6Iz3h(BNgE&cI{DEHp&LXKJM3`c&?yUXJ=-%5}dAG7^<n zFB<#x-fGnJm5eD5hPXv8ebt*-fePXz*T{hNavcTR9V`s`233^53v|e@nss=suZw!m z)|#@^6A2>BN&0KDDa84CgCd2aJ4A~zZu*a{MWY3kwJz-#BEkwy6%r;r>h?5u-j$jv zeI_?L(IUz4LXKKn&;;kA9Ep_=a#h5wDg%pWFs6s><sYmOx3DwNdsa7IC;TW)se7w! z+>XU7L*~1vix^}HA3u6$q|lMCXsNFrHVB{(df1~)>^93qZo4iNWgk9vnl9`1=dxj3 zxA3}3em;8^la;2s=KdXLho{kfI?7T}QIBzYJk6f5S&T+2F&N8wb^nsalg3FO2uk2j zby=u>#rcezdQaXS?XuyDRpYp1bjSTamt+OOcZ@xyW<KZjVBfKAp|!5`-zDVgKGD5P zCju%%?Oa6zdjn#A=IF}4j%<**!R|0Q`IY1_6OHV@cPrWP7j8F_jhhygV#(VQyyC#( zmHrL7HBRcB4GE72{RiZa1JtIc^SHoT)Ksq3i(F}^X#LzlmkRk4L^riv3u#{@cTKKZ zC|}FwQ>Cn?n5%u3SaVb0BCZK72IFgvL;vc+x7*Ve9ZBG-&|hKwW^7l+Hy7>rXV2&& zOCJAu9uHPnc~qP0yH59ITEe>T$=HwX6SN-__{z=KHv}afJ^DQH*Q_rR3rm#Zf7OlU z<Y*dsrtk`05}nMLsiv*oX4|<~Wt#teC(jp^<+~QI)chLfd3gG7U#E%hCXc4eVAuZ* z=G<AI{h(>A#(TTx3eC}v=vV*4|F0WMFp_sDdi~`}DJFJ2bJ4z>I_<?zd%KE!Y|l#B zEMR;V$xkQ~QJ*ij<Kq|qpN}@CFfXcnshPT<dh+>=4=FcT#mWu5M3sKJ(K2~X-%iWK z%UY(dMV_{XTT{7T8fqHlbFMTRR0|VLo51Mr^%z$n!lQNb*G=Jsx$p@Ie!LwQN;n5? zf3Cd#Z_s|!*;8@6XU~f4vbhRv`=>E}O@pI!7do@lJtxOYMw)pf#i8lus-UY$zg<LK zvVO6ps3vYG+3@i6=f4;o^Fuu9+CCQ;El$<VcG=I9Fn3_ygutGMJu<y&gI0r1d_w>8 zG8{d7dRJyQjIAxn(qGb%ZHbwj-I=znl9&~=jg`ho-Y5-QX<T^s9`Cw7&lo578+~cN zhrM(P8>ibZt?V9B9vW*5dVzj*qdF?Sua+?w@2-_@PaM&n@w!mRHfs-T;T-iVBR?un z9NshP&m+*kgm34+H*iNL`+=Zc%~RgTb480}Pgk|i63F(M(K<88!|`Zi>Z{)sW2qb% zNbWo~8HMIW$81Z(AeL-zP<pD+wzX+YI<Uw@spgm67W+!`Hfe8=*LJG|616v5O=9G~ zGtzSj(Veay&^eI5J-je-mUQykz6DRym51BE?OIY6j0OiRL@?@CUs@n$8jP33hq&GB znzl0AN7zWW*NIo_@Vwu$j9*@*r=~GxUUWKf-KPGj?fOCG=E^{+)dmhH6!_=M+}|{w zp>k&ZU`bc#gIZu5^Bi_dig{IXZPkdt<}{O1ld=+-rgEm^plfQv>8(#Yl`|Gkm;QHK zwroo_5<Olrhih?`xx99ROR2)#7f1*~Sy<-z%C@Lj0N!hcV*KWx*|M42Iw#Tgm2OjG z-hp@P;*N|%pcA{lc`?K1y3DM`iyIofa|HW^Z09%%%(@k;lo>6e@0A%n?ZVYT%*_3R zJ_+3GpL>b@RK;Y`mQPPF@@0zf0CaX9U$mI9knL%C>t?ecPyMj-qRJP`T{N#bTYsud zIdC)#Q(+lgPfzx2wrV!o11LP_`$eZvt+@$h!&y$h^S1LhcOFsb_-1$WC|^WFs~tUB z7UE2XYfGlV%QRkrwOrqY1-U#`MN?8^L-<oa3d8qL5po3t>qQ1~XL6iRx+O!hC!}ML zC!g@fS5iUgUZQV%)Z6Zw$eibExVmk5@{>JF_<x6~{B-lAFy}MN5Vmyd&a(C__r8)k z#ieOFpjh{&KNE>&8r3*CKdLt7lTKDypZ~e&etUJ%SMHkjXp!pMC^may)>|sL{^Q5t z&dj$<8I0KuIsyf}Sw;^Nm-A%o%^6O3%@o;~P#ihynA-lF936kQylq3(b^P>PZhxMu zKThi6`iuAUl<COtY*72iv2tjU{l(N9jL!}%SlMc+TYl_r!(){jZ5^yuNAbxdu5Qdq zt35Edyu0;%siD$<PDRab^Mrylo16=nrCcvR6$n(0;h|@Cqro1%1}kQLS)A20^~MoS zCHn#G*KrTnL;uAg@)K6M28HSe{5FZyU()ba)F;4&7YqRl-1RNKWV=N*X!jEgQ0#sm z_WNmO;?m}c9*fTRTWo_`x<$r=2AZc$mb{_aI*45G)#H0Fd2i!@E}ttBp~h+VDl58m z{iEqiTP3cL3vk_z!DOQaL9z;^@q7n`cV}OE>@7u@vg<n*`n;3Jzn4RE55G#^uC&VI z*W-kYY(mecDReC_YTj(Jps{1s(aFiro*91U7ki6E9=bl7Dt(T}wPgF#NB%;W?*HDm zSmC|<;VC!#X8hO1r2N&63b+dG<yu`Wv?hD5NS%9o=$Vm<x(UE>e{k}{23rni*UV|) z&>C`Q81DQY>{NDCI<Z?c2<TdhPiM`3l^+RZV@nbreX(-e<a4doetaO+LVk_Ng*++O z1ulmdykLJMd)ZkqoPF{I&(XiE5!+ekO2y6}c%;87J6+P1S+H?r?mQ7C7gH@@B7ZMy z!;O9G2Fw)~*ma~D38q>)lppF%ZoZP`;(5gL*O0ZtduapPV9ldBcOEC?%bL~<%hq)r zYGA$!VRo10)nra)1nwQ&Wl)w-ma)uA|M&jk?J?Z1yt#od&2Q~6d(rCdDOiP@0dj=a zIFo;_IV`tthiLS(^@9QCdA&?4>t_$SzHjwrzo;3&b_g|WlNcT}GS+8m_inRinloM* zEqFg?+nFtfjfuQs#trY|c)j>7(xrQPEZB4XYtJ=|Id&UZFl%c^g)~>k96y|B*1S71 zee2*v{$0fZH!WX{<hvh}?%dlPIlRucyYxfjdEv*kdzF&p-Z}iJ+%$uacfOs~RH<1( zwMBM&{QY8BAoI8HvR`$R!&aun=^lPAet*oTbl}d7sB0sSEe@%^<K&rscjvi9-`Mxp zu(H16v5AFasd{<wW@zFuNnyKdi!wMZ-MW{0JBm$ZxS+MR__Ss(2vzR7y!f-jlJ5~* z4f_<c7aG~8G-V%b>Z?{eKJB2Vv5yer*HqRP|7x`T{r=69MXOCyWK4tp%zyt?cdh-l zOm)%Tp-_g=ZZ~JH^@2>-IOlcW-XC*rO}pJ#Un~7vIqatL(vuA9b(z^~^3>bX-C|3l zJZ{I-9m*SSm>Zc{mG^DfHIiFWttixwQ{jvL5w9o*p*$2C$oiY>AD4s_&z)~Y7RL8+ z?RFIaQ~XJ>%G+1bQ$X6a`FCdnGsR!PS18+;Cu<---nsE^FngbO{6N&yvA!vctUs(& z0$X$?=!D!O5-CQzQ@LL$pOP3aP;a=p#im>Nyw;W}3+&AJ@Ab}P)cKr_KP{2C(J#tr z^Ul@k0p5bw-|{ZCe*DO`gUu_mZLdJxqB9BVTdrhjuzfb_?OOWLM&9vs(_f!fX1R|5 zrMAo&veZX4#Imfqjy=)LU&Z{{ODh~Mea^QF(MTGZpP1ji|Eb74j6$Tv+&{ngy6qOT z%9!bCA<d(~-5Ww5w5AFUwU=nwukY;TXxN!tex)Z=n}xXRo)%5Hw?jBwta%Y*>D!<= zb%<Dz4Wx9p*(Hc0g`e|mq;r~GHHWn}XVLCPcM<8i3wv`lj@R4N-7RGA!vO0KR|hv7 zT9OynkiX0GoZWuMcbMYw_H*~ay<4(p4*c2>?z(eb8VjYrD8%{ug4)0<rNZfqwL&a= z>J`^%SRuvSyu9&7o|2*M<J1eckCY#L>KhV$o|%5PZ}it}jn-?JWz`{U8t}>}-BH%2 z0mHolI~mrGSEwIfTao|P`Gn6^xmPl(mD+NL8(&{bJ>kM+Q`RnXDctfpt|8Yd0Qb4u zbLxUF%}^^JUGyNGielS^H<iSq%e-~b$8FthNBB@yuO{`ma+-(s#o5$o2Ri5{mNSD} zmNcE-dra72axK^N&#oL#8!SqqbGE;FdwRv@D;dGP_t?eiCVf+JNsOQS*v}*7yT0k6 z*o_*~hab#p@1B$2!KPC?m8rSq^E1ZunXLiSod7#n2kPl)>1~cc3%QTU@?U7%adLgH zUbH*#1N8hJc`nKa@94S8xE?WB;<ENit&ffCikjw%bH&@Ea?hPv)R_9|vg>rlFpMiG z!e3V{q&d`wit@A^rstH-wpsrxzo50~tgYd$)R6lTCw0{W$3$!WYj0Q%34Pe!k!NL7 zdg<|w3hrK>Q+D~b_G>?TjOgpFh!UJ-6XTO0&YfP;s<p4R;DA>LTYJ^i#5<gJ)l<bH zxfh;XW4Us;<JW;f9owHHd%|3#&AL*|R%Ks!w4$rt`Q^FOO)I1E;-{;4dPrsQi?XlP zw=)RP_129O6T0uWJUvrDc5JQJB5T>$xre+byBD#d|JT}QY}S|LuP@dqy{_cImRR}O zZq9YR_ckWoH?MD>;C`HXbf$H7hMQ#88t$TIo!l`kht@^Oe<?h)GP?9AR;d4)zItBo zwB*#-PYZRoL_`S(Fw^%Q<5Wtvc<nzB_{cBWO6s@k=%zhRvm<nW*F;Io>C(K!F+4RK zY`I5NEPG#H@BQ`JKhL|~{`_;lEXaD1KW=>sqmiTXY<Hcm&YZ9_TQZLn&$O|4^d)$O z;*L-WIgZ74Wh(-ml&9TFd$iV%t1vQlcI&ch?8`lBSI&!kwmvC){n5oEhr@(yEjHZ| z{4@1c?{<WRPqc8`E*<`7vsAXoe~@e)uob&Lxa{ppzd`edFV5v{yfkBYDnAU4$A+Vx zQ@{MOOIounJH15rmp?D_j81;ITt=BCNUmWP_j6%qVpKzV@Yo$C?ZmfVxnI~G6KG9- z6E@r7^6uDaavol3i3PWcPc^ki?5kS$J=taMo5O00NA9Sp?``#&NMW+&cU;hE-Ib8a zXE*s0N0$`eG3hQ%yrMdrKX*}u#ToZmI}1}vc=x}XlPiJ|&Oc0LOZN9aoh)z2%6L9o z$ggHTxHB_KrRRI_qQ$x?-dQ(xAHAbG-+y^YG*p7&iv&&Xnm4Sy<DWY&S0@@d?!8}y zS))>)^htcm%;)8IXBeg$`a8WhisdfoO$-TYzKxNt-yZC^dd<)1VG~Y|`~5Upuj6~q z-HH%yvug}}s8&~8d*?6T3{JJFKc=-l2wtE4wv0TFj)07Au6=;_7u%1?9=G+pYKEk< z-L+P+j?&#y!Q&~+hk84)s-?ri#V)}j>t}xIWx6V7#`*>o!&-G*TeRqtYpMUilFVBj zXXI*|zotw(i+ppMt__IsccrIoMTQFRtYM}O+;IB+HMx3tC8Qh;{)uH%46Ib0*RYAU z4qPwY9$e>j!lr~fKVjqEhM)?CreonE+hiK;E`qY%UVQBrK#Wv{%)znv*;U(JrGDFd zfDL-z%ha`dX*o+g`)hgTuCiNXiiV;7__ZU9eb(1r!CQI}A$--%$j^&gvo*m@N^<1< z5~&<hiFA0k#ksMt@rHGl*}-j+A!iOvF?afz6DTWmPVVf7b8ZfS?pjw%Z-yFPl9?6M zG%3>lX;z{)|3}@KvLf@Vr#2^EdQ$;*uxpuIaG!DM!-py_d1uOI&wnU;DHM+7BOJ8c z*U~P9t**^t>{j7U28Xk%oP4XBePgCE)-Ge64NP`?ZF%Q}L(8XPm!slY=0{?u#AHjm zZd}-5c+5s~^V0<phX$uU6$0VZ^61FSl<%3=Cw*F&Noqg5f4QtE=UlFwIU*p^VE0Df z?&9`!a%G3Qn{VM52&@0DImoqmLb6M9%A(<^@EHuZGi*9f?k${qsk!!C5%YZPTA|2p ztwk>!AFSHj^yn{nADZx-H%Y|O`xb}t#oCk`@?p8z!ko!ram>3XdmDHJ>PD1absZjQ z;7Rsyj83z>T(m*KM^JC8E`Cq)>ecWKnkM5tvD~ki7dY~-IahPcZ}CVIZj0p(z+m=3 z^J#}7e0kQ?nUtP8n)OunvXX#l(?~|~j^B$FcDYVM_iFd7SHG)#IU@Q^<@Sx9DlxTQ zwn`^#Y(-v^VB*ANc|BGr;N@hP6(Trr^Oy3vp}}F7`h*pllRdr~UCVV?&Tq0eMMm}k zS5ir8-97XDYj&Hsrix#2Iwp2;_pMpoH$R2;=ynUSk0h;>?M<Gr9Y3)7_~u5J_fe?| z&N{f^-j)*+dk#tdKIiQ8bcK2F_Q<Bn;2o>yzqGtq_5ESDXXuJ7ceFKst=n<$Qdg_% zZT-?OlAf9gW1FVi1*!V+NU|X>`(t{I<=<~nLU#E4e#G<i{~r`ih?Z$vr$y_qm-Oq( zt}A={-5gqX?~rZ{atXY7{oQC)d*_L=wbmQPuch;KpBi2+)T+-M8L05&NIB>It2QPg zubZi+YF7N+`CB4qgPpt)Z{)LQ=Y;&y*WRY*+ABUGBCM<>@w#W_tq&sl9reM2w@*pl zvi-;kEDG)HQ*^hqaed!gH8@M<{^h|92&4;wpr6W2FwOS7S8Fedxta~>2UkF-G@)p> zZO(SNeF+NI=xgI_=>J>x=df&u|AVpjbs`sjWhB@*tYoRJSb=84<S7?6&MKPcWtQO~ zuc-KQx23`3EiL=`HPyz8a-3etY+P2?p!RiI%qy9F9hH2KR`>@rNeA(Cmk3%2T-S<Z zuAk)UU)m)|bWmtFr}BI0y3d&|x5cbBAJtiSvXO6_$b;0-#2}@u@;<M;^;%yQhs&y6 z$+a5ot28b(;O6=+;*}(F#eDh4<mvN&3OYbepinA;rdXqEUEiksmQ-&2wc#E6e*4kX zX;Xdm0%tgSO4;$WHif#zb!wg2ytbZ=p^)9q1qdzk{L-Bz64Gh`GZRP5vMS|G+W1Nc zKxmJM=()3cZs8c$$StQ3MuI@O(0FLqDKCoyIa2dy5Bc{iuQ@G!?r@&n#b1K@lJ&=q z0!6-%)0mmxpRSXaYqj!4tB=y?_}nUqIlpBu0L252?LP5pO<n35`6-dSIW8V5PkB9> zmsoVW$X%JdKFH;hixB2-&ryT?L&&PMW5_A@_WeYj5_^HD4{?7+R*Mgv@Ug8ON+@s5 zeC%<=Qz`cQ+}kcv+@fQhv+g*3o)fYmA;;yYJMOVt$kx&*Ho2HJ&3ap2gIcgpN6D<L zDvpNSgoV+~ORcVD?bFn@JCU_4TV(`c2qb3b&g>uIyH*+<nna<<6@(&rtQd3za$Sa- z&B)RRHW_|K`88<RDOIncs+x9CfHwg_Sd;HI_6ujrJ<clR88D`cvbc6hjyJx(F%xrU zKJC>!Dj;rh`>ezt70IXDn?gj}AJ|CG<?rF%)hjkqvF>0d+pghVJ~vIhG%Hs*HMDyD zD)|&@6(ZK0EUxx;<6eQi4_q=|okj1u1-+*lUuS6R_;ck+v=&|qTiM<k!n7zI?p>n% zloF5tw|B`y7gXK+PS$UIVL6Zgn_4%DK^5SS|3ALoE2_!%iylPz6p^ZkfOMrOMT!!n zgIGYCAXNyFCLjc)BuELMC{jg4dY4{9O{hVogA{2YB!JQagn-mQLYY^8|Cx(fYvv|v zDOc}P&U4N_`|Q22)<2k-N18$&rP#3&&*Ki7o?PHr($Erk%mX;V{XckwvfRA$F}3l_ z#^>2qFhTiRt06PexkW5tW&A<o;+8q?SalvbVV=B?M<{-#nQOeOi~F8U$V34o4&`R{ zp<V_`#m_kkjXJ^NoeAW8EChdHW3GFD^3&~t%l`%$Wda$WgZ{g?I^LNO+X<~+nS9A) zo+W_1sI}yna7%7{dY1h&v(K^2xO>s9ua_dY78p-yP2Z$Dck$n%cFdN7tkLtkt4x<E z@H=fqfs)%ofXm5CW%>N?<b2<uw+2KXmcaI#*62F#4c@_x%`oqaYCz6M*_<A>t~o<S z{RVg>GIEEQxK8KXg(0%0hY~IDiwpyS<Y=P!61h=H-_>SO>fPXTHM2#>Oi{;I@^PC0 zR#U!Y%E#o0L^*gd1TakoftOF1lcLU32x8+27wUZ;%z2l8tkqzUlmO8Y;o>oO0elt{ zn`ei4WLMQU7)09%=t4h;DCf&N#2ujx-oNC)KPvyw($AmA2xldXwPh1N@X1_3N7_mT zi#bM0%FRJMkEm(c|37)qLF3|s(xK5K948<SF#5R6ZTNa@WB3tEhQs9aH|uPk{>>A= zkkqMR8Iu+F2ilz*MeAi#V~R}EEh(z;*O{h?eL;M;3{jO38R+E4bV@|XG@$*B2?nTO z?yOtV)dYw=AOuIVY=Y7InRf`@N?m#wH2w32HP}DC)Z-ay7akGZ<}Lec>3Hj^ap2&= z>01d+Nfu-!XY10^7k%sM&ojwB$aKBNA5}Ka$uwB|M?2j9rxBxnQ7X!P(V|A#MSHtH zUYEa)eM_&;Abe4>8RTB<4;62ps_!45U5cv8z_-_Ao{QW65wX#H?ryjeGCNkiPv7xY z`&KG=ozjD)1ljr+!OzWQ{;D|u=zv0g|H~?W@JZdQ<hlMU3zu!^)WCk0u_1dNGahSY zKr9a&*4MQOFf}i{`9yuOW?Sky09~&zUx7_*_Jf?P5A~1rv$;a}o<}!p1Md$`zi%}- zwko*G<&JY`aV=XX<V>DAzxKLM>2_evxBu2*gdv05%VN_MII11N>MPi8_}=y=rwQu0 z_Tx5!w`X!-h#$oDyT24}dwN%c!gU#U#eF`=|94Aavu(;UY!1kv&wl*Gd+rU;N!ovj zCdwOMCpS7SmX`gy!WtbRB?3wRj+To{uxM#mS2j~kJY*fKW5!@$jtL?rUn*y2dJ(M4 zG9=q3)Xwg>c@(}fag9l>J%2Lzb5K@vuk6Xo4P<beo<++(#`iDX_kW-t;ctt$o;RWQ zY~Q63q1XGT<Ok)Qn+g5jCB{)SXjO5$nrw#}{Y31L>aBI_9}58?I=(I4Z0>ptEb!Z= zhsX1d+1r-NVGlT9ThAq#Mq8E5fD$FxXwUW>dY@|T<u$;WHNqpcYNI6-JnRah$WWf~ z0tkBRaOz6-veLR%-eB_XdegHM(%Exj&L?m*kpLCes3#IEp8KGm02j*ki%i$(A`!&a zP4^~W{a~>&tc&e%5FXr!hpjs(2FqvFvKSup$cz;T^DI4d<bER(Oy?V<5d|<jFu)7K z71^<YU&rhSy%ZE*I{~oje+L54lNe<u)QG|_+kL^G2R`~#k?^{J&^%`M2^i8*{_jDd zyxCTw?j~J`*OB!MjAu!`?KmBFre$BHDGpr3ypm<)Qk5rs5k|dp@WkTsqk5HBqMnt8 ziBe2Yz^|2(Gu&DFq*uZuj-ww@IEk6F9BM^P0dAT4ThFTolB5-!4C>-kx;@RtCz^6- z`@)LsriOtY+e?#@sRz|+XeYgajaXh{n@8IJa1SjmAf6-yvzx9gBsT|(FKV=9I1Hy& zt&Pbr-Dt}vIHp(t;7M3jogNTfBAeq3AI-$gbu;UY$9;-(xRd^W5D{Z|C#8U9R*Lbh z0qEfWWAYL>4*@H4$oFR6u)%U2N*p%qzYG~34gk`5uGNH8PA%sc{9j%2x$UD!bLq!y zUN4g^ysgNUOEtc(21V^#i`EP~OWu#GXq#K!B?jqf2x%-oLuwFe{o85V4W@OxP?66f zf6=u!XH~9zS96$&FLoG1yrV1GOQiD#KX~|s6@SkvWtqDVTYWJ}OG1l1o2z87c|9O! zVZa}YNE9PJGVQGdNp#NKmB_YGd5Kvl-r(Xtpn6}!1vWCIdr5JrQyQn01U>;sz?4r( zWoUxi8s+$6A;<_brU+EHHz_B*vLQN(ZGd*Aa^v(7pUhT2*ze}e%IS?|r(oSRN-)P; zbzIY>fN;)7@Wy0d=v?Mv$x7Tyc_G}i5imjHu^xQMneN7~q~Z|V2D;E_B6(f)EZucg zQ)4<Ira9-^O`c~K0c8e~>e7AfpEshPggep;Ws)OgR4fvsIP>xMbV@u8HYT5^AAT;l z**L>C>Y5UWc$euY-@0Y^<y)|3;U}1Hr{A)2f5xD#Ozkj_J4c8D*)&Y}j`^>o@=9V* z$?r;)Mx;a<vP>_3Zav~d+f;Gj*5e>Gi#{W8RgFAlBVJ}KlPQ_T4cnOA<ls9bWch4_ z)DhX^Kt>*bNo2k6wq8_b`GV>aELbUwF@sv|<00JkF;cdEptp+pJHxnPP9xp)=sGYJ z4g6m0_C)-5uy0VWA+oAR32PF&ymiDucS-DjZ>t47^PBi!@~gqP(H!3^u?J11Y3bWp zqN3IG&k14LnS;1{7A3i1@UpvyBjv&wJfz?@@_p3UcqmM{BLByUZDeI-N>t!8V=*EV zCDG3W@w(3|Hr$)2eP|XnuhNup((L(rp*&q?(`s4Wkic&fdG`0E@0uEySSjP8`IAR@ zwXcO33(f(Utw{4!aoz3<p7o~JH14x+go1Nox99oVS)fCUbKHaZYDD$$>9BF7@ZUX7 z>EaN1==S3{ZT9>G$l$@OlKOeMHbPivMp@J+h>k_d;0h2ZdekBn%rqY5I$M?kwTy-J zy@rA*8IIiot|n8&O5_AR-6ht4-!D@7pNfU6uSe<yjh+rQ(lFTgLt8-Xwx{+L^d?eJ zW3scnFvhT51xLQUdh3~V@f<_MfA^Kqt(G<UvL3qGdN6*^bs57^H37nqS8$x5WpX*+ zy3DH#*eHM9Wex7i$_Falit>xcb60;>&-?nCnT;RnRHL7lN;1_JR06HIsOYxuC|;{` zij-hZh~i7k+WrBtqJI?UN$~%z4l+U9xOkEhC}<=ulX2*Gmh1M5OMz|;`%PNv%Kq32 zra|cy;|2oHWeuKk3|Z+04Tjm5cOJ=#&Ss7;XFiv0Q|EuNHMml|SBd02vea8oeVzia z;*K?V%qLg-WW>3Eo6{65c92-1>=Km9v6wviK<WlA&F<pCyRq-e%lYiL${*MCx5hAU zzc=OC+a9WhmfjtZ^@G@d3BE);IT#rZzJw0q$FEaLia$=F7Wa2YbAI|VM4zTR&+)H7 zx@h)xx|SgUw$$L<qoT2izU<z^6~kIoV~Y)a-6TQjeSS+NcKH9~I-<P$$>eWu0S^1_ zM7Sg7N`lr#ivBn|?5x{*mG*Jp{5!{xFn!D&m>@p#EYFxIu6jd#VpIt=dT?4{nReT| zd*zn_=-KT|Vz+Z{;E6}^{yZ`lN&2kd!f|%^C5uvA*TzZY>YJ6NhlgC(OsKGLO}5E{ zkpB!yb=gwufTyU<3nDrIXta5YP(uz$K*1PqN>-x4m#CKTsrR`3FY>k+OoJ~Q=-d`p z63%5?B+&K?7C98U;ybG`4Kh-%ky@s)v?NQkjUa-9f;)}Y-E{cJ4!qVSj4gu4cbg9S zWNs+(Bn@dPu1D%MX1SB=tLg!BoB!S=Xbk=uzDIyH?H^tTlHapCqEz+4qo#NrgM*9U z98vt8;G?`s#E6<p-Q$gO%NPKu#V5pVWXqRy`^#N#s-!ULY5W)Z{o7w0_cY}h7bTgt ziSB<n`@OdE8~ET?WsZu)6CbuiUC?7;TPLUW{<KOPMP))JgBJO-FB{=}nQ6ACG9*JR zZ6#yi0piOkI1G`ydVE>|$N4s_1#%5dpg|6UFJ-?6;3;*#Ipn#I>(9dWcS)-a-fWe+ zFul>H8us6pP72-xp1c%0r9?v<Cf*_p`3U$3^5W8-{nFR*wjEV_HTK&vefwR+b_P%r zAybzn_!~`icKgH6`(*a9nJj99$&LF>DLzg^?oKH_<D`2|Q77L;%>r*`k_QTf_}ffg z#{D+MC-y%3c{f#rsH$O>-t7+-I`@g6ZIE+5I%;)LhO%X|W2IBikR#qN<NWw-GwYR; zv;+2hW~Qx!n?3lXN0w;bZ=Xs}aG7?4O`BnhErYTTgESt2dAc^E^_39JE5XPNnN7sX zySD&*?->5KZzj4KtL`^H;VP?4u=o%qXnOhNUCuVJP{S(x<%1{F$nBHK=53e$%F^MJ zZBXJDkElz+C8g}=*x6Y!zwG3^Vb^gveJY>poXgeg2F#}!w=^%ErB{jROL+h0YoL&N z(8zf$&3kF=LWdV4#a`11`|3)ZNqnSWx;oPw62j-4>2F@qIy6IEd#*4$#O*g$5olCP zQ41tDrZrA@GkCfe*zyWcZPd*14Vj>x)C3!eRV8t@Bt#d+F}tQa!uN!-o#+!N_(u)% z!u-WeENE)6i$QUv)8I~(ZmJXZ3tp-0WRQai5p*jT`sH={?MG5?`zMG}{MTPv?2U<- zASz>du9C$?n|IaIRab3ipK^_LlQx^_Z|y;Z;3&0;I<+DvT}U?q9PeSD0>!UXk3)y# z4o*#|LIn^Qe74+<h!R2oDv)0(6<mRgL+2u+AXndGwfa|sw)Y;cwt+m7I+0(v`P-UJ z6gQbFZ8jDgvlK^66~o6@9<E4+C+_Ag&-dAL%f=}qRuHZ=rPt|%f<yp@Jd=BO0lZ^M z<W&4-jQ>$9DENM9Li1W%?bblhB_0-`BxqS~H?rGV#RVL=_qJ9PksQQ`xsj(G{E0tB zhK88_Hhy!N=ot5nf^%ii9%TIHlC2U^lxg8q_Cz67c-ma5u5jQj+@h$aH}5mQrH4sM zu&2e&Shp+qB@}APR%iW*Mef_LrSyjzZ7r&m98=w->Lx}4Vw|NeScwGBK|rO=_H5z2 zH{K4|lCF;8eUzVB)xXI_Kxv-oYkkr19Fv179}?-9({l>sc~BwWk+f5?#q!L^ZM*oR zcyFXB+P}D4nA78MB$Cx5B$T)9cIy57lVhFOY+lgkZkcpGN16#O0&;b_qbe7bZ)8=e zYuO>2|8<Wa6ln*e88=1P!KlXf`W(1>VJQ{~n4O#YBt5qK2>~|CfAwtybpSBs@?>Al z;M*OR!e&X#q!zOoD7xBEJS9El7v=*ZM(r&64KmIOoaw%w#KPx#298IqbaUUre-rS| zD`tV4C1I2owda!{>F(s!7fcyelRQOc^d%mj!jQFKUaW_FgAVMIA8+LEbWrS-o-}5| zYfA2@JgkSa8adc?{+X4Od$i2u39HOLu#?<-fTp;kT#db-4ts}MeN+1qZR$gc(|lAn zScdht3N&<-KV_4D!d<wLORlSN*r_M_nl)A$`$dN#k0Ikr7hFNQmC@YhexEY7MBx;< zs#0=sA)v!*1h1NPQ!12tKhT8)WOL?|M^FQgkK$pr59a}@cV0Gyv+Z8Px`Wnt7r(Tw zs>k-pM?7*;?kIKa?eK9qQ;kPv%p^%W-wEa7A@*M1m^1oZ-jINE4RE@gRQ)HKbU9#n zr(8ub%{=|57E7iU@&pZW!jD@FT=5AZniHT-wrzECl^ZLpdr~(AFw+m0V_#zyw)}b) zRY})*FYyPM{gfX)YXZIda@-4$XD54s;^#Fr^>3pl#~DaTOte?LOyr^a&o`Fq%k&h; zgb_<<!W;W#KJ7Ml{$4Sj=D2EWOF(14lKF9B)%?V_($zPp!)1s5PrV=R*dI2JkM~Ni zkmub;e6#6mg*$WnFSLIz+$=3sBTgLLR^OlU@sJuL4so=vZS3?LKL0a*5JXlA%nI#U zsF$q(KXLw)k;F+m@pnksP=bl|9!#ksz_bq8oo_Q(D9#7Hm}$<yU#el!0bv;5FIcqb zzXRM?LM4N}rB6rIOI#pLRqn?KHbpUfU^LF;a{KkRfdboLVhI*FeV+4^&&hho00Ur{ z?|;Wn<Ww^Y5*+)3Kd3q}fWN197LWBspMy2hORYbPtPHKKl09hMVv(KNcB!qtP%Fmx z_{Q)l6hXsJI^C&P<LYl)4!F=bIm6y9pl-k*=4YVJ^p@Rx%=CBN6HiDtB@N{;scy^h z;`xoD0JgP&F3_A4>Fm=uACf-Rr}e?~w{x^WMd1PU;3=<tj32{|%Unk=Eo+8)N%7VB zHGgA8%@^)Gd-cS=)gVyh6zkI$%ulvEWYhUpX)~BYYvOi2amOn(LZbxdhcHYRu}G4w z*f1vE37T!D&&J%l9ltvM009-S=Qhd3w#KS>9F{&|;IGjbv0$i2=2^3GwEgnNuQUpU z3!gy=I?ZqwLiy3H6Lp5G6Oqt1{e<AprQ8n=?&H@KT#?|T5Gxfu+?`caGF9LAEFJUv zx5jiXuc7%boTdzXFO;;6r11yUaR$>oaX!%bamCS*ZvJO=$bwinl(4$t?P&3IdCv0} zTwj0GSI8r2eq}4j;WtgneNJ;Zgg3qCm)o)h0`o66s(mMl4M<7zt1nx28i1;*U%K|T z-3_H3Q<0VDi2_d&tbS5o#lF+e(&V8i`&e`gYsHk3x+_jrd=OZKnK)7<Vs3(^e`eMo zs#Z4-^t*hB)ge}^)}sKlGZ6uoy!Y0KfkN2J02}}GBR41T2g#LJ>}41n-VCfve@1j0 zT1>Hd?LA6mDHZE&^y)+WXdzpp`96;?{{46N#Q<hrWjJml($1?m3SxklMX9f*-?p=0 zGk=O&d$EHdulMhZJ#X05J25(ZBUz;0uRc`k%FHAR$7KU2|9LmxRFvJ-<BmqLqw7v_ zl1~)FcN?wyTaK<z3|o&Bl}D4l83>GrkoL59<o43FTh4|~egtN{q^nqL3{0w7Y#{9u zl~)Vm(6@x34n9vGmI2F}?70Z=bHhuUO+v*KmdkYm1w4wp2B+5YYqM)N>dTaGt%X*p zqXrxcZIr=fldpAYwU(dmn^}z%^M~$cM#HN-@Dm%GR}DdSU6t#u2?~fpQQjZv+z>_F zS2eLfz5oGGBrAJr3yP4aSR@*q1SPv!Ox8;}nHp$%hd5h&e@O~L@$L7e$+()5Lf0Ld zJA?$OIoQ3et>5Ivckg<~J%R|6HFdX@dUMHp8R_g#;p+G0l*QHH_$+H{-V@d;Y-6B- zS$$yNr;=umS@X`SntWs4GFsDKq}_7b%m#U)1r%ISnIvwUy!-IQ^f*`h4h-yZ_YLNQ zfsmQmQ9PCQg&kLA7i0s6DaB$#N4!63^G;``Op4lbQ|-lP;1}B6O>E7WM>nRAKcnm| zvmK;9&)!+M)MlFP#Z32D(7>I}Ma%4a;zl(*JU1eQuH%@%`e`hcWktP<LM<zsH+x>l zPpQkVv2n?JJ`;{n>4!}bNfNv-eHcCxbp`6fUN#1=JJHjsMWZDk_RaPMtiJa*t~pT# zTqV)<2&qyjoMwpl_X(BahorO0?9VokPQ72?k2^A@976!A)4ft>T60@%<OsX~5-5d{ z4w}w4=KqX+d(|M~nuic4sIgN~w|LF(>NukhqK?>SpCWy-ci<t<_G~;;L{U0?cN`-f zZRez$*NAeBuPi+-sZnQwgybK$lqnah9ORa2j3jx|nou^t?H+LxSquzXCB8pgRv;T* zzL=^Ojtj_DNzILkRlrd5txqyU!*P?3n8U{R5Ur%h!0oFaPHCq6FDRO2))^Obx~t$J zk~1FdX!lU3nMc0kbkPPve~+YZl_aOjHS|V>j<y4Xx3lXn{E%h6QrRH<2ii*-=O${g z-bh37eu#vdHcFluJ%|BK-qS;ejq(535#`+}k;3IjS&e0}EuK-wys~5HB@dBdORU5A zrU%wAt%~gxQX~G|3-C|=KiGK+RE9af3py03FJ@sFZKqvFEbNrUuh)^4?73I}uuLR( z0uDiFGdcZ`b;D2eCXN>0C%nsGcjC8>b>e@o<^;qz9mVhMlS{qIZ=TP#`BYWhCM^2& zIRaWGCRbk0I^{U`$;gb~G_Kl%xwbpAz4iQV9n473er`rJ!ikPOOJ|gyPDlzB2Dkgx z_Gxq~t!F^dXmA1@J6$7^=s)?IgVMV8bq@GH_}tVu-I`m&tvfyn{j*<>$;~Ob&W+i5 z_}q~Nn75P4J3`00Wy1YLegfxawxleR;s@M^$Gm#JZZ{BXAKk@wR#*3(J;YOajZQgn zpb5H4m`G(*yII1c`k7)R_C9!6?L&=&SHc-Wc4t!`=<$6dEWTa5Z)Kz3esY+sq-G9b zuBAuT5q~+5+%O%(u5#|ndr&iGAB)Lq;$0riN9Go6aZlENVeo=C<lXsALm(4^ja4sS z*^HjhznFPjHMs!C=%iPa4P0ywFAtlVNAk8)XOaZGQk=iHe>`HZ6_5d@3ExKgr_v3d z_6zj)tLK5(>z~8_nfi85P3))<ENTV`W1VW(Ai8FQi_4bHypU{Y;a5kyR|6?gfB`|z z@ljqjc~+*zb#xy>alT4E3?3DWcZlP}p$ry!t~t}v$8s~3*1x(wS}Rovz?6Rv^KZCC zdm?eGyedK-6^5-0H8tZJJ89nSu8e!)3Lf?-cpleZsae`x5?7n>r3vM?u@6XQEe-i) z*Vc>-dW|EHiHXMG`)%wu`6Jw$ysdP|jZMhvCJFD33uM7;x0x;L0%T35HqQhoR3*3E zkeR6jVSTwhs7!2RN$bU$LIt+vC<G_+K9`j96y8t0)-NW#n;XqNVX+2`3DyWSL9G=x zI8O7nukQWq>X|qoOuq@W#L=3XUmVqO7oG^trQ8>bvwO-s+EgkKC<q${Iap>__hY&z zDqPXuK6@UPd|;;vrzL&6blL7ysA>G)5dTtg5LM%8F=uHjfTXL%sQ-XJ3Mik_YHm?| zQ9ktmm<7vR1Pzs=$Hoq<8*Uwjo1&Z`sij>@dt|ZzzMR@{8A1Q)MpfDA1M{%|(!4Ex z!5D74$5`2B@s;z{*x&-cfaShco_@wbw&J04s+*tnxG&?qFL5bgnyt~KsCndx+4tB9 zC$7s6h?CBr29^enS}m{<)pkA>WfyqF^=bB&%VZ_R@D+dDxK|T~l5ZM(e?+DobaNk7 zHqrfd1_SF4?fESyy*qT#-)m!=8Uh3&u_~8o&z^lJaUp4G12I-t)mr@iRHQy)?EaG| zyOP;$g6>hts^mA`<%HHYH+-o?_`5qdrcurJ4(0UmaR`15IVk}HJW<$?P!>oq5N|$B zM@`U~qNii-7h{}E{WvvQA9;%!Xppkf{5uawY^A0g#uD!#BJ+hogYTc6*xoewS`~t2 zpL9T#DOl$6`<x@(YcOpnTc_Lp1M|Rrc%rCe$iVQvi51#7q4g**X#H1yBK6s&v|73E zVwajD72VwOlqbq>ZQ-AD6j)evTfdF^oc%t@N=P&<)ZRhcikYcZt%&I0kP=&8M|}KX zgQBeam8<=(n`9H&+6mZcNe6mFO<5wYhP3xEN`G%#TIT(Qw%c~~Yj^5n3!N<Ixpp64 z4}>6B^I}tF)-MiyJnuIW=BaNGQWOWaWz7>bj%!D8mUWHYHF(weXLV+jTz~m4<cm)2 zJr{dmiYpqBe91Y3%3ZCzzBrhJE<@tTAXBbHXUgvMpqStDG-wsRgHGk+Bhip8A4)}^ zyzhL4K5kVK#$j36d^1LRh4xYVt`qPW1b^;4!@t0>IcrU*C|cWYy7PcWbz)=#3HPA4 zSQ+!G*6MS1)%{*-I%c?ByJ*hehn_0VJm-{93O%Zdldp0%QnntsW`klWq7Ulpl1;C> z7!Wupw$OmI!~1~K(1+$c_IlK@mEFge+wI+Eqxb~ci<^ZNKz2L7v_eAiX|2sy9L{a( zk#gWy6UcF6j&E6b`^44J717+FF`)9Sm8?CWx;QND{Veph4efC}^r9IP0*ZSa`ELW{ zN=5&1R5u~`Gp37sD#lLRQ#U)zm3&E>Em!*ah;O~|+}}m|mzSo$EaFd7rnhyb(#&u8 zsJy`2)VISwn~8S2<e90s?lwTfCcvVJkB%cUg;z-tY>8lnF3|GoZB+%U?GBD+6-=(H zHdc%=zh@?-&f(^`&wal_n7aXQ1Ec8WscyVO+TNW710+5E02%2_ZDzM{@@d3-;NJ>2 zpHEbqtz7(6{Lap-Q#{sA4n-_Ar(bud`n1K%5Ev_|7~VOBsh87tlz;H#z4m$cMwqy) zt5TKqVG}l}c(dPQnv`BV)_oq@QT56tqXv<7qhijPl$k5abZUFp+s*HRrDaNtwOPWD zcBEZ^)cSf5igk6}{HKDwrOjIXnymvW?&cUR1o!=RU(z+Y|N9x|RI1CX)xAHdK9MQB z0=nFH_7<4}9}jh{ZSMQ<aN*B(RrhDfS)!eV;7E4oSJu)<eUJWf@1t@uF@qXvKfQ1# zCkmO-P?l+s{*wK!R9)|XsO>3oN?y4p?lmh#d7Pxa<7n(;ac=ko@15@?U;o;2p+btM zX+@-w-99By75=O1xEwhSWmgZZz}?e3$|MsbUgI(Ki#@FN-bdHYTq#=Htvrgqy4&x0 zeG|~<^`c#y-ad1W)u`^L41`x*%t_^L=f$|!u7pm-wYO%i$E5Nre0PDlzoO|ve5`Ya z?Ee0gI0j@;Ou#VAiipx_HvBJjIlDNZ7<XJ>n=#F)QubNYWkPpitgAd2lB{NU)CTHf z6SxG}()F_5f%Z6bc-Zk+zt1O^N028^z0GyMTn9d-J^zHcdKe7DVYR>@8t;J@!?nwo zAHa%S%aq^s8D1GN%QClkh!2gD^*^`rGqA0-2+z6n#AT?W!oZ_{;F)OYnAP|VM-N&O zhAF?#@ToWOO^o!_T{7f2-yyCl!oBoKbRl+rui^z;{&znkbY$ZC!uGI3N~UjRcQp#s zIHJbkY21~$#{Q(HcuO?4YeMimUE@_inCs~?-i)Ug;F7z_J(G@!tSV*IOmI;JzjR(m z`!v{JT+xZ>p|b2i`nXdeF(0)O)bx>hV39dH)0&6mSGflV^sL=aj(@fRI0$C8&h>D+ zG}|EX1C3^oe$U+e9?HW>C384&nhOm2Ef#L+a`1`8JN8{lK8#-RSP`5ldmB}YJxUFp zRfyFB9`!Xm_V8fc2e6w{s%+Y*uaW-%>8Pq|EYl<1lcfa2-3Z6+WgOdzU|x#@U);Pl z<Phz&_lg|#trU42W92Y8T-_gR#2g(a)2Jza+`-*;Pt5PnPlx4O2Z1xn#YPaPz*$Uh zz%mLt-D0E@M1hf$<K)64hZUoPCVSoCBUwjaDY+jNVN;d_=M%ehx$>b&r`c=W)pRO2 z;R#T)jO%Sw?|VS};Nst4Ikh}GZoLL-F&|Bh2X9s67rK909vOM{z|rcVwUvpLMWo|8 zNzg}MgGJYG_iVhE_Mk`RMZNd=DtFfPUTuQA8>?zl9S-!<Yb56m2EDeI>^}6rUub#t zxl@x<Ps%i4Ly&5DK@6<)y;8rS?)KB)y@RE3q92x9%}ENtJCc~WCUiulzAA{h`R-EK z(tT#8Wbn5Kj@~0S5@aQVw3il`6%(#rP$}|tzs<#^wO`F$xBT3OCjs1Ywy7*;52hg& zp6mAXd7@Zhd8J`xO`&}hBtY<~ZI(@Ltg?%b(q{-HJINLz*DXu)fux?bU)sy#Q@wMX ziDbPJz`Q-KbzjWSO*mX3S(~}GPJnCsRR&pmV?Ka^?nfM6fv)Z=ziIiDt^Gu5JhY_t z6QI(w;1tJJB0L4t9yux}j6bqp`6xw-@U?)RJK$?tvd$E{Z^oFX2}YHVtxQHKTyD~x z0I$m99>6kv6Q0z>R-6==C{{_<x+?vwq08@>!9MXA+D(1QZbGYKxiL#2fbW?^+VzR) zj4o+Kx$|U-q4o=gs>_N`t7G>3&&%n*3tIcCdYS8CWFD-~vskXY^stF37SJYn8x90> z;{d?xL@MO4J4EWQ@a-XC=qTfG5prBW*a)UbA`WRY6!inallhPyV6Ix)udyGz5bGI~ zr%L@9=dqiz_Tn~7Ie+bICR7&wa~K8*nbOS7Y;_%a7^j5&AOWc<PUm(y@z5T6CH(}I zrj3&bPzs*G$aAa`l_Z--K6|Sm_tqGl^{A$Ax!b13>gaDTSX%B~K}>V#q9Wf1f`J83 z)7_|yxbS59s{rL&*i~M|4}$4i&XF$~JE~0aK1%5M$Adt87(cu>7i0Ir&aUoJoLV-f z?=>pVWb%_b=Z!Ae)+`0v#%6&|fwr~MZjqQTkF46jKY(h+qMrBsR=hX!Xkg&9vWt$K z`&0fgv8apfvIf(^5g!|m*x`0p{ukugGeh>@hkOJ~6CciOC82u&yMvH}ZH*HjCBO!5 zp-&R|84yh5-`kf7`pvWjC_95^{)8*`I0(`#{f7c)t^r<FO+mY5ki<a3yg&tCLME=5 z@hwb(vi<_3?1QODgb)%PS6eDoBuBD%GwTxgd7R3YS=8q1^)tu$+>4@hxVzOZS;L>; z(`G<3)7e(aI?Ijq_Gg8=kf4F55AMdibLvhVLC}$_U?P6+!04OYdedKz^-t=ZM%4@T zYQ^xyxd|R7dMI6>GL_E=2xNVX0=qdR1`c#zYA4LfNb}piCtV9K@I5ioijw;wHt8ZC z+ZACtm)s?*HiYSunKPa6<nm$mp^-lp@!6-4ql=#ezyDwdBjsF)i?mDWx~b3MHd2ff zyb8!v(uG#P`;rrNTIePPkN{c4P+F0P<B+4oh=_6|vLA2@7Lp108NC3=>Z+}68X;Dn zI00%6Tk&y03&TSKe?l30TGwGR{{7Z7^4RLNnO4BW0e4kn|66R0|F-c}?^pB2DvBiY z^=Y0@nDCknrM*Ce{%8j`+GK;)$l5TOSm-M|3w~EsmdG%T)mTc|lz0nf>su~mp&~L_ zJ!c=~Bg)dM*K3Fc*?u0Z0;-3%YBP<ty&0T~suvq7C^Gm;ulDc*h{k^bAs9fJd9gU} z!xiewdm=yf$Gc{`D-TD^ohLq4znt<~X*E>|ZT_CL<2Bh9Qs@2F_5|MP&(Hpn^u}QI zEVzpaGX1rJX;p5jp&IZgJJ2TCxd_UYKTQwG&OUV9*;rj&hA7VDk7bRXkowfn4fk8I z8TXUr%8`zL`0OWFR~w*i36W(}s>0o}voyTJ*hX@am_^my<_Np-DJpFZcT1uTC9q0r zV~<n`#?@e2R3+NL8y&;<0SFsT#w#j$-9Y!YjZ(?>F?LFOy{wVk=0M)}+@V`_5!)rJ zm=tN+Eelzbh_*8z<pc!FbycZ5BqQQ5T?co6M}up}=EF_L*|elcMiFw%n)}NF^z4a$ z%|C7e{xE-ylvt14y}XP8BO%8|zzVB%=<n|$An=*Gj|1dCuL|yeWq3481T0Ow0Y&?g z?%F_#$Aue^l7jUg!4#$SoK|GK^=>c~!Qqq`Q0D%?(y)wuiZw==F-LpIF&i{L{*VLg z?eXKFFBSaTK4}4hAI6?w`GdSvSeJA|%c$<D55_Vd&s(HVwFHMpy@TzT8G5hs#ioM2 zMk`(H=HFR!Wtb~2E8Bh^X9+4hHTlYJUa;)alIS8g2pTG1u$R#sV3ZtT=QT|F${$ny zV*Bltb{h}oQS2b1`!ip`mG-)f#EO~Ej}Av@@vC{PkC>yeb-~S+4%}Ob+RPlOF@m*8 zka!Q$tJ<Vlj9;KocxRD2pF~pPgQ8vSx50;WA60<I@ZKWeneef`UIB+e&^m_Dp0hVC zY`or4l>SCl$|mp&U7@x7X7T)p#q8DB$CXK37&c!|7fTz@OjSj?-nzzhxhu27&274} zI7y;e;S=;fc;=7WM)r1tJ86Cj(`hrAID%v6DT*A%aLu(g3(*bWLZvfo<ns!_^#%Qj zpJ~9VxDa91Wh~cN;2($4v4K|L;px@si3?L7xb_stpzOX1rl!sBtP=??3E4LGDLMjw zF`jZOysB`g?5t8^y?=z=fv!?`MaANUwtHPi@#U;Bt|lMsdW=?ql)6T>&McT13x*~^ zpzklV|9S#z9eNT+(n|<FM-`$I(l<4t`#KL;C8@ZJ6%MUWH!r^BFid%htGGq)ea^rl zd(83F6?E-S!!zlcE(ym=i(;amt}8d!yfuyws8vDqeuIKm5!jKsAwm+R6kG4hl>YzD zsj$+KyR@4BJEz(rgg>`6n76R@Ufr+m_5C_G_e#=jcEi0TqTuEoX<Oe!zV$Re$$AXR zNHP$~hpP3!v&;RM87->FxU9!hIbv~|-Fl>33s1q2gp)X-Hlz03M?A}qX65wzT?{wN zkdBO~{5VLd9P@JDW4Rybt-z>7Y?db$cv5bTiq#gF#6?%A(rX$nUj?oR;8$p#l$5m4 zM5;{RKLGT2!~yaD42lx)Ym?U<9pMgG9sn*+cTP^J)Lr2FUS8!|+t#-)L2=S`0*iiX zM27s3J5msVI=D=Pe=u0};b2O4_ghd8P8u5R7JIWmNRd?WRB0ZiP*!SBZB*JmMqT_? zSD{6~ngD9UJ{iymghI~byagwJ{tu_ec@mAM4@TsFMfZbjC!2l&pjY+!#2@ek%NhxY z^cW|kKpZW@e^tHq+>NsXKtXr}%=3518c<OQUZs_rz!)Cf+gOm%=SCtVe!u@EPrB5! zuZkOfiRWs#0(5(lYAu*eEDziL*KsTQB%Aqyxfbi4sr>ZEX4%GZ$!B}Z(oMItF?-<B z1Tg#f-T66NU=j>vCY1@sb6-wwB67Q_87}^@I;~j_R1xfne|@pm5gUR1Me4gZlmHRl z`}Z6X2(bEYiBT^TWdH7lj{p!+`u_bDFs5TWTI0yxf2;cEHJdxRA<g$GtD0o_%9>08 zy;KwbdrlMWI#SpBqjLN!8AX57lloZ;HLM3GUMx^w32r)JRnSgu8F@f^9O*+<!a2NT zh%ZDWDFsg;7=g<pivEyI801>43l@?8z_h-RUineZbo$xTmMUwz3o=`u^q993?Xv%_ z4()-aBQ*+9Tj$^O!EU?GpPI45VItVuV&CSRf2AF$Vet6Xh3v6;ES0((R1)^3^6z4N z_GYe4m?YFBnjF**<ps5mkZL_LuTKPIBvEX-c}@xW0uAnnzuv~zhWrP8768Iq+~3SA zLE~gwBN>nY?(@l}*<85bzgL?rjcz4F7g;=Cg+)ZPEQrd)zgJxl-YN>A7Hy?;t3H?k zQnfw{%oe9V$$EBbN^Zd9XFWX}^=;~Y0S<w{hkCp@fAqW70H5*G8RB<6KpiU9+4W*d z;t6WI)IG6580hTY_u60eQg<RYIvd>qnkGUW`)6|aQNfE7EPZpGTU$F#&#Yl#HBHYl zU)hn)j*6KIflIn%{b1>0yEIFn-*|+H`}U|pyRb$SQM$@JH88rgQiD*@OMe*m?oLv+ zsY8kmjK5AlW;6O&=f~B0?r>Eg^1Ac5jl^BlJE)h7xu>-MBLLiC5?6bjfsXy=-<V1) zF+!9A?pWHkfPq&3U+p1E6Sj2$P%8RJ#-pPndH@^vYte;^`#B71Iy2i@l%6u%T?zk1 zNyv?VnJT^DekhQ3QMgwxu~yS>Pz&f^K~1yB<~-Y`%hL{U2Ft!rec_XzFna6$_%5sS zv6-b%Gm|@Qg;bl@&t05qtzaL6@TlXs8~1N?%2=>2cJz^hj0dM@P_ENLJ54#(io+*Z ztIij;+hQ3ktreaxdY=P%=~#c2fDhKBY46E%2TN91IyV3!0~J}eiISmQxa-wNhOpr# z$&$gcXk9i$A{jvwBjwV~CBI-EO}wb^TYgdQav%omb}M|Br+F<fzwXt&ME^?4Fv$xu z?=&Jn_trJ{dc%GCujTNK89>;<JsvQ$F#e!UEjG6u&E#JK@da`E1d97ve0BE`!+4z3 zwGhZ(?-xhe?<iK$SEA%Dt28%#8exsSG>D9>um9OL75~J1eQl!%8av9>DnRmxbqJA> zr?x!Fp%DKnP=8P^&7}D}nmVMFSC}Oyj!nuZJo5jxwztly^y<$a>0bBg9M_iRvYVFT zwx2VBZo9wlFSd6;(lO9B^qPKNzMQh-Pof9|L|<wviU@LN2UMg{*n7&Xd?|blgSi8F zalfe>tU!Kb9g;oW{1CwJl98-arp23jv^n55IVJa>hZS6G9~QK?tOvA@6sK>$2*Y{3 z_oo?C<@Ge8K8Qmng}nQ%S^d_|J>+tT5+0xL`w({rD{apmYE||9I$d3U1<yy+RS!wZ z9<7x4BCL@dg~lK^V6X}MbCNOe)RtegnBDCcK5kUu25Ym@4D*c58|g>O@TV(n%GM2~ zExw)b$Bkt=E1O9QeLhD)KLuLZmR?G;Oe@7!P4ZCI*8-(E4Ce1+0V>(%ck+*VY_Q;{ zVSRAw_w#uo*zkeMAHS1+Tdh-a0d`r_Ec@=0w*#ncZy@*JYY+bb-V3z1oLq}aSL%>K z9DVHfOw2Xs9`Hw}03qY!#mu$G6KB&41PkIEE~i!q-j7p5af5cw=apc!@B%(e1p*d@ zaU?;yVLrw@pl1MOMuAgNEOWW84uF&1bc=tA!`4d8Z{xkGYR`0gm095I@uu(3XSE?m zaW&X5ga;Qk96%&*X%xZK-}@r9GVI&fCdP@+oVe%{D=Sq(d~`rnVZ2Ss^*yiXAQswb z3bu8y5RWS|zGs-x9?#+$-Gs+wh=~qh2{E{nu{0O7vp#p#5<_i;4#6t=xhJq+ojl~E zl0j^8<x2LJDYtQ577PY*!8qyY<_8C{kSIB3omiA!)AB=CJ>H}19aXpjzV@bd4K}ax z?hoiwbl<i9?wn9^VwbnlkX3`EO2_xX51lFC#CGV930wf4wPiJV@T12(_0Pc9ti2}G zHqIa>#hLS>CV;7!jA7N(3k+@JeUU7!AybJr(`>E@cSYA=e}1Elo6VgW`4agVUS%RO zKt)(^@Pj+5?o7V!u$fY=PIS)EH{-uuu<vB?Ja6bUtl(06=q1;Tz5>DfT+f8VwF;&% z8DiM&v!NgVbrk-HCKhyvF)q|BzD%w0L5E~pR?_2nATV1G?R6^YVcD7K|L?X8KeTLo z_mKvi&g|qY^<aYhtD652ilcw<%|r+y`!!7kudC1>MXy}!$nf-ThF8>`c-bhvMv4=d zQJdigi8b`?MVTF#uV%YPSz(!Fy~4R$12Aml+N5xePf<@?2;uOc8E$ZVVvc?>U%c9e z{rNDO&*z7Wio)9g!>np2g@V7kw8&m&99Pl2II?s@B^)(y<?nHf;=ZhI{eXaJ0?j2$ zH^b(_TiJeW2V?dNh}?QoT~$D9oqFQB*`CA(QLBmNKAT@C6<#nIHy1q$zzDfQf6=pF zVvKbK8>~~M^TQ&iW`*)t!);)RKzxn~hL0LtMYk+2P@FV4QjaKCucF&pdyJ08{)F+! zu}ENbFH6@V0%_g1qHi)ZPqY4h_inTF$+qugxU449=@k@eQ)$+NmHO`NykB&MiT3C- z#|2!ic!l)JlY(l9qc`pLQQMJ!LXF(LmX`qUBWoHuPMx|c_nG>D_in_=A0LL@={-Wr zE=}FR((GskMSSj0E?hF$2Xer>;G2v->vaCB&@9ZVSBI?cfLN`IeQdhO^zC5RPtm~| zo;3#3s3%s3HIdr2Vza_B0n>w5+6fD{XlZ-SPD8r}CMoZxz0=(UZq&%#b+Al7y1w3* zN6m7ILvK3GfKtd0e{Pd}=A`H1@w?B&ufug|Bcz=oziAoue%d5v=QC~e)Z4JXV0t9T zo|t*cowtU1(o~ze+lcuvWwk<DQ98J?BFqxbtd?S@vZ$TO;-N80xKd~^*`YZ7#v;Tv zS*5nIg7vEPgtNZ^KDFS4_*9d3YW0v&`m%Yer^PaNR2cu`v2US(Q>Ea`6mv!Hf2GmR z0bl@;<Y|A_<O>#Vr38K2CU`a6Y<z>fK`q^WH>U31J`DX)DJ7+E>sf;K-*Fa3{d`?` z8@{5@T6bHb4a3Pwn$Vi=;Pd-VsM{jymDV!e1}e$>!Zj_bN?w`D*Gng<*cNJ*%dhr{ z9i7D3TUXkFNRJfkOtyI;jxn$Qwno`gmp5XzhH&8;;<?Z6K)082<8stW_O$8FG5rf= zin=)~nl?DPXq{H<4c<_9htT^fF0`~$NvBm*K>4hvRGxu`gaFaYch#Z@>>AyRQK*Bv zzd4jue~PESmifo313}t5)T$BtONwzjx9e{F=E0;PRCA^Dt#S&nd9Q!<taf*_GK`+) zb5=TDLd9~$ZOEW(mW{K$FwqXJ)@>f~(p9RbU|<xxt3i6SiKy_tMQ-)B6jeX-)FV0R z0mRL1cRo4&nL`NH{IEu{9QPJ*fOw1_YO0d8-4wV!>MKbdc0FK)$(?>?3kpx{Ot*AM zK@4DkqtVRCQca!f>vMU}u$n_hxASk`UqeM+TtgY=-QGEs^o2V!uK9c}%?28=iVC~B z7#RW;=ZK0ypJ%QRE(tRc_We`eSXwORmi21xu$xmpeZSBtchDK<{G|$cOHYGXIzP%P zt;l%FMSGMyY9H}#w2yPkiGgnCxXrHJ<()XBrHV2$KK?w6XIr4C#z~9hkD*}qt6Egm zpR2uB|DiH0=R3mE3)-ymvVR&lSTT#=w-+4ktZtP1(N$Cv7$Hqu_h}wm(kv+Z*Vjcc zCSG*~PDdFM3^Hkh%c`Q=?7h59oy)8lI8$TJKq-t3n_Xfv5&FomC_YS+ixli}wt9kx zyV`B8J%Q|tsKSS(bpp<KQ^5GpoLOZq!YgCKCx`XCFH%?S<_@60ox}Ez^0^i|Ju=d8 zikC(gofW5U1dvX%%%9OLcfDK;R95<)f8Q%uj{$UthZ4z?7fRO4>u;sMU(QF-W1PZr zF*VutMatAgJ=LEdW?k>by(@L^)X|)OTPa^k&s1BfEO_3}>~5^r(;@OTk72DS^~ro_ z?8DJ1pQl|G77rI~^J(&S8`t2&)h{|BXf<a@5s7wjQIYjZySK}BRqbh$JeZM+u;zSn zvqEdX^aj{_J~_5t9mV>Bc5PRcX1S8ZeK~uKcGCg+<g^n2x>on?<pI@!yT<wEdb;U6 z0S3B(;rnNSt~44s{2&L}{>WK`wZ1eP{7w^Hw#A<ZvY+<JOLzfFt6HgKA3NiB=8Hc% zXDBmp0MF@{I2eIy6O6*Nsfk@UDdj_y%f8z=sJzDO76k11)y3|I0GYSqn(NhM-VJiA zm4(5TQje;ZpnW-9_mtUE3H?<wklo;Mxgo%`^xhrB^i>&L$}CXpM(tGXJOxgDdwrbg zWMVaWXa}=V7FJmio1p(b29hR}Pu8MT@2P$^h&fX}X7Ot$(OC$-p0B2|2`b<QK=J&5 z?C<X0%}62~L&wf!{+Dms5UbXln0wTk8Oi;fF1nJ{-eUHTDC2eL^3qg8refnD{L->T zdant};mg2~1a`>!K-q5%rG%Qlera9pArkoJEI_E|r_3zO6s2s&T>ZGCO*!!kLDN<B z56js}PEo?^vkJb`U%6y<TGmzpXk&+>DdCQ*q8vAo8*}@rFrJxv8MG^*I=fMSZq)nR z2xrpEO12KxXEY_e@xA*x7?=2G`i{Kmp+wZrN8TVMQw}I$zw`XJ>j`?N&mZ~eL{^kF zLaQ!0a329ur9!5E&!XOQ-HY5$M@3E{40VXZMep9h%@?Zq&#dcPqUnbzwy0ZU6kHwd zHTRSPUh#<5#6L_0D1|I5<!is<JtWuC6fay!0SS2~xP=qG*Tn#o&uTM%@h}DURK9an zy?IyXzn$jSDK6D!0V`JNYBeF!RK9(!T)Sk#b9Tv&V~L<_oUliD?9|{9IEaAs$=(w~ zTA?+xL$dFtcdKcvzSMc$+Krb+kT=XN#L;`wBsOmOU|c{A5T}oIXd$TWcaq7+<u-#H z{>7^gb)^9zwA0x(-3~7APyHWqrc2(0`Bu6JBQx~rr_i1|RyE|e9g}s4b&u}wW4AVB zKqVMg%%l`D0lJ~t|GwEf0ccirY>_JioK@O(Ql>d|L#_5dG4BwSLszUjZ;3q3B44&} z;_v&+c|Fi*JRqBwW35yNHrL4xqi^o4qNz$Z>*?if8JmMbxf>aMJkp($_6Y1w4W(+% zLl0-u<(UhxEns7dg5f3Or-Gt5=91x8xr-xvR+E+^B0P3I$2SmAYp#0oL+Z8P9CLHb z;9*Mx$bTj^4cEQ52l7zS70!j1+W{+YXz#TTF2_we$un4=rXnIc@|4hnzxx=yMwfSl zE2o#jbdl>Q=v%_1v?P&daZ1EfNtL`WYlGm3bL3alxylj8{#@x>)RT{Ae?cE6k{xRo zab)Jad7ka%n!GZk<>bPv<zH_`NCwEr0@3&|2J!iKm7r>j`pi><Y-{2!NgaN9{Y4b0 z61QJ{IIG6+)I!8oNEB|yYfbdANMTg7GhFxs0Fr4ea?D9k((=jf6)b7`SRDn5!)uK0 zI_l*Zff(=SH?fv3UhUYDl+RlDg}MRdA5&+2thDR!)ARl3Wi<$rIOdQNhzZpR#%g;I zndqwjrC>Sq5}5p&LfzBwXAe$11+7t2sfbE`LivlB3Ehi-29|~zy=R>mz!AE}z=p0L z;LTL-v7TfmwdHa!x_=J~+^C{2_OK89fX~TMgPVyf8g~wsBCQ`#W8U=%6dkuoZHf^C zuZcB!Sy~kBvbZd3zDWvGj<g2gCHJczD;QR3IC(p?aoP5irj&b3Rd3?c2Sn)5fq8vN zlpSVL!4n`cjL2Cs3eJi&nog;Ley5WJZd7C2CT>6j`=^cXnT>1Fq9E%c42r=k8#_d& zMgE?Z8N)Vy69<w@Nw@4AmrbKB8!#<E_crEl(xjD{UsEb_3feI>?w-cnlPvmkQp*sX zYb~z(HQ6*NuwW)rS{W()=}Q`)b)_WxfwEn_4;%{hPGq9dYD99?_su80q@`lerqazQ zZ<+a&Oi#LYE~fsz9`@?TAu`^ta6gHSl5S5PJaa7{3oPq-MS=rwXo6?o#i6E3-u;U| z2-vY#)pfV6&PLg{+*fouRq_XX!o-wk=HY%&jL-5xGefV8622M4_Xa)$($Ce>o^Y1q zZTfqM6z^D9C+IiJDb=Tj(|6nx+FwsLI%$$}7}!2kA|QtsQ>EIj9(Br4CdtXLKfhc^ zwrKt&x06eU-UeAB0E-xeaj`N~3di{r9Nt~@HCXV@qGSJGBi17iDOK{r;NnZ(25QR9 z5B-DXbu8<^0#RCYxS>U_HB3!RM;(3~ZNoJjj!x?C@ifcFNzZ~0rKhpkd#SEp;x?`f z*4Ofry*M89KR<3RdxE>;BsjX{)mS~;nw;EuclP{KrCF}u&Ks?u_)h++syK9*0Q_b9 z#Q0P>?<96iM)BK^8mIOwi**=%eo3zacp_`N9z7+|K84yD-|V0Afz2|pr^Z+rWO2Mm zFIqbgNf%at@7B96VhsYS$#Uq}vFC?1h-gq_AwZ!{5cv?am=t;!*!$YL+gZh?qI=v+ zhM{!#x)5)aI;u0c3QvU&dj*~a<{F?mgnapA{v1CB3u?|rNvt&_tiwQ}>``&=PgUI% z)Gh7&>9&&e$=?{P6f#*7QdA4>)D?Wv1s7Q%{n)nJ|1cy**SKM}#~0s@?gb2(iMN)1 z>-{KydZ4SKukgE&6v?=^3$wP1-?F^!{Yw77UhkJHFb^cmKz^d>8LoAFrWv8D2o)@{ zE-HI;dAup7`Amj-+^g508(=O+BfTN(yB>I-D@N4vSrRP~;E~@+N@i<A4`+of^4g&B z&kdWg?<bdj5?AIC31Sg;I`1;yI*N0-PyRw$gwF_;v|-1qVG6+jVZTq>3TTgp`!*b1 zywNR-o@IF4SZA<o#1L9l{kKxq<ZV#i9?o2Zphgl{=NctP>&#y7Rd~<C#hU4FdYIsV zp3@y38@}`cVJtBTf#Io!SNSJldt+$_O_HMK6@1Q(wb{^A-)!ro7HAu~Hb4EdF62|F z=VHg0%JpHjR*fdc-kUUThzS@AoQlDx5Gh~W0^`>jibeX5`W98gC{(XRQtUNQwVvSY zgO=fLx1%9&e0v4&{#h+wGnRD6M=hE!)}F<t=Pco8h9~j}`JO6__O_V443&d#UE=6L z=YHj|+b<ijNwIb?yvp7IHBGzTf6Z-W+a2JcFn&B;kzG;w0lg_*7G@X?K@nElwkNcp zhpCr=5eZXAZ)=Eo!5c|zpnoMXwr)~+d2VjOe5a&Sb~UH?llJ%Gb4ToS?DGGZ3LbgJ zyl>WpqMNs35FW|8r#<G)Lp&I6lV2FG)8)|!1l*AO)NF^?e{4U$K@;eAxmWpaWm8hf zJH}3o|Cte9o6@HK7Jc=Un8I#=-{<V<?6_@}Ck<lsY0NJ$zRc8Yi2A=Md+&Iv-}ry{ zNKrYYWaMO4_D)AA8L6xY$KG2U3WsccWJLDJ$jZpx&M`t|Wn^<W$0#z7k#VxQujBLi z{=UEa{_p<BKOVf_*LYvo>-Bn$*Gp;7)dQT~qBM5{HT}=*!0Vi|H|^AhuO?q#;VFVG z5)tSh&WH~@Dm+DnEp;ez(@MK%s!kd0X7@GcRFZ}=@KPBp`Byi}RB^iAPoqXkX7TIY zSLPwzCX8@UeqUd7pdOg7C_~PsM3~n>zjF#VA-a7~{ahO={%Z$Q2pvjPl(WI%=7=1T z*p0J?1k{d;G8|NaY7$B#zH<(j$#w?vO_8);zUaJ?a7<El8#sGLjgv>^(UP>%7gkJK znmuNiCv0GExA(ROirKX(CqHW}p>Np@y`|44)4z1kNb_-D#~z&S#wUPfWc=3zk*4dt z6WQdxLOWjPx?Od2@c6_DC%*4Dl(*4W<Og4sTw9kwUeVXTJYJ6gG}OnY=QGq|UE`?o zZuK`@pm1{eTHFaA>iSaM>ZJzHmwpD>dr22PDfnX5EX1jbOOsV1?-pKFI<a1~eUy5; z))!y2w6_~sq{18sijU)%vc0Xz1<=gY)d)51U~PT9In?|YKbXa7`<c1r<zM`NaUG%C z*z~G(R}dK7#Lij!L$}hn*<E(;{Aw@Pk9{<WU7M{>g)8;4YJCT6-ZATD?%*~+?be(H z-%CCXPTa5V?GyqjB4Go6YpS9$i<n!CdPrAi%$W6mBt$-c{hG_8ZJ<@w@ZnR+D{`6} z16VR#aTcmovri!bBB!OIp?1fivtlE<v0ub-ve>P!H;)Y8BNwE87k;$PyQR3auIFo~ z+HC^-a|Z{lTwa{_mzFj&Kv6#rc{ncVG&S*K<HtV-8rN597JAn_bkF3A2{O1>NF}JH zZ{30|9t3N&UuJFCkMUbKMEUvpig`Mu$Z#{+^^_CO-DhiXd1PwMp2H+A4ESpRuRvws z#e?7O>Mpv|%|qTB`WJ<nbJRE|ILCf~wLA<pubMf&3^()xTnMc!;^X=b1!?Far6|;Q zfN8cU5KeCag;{tAcRBm)D|4}4BuYTe!%h=+j{s|XrQbilb|!%1EtNX~m3H$dSHd_w zPq>9!j{<dh>lf^zvsC82H<dX&sVo1))JLEWBv`!IYkCVm3U$G8Kc_C$Wb2-cWZW59 zSk`7f@p<dQdE~Lp$?9cn$I?H^s;#?Mr6i%CE>J-Ph*8pqhwNgKl8<x+fA2po?7A`! zs>J-b#T}eXq2U5SEVvFOgQpo#@>k&M;b3+8mi+zq{Re0zmo;U$0(6wzci`Z7bF-EP zn7r#x4=41c49hh{p6U~^qwRADZaqQasEi@2L3*G%WR6=ox}U(5*MR8}d&%TkV35RR zBcMtSdHHXx3uZR()F3s0(MvNKuIgwJaNmhSkH%J)y)v*m>m+R=hvz`wvbb}lH;Yn} zP|9aOG{UCe|K+F@^`{OSGsT9YTI*jA?^<0UmT<Ck*JVEV%UWDv_VT6JK+lnZAq;L3 z`i@e}QM20QAmv3~R6&E(V?%L@-11vMyW`OJ_8mZ4HudvSG7Xg<6OD1M`7I_}2L4+} zMK&-0;O|y@<tMmlqWLHj+-;?DnyzKWj84~)Wg9F}r*jroPO+V6Guf^?d%Y7b+x)+R zI2w0dN<)wE`@waq)iRc2|H)<+Zr1#jq8ft8-a94!?NaD<q0`Qz0tSxKgkOuym0Y&5 zmgZmSv-oNFmM772J#doY(*?sdWb)FCGok5NK*=+OXN`Xv_q860_vv_h@As7(E|TiQ z3++^D)zyJ)iKFLMk1&0&%%igS+U>u+rg7A63l|dk9wGx2lkPj`OzWT(y$eq-4$W>i z(y+U{0)+e8mvN6Qmq1s8x7@)TifczQxl;M1JfHert}8<76`%@i6HGRQOc~KO5syj^ zl*X_*W1bRO=SK)Fr4yFKu7@bXK6iJ|@rx}%LMD%^ih{F!0YEjqlhoEW@bZ8nc;7^y zk3qB#Qk}scQLBXedYj6ycVZ+R_p{W70D_2)RLzjH`wI<}I4d__Rp|Czz;qpFXZY3; z!6+4)8K>0M6~JYQy8!d@ca}C8%VG8Ht9%H%KUGuH!W~B|9L+g>w)rDdiBO?+X0d9p z&ce`^o<WKc%SbvSNCnD%%%;jREBFWBH<=ED1C3|<<gfOpcB9~x{H^Rz8phWQ3H?r$ z5%*1H=X5@GuKL8lSA|~^vf!+(Of5c2d7N?K5fGW7*gVT;ca|6+w5<Q8;)a>_H#Dup zezmG~4TV*)K<umJk(7u+osTau<%6@Mmadf73RcuB105@ld{;JT8cWRVa8EwgSog9# zL6y-@qb#M9Co1o%|C7Id*K+;cm+}e1xZ1;=5)FFJRL7s~b`~66@oiKGw;R&(%7pC7 z?liJtE(>pOtm!xjHApqB@2)yr7LHCSWU`?|7Oov}4DU_6sjHk63N<e;1au<qd~gVD z+tRi~-@vFoPu4$Pzs%;rsgRG-i0ORzXKt=#_We}ISRyNA@MpNW)GxV{vZ!#NsQImN za2=>q!aU8HV>&PRK?3gnE9FY?@X%1S`ruQChD+Wakns;CdvtKmBRI#;8CHcm-;tE2 z_}n(5y+6~HF5ANCUHccoh5fRlrsX>Kn(OT1YmF@|@30PI?;U9`f}thew%|zV_dWm; z()tV&LxkaOec*+r5nN%Z^g)WXDWY$Pj3$-GR(G5IFT3^Hol+!x5+#?T4~2c~T>ux+ zo79?`&fgs1Ez407G5ey9p~p~I%l1jDU`}sZCO2SoqCtX}_0<12Eorcb8Aq1k2vboa zCd<2S)V}sOCajXlrbEvn%p5&c-?SEGF3VCOQ2*0~yZj7fMwWDse^1+3RAC-@-Cmh+ zZ=c!BO_yE}X0}27u6<N*DYgOeQh>U?@~gN_L!_PlYT;`KN;w6PqON^Elk#F#Q~zCR zqKL#*phUB_l&GK;0?7?N5SK6y4u_J$)+&3{SNjeviS}BhL8r?6<DL>2*t}Ovp+H#n zKD_>dt95<p)`(Kl&=yDV*E=OYX3@_0P;=y8+giXA@v7tzg%-RZ1Uns8qBK&!h^hNq zCFFrIwh%u2J>d-L5ats5I_MzviI7#iaz?cB2nr8=t2!!orwQO<+b4hTOfWtA#<Lt| z|L&RS%S(_MMaFB8>Q;${X^Af%srxIFV{{nF-!&l=izxIakhCrz8jbTDRpRw@2l!RO zx}HU*mBTwBc3thE_H&<}R?3+c>d@DO2Jy_AtUFD9VJXK1{z8Equ9#|{LU=;%lIdi? ztJlM0-VF`DpknOmTM#E=i%;LbKgU@3G_?cUL@gRTQqZ@w#Y6t&b%R%muwNbB`@B^@ zE8+;-Qfhh5I-y;7=T5*xtfq^!X-+rS*FB4*Q2$MnP*K&^2kkTMA~<t9&b*vwv5I8u zPN#*WE@mHVasesGdav8cN6l5%RQKx=*UScj-@=_-%MNuxKrk(VMr?0;6yqS77ckkF z$gK4^)LMvj-wlS3s``_%WgZ?cvK_mtO9}s2lQXz;#wbogc&o6ek&EM1Ts<gM4=0gs zex(ARFu~K8->vIR#T$I5q>qfZoS*+G{+ApflQXU;f@Yk}9&~%AS#B40Z+qQU!x~5M zydj9fnUS>m3gPBM?Rq{)k<8L0kZM6%Pm9%GtL3&U$rzA4xJRXGkL(Gx+f0sgjh&Ei z<2z4HB|K2a6dYx;;?#lPJ*o2+T+$bV8%DI^9C+VY1=gQVKg>F+f_!o<AViST9be;F zhf+DHUn~4Lw9Lz)_754(VtomLPiapV`Lx5@P$JAeSo~wwVVdSzOA5_XARAInX%`07 z<!eWd`NvN@5I~4vqu9(s%MHk#LTU|YBuE8znesZsR~xsl`_j3;mI^j`kp-pOfv~fX zrk!dT{<n)l&oQI`?t@$?L!RAbKKu8`Hwv@f0_i?Xxv5A!nV*`wVN=%e;lX-a+s3G9 z0sqAlK9>KV@h!fXCBy0Z%I$HpQEd0Grht70Mn%A6pT=HW?04v&R94F%aAp3`V%#1f zu2^>KxVemr)lX;%|I?n?=&ks7)#2D@N0Og^^}6olj)DHQ4iLBP7V4lYEYy;!$Sa|X zU!LRUc^#(zvb5M-`yk-3<@UdK{I^d#f9p58N9BlnDQ-iL{c}cgXr9mNvUS2iw&c6d zhd=nMHmZO@66Ss7&EqOGbw7O|7u7eqD*3AXxMp=!E+ouctwV1V`}n0tOR!g8vhIJh z@4$+HmbT9#)DU*Z(|JsB(|Zat<25YETfRSm-SDl8N<#&-VdV@HwMP-0$p`x#*N2=H zToP%PX?56B=1?w9+v7LU@h3F!3tt=263(piNj^zIEb!H{X*+lJmElQ`fkA-b|G>^l z@Nz6NuJfjQ^fY4w@ea}Sz<0#K;iyzVX_!?ZuHFpsc~Sm}sGSMm!ruYn5AL3A<W z@+Jx)*D!NH$|=NQj6rmd#{f(jD1z@ekWQeZy2NJm!Hw=nj^W)~@_P|Vkw@;JT-=jP z^h7(lv9!z=1TMeq!#f*LiV7H8AJO_Ie*&q}Df=YzT$P*Z52-JjZ8DfuG6syo_(j0r zeyrd!x>L@Q><jigfiPEEM%I=!u=LJz>F84lO}0=hHBPFuQf~|$ZQ%fOseKQ(*5wkw zEC0|fbNH4BlaBrta6=@|y4)TbE@&Rf1aBC&94khq+ppq*iq>$|aE4X$wmK<|Q{;+s z+P-hI6y;b&gR?!9_gTb{&sY&W)%KP%_YIKk<?!W9C)Km_^t0c@AptK=bB&}=UzxPd znA23DKiS{l?P7W8P8q#Ajorbx+jin;BG5VmRV<s5{!?`x_twYhdK0(L8$R8+Xu)B$ z)w6;j-Zo^cE|XTDlx1_KTwEx?)US`+ijd<4QERz<vV%jp*zg-k->H7XF^+p%XwNPj zrs?4lxY)bHQ_V($We84H?d4gP?~efd(FC8-)n}=;-y2zPC=Q&jB;HNwY@DVEMZhf0 zQ0;n!ILjs`8#;A7v*l%u;4I^zeGYl$6bi_j2vTM5>*oY(!(S$*jQWN!-QSaB_osiR zuMXElVOPm;MjJog-_%Ofh657~V+U!a@2g||{vjrc>ZZ4Ma(M9HpKh%GbWg8yi++Je z`$bW0*f+czBU70s=%Ti9PsMy4Q&|iFw|rhLu_(I_0LXcCN;o|Zg`Cuq;rT`r<mW|x zuK5?M>`>%Qjdl?ZRjbeR7T62fU{7%X=M7{0&QAXokGvYs`snVOK=T@wW(Eepl0>VG z+%&H)0*)OZQC$6Ok|1QEXIcRilbvr>B)^k}oiH`Du=Kb>{<>vF=coTzx0e{A@`V#$ zTK}i1fz<N97+cM9Y|&>URHilH{tPeR5uEsCGnXiiPdSxB((FYxpJ_PW>+f4n{7yof z8lI$CC)%b?^onN|pi5aK7~qX--LWryiW=LZp>iMP?m2#X4#NiFe-)j;Sr+XYEOn!b z%3jlCUP2#@B+^pyuM&1DN`!$D5LxY+H}Wg5u~fRVL#C`m>N+rQdDPwU8C6+%{KR*a zNNmw<#;m;IHl##0JkX5OKX_sU=&#(w<8F=px3AH)q5{NC6{v!)1xyz#Aj!0VDcYIH zgMaZsLavAAa2I_!NwHVy46lcYwh}7Q&loOelOCDYucJD=)wx%t=so|IddT9}=g^?V z*hZ&@NJjJ)dik!nNpT5^QP`z~j^qBCGBc72DWCM@!G-M5KA=p|4H?3gM<ru`M|qLG zQTC5O?H{QkxSYdYEy|kpkw>t1yXP{{IP)xyU=9R4cy4h0DO4fV;yUT|-jZG~6nWF# zxYM0-ch#M#>a$L71b!lx+x4h;lHfC160Be>TCu_!Jya9%x5w4=CIhFtWPA9;viuXn zQeZRG2aB73YrdB0VJcdz#1aX=^pjCx?_5es4GRNb*F~3Dg$Eb=6ZH-T$spz=MUj`y z`z^MQ7OTC_t@2!a3*4mOS!w%{>6kQq0Wm&)_dJ&bCLL9`DBFDRE1M4m9(HL)G0G~t zlq|%GT#OmV-9yvZ&W8K?rFQ5tv@DPQvfF}KRwS5a7I3YWGtrhs)9pVCc)kt#rqz?; z!R_z8$ISHu`L`ud0r{P1R|U2M4Hp)@AH>g-6lE+E`F!MAeVYRK!7vILo7}mNLKYmF zGb-?I4wK&o60#{S4e74ZrrHiyS|$(|YK|qep+lB`+HT|SeaT7c5*8_{UoG#ipug`D z@AcrKNYvH+|1(07?UgdIs-BBmEGPdjC6r%`S}Iqw@ImtTm1f4vlJiV4C5DQT_guE= z`H|aox2?LxCvDCV6OQf|p}$|N|A6J~8<IlTMv4?kVGsMQb5sp0%8|^5JEygt)SVZm z9@e>&SW|E-&L_>fCX~)9GNQ<5&WZ5mBn^j*S?Xbd1XxJa@t)F`Qe`G(=+ND{_S+Ur zE*c&IGH6n9=In?6`6>q-9H4k~N$So8{T0KZs!3rN4flvo6H!+zp@iG+<2z5xKa>gb zlG@RIdkCi0O_iU>X^vPHl;$sfIyZH6H2-6g#Zb$*ENRHSrNe}6-~WKMX{RcU)t%~V zo?-UzFGIx@zyM04k(dy9y0|LFJ9hl98k+^><uPe*MhO#?&i@6EB<?8irOxT2d@9^? zZa`5wupSNuv|!E{E;wGdddT5Z$*Td~NwZP#^IEz`W_B5nLF{yKj0>ET9QDUJ3GdRj z%!ro!&_eT>+li`1sj;c2QWgvmJ}=k1cUvybVG5~7ZN=o3MFr+|5p7tSa5<i%Fj;J& zg<cnlab@EYVb0e^YU=l|K}-A{6USVc?XF5=$(&*rHp9n;`EKq-X`*<m-2Td58od61 z;$}XssqqM?71%nzqN~0iPq4^R`zC&3xhu$z=U{m-qm}5$E-&zK9~a7~FhVUK$q04J z6h?>&+^PG(y$niCR8*V}4sn4?S?wYRe%;+I9U_^R!oxX>ia1qNLQZ;1pU`^&;k@n$ zg`p{10y2{ZPZOTIW*PUx;;xCAiM6Oeo8MInrWEB8(2I&z2>3$vpP6QVp_<@zr^Ll{ z^zL*O_Xoix1siD*?NoB0n)^lIc{|4peS74sL!BA+M*5GP^!Fl)r*)4+$||h_KUkRK z#nB{|YS;W*#;jrLly<5s>@l&GOo^Nk=JDqFAoa3*G~NZzY7;q{k{M;?2Zv&N>GOFN zw~D#jzc(GCTCfyV3$lmu#-g_(Vg<skC$x#gZ0|qYu4ok*j<EpE-Pnyz<0T(*feOTO zLdgXFS~^1MObWCTY1rJsOxJ)?#$q3i%bFUpaAS=b+Y`5ac~rtGs#1}bcg5Y|)y_Y) z+uSqcUv&YQU|0~cn`1!iR#j_w^fJ)>gnP#2Dd1vR&5M-xpDJaD7I&ZWNI!Iyucy4g z9KX92ykt2cWyIETVOy>Hbs4n{o&AKvgPhHxC{R0@geP&aZO1qc{f}fs|I&{%HD>C@ z>BzIN-+<KhHfJR2itE3hLa4cUl2Gm_=z{levG1SCUM#Kj$K`&+LvZov#6RyXT@h&| zW@7X12YbR&Q;I!j-fjWYXdmq7v^mL#wg?vY7ueo0q13r+-$ZXX;dq~SQ&rGP+5-k# z_wi?Sv{NS5BXooF{X;=$A7hK=2-Z{6Z+51r#s0&Ux5B}QTe)Ps1L(xkFI+CK_5=+* z-4-_qf7SPNT&g<87P=f;%c}(h-d)kP0D+OqOt|^}*6{wbQ1g8L5z@x4tu-c>rShqw zwk)G<z{|gVGmr(Z=88DTk`@!d1m>1rr|2!()iK}vv02UXQ0=(MxE%YzIbfJI!`S{} z5@Q8z9iL&1@H~R-Vb`o83Dn{yCMXJaiTL>7op94_t-5Tv;Nqz(N<<_~GwpvW>=HKI zvoI0e#*<0%8hYM7-L1<{>P~m-X&q*aEHO(u4QFHfXucd_2@5u<$x>x3ikSc6ZiMhH zRVXviutlAj7EmuG>*;Q%u;6gfp%<R0f9({(q)g(qwNm~52BzrqsO#OwJsqRJGyxw^ zuhcWAeX0)?1UEI+c0AH@+8gm>m|?`xDm1f1lbb?^4*dC08fqywg0o7m9t@7ButL5) zt~v`buz=MRh##+H#-wX0FJQIPw*DehuP{%;mk};UpA+177a={>eF*8uE}cEQIOmZF zsSe$%v%R$w4@`UdxH>OW#lXB-;@iSOV~Qsm-*hGN!x)WDo&*`M-XaokpgfM}Wr}S7 zI5IMDq7`b+nZ1=Y6?}DkH+LE<*vwI&<+r-`#)~yn<%uZtdkm~abL}w*0VCs2@62qk zGZ4F*36Hu3@{qsmU~;5V>d5u3oMDZ$$3rFJj@+7)%_zFHn)xQ(w1uH(LGU^EjPE2y zHfWZ$VPP=Ip7ZLLx4-G<Os9bO-Pk5A*l_=aOE-P9!x}D@918#xF`X{@BIdeyNnmh} z6F}4%l5|P05rG%dH(=&|7nbvk(%2AICbTTWP_D`H$=tyU5=u_8QB$eb%oubOk@g-; z*Sfd>FRFBnD!6Sjp6oXyb>GESm%;HHO>aY0`sBfzbs{nlCm6WpCXVkd9+tY%|G=B& z3RTPvZ^2srfzc8epl^09Q#gVq@^yfUs&OO8VX|GM?c&y-jgq`{P3Ua><L47D+%u*L zf{BDF!Di05h3o}b_Z~ZIR;vg*chkY1fT%$HrXhWcPsc^Q0&eZRLChIQ!N2llI!p0q zT=eeYQ4?|9h0O2@R6GB{xR7AN11?+Kcy+b-zVr_R8Xs~gr^h-Yu6X6)fmwAyjx#NT z^y8sH-y>2*kh5)H1FNX7(69(^8<-l?kC%UC6Ap!erS;V)BV4sis#KB)s3hM4od4KI zG0ctWHBs_bZa>OOBbzK#wX5blJUzE>iH%P);3YYP6gouM8PU{SV*4IbpcK7FY!f*+ z28!|=8F=;_=bY==fU(n@rJOtrJp`YBb7i_P4xtoO_kuEBv0X{C!f(nw`n90#C0pru zoO0!LzF+N_uB#chahW@py^(ZOF;sXmT$=;lKg5bsDj;4!D3apu_EfqT)G&{mHqyv~ zX_Ym{=H;{B^Qj#t>b!pAR-BW#ozNS>GGf1P<^cZc6TF%6_6-_+KVQ*e9=pJ=!o(3p z`c)CgdEHiHAU<G_DCp^peW#|cnS7q!d&hO;k$+Fx24~#c=&;}q{$>MCF?4husZudc zaUY@?Js6tLSJ3Xg&>cfjp0(g7_xkLv2yOT#gavR?5gxFcEu1l#zLISs?6>MU(W8Ca zUeo0qz3xq{Tfx+E3%C283InjHuIS4r(2RgdT3*7Uq1QH{+w+X<yZnz3S(S;eTk)}7 z4-Y$KC0#J8O2~etzK~VE$3EBw7N4lxdt)xE2db8mm);Z!#E79QKZXX`eQOk2K_^!v zkb$}$iv032#gnK+1m;7#jvqoFI`mq(OGLm!Otw(8hh~htV36Qz-}!*|u9dqOx^y?q zz#j%ND|UQ$tA?qaiK^>&CHWbuM2PIzzW{*E`8=^N7JC$$u2z&8n$L&p_{(x!OtyF$ zrY!lUhq`Kfp&~_<<C~%h^ojzl_a^G)RIR^wtXA>CTw=7K<O1Hv1=<$*2bVH0;3>d< zG3O|K1CtnN=elgamkU}GFKt9r<S?}`S-w_Ro(&sn{p?Kz$#L>rB!>iC9TTKN-ZG`s zvv?v<%xqL`$gEkR?k#=!;Mym5C$(`JHa5eiRHvvs|JiyLQ+F<xxP#DA2JHlaWv5(d zk9>F7x&bExC+e@)pSFmx*&vfG_gf>;-J&Alr65_e9&5r@Gg0U{iCKfXhp?K3Uj724 zN50HfO}PS#=9*ZXP5Em|)CcTF)#_(n>-t6?4p||z4^r7vfDk+ac1F^ej&$3fnj<8} zBfKox%%1&Ski28#qp6-`Rums2l~LwyHoi(-q_g2hX*K!g?6m8OD{=ubVrxZ5u{`0r zSo`gs<H`*N&c{-(D$qK9#;vTv6L0KGeRCd_tpo6&Y&{Ri@WqPr+R8uP^`WIJ$Fu8D z|Ge|o-1qt5e8qy&b%l#7XLSwXf`ScHRI^@%$Ddd39Fzuzz0-~5_x3fU%so6K%k1*b zyj3{gD2|&K>~B^QCVtEMHYd@ef~FkUzWkMxq*}VYBENhAunr{s8wx`jDHj8RS%4te zvaZ;&+uf=zO%D}2<+H9Z-hOX|s3!2xX(DHducDo5=g#Y^h+9D<^Qd_9qefP5U<+1B zQ@e682vh_(#3RhT{NOQ=&@^Ore90GkI;ZLtTmmk*ko0<1MR<yA@N!a)seB<!j~-k! zs*7lRMgio6qzMhr`|&CY8PL}IkG6aHE#1F|A;;J8?K-?Ss>IEZoUfhT-BPi@0BiiI z=#l3nLebadxJOiar=Ej>liOV}tR59OHWO6l^o1C8)qecmt8zbR)m*ns-VaNc?(!r3 zG$x&^oZa2=`qz6+T2R#Y$?`i3KQ=8q|MuF+^<ryR;&lCn%4`P?R}M<o%k<+9X`)Qy zO(9Q0@KHbzmd$pKufyTB806nP&miwMXLl?7%Z#_`TGiK;>2f|^KKL4(*QeLsrxZ1J z>}l!V<Pf44`e7_dX%Z5eT6)zIbJNWpYG}+tt+%{YZxz*MJd&sUOuNh{@beE>Q_Rb( zPGx-63)5+1d(0AnwmbUFv{g|3MiEat{(xqH!qDJ3L-R_VrXLwQpoJ^bh(a~$Oz8fX z9F<ICqH1W&w@t?2frq|Z1fu8F>YV(%GUT*nN*=y=IBOvn`-1O+u-Xrosd`*|qm1J< zjNy3oOCR?jUJr-s_k+3C+XU3B3x4R0jW)*Ug$j)U&Dtb8`qi&d>QKffX*3TLL1dif z>zJ`B*)X$?Gw{4Ny4j`d$TJJ1#k)GDm7<PQQbq`9>YSdf{xkaX31x=>M(^&9Luq0@ z*C6~>*WC<%<!yw6_5}8wk|a(d1R^g_%C<7smNkbc^ycpnKxJ92%cI9h!Fzpb02|4| zDeV#IhxTv&o~IT!{r*VR>hE-T=ylh3-$zS0AG1pCFUKAvkE(?gdfiXep7HiQ{lY@p zi?NZyynG9h@A3j^-4h;q;GZ8I)G57GlX2MDFp%->t1!$>OqdmeHks)lurmU{l|;}i z-8=h!x{xI)M_8NWuXHw*SpU_u)}`D~)(o6Dei(NwWbKx26oRvD<71(d>}T07w}3v3 z;KwrPrIGZZ9b$sHFRS4|b{Na~j1cK-a)g)r{@%#_Wdx4ZJ?^aAtzERv_nMbzhpN%p z`qEV3rgeS!Ma5RawEoQd2y+LA*@P;hB#;|Re6^X{rB~Q18Ppx0!Z>f^41!PVw-7T{ z>mwdO1loW0v#TU+3fr2&MXZ$}*rKLG+?fKJNS7+hz)0@$%?aulP{(@TDgs=mh-~<p zQW#59U)9pzs=v3<<X<?6>89@YYsrVVxD<&aq2bACKkk+E)Xo|GtDST=P_v|TB#yZd z-pDegw8~?nu`2=~C+BDzh38yX_YwV40&8UuE?lNSmK4*x>2V6rFYNlGu_|eLZ4_(9 z?=}34TWG|S`oP-qZNtSf;oxz?WNEvVr7h@KcP+x)cUV-bup`$fB-|L(36%~j9k01@ zuaEl|r5j>Cz#~lKr^hw?$lmaEFi~WB56?m}uaVBH8&b7c@n?B`H_6_sMRU}xyg>LL zNM(Sw48?s8;nG#;-Y*7eIr;im8Z|{$KcFC5IeQCZH|1Wjx)W>d=Wy@YjnH1@Pl$zI zki|DY+Yi}2vNkQE%!Z*Xveu{UFnvgVhS5feD^vpy5$}c_njH}XQo*5&2Jo)PJFN&Z zpJ0>R2n5;8r;6{TUZ6R|rGfMzvCn8Y>mMtAFV)-5(#{44?jX=nIY9S1i2Vt^s+}+` zwc(Hm*Gs5;+dtIh9Ji~ucP>Djwxxb(o^M>Cxaqqdkj@;DA~z{<;Gy8#bc9jay7_(O zv@mPTe{lVi?<ib9htM~Kt#~$C$EkUgJalc{HcnANou{g3OI&c8<Hz^k2Jdu7jw*T^ zD@yeA7N(dqEA!h&wL!H~A2DfWZvI)&V3Gf5sgP0eSz`psluk)LOm2%axJ}9O4NLKd zxjQS(##I%_#k;|Gd%Tb#V@)MDu$|FQhN^+*;V!)aOx0gP(C-;IWmsCvo%*BxnYgp0 ze#sZKPFo}=kv~LJd9p7UW(|zw*s$mgUtB>WSJ@1o<lR~EReF|^uWL()7h2rdN2kyi zG%w#w+q4wD6<+8W`{*^iwxXXaFUZ9iD%cs^n{{_sUw>jUT}In|<Xz#cHH!PUeD`Z7 z^}ALRDUS$w_2(?0JJ+Gki4Hf1|03fS=vt!x0jdiLKWdilE`V4OXBg)gA%n6|@_zdL zA+mpW3T6E*#f+jC!{%`m1bDTp)7a?bw}){bb#yy2T+^DJ4e`0VV<k2<L%C}|4SF-` z)EzrNc5y|FPJXO*B$~w>V{#skE#JIuCtzeuZQG{UXj)bh(Nty#uN9U@7#}bTJ3^hL zJoCHjUwaqB&AkjhFJ?n~8oHdG0N<{sXegdOFtvK2UZ`aa{tneG!an%f`P*OHHyR<J zKGXR;8`VAY*(SnVp+o54J}@Fi%wZXuX;`nH$h<k`MFzeNbsW<W_6sucE84F6C!r+d zjBMyKAlYASS$T;n_yJUaz{IN?`46}65`>nE^i@3Gx(TgDP9YQrXc`Q1kEi`uoBG<_ zy%rbpqiR^L+nIjnR~gBwsvu1HyXfC%Ix63hPJ4J+Q$Qf><qXfxv!3n<Mm4TWM12XK z)O*9?CT_1E(nAZ1q4>&YI@~KoQ2bYIHHMmXQMYT40H}tj?)h94;r^B>I4eE@apaG1 zWa9LzlMf|bjZ74xj()8o5J>-7(&nhj(uJj2BcAE<1d1pmxv!yJEj-6F*o&(SSK+tR zbgu9bR?5?0P931mVvfS(U`m_)#8rsFuy%e0bYs2MIEg$a`FHHu8B1&$n^Q-up9u$b zZ0|?M@as077CI<2qH^bvph8yLH?EyWzW07=(F=ERT?*2W;E^89(z)M{5Y^N(k0(p5 zRpoDK8hNz31=d4nq?AnIz4@E6H9j<ge3qlU;!eEOMDhRdzk*5xHrm>SO;5B#H@XFz z5gYu!Hw~@xK}Xd?Ds~3R)^eHZYc0Vh=Hhcwc4<x9R|ka2Aip@k_e)^`i$cHrsq!<$ z;{dutT+j~^3wl#mIu;2%kQ__cp6ILi(VXj7x`xV4qhBjjP@@<rUd7|3=RLP4^U+oD zT3_I~cHzC5WmN_r50a!R$^}st=9AtxDrgaTZQ)#~K+jWi5yZmnho8qj*PZOFC`Xc$ zi53|KqrMCZb{G$@PhMaM56^x*6x}WI?Gsifxlqc81xd6WzHGn}$rN0=*HzX~X`p|i zowhro!&3e9kdMFF>G0zr{PEs7+VEjZJyYO}ku>@~ofFh`PeZRS0X~7dQYxA-sx`;f zO2pZ1Q&WYO(l@uAZ`}O!NR@7jCXd=YJ!fFJuIiq`#6K@talF5rVp{G5=>Lcnc%DIM zmzR$7H(66AA2Px8HpWz*nKPk6wo(~7ZJ$()o?8%n49XdK_Sf8XW0v@Wm%Q&FhY}LZ zWpnloQfhqhicklaMr=XL<(B9(I|k^DA}3f+gsJiN<NAuC<yRA%0CVpWhU8=wvfUbC z(m~05*K+#5IPhn#dd*30&%)&O9|yZL)EX9Ur(Ly<`noDGFq<z;Al4JUk<{MqiJy** zwP02rnD0s(*9W2s4|L-ml6&{L=qfl44iIEaq+?SjYzY&vw?VYYf+oAm6jDiMl=Le< zU!~3d@m+69_noY)f9;U}s^VX_KANp~bBtfvgCT$02=o0{(`UcvcZ*~K@lPN@Ms4}U z-+j#LKz*MuKbw<x-O~n70~Vp}|Dk7nv*|8_HK%N=kJGQ?jh2+7lyn1&v?x*C&c#4C z1uWkw185P%Y}%IjAsZ;nOJzTP4ky${{7lAf1!CmT_9(yY8=eE<CO6rR|AbfrgO>E| z9PZA&g$&_T{=fRK78Tg|GWL3Gx%~d7Ht(eZ|Dw;iBbHU<K57}ZbQTY3rky%voN(Uu z<T}kejp{=PsfpQKP5;`;gwPfAtu@ENrnrwQP-E}3#jTX$dpVsc-063ZDnzR?o^?&g z8N1#1%`{4}3fhLx*(73JyMKPJc#&xNXA(@?i#u-_0pp@1TTn2f30DXM_UI;<YSe2m zZR*n-|2#~1k;B?DEMToSUim9=RjRD4d8@<%Xwhvz5A9s+fB@?5G-_&Iw$|i8?cjFd z@(W+J=o`U7H|CgZW+Mvm5AKxE;D81%3d|HS!PInO^~xNhEDta%Y4VHLCP{bxY!Gul z@x9+V8^8o2B6j9JpZVK!ArB6-d}in}qJb*%)K)=~P+ax<{<^37+*a?sE!Dli2fKj^ zC#Fkgd=ml}tkGG9I{HqPe2?i(H|^5o6m>Jm1+rXV5^Dl_NBWa;XqmW=+oDa$<<|U{ za?=I$+tn7;YUCU!&4?$9kG_i*Q@f)emrojBreo13e>**#Z!&xvbTG}4B5fxG>Z=fe zqN)C8b;8BTH!NMUCYn*^oI?a3<mfs<#$#%~@t}5?P-E9?@=1;G0=0h|C#K^6NS`J0 zt;?R$o#63<=Hq6kli^}izkSDTLBElbz<nL-qOg~c=)!o*B#@(ck#ZCvjPQMHqm%!< z6n<@X3%{ols+DazoD=T$U2|o-e0i_C`B24kJDW|=f0NsvvxCjwXUSDpN9T9#Y$RcO zH>HQdL2PU+s6H@Eh(h<U+Erm`fq(FDYn7k3tM?7+!3me)&?hJJET8c9;XidA{M%qV zG@OZF-Bk-pyllbYlV`l;1S|q(l8-RdO#r~3{8HG!EIAlMGSz9?RP7;p13SrDH$y@_ zs&;Juwj;~aH%y7CK-w~yIHl`nSr!OVoZkXOrup^~ZObHJY8TkOs-jL$y8GY&1o-&k zR}f=Yi4&?wA;R)<Oq{xmJ_94;+{bXCLZ7vU=_4m_fmqJ5?$m~S@R;(fbe?W1Soiq( zg>1ah+oMD{W<SArGFIMd_tD3+3;Gfj+&jvR-p4pOGutxU2#fr@yUSwViezon54A8Q zXKR<_A5!r^L_D-R!nM;B+jVDd3Z^9~T&*B|zk4Rgd-aVG;B`<N?ceQ^lW}=#ZjJR( z-8qr6zKfkC|G6;L_i5ype55(>V-pk=5C+kEsujCfqdy<GVLthXS&>8PIyr)u?#mEK zNpRP1m;a<4pma<d<WSbAgGS=v8&z|2)^)@ZXTei1p{?|dcedYI)?QFb9`DZ1Jvg3y z@SDEuRgjVAT*9XM$+mjJ`cAOKXE~Dt9ClQu$)0{HOZOKLsiGn$`2V`6p7-F7Nur2L zSpD4JH-$keKfwynX8$+7#>aWDru)6K{VwrHYplD(X}g`nM3-`y8f%=G>Ikdya$Fyp zqiyLzpI6QGbM}9a%c1G%a7rsEy1H+n-E(ve?ORlI@8!_~>1)-^al!Kz49g*50wMIZ zkS|>v!Eb>ZbZE|H66yF)(Xy861+2`!wxWSjI}@&Rz+BF9&QhrPa5LHTq`0bAYWs-v zh1UH*I^DSBzuPjGI(?WovDfP%<U8fLkjA|LEU1RD(~aJk4==u5NWfF}R0Wxv<{{0$ zs~(F=4~>K&MfAtztQ&4gW_Z3zduBZ7E!&&1BOw3I9QX&Nt{jQBIlMjKEZm(5a`vv# zm<=;zyej$GDKkoeIn><J`XztOe&dm`<HDP@#Q-$emdXVWEOBS`TLYQk=<1u5fJ*GA zRT#MJS+@a&SSUhahDP^%a(Cl_y^_f+m7Nd~xwNE08Sn=jLS`DmzDp`|?{4?z`}Cx( zxp7Ob)z1FjCzNIE?kz7D9xgt95IY+wUHbQ6^5l4j@p4R2X?>xXx!Y`eMCHrbc3c_% zOa?W>P@y=YXkc;O)iy3`qIWk5cH-{9c(g*iPTY|k>=O?`E=}t9<#V@!ROIlv%JR;; zVLA&@SOYUgx;zW3T#S<Q_^I&b0tGKeaKv8e((v-m--Y45%)FXCt);$9=NtE1%Uj~8 zCXNfVmoxt!<_Dg6LMFQM2T_Tvw0<tyv!=tiUuVWtfElP;BRk~;F%6HF7+MoXOSIT_ zzEH|&xUb@FF`D{ROaLz$hRZSjM_B&^B9W*NF(oBb_xsA_%cOO@J+z@SkgVx6tKrW` zKFzK&l9(fDpvUBl<<@KpvUZ#(SyVhMx-$2Tt0{M)z|z*UKI1{23U6@D*GB(VKhx@o zH(p&A;-xj5F^F*cXoWor=?SYBU2<T(ZZy44jwkGdi9xOLhw#q3xyR53LA#YX<{Pc$ zo%MN%rmIEDxis}?IPl*#onZ_ZyWGMBJX!!IDx&?eBSGtHtr(=0BdedB-P)s(U_3Xh zrJiuR@19oEcCK*e!h;h}&tFugJnG)Kq2If+QDBMI{Z9^D29>xw-#2aF0>|mRL^ChR zEs%#a2S&cck<F}2zE9GRR&2Y4Pd0_S`;J%o++9AvlW(GfOEycCqcs(*P0&N~HycN| zCtbr=_mNu5MYs4Go^#e;R)MCzH&K8y<b8<<D)_*No5NFx2i0dDN#wdj?7M`Tuc6Xh zj!fRTyi;=0v@Sfl_V->)6!7Rvy_%-EH*yw+VWWY#L~8+y{?%rZiKVb86qPeY0`nL# z&mjY^b{eJyxzpTY?;ZZS^#1XK{ejK!=H2kkQA`uDfBh2cJsw>X&)gL}M*ZQ#$h$M= z_kMFf;00cNH|BEUp2mXV=5FS2-&c|Wf9>J*L8|J({I$Tf;wQUp$C3>bU%!5+<8RL$ ztIJMvX-e4WZ_=|EE1sb5(F|wtl5xLdB5UQsZg|p+W;iMQ@z(&mHIU&Te}?47=-O>h zL-bzu`BSm_&sg_s;iWsHu3rx|Bg~r+Ypc4&Sf7zP+Gfaau1`#f&mUX_Bg(~*MueAt zrlCj{puhT`ZJ@-|tL*Ej;b)v;&v#2o+nXnox#9$cJMd4||8d%)_ojSA-=MZPs0k=+ z#Va~ahzH>bqsNJfh5ih;r;n~#B2RpM-kx(e9MW6bz`L3yiVH+grzCwOC$BI)Q0}v| zw|7Z^$GFWXhLUXg4iCom(-LQ|E_(^3PNW;8UD|qysW35S@qOFM(jl(z1~3upvV){P zeu~!e=g1@9>Lz>LStCQ0vcu;r+Jr0v;d22(v@L}wmKM!b5)@XdeK0t1iR57OqJbhH z(LU(zynZ138dnX1ejzuoq{0u4nsZ54%NhNyw(27yV0y+^xuQR8??Zpu_0n){?k)&l zh#0iiht625qy=<`f9`Vx=S?)-{{&&bUpE09Gu5kaw1GZX?2g?EY!FD!LtDjVXdx5E zWvD$A{!}w*WHeC^_IxXBmDwrWyVu=eKdC!V?K#FL?ehOmGNjf>qiB$x9x*AY_rhew zj(VD1HrDUr#<!!UvR;Q%m)pY~8t;hOK7D=rh1%sNY**J^KT;nL42>$WX)WCnYyIkf zt>g)^c**)flDz98PBei^;^k8-H=+7(TFcffdw*8f*keuhA}VN>hyHI9d2+}WpqFoF z_k8-nG-|t2xgK+%C))*Lhk!q)bn$`Ll=$=SN?g{t!k2fTh404YYU1ghXgz4wZ!=*{ z>D`?8T!){v|A!#zXl>1z0DMWAWS8!k6aL|Cqhk58wB<vprOc#XZZeX|Zt8lWJg0ke zmC#~B*Tlr2CE!YDHpyheMxOJ<q_5z;>A^uMaFnTCAUi)&&BUOv;sPT2P}-K1t~<g1 zZeTjkV@UrMQ}T8=t%CDU)uQ1LzeC@0{>`xwF0INY85vBI4ttoIfHe-(W!<a|77)r6 z8ZVvSbkjh_MnqTEEq=9AmB7ZP$qG8>aJ_T)o<$jkxLPKmsfZOEMapp3KGAJgvgH>C z4w}Nv+v;SpQlQ6!uc~SuDX-{%7)F{Cky9~Y=JWaNw95?3iOjeF!J^?R6h72AOYTI6 z_sH0%%1psInug<(e)@lnWDpB7G4cX#Fa6)}g>C$79~`uUX~48BBN@FWfMjZGrReZE zRM}j`>&=fzUQUD*E&lQ0|M-_{kB?M@f4m2%3i4$w<5sspgM|gE)~98&_9zWs#}%Lp zJzmpf6m`r8eh};rQI>kjM?8QzmxamcGd_LYf0r-`{xg&Mp|mWc{5c%lh9G{|!am2N z^9VNfboc5Q;fwnVGfmYr-L0O@VYy8t9```#H+O>G`PvDu%o11*t?-1)0M;`nJwNEh z8xuHwSobJ>6UGSZ03AWn1PYpADZ);Ow(<{MQkxnWniToHkp&G(P{Qkv8l<++Ggwri zgt(nD7Ud@C`4|{GsxF44)5E)0gmq?^USg_;M!YPXt}kt1$4l1%BdAK-xz_x%m=(TA zCGqG#O3*D4_sP9y9;vIeU9QPob00P%JjIua!|pSLZC544m!9u$TXrlYjGS3ncI5TY zYoL1!0JUNg<ldhlEJ*Z!C#x$j_};kRo6ef4%ZaS;L^#}>^H=L_7{-U3*u<2_e_>}} zExCqOVtaY)?*XaI>{>P#-(B{^zY}g;-4bkI9^csvksrAkOwEGn5?^}!Ry3Hp@f#1S zzv6!xUIzU+UnRDS%k^#j#|5FT$n){k0``G|qs<Ww^o{E~qkmT?*|b<VZr-IaPVW}! zrptoWue54Bf;+SBpU2UEyWc>?d@{LOJX!y>AM2A`S^2XFHkR{I`+@pzZmfeOcB}oD z&0F)oJDe>ezg7z0fR#4I`Y99dt}&XY)X*@y?$wkH+yeQ&Tex5R8g0wq9XHR=EI_O1 zzm9POTu}jf*AhK^Nml*yv*TFoBZ5G}zKo7Gl`&$_Ze(4-8s>#)?o%5QLw3hE3>r<Z zEOV%Jd!A2o`mXY>g0{SRYue)k1nm}~j0jX<;nq2ec*_H>Q6;CvN8>~h!QiEnkiwP( zmZ55<L_^QV^(3b7i6wvYupEG0wzDBs*`)X2I;D5?;KqiMW6?7u5gl;m=(Tq}o~9Bz zWQm1e5e;g}0)gdCBP>QueTV;*AFAAbx5{)6rHxQ;-$Lt+y}$20h>Ml6wtm@M>_qGG z8QArFZxlKYDM*$Gt|Qi#5?(w{XBvInlUBpZI0Hz#x{-63OQZz^EFg%y;sa%gf6e-% zTu5v{90^D{`$eaAQs3NZc3f8!L;V!PVVnTHTcme|6AxegY^ls#5+|@Mqhnt=|CSr= zZ^V&I+^WJaj5QlGVgnEMx5TFunoMFs#w^USOgT|4)t%?S{PfQ#PS(GETBv96{N(QI zrXUmB^)qj$HHJz9xd16MYG{3-q@}JyTpj8<UB*8=+g}4GWLCtRmIS&-0GwyCtBx(# zp|$*TKe(@x7(s=QmI)JEc7j_kN-tumG)Bz3vKcwXiq|)>&WA<dc<H*#3_|AxA5`>i z=FmZ^o=g7<)(h1eR{C66Na9eWoB~mbrC1jr{B2Q7h4hOD+rR7o>Ju|gcwyWs!gY_G z9>w)1N6+v5wI62!7Eza5<kv~pt3%e#DYcJy7IMbM)-6aLHp{`Hm9hL`=i9e(!<_g6 zoK)^R;mh;;gceXJB8*oejR+Mzn>}@^H+(qS<z?yHc;>Om8kz_RCO#8!aOQ5UrZ{E8 z2|CXeoCyw?E$bk_mbOr(d6~zvpWIJs_y_Qt-Yh7#aSdo>5JX9E(!F&+g5%ep>zMtV z@2H#tPqXNVoG(~R6OZ#}0;0k3k_HDR?!bQ$M?oMboz3+Ce20i95+Eu=6p1u4A>}x` zxNBuXI~#Zm#=~f9abIe9ycc<=SRs9GTz3;P7*F^jo#sS)?GoQ`1S4vh!nZA4f0=?= zc%Nr0Rl?(h)wgql^;#U7;KM;E>V2=dN1p{P8na}IPT`6(vJ`IieY*05H~4Zh<V_gU zD76I>1Y-9OV9r9Gr&x=4E{;61)kn4Y`jx(YgBuuD{Pgrm)xAlCLO`C2a`iLGY1qr! zyp4}albPYKL>(r-v{Ol~#l#AMM`b}<a#6K;ec+H8UpQ^gFwvDugZsMyfdtDz$sv&Q zBv2vXkq`O1`X6oo0e(8@npb#y0tx9;^*2QH;L5Sd<?c3wdu6(9zDJ(1WWIe3YxN@N zoOJ~u@?|$YbCWt_g}OB1!XGIC^p=yEeO6V3QW#dy|8RD`Z@R`|^8{0mfIUW>G)BsJ z89i3q&EKkV=u58#h{<?yXPjueNX&7pqU|J2bs51M=RHn%Koq0BZAfG5Ya%d*=~F5_ z)l(F{U&GzezjQ7@<8n*=fX%;bx!r<{k8I~40ZpXfBFXTHp|P7}zx29nrCMdbuyI0J z#8Yx#HT>&=c0zqw)@dQ_#33Z|H<?+zQCS9H7W-AThmV1^GTFgnc6LmRyR(EYOE3GZ za&`*PR694E8jZTtO0<7BPD3UxbZGk>7^Ou>0n9X<X_V!E7l}E=qd^(p`Lj0^Ws2XC zL07CeIaJn;nJkb;Y<AM*UyW-Si)2MA)qSWvm0~(=-CGZ%;~1qL>tg10$cBbQioFv< z8tr5O2Wkg$-p(wVi;yRDqEHCL>@KJ`Lgw=fX@bjv`4-^5-`2r<-N#pC{reFcE~5ta zG_D>Y#~CY!DMy!T<zcuciQsqMH@d3nh2=|N+r~``lY?H1NMG0SUa4Edd(k&=n8~C& z;Pz=)*=a5RGrpPX#UdVjDyD99p0>Jw6`XER!lVDhDA{E%Wgrj|*E#c?RCK0c!l$lY zu~my;y9|7s>a0^k?Cm31aoMMYn|TXy2MgiuIZa}z76_Bt33`6ufXp#W?X&SQYL?^K zIp1>fc*&8yP)iNt(O>eR=7sABcT!h0!zRsAAO_h+2>>`_kwLUr`v1Tg0gp6IP_`*( z+opP-D$`Fa>hD?Deft8a$7g1CT`!n_aW(N`^+DTdE%R3uTwNox>-+Z4chJphaB%Si z*%6)vN`0?@`c4KkQC(XOlZ-cC-YMT^?#!im-{Q%6$$+xv2wu=Ge3TBBGv_rE1q4D% z0iYd--Iqz6m5HM0vPk(!26{hgb-SE=0$FxmS#vn2t*x_<&;91bOk^GOn=1$f8@c8q z7_&yGCtk^2lYP$9@|^{Bm;LElVI6PBX~8^*^nXR}k^XPQ9PT?xn%X9fSP0;lo^h@! zy>2OK$A$KLEU-0q-#Wi3p`+B+CN*9FWAhhGOMo3C(<B$64^kd*PrkbBdi|`xG!e9T z;!2dWs+>wxVF5i{9{N?&ESum9+JrHOnjlWvz1#u-&Tpsd6*B?Dpev@`=o#>@vv7xo zIGXdA?3|@cra*hY3TL%Go$W<~Wq$28y|n?sMy`ok4GEJs1`<5sj9wq&&*il0uB+8S zwfwT&G^R{!3o18K(6pLAN99&8BEi$VNuX0G8)=KOL)~J?Ak3YO=7dzDK?iW*bx6P2 z%hh2g4c~4guyPlbX%9Wk7^BceF2MQ|@^;$w#=LL*9F(J;?o$Lj&wSG0<UUesYA5o% ze+~xswX#TLP9tP?|FJR{TjDhE#m7HTWVs3%JUy_OSP@qtvVeM3SxbFn&tGvh=sOPg zqVo}Y$Qp^<uUHn)Lz@WM+FtC46@M;Wva32!Bem0>R4yi5SWA9>ZQW;s^LM=*5H(rK zQZUI!S~Jl~9s(aOn#b2<FHT71Hyj~XHj0Y<!@%viaU+-vv}<^6t`3}U_{jN&$~k|8 z9>KJ4(T?kXQs8DDA1^@^wbvTveGxvD8;ZWkTK7b%tornq7J3)Kgyl<N;3jCjl9Rtu z|Fi^5<u4byhapX+c$>bEW6=KX{Wj8{(fg2d90nOwB%Q@fCKi(c5RrHNbnUorkZ$m- zUGy5vtKA{FFuA<Rl6tOI!CJaZezJbRJ#WMFqk5CK<vaO?s2i$7rI#9mM@Jv(=(g17 zZR-K~TZit#n7pKWrrJ<!juvlA)^&+*zqsDz8HHp&ATM}XW{Wv&XKn^aZq{{ah}kKC z81PH*k}m`jeWqdLVd2=f7d=kN78u5X*Jur!&xr%G#-?m++0w4>`|8t!&c)>Bc3x}a zIGkKrnb#;&$myGcDey3=0j<LFAmO3qYwtz}Nj(GR_f$Z+w5^x;z5|t7=}K#U=FH&S z=z58Emk7~&cenKDD&a*uS<ZJ|O4Pw8i*Voxu%rH#6zmVvk~VR0#~*HzB`Jle(1L!5 zGybZv{_xI0|Ki4ya<*ff7+Y$R<o5G>aP#Dc63`#3HzR^phtDnZsK^goVBSxPo((d- z+@fovR4upc!qXBEwT^pIL0aT6AL4BQHbOUw3Qre#iG#Gr&~Oe7u*gCYO-8*{k=p2G z*NUUf70`Ui1MX(JeV>u>amQENP}*Ia(U3@bhzM0g8rtb6SIT%tFtf1F1zWU}Y_e?E z|K~ZV{zCBUW*<<_lf{LagAuh@02JR&ZiFG2*X#iP056x7266Y^j6N~J6@aFa`?{D< zwg+>2<AiVSCa9P9Ys=In6+`ooSe7fXilY49CnHi>!UH`Q@0g6uVk>3e$q506-zUu0 zN&EK;<B7I8nxw_$<u3}<A*u&4G#BoFB0akP-$#G!W`Y>RdbJ1>w^9?N18gX*6pVd` zozg5QDQgtSK_EJ}tK*fTJN`F6Uh55CyZ4R$coPY=SO@tC#-@6*xifW7YM|tZ!Yk2Q z`6Q6AvQo+pu}6K&Z)7RsBjA$#_Z0IWlC|cf%#B<*NooEo#M&w|qOC$zQE84_L~u_p zr@QTg1D!uF$0LOfUab~i{8fKud1fkfc<H`B68U!_><y#vD3*Y%qxdcGTMRn<Y$W5d zD@)`t^mk?<ja11Y4Sn-+qABoljE0l0-Y+js>5=1tqMCNlWzT3?t*4Zkh3F^xrff1X zdKlLN+(-331&oGV!^Bg8Bdnh((a47D27Sc@?6tmtP#EYxGqs*-V#v`-)lm5OnFixS zlfva4)En*Kg6ZtH_D9z$Mt&{!$v({+kt4)UH_hm#9rKc&4a!8|*&?K8CoW|g@!5?f z4#`=isV&2_S-tKg+TS)=T}LS<XHlNGnAr-DOI|#hI^UyAdFf&MOVs~E*q4A)y><T| zxp8l%x*0RmK;{(5SVCPP$vlOSOgZN9XfQ+>GNnSK6f$S#6v;ePWTtS;L+07}uYJ1j zeeb<*zvq9R=RQ|w_<r|y?=^hZXRW<<;@z`~kdl?7cO@T5QQxk-o7@PxaQwt;dEUZP zY@M=L%`{rrRpqu1<tF*z<ge6lk^`YmKZ<EPRu*H}RFJHG=5bQX#W(pH%ie?cv}Z1~ zvAl2#wAHP((!KmDN-%xU-O~<pCBVb+7pv!;aSqZ}Q@`cD*M_Fqd3gnA`!Sx^4DfXO zmc5%Y9B|6xt|vFdBcfiow(V^calMGC`xA3eNA6Ofw0m|!*{)wAVJ<&G;-#H5qs!NZ zmJs{lhb~uIS4}F1lUBSj;|Awem9KEDJaUbC(>EAY2P*fPD$sB1ZMoH}!Js=EvOSlI z<aygqv2C-|H4D17MKqA^0*x0Cvavf)hhev|psMCxD{OsxP&&W;dBQGjL;0Q<^**q7 zGdezVj`$*|oMTb=+@aIJVQW49!DVJwaBmyBX=SlZ(Q*RxSbg-Gm2XoPb_+NRY;3o^ z9DHW4wjq8dz4~L)&Aui>O7>EcWAq_8#z54J$K^e(;D=9qPYRFHC{Jb<pyOQg-%QU< zxY>>4p=I@IZocjmhkL*MLyHmzvedLz(1pNsZ4sB8XOLFYfd5+d1aPxSwiQZDt@@_; zg=aPOB#B)m$?41HQ{xfaS}0hRM=-|Uj8qvG!fzA(E@orW;ZO=Yg{v-aUcO$hgnb7$ zXW<31y|;wt?kgBJn7=S&vNMnze_$y2Qj00o!T++WHh%8+Wp5Yzft`DDQ#Y2Zxpa-8 zU)yw23cy28o*#CL#tZY*!YweR<sS9@{?Xg-Vy>$d?fcjfTww8Rj&_%CD{8TETxym( zj0xl4bs>Yb*!A7sDGJxgTkSLvM<-Vmq&CF;Z)j5P#=H;t0aZ|B&5@cHz-?v9|HaL! zi}sdq7WwM(Ost^VwIJnRJC8!^;q?6izHpsM3biS89Ui#O3Am2v->*ZelF4;63tm64 zTBvmzzvO&vSUgAEd5q;;VQu5IE(Vi+;uY)K<Sp2_Wc7;blB7b&%R%zxwj{DU0f5N3 zbV&2}4b7h{tCuUS&bNoghBV$kK(@51PiLSk?dDn*MbkqvDvbZ2AgM*Zsq1YC(xdHx zA&D<pW6Yq(DJGcV2TlPf{Z`>jmmGQXoBkYkfG23Lv-6wVDH*L%-Pst-<tcONslq7= z`!Bm+v2vYgpSw9a-iirS0qn6?fTZ=`k=B#d6b6{hmL~4LZk-!=Cc8Bv>^F@6#U@tX zw2s|luUTC*(dtEC#8X<S;3!1dz-IXC{TG(~^0akET(r!{`qrq|00wg*YSHbB!X9iz zth2163vVG*$@~BJ@kLQsbMrS}Dn)P~E<vSm<_F9RmkB^+g-nuRZ$=YDM&(3R-A7o_ zA9v&bvfLRu-7kQxrs3IK4ga%va~Rj3bhls;or@MGt8=wiB9b?JdbXSl^HQL5CbR5c zr;VQP?rp(fV!F<sJ$?CaCy!=DH0W|}@KrCy4j%Q5v2Xak1?fD6KVIH;dj`?azer%7 zK-Xt~GQhd60`{N_8;ByoT)Votk{o{Jj=d2EbFOo=S&{R!_se`PNjUyuUxO%S<lu8= z<*i-*<p=^O><>kB`9EK!HG7_6Fi#_=vZyS;onj)gfXL~7z){y+PAF=C6Gq4}3m+jR zcpW}eF!{mJ&|xs8Dx|xgjXI$r<J2__*PP(dqzXo5Y^1gQA#ZKJpx?JCXj1$BvJJ-$ zKs0c)NH4y3oyWJt_%npKnAD?1o1UooBY)#eVq)+5u0Q*r{9}+2ClTO(X=7$K&daQv zHAaJZd%WaB9mJax^~(k=sE&l8WS|yS9CPmck1ehMG|?fCnCk|5b&i`6DNn_r{{C1y zjeoHwD7qMr9~nw?lK&a7V~$4{R?8JF?#4WQ)n{($Fc!K*a8pCgU?bA|X2(ba6)f`h zLIeHLxdd~9(368ISTGL{cQVIA>j~KslSWj%oXXR=>4C<`U%zaUIOPfVC2ee1AeXX_ zuhQWM8C8M$X;w>SXnP1Q>F=7UK<;7%PaaxIwpS8Xk4yQz$bSU0niq<+{3#e27slJ# z!l+M)V=yn3|Ih0vmK^^MX%Y-(G)A?li69f1WRx`n4OB7M$VOjTR8jI|1nbyJkRih; z_<#~(o+cX|Sch$n7|deBA*)erVx5L?r<?HDZ<vxgLS-V_$f1rcDT1yT5TVGSAiC}1 zq~VJk?L8Pw^F>L_kTMGe=6&$m?mw-=6+QGF(cA5;8?TZ;=<HQx-Cp?lDNJ^HOpZ}v zO8(g1N!(Z`Q)sz_uTAswgNvfxA{bHf1oqNOxuwVgTi=9uupv#iel{1VV9lRJNchDY z`w)kyymK?)8sdL83g*jT7#}KLry;htPy(&-oKaOvn)Aw|_N;aE#@D!>ZMip#WSD5x znZ%@?b-2uNO-nM&71~#JkE<kLtqN}c<o?@+92>Aq!Tm!+*E06?I~<g-i~1zrZ?2O4 z*v3vp>s}|bC|v`UIlzNpLqkiCm&`CZ{xV?Adrr&$(k9<?1%6B_n)PRdJwH|vAHMKs zCmeRU>XOZO*!p}~XUJS>F1yhwMSadjJImC23%BUevq{*paGVMR@#S)CKYg>C+Bk?@ zffYReQw`E`>`IV5pp{lWQy2Wr!y;8Yer9_7uy}0asX{vy#)P(Wy9v8rB|Bi=zdp}G zdk9?x0~gsi^QxMRIT?1XVA?oI!TR|N2@5cgMmL>T64uPNDlyqw_geSoCYN(rBIQvN zsD^WvKr|KLY0?8O2a${3l>q#vAg{;9u5jFhxY5~on`4PfUtd4cuzynLO`;ZkK>0>T zc5H9os01ADd{}CIB#OW~xTai08Ioxe6j(PR!N>h^IED8a>(o>fyMeJAMQ>+kcWbhV zdkJsgx~544`6NZK@hlv~O&vsE%~uVJ=1l#JcF!8Rd-~pL<-yMspvU7BK)j_mEjCLw zM!_*<p6{qkE^bQUmQ-*Daq~<#ZbvwjZ3K#H9`J_CTvC@J(685P_<i~o$>R>YdZC|h z%P#jqI2Kb6>fLHpRFum?&Rm67tBsH3CcLw<!^3!^r)VMnem<IMB(RjsT$%c@VD;1# zZ2dKRFDgq56S78tGi-0~vRG2&g1%RzB{nwT+w<rUW@sVIy<D+HZqu&&jjb+WI3y)v zI9%SuWaCp@!`#m7Tu5-;eaQj7-Xh01_wr%(g@QC$`&kPp?<unD&Qo$IpI4TeeEDqD zPc~J>I_bK~+QkC#0G90jwpLIve70;XcXk<ffENx{m1cbv7RtSyMwCV@v!_iAy5Nhu zuzay-6TvVafOjHroRd%MShn}Ryv?j*{}N9Je&nHWJ2M5B-DOM6!KvQCokAn;nK#&l z`Xihh-LXQ3BRi{jyphMZ0CEl%?6IZmv~bzi$+}1Qs?&GRtBM6`n)sugS;muMc21gC zJ*Dm)%d7=j!QTybK+(Hi90~UOb>!e1W@VC`8j`ZLE`%Q2Y=(W2aP*DFme1zOOpu@M z=zk7eo6GfHo$aREtDl>|Qn)`kH0+PnWyQ(8YIn0*xPPCuGq0E}u(&_P#Q~dgE)Fvh zcAsPepn5cpneh_K;XpD4=}Vzza@;i{PgP+VB>8K8tV2IlLHsXVOk;`Oa4LY{Wj|x5 z8ioqaPS%0%6y152jqTa{)lVj`S}2ygJm&7bd8O#=qqv!K^A$`z!#l4Pztp@5jNEIX z7YsW+c11sP@K4@bJsHnfedZ{fI)y3W3TzfhUEA$))9+UxnkCqgXZH7lb6fmRS3tc* zjCjk*XA5HPrJob5yk?*<M*ZyBtg_itsDQ+Ie5}*hJ)v*PWECpC{;C36?SjHC(S(ZN zpoIIAEx|$|^(~a9DtBgla>6@l@3l#vv0&0l%Qw)w^1+!207G((NCVYHI#=?g`^*x? zQOt~gpqZ#66U&rMelPM=4JP6$B<%~{fz8=aMB}pWFV!w|=<lhwP4XDJi|uo&t%vie zUMbQH^_RIfDlr)!6!CaRbu_8WX;>M~y0JJ?yIb$CM%oVbXH?GO%%@y*3Ky^2*o;3r zuNW*QSg@w#N%jaPM{aNRi^o8Q8VBAr!(39Kp8C)>Pj!uId+)C-Vwnd>ld}UY0R68S zIX9oc)*p%^oqc3$YfJk3P@EBu_sX=?(!(hAQ|AYufCvsps;av6#CN580gg;kms?7v ztA~^4PLK|gf<nLYCw?0f<O#bks!L0N=CV_Lu5|fu-H!dK*ykBb^X<pIEdomdwam(% zWTW78xnZ>&ULLyu0vgF?p~w32HjfU>&!Lh(1!dbD;_Z(faL%RBoX?mv-8OLyw=<@6 zcI0!?PJs;E8^l&1yZjR9<OjuY&-F%AVG!3CDDP55B|}hog6Cs0x^c5_h_PsVxyzdH zm`1-w!p>rbnf%Oi!VR&735n3qVdrmhACvmb^&S%}>-5ff0ubpc&$cvmJ^+xoK%j`3 zV&vW_wo6f3)Uc@xj#+R_=9|16hr!5|xzB+{7LtsG3cKrNf$WKvGcK%gm4PoRqIzp> zE#f}#i{jCNNc_=9Dy&n>mDHJ5$D&=fSL2Jy@6b~@^NC=p&QND4Q`@=;@__Jea|db< z&yl+XonjlUku5cd!*N2AvMGp};tFFXg28S2L2fH%QTq2S@0;55^(s5;sdrEqbWwfM zrOTuZouZu$Of|-y><!azRDGEnv9JrX&V{0=_i(|zh_3xJtS9THczr#8->dujrq%K9 zHJ>J4E=+OHRiZ5wRrS2f&3MTK!{tkgPS!34kq^NR6QJ(kh;fYQ-UKQBPrlDSCUC!^ z>1hA`tG{qpOB(%0rvQl)LL#{}XBuE<WhjYh=A68tP|k-38Lvjz!0Uyf0rea6WQmJ2 zVr|!UZ(U0I&CXgi%`0qN1NwP=K(p@eLW&`V6xnG>s1<WXFH?vTBWqyF>3f$NUz&yv zD8NKrGBv&or7Gh({Zo7^q~9%(*tCEA4#iZ=UKCeZbXa$%6FwzJHF~BPe$IM!*_@lO z8}msK;mlw<V6su50YU8U%Qd_FkK0u19Lx-SZE3Ci$$z&p^wIj@5Ki87-N5twA<~@4 z{(DYLo^}Xg&fT`}3QTkvZMpXgHcm0`<);>bD>|;yo{Az`u0L*f=3loX#eD2{Uzuf` zJFxo$fW1ip0TKQWq}e0!>3jb+dkAHo`rWWvr<+1JBEv}92`lT^lr~v<UWzoPAJpc5 z*NK$wY9mWfV}_qhWU9cH>ioV_PS8oNpwWFhm5qvD1QS7vVm$?)m(^tRz-<9L7!Jt% zn!e_}N=9CMwXkql>+U+WrUb2gb8oh$23@Ek4v1#LoFgYinR4yl{5@d%4zTchJv*o{ zRZ%_ZPhKU^T~x_pKM8ny6xxR<{GrE=!F)RVuLmbZdqN?;z0^#GpUE+gco=v63HtxO z7=k34Hso?)^Nnu%<Ckm-$X!R=DmDv0beFj=y|D<YYe{&PG&3l_;r{u>$5l8P8)ved zZ`108!`npFHH7?U>)x5-g7T5ysW!X*_@i-fpn_*}#dVQmb}B2gU~@x2V0b~5g<|hf zbG^;dduGP4Yo-(}Zj};y7OUEnlW#}!WF?bp@yUyRWgo4iGqdyT2ZM5v!6r33KDaD& z2$pRj-*d4|MKpFpR)XObPTluIRYZd+>m|Gd=Do=BCcT)Q+bdI6&_2QCll|^VK7TA1 zw`bp{Pu*eB^s|oJcmqiP*WVxKlVhsS`R-OvAUn@XgSi-}_v?Sc`TtIIAPNcFZW$f$ z<(K?Q#^%tPc%v{?Wi2>h=F>u4L+lcCqc+zog9lMWloPa=VbAh~r{H#kCR>_*y`5Il zcH>a;f>Bt7QTsEFv={G=pqshUUuZwhdzu=1cb{*<5pp&_oNyHsbU&qQ|JI`-OY57w zRTvJ50?eZ;Bx09Vz%eg?0vpx)1_Hwr<EbgnnyTgH<nUiGZHzw^sne4*hR<mr63%2h z<;jq{7xU?-x*+t_i7NF_+_9O4<#I93`!pp+^8bwRK1IV>)<ug-JwG}MK_-iilyQnY z9@0*D$fj1yFdAtAhC7w}KQZC|{(_S9i?(7VVXSIm6AFF*dezZ@ar0Nk8hP$puRq~= z4C+U=uw`zbG?;Vx4y#LWjw2Mc@fV#^gFv)^;3kU#Q4AL?g82tPL8a>Wr5??Ui_um1 zVFg4=o<J1+S8)2j10f9^BZHl+1IxIWQjYmw9r%%|@Go9Fu=vjcIVB1EM_ZNC);#${ zld~faE#L@v2C0R*k4$ZWaKP1aA~r27(X?SKcveU_EbF;ZLujI7+|M_hzPH9C^8~)h zZe;%AI-QrT3aZLw)c&pXV*y8}Zhz*iw`Nc%IiZNvzOWiP{jK=w=rE6w{~6kh7XA?Y z#-__lym8$v{O(Q3^3ic_0rZBw5!G+VxS*My8?xpKoG+{2h&=Z)qU}^};=|7%2kL*g z3kpmyPtOY9jfVKPG^Wut`k&D(T}it=q>)Ds#Z8@p$QXl}N3{FfKGLDyUQg9tIjXk0 zEnVABcy4^aPz$IL%o%W@x^d7Bl_cd4;ilO(vce-m6Z<3@95;LHf@mrZ$wElNf!4Xi z=15bay&~stZI$gswdZpcX{(dV3xddKG2=`C(vTf!W174%lfn@s2iik&e`<h{fRl-4 z{q7&$@{5Tn=f=67H<c}uDc8b31R6C!1DZdxcYiZvBr}f@tr;>m5KnYfeWG;z);I>- z&kw5Y@8<XR<Q~jZF`a{F!!AvYoQDETHq#5|W;PZQ=-|3TD*v{k2X%InV_ej%&+RHX zZyCx~n4;3_lYvP!F$oU9L{R)o5%1gt+pfTS+%7V|tEkRQmCfb3ovZ(4)HCO2Lly=G z>mG$L_C<nRuB*w!JoF(d)ULS`P5S=-4kZFMs|y9cCX*H@Y{49cq~xU)`!ohiW@A1> zGOn71GlIYP7yR2jdw|*~P?_75w}gHW68&9kjG;bdT(Kio^HmI!IX5Qtr!LUoV#iyx z00}#rzFoWkbbWohEcl<*D&_H&zL-x|w{~nI1c2rIk?i^#-1#0GBnLd)X<-^jeC>Z} zYj*mojZORMRCXio=>5`Vo{<x$$LkB~_rHpc+Z)D$X%qg}>`{l(L-Uv)d9(f38r=5M z$WC>)I2_ie_f2QzH5U<ie+F}o?q7cKhq>NW7N8tLqX6^rg4OGbct(i%H8pdydq2iW zBDeoG&KzWzV=wfc;dMK1chd`y^XjhcOUBXMtIHF2s@fiXsOoB<B2fLANBz5y<?PU7 z3eK|LQ*;ddSh(!^pw0gUDxwH`Gu_3~wg@GZ6(3ej-d?o28z2@<nqE@E<?jfCl+%h# z`1bIO#l_a!Gp}!UcZG4gujG3teeV~yQ;G8}k8Px%6+hRSnJd~(T2h~XFDWxx(ndz6 z&jyy!fkJJxMf+7r8@_cLdCsQ<zbnrbE%@mVpW;YAoR&BsCP}@#c3z#l#~M;f{MW@9 zY4u6s%=xbcS%Smk4`Y6flh~7CB^-Fq9$2@<pTY<~O?xu`uxr(#g%nvFA~c4Wx6lso zKScF^!QxZ-%f^_eylxU^f;2|GIhMWD|K}IcP=m~`fBlrR8{=~GXMTDE9Wv?CBypp& zGe|b}n3vIUJ2H$h*UwPS?2lyhZBnjTllPJ}dth5|fjAda{28!QdqFw>$4t0{rc*;h zJ_(+nL>3!s1vHE$B=mo>|Nn&xrSA}2$WOLbK1TjKM)Wu+)t{W^e{te9PB4X{5j8cM zidy)~Of<%;%gc~v;NC|?hROYxbSiiw=_Iq^{Vaj)?CiDmnY8Vp5V~)GQ8@S0DJ6Bs z#n?Uj3}M23txdhSgqdrc_#DwkuIFz<3-MDw8_z>J7!MThC1;T8e#(kZ?r>oInSVMQ zXS5P;r!$o?80=ZWU;fPO{7s~n1!*DE|IgPrqX2m8y}u5+@oP`(2sAz19dUH_{!at~ zH8H_3U(^iF%+}Z$bi1&2ir+2`sy?m;1<rhh?>jmE<c_2)g+eRzxAQxZP-F0=+e}(= zybH6J^=G%Z@`JA34^=CSOugQ|Gv(i1quXAQab50X{mJZ0!|Y?8Qcg_`tKZ9#X6$3h z?RoXls`fWb!A)=8pR6pJNsP<6B2oSjvs3#EEUG!k#m&g5@Bj46oQqdL-s+&JMfK`h zeA>p&%0tYRUw=9dNj*gJ#x|cC)-KZeD5U;EUyr%<>TB_5G4VN=!1opVekQVr@;69j zXW>~sb!>WgnOJ!HU1#?dY1uEGN2HJ2QL4m4V`S%vHcT7k&t~eWH!L-ju=k2-cAS2i zZ@6sxML%<Pwb0qZp!P%6F7^YMjdwr0FX<>mjKRe;-fFiiFAw*=y6`N4sWR;ML9vg? zWKV5>`gl0fH1Ga=>e!dg+5~1}_XEY^=5MsBJDtp>kH^NA$_iuFzYY9E-8McCJpq`% zkjl<bsUDKDSKsh)--lF<jl`*`XTv$-jx!e1)5e%<<g3d6Ngd25(^9@ieM&HGA|P#N zhnKT)6*A+e=^n(yFqCw>cF>-ZvVP(e2;|rWp9HVTSN$A(c`5m-zT&E#owe-0*gJ$C zqw>W;UzoZ6*G8CvBSp*~U>cx)h!skD6pXN;W(qAYtGQ1=cPJF~D-Z#4DI9mGT(|OE zh)NQq^Z80nuy^z}oEbw`UvS5*x(DsxVLO;GEnWPAEA{w=PkHKL$>U9i-gdKgMulo* zrICiz!|?PIT!8@WxO9M_;j(W37V+qbIWwe~FeFPJ{K3|A(*RBtuazG7IPS?R=@5;! zp55j>GwZ|7=++w<aq5_0!UW_Kx|5T8)5lxM3XY`x82TA%H1bSr$d8dLmAog7oK%Jo zQI6Xz!bREl7S?}M;S{3t?y4Sf&Gt@!Gib$PTBUA$^=CVI<I1G%+(1Ry>*}*teR@-2 zm%O`<%{4~GE%pO$z0qy0WOb)M!{+F%A$W$1?{i>J2<EA5?vID?KMyB6kk}Daa1l|U zr6H@Gxc2@?!`&l^e1lt~l7yISpXV}@n&A(qM9MG59$mTPQO!DV;~K@0uUhm$METe- zYV9w{+-IyQ_TJKmbGhe3LDv-SFiSvpNlcT-haU`*D5K#I28r4_nXhk>8M8Fj=iC}2 zSvh|{CcI>8p%LwYI<-VZoHKT%+qyB!xa<Ia5Oz)pl`JOA2_|ig93gz8!+A^$KWa*s z`F3aj$Ol%(=x1=8_WV4TdJowZ)=gX6XE=*#Oxq*>8Szi?6=I2WT*pe~9lP_Mf8KNs z7PG5cs{ujjIgLoC$6>%LLEp~nOT4>gQfPxD_Eo39VXp?#rY%tpwhAr%j5Iay#!L54 zsAH#dYa6t6jkV)NOaEjgZRbJ@inWBkbkYr;I&>J3QEmD;AuKrxZ}wVrMUbWhZEw5_ z^w2!8QWx95?PWFZA_)&EH}%(^zlw^%)yh>_IR7UNQWQlKGqRB!z44m#PVQG<g0(2Q zMoD2CLEaH;7F8^{OF;(y4>9XrRJEeSPMZrm5J}`jAOnyS3hG%UqX$Yx9;l8yvdxNo z^X3HU?+2>Fk+R+^Y+g<0k0cyKyX}<DUTsa3UC4{8xKOzU1a60}sZi2Jd)ml+IIeuF zU1K}?3ATY>F@b_-Okxdr_r$`9b!ZgX%J6mz_E>{K;evCYi$SW;#^N7@VI20)<ql^+ zI^L1(_of`yQD%vlL|jjTZGIZKjn4~hL2{RYf-Yb9qh$UAD~!X&<~(e=-BBEX&8Q6^ z0%%WQoQm8+<U$ba0kqp65MRR1!r$bhJzL1%ll(50|L-I4KqC<TpAi6M`LJ^rCco!j zIgCI#wxuif_I-7xrW*Ol+3d%?5>-_dIrp`(t&UxX4QptEy<tCEuvs%)cnJ<+zmKPD z<Cwg0jdgYWy8VtX5*EPB{`v=xnL;{mwws^vl}1tBgb`WOk+e-E^|3t|sk({E#Lp!V z_!ST?XV*^{MFu^|nt0N}fOtt1uU%7MUEz1+P02R_1oGmiCN{7Z<;2@l*_lxq6~glT z`Wcf*NKQjhT3OnUXk4wN!v-CgAXGFZg%ZagWyoJWnr`Z38-aM;Dyp}F2R`tRCb(&| zqWB*g6lZ*fkIor7bUOdYBqIQap&4i7dF2q3G9Am05vBQ=*%mD)Bm>dn-<3KLncUE_ zxG|*!2S}BCqlkn9tK@s}rdQ#-D*SBg*`D?77iv7U90GavkLw~;3UMtMtGLaITzd%X z@hdY^qtNi)Sl?!KSyxAS_4@WMRQui2VM#r8%B{Qe5OBA9B_I;DH3*-|aL`$;cv)R@ zd!e^dqSp-S6E@`p1b7UKU^6>r9G!CvIrHi!-RI(0`WO2veIE`xiHS4)O1b)B#eSd< zI&<ImmLOf76iymHqwTyOJ?Yf`tx9Qqh5}je<L`h-!n8-*@}7Vr$uDYTtp-CrA9Lx! zRD}$@fx+0+y%8oI=}=-)i}LEQ<r6`wHU;&3Q>Cpj?|xS^pr5$d`dE95tThZ!hs&42 zW;1Yr5=}0OzJH~2Ep|Bmx;CI3jvRu!DnFh<TdycFn0`cZ`ai->)$L_*j5jB3AX&l5 zV5+Jsa#^Ww0B;p+){mHMe__p_Dca?eF83FD*^$Nma|^*IWnXpn19maHt{nIojNqdF zKkF>oqd#Zr5~RnbvYEQebVmYN&#ugIZrc%2r|A#GQu+NhV?Z(9W%JIgE3~)E-gW1e zw}s@&EIV$dx3k&17+Rownw`qdyjN5`lt{yM7CIWauvC|Z8LzlPz6E-NpE7cP^ksM> z9a?gUOy2nRY|AaJ*$tWl_Exr%s7k~?|0o<eAtVTpbFAZ)COuDRi`PhR5uLN3a3Pkg z>MhIy?6BC}@E!j19;D)txR=$gN1l7JxfY9R`jtV)a14e-Q($OD+9SCi46g5bsOGR5 zg2<~&vAwdgB&D!vc<<sSAW#;u5BgI1(y5ifqOI+G~Q+E07`&$1J<uLE88Njr#u zT{#Qo@_(@_dT`scKiQST4UX>rWLGf9pRym2YT6?tt)ccsX8yfjI3;w=l`ITL^a`a| zCMmDbc4G2I|5Kn>fL=ZQw{a7WkxKyK(-vkl%YsTDMh?b#d!v#E%tC}}|KYgBvnJS* zEK(W8-XGcVD`wo`_F68ZwzT;^WKH2egSgCy^a0yJvuSi-4IbIQd&Dgp`n!^GS(fyF zM#cma@uF|?IDGUews-jnspQ22)g>vYotiok_rVuT!xf1VC^`E7@PQm8u<Gx?{a_)M z-z|gw)G<u^PvI$vZ^vBEquFd{U6)D_@LwNs!6T!|MJd(a>3m8ThE(`u@&tUe5b^m$ z0?B%=k%mO>MimJ$BVt`&0s$M9?>$k6xk&j_BSospzxEdDF^V640cYWvTYPdIhj|$I ze^1l#E7pM__gHsc-H<*u-t>Q6xcq%OL=7&j65qADC2Aa^QpW3`KhsagAc&%=YjyS` zwUzcEWojWQ;^YeZe}=!`A_@fal-s?LKC<3k*?g#XCE)cXC^z}(U>VVxHodhU@9ln; z>v9d?-rzb$LF=a%MxYLJh2oU7i?8p3HGDhT^=f9e_#(sGY4C49Az#r%zr9z$3tg1E zXlZ&s?)zO<xQJJ==)8Wa8&snF^d_Ptq6uSOSnT1ERs;JqV3WpJ&&PdLc9*1w-(*(b z3Zur@fBk9rfC{&olGo<Ge4Fhrqm=ud+Q!#+i7@pmUx-uMhY0rFr8FVZ!yP-7=~3jt z_Xpxa+g61SoZ}<`s-{5j$jlNzs_*47*E_MX@1}!hP&GiJ4mg?*Ov^)dG3vL1@cjN# zeJ-EXczCc?za63WIf%g|J$5KPUuf5TY{~2w>#>#uo-<IC7O}5-3t=fa^M`2XLzN2k zB0}YB@ZKZjOh<2Q&DS=%<2Q{<2ttnhRI;-{P#)kQg`g-jM#(~(<0~rW+D<yQNV`fU z=AV-sGo}wfcgDgGix#|Iks6Kg@N^nEs}->Snj6OyhSOss=9tU-MLM+JBt4AGUvKR* z?}{)FH!~tu53dE)%+rN4OR$-DeK(h<{PC4iIX?tF&~iEJ85u?Q_RqTAt{`fvurpZJ zc$hqKH^Iuxv9;=_ZZC%AF6N1Z5-TJ>LB=)({{@&kxb4Xuvl_oGp8f=Ku}n5GLAL+C z^*)C?_4n%HouJxzy3k=x4zWz!`<xr^{b+xD#np2QXks;?pV16RGXL?qi@e)EUR+Md zQvBm}FbqY?e}DPEN0pENc>O55`^Q_qBkB3aOJNAD_pkPS#hNCIk2>o<+-D7vi#Bl@ zc;Y^Zm9dWWY4twGztwE<pIJn6f4qfThktA4f8NU_!h3#^YppkjIT>r^%jw~J|9UU8 zE1Xl|5o1USU!dHt{}>1==mg~Z&-eb1@&5Bm=h*%+iCkVvP_Ou_{_q?fMqv$U^ItD6 z3wbCT3Y5DOZ|v4>xd3S0h!&bmP*G7Sa;jUHLPgIAK?GNVL{O2l;lkP`9klE5RphKP z%BtMBF6Ht4Yg>?5eiv~EvjC+Sm|sTo8ik`!LzRWwoLgVpTCorBua>m>sypB|dmEYX zYc<Jq&vhNhd4gIE&W_|KZD$(6Z526{vwbY3DNADQzd9#v_O%5?oY>hht9x!jo*L*q zp0l<Y1lzCP2W^ghU!$&4psp5_+w5*_$WL6(<ZGO7mK+pp^&VIp(Zwz65;S&3G)C52 zah1>$13D>zp<lik?oi6PJ+87a#Dv!~SxRB5N9}o#2C`^Njn2uJCrG<D=vyZoYV~Y! z9^u^i#yPS%NURKgKM(C*)?rEn@ymwzLupBVrKpw&O-wFvn`{J?WB&R+QPz8eU&Awm zL_Z9!-5-oFT?;UcK#fZBN=pwA?8-~srn|V)65Jli4DAb#sFmND$If{VdXFnk*3d}y zakYAU5FfG8@P72f^@~1s;(1(1@WE~U(0g)oM`XVJwh$2{a~8FRqVqjjaiejiV$K(K zP)l2u#Ln#P^BBI5-B}-Nbgx`YfQil3@SW6JC?Av6*x70&8VQ$wuS%w~K1?d$*jXux z>ntBVu`tX@^cb(U5nO5ITEXLk>rnB@I<yx#k(+Y*0(%GP%TT8h=LjpN`Nh_pxLF&< zERoqYmz;~Efag{k!Uz3cElOwJb>mVoZh?hbWW^iKmdh{Q*_c9IbRyy^rY*6PuhJUo zk0i+~ai3U$z)jns_!~vZP>8^Y@0@p1-<aHLq;spRE~+sJ4GleQs!B=65&c<RT5V_9 zl&CFSI?l5`Gq_{F@2>3=zEM1JW201NR4n}N#vHDiMzT&Tae=<O)HOq9;=INK)O={+ zL0tLSvu7EZsx@|dH5v}^tQObGjzE#xGoPKsq&TRCG8<RCesBdZ?_cf|x65B)3$Fg! z2YRi<v_i+Ng?Ds*7deP)wT($T6G;u6#CgupbC1L$g^R!L>aO%HV{>}H4@-#AZ7|&- zm^K8`u+nbJjRcO!WEBtXDS`D6K!q%*&6V6@d~4le;;PKLJaLQ|eC|=wo8UU)8YfZF z!M&`v{@ra#0;))p0hM6ii130IYw*nWDRyamoq6oHU?tvQmp-aA9+8{>4H<gbrEl$* z=mXefJT987<i*ubq$LSMd0EsdEb&54kn9B%;wtAee1SPoB$XkORG_=nuh3^wE9t?r za5=B>>hwbatz4scd{3@L&=bT~A&KJH?5b@*y>B=V2!<s;+d$Dh^kMsk-Iz#ge8#cN zS2D~#cM?|b_sv21-S2b0z4xJ0`z9W|K9_AyT7MDqE>Uwltp6Qu()urYp(3L=6R%f3 z-*0n9Tf<a<qS&u+lsFE`ks9zQY1TncFagh5=Oh7ef&Bza5$|q)6+N}0{(&5`+t4pc zDi25WgLXY#wQ`4{e^glcl=0lD0!71M-wAMd&B=4CbAz1ygT(zwYj==(N7mFRc}}RB z9_Sw&EFFDhi@G+&b>erHQN^L!!1qAOI@eC)Bczf^o^Roj12?K^U_Q%1o8nN>q;SR3 zC16R$lJU|w9A^9?(AIq$8(vOeg3>%daB$<+Wo|P^kr$xvEwmSa^$t-CSFML8N|ok~ zu|hSqax1whd?7>RoNEg68=d${kImjeldbPT@@#A4rOu$5Oo%EB1+4IjFC=9RY7b4z zzXym20&uv5I!hgZugwRD_$2G;>G7FtPeS>8H-oN`=5$|)c*#`HBb`DK=(t4|o+S<X z&h3jj!l|G9c4w%?z0!I9W4NCSX!5l5;JW&}xcs7c&2G@%acflU76KM*r>1vcrI0K< zGtoAy<V7(Es$t*8mm*=e**?$lF_2lgrR|=cp1najhD}NDfU#lU9>lr2zVU!=N_t3A zYM@pO$B3LjNRZ43cMUnmcmE+!U{g(cv!rT}<P~!>vt*Bz{3K&!7=yOumh?D5Ufka2 znC+_$gc^GeG3rIGK$;@~YufZqIOw(WZC|x$1}j*DwpAu$7fq)I{xo{x&K%JMIJ-GM z=m}Q~&C+TFLL~9)%}Sbg+}Vx2CZ5-T!bcB*ZQ+CY4rhRZI(|@<Y=%~^FZm&e1PbDC zpRZwJLV6ME=rhb(&7N6n8E32`18zdtWNV0t32}d+zMCryN}BXXl6<haz|{_EhI?I} z?}TPpHTx64-x+cW_cn6s(AK5#c^`$AdMG#C*UkwPf+-^-1AbS7{MQh8GY5Jcu~7tH z?g32;_3XNG%*-<<Bg1{J!rLGX*|_bg8pJmZ9g$x@uSu`uw7uNP6z=h!H$=p5J~W79 z5t>iEECwdaXu9W(?aOMx<z`2}{Iw=)IjugQMR;ub8t`dGThpyOcJtt~ialDK6ScM) zvbX*q%~!TpM@C46_bRPVK~ULrUSkND($zL14)l&b?Fsge;~>mADA%wn2lT0=f5zd+ zV+s3HOZlkQ4%yBU(5s_k3GRu(sp1)hYjZ4Sqz-OUt)5|9J=xojWHvsA#}01y55|yq z<NQ`RLv`8Z%j<*0O&pz1YX91-J6?d2mMx<Bu_V+p&ew8^;1{LwyhotbTe6VIrN^!- z&ho3y3sd-=DN?5`Xd8!>T5i`OoY(MruvI0pbqlRbY%6YOk>|mHXQxo_tGWt1x(T4v zANzoBj6xH&@KQzgkIK#dxrP8H6TU%Ex)CU<<@w!hy%ZeDRUoVLT&KP$%5PT7Zz+-> zG;wE;D4=WX+TpJv+5g*-CtPUKM^MEh0X11%#S^y|KsSv@rXKmh5}3VP{kN1G?e8VM zi^FeOLL;<l_SwBNgQhdx`6_bXZ_?F~j3FT7!>izW2{Vqkvc3s*_Xm;{6KZ+RV=Y&T z<_(OEW01GR_Vy0wkRapAOfO-34u=OXye>}wB=j^hD~rN3=>Ga#(k}C^oM5wRuE2ns z%z>VuCi|VYe&-Gh;29;k(Y1v*ykNL@-|z?$OoEb#S0qS@D$Mw1egB-FyXOb-L~c-J zZvr&odw{A+NoCil$Q3}_J0FTTQ@;|KDgD+5$RW)F&0jybGc(wL5(_0TnZiZIH9{kc zNyKt=*|TS%h2dfO?a%T;U@umKWXFkxg@uQagpIt?@J*Lldq+nq(KOxeFs;XLHR6MV z>mCm*9Y#Gl$=AVx9Yu>sK#dJ8p(7qDdZqUMO0@U&H8ugSTnDE5tkm|>XVP>C3JKi} zu7fG`?#?k&Y{L;z!%tK&-T>vOE~Lx~e!CYhBoB9`-QGc6*>3G@hTfCEjWP-?@<bo0 z#U^nASX+NK&yh%MS#Q5O!V3Dv#!$zKoOA3ZV2g!T;#Mm;=W<u2@8-yKers&4?5q>1 z+SYGa(od0u9l?o@XlHxHY&8#V-S0zqhtv}fO;s#f%LSNl@9}E6tAKV%tac(8mwK2A z+HD`=&Nde8yxbaI9<z3*-+<izLS|+rbijW+(jbr>J?FPt7UbuL+RvfKTF)kKh^#m0 zRv!DhuTWJwBTR1NnkRVYqw>pI@`nry?S9bM$Tj$_RdY5Z%=uV*c9sns0*;#~_5EYv z-1xKbShdFzYEODmJ_YG*IS4=$)a@QCX~}_%m(=ETJ^{QySRe5IF=e3e3)Z+5>jk*! zB?QwwyBkdoqmc2zn6WnUDA)#x(L7jZ9v<}6LIMH;3q_#n3n@$$=Qy^$QZ_nne{rne zo^_XBPZ(Th-xqm>;<|9z^s)6%ah1nE@)zah@qlAI<wEoN_3L`ES~gyUVXt;(86zZh z<7M^o#s|qtZqURS<mABeAUKd$UM`4GaQU>QNEE5Fohp7wb>SK3_BoP50w^pY3-|a0 z|CcJ+o^cd01;b6Z-7M)iz}9U29Z-!9$J$%U2C&t?kR}!KWMA?V8JY)8ueR4;o9W6` zMEy8(113-xN757{REcVs_eS10OlL#+GPrJGAy0<DuMr8F;J478Ca3L3(DhUDn_KnM z7+B77uSe#Q)OZ!V(?@?5@8VX!mHePW#{K&MC|F;{5ijqphQ27QjAC{k??nr4GJnB$ z4afZ|Ciu$_pNBSw>?~);L6y8>;?7c9;~aRmMwAUf#rna)<qI*{(Ikih&gBBf;=|fH z7V9V6q~3+dwglf<WHIuYuOZnI)cn?SKGak&+q2nrgt(0-9zhKZWrkT=BLIw?*+Gu; z>{$}FM3F=hEIozXWF%@$8YZ)FZXJxBpml<4Eb6n0{rdK%qG9qNJY@`+IzkW!4zi4z z4y6-^*GrN%OOk0lt6CDI2_XVm5tN{TB<sz?vjC}8W0d$Lb@~MN65_KxWlFa)hl5C^ z0U6mOcuWF{Ur25vRHSn4;;kuQ5{jM@cX)V^6!Q<ReUKbM4MKfD!ebGZz(SMIdZeG+ zbe_RmIN~7j2!a8^JkOL=Y1vM40o-C;d#Qo~1mp_{FCIHQXcR8HFaSc?h!FVweX<Ds zLo?1lOupY@0<&b3mT(vx_5OLYbCUfoQK*idWC^ezm6+H|-9zpTeL)7aWa*RY?d?r+ zg;!)cCwBV_`l8;Ee&9RVR-F3_;U8;fa?Pp(hv2)b$w`10d<X)j{IdWK=sDNxRJ^3W zNW>%*_2gS?%-_}UNm&EfXF^}&@i<-sdKlNR&w11iA=e^O+fCVDNkB#^1g!Kck10bq zd0^AgZ}D*r>?eA9cZT{BT9P5-IWOILq^>nL$th{KW#x9}!<is5*$#o`M6TqVW@VQ| zdOwd`F5FxJ*jaRvxV0Ecx)lVTwA)*&AiE&}0Rck=pVb9OzXcI-azfCvmfgKCd9xwH z(6b-H_ZrwlG%^H@rY)TyTFwXK=sgcGa<Od%K}UHl8RB}YNQk+S-<QtLPy}pi#Gykq zSK(76`18<avZQ#%-qElR!W+R^Y+M;VlZnT-<jrp4hAA=QBy?;JA+CiJA9@TJ!>2<K zf$t>0z7>ciVISXVi%>(@Lr?>=TcwEeb_Gcl8gKmycwIzYdZqw&7ZfYaLqwB#5;g{f zOl9MD+U5oUt5R&QiiD(e<yxrBFQv&>oSZ5690Hv`^VcSI@m}NZD98>S1RMTj&1hx1 zTdN#WkHQ@D!7B6!E(D$&`AynwnlF*KHO6F}=xH?{qFZi0^l$(!%!ne8Q0N`HUPA|q zZw?Gz4J3+R4*>*KaT<-cW`tidf3H)?!tZPhEq&GyVPs?sDZ+2h?8ldZ@!;6{5f<&O z4mN|M8)!nAC1g-U6mF_?nwsjHIDp<zX2wALW*J@p#o>xX96|?AoIbDwHM}fa-a<Ub z&@C$A@nz<;b#Pj`PuzNJYS5?@<-Pl-Omt<Y&FBPx7228SB<7OPBHA=k12U04)af_V z8Dd=K#_r~zSiC;^I25@oz>PsWqZ*zKS|NxJ2$Efa%kv@o_S|D&F;RDVph7x$*woZi zL~eURgNe@LEqMq+F*Up}V<hoG=7=7AC((#rNfY@Ps+GC94U}M&0r_8aVBr`V#6!4~ zVY+?YX$&0BMcJj%$Bx3tH!>jdBm~%&A>fNV=j&AD^45AfD|LQokN4oFdh|N?On+I? z8Z4x&<`F+MB=kf|nrwc=^{p{^)2&Y;+n451sX*tjp!4^y?}k8|ROaFS1t@r$ww5<6 z2iPw(0Bg$#;fpX>2kr79hU{NgfY`D`tX-HdD$h`dyvY!)d$FPuAcU-wfEhx;S>^#B zd`OSzi$FW-gPZvB7YO;~g(cu<hpo@@+ge0Q`Jhu{ukC(MkYEN;aAW{LRf8PW4sGdf z)U7=P+H^lX>GAyvVVESf2=hBZ;Gwa#h5X)px^6{!qvG`0{>1^<7nci6Sqk6b?AvAF zS!$3UaQC`rzZr*Hj~fD5r#b&Zvf@?ocuHt__(x}-s{M%(7rL{Y2aY}mDgc418py3* ze&X`!e2vKVClLnNO(&ALQjn%5GkQqG^Sl!vEw&9}PmclVI(qv0{Ad$TC7ov#;IkJ) zWON=1PGF)LksAHbneL?R?jbPezMAyUPKVL3O3=p{yXkAv58I9cM#&C^J$!yS!#YWz zE}=*SYlcA?h7fR^uMzRfU8^zOsu>!I(h$z7Sm{aOQ@))GSaUsj>>7*5FzcXRA5cu3 zBgGxac97yiG|{l>XmDO`6xGV)B)x-c^^iW=8s;=bACbm91niURd^nhoAddYDBnbn! zE;8#;E6o`0*<=y2*eZ`-n*eTRh{^986D`fdZ9r{mxp{e)j37Ex(!6I;H%QzbWIB@Q zVNMF*+@?Vpkf{wdgvbB!98fAE1lVhQ2yrB#*}gNjD9}PN0V$-NM|hntWPTn3Pe<X| z8$r_ax~9I%S87e@l}HPFawwQLq!wtX{k18b^(Z>py}cUFE@r3qUKI8_1)IIkd4kZq z_tw!p=6b&-k%`@74va)`Cmi2LNq1<h5?sHa-&B#G?T{GwsTvqEad04^)>bMloE#sP zszkM~;nDN6+-Dm1hCCG0YKo(HwwK1@H;ZkSybI=bV%1&Bfp-sB)c2e<=QEG6JI}A* z*o6)GGPSCby?8;T_tm%y$K2|atBK6&cFEk>Mqew|ReseKC+9w9;yn`+#OdeZ2Q@J< z`>q4hBnqt-Py5a{iMNgb*&lP8g63%E<Ks4$+$P&!-AEt+TxovnSXt7y+MZsRx`ww6 zVt3=yeQRQ1@Cf$z85dsfILhhq^(N=>56|^4ZGBGDXa$CiTXN86(Pun42>T^d-xIWA z>{}3LBE$rZO&yDCBAJ4<>ItV#Kuc;v=4l@1)5IN6dEJe9(+9a0wWBZ!?b*_XVy9u) zz8DJ@&2e;VeKB7nNp2lTVnGOB4PIrx8;Uk&65OPnglnK4;{nV0R?Q6%$Xf#P%m;Ir z(Qhm2I@vBW5}}AqaQ#vbVw&;YaoVK9ivZ96(0Q~;|8=<h+aW&Y-D_lO@y8DJ7T83M zCE@(kABu9%m5e3!VH<@Ozuu-3-cmT`I8a_icTg)$y%~W0D0dLs174M|CeOuD0`MM1 zcKxNU&xytPGDmyno=<>o0>>+srjb;6^o)s3lHZ1n+uVSx>K}h#!3hiY32hi#W-kL} z@TAuf@4GVDA%KTxY%;o$QUIW41m?RUy~@OfVP^Hy1sF<E&-D!Kk)VwHaJdaWI+^cp z`>x!kSqSD0tAhZ<YI|dO5h7x}RC_Vs!nm|SRjm%W-i%P|Bwq>le%DR_Q*%T@Q@r>h zs7<R1hv&fz-R#6x2%eJrt9bjPS&m=3DB;jo+(#FY(Ss%#g6IHEtz%5|5vvoQk4Sc1 zxm^|R>^+^UvV(d{OYTxmlJmue%dS91?$aL?&o*JpaRZvt_E%a|jV91cJ5xV@^peUa zz$0!ufQDMa*rj7xjXkx?0P^PfZEvi1S%h0!jgr&JL;wTR4E$X7I&cQoqqjI`S3oU0 zW=}kn$N43K16+sJ-VCu7+bg}@1va0-p0UQ2&P-yr#Kp5=G3@{q`T?MbFZo(E0M;>j zd8$*y=#CBSc?DPSrZ2qL5%w0xMn}^NKh+N0$E$p`HjI5S*3f}pkX6>p#i6j<O3G*L zdsSY5BO8C?&FUb!)&~zB0Oca7Yy5Ul?0Wl4L4N*vWaM+~`ih;_yRDOAHYF!$rKfWY zIEd-$v{BVMv22HfUQ<h5pfzN{>JdhB(i8E=2ss_!PDE6X<ZwO?3A^qK6z<s9cefjb zyx}i2y)hEv?R_QAix9ClST#Q)<koT+&Q_R?0_9mhP~puK@*+(=;nC)7nPcT*i*&}R zKBdbCcaF6J`Zv4UuAgs3$T6$N?rg2coJx048cI55`A5m%a&0(g5>)gV3uQT7URrB? zEGc5$nwUVz>2rgYS@daNDZkc>%v<N;>}LB)2+D27U0}^(pt1O+MBL7L0IT&2xFg7L zV-Sbe%Qgp_-TCqb&udIy2wJ<2w<Y({=*Cky6s$x1x^%myNU$*k_da-^XSZb>0|y@P zbN6%AI3L(jP1SgGagAJ1WcM?S{8IqUmah%oH1z-GJy)?hn&>?nk8J6lMn>TSXioA~ z<An7gY_$9QLhVbsHhAQP25pYb2E9Z->zz5;8c;+zB3R+E)0FJdto8*T&C`bU*qh_U zk2n^83j{{g88TBRZ9B6PKm!_KT7(L>t3F%JK*p&%MJcp=rN?#=HG`M1`E+m)G9%h7 zJ9`WV{BWIMn4<O{zEGECTxJzS%ids&(KBv-D8}o(G#-hjz<toSD95L$->ne{^HbuD zL_S@?q#1?@cdHJfUAB561QNg)<Mf%uc*LC-M(RtdX{ARHT>^q6QWd>TL<Mkt5Of{g z>fYjRf-A#QK7w?SR|x?L<SbYg&+qRjLEv{SP|zG0LEgQ5;>BZZ9h{feZS~j^@3(!F zce-h7(1}gfYl%nRyyANmRd?$7s3#|#hIo2od{^f1#GO8~Aoc~=YrXO9w(-5ZHF<~x zWC+n(*ox&ZjpVc^xrzq7ruyJv@{x89sATloe($GZr^4477F^SOSbFW-zWYpmM%}eI zGpLPKo-JQ&A;hXZIVn~&=(kzLr~OR%e#3zi*GIsz>K6Osz=B(YSTY(0=cLPQj6d^y zx0`7M)+jNa=*@mW(xJRA`qrQ;q{FWkIrRH|XO6S_aF4|k${I%j8$~-p#0WgI6uLGd zH5ZZf0t|jwTs+BpwxnZWP1hCs5Vqcoh)PXwas}0!2`JKLJeh0#OP~07gS0uM>^hDL z2{nU~jKQ$tzyb>jni{=Z0b>`-e#)h;Rc=!dzcHEdhpe@J*Yh}&N5IgEEZnA(tE1%b z;6k<xiD{$nkqRge^@KmiP&~f{amOMon)fVdVvNBx{TDp*aTOd8el>y3ln2(}2?Qlt zCctJjKB<@q(urKdPZjn$G!i%Q#EhkV9pZ5!JKg!#q>G`_Su36LwvC`AaICT@QPJm! z-^Rjh5Wd7zIC6N6C(A%ovj8a;{>)y`jl~#U6a9cl;ek&>#4OYk|NC4U_yyT;>Dgi| zaUhGD;Vu#WZG5#`ZgX18A=SV?{p>rww{+Lqo}MlN1Htsdyw&J?wLVZ&&Sf)&0`5U8 zRaPxe;x**fuMW8N+DqB@6lgQdu39N=`a&c#3U8r+UnJw~{MRa^{yrd#;?D1W{S`2v z(dhXeP%Y=JwRvdJuqyM_pFGd7$U***-=Npj>+WYN;hFGH4)}@oWL6nS7K3si-{!ut zDk_nteh{|!UL8W~O2bmwQCy)elekqA-@QOhD}Vqc-vU`jUur&Mv>`&?YE*^OHySbi zz&E_`+?*-09(|CeV8DQE>(+z@&R|x32KiR#8}YFD(TPTI9m3*FeXqRRHB|`kr3gr& z*q{Z8VOaP*#+L%l=m<k{Ma8QW2a@5w0O4=r_UfQK$v$kZX5SNK62p$v_4%&$FY4kq zv@3}_oB9A?V1#ubA19?<CoeOXSh(V78U|_+aC94QGmBhZUYj4*Z5$pfavZdS`87+g zZ`$q40!s{au#W-==!lnDkc4h{FgrjUUtVdYeP=OAxR59#1*F4gHfcAz62jtWb0c!c zNYY6YdOqs#dL3{0<x9~-D0R#pE1k-E4EDl}<nkb2Am9kIvIXrs9)Lv`qG!JxGi(}D zXO_Vvm5Hr4%b=9H7xJK5hg16m&a%NQMvXSZ2-}rDztZby4ag|ZeQp4mW=r%pj<}=R z1W|1(92^AMhXI(P5^yZm*(McOh>&9pj!Q!N1VTY?T2_h7oM{LV>lA6Fu0}roMGk1% zX^`q!Ff~Zb#(>HxPOmn8zwkaO-t+5CN~`nd&$|JD>w8IvvGg2Dl5(~}zbS!9A^5?P z8qf;}YiwCcO0v0inR!BHC-c+ExKuddI$UO<ZVS>yu^`pkm(s-H2Alaxp^To$dcdd` zp5CTSU$Rwe+>f&w1u&EVSq)VVK$zVyy*?1c=xC;f7M0Ii3qQPj1;4%0$RX=BvNZ8o zV0my8Bk%{(jqx{~CXJ6y*p5bUD>ew>AX$sZ`GB%q`L(aN%fV&Ed0!vv=vY`Oo4(@# zHat|;Giy(!_pvsBoYNf{o#tu%eyjcNOeKa6qfPPh*L>uo0gXZC<1rH2Ft}mN`*q(( z0CBz%8~x5oZ+)*`1QBd(TBscXu@iaJx)QQf#tcC0l9JzLy|tiT$TA%RO#L7Ux8qqN z-G;QO{Oc_$ETE0n(dNf-kAEiw9S6u!qfVu_!rKP|mFKlQ3B~wtvCkp^8x!jpg$$w} zpE}}vI&5uL=`Cl^gN^S1BRimk-<Vlyv+UU(;CGxnA=56rviUtIFLO;*Rdo?1WBQhj zR{Xr6V#qmEsIV?sF(}p+pKf|PgoAhtRJ;XPQsHAt!{wffdAivq8Cz>2=k@KX18ExV zi~1$NaF1fAj;KF*2#Bf?aV<I1@PMslbCuEvgLRlk2OgusQ6djj((l$Qg#BELuuYpH zU9*~G|8YounPxL)pB}w66bAN;H@k9U68qVFXUde=fW9tLI-YW-w_|xNy9G?Yon^fl zRh^kUo7BBSk<~{fgS3~oV)%n%BCGvQVwoEkz(`BOvJ6%YpT12&Kmi4q9Cs^W51inZ zX9Z+$@={X|hM$^zS=Bz9aa)m2wxEyN6{$Gj!I;Od(*;+7(sX~r`tWJWJk+O4w@QsY zshY|!eR*!nvJpl9jLKt1#(=g0h(ZOWzOB*C({42kx>v!0H!$4vD|+Y+IMB1#z9@!u zzA{fpV+&adK+h+UKh|a$x}<%42gs^Z*^n-Twj=Dip^@!mI)S$|{W-hHDA^*wN9kQX zdkd1y$I4tL9>m8Z%(>iYDlY<@&>z9ygXS$}+`BJZprK%!Pjm{pt5}TQDw|my@SdxR zR;fuz+0L4N72(GRy=6?N>$rK9@9~wcu2uPEZtrkM$HvBP=HhJJm*QTRtqp}b!}=Ip z-M+^nz5p`Pj8NDnor_o^^hB}ylzJXW+|iQy!;eSMIGN2#r+qb725-}z;&TV%u?3h! zt7`{TzHYK3V+^cjTzri9?u$wwbNSY-NM=T5SNpW|BwWVZs_14yAE%54<;l#8Y*k<D z&PA$|pPHH~x>1*2$?N4Aj??d>lUuv;<)tPs<gXjg^yaN(EUbb4X2H*s8=uHcBcwJ9 z=zt(c9#2)N0SIc)+KS*qar6LglxPwK`$R-nA#T8CYj&@80RgBxaeo)XeUx?;>`TqR z(FdtVkr6@OU4rsIusC3eJd!}wnZ?9ar+e)*L<1m?IReOHFm7`WFOSe3CvMBhO86mm zCmgqBu`>RV7h$L~Wk6Z;h%?bY%yOs+iH`@D*8(A5?BjuTu+xo5XvLW>u=s+PVa!s> zbU6Au5fo2T|C^AO(y*zqe75%Xc76`Tq+^h|&#haX0{YS<`H5zCEF;b;i}Bef;pV&{ zPDuwN%R9TjS7?du`A*I%Zgl}Uly&gS&-?DyA#7vlSmF9@zM4+nh~?Y%6<A;sJqUO5 zApi}KHkJoF+himvyNbw}2I?6~?MT1uEcv6E!FTr`84YB0(3@2m3m9Ci+2A1Nu51R~ z0L(ecXlNHnvZRnJ3n<f%OPvl1ff$?sRRR(5@yIT5zy_doAUBC$=Y{PWqWQbwxn*EV zoU88q<_SsV5s01QQAnW<{!N_8$c4Y`qy$9Rc0C0)9N0Q;De$mQBppq5Aa&6QGr-i7 zeVt*Z+Pwm5fl2`2jz;rqEyP<V)}yG$>al%cgNl{j$2F!e;9jR;QJ>#a$U8PK51HYT zW{KVrfZwG@6@|w>Ysfc4DW^5~8|3GuY(Ayd6bfuomxCykKx~M-*`8+<&7jaocFO?( z>S}lG2Jt8xZAp0i+OVhvN({IGKm5`TIR<3@ac{3Ny-ArDv4bZo>CiDGB)AW(Z&R-E zBIp^jk61O5!+>N(-VLHU!jGs9%oCx`4BNH(d|Gk^DqHy7!4P2cjqXDr0Q6%b!uD3e zd@rO&A6n>?X)-Xa%oGj6(G7`u%r_1?pElF){>mCIzvJ=EpnCG$R!l~EZPGfvPx@+I zgdN}`?g22hharl<k3o@2kpa^^VS$~U?ajEdyH>7R9mAA*CVQ00bZ&wt7J-dmPXOK9 zg2Io2-^&NrrX;^H5dLP+@`xSSA1|E@9U)|$Q9O{RouMNI0sbE)7QWhRxyxnKlqJAh zJEF&Ch&6@QSDxS+L^@qewCmvt^3h=A#Uc9X^?@L55otytbTvb7RK4U-T>yV<34ms? zhRL)EBwKE(Gdl?(G%!()3`&)6AvVp^d2JwNR&}Q;4{VMkoEF!L)xrq*<dV#guyN^C za3%SW!PL*tc@06IfUZp+m0_Zs;MSm_L&+h8(x*Q?SIx@(aDeb4*Dxklawo6#J0S5S zG&_p`4jS%D^jwRac&-yexQ{d2e?+|r;&!DMAC0uZSw~6s-B3ia2Ey%cY&%<kau9M# zy_IKy`>ZBOfV|}cA%lWCz*`a!cO_Xz9ah`J<n-fGoW4t%=xI3-NMCAG%r|&*-LuCg z?e(pfL~F|-fY}yvcYfQS2dJ_e{Ah>6(Xw=fzi0qHWP0@fO9Ozw)YKz^u^cG(Bv4q6 z1DXQRl`ndK0XUL8K!E`%8^GyYi|qcYqXJ=YBS^jA=F&tIAf$7MZmEYNsI<K5bkTX; ztaJ{rgbr?qcU*wV6Q#myA9-3&O=bQOmOk{J?xHKOSb9o+kchT|$PEh?xD~2KWQuwn z%CvWGU$$J!T`6mVXz|gZLx)O$Z5nG!RuqtaqCHyMKDS>(MhsnwO~OvkA-9IH<Q)a; z2;yZLXs0MwEoN3%ErD)W2S-H$m_TF)5P;oNbI7Yd?1>OL*o2GMHv6S@5z<7sFbi5n zm4Mcxj7qEa0bD%t*Dca>Mzd9u01xuv5(q62Ad&y3Yv%9KN&sh`Kx4?tH^_3gz^ZOR zwO~vVL~ZGN-1i9_AcFOX2emWafx3vycB<n72XNg1jiA*!ljF>Y)sh2%7a#8lNj^)! zFmY0^Km8<}iCH<2d2TD7>ctLXc;Ge&mLHuF&q=8zelc`x27GrFr~nf8C&?hxco?~j z|JUA`|5aVC{T{a`+Z#<o1soU(GYtX70YMSU7%I(K20>8}aKHgj21W2`Z(=dWRuIyp zBvTPk96=B)85B^$6hSZ&1WXac36SZ$uhsCJ{hZhN2hJ;gvP4+x{@(X>eWvSPntyf{ zz56F`K}VI?1g2^$JD|w_*-sQKK6*94HAdIcV)nKNU+jAI{3?*OiCP}7J=?Dg+x5us zl$FNPQrMM^Iy+n9Abf7_VW(>gT(VPl^tcZ-{bjdvNbifmDWBNSsDIs|_dR*6wCepq zU5)#m@#1<He|q*Q&qVeipjjl8+!vKjzdg&!HmM@Q{N;@aeV5!*_1o#gEh~dV>ZFe$ zl9h9@nEABRQw;B1?D%;<wQ&s|>q+NsGvB6>HeREquKh?P{p$RX{^etz`-_r-ymC#8 z|DWB6O!JAHu7z`6+$<~WK^=X1W8P%LnKLRMx(0SX;jp9a0hDuAJogN2fL%6EQ>r9p z-t`5`b=v$5xAf3oT|GRq7f;v!$-iM8hzbRCW9CnUds=h40CfpYCTO#|)AQUND?0lL z+}`i&ZgUBkqhA_P)K7q;iFC_e)^OE$Z;f$gUN7DXTW<7+0taezSzhjv<m2GJM-;f@ zp+^q&@gh&5Hi@><IODeSo}?sR{j!&>cV~y-58XGZ@!A7)wjFQ%s`u!_X$j%^KFb?B zMP)L_V0;QoNpD$Xr|2AzItXR!$-qRU@t42;bmT_JZs%LUQN685p9lF=%h1UAmKw6o zE+xUvb)>MKoxD60N?_^wm<18_Y`SQ2NlBt2gJS2j0VrtW>h%ww{<H8;e7NHH{|g^( ztxh;Hj7{bEVt~<y%R}B^!z4LQ)B`N`#gXar5Dr)Ss=cAO8NB#aKDScpkIQvWUDt!E zx6b`v=jW?O=fmFP)mBx+UACJ{rAmF+?y01ZPG{NEwz6`T8Mjw&kFs1k^tcz_AfLT^ z3Mo&jprK!{ATMvLOC87bHFG>7biYnrM5g}a@Vwd9cVi3b9(6~^PkNAu@jZRbq*R*Z zwEmeTg$lKCAoFi)pSy}mgKCiOXXyYil@!Xgo>G^-C0Pz%Bn6`4H?qT520*8V+1muD zFS*tIR^P38e*m9f-}oK)^xpps_@vJTeLZ|R=gi57g8U0nQOn|?$FZqDzutag)%}wt z<HOR&_*6aohED7FqI=P;hJK^p7<3T`Fd0iDkgS5`H43qM!oJ=Gk46ntS+tlgtFl^s zMZl}0*jZ-6HhL&(t1_<5n|x7p$i+i-Epkt$ojJ2DzA!77nwBf#Feffu^aOD~;20;) zrF>zqV0qg=J14nRdv;Sf%QxIgZG@HXmq?yiCdJWX&#!Q)Egfm8J}xZ%VCoLt0++7T zSN=ykkNurZP0KG&d$sE*56G^!ZBhGa^QQ9TWOlug`N7%#8G1}N*nRY|hX>Jp%cCrM z5qi>SH8sF_jEGh-b6!@BLgW@3xxK%yu0N9emsust4T73o|M2*U7?Iz^JGmNXUj|AU z)lnA`;)N#OPEfmmD=f9?+zY*E{PEf=LYKd=P=vh5q??ceeU@D1b^2O8A&dy#tG(Yx zrPe(``?SuzI{t9ioBa<{QbWQblG~6dwk)61r%0^}OV#QB;kUPTv@ELYS+ng~7GO40 z9H|pIQ5>l+L5*oN{KZR_@adzyTtscL>y;HoR6PYhTo}@3q%E;-Q-Cv>K$k-4ET#=n z(+=SZ@z0i2`E3`#RYb8>mrT=5$VM>iQ(j(rYR3mX@muN(!Ye=o0X)<Oj$R}dh20-7 z-fsIc-eUgK<u6$5XDfXiZn0ltk1C&l?J{`+165RxfB6~f-uYi;`)8imdcOb3y~_<G zQ$K}y*`N-ka985ui#uM-tr450C`Nm1Lvd`ZTa4Mee86#RiRxH~5B5x07$e#qm!-BG z<(()ifB6shr*wKBdsz2Pz2_RAQ9W79<Td>FuN!a?fusW4W|T!xz;mkBb*Pu9e`|U% zY}}$}R30t(`+(K$_ot|&>YEK=N33q|(PJRS@(X!ZnT-ifHY~U+5SxoZ?f2$<G+M3E zXvu|rgLmHw)f)8v^6_CZRbr5&#@7Gk^{1^lZAFx{6vU@^ZB-QmO|v1pQ$HEX3sP~I zD$nbWFYD`jpQ|hjL{RtjLb2lcZM5R-(~550;8EyMJFe^Rx_;!~4*gF)`J^7Q=6tL- z$mK*Ee$^->)t^2oJf*)Z-t_mGmffk=-%nI2-2_^yK%6(Flb0IyvsGOIZqWeW6LY)Y zd+$BR`&)SLrRt?X-v&nfBPg!3Ehrfe5N>=nl|M{BbfWEtwr{BP(<tqyO(9EeAnZ^R z(Yc4{S_B<-yTF>b;>AVH+WxQr<TC=NB7&Bj{yaE;a{OW~Sw#6t>#Iy_;UelCsmqUR zKu>qJAS@aq$_Nb8(-ZqU1_|E^PfS1e#DIZ=3Y4uXH#c<i((mSn(@+aUVP1FhXoYJ{ z83d(r#m4l;JCl!xMdaqWm;5}BMi-71GefLs2SU>g%+iM|6uc~}uV!tx(?7_GGbC+$ zGpqH&qeCBt4K?0anKlYpF&A_-=`6#R%CFtJU-IxA-Ud}iV<8$Wu;{wq$)LL%mVz-` zMGk$!aZ_Jx&~U)>(I@sabk!|8k?Cwnu8-4mEj2tJ1rSO!5A<2{NgIb~#+S6Ys%DDd z=wh9nUemp*rXU4qk}X^)46E^_h>V4B%~4od(Hx~B#FV9*cRT?)Op;gZQ?u>yof$Er z#x#H*3JJEUjop&#oyIq0(&~#P#c9;al*<I5W{5ScA_YF0$!0GGpg3>Nr}j8`A@D5* z(Xxb#CH<hL=3Qo7T<~A7>o{aQK49kS`p-8^6oOUNErLJ%d`LJ%&TK<v+GwbRyYsdR zYh(Y`T7|-t?U6$3i!?7raMhJ=Z)H`MY-#!G#Uss6znmTp&@V)w8U>%WoYd2!Hdu8o z3e9lHZ8$Pq;WuGA+&#U(Q0qwH#k_e-Uaq=BgsS1vz+qAFnF86^4*hqJ{Y-3Vtkie; zK<rFfLLru+HWrS8?QGO;CbGFHv?2u<kO^ihMzYn#Om}#Wp7Wyz7+c~a#qaL-8a`vg zO~qG!ci#JasP>A@mbyVtJ`feP;_DCoDZ3<vB{$yj{6V2bb3ynBH+go1%HEsmd#vq* zoHp4_og5t1aT%ntLg%$GT+i2~ju|<>P_$Ao#}{MMRIN*it_M&VIqzJdlQde+aSI?U zbadT{^P9D$3MWnTH0tQHt3*4<tV)6>v=^w~sq;VKxO}f;lS-!rq+@mHSHSa3Hds-d zt<GrbpX6fR@<ab>yi+WV1)3P#f=ccUaJTl*sQeW5fO=4(?qnopLVLjoKE1dAiRVob zWTcX)sTso`v*45syq-v7w<5j)&wV%~DU#i2u!^8Z6*5VRTX9T#S97whRRMEUv012) z4ZzW8d5jfks9?CU3D1sN$<Ap9n-;Qw$~t)E?Jzm2x^2177JPFJd%S_HZWPUYS|6Tc zF+zoMz#y$3a57vl{c~J;k`reGFiYGXrJs*cDBNP_n8@?Vxbz&<8Y649<bL)$V$^QK z?%&bTsx7{k49j_Q&@@$bV<{T}WFiioIdkTu()mtAHP_nq;|FSL6(?NsmA#ouNTOf` z<0Mnm$-&TGXxY0h)Kxt3ZNJ_aZ-F2az!X9Q(r&DHl|P0ZzL-}!HMplU07uJ>=H}wM zpDk%VXsFhxfrEx9;>Ot)Nv)JK^DubkopmVz!14yLzmu!@4kj5F9;RkN#NFr+6<`TW zv*5)6z39g&RGfC+ToE40D74!RGL&W<(${1Cat0BHPCSa?k|hy{6hrwqoR`lGgQjd9 zIW`<)EqSKd9o$YK8_+-gnvp4*-zY4UHC<23jAWM<$;?JoNPlkwPFOhUm}2>D@`>?2 z#lH9BY>SQ^IXGtJg>B(j_yvi^ZuLFS%46UD@N*)zmlJk|xI_9+&#k$L<Qe+NNPeAp zUuT0_<}Y`~sVp=5hsvaT>F0kgQAk*#iGq=^u?AVwG?}cKl2YLpmkLn=n>ji3fB(Af zT1unO^9L34YKt+Y|E(5>LZEN(2xMn>V%3}@pYFGFcu7=dEjwMff#LaHJEu+Y*gZ=< zJS1^U_O33$DW3}0Ohs`Bs6{Dg;pXXV6W+sBp_U#^2qXJ$r7kZWX4!Mnc|Qq>CQRY| zNl84eD~c=s81e4NN*7q5m}VL}GZC1}*_z{D?gRvt@@R9Pbc$fA!+h{OFU!@JcBi@I z2WJN`z;wfBlQ_9vR7($!>zL)Y`8l~9PSr=l@YY(udmbL*&IoVRnz3P7_O9nG)zjqf z%F48iU9D`af~i4~(d(IGail9AAYQPhnz|jQ7Kchb*Tbmq#mWPUD`Kty62GEQ@rns^ zOrfZ)T*oRU`<!T`EhO4Idt2XY7xpb&fI4Z=9!OnE5yRic%4E}>>7v1sg}RQ@r+#NT z?~-XYr_DJl{qLTA@-t;%|EbM)FG%dd@TFNvy_T8JS_F&>fw(yumCK*^o_(_M4du34 zq$Wn3{9PAHccUarZXLHTr)(@+R|5~5NtIc-xtd*-IAddF8Pv_*^mF!^r`3JF_vDoe zKvHRRNl8iK)kPXzn8*QaaNd}HRsuU^RGhRQ{m{%utC`VEsUvev+eD8sW8urna)A;) zRJLnuBH21mX)q_Y1|=nlw~~JDj(&4_a(;mcQvDU)*bFfwg@WTqG~U0uXYlQRX!cEt ze3W`TqXdITq%q$;pPF2i1Qk)!M?duC<*Wo<O!fVKJ0aj!e=aO<NTYs>?P%s&plEzJ zLd8;NV@Ca}WhxP6ST-6U+!!cLA)?Hilx^$K^K&Q}gZt~iFq|G6XF#9~4pCAmHCjZn zoW992LC;yoBfr;v{6yZE!-o$``-<P#freB-iy5a^&moE+5|~%}icMYwqtoxn6^8*V zJo!rkS)02MwMypr^A6mOr=Qa|-^?DIzu&}APY>BaL!`BBEmhv(<-UXhiuk!&MA7Z$ z69Pj9$&}JHNvm0Yxw!f><6q%N)pNX}DXTX8%my5#Xd=<dCWED;kODw8*K_^;?-|oP zuSelgoUaXL6Kb<-Qx^@{a`A<o^pZxKH||0nTm||dj7;()6s6iRL9ZUd6b{}f<QKUj z1IuJrF&)fN5x9n=-*S0nSmoz`I0bVnL^eEC6=zY3MK_TsOLhRcqlUWvKL4mOGxX`i zYNE#u(VjK^6FyWM9VmjCpM5nM1f1Hba5h#_w+;dLrGt;RD5t-;*6r$uM!1sdw!&dm zMF)4rNQrzpiw}@!pf|;e3?MD1@ynH4!LN&@E|v0P)Co~+5*0g>ZEtO5h2Az~)Reab zX%)755+bkQNj$i5xK!^EZT1kbR;@jMbe&l3>nJ+4yep;%di2=h(N)Ossx>lfDM?9d z6xl<F^MY`*a3|}rfqc)v)mCxnOcCE*AD_J~?x(@&WMP`5CEH}(Y(M_^D){!R*)uQr zJs!i6aTcT97;72yp?L^X?!xv*8lp_IL}#Y_w8}BL(!niSiD}uY?ZP;=P&XwvUQg|q zST@z4d`SV%Ut3L0K$zmS)4HO9378ehsFrr2M2hq;yH*F4_pSZ~HM6Ut=PMs9l0~6z z-;*%WTmda3=9!zVND$4%h#RY@0(NXpx5KVZEN|%?BSXVz&a<K4j&9o9ksrEOLaOwp zl^Qw)yow;^b`(Kd)_XBK%ja>)f;)P8saU0(SF-YJ@}X8MJhUkAv8>_**&L&&tJ8@c z3GGwuNWt=EEa{N&8BIrfzo{VwYPMD+k6f`$+5zdd{8-n1qU~O~YVG6#<XAdy?vCH} z*zTsy*i9qF3bL}AzOm9EkBVU0a`JM$O!%(p>Nt!5SV7pS6T@XJ%{GXmrPGdsQ!M+n zY}2HtuZS~GA)ccpMyXuzwivTSakR6W%kubI9T>lNZ-EPH>N;508Lw)e?C<upQL~@7 z)mgTJy#%f{ARUBD&(zbiptH`+VTY)zzN3i)_H#IYHhk8_eOo1_P=f}^R#;g%2X{3Z zQ=A^u<%fux8R`cr-H`og4dPWeGa9KU)8w&}>ny?~UiQsr6_U@%!_OJ7k!xc$KiOgq zKJjtWCzl2e9(ZLs*~^o8LJb(|En-EMZO#dOU9H+R(one&S|L5{-VA~lz^&A&t+4<R zpBf2t4jMA*P2pkO*#JTm0s@|i7Meyl=t7yrfF})yR*&4RJ{1}!qXzZ=8nHkDE}9MZ z8P0fQ6n)QFCT!L3G;@GmDIL8Zs18NPZSI8nxnj{e*H1i(`50S~Vr$#cdUtTCBx-y% zjX_Fp{nn2~ZKod;qsM8h4Yv8@D|8NO;-+j>Q%yTT;JgRd&L{UmdxLMIAZb$Al`oGD zqe(>OxzC(p6ecZl5-*nwey;{-CBc^=1mC1+nv!f)4b2ceob5dByZK4O#bM59Hu{O8 z7QmKjkT62j)K{|7!sPhYyQ+_U*SNnHPr<*Y_vqp66S^V*=YpOxN!i#Ge0KY3<35)d z$jAEZgGUT1M^E#x0_q$hSStw{pJMm>SK>k|=KEKz3Cn`SG$1#*)K5&|7(@UCO@m+k zlxzbLa-*9F$xywRFQhk-xh<a;zcKx{TnjxlB^AZsW`=^MV!?RQ6^^dW0Txek$OU6I zrY&A~KCSw-{MlPe>)8;ylBVUwuSb->*Y8=DsD|kiC7e^tYX=KB-eHYQqZYC=8@0Ax z8W37vR=6IKKrT=bKwHJ`Pl3OAgS~AalL;5v!1Q`T{%C)Z00IdulwKQ}W$JNc;Oam` z_tl{XILUEI-mqNjg3oelm0KLWsebpsp$<(~8%P(7<VQvWWUMg2lyDr0aQbybsk!?B zc2j0CG9pYf``BfBE3$Kk5L85e>SQ2jlrVM4^XlNnnm+jYpNF7y71)Tf4V8bUH3&+U z(5omo8ZVJKx(moo>4-bzb@rB>_lsNh#XMC<hdR=+qDUM<feQWAP+~Zu6;UaMw#%&= zbK8XmdgJpI4;t(B=IdHp-w&dJ$@4U&+YH_$a-p0yH#V&Lg$D06Opbq`MdT(E&AgB> zeSaZOL`@ig2oLSt4e-s6t*ErIazct?b#*0*U~mGUB{MDFsKte7Qw<V23gTtTZ#qiJ z46XkaWr;d7HHOzK<w2T;xK=h2#r!JQ{-$hG44;pMolC4ci=COW{-^I6TdSO_kS4W= zdqx6AW}U-8>O@o@>B4~A65A_txHd<2X{M}`aA=_dJzVgpU_i_U4H*!_)`~(|EC8{q zOQuiyCds@JWc{KP3WA&lf}tP4VV;vE2GNZazXNERbuw1*TFQNkr&q>#UmEaw0c!o5 z)ROccyEhW5QP3om3l4!>46q*Gr%;wxl|>%zo|@)7js|q2NZeo3N<g59EV8>AGtL^$ z0}bzUTz0`+<6!(ruR#~Z0`&tL_&m;=eY&PT7Y-~0xj^7e**T$eOBa}phjxwuImduN zI+QJhnxat?Op?i)WL6P#cy9tdqLHQw*fwLioH2?<IJtdAZ1t}y4y!gA<orWrZ-+Dr zv{hYx>O_B^r%dF%E9{N$c5b>G0)&nghxZP%cd}MW9?P?|<uIylf^?1G1pAdisSdjt zz4u-?^=i80w@tzL^1#}e3(}|XU994sg>ia^*c&p3R?O8Z>XJi{w-y<dumd^ADpqHX z?A;2eQWc?l&C#!IyR>^i1rWNE!8=XPS0oZj5lv_mu>r@>hR4)f=}}xA@Oc${MybV! zzvjH3Mq$kvKZGkj?_#94_bmTbEso>XA!AJp1pKXI#nHiMWCADlZS<!Z7hna9W+S)j z`71+(@-l4+;U0pRC_x5DY&a^>u|-30PmOWx9f;Puk%)*A07)uhG!J7{M&4dCdGFM* zOoBB9<a0GZFuTmb0kp2je9I=pmKfP(7yR3Fs0PuZ^HD2P=%Vw2V&sQWO?AVxd_I~E zKMLjpcx-s@ZqgxgrY|&W+$&;c17l$;<qXL#kX#L7yop-o>i_klpdLBkmP~Y|FgYQ` z%kX8G$cY806&gvSEg7_TWyhBWg;0r%Vl4YQAHWGk-Rr|g%J{LJ&j;Wu*gS7`&Mz)} z+?gP_dO;)^y?giWwW4080EfJh8HzCg#=uK`L(f~Huep&Km9??1boY=m-{=wKRCOh8 z+`d_ncSR<Q9y>FJIz00n%)%!`Jv(m({0X!F4Sn<X=L0<J**np!9hk<j9x@l9C@k0L zK+REB5(rWRrFP_?e8;N#b4~$%7usI_nzQuhf$v*cy`yr{O1xHbIGLv|JETbj>(Q;_ z`y`X#9=2qp<m;%n*W|RIXkY4ZB?Vs%jWMV2mKgRkUZf;l{T=;%E}<Rry7*)=cZn;F zHStQ6w8XyI2ZbbpR`$Zdox~q?WQWvZuS$~lDqYf`qc3lvWYHB@$WxwpVqy2ZZio<i z+RTY3&;B+trEOf;8x)*zu9+cpj+Ge!Job3%U0^GPTG9~Ckd{+m0Ew72k`&mt(WNd- z;P#CpVk+J2yRhxoQ?)he*PBaK;v2hX4cp1X@j=SC%I|1K$KC_8cZuP}WH&f!mtPh$ z+?>8}3j19wTra?49`$t6nG@=BlE?f>_a{BiRVjS9cj<zw6xIvQF<CU7)9glx+NeHm zkPrwOg^5TK0u)Z8?F51@_HFzLrjgs0*PW0R%kp^A?j`(DO`eCEtSRaEE_hp`1edGo z#Cm=4@K&j00bsFDISkh&T}H+hk61~syJTX%rr+><?Z3ejB_d8ib{<QPR-(*-a1_I{ zTZE)bRDwd^;;s`Wn@W;=B4<c4sUOj-5j3?=k{}))c-vDTN{@rk4W3Gth_Yo;95s56 z8n=sfluKfYjT6WD_s%{rgGLpl2&xaCAm3`3YiFzFZ6%qAKpA2n^|)Wmd+GDK!JYTq zi&QVg#-hA`9g&1QCu~>vg#*l%i#j^3-NTlR2TtzvMxia>Z8jh>MGCcl_tP&&if-l} zHt5Mkp%=BhOXEL<F==yejF~=hW@^U`XGUtgX@rHm!x54(5;`NGrZJ`&vJi!eK7(yB zoCd5w@hCtI)fFL}T431GSAw+Z8G1fi5y10k5XVj%9r^IfftNa(yRWPPPf1tGs&$bn zL_^CY`mxM3fo5UL|7k!Ri^Q%i6k3I8qmZPCc&3G{R_5GYWo3!8{aaNxja8E}x$jX8 z4C~?#-GBR~``NDhCuxeJ>bX&!A}QC!(uu??U@K4V=qi8cr}L5&krkp(3LB~&vQ#LA zn0o@2r=jIc(i*H%7u)9M_q{?Pny;{_b-ZAp;y9@@(xtOaqz6g0nO6%5{kWFwloA%9 z>%0jTR`71$mVsO7@VtBHuex9BJok>+8MW*WW6t?H&N<8e_GS>ad(4zq(rQKgO>~QK zZ1O(JS&SMx(@0r}X&Wg(7;pAQkqi?m6rGHLjK)e1Y2hJPphjjP`nid%gpM(bTTY&? z<G>AJ|8YF+H|Nj$(!I4ivG>j0x^X2L4zGP}+S@cU|0;W8XJ&}Z#^}$^Rdv#~o&R3W zI3E##z^I2#T|RaSVE=C<kWyC3odq~e=a875y`O_hU5=a)#_;a;keGRj#4CYK`+&7y z5{5C~cq{enjV=#nXGg1b;Z_)&+AKjH@Vy7I(&rMsl}p2X)6Z6xa0ZNZAr*u(wM_q~ z%H=#|>LmoH{i60!v>HJT`DIx`M{5xfo+3q;57nM!;QOx%G}`+TGorg(=UvN<Nj?&= z)-KF2$bkCkGkp>#fBC6N^*alpRx*7txVyX6Pbzp>nH<g#=H2D`kkg1{*%)Ars7(pg z6L!0vnrhaPBOw-%_lOg_WuMD|H2PwJUXeN)w_U=i?7K4OCl_}iDS46s5~+@BySjs@ zm8zRc^Pa)0Dr!NNQpQ9=lgOeN3fYAkPHSnmzF0C>fM=e^jMJ|uz7`u?!d4h>NgT>6 zR6>vS>(`S2@r-j`mayeIbyrqFS@{^!>A^s78MS!(`s_Bz&%#ogc#FyG{A*GRLS1I= zPTk<{Q^j8<s>MN18AqeO*;vW6mwL>a?dHQ~L#3Yyb`I_SBFW67EK$aZPEn8@sj%|W zC4T4pu<NE2F2Pa^9!#LxT{Z{utB#A>_rmjDK7C_kOyScecP>^=wZU1nR7e<!hJCs! zzwxWSVJZ&Z&zj52#jj(!J#nnp$q!_tLj7kyHjE<>>bH>o=A2D3N*st~vNvaIQc`1t zl}58vH<OK(UP<Nt96nFc!Vz(<1HT)=cW0~Cf2(nD)vpL)C880@e8g{Qz_HWUeIY|Y zOOj83_av?E;bC-o^|tE=%%q>1L$G`h<A7#cny`=$Qgv7Hchh7`G-8(}3#bo<$Y8CO zk)4@Qi8zsjLSJ(4a+s&cuTc0aWv?yO;&L!cK!AN!Mq1)?O2;)(T;;_an6hT>Dl|}e zhd*ShbQ(J(X}w%&zbeqZ5)0-@?}4uT+*4;h>ygsY0e*9D?U&AohR`elFDbz<$qFma z94&0>vyj(Pkk3CPePb|Te&QFjW5+&d#}&!X!)m^ifFhd1+UPMeo{HF4@B4y(FTqI$ zZpzrsO`M-(nRVM&)hA0P&b0*P58%K`-v!USQVuBr$FIXXrxVrapKF8!Z|C75k4zc7 z<(sA7D+g^j;RlnlZ`R)CiHkRLP%>8%OH-~Rwa?yEL&b8?q&=6vTbO(hJ8Ko&d4eZ! z1Sz!)_~J>A^=08h{g$_zr-6gzQ8ft>lvtfF7q^s1e&$&FCJJX4Y5rL<(V%4+9MlK9 zy+R{0coFna__#>^68;JzgM5n06$pL80fBEngB)B_Twy!R28K4wZEuOV|L0~^c|UF^ zuWPEFOaM0;O);9s_K=Z?Y9NQ!tZnNoIG5E73rl$Ro5Xjfod)0pLYxe}Ezx7j<+hm8 zpgf+MC((>j!x}onGcIh{<k8nQ*PWC?>DlTH$J1qiPXBxhuKQK+piz6ah+YDdf*H(6 z%5M3r0+3-a&NW<9b<!;TE`k?(WVP<K?;bEvhFKf$2#pb=1Oz;+)Ub_<_T3K|?85 zhbUJPZJAg#`PqLsOBu9$8Hq92UWeB1$nlZ6u{G6TzSEqcE)reF)B5eFTzE2Zi>SSo z87pVoMvqy(IRtW627~YlFZTz6H#6VjgKH;fO!>&zmDj)qM(29LD0}g)CM;al@+u<6 zVF$^N`>29T0&=rzJO0DJ3PP?g5nU;%e88glcJGE!5jHAQ(Qy8_jcJ)Sa?<14+EW8` z>^L-OfOL6}UEpRVBF0p4-Vi6^%)YE(@8+eEOHDRB^7q^cRGh53$!_}Ofjx;MOItou zdE$1ysl%d}%ga@c$4jzd!|e=h4sQf3=B;yxVXB*EVlF05^IYHz!^-5XTU!+XDzqhd z6-Cfm$efy*coq+Xr}`$9&!B5`()kWScN-JHofa~J>{E(?y|S|(AS~{M`0d{K(dr51 zs0~P7`Blw3Sg{mFrIhTMqQ7snla(@XbTlPKQccC|gRw*~BILXw1f03~SSBYP+&<wV zh=60G1Hp`zc13)3G#zbKi^>1xhqy9~d3+Jz+SS^(>IbE9!1k#}(=#|9)DS(hZ<SA# zIQX2jMjr>ju^X9(NW6sO&NZRFRb)I}A=;UOus2RaPDj7LH9WaZRMva_ToyH23Xf<( z?MzBr7sqI8uFuEpv*Ay||CHJnFR@-O(-HM@<%ax0!*sORB`fDM>WNw51{D%b`0(au zVpObO|EpftLymShxY%gB({9((Y-0Iu`j`z+t${KhLp><Ot5veedRkEw@d<0ITeF8n zI&6)pM(fW)Er;@Bcqrvh#`p-MJ$Gm^kug{;P=+_+u??D7{TCk&4aX(haIBXOysw@) z!YIkZ2ul&i+sbM_Ixf&7r*QM>LxH1zDZbC9is3#bx6DTg+cSvhSd5g*e@AArD+{Td zBdAZ2TwOV=0xZB2n}GeWHmN2-{X?Um57I%!nV=Ri`1Q3u6zwI@*f&rjDWUz7u>ll{ z{}y2I%g$9jcHwm;;%~KJtA<MSJyM2K+VNk_KtgA$HocC>ETIo^e`Il`$0*f6=&HfX zz;_oO)I!}}&1HE1s9=Kvtv)cPzst)@<TMW-Y$HZHE7&eU+TpfrI*pt+-Zx&6q;>A3 z1aVMek5oZ46J~$DJnpgxhE;&J(zC~T$DtkBh=WA{3|(fL9lX9@2XCsEXn-sSkhC6i zeW_gdBzci_H@>~<+R-IJ2sK+RHJN4GMwVAZV6t`*z_Sg<G9}H%DX*7Swe~LHX6ZeP z0n4`2D~KRvh<0U8>6Nh8$b@uox?pjinL`b(0q8X{f6;oD^V)t<#8H0y!)xTTwY@v< zg%yj2!nFYoBoQW{OO1S8d)tq$HRX&)%b8{@D+YJZhKJ|I<cVxt<>DkacbAl^6naU@ z=M9spuTNbj_jqGWytarGmQj$KBDtTMs|M!^2yf>utr?<q3WJ?=W>@vZX+jXzR5Pip zBOTU_vVLN#mT<2q+TrIzMxVNJp)87St1sy$(I|*ZBsf{Z1INdxj8MzOg14dGG*E@2 zg&o({{X1f{NV{^_$*_L+<Te{#)K^z#z2{xLRL#CIWrf_(<Y^?4S&uSu^z>Z8*b$tY z_>JBFL(;Hf7m8)5f7`>mhNq{GT%pPTbNY6njJ*$c8#wXZN&7FC@LY-{<btKutXimC zQ|OqQ%+2dP5;;y>Q8AoFZuc?sqNcQSR*YtZ0Yv=R4$+BI-AnZ9I;7Nxx=D1q9!lo) z@aSz+tqKsb+&)t;8H}@)D<;X@r@|q~h}yTz3+qids5RrBZU}JU^t=<!`wKUn2eKA3 z+Blr}ag*Mz6$k{AYA5VY^>X*Ef_X|daiYERikDel-<Cx<+`WETPvd}_QBd$`HDmHB z?gw2sBhw}5G77&$i+Gf9GUab&Kq`m}N<_gb#OqL_0&Id`r#tVL7pHfq_FSF)Dn3QS z;Vxpmips<#m=~MZddU6JYHILxrvfQZN{jiRd0<k_On#BjWF*BHIT}DI0P=H%fV7tY zk-0hi>D;1ir%WX*z3ow@q0Ayn9cv(Ix=^XZ(&25XSx^QwVra}#7lE^MM28g&a~*;{ zib*aKnmdnquOfS<jP!75Tv5i_2}=|L8YFtV%B!0#V}s6B(wk1{5wBfTFO8gQ@CT(1 zCIio+oyxjUcxG2%=qMbvdQCt$a4U)mmr)pF7)ceVOS(t<5zF59enuqD;+r+IKgwkV ztY9g`9nJf={I!UuA)+i-7u#ClQz>&*k`j>El_=^&R@WXY{@d3MX<kDoP2(bOnEmD+ zxy@|tT~5m=S$}x+;CZ!uw3=w_ZCjd51BEA6>b3l8$)T$;Y#vUvnNW%10=pZbl-!YZ zi-g*XGc1DfvCvcz0;uA@rJNWB)(}Sr4riv67vxTr!p%!ptQbQ|*+XW~j02zE7l~aW zP@*6{sLg)ndVVw!=ePS8&?0C{d7Y5r(#Dg3!Xj~wmFJzc$wVs>QtwLTH3o@_?W}S2 zMP%tN>F>Zk8%DRqu2TLEw!4(eb`s{E;VeiZ3sQr`)Bs;o>L2{_bn5TSdSFKk4d?VH z$zj%3%AhsDq+*=KF_dD3C>SzhX^LE<S<@#iR5E%8xkxtvR^y6`CdV_ObWPoy<U2^X zQX%vYgv|lN%WY13YuX?|IvmY*_FXZJQ(_sD_U^+&OZ^s=_Ui}cOv(xL43Z1V9EDbi z(zXXu=h74`2C6xuXv(W^<eCY&M?=`=?RWKj5ZCA3EoV<XogC6NPwKklfzpsST9JGL zarr4I(*|!6=|mI)p~~3+izZZLyQ*S#=~TU^95BbV{c=r$Bo%K{bp*6wU3QeAgKSCa zo%GXh(Wj2#w?iP~)qo@kCS`Dfl_N+pc_>=m@2nrSyGhzjYk+88!Wq*55Hf7ihOZK( z=n**CEf%z|+;O3}f|CQ205d<6xpl*HReEx_4K%An=2+RDPSUxS*V!|LA(zGIAlXH( zv`?_Ni5iu8b5{^zX*HBjsr9BgP7`iQ5VM@UGpCtBvZN##aym%5QAU|O`MIY+nO#7X zkuSyFw$AIHHjQ*ovdD;F0eA4*X#j@YAss|2LUU{>i|7kMk}C>5_*-9@_GTH4EOFh& z7xnXiJ&@Vt9|;?kIm$k6KhRH025`uZcBI_+6gL3Z%dlD}Ke~Br4=B5oYWpty(WN!Z zz^LO>+;Z-ExbH<QLK13n@qmcF8eJU&-#31h=flpvEU#P$w(<#yU`&C@aNeJ~L+2#| ztvki%6f#Nn<8w7lM00Wr&OxP1T)2T+Ik(B9ji)tUmklge70umW_|-yzlS;`%7Dgl~ z8j8`4Fpi0-WDI2hi3+>6>1nf))E$MQEzw{8d)Axo?J$16e7g4UUyJT5VO-Bg+PL|P zdE143@~3!h9TkJPKSSz^l9d1E$+#KRnM9ty>uo6hWD{(J<yvYg%cA~|?^OQ0-+%f@ zv!ypAzy90TNVES)u`fUy`Qz*TI3{xc_z#ueU)1ma{ntNZA^utt7U8d5B1gjduY&{c z{HvDyRTShj{8bc`tMFG*U>W`@3M|53Na6pBqLAG`?A--Z?i~H~cB&lkkF6J2Wz1du G+5ZMyO#(gu literal 0 HcmV?d00001 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/d_X_5_linear_coefficients.csv b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/d_X_5_linear_coefficients.csv new file mode 100755 index 0000000..1a43c63 --- /dev/null +++ b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/d_X_5_linear_coefficients.csv @@ -0,0 +1,39 @@ +Variable,meaning ,d_X_5 (Variation relative to frequency level of Big Socket),asolute d_X_5 +X_0,frequency level of Little Socket,185338041.39682832,185338041.39682832 +X_1,Core 0 state,142944664.77740052,142944664.77740052 +X_2,Core 1 state,-62188270.581818655,62188270.581818655 +X_3,Core 2 state,-483852878.29017764,483852878.29017764 +X_4,Core 3 state,-244693261.0900952,244693261.0900952 +X_5,frequency level of Big Socket,-276565385.3744161,276565385.3744161 +X_6,Core 4 state,-64565898.18780776,64565898.18780776 +X_7,Core 5 state,246503048.44622064,246503048.44622064 +X_8,Core 6 state,-316474218.4838966,316474218.4838966 +X_9,Core 7 state,122364297.14268036,122364297.14268036 + + + Ordered by value of coefficient, the first has the best positive interaction, with frequency level of Big Socket + Variable,meaning ,d_X_5 (Variation relative to frequency level of Big Socket),asolute d_X_5 +X_7,Core 5 state,246503048.44622064,246503048.44622064 +X_0,frequency level of Little Socket,185338041.39682832,185338041.39682832 +X_1,Core 0 state,142944664.77740052,142944664.77740052 +X_9,Core 7 state,122364297.14268036,122364297.14268036 +X_2,Core 1 state,-62188270.581818655,62188270.581818655 +X_6,Core 4 state,-64565898.18780776,64565898.18780776 +X_4,Core 3 state,-244693261.0900952,244693261.0900952 +X_5,frequency level of Big Socket,-276565385.3744161,276565385.3744161 +X_8,Core 6 state,-316474218.4838966,316474218.4838966 +X_3,Core 2 state,-483852878.29017764,483852878.29017764 + + + Ordered by absolute value of coefficients, the first has the best absolute interaction, with frequency level of Big Socket + Variable,meaning ,d_X_5 (Variation relative to frequency level of Big Socket),asolute d_X_5 +X_3,Core 2 state,-483852878.29017764,483852878.29017764 +X_8,Core 6 state,-316474218.4838966,316474218.4838966 +X_5,frequency level of Big Socket,-276565385.3744161,276565385.3744161 +X_7,Core 5 state,246503048.44622064,246503048.44622064 +X_4,Core 3 state,-244693261.0900952,244693261.0900952 +X_0,frequency level of Little Socket,185338041.39682832,185338041.39682832 +X_1,Core 0 state,142944664.77740052,142944664.77740052 +X_9,Core 7 state,122364297.14268036,122364297.14268036 +X_6,Core 4 state,-64565898.18780776,64565898.18780776 +X_2,Core 1 state,-62188270.581818655,62188270.581818655 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/el_of_Big_Socket_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__el_of_Big_Socket__Core_4_state__Core_5_state__Core_6_state__Core_7_state.png b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/el_of_Big_Socket_over_of_Little_Socket__Core_0_state__Core_1_state__Core_2_state__Core_3_state__el_of_Big_Socket__Core_4_state__Core_5_state__Core_6_state__Core_7_state.png new file mode 100755 index 0000000000000000000000000000000000000000..3428af2981113b975d260ef11fb84fca560e8184 GIT binary patch literal 235151 zcmeFZhhNWa-#`9NN(yCUr(rd;NM*DU84WGk5|yUX-h9wfRLE*6X-88#Dl!_1w2P={ zmv;T02j_X+_v3fp-|t`W^>|#@d2;6Sd5`0Gy`JlJ_^O;xT*|zjnWCtrM-CrQqbTM8 ziehkLV#J>Wt6Q$XKla!k)V4oqea_y|=%NXA+{oU>!rI=#><pKK$wfOeYpY#CyM;t| zaGBcM+t}?D7PkD)4+vRbJTKf}G+clWS!{FolpRH}8j=6e#mhV~qv$B=$N@QZrw6}U z9M#no+ZGKD)b3m0<Hz&f$1mN`-={&9?~H<|s>tdkzxA*4d}`2%ju$<w5_3kPe8F<# zK)scDa>cE5%T@SB<~qJiKkI+CBc6L`(&IzNe%4)f=fAh^bL?N?xo`7Ic_y~y|MOSP z_M?dz`(zLNFTXg~&>!->{y%?7+b&tVmFIu{ntCN_82Ued{CfAw3NO|F`Qtp%${YXR z7yNx*|L+m~XMOzFDvDqAP}+U{@%!Sm^mNg)JJ$*6=BPC4O+C&qtyv&=I)k^*ikgsg z50|js^x(mR$mHa}7ngo|1n*_#*t;<N*j0sV%iM#fl>BG*XIXqvGk4Fi`>|}vk|j33 z8q(E%Ue-N(b_>5&O2Fq-gF6md(mD4ftfTev97H4}t{vO<@&?B~rM#mNq3!L4l9H04 z4ic2xgThy@UKN*>F}!&3g7;+HJJ<TLsP9#tA9s6lE?c&2aA=6HUfTXw!*Y7YCA{_0 zRPpokRfZN80S2D4nHhQVoNt<Q?K(O;eP(86YWta8e*g0I^75+fXLR2pY*2V5FmUOo zR0D%Xy^=5it;m>|%SZ1Bg*j;bT^sRh*NQ0p*`Df37cX9{E^u|+?>V>8f3=|ev13bq z_4OUi(;4NoZ7-$^*dVd&{k`1^>gub`y}zen`UThj`s~ggMMcF$4h|08U!HGI(ajyM znV$Ooe#4Ga&lZmL)?W?}UsoB*clmUtxlwzucaB3}qoVb^f_9<Xo=+)yI!VTH$M0V) z58M!Q>iId!ODk1BN-2!r#@4n3Pb{?3vAde?`}glTp7Vv}mUu7n9j%p~joH?zDngQy zYpq-JODe+z{4Xt=XONSVoA{YpBx3jd7#?J#+-1htmaS7k_`dZ%moInx`V~;0sAXKA zph3I+aPK94yzWQR?x&N)#Vs1V%KX;|#I_ZAa-Mv0Vz#1?_u^=`sy)7$T|o1Sw>KT$ z;}Qb{1B-^V4o<UqcMchkjrhTXr%&H2uh_WHVacLp8;d7~zQ$%)7f!}iN45rTkdWUN z(vde%D4^L^TU#q)(=My6qw}(%VXdG})~j5*AFC?0Po0YLoS(b9-}z#Cug6d)1J<X? zlM@_w@7^u0u4YR~Nm(o7;g;UYKELpIioy{S6BDD}x~Bu|0eZJYA3t3qtZ(??!5;j` z{)~*)xsao}x*Ksv_>9oX?OV5&ynfBp^5T+!=DuC$KU|53;KV~(geCj*<dcLQ5*{;7 z7A-H>@fkZbXPdIE6|XJhP|315)!oxm^6ArRIyyQ@r$NK?-pK~dByI2hmb{pYU6sLa z&N3}qHWxWIKlL+}rmu4x>)>aMySK@kTU$kT?><=dNQ#b<XL53KDsF6CkKdi-mocs8 z>hA3|pDBD(RaMcLd7<OSk45|T?OVHH!^`@5_Fd=R6(?$?uB!Z$bZTX5YwO*eCY7!c zYyNhSSvz~BJo>*qV?J@k%9S^7-SWW;jKMRDZQ+;-+T%3Hm64H=cJBRpTsQkEeFFnd znVCU)ic3Objjylo^?-m^h3?ZfU6t$&jg1SadlJ?+e*Llt?5$J(oT8WRIH13fk?~Bi z7v1YOZ%Q&Rd>(u&Toh^cF%Bzl($La<$J;x?ieH|Y>|UniH2iIGbWF^04i3TCb!*oe zmie)peoo;ySM?}xaL|U&`fGV$L$)>NZ9$!FEiA`164V!CYib^L&0a=NPrs0X!KkB@ zwsx;Q@7bNF(i<nTD?fZF_g%T2ZT0G_+zMAi9UQx5zE?*nyv8HCwe_e<tWwx`igNu- zuF*?I-52(YHy;X6;dPy#bH}qNE-C4_oXn<ox1m9Mw7Z7>($7z2gB>r8jEuY=Ki;xY z+HEbK=b=>n0%`MU&eEZ;6?m53*rI`2J`YjEPG?&s+gKM(e&1lxoU{Bg<I>Uy&pE!9 z#EcBFfQ@@rEZrb}z|=Ipe73Tx>RNWTgphvz^>pKkXp1k;$YwpAVd{+=i#D%MQ2T=2 zWz<s}i*>?<eXVh}CEKb+{=T@S&Gc_e`+-&t`bEpGJbJWgZe~O|>C|&ZEV2r03bFp5 z73vRus;oG5>Xcf$$q}s!!f)2r)&<GTU2ksI#rse)vuw&bh#L@b{cVBYN8`iQ^i559 z?Jr$Qx9_PvlR5HUqAk*GayVWqb<^*GHUraKm$BX`T#j~{A)Uum&l8@X?DFl2sfDFj zZ>p*KQUU9CGk3kcQ*n6_YnuDCLxxq$`idJI3LoQ+``5PxnP3yWe*IcD=1|~Zd&y;1 z{rS|QIlqCT`MCn0L+9V$qgl1QC~0e(zdXj`G);TC_2_NGZ?A7wfBM8oq3$K==B^;` z;I61K8$0{fFd5s<g__ByX{s@Y%w|&FR94Ej6}s0vKC*JjdNC$(adAof_tKXyhnlR5 zI`D1G5t|n+U4I3=fJanx`G*f5I7i+7!lCZ3hQ+*pHi9aj^UQ=OWjY%4DLgz}L|lCC zwN&){t%@Mdm(|rOUyDz0aB#RycHLn%JAO~hJ1B_t_pdLTEx#nj#xl^;UuOMO_3?@F z*E<FtCGWy_iJH}Jq2&)0PWQ(ojgDETS+(r#?(Q!B{8@`zPlGyggg)%syZ7(I`jh!l z0`Bf}6k4%jg&4EuRJMx5yp;3sLh6Sqe|Ts9wcSHeKdM+wP>$kHJ>NDr@s%~!@#@Ta zH}g$09syFWzqxkqRO2p4E1q4va$EbGknIh5j;R^)kGG*s`h2Yj+AJ=vd0KEM7Z-(M ztl;F7Q_7sO+q}*zF;Rdtgl`)k+`sQHr1zq|CPq=xzMHMNrG<U?{D%j=d+ffOHY;C} ze$}k~;O8KppP!#kL_|dGNRep`&##ueHCWNNG<!ll<<4Shmd*JbR#RKCapT6p(Vmm2 zzKMbx*x0<VV|N%7ZrrwQoB3NI?KJAb=ajPR%QvUlbjZ^Ti__9X&^u%mf6UJF^`P2R zfBY!$X;)k&7KBi;(CNBdcXN-)t~LAdFz|?&dv;&=^r|7<SoFfD9SavNdin9=$~}Ab ztd+Fk`t|FVdWyZyS}7^1SgM1Lo)KGDj(NT1$GE`I&vC~$XlrY8?cKW`tI%~mWXm6D z5*>6yr*`F^mmaoYQsx_-?0A0*cgUN^>>=o1MrY3Wyn1zj0D!o-xQR}GVJcs*#B8Xu zEM6mVHDHHIite5(SFUjF-mMYk!M*U@ySv`#qofg#mV+J8(cT`JCLitQ-{P38m$!On z_>wno-Z1yLj`!29U0W0o7-(c}&TMUMty}1Js;Bwbv12v^tx^-y(=T7WTKMVHr?tDz zEg2pjUR7DC<&dbCCyuW)w6qNT-PiOLON*kEm6hwBo>c7Goupr|H$OkW&cKvizsQ4> zNcE>`3{z86Y0sa(%(4ACI5l?RX#igK=`4$<_7)x<()^l9@oBX9xbXugb8~a=O1tlU z@bF<&YAWlZMT?Hz6FU;+iHlWLRek;LU1%1UaKA$jrBdkTOsOy}!1@TT>~q0>b(P$+ zrv!~NaQ*Jmo0}D@qYwJ?XiX^{JGPKA)A{X_k(p^^ViFtdFgN2&I{UeE=R`zB<$iuj z9;)E<<mC`xeP(ZC<5gHF&99MgMcRETzC~zi?B{3TF7MpjJvTUImdQS!{?Xp<g~sr8 zyv_4Yilgd}0^^EhVph%CCR{J^eTHYxUO^?Io0yl41<blFd7THn2=Gf?r~Li<rMGY2 zZpgKJa_CZdd3h;*fA#8BUY)ERg)_rPoAVr%D<fn)rP0IH)YL+6Je0KM866#6mGTw) zr>4-|_3r)qFYzuPJ$fYR@at}=?eLx+^z`of#5Fs1><C>D%X~XCJ9`loz_E|KSpdfM z_0O@tdzyC$3f4S7uMBjk_%u)>QM2UBms5Q?!WM-)ex2g~aA{(CpeVL}5c|F++uGo) zi3#7B9gu@*UHtNZfB-{umhbQHe=YW=r@SH~xk3eXR%3-LRiI%m!~W26cCWAbmOF%p z6cQ3r`Bi3q#!k$%TDE7SSnl?Fr_nXgEg0P0-O+;2pujTI^$r)Wq0+LlH1i6c$F&yx z0L(6aB;^`>>lV*@4qP_b@ax4bn5gci?9@Xe6Vv$@(EMxCj1<BQMAFjJRVSo&?OGY5 z7<BdFLypn0G1UT>OYb6NIOUmQjq3yRN)IS1DgcZcSKJ7z^>f)4cj6&`n4`UYXv*ij zDqT6(-@oLntWxAvLUc=tXE#V#9Tpf|$|;@SkXT^#<rza)WthSpA-%_97cN{_xNxE2 zj}H%-2dtc%@*D>=ouycAS#RI8dUf2zWn#N_y~Lttul2k4+?#b|-H3wjHOGg0>=^a+ z^~oz;vUF)jclY(w!YO7d_`!o642p*i95_5~Fqc0!`6B`_>S{>HO0s9MirvQQwU~A6 zF6_Ljw0F_gty?>)WaicPe6p~x5IO&0<CZO3P$y1zu<)RN2|ep~eA8xo&$KB^aObXF z%h#-VlBMh5APyw5bj_MIJq2?qtp%<z=svXrq#vVx7@3(Z-n@CUm|5*Y+`FpeA!$x4 z^!_%tk)_ymO!!avPD2a4&JC27HZ(Qeaf%&%@L(g5MkL;wh=_<+SQtCXZ|u)i8#e}^ z2yUVt+p47{PmcVE0aQwR_RJ?Lio3bFInCtlYMM9}FS#t>Bo2eYfmBqM4m4u<+>2e2 zsi{F|<sH~+b@B829DaFSzI?edZ2xxUM@!D1KaaZA{{FrMY2m2*SJ0tSwB<TnTwM6I zLi(C>cTw%V^@+?qAV#J&(X{di;lEune)L~CAbu4-;&7tivJK)(L`6lJSXe@a?d<G2 zy1E!PY}i272dG!rjSc%8cHG;2;VRmAq;*@Nc9Dk^D%C0<@3>>(KG<k6Cm!y-`<Lxi zr|9iFd+yxroGN_Y;P2m8eSH^ye;0lkKlK$G&&JVFi@EXj+qakR+*y;9lqBLg=jP<% za;C(GK|9ktOg`6RcFO40_2s1IJ=kL>VpO_t?b@}6>3j-Y$IF4be8Io?Habp?nl<Ox zD#U28vk=e)p#Hrof)!L_hfda#xw$#*4AbQ<qutzLKWkzZE#s69xW>xKztI!yq#0xd ztv0k)tYG`S-nJqcatkO}#x>Cg2S-O={rd8py)nSo*BiAR+hqC5m6z|{T`LB{^!i1F zw7cIE<%mwwUx7#t-PpKTKtNz(Vj^D33gC9_&a+IU2!f^ntkB~!a$Lu)Zdz8-Pk}=Q z0jXu0pr|cjWo6aPcUlhk`|{hHkei{QS5^z2ZpXi><=zoCAb<7kZ9#=RhrYD4Z&nZl z1l%o<q5S2`m%*{IGJ;MyIfZ8xa<+|IlQyRQbcL?2?&F_&gU;?+Cr&Io5g{Fj8%lha zot|Ej-R9wc<;ub(9D7$KY9^Pa8NE~iw#)qdL`1@>IoKx$ML7tsX3gH;y`NK4Rb|V8 z{+6?`QI?jL?;c5Q0B0`FvTSPa?-ycdVOY3Oc3X(i$oKb36?h)&`WiDY(`XD-J0O{9 zYyKYnd?#;ot#|i!vzVEgnbs$;V_C%7yJ0)s3=5-yrXERbD@?>2B(I0!5)om;8qv;o zvb{O>?!lgw?o*?3KsM=s6ai~R7ZlC@-T?BE!lse~u7Y(+;448_Sc!}>GDYLeXLj^o zVq#*FJ#>hXkP0s^DoHO-(=06Q`gNw!{+10`_jkoD*8?ROo<F}m`P}C`N9+BrzmJ(s zcVazs;<C#gDbl@vbbphS3l|^XV!T^TN%5^)89Zl(u9ZHB>yfIdLvI!ZsUvk5YqYyD zQ$RCC*B4xzZ~y1v_B$ZDT-&xC;%?|uz~)gv2T%neH0#G*iJI5Nb0?RIgTn@X9~yW5 zj6(4h??d3?ht=}MRaLA+Cz$@-NA6cWRi6W;w=7;YW>w|t-TmsPGR@hie)stU2^zNM zJ5yq=+g{lB@K}x&0JHVDJk>E80&zwmxz#E+a5~3^8%>98#R{L`U^evx^{3hbgKr+n zcy2-?)?)r`ji&VM*|X5B07pAJ1+eehJC?2JL_(Bxgu!vso#)>c44glv;pfW1>;lk? zC2;NAx3kCYiqK&pzFcGA#_hg3BP*-ik6nPuU#cC_<~cdCe$AR|I@wlHq#R^ftRuP! zh)OhWLe0=h)wtXJJJ;kI6=v5T;{$D+pu8^$)?dGVs?~t4MjgL5GBwrywr{?>CdO%Q zW)HZ?R!iHI59m+T8D=McwH0wjMMd4+W4BGez=c6ZM#iG8Q19u?XwS#=^HrMy*6m_^ ze(t@`qeuGbZ8XkWydy%`KqNaM9VlpPuO$MK-H#7+PSYDRESpxN`l1<b<|x93s!P;j z1$=x7dPVdcuylci@5%vQ!Gkw#+EhEl&CN}<>KAQ0eveC9dXvJ{B_)69CHv^l&&oZ! z0{Fopgzb|Eqn#Y?%JG=pE3cp+YS}1e-`{-7EOYwSt$96lEP~km5)u+%qDPpSw*3XF zo_pl}67yIdZf-e>Ej>M*xd-yg0<XIwMn3XWfL{x#bdOmV+Nk^VZ@$Me9y8kD=!*d^ zZ$?B2hus%5yG3#N`1m}|z&?xWRel*C&r2t}W$V_(+*iQH*i0%ziOi+KJ3iQ<V1$Mp zEHp5mVfGPHL86v&PHygzBF_CzDiqtxt4mLs8?+99!5SGFa+L>hrUuJcG>8~kSnSX* zbOXGU17a%u`0?bF6qdKCnVIiq#T&e#{s952s8=AjSJ>ori#+rwHms17yld94=LhgT zps9JAO@72RIzc!=H^&BdI6FPAb(nM4xd4i5*{1!xu?!3hi;azqGsoC>u*mj2IaB7> ziGs^)()D#Go(L27tDm1!X<=burVVLP&=+o20�nyu%NMM@DE*o;;zr&_lK_pr<bb zk`yM0uX1X7ngwj(=H0uzu`NZO26yk>^8@rcYIZX2*mCL>s+W3}*5Lj##>NK^9lDAV zzslt8ZT25k5qBzA|CmF)NqlV=HVrhVaU;TU`b*NOU39VyU%vPT1S|>c_4ur1;J%fB zp)9Kwe$eFYkYct|*HLQ1x}aY10<qM8nuKU)WNf@yS5NPtgF{y693&AY>I}p?wZ<P2 zo+*R6EZnakAuXhaJ}S!``9YXJT5PPycBoT}p#j!pS?cf|m)_36$Y^dqcjU+stOyC~ zNAfO4V_UXwXF)L*g*rzYEt;D;3g&sZXZV6jww2xxVFb;%gV6HXyph=EyehRLDKBxw zu`1^Q!N`Lgod!Oj0YP^+=RQZ<J;^Izy;)dT8Aaj<ln@1OPlzng+<dW@7hl5Cx>8V3 zFq#)vb=<|}MfK;;Yp^3Vc_keCbqS-|Bm42s%YEJEjpBbYXIq>5_(O`zV`fN^@3_aq zi2csdStpLaEp)A-v6VJ8>6k<)M@S1&*Rf1v^Ka>olw#8zqSydXqVW>W41asm`TFK& zCF65Y7I4d=##iNC0Kl#s+qTkkem0v;{<-b;D{Q}i|0W-X)q#yj{u`*d7H?wDE>Y{& z{b5z7jDWPlzQ;Kx>*lJtaP~K(E5x|8nOImPjXq%Jeg%+>O=aCCO&bM=W}(ht^PB%n z)=GT@N%?a;Ygzd7w((u(j7arsEOgJKxX?iLOv3@Om?)n8`*r!0=faaBfjv%9Y-k&| zYneAFl!aebpZtE`dLflLFocG-SWi!nP8MBD-qQV^ilY>Bf@bo)?&_$^jXRIt-hpKZ zy0_ch6~JbJSLyj4tS#VNUU2Nkd*q}!_wL!l*BsNifBYVF3eAb8INnRWbvM7qmM+<} zU%RVKQJyy_Tf(}PNlQzsCP70WaH>AlKt?r6o?!?Koi>U)WCmyp`+7=f`*uahE3xCf zdDtTi6qqT0e{*h3mW3^<z@fY0;l6cs>aqDyteB`yAP&wXsXwKOX9{Y<U*V*tsP40Y zXY!ycN&#UvSej<BuhAL_^#c7reE2X$y{f4AiiHJrF1~cNAEY*3TZ7Kd&fwd(uND`} z(y}r$Gi!2eji2`Ud~33N>+Iyz{wZ0fb^wcvc5GWn)<U7ft=70?``)_6pgzwtl+^Y0 zH;G#|F7))AKVzB7lwWX_C>#F%{-w?t=Jm|f<B@pH<n_IulKtU29I5!;)n$ar13W}S zpHPq31`3SLAwcmae-n2ZHKkM<`=3jKDX^hU<>W|`h9aPqas^;?ufwl+hptrUyX{|| zpI<9t=vDe@%)o7kmf`YvFDT&j_&^033}JA1=j%Wpt`-zX5iptD9Cqi<H7In&ZEXfd z8-6mg^G8B<mvkA8&oHmS4XQ$hHoH{p*d)L!CB=aq@)Awfrn{P()^}BAbT%Z!`f_6b z6kd?_>C+3G@}#m8l7H?_C*bDVwHU0T?v^|WhyG??$R373S+%_u45y%X?Axc)mG%81 zl$;W*;N|PrGeaNcYiVlQAS5Kj{54H6Xp^Mt?;YrHu^D(ea%f}_>K9Nb!E{(Q2OtX$ z{`#`3XYcuQ=b|CINxDslpq{c%4ffBdsttU4ZrLRM?Z=PJTwJmpkAOfof$fI%=gzDL z_B?E~VE{rXSoEEEVb0FIkg3UIt9_mZ29LjFj3TF$SpO!1K~PZ8ZK!NbL*|7wJ9qAU zJOk)KxQ>mz{f<x0rc=#Wd{J<I8uFc=m;P>o<S8Gr?YK%V{MvhME04cv^Cp6A&Nj3! zuki3MuJ2=FyWD>y5Gn|aqyVgB1N43@LYf0jI{tKKLdIU6!QUK@VJ;cHyvnyx25+5- zI}P$QbuTc_=lh3;{v9u`8AGO=z&?FEdTam6djKh?ZVvEH@;e_obcjFO{qq5kK!E(P z+Ah2EDBSWd@|97rG;{|1*9aS$n<uDp`t3UZHf;2t^1y#GZVA;6QIM~u^4D<HS!%Gi zUSPlb)GA1bbd*{B;Y+QK%kU-Z?CtIA3M<~fd-vG!2yndEo@Cb2(o*@DbVk{)L%(6R zM1yNGSAk|MW?Z)MI>450?!|*qZYnClrBYLOs|vOe<A(?)=ww^>7PjX;j*H{Ln!>%W z58TbY5Z#CwY=?<^Rr!4osoIYp>pzXmOxiJVi#=*G|CHnl3CqmsTrYqY3q*#A-%ZxB z=d-wu{}BIYyE|6%y<qyInJu6Fh|3L~^B%x=9adJp78n><X$(bjNqe6|5v77&MRNnM z4_q*#esex1VSn1N9z-DKq77@;@>;TAz&=4u=^2N}29T^IXGiP#_=FXE`3ew2r1Qx4 z>p?*k=ptgRabqnbIWA-7QB4h%soaC&Y*w|8kK{NGYyzXcj-}B7YQwDa`GSkGSlF#w z3$UOdfF0y60PKga7hrFFR9;7CgJole>fxUa>6=kv{on_jffPmiz1T}F0=Ll)txmNG zni&D(z=50gJ9)Kv&U2s$m*DoI5)=Kg0Xo2VUPEMt$rg4aRW*hYyTSIy2adV~4Hh^c zwX0toTqk;FA)qI1<VRHulxb#X&Z)VAM8n|bJOGNTEqRW_hyi{hoNxdB{jG^oxnPCH z_(a_99iMZpeIW^vLVG5qv@QvQosqTM10IxTTo<p}kYTnG=yD<VLV%K*D1}94`oUG4 zz=5=^@JEkQL}b_{uBVF(e6kz)ew>Lr^t<97bQg+N6$3uQO!vM__0~@=)`ZZIAF*+9 zrSIM?!6jGM*2?2u*JrgnQRalgvWU1-psO~sQ<ok{xvsu>^XAsQtj8k=(=kM|CG_>4 zxTPOn8ve7UQIp>B0pB?04Mk|pHWx3tq&jD0xLwb!eEXIK(hQzeDK>q&*~e`M4jn43 zs8|F>dKuOz0GQ#03yG^FHDeAfrRF^?cXK#WgTPY8@Ue);R(^vc(OzG6=#g)yio~Mx zXU`foq#4CS=tQv+g`GAt_>#5E3W_{iszH&alIK`&SZHd3a_@J;_P!qpJ_gTJpGew? z4|+t1vYc%GsS^C;$@UixeSY9~J5FaXK?CzDDv|+th~3FFrdJgqqj=!JLUF6+__`{H zfILC-)po)BK=9tTZ?A?OD~cL{KKT7|oz5!mD~F7idX=tWt^?eX0~ZggW%;lY?xEU? zgmIC<p-0ov$L@<SMIn{XG_P;(?e#+ok8vDmo%r><N^I{Ou?Em4Y&uFAXrcynml(YO z7`OxlmlB!{NTz<f=B%`qL^e^kumYuk4Q+?N9ZAy3US{AiX>#*Y!gD-MH`p@WpHm~$ z(kAoVYrpONn*&kpG5*KJs3{6AEG(=|(3_l`gosxHUazs~q&C~*y|mdFyqQO8O%xj> zis7!e0%5{A!&?T$C5IG-hKGrGM0^Se7aOrb6u?x%d^mT5Mg)Q083Xk3kM#Ze^?1H5 zMv?W{1IguNEo04#TemJjW6rQ{(~l}-byxQC?B~=GfT#f>=_@R=`NOWoP3#KL#C%iq z@}jXdP|$b5eweOl{8{&OB_95D>!R7!GP9#0rFLWK{Si>YDBgvK*KA=`zX<jzFTX%~ z`qwVE*|E=(o^vyc7IWPU`U*5I&_!1B>(_@Z2T$0dkPsOJMt1q*BO!xOzuNKi@9sK( zL;aAn=ezq7%0{%$KCOD;eF|d(EiTx;K&PbkhmEKo(R2~)-+vlzS%YqZkoJKv$OQzt zkf(qh@yERB>EY($iqsyX%3Q77+}(|!KLgE>c17+6?kKVHX;adpQj>LVuX8IQAfxgQ z4i3t~*(6jGYE;6~Ru@hz4f)fj*Pl6a2IM=MZNKKN^YSM(H8p7;N+@Df5}5()v?0fK zGX$z2_^Q#6LCVaZ$kUje2HU;WUhIGW>60e6UhDQrW-pp8+<Rz*q!!VtwsDqLOaz=F z%O1f8kX!N`3{gZHiaccsr+Ni;z=nZRp?K4n3!V^IX$345Rqz5>;aoB@oPAB%pG{*c z#~)sX&=w4D2(U9O(cY>lYblyiX=j<gDvG<4tE({-hPz^BYB$|o4W2%IN@Fao%+1N6 zsJW@1!Z0#C2c_d(Sm`-`<bFN?SOTVX{oy{xPH5W`9oIP1AV{DpM8jV;50bk0jR`@D z>U?KA;uf*<t9zxS2t`LnLwLH%({wvx8vEu{_k%<soBG<?6+6R|s&fT}g;|O1nVc*L zNAD`66(cYc_y?-F{PEj>Dyvb`aFvO(w|wL5HvH4H_KEzHXzG?J{qkiUnw;sUr0_;V zepgpl%35oXFK0z-$aZD)HPu2FWoRCyGFuAs7TkaSd>2(*ULJSA`(A?NzJ12?bF&a2 zavL=c5zLyXB@78^wcYo3CAbz5!(y)$46%Fn?fZ&{WeRcUrd;@q8#jo^PZ}I-Xv3x~ z%faz+E$u!fP$NEkIY1HV+O<l@slo1=&5vVakBt9TsC@sv4E?<R_hM>pZrVBn!IzF4 z^!-4svo3e=h{&F3&Uao3_(99e+zmB{l<wGPq|k!BtrGi+90nkwS=|j(JfhGLRCezk z7&N<@zHPsOt&bA`?h*wB1;_zU-^~N`z&D`()ttK$z88^bu+Y;DOBO)Zk^AbvyxAb^ zgoc;0n%b?>2DO78Rj9uy83}_xZDHj`L7SwY)%byo8-p#0?A+;-nwlCa93k`W-8<<9 zfJS((Z1Tl5HOs-D1u}F?oHN>YgRjfMIE1^oIhOr_A`8F8rrF@nuuayXc;#H|Qi}4H zxCo7}1R@u?G^9f4T3cJUo-Rq2tO`Vs$j!}-ZNmnC8p|5O(XiW8m^OVJePo)@J|Q@< z%x&cR(p$G~%?*iaH#Dn0*wdv@bm7~2F;l92{_+%xJ4DgcRTEe}yZH=SIgeN9VXLM? zUeC$Piy@#FDBXVEf8^MzasO4o&9syUf(G8!;Ars%MbZgcsW$+fjjAK%P?hp)?-<rS z)yWpRv2hP_L2fjzcUVfKIGG)L+s1P6{Yw<(2{;nzsIVxWs+M0mKYU5ZA6P5Ue@P|w zNXRzR+Q*B}!FdJIYWEi|EJjSHrpR+%e!vrq%wxJw0y>Z((Fa~6^p&$Des%xB<y>rn zmr;A3XL8K}Xt6<9T(W>W(BI3@XV})RohZ@#sJRu!m}7slH~ibii~armX=!Q2Fg^nC zo$Qm7jjgSP)m7%hZkOhkMl2={7QCs^z9!<Ok*zCwsaKuPFe5Gf*`=SF(A5pG`k6gh z4;(zm7p9?c4GZts@#8n|+|i1*`&?7w{rtIIRD>{$9Y4SzW595cUAq(z&%#spf-o6s zdT<EOB^pATX>}wWT1S$D)iEU{pWC-TEpiU}YsuDBJkhXU{txPuAZjg`UYv47O6Z;Y z_XQXP-el+MW?6)n^4l|HQ@2CrV=PP9x9$4lh9s+e0R8~hyu16tYUHazd!5li)2p7q zduEg8;^C3!8)&H?aT)Iq1Og>q2;ADOt*1p%4N)dvqGg2*KYRZCW_bA1;7{mtGq5Zt z@V`H_xv#rx%<Q7FSbe&&B2_uARLGN%o$Z+3D^Lj?lWaa(d$!|l(`pLkT)V(!H=0-M zD7HtUUcvExZ15cS=`1xD6#o+sB<WaKSm2Z^;C&I+_u=8bn{cnfTt~Z?BPB&SIy#y) z)uCT@qKq^^V^Awd(A570n0y=07RxGtQ$}A&_`~cjaq&+R9=*N2(Xc}$?Y;-7wE}ky z&5pMjzYgZMv9qJ6;5J0!fy3-|NzZzV{1dHqb+J6tySt+F#Z5nc>p}M+8IAf+O_6f+ z4Gj$>QxG+We$|P`q4YHk&kiY!a<XO+hQX&5;~$mKg)gHrqDQ6fl+4{SqIl#|Pc1`Z zV<UoYD(eO0nIM}lDQ>zzoNHWfzVpZ-{^t&Tr(<m+%{RS=tkh`r+gNvzr>7^RLZikE zGbMqZ0#^@jZ*Rn()=IlcA`UX9KVoY8y#NTbeQtJ|v<{o0&V#Ye>L{E~QBGx*m03~Y zG~%s+WI;sc+eb`QVXtdg`3rg;5)0RA9oHK{0_5qj`LWLibTjjs-#PX<9KdoyFk>I> zA}FHIv2EZH9Mmf7W;$!F=Qo0a6v6Nsvn&N#K6dV3S(d9$4Px7FhSzVVGoGKnpSTKW z#kFH%;^O7cOy1h`)NTc`JRCFCg~;MnFl!?ec(q0-PRloJU;*Wd6|4ugWdTM4TS$EE zg6A0+zUzGFE8mq$lk3*41M#3&nc1TgHqK#OR<Mi#sD?jqgEQB&88;Mlinq<v+2(6r zMdH*uorbk8ZF{;$s$>>XVFPa1_HY*X#x5ZjM&3{`w?f^g=|aQ;eIPQhPkxZtxw90S zzwKDB23ap%yYf+e9_+ouT-@YLKnC+yn20L@KaqN%2M2tbRZu&3Y_NY;41RqWzs9OZ z4@=Aava(<|hL<vTBE$f=a7}Grg0w^>{Z+_r3B&%%_a00W#qwfOORn7_D5#{+WT+wa zc1aZSFd_=;0dsde>-YI)cMV^IP{$n}`ZstY{tz`wnw#^r`~JnS?aVQM)$aM_(2|)J zFD`-9YYV)b0S_EhCdYYX8wgN3G<o}<pO*d;l^~uhCnqP#YXB8iz?TinT5N&X7?Jde zIf#@fc|6EIF@crRxMWZ)lC;woV2K}^of;#a{Zm+1uGLU-W2um6wAvNKJgkj9Y70VT z_OqJsQpk_Y^TGP?!g5}`;1L&J4Y^4cfBmTaQrNG7K!e8U1<<-=VKf9o_Q885&KIy( zQAX$bL2<7$*m5M>fhrrONncC)6znc0W@du^A%rm^*g@V-O-;=ofY9+g2PK4b49YtD z)v*&N4xy3)xh~(dNx$0`yz4H)l~<Q>_yJP`ol<x|+IbFwNObt?j`g8%kj%nf`)&&M zA@rk8Jelh^Zj?h|Pj?zR!*~5mdBD2s{{ENq^7g@xh=R3&C`Bg<7A&(A^&fcGq#Kfq znSuKlJG|#X=mozTGg-h5`RNU>Em`M-U?bO#9ZL`!C1?=X{r>$8B+0mL*SSat3M55v z`b}~qZj&27Caj+yyg;u@hjv@oK%cocROi{*#YB35%5w&=#XR*XvJ*ehxUNGIBvBR^ zm?(bx2*~rMU&Jr9{e0D<GIW-jrzf{(j-l$Efm(z3g7AJRspa@<WcOh+*x1+<LnUUf zY-(sA?@b$S7Zj$@1q(7WGQb~YBC+R5n1}dfu&BtB!Ha{6w9a9mHMwR_kua=sQXp4u zKXKsV#ho*=vk*r8ko<$IL=tzepgc!H8o+&WZP~Ig`E;f{5Ku6TSqRrO4FT_L9V-bW z0r2-jHIKFC*v80vja9r@hRC8EL<V%TWq2uw*^#u4r2CYZ1q6Ep@t!83qat$~gc2Ld zcQWpkcSza8aR`u1Cr_S4Q$NIfo9{4zjabNpgW;EHTcH#HH0eJCKm$MQu#HS=E~T-= zw(s5}D3~mteaFGh?j^FnBIb3xVipZ-&}4}Yit<fFBUER=!crt=(Z)1$JKLuVFYLY4 zyAUqJ)0TJdjzPIKMsp+vO9oF`YN{~OM81e`!Dk>YzNAe%MI^}On-3i>sVQ6Mco8>Q zg4cyy5Q~$uGl|~;1$>+c4_?%8jYf;YJFKp+rvV?z+qlR9&sEpd$ho=ghpxpNE3Efo z6&lh@Xrt_!s$(M~m*La{3sj>StD~}2|2zdBqoo>2KY~)UQgr1AYIB>s_^qq!>5Tj_ zq;mmV*;^lCH$X`|prXPCuF2Bgw?7}ECAd5zcB-PREJZwFs3gc>t=k}O;RRb7@axpC z|Ej|W6%~y^f?<Q~!j{6C_eKooB_7BWPav`wWZ?n;MxlzOWn^4I$_j+N1~lf~!+mRz z+=<st=UKK<GV&rrd1-m|^ar^UCr;R0x^xhCN~jp0-W<ctlFN$(+_F%Mct|oE3ZD@; zr;=UtUbx(cAu?!cuJ+0{P!INe1fe&(wD%F{9<a4MIt+U+0vZe+^Rte$;%eAyognli z)qx;kb+V2`C`4ISPU%<JIySv^5Ia3KQY0ENGc!^J1WSK)=?2E5M~@=Ivl%uvRCWz* zBh4_@A))31R}x2MYVWIT^PHP}V$XraRhQyn@ci6y64tk}vcm1YLIeAgL@C<$&DaDA z&EW8`4;lreOyWK6(9K~3msBJ=^2Cs_+x+Z!yjm<X$*9sCP)OJ~IfDS&OA&!4<fu7E zv~c#f4iY$#wqMI3uv6sWqL_b0Js@HrwtW2~*C!_)66FF}BHpC$d+fVapx#=1*-0D5 zE~ssjhT2_YdhIGGD^?x%?%nLf9!FVUHT>}5!&q6f_CBcz;3BBu2`c@F0h@k#wiTKI z5N;h$)884GXwP7PMEr_YyBQqJMP0`>q>Unt1(#E|+ZLU21@6BTaZutJf>Zh9dVQh) zA2mT>554P3yh@ahh?v+a2u*B&!7JcI@$m8<jw(c+*AJMU7>}xuu!)7g96?s<I*LlH zw5zl8VgLl<tYWPlw6RG8mOFNH7DZysz}&if0KNc_+o200>-z|yuGJiS?b)!CH1>MH zu7MM_`+{cF=kI#|c(B}kSmmTR61_zpAOtB$CYZ~3QrwV!!+HtzrMRZX2MkR2-D_T{ z;jX$BP7v;Z3ELi`rvPG=uYgd>{=~-Fcb{k#WRdNt!0Jb=_cTg^KxkOdTjWG&qp?Tt zFoVS+MJT*}xA_*VxNUgF2LS%-vu43(hx)SHn9<sZ{e&j787aC0c#^N6PlQ%R>~lPU z*R^=%%9YSmwxG1|Apn@7-VYRe1_(A9bX6XInYfP#c>BUt;(t()SM?e3Mwp{5j%`QG z?ll)dH6ejY;$Bg!oP{~1T(&^lJ#g$;Kxh`!20Ga;XBet8lOqgNI?6!irMJK*N735! zFcZQAbA)_3x$3iLA0r;F#SbIhiM*#U=LCz!j3bBuD0lz-$$~8d$HL$`VrmIH@}Nx9 z$&!_Tw0oGzhX@&AlDL3$as_NJEjxP+lB=D_Z-i97{^1K0WLj5&w@oKY<S6cfco*Uj z!->R5Oge15)!>*Uxz`EFj=2jhQfMOw2MwPDs^kp^Cav=P9#K(MV$0!D{4prt3l8TC zuPUsnc3SsZ>G$uPo-?X1v{tWPO?>!QWo3L1$FXb}C{ZLz!ag4iBP-e3IyE%qjos#P z+y@gCjS@!7ig_c&mn59vHs0b`T2^)tlLUU`;}Ot44I6<!l<$L6$Q_Nb7zi#`RHQr$ z-6qvWd+U#)Lmi@2y63@O4g!JGu$L(=NH=wl&fBIq%MqUrb1F}492{07fmw>CUYB(0 z<P{pt7r22p^gZ$iKvt`=va;l1RH`SR)*w%&D_^xP=Q*ApS_5;%gZ<8G<PqaO{F9P) za9=rBg(Lx79X<6VZB=lGr*6wyyI`>+axXaR0UZqaT^<Mn>bI4T99d2RpjB1MmIVVY z&}@isiUiCGm^tJLJ-}4T(`Hn41}b*EALBjPj$o<093l7a@gwEMWBxfs5EvYTDc&gE z?C9pJSU2rg;Z1z=V3u3jxNzW-(`O)-1BQl?@w&Osi2IG~Ipl7|j_0v#@~FDHh)^uX zo~M(AW5>dM1^KQNVyqK;0&eme_yTK?chTbA{KRUB*_6JD353>Ci0tb>BA^=$_=+N_ z*>(OcvS380Q+=wo6|G41?CeEsb=n7ofx-*xC9M8LTVwZ<6^xdp@u>*Ftp>R|gcAA4 zMxZgX9{@mk1*EmAa_hEjeqdL=7y=<nzb0OF^APd}yrF!*?Cw5@t1946kp5ih`EA71 z2-#+CvZ;X+HY2z|gT0D~O`Oxn_dxY+5)xWSiK&CevV<Rt8ytU&mU;m44q3C9?O2W+ zG5>sdu0!8FWW91pRiswU&A}JFxpu!(8uEH8f$5{+)ewvE4F2N5N7E3H4x*u#A-5Bo zfffSyeQsuwKL~&3PjRgl($zjYD?c-TKC#rJbynx%Kx@GQFVKQG`6*Z>4Ak;<>z=CS z{Us5jRW}z$oeBC^N!YSSQZn+O|LR(1&3U8}ca#7jf^#PgRT_*AL4tdUSsJ|;_9Y;_ zNAvd0D*@WSB)lF&2$=FhzIrLiNF(9&@*1mfU;oULOmxHIrm*L87XW`2gUFJp5Qx5* znTZbS#ix@74GMo1=>E2YqsW<8Oynm>(bhJy$7@<EVYLyihALo<+Ar=fbr+Yt7=9B$ zass)b)Qr5#ENg@!u>vF=`!~YJ7Knu#QVb0gR%1Cp)zQ?;qxwLSHvl;y1fGmxSCA3M zWxy>a*(Yvy<Q<9RG=$)bf`LI%s0*p@_>~af#(CwRSw#a`CT~RRi$8u0DT$74$6jz6 zpN@kTzw(icrw~Kc&1c9BVV{sm4uQTDE`EMyytK7qrYdHRG^H9mtd4Kr7CJhP;~CW` z{^;oNCTc8NQfv!5Q2@xC5EfAs+YV-G@#4j6#VyueJ~;mpF#%DlW=U*!R!Dt#Vs6uY z+1;O#@5`t04mz+*1C*12q1cb2Q(Op5`od#A1IGm)s$1Z~UNkez@>dWF4)%gGw@dr) zsA{*tb%B5t1QaiyWt~h-7P*J`0^~5{v*^&r%2B5f#?fkQnToK3$4(}3u>Y>XZ@_=K zhQ|<jC~!S7#$g31<@rZEKwC+8FCiv&B{z3crfvg&cTrAhH@f%`81EU3e`tfi07+>! z>hVlz9aUC_c97M$6PnWeH5Y}5XJ`wLpFBwvG&VDPQ+0Y&jtnz6J3G_9|HSxLZS64U zuRqtie0dn-!`go8?{8F%9_@Gbfs+_@EPN+e)r!jpkNSc*qaml+_o$I^K@!e^6htr+ zqlnuUXyz*SIajS3jaWPrSG#8IS|)T;EFo3|9mrzzEP$`Q8QEsbbtx}pIZJ^xtD*8` zngA>2MDKHFBjZR)N=i|aC@J$#g<t){$KTk{{vGv=_6(nxaLSxSsm376cRUN8=y^e) z?-H=d`rEKU-s8`vLZzGrDZDGqKPi0lp?Q^{?voC`8bmV_x9ezY7r%es_up=s@t>FV z&r|s4AMTwQ|CvYoyI}wQ|54k2Q^?n^cY9)jiWfqSPGbv2k<>NThd`fIwc<te04SC1 z;ICLO#ArY-bDEvXEU)<0l+B7-L&KmU64V$Ml-6G~zX*kaOHwi?Bag2A<v5W`@ky7F zd55dhJ}@vZ*NY`2h@Za|5+ZZhJ@%l-CO}QTOliW^!NLL5@tfDjQ5sM$g!-)hKECBO z^KAdQ!5Y^i2)i9V%!CbYXlO`5fe^d!X$i`Z9ELf~99gMg_-x32pjolvPXGt50)&y# z5=c4j!Q%aGMM21eb%NGyP5FwrO&RnXnZur~Vc?vc9ustkM%=3PnCMu9?GIEh@Ml5_ zcOY`^-P*vW9Jk4xFB}J!ZQs6q?YebQm@^~sTS9i#9cCtmCg!FGh7bS@{8{z(Eg3n* z1R5Q%4sgcHk`g*Z3kB=jV;m8d<AfEt725YQ@KLmXM$CZ7+uMs>VdH!ph-GAmc=1+g zX#oKiOl_8-+eqUQcO&VD(T%l$2=r9G%NR2VqPM?43p}J4^+Hf_G{Oq3qoZ~D5JwTm z=YlmyV($5HEFc^*!ltN;PeI`%DhH4Rxm?7o>5YxQt{C&58=sl@8bre6M1bq=HpRYv zR{e}vy+{suU@y00LI8xc6T6(VAeAWFPEL|wYe4l&5XY`d)>%V}`q1+U<@*qhv0hb^ zj1j+p62U~wp<;w+&`EuPrTN0%!?b{8iy0p;py9wKhz%+^*~1agU-?2ezz`+Fd{{B; zKR5oZvDdFFDLwhGvHW>GG8zFw4Zs|P>6c=}0?2SJ!T_QUzqAP-1v=*Mv*N*1#FIaW zH!FhiPAIeO0OU-ptQD|JuOelH5MF`S2A~JxVIvtvi1CX0A%sObVW`jZ%Ee%Pc>{41 zR2>UlhZV{a5ukvM3{6ZJ+AY1_!ICpNfBqWm@xUg+I1!9Sqz@K70b68r)x*O>JNM#N zLe9hbVAsOWNdw!4)1CbK#q;OSYhsVCA=?UkqXN#WAs!P<Dhq_Y@nulF#gT7U4@exg zC8-yf;RkV%B*XLV+cz#Dp=Bi{B_t1v5$Ca1OXBZ<G?ijXOv&C2(NKG9oea~V)>*!8 zRC#DunoI}8MMR3x9mvoCiJNzHbf~qWB9pitN%EsWZ8f(8TtNasE&RNpA(^EibQH@> zaQKuAq!uVaBJNZ6z|nCBW~1iy7O`$R08cC(JRz`B>+eh{BSqF7Q5V1qF#H&V_5nAC ziK<2*eDv3sm5^;XA4h=ZlYK;*JidlR=CQcQ1XwyoN)hhOeO2{U#tcKZq_vd`<mw|| z1>aH9V<so`oU!p`jM*7tP#br42tl6EY?y6i5Ebk~$f4bdNT|pk&=6-!;G03n)|sT= zz=birV36Ls{SQ;+;o)EWpE9HB3oDNZEFd2h5ElsL;v=penLR=d`q8+RA`_`77~e{J zbqPt~4pd3g#*C+-;)cZ(xX@v_n23vp+87GJ077cUvv3&62+$Jf3HgZ;kdB&@kv#{s zu8cXj2bmfYjtdq)`<e|vmyF*s)5V-VeH!<>fn;A%xmT@wC4qHK)(G@=HRfBGX80^A znaGPF%YlM>-_A$4$7Njn0r9#WtOjKA%+zQP^jeQp@wxYqffjLaa7;{1@juQ+EW5yE ztQ49s(faUExDlQJfjEF{GFbiT=-*_d1^Ig7lVQZ!uX5*qO;@U?@Mu?KAJb8YJo7#4 z!}8{f3}SNH=OMOk-$e+R6T@$X*=s?$L~%1@)Ex7%43z1G3!c@^P!c%c^6e)>8R*P> z-*6pDT}s6fKEPg(rPd+NrFwV(vmxZBX~HUa4aC#vu8n2EX7g*&!~*+g+Oxa0U?0#o z!}je@&SWe6)7sQGHs5;mPq|P!i-qGfIlL9?CWdVXzgDag`w~uR-6<)wCfEwsu<J6y zCP>TyX<ph_?ELnxUoWG8#-IiPW`}0oI&t*qOY9;HF)YGJ7?Dz8P|JCE6gC$2_Vn;A z^sl_s-@J~pLHdZNN&@>3#vmxk5=639Fy>|EI*$Dk1qYt;LIOcarwU7aH3clZoXEkD ziLYXO4~RtM;<v+R&!0a!25kHlYitok>$}hejhZOTBpk)a$jGaevQb`MKKS0f(`Va2 zLdZZ&!V<q^474Kb<Bz7-352S}6znX~p1Orh527F;W*(c5;1myLE7l0<s_0Yzsingb zMmS%y%kLhHCRDP3(%xvuM2c{549}fo1neP0$A4xqY$3lRIr<WX@CNi6R8QVIGK!8k zBK)hhaJVsQRF19ce`$_^AOHb@#MiP(P>;wY3C80<<`8UK3WVYRXD%R*ryF7tnVt(= ziMvH&fcL>p6J}5@Lo2Igh^XU}xe!TDklC|m9jpn8i{WSG*`2g7%T$yHGTaR4j>kdR ze7VlHfrfN?zy%CD`Kq=4ooL*`Agl}!q5Nn+IcXs(R^u7Q)7&O(P)OE+SI}<T!gGs_ z-3q$#G%E!YK!+1qU>33=f{HS#_6UIC18fyAWy~)gzDNIGGoc4v$}trFM69U5V|G1u z%$2{sEx_<K)Ea)hc{JLdN2|qP_J)<zLxa2w9Upv;G(Frjzoi+b0`S(WpP3vb_yM8} z@d(u1A@G#~h^Qu?-VMk_j4`t0L29_KVD5|_GV<eLNeEkT&Eg9_B&^z9^yAw%!eP+Z zH1__+VGtO7D~6c<SnN3BWU!-1#e3=r9#R3dhWiRN_&fL3o3l{oi}9{vfAqGr+a4$4 zCKVYoGXGQR^^Zif8$LmVSAaNZ5GcUc$z>uQ$$+<5n<ID(dH@xP5RH;E9zUe$lZW>? z4MvJ_-Ufa_T1#!RKOd1os4k0ibaV*hK}vy~_0i}o3>A?e9GnzD^mXc9iwur-K-&kx zI{G;;exx<sco78P*wKw|0J{zyLgG?yy&`ZoH0=`jNA;hcen2M4uenlx&PvGK<DZhv zGsX6AcpBjUHK;3C)Z?9OC&S=#0;#V@>3@kq7n1)XT@Dqy3~?s*O1x4Ih!MmZ^P;0C zTlK7oNePCbfhQCIFNx)aB4-S95n&;^)x!F^zwDeQ2Dzz7U_SG=dO#P_($XZ6CIVE3 zoBfInQV#u?qTpv0qbZ7*RIXaGQBs9jH^ksR^iO<22Oz~&uq3GcG}tK}xZdl5feaKe z&~d@=kQAV_sc~YLr@`VS!aPc{0-_znXMKRFBGk{zDJfP_v(VKf0j0qkpX{8!Z(Ue| z-o1RqiUqE&)8os6-@JQA0=7^n(=lsA2F($pR^k8g{W~LtVO;GfcluUFD-`Q!Ac^&v zo|D5SWIrR(NFX~xF=Wz;jK-m$DB_RUE3ZL!0<niLd2@j)30<vPwNO}Cm;@eiGJ<yc z83qV&wwP27D{&jZc@c-so!f>^>q{b_Xm%5j%l&l)9pUUXJTqar3d;*3M<>Kdq(gX9 z^b7p3Y@lc^>FMbq(oV*+g#D5uSk}a>CPo&5*<719(_i?M<c-uVd4K?^<cb6|lZpZ3 z1A$3Nkeg~v3E(gC07O<ms}Lnaj2ku>!#;!)Sb;7WD|<l$fd(6lF_Iu0|A?i9#UO-L z9=J~^)n(8ah`^9JZtxKAjL7|1Ga5{fPsTz(sNJP=7lsWP83VK|#Y+YvW`f1VH;+3Z zb^sa15-yrqLB?`1CQke$<WI2-*vP8DW}rbi>A<@p2C%)`{M;<DC7}VbKtC)4(&*^x z(~Gvdb070p+ms&#VA^FAQ(UB!!6PT(F02B5qs+I6T_7pA2||k;JQ#9J0V2FH&<w~` zP+SOhk>!aStA;C!uD1~eIo8)p;DUDKnaDMw8WRtYNL%$q7?;FYtvng)tUc@TxxW4& z+#@3KCgH#ckh9t$jKCH{P9ZKY#rsLB<_g;aU|QnS7J1B)nHZAvCsqM0Uy@9NoV9t| zHb$iVUm<=KYx(^`U3^qlKdgU(V3C;kfyJv9`8dJwgU_}T53ZBhP3V4zR^~Vj@nFam z5${BvsyD5zo2Wqy?{r|5tL9bO!S^9vEEw3ahkM!KY?6c(7SmPS&ykT1v~MEBA^c?o zL`V+hA=d*Ig#E|Yyek(?Ga875jJ^@m2SKz8Zu3~s)kU73V&-*+PnW!CADK!alfbAH zNGKIn&Y&_G!Nt5Q<tmPp&L4=3gMt8%b_}~DTpVndLoMgVBZo<`cF)DfrEAQ{sTAb= z9y|{t2wz*x{r>?ahmC#y`M3DH*q#g&v0wu$4gS}etuIYY(Cu&_2eSz-TL_7aGPJr? zwcC%~<wAcigRbZAz6r7H<%sI=AX;IWi{-VL>IBNC-QMFqmGMVL4jm>Vh_&$d!M?-6 zPHxsRvToX;KKtVydKku~Aki`Rz-KraK9_=(p@xHgo(ewqocExUrP!d7Y3gM0Li<tE z10s!v$JL3XB>!6gpg+pCr8^OysaN>J-R5l=&;T6vh4RYRhniN3g^DDsu9Cl>-wNtV zUS8g7oYzsiYv;}b;X6%Uq4=)qb)OiF0(I3=5`G6v8vB!yCEiGkt+|zz5H2(+D<C^N z8%SJBsp|cEb`n=UeDwHncI>g0Fx10Be}8+k@{cYoP+#-n(goE#2g@Oh2aslFAZFR9 zP6TnwA`<?ilLfa)s@@5$jHE#qcoFdwJH!0vj$@!nM0>s~X&cQZe;tkto$Raf@`N2S z(EQ2B<k^B@TU(S3nmue3I$1O+{>K%sUNIpoZwov}8wFONlLg>C#xyiPVu)jD<Z}te zZSe=C2^*KdJd@Fl!zWIx2IM+}xoqYx67qzR6GKJ?m1SnP!~#{EMo-qa?`zahnnqj- zE(`pv*xw_V!TWdY4+T%<_4vrhN_1tlTrvYszM#kP_z%a){h8Ruw2KJmtb$8gJ8-X+ zI8r9)8vo0TSLk;jSfKydtU@0XmJiE^BcM=U$Lr-ImJ|#Y?pIBdhhbwOh$;|zfA6IP zO6A)g%+2{?W3o`Ct*!bvLBt<&AIS^wg(d4`ry!`X9FdfeT99{Ms3r%H`+b}Nc1|8s z?0LoO^PKw_B2qyWuVYg!#wPv~*An~_z!DnP?dtsc71Mw|Sg==cJOjlASh%WnX<5h5 zp8|Mhn;|K11I}+o@P8pil+UoPrpyc5G4HDyo%OFw;CK1oQ%RPqrWfF_0P4>~$t21z zJ4L*E+9*T<dJ4j0OmIIcI2su(1LfWcJ+QQN0g|9$9$+1pQLCUd=V<>B!D%V*>b@ca zrJ?Pu%<epgb`#ro(?6!&?-ux%)6^&*LjBC#3t?Uvd>bN0l!SyLv6nxz{2kt6ZVF5s z#w-vF#CRfP@>wo!1@~V1A;AXYH?pwXabOb}Nr3;({(>WY#v|e6gQ4618GGWy3srN0 z|4@yj>_#aU^#o-rD7zqdw>^RY9H97M@Qghr8}2cT4Bc;Iw^^1fIe^b4r-fl5(mCbz znyP}cT}E=S6I*kA=E-2t{0u(>bSkLSH(-sBlQ0@<^&b+?7}EIP5$~(^{dlM3*Z`~6 zd|y;Xc9$90u#{|{Q^=dMwF#jSo^!dC7^or+B@gV+#?^(q5G`K=1|Y)c+elA=JjDvu z0NlfyUz(GX!y9l1A`qRInEtnsb|jQn-QW~GbHI1{zYRo1^}&gc!TMA(u17U78dHY- zg9^<A;p0{<EI&VV#4~7jN_}s%qLMJ9hT9H+I&;(+;|L_aL>$I=y<|1^<3GmnZA7iZ z07!_v1>8-9n^$RyenNJr7wCb8=TKX)LCOUJ9FG36Mi%ik^g5&jNYBJa5gG;wItCB{ zXKNjas+h%G4=UL~vdv#4Ovm{l$#CM)eqSI!%$Ie!lb#6CfcQF%Q?qF7IW`>&5D#P5 z44DOJtR}O4x<4?*g}sRk$w3?h6x!(Ocnq<DHBgVq311MKW7(CxSv}{!iG@c%ek1&d zLKZr+G%rdLt)2$cJPK%iqBk*>jDEaCW)oJ&D=@sU$_v9ne-G*5As~6H)IXvy`+bCS zC_pKNm|;FXJ~F*R0&2D7Gy?coTwAvu<Zh{{QGI#?aJv&(MNpi~N^uM&C8-)vhR8RP zp{{BaVfpM2Lh;!61fh}UNh}?dfI|?TNN|Ghwc10B!jLI7GMJ`z@+A8(8lM0DIq<4~ zhn?Jxf6!x6HAT<g1YwK`v?1SZas|P>aOiJdT3wE_1>xpWUZ^0E&;rRR4CrlPK3A`> z9b~-2em<WZ@&o{i!Il?l`k)v@{>9;*k$B%~Q+Z$e@MR#7+u1)wM59t3l~V!gC#M~e z?F}@O*m9fr{>YB`K&VEsK?Fn*o|z&yrTGvNC<*#Qqft0<;znpnZ?4N{;Mt|z3kfvC zbtLW>K`f9b+f-Ac^?w~s^82MDhx`oDR10z5Payq?E_Z$_5o0-E2lYnHX<Qu{%erY7 z;<m}n@vVi1vBpWv4FXzW5KtpLH8C-9&=sU9^g|o!k|$y$qX6GLL^tN(7@P0OL8&5h zP-Gg&`cK#ia$qDdJsCOr?g+&Pt%M!19D>}4P7371jSb3e_$T@q8oCPe9{dc+Z?o@v zj&o>kgv)D+^PWas0R}qy`)@EVUEhwHSLVaO!rZqK=59i4tjSFSw%}b*nvp3Hg~#^z z@#A)Q^DjX&NsItV#Em#6FSwD<;skVV8Bo!o;jW|P%odFJtk1;aw8kJcIUa@ApfF#) z^;)6lfSQDiAP^O*&NYy463qqP=hgdqi)2{$T>PUPV(alOw0b)|DsA^S-@JVJ&A5M0 zfjn@a3=oJB3kbU3Q|$_~^-H4o?+Ss<;*QIZaZulM65Kkl_XbKOdQy8|A4$^&PTNfk z8X+%Zhyq7W#3Qo>SUMe$bIrB5-a^Dj4Ie^W54q1xSc&ix%7G`@Hf~I+@rwnFAjv%K z_o<PkKIY#LSO{I9!E$TSYa}J<Ne&t%lwGsT%>Xo%uu7a`6Sc}d6r;K*T?tb9o7|>Q ze4?Ofa6VRMDA?EfZF~!6{`rCz%ii?1r}aSm(@fP5gr+W#9I2xMppU*sj)dDNX+we2 zkaJqnfYEU}l$_-TGG=3ABZ7<_(Z3<okPtiS^dX?zo9>|z(~t+4`(j?S^Fgbpc<u8| z{tks9-2DHW4a!%uiP;OPCkG0J!&z96P@|_dNxLz%TUKL6Z70}q5?l4dd-s@e8c$}) zi-UX?RtY#@3$}9n@Y;R*^3G(RY|stAbLUB27NjH8PYoFCj2~BvYdvL&6gY;5EegRa z$)IQxMEO!MIq<^ED;SDbpZ6HRft-YW;whK5wQ-^fU4_Mg(S{h6wrhpk=eHnzgPGVh zu3f*zk--QeW2%^mA;%LDRS`i#w~XJ2kN8A*Of4q%G$1AWu=J-{0dtQRIPMflrH+At zAc!C@QCy(@m!lOPt!vHuHtT_8gPOj%x%tfj`F{k4XjX5!f3ma()OkRuv~fBJV&~qd zjJlSm{@c)rpT)mJCwvwMb=HCuqLir_ZO!W3>pZ+=uVa4zHWQgGE@Phgh^mXXMZhYN z)RA+QN0^Z$&R{9Z)8`Xl2-BG!%0K+cpwJX^hN{wD#6J#!{DA6cMjJ}t^d$29z?W+^ z^DYik;o!ui86b6|2qOswECYf(vBO)r+pf;G)T<A)<XuB);SE@<LFf|>Ho!n!%IkWT z<m6;Bg@pnk(1jAa6d3;?<Ayg{UK#1>&Z$GcQ%X}V^TQgIg-wWfD-J&~u1huG1g{HS zaEN7tfKHYLPSRS5`WL6N4Inp4*QnyHmS}x_y<kl)l>c=wnhq-|sfEwu97Jr0ML1Dx zJE2jCoI#H!XS<LyILiB)3*9%6vj-|Qw7PWcpTxyQ!?;y*L2bKfoV*2bE?b1w2{W)% z$#>fnn%d6y#60OVrnChGkMqs8gzZ2)4RRR(b-CQgL0boha+K(sAt5p1*FQrkLkdP4 zrzaIobg~dt8ni~p_Wr#O10==>Se1sEKn$$>K|L%iCli!I{tguZ_F<7L7=_h92t6{% zc^bWnoYRq|T->DL&62Wd2B0p}fQ{D=$wypdtniiBO{jf1!fppSq0ZEl2_|J=(czs4 z+7SVnM7t45DIGC*Fs=1qT3~)y&S>N#WP6H&esK_&Le7IF9tZ+@2e4IkTRjm0=2;Lq zb#xOZCYj}`{`GM=kJh-x{cHL@6#*QE*g=jPbwV~o%>$j{_Ks5vsBYK`6feWdH(IPC zzkdroD}bu-K+;yeOUVGI1p&oqxXwT*g!Dk788guD%b4@kGuPjBi+zi;fa#s`lGE~q z8Qy4(3gq}iu*ts=XJFSP(NARchyxUBjCi#M<8Ag)q$CuW$dQ};T}yET@=U}^DsC!n zK&>ULAG=*mXCP1Aa^-`NkjrF;VsXF-kCT6tF9QWcLnjq&m~qKkFJyxc&+gzw0cTmg zqZmyi3ghM^5&>DFwlbu+sr?&l(&Cnug4cpw1^M}qt*?U7@mcf;je`zmR;;;Qgz<iu zxLB-3)y5;k!=Ve5AojqL6A0Yh-lwg~?v!Aj|8T$aitQ&JsPG~avQXAJ=?jw1;LyaX z+qB;)awzvr&;Mm6WKeuC|34!kV~<3Q8MCb0QU*7BN<-qg26}$9DuhI_{Wf0MinE=( zfSrwC6(~7Fw!qPV3n{(^M;!dfY@*I^3bSsTp?Vr6PJkU5q5(5^p^PoSM#byqO<uu& zg`A)4=Pr#+S_b=qG+Vx|f~G^r?%3kU*Z`cP2Wq)>S%ScanUvUAat^2wn$UG$Uvhw4 zsl({-6glFq7pnm;4%s!R<#34obSJZOP<sZ^r8DWS0K#3pabp?6=TX5ay@gLNV$<Q( zsq;y}LBMvt>2ps&J>Cm7n+Hh<qrx2fo)w7aauu{86Aqg{2=6M<ZB8Tk%s%Jgv&8E{ z+DlzBsIyrHHZxC~_eEfzE7+=)bC$?}lW|DsXpe>2uRvi0Rl>2RrP!Nd=JZa};T<jY zUUnBR5`hlkMON%7_17dGa^_5@VtB;Ae6O{P{oga$;}2j964MZKjPzu%fb@E#@KE{M z0o9<kA`>b?ks$s5abAG=k&4Ox$J?8L^}M%jzrV~whKwacGF3u@F(j#wSV@L5h9bkV zWNe8d4HStck)esm6tT>bL=z&5%o<3D%=7+SEiBKypZ9s+y^nqD`*`2`xz}1&{r|t; z_j?WJd0yv50+*^4&WTj7O3J}l?IAM0vxqIR#~b%};a*?^#JcA662iV<Y^D<xaBQUA z4g|;~>{L7=fP)re>VyJut@v8rxifxO3?U7h-<1gox&#L?>Yy1q!=T=j^ML|X$uZ^) z>>8&stffT{=04DL4ptdMNASO!;@ETfE8t3MMn)|e$jsXn8Uo?8P=*k>K(=ER9Ha$A zE@mJ|GHrVdoRrV?@wQYYVje~z8Uq<22)ATW8Mz=XTi=?Jo|d*9*$3XWTg;EaL@-e7 zAtt2IEuujp>Q`fCgr-);gn7Ja&``0Hl10z|4;xkkwVRwLQaZ6@3dOeN7C(9rnQovk zhyhkb+t?v-&z`v$@sg~ogWZnM4CzJ?lsGN&XOJGL!GuN!2MZgO*U<)kT@2qi<J)<c z;)_XY6#uoVwVMnoqL7z(E=IaU3Gp65%l-gzk7{r`7Z%FO3RGRYO`GA!v3>Gt6{(yM zUkrwdA>L~uqGUEj$bUa(IuI|ep&UJP@nTI_x3d@@{PFJj_;Du|4}bPX2Coq~ym**a zTeoMAf5vG=IT(8Q=!E|m$|w!n&~FhzwBhU<`&(0_H7*yDiIO*ltX->w|FT4WAVmNb z*P8rgqq)}y++Vqf4IPRvgvJ_N+dr7H6j1<L>4Ef&g1c716q;X2Pc@MCtiq`mE@IR! zqQw?*0+8B+x7`{U1lW-o-|>&<w|gaQW^6%pF?=6wm^M7~#1osRLI_)n%0s4X(oDEN zAMfwjy6h~YqauI@BGF>ji8IEF9r>3pSrs9uIgT|_RcLB%YA`<aVNMxz!x?Ja`Yl_o zMcv(TPxIY4x`q6YGY`8Pgj=B86Q=t9v!=@4iKo{RDKHkdeYWd3Cm@v>c$uPo|KY=S zST6yI-#)(+z;9`CwA=-pLn=FnIQ$*X;Qva-JS#5Ea_FcY?QY_SAucGwL|nnd2ex$z zVo1Rqb$S5rNJ-5#lim<CX*n@i3n?-E?Z`1Nk4(Bloh7%2y5(h2_{1iqUrFJuF)5?p zmhoxmZZ30y`K9B$#~X~=tgN5gjp6k(U>jolr>fcAMz7<yN|ul*Y8Y~s*RH)wCV+SY zW_(f+)^HN0(D_O{MaAJGz5*dZK|y}?&0Uw(s$18JqK+Zl*mv6B6aJMY4S&=DWx^<k z&hIRiy<%I2sOSnqSW;pM5}GiM{*`E1A7Qa5gvDfw*RB_$W-huM691m0JutS0b01m^ zhb7;R*+WKHr;b2cdJHCZL0~judaDiV*H`f}_e9omZA$^tnf9=fZJD?6;j!&cPHs$R z{gBU5s|a3Im%#%O%vMp<5a+L~{}3WJnglP3+>lOVN2#hCn8^*=9$4SJu()_NZ>AQb zICu%1JN~W21q~~?V5mBVJA4%ZbOr01i=}w-m!{_aoaR;Bew}fd#MM=#qSZiGapjCf z)d$ECv9I2%ksl~VEV<Mc_%W>Hi!-lVU!Zc(0ed~HTRQ03@6<Ylvv}MI&d_R(jZPc{ z*=j^!{W;||U|TEn`_G<Pg21PNZa2=@^53iMZQJYVSu6F4O{3gRxvOV0Gl$Tl)J7Bx z37`+`lg6CKwF%;2RD*EoL=A#Hc-%B?{yikKyZgQcx0+1Si6)o{WKJCyz~l9&P3ai2 z<U@HJBWU5Gbyl<(xCRU6-wL4Ksmbe;fdRVd4r24H)~He2(BR(aV(97`!rN5xLg*A; z4wG!jRhH1?LmSRaO*CWvYSiw-Z+W&}DfJ>us~Y1ncKMVAyyqaieNQP`1o%-?zxWIu zG^oB}fw7m}UDBu}*D-XjI0&K)Xb3?TiZhqMRx%}_cWW7{W^s&QGAvA_+@hoBZE{-u zU%#H8fdA`Zaz}&+$VFC;nKw1kz><%(UoLEZ6r&Xx?SPRLW{eTNy<NNDKSo&aA-{>d zU;Z7$_2STl5#GrQUw1dt1On35*SCq>2aeT+1JRx@9J;n%ojQ$`a|lcACuol3xrG+r zd6-p3*M2r9XP8o-%V&Gj7Z2x=6YVelqoEJkQVIjOnpmN`Mt4C$q0E8QD$_>2!?2+b z6Pc)56U`ky{Kc^K`drH1G_1TV<*C9|OV$O>*(G0$*lc&}Evft*>OKqVUiMk6kw=W8 zK`hmpV+NQ&d2vDpNJP>Nd?8Ol+=vp!SzE7`#&19KDF~#_Uc5M1zU>L<fd_qRnNCFe zs%>Ck3yk6q)Q|JfX-`0^hIBGbsi&KrymTq5H&%JjGJ{;HMVivm$(X8MkcQDze;_|S zx98!#nQ;bAYfOx7#5s|RN&6GP&)BUm&LqG;dqeIf&m2t$qXT-^ZASR_dTUTaqt^CM ztNxJOSZob}Gf1JCrn<GHtwr?>yICD?7$1J9{Z8Bd)~DTyYJueXAbPAy#)!Ky;Lle7 zlP-Mp1;|1*u@=zO9BX}Y$&mINS_^-YeE!>NtQsd%B1ox%M8O(~`6~pdVj3nzhrWK| zq2sUiU8A)I+R|>{KK{`0708dz^62TO>>ZsB@rXtBOUX0Z`ed7b8vW?sf=9V7^7>Ix znwr8)i1PQ|vQM*J7gbfn*jQD=$fEU_MvBzR#1`W*ulsfG)2BJNUU+}&;~o8RcZWNt z&yQXAm5P7>r$$EZ7`NriJA_WP1fbzPY3MuFVm3ZB7gd3(g19}c->r?`)^VGi_|wpH zy3h8C{&VN}<A?3`KPChOM@6lH-VL|A^!)=q9`SF<>py4@O5un6u^E~FOu~O^^+auH z26)ZR?)UKbf#&~aJLjv$x8%lFt+2aCfD95|Rrp+56A?S+KEM8LGlkn^^qA5tijz9D zwamE5+6Y-%kbmb>A<TsMH_gbDg&*h674mDo|7ZBil8}Yfe>}a%_hvI|z+c&pZO>2~ zJk>WFzsDQiKHqh)tQJ$cR0Q8P=B%?8*)tZWD)=4ik3SZIZocr~B~x#z#bP|f7;V|c zt5Ro#oib&3{`gOAWipybJ|pvUc%{?dw=g~SY&iPg%}dD?ggzX{giZy|pR>%u+jHl@ z*SY~gL8CX#L5m4?@^!$;*4lrT((j5dMZS?t6S}#5^!xKiGPU>kUu|-74gL2!{`ju) ze;*f2{%#s1kHa+)OrP01GuK6xg*L%nV;M>Vbp2nviSAX2Za}6X3rEWsA#z^y(%-#F zEi7UUe@YP5h9?a9AEnN}#o>F+98g1KOVIe=v=&T2sv~72`i51d%o0}SfPL=&@zq{F zkRX~AgC|1Xg2Lb>{D8qd>mr<pYaqlC_v#z7)6&ypfSsv`{Af?Um(aTR=qTXS(}{CK z=69}IR8-WO*#!{=qoBgUP4v5T8V^x|l#T!9w|?_xRfbr~r%~u2W#&{);ZU_R{R+w^ zW7g~|dLbVP83lDK93tdCh!SJf(fn>}XSzLG(me`F%FGclA6Z;v|F~P&#i=qbW4{m^ zM=AUO0^T@Plr$CZ;c=S{HCtP_F8V>O`+r^Zj7EY^)DL+bGRVplJt9P<oJ%8<s9_B* zPJ0V`gbMy9NGEa?0)n66l=CMRMUfUoSj_067b2LDops6C;L0T@R}8CNK#R*f0%C`W z)=S<zX^i|C4%eF*ElIbE7lJ#;$jWHX5mWcu78mzn(cdxA(J&_c#19wAgv`*B?uQ?k zZ0S?#fv14HL@bv#Wq9=;N?9s07Qv!%V6H0@hmMX?pNk`tjM2~}iOsOZ8_z-CCv%x~ ztPqbfG}5~2@Kg2pu2Nz-EBo6sxadv#qs*v<vaRgS))hQ|FCy~;vba>jaj&@uQxHmw zL7Gox7yDW)r0CesiI%FMAZEBGJ&*agahvV_WU&&Bz85D<1dVoo@(;vJ28Q%~-<-f7 z7vk~O?IZGAX#K!Xzl{g7k_L}pJ{P5gq=O7iDruqP>GmF-yrpI?<1*wxkFsN4M|L+G zhWQuTt8@~l>7b}@3xitqJCAs-J|ju%en*H*#u6?_)EJcfDktvj{X|r%pzT&zLK=%{ zw7_S8zr)8K1_)*3ERC2mq`3jl>4$(;#L<n)`2pyaqZ{OX+KU>Es>^fTF|mL_1ySyO z?ajmnjT`$=y2dadSgS;?0X+Rm4#^pu*q}DSH3hx6jCOmCx21~2E4_W-HC1rP+a;qq z=w^S>sjiPw{}C~-^jrCpq~@w`#9UkCQjqC7h)PF-6Oy>YmmzqN5iY4BXKR|W45gw5 z=m|`Re~5U<i2Vx!Ls4|1q&(Fe-8^zqF|VgUmVHa$!GHgCuVH%|Gk~Xn7Ke_^EwDmj zoO11&lpK;{8Z~0H%u)2HiU|H(YtQ;%EgafP7V1#mQ(o2s%@+Sh>JGavT>T&G4_aVQ zsZ|8k*$nx(3?>r~M05%-sXM;kNceSc3UeNimF_+|Z?RDjw{Y^XDDVYJ_pR4zE#+F1 z(q>o$YtuiI0hw)p1botc@C=p)$Y{l38>i=YPX?fy6y=U}O0*)2&3FqsiJh57{O^`y zG(W;u0{r{Tgo7Xu6kp~os84+S{$p>*(J@OeWo4ZcZQ+6}9=X`|aKCC&b}@onNm`se zR;9!^3d@Qe8s~#N;%-T=MtjWD>rSo|(57w+llwSD*nL4lyS|bh@Lk8e;eP~t5|<vj zRSBxW!D`qm%w>pY&BxPtcp^uyWwg<z^>~UKBcld_<kvd%ujDac!5aHs3!X6P_i2vU zds@4fKN9q_>`vXEhbaC0Pvpyg=e4JIPim6RM22ov1V9i3fhqnTSU?ICF1`pd^#v<C zT4xC|OaidT-thgDvw=~3Rg^8ak1wi+)(0t!5d*|)X%ioU*;iP_FYU?4L8UO4+92*s zw*_$MBF!V9irJ@f_xFTld^r)D$q)mbugqDo4W%YPoT8LSjanONv7j>T+qaiROtJxh zJYV6n?nO#~VlN=@<Yq+h2NW+1py>7=&}aN;%W;~mjr#p8XGm;NlPh$P@NTv4y!Ajd zPY~#Wcv3u9<t6f*noVqVl!6D8?LJgn8inaxcEo^JO(J#?vuqvrTmyBKpGmHI@Z^bO z;$eXmIJd8#-x(WIPHpAOp<!G@@O377C)51=undqzD%(9Mkb$oZ(R+dt!u}__W0rt` zO^QZTXHKwaEMG{M4ziL*ZOF^z)Qb$Ar0|QOQ7phfSNGWq<|flcoTOS@?>@^ut0O;< z!4Gul`;i|=NaLx9%gu|0X+xF2xHiaPmh-$sXe-bZk?H~3E5>}z;0W+vb*MlwEfuZ4 z_hd?gGkU+c*q4b!=6)re<GWF@fd-Jr{L?ZXkZ>{NsL>lI?jF@iKwQ8iU#bE?K0jGS z0aj=^Av{_bD8;^7AanJpfS70*QkmDhcf8a0@UI;mWc_`L3w`bix<3^&W-kWEl%qwb zp(KDc&c*Y$jp7dzXYC4NTFHytx7GY6R;IPlix5ic_`GJAxCTJDAcV<FiD*q>`Wt{Z znAd0xCV~=(!5{5U{m^(jk;rMwYIka=so7Bx8CTp1Mik->Vb3qK>7bzP;@p=ksZHY? zmqfp7&UjYyUTzkx`(oFm)aNUVxaEm$)Pv&U_`_K|(W;7y8J+on**DK(q+1ieDQUP- z0O+H-)E4{ve}<hyk>viRXu%-cKRwK>rLN*nSvJ%D?*CR1clJvT-6!J|6%O({-y!@s z%lXs&G9HD7Y+&SRHx^@;$#exWgeRX_Xqp*8Lx&E{o1S=m*T^BP^3aPr%{T>Bx^8Sc zjOo$bh&R6OGZIK8FPalOolSVzlbZB6oE8i*glq{7Z3lE^3CW%Jwxg-(1f{;r%p4Li z991!by-k}o<xd+bOOB#RZepJ66XyE&-Y8DW`6Wj{EdTk>>jQI#{Q2Xh>oo?6Q52@l zXV`z`)>T!w^46`Fg2@vkHcnW_C>5WeQ7#@tBo49g5{BU;gG6-%;)Ie<UMdBN@Sv_f zmmkVRg{*05+H~~ODJlX9e*6afE~+aC@pWvt;PNzf_W*?iyHkN0^_e$^B^Zj#5j=Y- zRk)9jPrebF>#7P`O`!Ob7fch%VLW1S_tn;}MB0(oOf~?BtXAd;v8*?Dci$=-7oQ$p zZCnio=@0fv%6cjKaqE3#2WfE$uGViZ)=@W5AYXFJxU++X3>m;6``Nw}dRCOd0Vk@H zx`bvnWc*Ah&-X7L$P^4gBks{Q16p>LcBKM=$!JI6hf_nS`W)|cBOA&m2fP-KJW%V# z?w>LH_ya2?5e)OsHsr`=AwY)n92pEoCq9<%T3Jb+VhdYB-=}yHoI8&DwEiOuig+T1 z?heSf_^9EJHx=#K``3m8O@C!2PC0Xy2E}a1klIX~4IjiLRv%G~Ar|qOj~Xz}L{wnp zw3PgO#|O|I-4!n!Fq`IorDZb!K@=j2^0(QWquY2>_Pa+x1<p4^#quI=^h77Hv}UbD za4yprd_;byH&Ya{Qc5wSf(}l<hZ&>HzM8xPGElMgeC}rMZ~jWA&EP{sdo5Fb)UVz8 z7+aQ~xq%yk&ujjR%DDgyir%NTa9Vdp%{_mg+$(1TY^-BZ9yK|@4+~G%ntwb#<pssQ z;ssizdq+UI>GSK|b!J9G8X1J>DA0f3UPLitNCbb1dY+I!0P0@kE`2=S+r})E$s9D! zC`%htDaZmPUZzYl&*<}2(ZZ;t<hCa>q*ATL{CRCn3NiCOA5JP!rWs_CeCGV$pGf%R z)R5o&@=Zghe*Tfy#TfdR(cRal(eukh9@wzmfwfn=8tlHmdb1l}XF3%UUBQlWb@vys zdW4&F3K_BZ5yggAqix|BJ}}k+5+dFoMK3W`5FMHf;z2e|hG8Hqm;(&fZ_#4U+i~D1 z_d$>0tHpp9r%4$q0V6P2_IYt~N8=`a-cd&X<6s+5YejNWlHGA5XYqPA_3)=HaN@8> z^z$?oHz*+N#y5|wpneqVuaJ(Thqb<Q{(Lnh<fGQN@u!Zt&Lt!NV{^*X=#d-gO^far z>YV<KfGnyYJNFh*>%Tm5{BUv!I&GPJoPHEvB=-I_71%<q66B&xbVxb_Te)`F5DedD zOCJrf*b-YPLZlet(J(d(>ZhQ<ny~%v{B!4GFBj}dOcXP?qm;N>;5V|fh^=1;&J1WA z=<7~jIMuj)@7|hX<P3fsa(+sGtXbPN^ZXI)EWUO9_13_JqyQTJ@$g(t50+)k$jrZW zs}008oTCMKD)u#9r%c$9+$;}2LKM#7w(hvPNjlV4FfRxptZosAR&8`3XDJf$s<lK~ zox*p;|3Ty&)E7dZQNqQ5cl%UJZD}&U1{XaQa8^bFbo=V+4o;Zmw4mp|cB!jI4VaJi zo$Eic_=gd)Se$XXV+dPfgbhx$k|Wc!WBptT5kBoX&P1cb%W%tNS1*@)`-#uZ8Z~bi z`Gk=I<mMHV3e-fi9YE@dq7V34*6u`2Y*I%B_dmjUQSMed9X3_9Nio0Iu2sN8zN~n2 z6Zrqaa!z&#K+jD=4W-m-)la%?HVKFezt3yhW}iue7ZlW6tf@0${k-t%?{+nNr5G?m zsGQ-($N;7+Dv}Wm4m?8$mnO42j>^fLIGvB9<kDT7z*YG_8c*$y9e&M7-8h<p#9-7D z#Ou&4>d?OZWE{>EFKl)yDF7vjwpOPm$Kyj8{H$t~D$<|mjc#E>D95O1d%A4tlDhf5 z1Hu4>DR*`GtNaxwwn4J#R?zL2Oh2hAGD)a-A^*J=F8ljbbbe3&B721=o*I|Xf^sHw z?2_vIbcj!kEtBmgFr-6btNpCEB1dP?(4nC#8WxcQ>$6aZB?pthF6?AYt1p;<6H=@h zrAxy-O3PL(U&ZYgyb%yaB+?mMu^K0u>Q#0Rm`n!-UrAG6nbC-ic0dlMP4vfjk=ez? z{ku(OTw|BzM^rM!vI|`OP}))_Qu22dg-8T-zX{YAG&<Cia!>}tW!4EvtB-k5Hm2la zXOs)qE>1yf`rUtqYx8H7IqCP0-%3e8e_o8>YPtHXae_JLP)-33WDqmX>d`1$N*QSp zse5&beiZ<0yF;>&*;mk$#dvGxAFF*39-nh2gso55;0oGb8%oMCy892X!T;;vaZW$i zt6Q&u(iF8bMwjA1At*2K%u8N?4D#?+*ke~s0ST{;<vZ<X=poBbm;n&{>frZ*U18FN zw?gJqa;4DV1DS|6j*3zW5y4DBTzr1-H2(CmrKn0KwjSED=NRf^N`l?9kBjVvV8w0r z;g+^WEy3ZIwN!C=h9JMPN=BxoX!GDi1~NY+>y~Il$QCu={k$>Il;JO>)r;;1bErqu zyUl1MYX#|;s2OBXOB}N0(o)ol=>griY>LMGH4tP%W>$UP-a~d^Vqzj*U%dV}@sxT9 zxpITW%21ba^V#P_N7b5&2Zq*+w3aua)lpE%?YKDzphC5?nx419sGh+r!j6=YK1@E$ zg)A63=B5!)6cDV4C&&ePhh@~dEq4jH@y6lVnlcd&63^veWoi>*!-i2iHzSLoRb-Qy z43I)vOyc)0{_?RKDDT+9qsZr_Ly`>~g1mtA$XM5rIrjwg5i3b?Q}SuqkM4_KBo;T2 zjbNNc5)%P!boU>VjcR5*W0BYZ@tU(ukx!6LY1U}e{rPzIG3ahE<-DrMuSkKiAB_(x zgL^V!CzDq)nMJ?TF|ktZ6HDVW|I^LSmx@(9A!H3F{JHGN75GkiW#~Rim{hv3ye$K8 zRug$<jn=WBFuGd~OtxKQ7m!`{qo}7a91@Q<1OxWfs_d4n5mH=m+I&{68oXU*A6l<8 z<7YI=W!E4}3D+=$0TSA1_w1hqTaeYi{ZtY_iVVippkEZqmN#rk4mk&%d5-%T>&93; z|Dt(M6O&pv^l|MvFle>Y)~ZHpArTp>$v8||CH7>Nh`_}WjY=j_@B`BLDa?t69{3m) z64F-jhY)M*u#f{S?a0~l=dEPMhvq1Nw(2DyppP5BunFJ;5oWAXpNB$gCJttiU0t=o zrx+;RgH6w7G4V9lfN=azN;B>R3CN#0{))K}&Kw(}WlbYFcO}Y(F6GUcrL*82$K5Nt zeN-5Vm5}2ZqG88zaSVsLvBRSNGzC&zix-j<JQ)9uMddi`yEm2iRIihUq^2_Y?8=(W zlEnvEUMo#VYX-K285OrNYFpV-1xSKUf^AXl<hRMYyO|UxmILM+nO0XZ+e~NRyySmP z_r9ISwT|Y=ah@H8s}q`;xsd>pR}=TONVgl)^om=Vd;|F605Y2pa4^11M4?e>!gO^d zFIk*rUPE|%ndy~GD3l!MoR`_NHIP!AksGy4Be26p-2IAHZ+-dy+C{Bnd2>F+|Hu!P z=b!3W(GHVf?Z)mUW1dC5q<fM!OHBJ{nwsn$|L>U`+<xV1=NdnQvj1Hfh!T@S0>A*c zd>BF5a3I?t`R;m&2FGx|aP5{uD;qkwUdezB`}Q_#*l<Mt_!JO0SwjlEqqoPvaqqZZ z^sd#ZygSC-{aGCA{#el<f5$aZG#&lkKJRU^`pKNi?+*?h)PYOnWmakXB7gh-CWFdG zuJq~}++Js7LT>Qg{;t|B3OiU@toDia^3M&9&#k%Awo>bxWuFG#bvW#NaMP@$XCF2n ztZp=KT5-<voIdlWm1W_w<^;dnea}GfZ-I-^6$$J!Z5+?W_OCyjC^~OiCC3Do%W@gA zj(|A)x!I24RIHMOWeRh?uOw(VhcuvW7|gnwc_PTD_|Jv<z5n&^8Sc9T$rzDfXjsiU zb+Tjg*X<q*$V`AA8us$tJHOMXJ=^E~_&5D^UL8pNXLpo53+KN8{4fg6pQ^ECS8Sjg z5MLu5+cQ%)0yj-YPrPvif&cq|G$;A}@FddK&iDgdF_k*pCM*FqzkQzXxNMp^*)JcV zKVtu+{*Cm<7;KpFv;GbFaO2;s`}4#2`(L<t^yaZjKmXV-|0CqUum6V52A-fgWqZ<s zZa7g^CM$tm-nu^W=jV&IIa~LK?%Kkl?sGzoWb;~0^lPAMX3_0^XsmN&HtzJC(kCUh zyYpo4BY&(qT#e}4NNV`O&Oi2ODVI1<vqxQoK)=1}bL#8InWW(kcNQ2HBPbFF97ABE z?ESx)eyE}sS_^2*Nar+#$4+}ahCj|k7h#;&fE2-`j}EG>;qf*a;<g2=5ott$Ak>EG zm)BRj?yD!SpyEHhnuPlM@9FrH)w6It$P~7CFEi*Odn~1jCy5J$BbgaURg^koM~{$^ z_3tdPEQk=}FVex;-eo7eDYkdayel;`=k5=f6kH)X4t+(i)&+dsuy@!FT~~}aIXU9a zkiB2%Q}P{N{%07^s!23d%)m!hH|?^P=qPq2f6Oy3%l{?-H8qRQxW5eUE-C9P@C2=e z5cskmiRN!c2D4!;+gXQ5+a-IpO84sj_@-(%Thtpn`X_DfpIb~(APh1WU@l-uAsOEI zxpzI&GtAAbA$7zp>7^}*FZ@Y|@vm;ug~)(|sPecQC40l$9K}IEMw@7uAFIB@Sprb~ z%C`QM(M?u`#so^jRRXJ?bc%zl=P)c3##NQiudn`gVN2iM$~K}ZdgAtU_HkF84pB(z zjNH|Tze@Y%ICb_4iv3~wqU~mjmNs4Vv`mXVp5J6-BR%^Xs5f#yN3m@~#BpHryf=>d z89*;l$wrlMi7J+5lD+4gcv+2NqH7B^%6p-n3Nyp&@#l5ych*PEUoF`&YR1xO2)cOb z@+CQ`i{C!oXjyukLx%l-Yew2-%nliFw-#EX_c;3S^;Hx^hjl`&<6iB2hr(kU^wWh6 z9qLh`!-9!)>q(#ZlYA@DsLD{uMpM$f@mCORb@m0*ILK_id=N5_@#1fRH~DiYVuqtc z^PWqcGm!f(c(s`12q#Kr5^E&d^qlB-ItVurX<P{Fv?=EWS4{KSi?LL^;w*RHd*{#V zzPVMa!N2{u;)UBNYVH>m`G7q~j5OsKQx8}HD~fjO^T*PCV-C915x--4-kBM|hFU;u zqD&U-0YDthQM6s0^-jlRJwcZc9cr<nrYAd1FdYsMH6n*xw{vek8lt@cP)_x!^=Ot0 zz=?Hiw<#=&lr=${5<h|AFilcf%&3TH)z*C;^oGty_FACL(Gz6>DOtJ<oe3v;dKK0U zMjvKQIS%r%iaJq-PFOE_27u`0m4U6C@b->$M!u(t_iih(NLO$Y7)T|webjClG?z;( zwX0k#VJ8GSMDFu~_!N=oiLZwggnbsjIP>^DA0t{$BxsR1C?N5ovq@oMy3pf|j6b2; zG!+8@_D@W2Iaub7;g|;OsBEan?jrG2lroja<Zwv;M;zC7(|>AU{qr?=edlDLtz+{Y z)D%&~l4Zrp2$18b%X=2t1d3@sc}dtSzJCnG^O;5Wmij>y&&XKz_U1I<=?R}cc%;qr z4Z_?Hq0|}VA?vzKG>ysZ2ML69&I_v(WO9>$#%rjmN+_QD`Tbm>pkR;}u71O|Qv<2c zMSFAS&YkHS5pN4^E3}Uc9UFHxHNAVk?k0*YA!o%k4Xv|^LW9TVx19ULI}_*A7(5Gu z)$i;3Hh`deHBNzmNzKkrwW1KWOY{U`5f@}A>)0_aoDE46%6+^7`io1F{-*WR(1@qh zi4)?%t0*}1h`%!+)lA#3KyR|$kljfUGj{x}XtdpCd9?j8F{u_@d38WQWo2r1WL{!9 z@35L8N}y@)QBbI~?PoN8?D9%g=bHpnk|QJIt=Q{6fHI35O@b3AbH*HW(~9~r{!p<n ziu-&Y`((L-2Ry$mBUcrmdNFqRMuYhP8wsI597=cpcKqODVzV&pq9>4%R={7oD8zNy za&kGU@duydxvZj~CA(bs8t9C!%*dhrz_ra41qeB6SV9=Q(?D1c`bd8v`awZNN6di5 zq(f5<*zE{;?(y^NSmdOpUT^#pKhe$v22ln*|2%yyZ3c#eb(l=a)o96b8u_4<swSzm z8|h3k2oh$LaVT8*{I59E5_L%{>e!+?|ICYYJk$5nr%y3xn`B6JT|@+G#DX3ApWc-E zkyE$xxGrq!(M7hJ$mKoJG2t);;=>KUnTqjw*QnWzA^(Rh_$a>u_|(;LkxznOUzzy? zw6y>ak--Nc91%7TTCnA#L;+Hkcz8#q-=v3Z$+10Oy_JU-q4>#(bn7U4z0kDGpO;5F z{lAnMI@sc|=p=;;q92)ad+qX%L364r$&RwrdkP({)ec>|*g>mbWfF@OE#ynp3fzjb zR#7s^i{lz}HCalWVsPJc64>gEgVX8>2QI`lm9ro|7Z<Ez1Oc#5T2)vrc7(`alK5#$ z8L~5P#)hkvFP2U?Hs6(H-kFczldCswHU)2j-?N_kne!?usy;J)ECL@{bVKJ^K(Mh% z{ym>tzmo2Kx=DZ@;*qt)k&0^+<r`|EyQs%M*4*;lAN`sQ>+XVg5f6>ESW1CoM(S&} zY+08t%|nkNTtz+rda$H)Ag7NQKY`OEAORSn!??dO;?zRBNbA;BeNpN4PV9<mLq2Q& zNN7kP;O)G45*~KJtz@VZ@kAp|k@W%Nr?4I3K~Cm>u;<9#T-DRK+xEX1QjGEJDw1&w zIxg2^n$r$UPTSAIoR|Wcxs&xoh@6F&U)`kBYMO*-c3?wF+pk_UzFRR50zHP2`d2z7 z#ccBA=$t=_`d<Dz>}SIqJkRamf~r3gn9gh>9_!5ei4Ps$v75Rlr%7DrmCFofC})_i zoS&hyC~FqW5_e_JWIupBB0$n+fdOmQbbB1QbDuOHfcatxlD%K%cHj?pj@VK6_H8@U z@fr;q#=JU$0~GX0WksCG6qb+wHlpclVvsVwRn4skj2Jf3&`-Z~>C)piPXH}~0Psc4 zU#);j?j-`5Mx}KX=^Fqua2XpJ^+5DA#5mkJ*H8$|cw*rB)q_te3~l#b6PH@9Zj?d_ zoPT#8fe*{=n!Ex_+_;B*Aex{WtxsijXnL<78N;G*v3>N?u%8&3fAfrQU*Gi;po3}0 zUy4;Y(kgs5k)iV{Ybki`orhVua%$<4@A{>RSyiyg$%r2!-K{Jvr2b^sZ%0m&xC>w| zabLm&KLBfMq3A!eOh(**kox~#ex+EB8Q)x11QB4XK<|nz?AI^vCSrFWtD}d`&8Oyh z0M{jtn1bUE$l<K5{aR6u_GHKsxPV5c1s$6hYsoqb3MN}BR)noFtP7;fIz!&uZkHhL zO58O%_+~;NKz}QWBsnw-FBoSRvvjij-?y(E;_1mXX1Kwt$32gRJbWQgWK5WI@Ni9! zy9P&}169ao47MTd(J)11A)g)%qG(|k#Jgf%EPM;8zBMI{ZqC?S2wp@nB#x?lXLQ)I zTu?+69wcA&zJDGX_5sK{2EG*%bdSpo5sPgzQ;|eSonkce=+Boo_1iCP)rAysrIN3~ z`~O33qr1C!-%35sb*)NCs9X$c!>VW_9;45<ub;%&R(!@}SEO#`*xOEx6uH{~zv7tm z9y&{^EN#ox+d$n!f{`@!;^d^g#JjYCt(LB&DJ>wYNYN&Nmy8s-`FFmw1e34t3+iE? zqD^!lL!V_fg0*J5bdO9<t0kqp0Cw!$iZ^~tGi<<Qq`V41S@|?V6L2%1%vWE^LRZ-_ zg^*9+L|_{6xb!MaKSqn9NuWuQaePu8{b_yCoG@NWV4dXF0^il;)I7Y)Ws35d8!9PN z6vz}O*SCE}t>@jKo%J@N44sbOMfaJv$XlXD;TCCAWO6IhByCWLJ`Op~8<+A<>|uEj zd8+;96{}i@cV0t-FBXX|U4BTT{r#V6{?g2=Ij^Ai(x6bGlxiwq!PwE&W#m{?WL!t{ zI6GJ0F09j}Oiv|Ctm`<sv*z`6KO<D)sun*6+xUA%gPDz!)rOS$w+^+Ge2<5zm=F`K zqUM6@4?qGV#Mm$3g1=FvUq8^zqfoVNsJy0bynOkx&8|8>JGoxk3;&hTYA4NO_P8Qp z8TH8<^7FjK@BamE2xjd1d2=42bCM0Ej!{DQpMS2<|Ce+5^XvSd0|fv6D;F;Qif{~X z?+Sj(VRkN^p@q2=)W(gIOOEW>ZT|CDZ(RAyGi!dErz%Sf<$#c9B?3?yuA)X@nEUSa zysNee_PVFQowq*!zzT)B6iBIDx2t`E81`$1*W=(t;{)*yG!Xj+3XO5bPbp58TgROx zfvIMYgjE0yn6TSFy%%9`06HqHYQ&HSvFG*seGxxfaaLcJ?ARLbJo4w)x}cI^VKHlb z&7Xyc^(IQ=?fickDFihezRO-0TLRg5EF7L-!34mY$08Lk2HrC!-5~Uf!MUjNSXMCi zSg|<O3&ij}p5=B8;$(;_x8%wE$n}I}zHmzvaCxdrUOuc!Gg_6M7@yIx120xlxT?~c zTnO*d3e>h*j~=h~e!0h-w%jAy$@|QjS~6lq_f(rOB8JUq#3GYGNe8ZK&~86<EUZfU zv5x;9m4)fQR+G_(&=@vDe(8_sNJg!A1J?sT-S@8dg3CFDZ(K5At^a)t-w20;|Moy^ zJK5kV6*lkZF+ciP@$544yB|+T789AIo;-O{JX!FoQIPMZaEnzGe00tblkjJ4d9XM2 zIQY(Rz$*l*W3GOXNG_FwL@F8HA948qKX5>FaLUC+rzq47C{3&L2nA)JCG~dPbNH{X zVs^`0mRUrSSDfQA;(-wJI2}oyNHUPQNyUpgK+cHbMZ+|+<$`^Eo-C!_kd24sg%>OH zQ%Nb4u`Hwv%FR0cpZLIzQvfKIFnH3ZQ&&1sK~^i<YA7Tsqv9m<X$E^`9Fs*o5(?>< zM0zLDTv#XC$T*WZX&|(7LDUd0T3>Z&q%bBH07Nr|Piz(b1*CIDz388(+HKj1f8#~4 z_eZK$c_BzbvJ=ahm^~*2#NpXvMcO7i<mI=*NXx!M6K6C;{=!Uw=!kGsDn5=|3{|CY z$q=L7bOZ&+&D1dn`TgFhHIN5m?7w}_6=f%04cq1X4!N5A41!cd_u0+73J30L#p(dy zowH--ob(Y~f!Q`;+KBIUl}JzUm#R>KlEKjh$Vw*qe{WWU(1}-848Y$-nD;9bP+g&r zkX^rGrZ35gr%@o2!qjea*=gs&p5gYTo&e%>diYk|e*B)3=tNMEDo$_!B09qzJHED` zG2CQtv*QgDk(bG6sOS^AcC|O|gFuh8be<MN!a_jU_w@sWytO{R20L4BsGujb0TCm= zf}9h;y9uB`!l<lJWB5@giuG7U5B~SwJ-Xkxd<DnLP7UDobxV~^s1zMlfgH`rBq|Ck zL;G*(<1W;hydsJ-<0UOPsB(abZ{72f<m_MsfMT*XnmO;6(EFl!Fqm_<kC;S|`EoU6 zXJG04Sd5Fih%$uK`as4!u#*zL4_W?0Gy)|4fRxv=<zN|mby4|@H$Fl6C`BBrKqn^^ zJST(Be?Dqg7uqfXC`8q-h!;`UsFB%3`OZ@_!|DJFT-RtxUqQ8{qVOyd00AeZtWdo8 z8^0uy;0*<BO1=+}`1?1P2d8LJPq>8MV{MZ%iG?{PsX)QCw2lslKU}G5Er7wQUQ`%l z;AX;olEl02BM-G^zC{);TfVsm#3lw*G{<p{rr@-od>S;h)7}~#a$VG9X?bBy3<bQT z3I?{Kh&11I6(N%bA#WgE&iv~qIjD*kKR9x;DXEQOsC_2ZftAh5@0ca`j*HBs1(zMJ zB7VU<Mf}ZKg(K^Mm{U*`DBr&~S|wcN2k1{|`EOcp@=IEGGeeKAtnb|~l02s=+&0l* zzAxUM+I(PYG~b*Td|CCZ0;1IW=f}&CAw<6dcxkDKWWnWcPpUh@rjJ8VO!f6;zK*ej z)WngC0+>KiT}I0fhA(>i)Ip@p)bE08f(jIOj{die=UP-Noxs1S6z@6iAKUXe)uxn| za=*dE$+5Syx?SzYY|M#wcb7z%E;U)*NOwh#yNfF$U|n2x@||+#{@yrg<VQySdK0{V z#dPI+3SdezKIO{%;)SZ$PPN%#zGsw7n+qFz#Wf^nL-Cj+zqi0M?Fu~n!Hh>)8yjMH zTwTP!geEZr5)%m7c}|VHX*0ZW6BsrNPJ4Ts2rmpRXm&*ro=%zp3mh^2l;a*NP+UWV zNHGPkiZZ9UeFP)x1C5^cQY6@vOD`}}f)uV3fxRbd1lH1080Q^xef9eFIiaZ0_X{E` zfMl??<>jOErp2`Q|GszMbu?zW;~fOPQYz4m(IjPU$-(;;SYiPD@iu@>rd1fpY9!DV z=|5!hv>SA~tvQxJx~YWDIE`ftqI)OlX14*sU<A$zp~KbrJ#y%rWcQj?dQ{K3mBfrp z>~*0mS>#pWX99CRw_=QZ%(7-ZxXKqoJ2q9cxJBGHbLhZ2&kc5+sGfiC-_po!*soZe zH&B*3RIu2Z;+6LIq|e-ase}|W&a{d`$#z9I=C<KMAoGOI`#=}PV3wCU)1WhN5ZeNm zyd}H=PzjfQYg;M=;Q3!!>o)*5N<|?NS5e@SU7ti}-?`Jm>v@|84I4BNH&gE-{<g+a z3x41;QM94xxjktdo&)d@E=gbiA9U#RM8_oZ2CADn=f!`7o1){86zg(>sTbMO8B<pI z-}~EH?r+j^{!t7x%?lR!QG8PJIhE@53gz!?C(R$;Tg@vlArqapE$LOdUBdXNjgP2N zx7j89!HSmMS(iqIyrJ0+$bRwyoS6|+O@ifNhZZs>(;t0Kw|-k1I#f2+pJJG*pRRha zrHgv6-qW)8bI!#lSD<rgfxtDVAl4XjXu29D+6sE8`yjuH7X*SBgG#L+tuisbH5>py zjv(c50MG2h-vNuoU~Dan6_HaIp8ITI6?NMRZ|^!LGvcRmhPbssmJU~WyMijn7!VVJ z%bE3<goq3W^v%W3Bdky91SQ-9{*sE2rmivfPPM2CY0wBMu+%N>;yWatUWkJzJ$ zrG?BjNpDP)Qz{Z0S#Ce#6~TK1co#T<S&|KJ=1@+dDwg$@%Hoq{t%yxx6f2}3i90WZ zpxsN*HF9<V-JRj5r5}MdFT=)(9ud%NAV*m|gauY&;2c>a=n#S(n@4*SKzIfs;y%DJ zvJX#Jy_%*P6L>#S!==lOx(A!za=M<X+Gbk1YUY?MgG|HJL_ZBHi^9L8mD1TjhgD0Y zThw1N$ic4k>xt=K)l|+9f`W)C4}=f}aHan%Y?Ns=aNq!%%L&9xsp(}t>_bY=Htlda zqmo2o*{4#aO6xj}?H;1<P_d(x>}urk;kq34M91WeXjchx{5XLYt0>~$25@IiqFT3Z z-6Y#n0JnnrL$G8`umV1rZ#uT<4dq>FNB}z+%*`u-5zV+_Qa^5`hE++5YUa2s1MTrS zTb!gx=b^1axj329^*s%MJSyh6TkyAgfuQfuJq|`7c58I1($EW!$R?5oDAf#RIv|Ox z*dxthD&PXKK&ie|^o)2=4r!rR&2yKrTgi<4{0GG@UrR2s&EO2@9X`Mu;%GmHdjfB< zJ>*JO2k;3&%wPsyK!1vXmTZaQKpvR)Xc+XR=2nmLihbe&0aJ5S%PaxR6iW@_j_lu- z+7z_Hmr}NXedA`#4ZcKT@*pP2H1|X}m8OJp8<#Pt2c$dz^)At$L!gsuz^b*`w&9cm zl@)>HuP+G!5Cqa_L6Aws5lWV1z^_y$0j2Yos$vtY!p@xj^XDIOcy&qj`$L6Xulvsv z&N8sB=Q5^vvag!j(Iyql?1en3=!D`SrHgm-*wKE?vnYIJ0Hn*Q_mvR+B!s;yFF#8H zQpDDUeet!hjatD_Xk9pp0Th6WGUw!*CIFJzkvooxb0P_H8;?r9JNhQhPUlJdQDIW} zDK5#*&LI*3AR=78E&dbN21E%$2wqpkf9gLN-MqkC++-;oK=LNOa){`N3pg#^6^;0Q z_2BxmTZHgzw#`e|ias>Scle(MsYXqW0|$k7oH~XY72Z6_KGPi@iUM608C-M|o`3G< z)2I6}qLKK@JIbxYMt!2IqaPe&vy%s>&EN}6d0ltoM?p}9-n?xXPaKtL;QsDkjuGaa z2quxI2L`IkMEP{1L>SWc;dAs-h0fyO3cFyU5oVWuQyLKX$ArBH&3mWH$lnGh+L+zN z!xC2$-L}zV0aUKdd4Vir(*kX0U$qi9A1-|A!irZ^GWqA%@xPEP$jb2c&`V6|P>dyn z3HU{#Gy2P_a1en`bPWeJleo}QD(CD+6uk}LUKn5j_Y|r*Zxmg5Puzuu!}bRfQcPRs zpYMc>;c2?PNu*fi@$ZY{Kn_CH(in~}>pf~g8LR~46TcH6uGV^^68))@98M&ns`tKh zJ%TD$jy_$(wv?bVZv#K|`*cn<=Jh1sn>}12-u&@x+SUlCke1i81OUg!ubLEXm>&Ip zRW)GMsuWJdel#<FUk%r2xb(gK?PdoT^|<P{oZkNWm&RGAB;I}Mr=3*Qlnov_4cQti zy`JI)9p0Z%_WW#ve`K0+o`L?YXpUdz^e$7BYcsmh(|E6MH$<|U6i<-KGVBobA)toz zH1yP>rWPuQ9*WeueV*kF@<8BMbqZBIlpfx_FH)CQXJX2WHMvPH*<uHBzoJwvX5JUv zI~w>!h+q7YOg}zu!(Nh-kdeFdBAD9*39Q3G6%&8@-}4|d>;Rxrgp6Es%8!d+Nxd=j z^c5=^Yy7{r;39>Kw@I*zleuSa*Ss0s%8RoDIA>2(jUO2sj;1w7=;bd3C+k>IZqkF~ zCTyh&AUwkm7-zR>s=u^Pm35!}t+bB5Ozb)TaeY{>lopGzWAw+llQoLfk@uYi^$6sk zyPi6t%R{QAOm8`0yHq)-SWHrd@1?hq#ZWZ9JI5aB3=ZUCuqSsXlf7Q_YUIbuxIw^V zYo#5NZz7r)Mvv*vDxEoTsS6(rz%>oaot^HdM~p3-bLvAiLZt8M)2CDZ;<2al2FQ9< z*Lj3TGn+VtO1Vj2-w|Uez;-RtTn*X*RfbTh?!n@txE`U55D9KCw?Z=vWo70i`#rQA zh^bJI)voeu8xXoo%B0s`jsK`7RTL6c;nwCdKonIHvNRWvNs4F)+3nmBm%MPJdd8}e zZ=8I&dWNaFD>SS&uF|NM{m~$G{!P79q3Y<A$8L6#cuTcz=ONXZ*9VQaJh}=&F-W>` zR;4V144W*2>DT=<;sc%;9R9CA$S^g+$u&i_jdqezYwc*8c{KhS-DZR+>xj7-;5J3L zN;Opr29a159v%*0V~qjBR4^@0T{AVc683yTs}DjrAb-;cQt;)gR~xuQ*5>9bT)vWy zRw?Uv1ev_qSR&K<4!^a$7~IAWc3|j;-^mt}^(zsmbd^GWS)>z9ty-vcJF1_<5?{dt z+j9Zdlli0E2y+cNxVl6~imL&L;Pu5IM@gaxh$^xeIIy<jdTnPg7~(*PMqLJf*O99N z{4Wpyt9l80V{%n|kSm$JIu#qsWwisq%Dx9jl8XT2<(oI5l#7|5S8-^gAEL43CtMEM zgxMoH?~5ow78Ji@M!uGE^Mw0Bmx!ZVS1lWFmy36>iWa<JC~3tSV6dte!fd+{E)+j@ zu<I|&%hz+0D;^~mp#7r~c9tRt3g=K|^3rIT+sK~-c?|>Zbj_gawpA|hNxG#1jI>o^ zIp#*-6XJz3_0pE{n1GEKzoWtkzXX#V_Nrw}y@>+BAGa6LFLC*F$aSGK#{Rr9JjrZE zNYiQu7BhFzqHq%6MKB*{a5p<N!Hn#N<ov0#H4h+5c1AS7kw=F6T_zNJETjAjXUtW1 zRANN&mr;jDPr*wBgUNyH!&pCgBVz4ZN(lofM5GVYpF>ae&`rP`k%M4~%(JRjVMgc> z(+`CWqsq1%=0Fd&x3}N*YUEoLCgMZ5VwsGz%TEJ;D+E%})^>v*8=hcqgbvQT1dv*X z^-5Php9HOa`TBJTTyF*xPiL^DFsz^bckI|9N}Wiz4ATUQRSj~nA#*r1Js5|C%V!t) z7&SB2*D%hiZyc!MQqx8KW~GY1To>a!hP9hj%yxBgiRkR2Zk!ctn7ZCDRkfF+?|~LB z{u<|1=Pk_IKQ+r>K$d|^M7szl3kwZz0j-QSepNYP?y9v$-Ozm6doGy1BK5yX>S;=W zs0Wl$4biN*=Ekl9UmMyhuK$*>YUOYyZAp%~SfEF_EqZ=Cm<$#5!1@ad5w?vuOujX# zUW|C>@@B2eJFfNa-hI@GlP8@K1e+A_cXeP3${`oMU6V_C$jR!+Xh%6MNNLE}q^aC0 zN^1@`fJ{}d`0aaT$1TeKOx~mAxzCr*jTs;Kfzw*Wi@JWqwD%BTZIwdk#7HOWn7^B6 zOpE@Ov8l&C)Pi<95|>r}KqP6<ytzKF=9=sMy^hJ&O6;*=Gm;%K#!7HKfo@|k;aP{m z%s}TBQ}?`(Ypzf4u}qmbphvkC=5hnS-YQ<RZXM2kTz=?pVdOx08_I#;j1Rc#)#Sj_ zR~@;#4jp=0Sjd!k%)M4${>0I0QzbKQC?#+o!<lzKvM07Rt?>qG^$bMAv8bOandKju zGv|;88U;*0(hK|0<hG@*lq0<g97z@Ee}}S;u4}sQ$UTmE+fw#;RvNNr)DSAJIC>3} zPq9F;L(sj%a>65>I56Ch;?p&!Hk7w)D(Ap1%OI&S|HEc$8<!iJb569TrXBL~4MGRw z)WAuE-{vhiO7WM}j02zjb2vK6-+e9dGfWCtXH_W#F65kms5J2usEi2DJ`PhZ^fq@( z@`EU~>b0z*eCDpmVk4l2`7QUM!Moq}Z)bo8aeJi8n;-U!(F0<|%&<K}-A{N`h;*@O zDlX%ZkWicmn$@oAy{U^`K0U&IW<dRGRA3SaUo7Zfah02P<xg?l`w7;?2w1nxAxOAU z3KFV`7?*q@+!+!f19_uOcUe~K(Y`qUzv77s^;)>)tE<KMPm>L08d7G~g;57~7F8_S z&U)@K<V?bE(e&lI+oy~EbKACU_Tjssu2FXiPb?@THQdXT>aApoO-3xyXm}OAdq;w) z=(>RdvR{(|ttic9FR>Uhnw2lw!Dkewsw+jVA~hE64fXqdnki|oT{b88>t{)`qC|Lj z+Uqq=ns%wK0>iuO%D@E?(%_tdY7yh&6Q7<R=YLk%JW&d0ES*1?sdo`AP!%_N<jypl zj7Q+|BxR|~V#-n5#4(0ZWlprmf8e2?9WzRq#K9ECi^r}gg1&X0cq$NaI*VhhUYYho z{tDlk23uMs*>TT^>R-N8?*%YnY?Goo#aCL(x2p*-BW}#|Wg1E*Eh?zIORB~z{)s!B z#j{(C^}EgTi~D@afP<A2D1To5m#$OA5evE&P+x7h%gYxp%*Kp~$k{JKBO3b)8;y5d zah0lDp-!x(Y(qU@Qh-Z#){M*Q^B7)LE_ZGF27%P$&(C<13_(OW0oaO-T5%Z?NG<MO zq?Ng~poi3|4+*p9g>VoC8OlEm$bD1%8)kq{^uN<6V@Zv+t=<RWiXan%@DXzXY~<PT zPA_lV+H32oqi8%;7^Q+V8Z>P&fC+F*{D)ar5!SVUalEQ=9R|2j=W*&}F(HyhBsNsM zP3VeHbDd3eUgGZVM1n_I&{cR6z#}y(|1@fWb?t^U@pzLr`Y%TQM57@slFh^ui{}z^ zKXZ<NrP>nSSD<%@NPbEVE#L--3xsu;eu8mM{?@IgMX_rQ1r($N3qYFaM3{Qa{yyfg zgZCEc%E%#+umB$3j2blX`rvOCE4mjM_jv2jsN*PAIFo?lGAev05O*$78*+11wG?0g zkyd6e>wnXex~5Z_v+1(WW2Swx-)6S_+Ncdr)s3Ha;~0>MG{{8F{!jl(ZTLsw0D@ak zL#)`e>3Q~6ifs{aamX~H+Q(UK)zxj$wnMvi8v2@w=uR1R@Gj3Eov(6njp0mJY&+q= ze58w#cK8(9L_BMob$y!!{5$+t#g^;Wdo1!0(1OlER!qy#0B#!(=?|`N+?w34;hFgb zX_1uFwuhz<7xD7Oq&`|7YF(t}j^;ASV;6}DsG{?Ya^YZQB`hwMsA$*ZEDRmKb)vY~ zKHgkES9agXdMS2n39BQ6+5keWgu<bT&pl)_JLBDZ6f@Nd7>cWcR3dw1N=Ya+qlgNb zZmsb3#I*x2pngzfk@0~^-^e?@IgR(^zuu>lJnGAZ?h#J=3{#Ej^1Q<)WEmLwYP_Wu zD3DuJlBU{b%K!Y2wWn2x%@%eBCl-3=uE(pP8>$DP<xtk|o1D8WL^dDSse2=|V+3{p z!4#(1e|+iqj;c&Wfzh)Wk$NqH-bV(d>a{ZM>OL|KOIE>OcsQ~evSJ+t*h1HCXYuKl z1wAN#d*oS7Cp+1)<bBrdzts2*=`t%zo~4H>$-1=p(z$Vb0zhDy)&SVttFa7ES6J{F zrekMX+t{1~x*U4FCcV(7IWk2w?HK;(V&3cO_&d+lmMH)sU|3=g!BGQqS@9<KPQul~ z3&(``2ThT&QA0)~Z-#k~rYA-&B^|49*4aIWnD!eo%(3v&)>de&nBj}O@={<Xxtyp& zg@}?dYLc}tby0I@ZG$DfbceTGFeP!hC$M`|S(stQv}N)eckhHIo&KUPRC#5xfge*F zlO?9o2!Z5xEeQRBPq$az+g62(Bb><1B<AKM=7AOellxPb`_rc4DxFs~u5KLolyppp zoZ`FD8|*P;+3yKWX*tKvK>LQ#hD`T+&jlkQvsP8E?H*mvA!%v~@qR%|6)`*UE(xhT z`dP;(VB)^?P^BR=xibKb253^GuAXE{p?+lXQeInSH5uWrbH1eCF%cJtyiIf(ViJzf z`M_d#v+^Y}fc7iS9&aqeKJ2ek7q<X9QL{%cH8VbEeXz;O6TzPE)=;;q(@8Y?krQXg z3R9j&G}%r!%)MYu4~(1x2}NxT4Tl?hP-*H;Fx)9CW<=(s>MKL5a9Ctjb6zOB>}2Rb zus7hOzeA2MdDmGcM}(JrHOP;<c^`TepV#9l9&7r(6?LcV_z>8PyEfBzY&i+(!^SV} zE*IBVl?egli%tg5@lX??m<%B^L8h1?0Js8fY_qxNmFV=ub7^T0_<$y<7FD(`eXHSB z_-xcYkm<D`+#5HSQ9>;j`c~8rukIm9W58?9i@vk)%;3|CafK8p1P^hkbn#&KG*`%w z3l!5~N^a6Ot@KphsuWlG5l)4Jz8?k~P2<4kHNU@d*D1ciZJa9pOqRiHu*GQAwiXs4 z33Xfc(NU%n*G*E7<E%*)ZM6f`D@a*Kv=-dN8LMa`#s_GMf^s}6tWRR`ZAk)McZaZR zOEO%~$P?=<HpP#li{;=?bSu2jny<fsp57V-Nn0^cy+B{r)%ou|V>?ioOD+0=k>jZV z1xE1hx)diKFH))}T=(R)M7Qc8rgbh$QKWQ~28OJc$w90W-(}=3nr#}gO&$}I^Aa6K zNWuM~Hxu%}uljnS)?nc})b!y5mqC<Y?ZAQEfXt#wVD%@`Ev;w2!o@9pk0ZZP*H68D z$>MZpUHRzBI&iQ|gk0S`kIcH6yKS8Hy@pd>z5cfybtV-X;goPOs`n9Ta48?UIfs@N zRkWUBqx(<miChzoWG8BXA;>bB;>j#bBJqP!P7NmU35!!mowW{i@F4zxvW^crJ!4C+ zc~+o-ZK;Eepb0k;s?jvr!rc{8g+;pYjDulg{F&v(90X3sL7QeN43zK!`F{Jsmib## z*mPUP3qPj8##y&7;flX3+Ad)#ZEF&T=O%-h7vJz(;)#$K;a$3=GB6ScU$Y+TgjE3n zS9QM;jQoLfpfa)wJ(63{SDOzQPy|mBLaUwuOi%<_&`8Mzwe~K@RKLDb&OeMbDFX+p zr6jOiO`rrhAE5XR)YMv|X*SZC$WY3~$Zorpb(G`H_Uxuwlmmh$u_Lwj1|XpfN~d<5 z?7WZ>ZyORpdVE@{bxWFsKsl{h<e;&F=lmc2m3Br?nU@H;n44?XM9qQuc#tM~o*?A? zBSG>yfz@q*$#TsA;&W|gMu4_s#G7{zxYEzBwCg%c3)Vd8@{O9%o?hJA?=(8?A@lx7 zykj=%$?g4418S<OHUd;x6&M%-?Awcox$8}j>t@4jY(hYj2f?76yLxp5CRMR;C~nlj z-X+kdot3FHce<x~d<^VnO*b}`5NVe*b+Divh{;y1UcH{Ow6v>BBWv#%u^i}}P7b?W zt(?p^mBsUR=tGGN0nGgTCJ&gba9MYnYh?|uoQ_&rW=JY$ULIp~ov*yH$DA#ElK`L$ zEV2eOlc`VbP!5c<Y1~`HGtOd`4UQwHSb!+@X`{ayh}Y3%+pm-s;gB7xIRy-gSp&%w z0k>2u0>q02<B_8x$N~_D+!%?_)B3(XvX7RrrsA-F(sGxGUR&=0(r^;nM_Nsqv9*Zb zn3kG4fNE>EMt68El}YnYTCUg3Q>Ic>wtuuo{B)7E4Fl6ShixvIwjH5Dj`xh@{B57% z-rJ$7wMy4Gh_9V4)*&3<!611>QH$;d(>Y$6ev_D5Tagn6Hlo>S9_+I#JG8ie@(g$s zL+DHw4C}ss`O}^f7O7|cNt9|*;hdNMlBTxJ&jTlaJ@5?CRO3fTwV1j@Pp!?n#P-_S zJ2=<NL0O#`dp*2&b(+i@)$8}UK51kiEbHv?Ey8z<+Rdic6+|q}rLi?th>$HMS;2qZ zygo984g`R1xkyVHV>-OI?(j&1)C-OgP6<<d)f}Kc5`8qnOkC817a0C`e_JiM;Je7( zPFwr^!+<Wfyvy!uXN$D%^69;t@(Sl%a*FdN>t0^mu7~8|o*wV_@7cYAQ>{(tKy<SY zNoAp1gwx?P)ghWL>S`)k24iWt>KF(5D=rax08f3X4;169>!6*GmfCLPS{~l3u#)MN z$ZkEqeQHJ8@Rxxo3|sau2pyNpud2{iBVfaZ;k;xv;h*pYGKU|YHNNlh(0-oFU>dcD zUcGyCUV7nTndGciEwb-v^vp?fZ9*<aIK5r25!Rj5^!ItygY~lZAEJvp+TA5$>7<I! zb|Kj?^(h?oY=N291_;b_;rZ>;o~<}?R-9nj{fAWR_Vtl&gL%lpj1qDEAi}lD0wQ*Y zORUAc9y|JyZc$Fut-|-<w7m*r=KGJUX`E#W_teTb@WRV~e#<MvRR89!{@cIpKWj+4 zkMFK?9<;SL$$~VSwU>~iScm8Y4^F0_k{^TasPTXN_l3j%?_{$VmfvA*9GIyrx1ec< z4w)kI0Fp4&$<1TU6r=dg_m;kE0SHo^-~_%%sT=P;fm7)RkpL2yJF>%)KQCR4K~2EK zWXRA`F)T&GbuWH_;)US5^~6&iu>Qd!wGDB_U}r5#kN$f`-8!Zx`f|aON@vtp3-*?o zPC$dT1hxEQdNTISwy0VE{If~)+`%zPJ5&pLSu%xkUS=}uJ|#z-LtRv{5sK~T0#)zX zZBbVn`~!^GFDQr^`EmZ#24|U)n0}MGpD*<Q(}E_QrT`O)tw72P@Te(_I75EeHk<ML zQ8{?>JQgqR2?Q8SToO4NY5!74(T=|XMa0Yx*7?p;S2nWyg3?W*A&PWjj>wA#0-0MU zqZLyJ6e8~*#{}u`y2ZVe2^~tf>f{8mN2DCsF`_;9MI;9BMJt(W9n;lQJGXJurhY{0 z7)nnlBl!X{@JnG>z@0z5cgtGF{V^BRL_&+6V*pX~CB61o=eySlrUTbb;(L@F8>8J0 z(+yEA;*nXm$C1MJ@3;oYImC>~yBzq^8=W9q)n{IDlV8q3ZiAi%y{wgSQ$>6=Nv98~ zQk(3ntrncz%Q{RXKeB3)-xo}c!y(vxWTI@cgQ{tteRW4%)TF&YSYqFWC8QTI-o+h? z1^?3H{Xg)Lg$*Y{bpJGY6>FNBQX>rH^0EkeC9@&hI5=|9RWrEv>b(5(jFFsvy+>Vb zxJgfI-)HOw7RM2|@cZba;Vz<y6Sx~5&I^0+M5754e5k$ZNicv@k~!<cvm8X40S}U^ zn@NCKa$iT|Eo*?cgI~(U<+Z9YizdvE2wC!t#`R5o{e@vno&f(35O8@;&n+X`YP-21 z4zCL+Gp-!E@W!!b!)6Lg(q*{ovttym1C<LrSG!KfaZpv!LUZujfk4MSVF(Ha+t^%F z6^U}-^$&>dDw$D|%rwZ!FLj4sk~Bwgbdh7|j4sm1B}?6vh4k<_j<b7xl<fyHXOnRP zcNTr65D38KH)Bd<=EwYV43Zr?(H@2K*e-~WFqMQKi)v*(@z4F^>jcXMr8f@5kbEx) z$czj(lnc7r&(BW`xlM{_<lFLI%9&S|<M!t>ZnflpAtL|~GI+RC;U05OdwL29LdAOP z*y?7mGIngh6Ecaga8cMJKz=E9kD^XK_GpgYz^rZvJyo<gT0<5seVx6f?^t@bwzvXL zTMUGl#!>^ey6!ao42luP3Mpv1c*{%`Erv*P8Jw}d7sN5Y2(&fx%I8)7iP^zPPx;=J z%xX35tk0!Qe!uv3bD9STo+Dk^;<9kXQ8tZqrXptszhBe?Xw3$S8_-wO17wbB$Vr7t zxtS?eB=6t99|WW^RT>TY%mmx*E0lG3^yY5!AbH2phqyYn(vE)Z7OTph;q_287x+X| z<;5VCl-w`W3H|l#Q0Kq?^i4Z=ZV(cTBH;WmDP8FnifBR`LzJ<{-bm*X=WQ%MYb+zP z*jShgiR^G-vX6}8%3chj0wJ#DZvE6eW1F$ev53DJ)p->!lFhwss+V*dsP*dd>2Xy& z@?9yi3z>i)l)O1E>Wt1t<3;M@S#Gc^%B*qmeD!YUTbcwieL9AMP&k`v1vuT#OfGtS z(An<_a!6tJJjyS2s8)a?7_fh8Fhynde%%rAHIxtczI~lGoSngMMyqHcZMv+A&v`gl zNdj<f{|~@><%K<mHv>bqmJdzMU9Clur3I@z^?BAw8A*wAv-VRpsc3;xT~|eVumufm z_T!*wVM*`m#^6U8OkJX`%5LzzP^g268{JZoQgu<L0#Y{VGBDwIud;MX`ZR{xP>D=_ z>E`dBm~tgazjNndRD>373zpSC^r)2{KfW{Py@&eV=4DMgIoe}%tgEe!Iz*Vs0lumS zrfWbx7{2dcPLW~<NQ}v*v5pKh(2fDQH4X?HU=cE5ZI}~tz%kV28mg7G01Sq``)mo4 zD~y?9@Hj%E#MrrqRE>+_!q%e*2C>^dvN&CJ$!sK7LdKxRu?7MB_4PCvZt|k!^r3XH z)<JhYzb(biC78JF8c#+&BJDmEXBrNk(mcwC9CMzq9|t4%5MLOscnDc$Fbr;6))S1d zI$FAVSt@nJ%t~f(unESWX-RYAhicZWRjUD-X({6Yc+|%qVG)9*>E{;%<o!w|O{Y^t z4y^VDP2-UhZ?2DhSXR~rxmhT}*8yY=><ZWrrN+oc%vIXVA;?ziJpUTkDJ~}f>>(75 zrayg?yd}`}LQ2Uif!~N+=j6>GP&Am07^)p1&}7lWu8)il#I`BocyxVJoA|KkuKU18 ztIvTpHS<_x(`{XLiNUUK8=2<Je!R$DcgHt7lcTY3`u;YUY1=r0d_q{m!KUs;=yP?) z?B9m#sP*E-e*tycu|~?t_WHGV!_F=CyTWkXYMQF~Pj3tdmT#w>FsGsJ?9%vQR?L2! zd7Kwt>)CG12u|veN^>C-4&H4un>O_T(#1^j$^u``lY^q}VG2&ot&IEdAj&`M2!;tN zTEII-OCql&nYDGF_zdb-HU`Sxc5+4>S_|#<9zGuk>v04(c||mCAw1YjxV;hM7gA`p z<tbF_XNMwGnu#^fM<=)Fw`?3Nh!#4ChtHmMqA<+G%}g!WeqJHzQ}}3I+ihObR{({_ z!YP|98Z|2E{1_|U+{oUPMvavuR3tG4;ho0DYp@ih4aO~@5cbVZj1Du{k@^^{q^i(( zow74qYg^YFm}xZI^+W#`@Z$2-FNSsum!Hj*iUZwhfNibz<gR`p-ET67R0LfX4#y-f zSGa1@{q7ATiVro+n*FJi+uoE~RfGEH%1cyZCzW+X_PA2ls=C5$E9)3rh<bnoQrdj5 z$59S-)q;;U@0EJU`O=m<iLd%mKX0PpSJqJ%m8wqjRSVwJbBHf6y)`A<<{7<QB0g}9 zaiAJQ0k*T(=oyJW?oK@_y;S$oJx64aQkWp&<sds|*v11Zu&ycv3|U4z@exd(d4)&V zb=Hmg;617QD#1X-##1nAtkRYHLRbMs+eTZ|l-WQA+o(BugO2Bpdjz)g5L7{E5krK6 zqR!&S;KbBUHb8S8OF~*1Oj59}H^AFnbc85?`{OHofXFs<BY9^#A_)Q1X^U5JvmemS zinLvXA@a%DJz0qW>`#WD89xLT5x|x;oSLY+#~!L!Ps;Wyv6hgwTX+(XoS-9j|Ew(^ zpPmBVthy`_;Alx7)Ag#U=hx<}4e5ld3p-Tmo`E_Z$JnMhrK)&_$u|@VNDLFGBZhvl z3Tn9q-eoc=TRuxI=H`jv0bv^=89uzv-IrYe75#Bbx<(>o0f(Z(KaSI*n4w#?+Z^7j z%-vc%R~RCdSzziYBZo)a{K*6hF$onOM%JIptP~m!^rs7l9=&#I(fOw+#iURsY`kEx zl~^?-&VI;9_F1THY?b?nTQ|S7x{`hRyvzVI?nXo1!{n<B>4OCbYD*KHnwnY}h|u`M zU3KZO8|m6rL4$9S+HvGA6xAeJF^|Z80qp5t1MSWV!jI#LKH8(-p8ocwp7Meh5;^kj zW_??+cmpnApR);?lbR3~%EeD}olTkdKSv87id~sLqvW#!1h5<T73Nv=<p6Fas{8B{ z8u0qWEOGn%l3c4DCy~<$!3jYpzA-#vneIEl=!%l?Na{WrsTSvZY8W>A=*zz>Ck{xB z8j@Ap-J~<;Uzq}=KymKpa@P#qApcA8BIc^M*f%v>CShe3m;)rUh$%~)XJeM*Mb!_s zGV6~lON$VV=AANg+q7=20*!M{8i`3~6sV(z)a*AHvV-?f!$+O3Cq?m2z65hbb#TJC zNf#kjT7*$GW-Mg*6_JjJxE^qP0QrX|N3Gkkuo&Q#8IX08!}4fys9?^rIza}2<tWg8 zqiNeZ^6qKoi7-$d{i>H9*+b^+iHQX?UxzZ1{Qa{YsA{}L93e)`SKkh%+chE;vi*Dj z8h07K2dLGCXGR5_tD9btX|JgU@Q=~@Ldbg|c)L$2z$jJ7MOPU750F|?pL2#M0Ws=^ zRkVB^TuNK+22)<BsJ0xuZ`^}XR6<e5$C$d8TR>^H7rI;5lM!w}v}+m@u>TSis(4rL z;J-)ji+fWy2BI#MxLJC8qz!5Wri)@BW~;r~$96&(%j_2*Ew-TH-4?7~vnCWdxOK%u zL4#d=#{<XI+1uy#;n|xU7WrQ}eXEF<n#N(jKO>7?aR`F%uBmx5k_%Z11oRd&;&-A< zC9`E8OFF0>cxr6;sBR38W4-aTVY+n3IZKjI2dik2lCP*9EHr%OdNg&X|ALl-=R9As zWj)Bo1U>{meY|*W3!upP5c$@yqZBX$ltGua^j+ZV`TEMhN@lV;Q@hx+>`<8jW8tF& z!xQ}WQC+v<-y4SAy|R<DOzAQ!DT^%DZS?7!jmGJTAD)QrgFu!(={>bhRWHC}3`r=g z!FM-x?=&>Cjhi#KG#q)%!3@XsRWt5vL(aP0IEc!?L3w<;mxDzig}SlHIF80vxZ%`E z@9Bf9c!}4d?y%z`Pd84tU)#s?>+MMq<u?|!^R%>E)^_Qi^B!^S)s*(FuFfyc(vVN9 ztOMWPw0Uc<EO`clXz&EsEMWv`xMNSpFxP{x7k}oHRx+a#nw2!pI>@|hm@^@ntchaG zzSMbe@2e5?-_)}hsM+b0@mol_q~yZZZFqI?9N!}i<nQj%cjIFUG|AIMqa*p{a%3-P z#7Fd;8?CH^;M*iq3xT=U?I*yu_{w0bRi;s@|Ai*ayQMNSvh(H<%%!bShT52RvR$d+ zA}$jFpyd#Yqb<%Awy?5XJS^D%f`jwZ*)|L+yP&U%I~ve#ok#i}dS6WIYeM#2KEaC} ze$>sGNzVF;>|*(h5dATGy17!_t^%jD;_eR`F<u;z30d2Ckc-O;SGn9IsZECr6MX~a z@DrP>faG-G+4s<#G6~;6T$~)XqS={*V{x@bHS@N}LV)*Z?8M?E8xxG{0>SJ={bN}w z0gUsGQ~88PeQ{T`M3>X8Y`b-wWT5?+SIaFn{(?$SkPoS157reiipkuERb*xY(N4*U z4v4|}i@yfmWC6v~>SZmxG{O#_r{=&OBGadAF+?~fiJO)?Z`}CW%D?6}9~mvF<W+pq z_}!8nvQ=4zKIE!H)<pKc5a+zfU^E&Mva(H>a4GSf>on^+=&Bp?5d0LK4aT`o<bN*k z?YQ7ioXnWxD$KyRXdTVy!HoEJwWSb`It?ij$N>hpnK<p9X5+>TW`47OcQWjGt3$er z^dxXnS~|P+I!|{v{p&XtZUHzectxuyvi2ik*w(wZ;VPH=`BkSl9HHN^etm^{NpZbb zeTOAlm3Ju?Q;pY#IhSld6hm^BRh(n{oLm@26spDR5(6)SlFO*DxFb<mc~n-~-)fY< zNJ$<Q)|V7dH-yTk9)RJDLmWK+St(bHpUR?4;M59J3~uLC2bTzEoV+TeJ|c`@nh^_y zX!qQ3G*W6eSH!s7;BLGmp;ycfP<j!@z1W(z;i^GuRu3GYC~Yr1bvH=$_ut%52KgOQ z#5;hS)0z^Q93}L({uXfouq9m5N=T5V85}e^ib`VJt9M)<6$QCje+Kb#N-4F{2}V$l ztq)4*e5H@NAo58$!2SS>7fh))(_aEQg0$(BHn_TpXU8=nGF9=4uRMK5kVY9aGnCVQ zHuEWGDAZ+0;>4?*-d4TeZ*)Tz<6nbjf7bq%Jj%ZvC@D;|Ko73!zT_;C8+%X-?r_+P z&hu!<rJNg&>}mC~7Z03#k)TPvJQ>6v1&!LWPtSVLP&D8R_UCWOw6SurEDBydrA-Ws zQ-wxg$+YM1>MDZWk)gLi4hc+<^R82;TPxdHv`w2UE-AQjL8^FD^f}?f=<4Xp`=a-B zHTX;jiF|qf$<&gC12rzSG!C3Emd|8Sm(b*{waEp{<i;C6g&batLJEb5>;9lWQ5Nj_ z)M3cGdikI`tDt}<!MjiiR2O{)xLC8Ot%fKR&Y^%89|sPlR@=4~^K4#oAnbP>v3edG z4@DwFmw=MgW0CP|54g70zFmF8RVUwGbq8i9y%r-gq@XJZhg!795-_N|r;n<ua<S<s zc)@A_8ZtKvdAgjE1`Ibc%GvDWt&Q>djlNG9+9KWo!5ejT*l)W5^Q3YByGf<6Sx0bb zRC-Ro&9oHNdCk{uc0#ORMqz3T(V95sfOcLvLr1_QwJ8|~@Z2lL>u2XTB2kJMI`H}` z4Xd0L8pS;cs31;$GC;u5km~gRqU){0s@}G?;l)O=K*b=W6r_<9kVXX&5D*XnDQRhG zX%j)|Zj_YnMo{TmNH?gI!~$tyfxKhlKHu}4_q$&I*k|qQxYzo{oMVo0-}kr&dSf6L zj*auCG(qEie!ycv)1^8R5KAx>Cu*rfKu>Rq3WBgJT4V?agdV{w37&8eKADYoMiw@x zlOL9i3{-{RU{Eh)Q|TFsJMlcA?#DcY%?49^_*s^}>$_Y|>6Ju2Kb4Dt;yXtnqq-{W z?<pgOt4cQK>(k(6f@UyS4h?Xcaswy_FaI!f^+|!Ojw9w&P&F;&uYmRQJdnUu`JypP zQ0^f!bfhRjEn;Bi{`2em7ua3Qf+rKUF=R`WAF#F$@O)5P1d{tf0SHFSMQJaX9*$xC zkiHH&stO?J#zDs;I(tmCACw-mKYZj!tf(^TOhozWg!>u^YRx_+{u={%I6wTHWtSav zpjfSQet>2`BFqaqmvCWV)9R9@?=}`ehNT02c6E^5qINxc2>tit%Yd(%38*^`-b|3$ znRAwYB|me<z%Bu<p?~p2acZ&G*EA3a0&W5#Wnxr=pk`Kp3sIk46Ywu8W6Q`B3zpVr z<O2uL3er%Tms~)YyUB!woU1)ESWQ9DM2A+F$Tg^1N%rv*`$*h@^kr~le1>%hJj#cA z3lX}AzjeKSI+(%m-vzt_FCBSRAdfQ?YETUUHiK|E?cZe7JOEby1WO0GB%;X)pyz}L z2J}JlkS0;e$9PH@wS7@Y(64U;P*o(9Kn|2}UNJx?ALOb{5RFxGwB+DqegzBC05lv- z%br_MaF;SSn{n4szlLyHyZ`4cxD`Mr7@A}vfIn#uRjvh8K&Z@u%R&Z`!jm9@xD%xx zP^S!o4!}4Wwe!J~MwTE`uYR`Y_j<swjwT<1>e?1uR1cgppH3OR21G8o7WXTTo;3Ju zYuJ&Av!oTLF@;b}#p?s(8U%-;8~|bUkYxk$ei_86y?)ER8KKZCf8R6)PElD98N$IG z+O`AWjDvTMc7+P28IpWQZ=2y_SxhtJcnbadQ1ksGdCQMNpF0;&j59C-bsG;z#H|5m zsA~_9C4kSMhCGi!=w@h}fZ9I5$j31q_)_ScNNy7_0kj8_SJ;&qFyAW-Dz82>DJjIL z4=W47nNDyKsEVr=J5Xq$CIqlF(10Lz3ATdpWXIkezrKd313f&Fe}66qbX5M{y|9_( zuyIqvc2+l}K<d<%LWJ+Fg<bHcgG9I~fS)3Ad}~zOYi}bG69lOM<WRts9DW)HBXiS7 z;e8!?3LXOYq}un#ktzcyTvmW4RG@T2AT?;E9yMweD!_J?o~=rZ0W<wO(8K}}?t&j4 z1UmHq!J$i}r$;z8$hr`0(zTlA4oUQnr6o@2FYl*B^U(+{?(ePzVt*lk4bu$l0MH{W z_QodO!P`i{1NafMl440VqvlrtB>)WPV}Ybi0zu~xe9|*&pcW1XL9Z-;y4YWkU-;(b z<pC%8C21S7YefudeUQF9O$`*ldrT0b<cVt?=0dJ-LwR%@10E+aibLx&Sam%QMhrra zz{cyx4<y<^HwuKpInrP_IiOcRP#e4%6xv_`fg1l!Mdp)@`EY<7ELQ!RDS=*$O*W1e zNF{l=v{KFkwJsS3Nnkp-K_iTa_3J~B7tH}LgUtt?0xo`lHBm+6bBI$KPpd5+H~`{C zMkXdXI4u}qC@x%ql#~%fHH1V%WHx&+ejr{qg6{Z?h%5I#1i^$hCWW?3g{JM?_!%F{ zO?aoMMPaHvS`|*$u$gTi?m7<SYIhWageRY`L31!Wu&(y?#C#^;Q237|Lan<TK;@6Q zQv+agmTJQ6IbWYRa%2%2b_@xg;H)r!Qs_5?qOM#Wk!olhiIF*n8i~fo$Ax>~xcmlt zw`ka~9vVG;fL=hp%0H8pmM3aYUEIz^p7C`+%Q?~(<s-AT$*S`p;6r1zARkKMa|d)% z*bDXWBeNwa5&g$)?`W1XqT(OwKm*W4#>kAaNiB1xfIY<xKp>F&I~r?XR$0Y@DYhQF z0G@1UK;~y&sY8(c3D=>N7AAEd1myrPs_}4(Uzzb_nsEg&SrAl$sOXvnq;qo-K`LD- zvS;7UMCt;=fzj2A{{YoFzwju9{Di#+#DS}>>cb#)Abhg-BplLmLJUx}P-Frshk56+ z%&|RAAPKw|3fB<X(E#fhnPJ!tDeK~CDZtgACWXF&?uVmK2?#IJL#6}sIlv79s7I*1 zPI1&!>A-m%92S;he|Q1l1vCusUat1gw>Q&&O{U(%SCCz48V391N9%4d84D3`!|!fw zcGB{;_m#j{N@zW41W^W>`ubu860gsog(J{lJ^{RLAfypUq4rQ4z`#s=GU|YYpbT#R zu_lA?^Z5{SKoUd@p0})uc!<U?_ROHa3?o@2&N}U5Cv$giZet54*^2L9p9v@o6tVsB z@^d+ITSh(b@TT}3AvkbCUB$P1@&d|LK(%)ln5y{ikf3}5r>@ZVZA^uXCQ*Bji#g;2 z0n`MHXr7o|r}8QozB%+G@4QE1@ZXd0J_3aWk<#jI*0$~utRGCrfR>gn4yd<iQF|N2 zU$doqf<T`lhd6K!BwC1%0Zq<Bco)b5296D*!bQkxQN{IwgTd}TY=`fUC;|H6L&|)p zN6=KvE0qkOq7;Q{klU5^F&xsEcWYsno>Jb*eNAa1L4BppPpni7S}BnOT#frStQ73I zbYt&mQ(&ryxTaftkZ&0v)Q+v`4p4FW#7U+(D>DL3`L!x(71jm{XYf<Ktm<XfIvrz& zA#-5^?gmMzZbMYku708n$ubk>jxG(+i6w5f5ck)dpbba31nLVY1U8QnJme51WeRR| zi(O%{{1y?2L^?x3!2*;;??IssM+6eyK)Oi}^8YZP(4d_t?DH5C<YeriWk-Aou*E^p z_lQW&RDhOMz@O*dLY~)aWzyh-iXHtXY*S6tIR=$(IHcnjva9UM<bk}a05s#xa)yAR z^F|!6@f%DKticwDh{nLh@WLP`R_*e9;M3|J(gLIu0(<m0M#yC~<?|DJiL>@_TdO;J zS^p2km}v{mEx@}yqM`Qx%+AS){Yi5xoSh8>4m#V=if;rx2Qju#hX;XvTeJM}dl<8% z3llu@&JFZ*Z)s}*YLP1W>>pm3Erax5;PNdA=@<v>f1+hX<s5p73Tp&;Z&$(H3$I<B zbxR-BzlSh(Sr|tEjpoh3Ixy4E*dQMVGPqgj-h7h{JwCvW*{sS9qX9pUALoA_lP|Lx zVZuy7%oB_<fg0q;%nTE125Z?;)q_&K9$tX>pWlX>l@1wTilhLQ#}q`_t1Kg6Ns^)a zu~K@i^C(+*>rcEhpdvsy7hm^Zls7S<(42vD2oeKMXy=74M^ki{99pG!U<qFaRRNfk zk}7E07hO!PBJlBnhc1J;4V0e|tYjq0q`dkl2+n4i14JelvOUo4p9gdKNI1`sz!A|~ z2gLB>@6TJz0Ft}{BxwXB3oWo+jbXQ_fNK5N(W750PMFFGt@dl#pi|P1R_p<4umhjp zFv!#{j6Pd~<M%A48>G3wWcj1F0Pccp^mA=Aq`~l$vVfpFc!N*K4cNTK(7i)64L;e7 z7$709WPnW~Fj7dJh;kf)ivW)H8?8Yt;@AqumMTy;{LYu|VuIi=Jt)?ucWWRn@(Ktu zrcWA5hoOkdnA?z>Uah+`1QK0@=@Ffx<$xxW5R`+#mW5rwVF$5Jp#nDCTY$jO^c^IF z6mnXO^6_!N4XdGR0s$7<PQC#F5g=)UJf**)$Ug&!Yg~KSRhaXKTE6-2xIDNHT5IA~ zb}N6#0@8$S_RJ9F4e$;B6PQ>nlU{AdoCs&z$fEISq2mz8>{Ey>x{_Wom91~(WQg%V z*hl~rPacji)T<WbWC08K@Y611(0xTiE|ADztO0ujHEtp4rzVin?mKhoXUNEyfQZge zY$KKznRc##{zoc5`8mi<Nrl7@Ohb70h*qJQ=I~QsP3Ed$aizc}rKeB2pJfczUx@31 zHIMoeK{0+76VoUs*H)NP_u;l(QyT#LaxlXVG7=<Gh1#wS+L|3&t;Q<VKrPP+v0eq( znjts?pg*JIUENPW;8LON`mwNpf=4%y0!T7>efBzOFi0<MgQkEHysQBHpoiNC2e@M1 zAt)by%%>UIjb_}>iGd8@HfYt6C^6kI>BbxdY9dWue#^t^*gab5n027N)+A%Ue@FcH zH^St=JQ|2{m>>{gq?S|Li=VX@@q6O~YJcU{NG>k8zz{JvCl@F#ug0G{Z#Ksr)4c%u zmw#CQDhR;AQQ#u%6G(_0=8-iQ5VL0h8j4pG?SIl)0<)uKP}dwRl(Ud={YUBnhcB@( zNe$5Hje&GrhmW5Nf(+m`gm@#!s&3K6#|>{O)}lLt-?;)cSp+1`78k~6EMeRpoXU}K z=Dq>IQ8Ta(NYHm!XVgTBULs^RJ)%UKS}<f8?aEo6mKjJ8BcZyz4QL0FT|nu{0?{r0 zdIdm{=yD+XMv2*2jDU9~pfxukQ-%O~Yi$csKct&ng{H8dan$x|Fj~i`0*dq&pyN`2 z5kap9(k-N|rWCSEfhnI_>DfY>59g<HeVSp@A{jQA*<XeuN(CBPD8VX8lU!F6M&6;> z0I&hbfRI5Qh?>!BP~XYJ4!#U9(SL|mc&!(x(^JA2KuVp69OB?BnV`z+hJ+8!gNW;| zm4l}OBw+=dhZBpyflev0f0R^q2{XUEoaeH8A3S@}d}sh|7$Bh+U`dRMVu7a<3Y!mH zO=L6I)WH;nufejv6V09hWL$@M=JUzqgIex$aAEsBs^%~d#LB_mzYOC`Kq7?H-73&m zzYWqPhgO~P$JfVQ7p_2&Pl}15y9AP?%aD~JA<luY*>dnM%*Vb6i6v2>;?+Jy?lPQB zJLEf3sVXgyh$K_?Lr*MH&_H7#MSL3AF91!S$LG%~H_|!Eu>iP%j`q`AVWd!6epcq? zfF0N1k@d$#$D^Hljdu}nAoL&<s``MH2M6_w5H&)8Kc);b^$zBP5}HV+B_9mbZbQb& z2sJwDn1(;yaLe0(%&F+em_)fyn)qd$OlFM-VH15*`Wc?p(L?m~a(v-(uRtr8496Ab zDFR?X{rVYV3V$G-8uYL-z}8!H29z0)iWdMJ!H_#T_*;#D1cJj?NOV?E639xZVX7Py zLuHO?98LgsK>~3Sr7B3!voL?!_yauIB#i<CWQU9N#0&FiyfpH909yPX&}zo^qJg%O ztKtv#e+fc>1-HvjP`U-csu)gkb*hWz^J6JO_IYrR^>8Syz?vGW6h`DAV(<`Vi#iZ< zvTlaygMhO?6ui@sNh<`cTXf9PL+Ii`+4B&p2$;Y73jUsvBS=9PKm%$Ft;fL|gIeAz zs5G}<%SSfPaXL@{L00?{5S#aq-!QdRR#h=TErxjt=SVW-BbL-!EpU*22a5-&xk1V( zMVSk3amZzi8(gJhohdwE!aIPiuOMHoH;I=fkj%MHhyh^rDWr)|B2x=wy@i$uQcX_4 z8{oR?037)W;sJ%%j#|-RQU`o}+u154q?Iz8g(g(c^ds+gWEloOYSXg=l-Uu;y-j4O z>?qs0lZrv(J46Q03AcEq?tqV|SV1Dm`@evi+lBuU6GBxF%jO0EV!;sKKqya#<^q7W za0M8TWaxlK6gBc2hK}xcpt1%X909P@&k<(`sHX;4njw-C^#B6eT(~m)amL4)0(J2t zoE4obsCy4?*?57Cbf^S`d_MrZWoiR=3kvN^OFp3TAOHoamU`WcHY4a?uLC^@iXzLx zJCIy}>vyy)KYgJMycT>YAlXp5#&Ddapm@~tw#8?W0JO7z0LpF$!Em7j{2ls2jWp5U z(B#{Knh7uz)d1RoW)_$>q^ARazJmx0?>!ZG{8d;>Z+x23K?6FoA0YjJtXKtdWOQbe z3^bR6R96<XC^=dB!C*4Fvbh-n>Bwz}s%WKbA@QDrSK1z^6k>9+qD=rtKq3~1!GTD1 z0syX*)D)0gD6<_bcPjnPMtN)MD5!X%=i$8h{Gv3MDR>M7tV4-mrSiA|h(A_33iPq) zh0(#{bAea9iTs+RB7Xe!WV}5I<tmb|xA21a$$3!3UNMTB05(zM%VTH1LI*oyXVF%G z6a>u~1>U8%U+pqIxf9Szabj-$Mrh0wNP3J_{9!9`tU+mosz9S?a5|xf=J)7(3?MIF zL)<{KGH8)~npOTC1;LpN8%m?nffZRP!^wbTpe!2s7a_Pk1t}r&TP)3mJmG);QTBfP zA9HlxHsF7hKis|a;yYl20LT_zM_2H_|M0$kox?6EHPsC8EIjvD@FUPk4ZB%NYJFeo z5Q6Rj2>Uj(xpN@{nS{Z+y9Mt?aT`s6fK?i;qY$g_NlH4D7sl%cegR;dOwQMS6-bfb zJp=FPMj)6A^<ag_oj{q4+-oSN5d8&4XQZU5-{63i1|)4}89LP8!T(hbhM;gE5UIUU z0~~1FfgMUGv52XN(vy<fRFbG;p#-UQ^B-suffq(PBw-R|i`E|=G1>A5);q!=jXy8B zN}vHbh`+^6DN2PLMNgsC!>)3BG%hslq@d}A>o(i$0i(hP-@wPO0bb*`+1c0V8XyVz z4O>VV=rgK5fi<35A6~Mx=iLmc#K}g{!TO`#zCIwBH+gW&lw$3z4+}0zKaHnO<$y+q z=%M`J?-j5FB7@?Guc_#nnM2&Wn<x{?8A9BDv{Lpn^6v!R-T@%^E;w6&k!I(+MSyef z!bWJ%j8Q;8cXI7{_N%~cKF(x5zY%WebcI`OYbG{?XRLXIul*Vv9k4=;<l(Lh59Qec zkVen@;(^t|1&zp}oWKf%lfY)ZKnydqxyL>6R#d$ZK>dqwdhu2sJ}Q%z6E3D&bnxF` zhc>scrQ*Qh^O}y#ij3@lyMC~}!ND*oIK2B>)Q^a?HMp?#EwGpAC_soovshqEfYbpw zb^|g^9?<Df_51n65v)CLF0iG74KGu_3)dq9jXdx_g(QC+D|xR^Z6q7T`NobcINCFU zFk2F;`z|;P5oQFCiWDfpxM2sogY398mzGqBd**Pk;iSMFkpBB@!-$!HH)uOb8Hp%5 z9X<G<gY`6M8X8ba1WSH2CKA%OcK{4L0z)_CJPTc#LzU)IQ{Un|yyh1dWTqA;Y)$nf z=;_s`7xB)2Kg}%SpB#LG5g~sY9!P^fs^lJWijev7Q<XM&vVGww#_P{^`e#s9HX=JQ z<Y<m^4h0bEv>G{W_%t88hOg;WTYat_S>#n)L2{N<h}m?ajIS0Rcx2J?L^Sj+NEt2v z?F3*soNISJzbLUB6j{`u?3Y>~RQm(dAy^@Z6On=s^$maoNG#;wW?imN4VJ^V1v41H zOAk&)9tyD3$^P1Zr+x}o)E0s{RJlWy$EBvG;yffWABS&T9++gCuu|7lg1h|AhIjn? z=?5F$>EIK+o#@|?V)SygnL<!dYv8hB#=WNxaHHxXphq4-UsWGPE*0PpYmQWieuf<W z$p*U^E&wOA{T_W#9xm_pr4Da(%ymitvnkZN`Qkgkvy6}zn7p_ES8AwxT1ddU4&tv5 z+OJa|V5P#J(x$&Nn{NH854V2+_YAOy33oLVr!W`5mjuR<1qA#*ZkqP*P0!i(g<i|e zABSLh9ZnGvZvgPWfs{+&16(Gr`k>8)$;<@>Y?E4TTW;mJloa-h+ScUXPxWeB(+8iV zjB5YBisqy0BEFMs3$XyFQ;WL~K16NR!O%&KwhDE8)}qAu+|rt<U2U8Q&U`^$YARdX z%4_N1Q@gfR;=w1l<j?=wViyWh?rBg@Uk>(hVfMS1Ik3_4!Id?z$#%1e0P?>R0IW5_ zS%Ib(U=HRT17rgDd2eG01HDXL^+h|&+}}Dg0(YVtfWB<j{6zs19RBu`_%w^7Z~|{2 z!LNK?{m|Vk$NheBS);|5!JEf8OCD@Zg>SZSSoC)dA(jKpU;<M-pq()om^j!7nF(sd zpc)A9p(a5av|`?QNNpgNH-W*3BAD+R4}9}~-mu5t8FER)N!l&h)f^uUgi_CH4Ko-1 zzL{wZYZczFH-NL}09Z#o5Kt2ng9cVh-QP!>V(t0g%Wbx`#lu{Zf49CI-M?F(UX1y9 zvC@6k(a~-_=2vz}t%I@!#r;~*iKV8UA$nWOggiVgbw4IU_cvB#|I`L{E__e(P8IO~ z11&?J2FQ;dBiP*y(d(arybg3ygcy;xXOt_sxp=)pu6HI70L?G{@z2$on*NN)ini4a zk9fU)EO#NNI(~(Vuk`!6b#0nae`$x+HOBy0h}f4+?<g4<csYs+7q;!kCcnlB@tFuo zNkQv-8wGftwYPKPjE#D22+*$e`Fr$d-_G&$_=hFgtGTy!M^osTaZaewpFjQ4f&3Z^ zDKQUn8ch>D4qCf`j5>@43!Mk$X9Ga4-%UFB{G_CquBqx89dc`ZxBeq}wz=<G&*q88 zR06=IPL-GM#mwBHY=n4eT1U+1e-Pm!{+;E=ewS9A!65dmOsgyhPWTsA#2b-bsL2ZA zPy_hhAH)0xjUQ@#L57YHKMQS1e4B@Oxc<!`sL9Lpz%}R|IvVNe7YzSKb%*Yn%AtOB z%BqTw;=U2%SqX{aC5bZKT5XWufPUmSbW~~cWrMB}jq(9j7;W3I_i_AOyw5|fV}IRt zrB@Ff#|@m*5)DZ}M?LzLHDf97q50r-*mF-QO~fsrr|j=EG0MQdkFdMBUtKW0{(-s} zyF|!ryV=;zP&aUZ${-nd@f|Uv@Gn+(q3`T4Hi4Y-8BNK-*Uo++X0X#9^}K?P*1}Uj zXrt7^r}>PNgAbetQbrPC?2!uo>RF-tHcHGn#jG3MHD^Q^GyI*&pmb`03Z2-SOCuix z|55@uPjeSM8tT|Ak8~X?4_1%3D|J3`#{#cISJ^?n<>O-+=zK6Vp)hDumffx5`87s3 z_;!YS&Ucm~)1|9s-G`9p0pLW(G02A&4KqQL4$&?)g<br2<)bV9pYP;-9j_Y+jRSCS zr7135>y~AI^(Wa*g?+Xi=?;*z5t3nKZ3A{MU?Ay_n%tqfIXD6-&=F|gw_KQ&D;V7g z1y?iWe@BL2e?zM4z09dl(MH9oYs2vMo98>1mb@pW7q>_y`XeBsL62}tf8RxV=1(Zl zq?PKMHdsZqf6s;m$nk_2CPw||Xr+7d1SGstMpAOjIa1WiDd9KpQ{e@+SY#Cf#wp&| zd{9#+LH+dz3<MDWM%Cx%LrrrKSB9O3`}!j}X4~Og@BG)dy8S(KQkn*3sYz$cFAR3z zHY$JG&xEQY0vQa$uX;^@JqjqNJ^^C60u%WFpfZG#NFe(XI)wh`8Kh#*^Zx&y!L{G- z;g}*-ZoHd&{Qk8O8uQ|Trr^ABfdNRV&^Yyu2`GE7Lpg&OFEr363MQr?9Y)=SGjOb; z!)niJFxr+Xt@oO}H>nU6?Ta)2bKd@Y^iaO{_|e)$=bNmwPb!2hwq^xD=p<~at6pFz zivcdt8)Qkq{jAM^14W^~xr|hRA3Dt7tYL{RGNlME`u@K|E$***c`zxP+N!*e+4RrA z`mS_QdYK&0kGWV5Fzo{_HKx`J7+)ZMG}p?YhYcVntGj&kb`I?)=$q2q^Ws1Dd|187 zSf<b0s7Xth85o$xY}#me_kZ^Lh<)MBzZ>5+6-$WCg(?e~8lc1)3P@0opkyg#1yGk8 z0D4(!+@!ZNLf<{}H-jjQV@D^%kN<tyRxX2o=YejvQ|8&-XHmDSdJaHh5|j-8&I9uS zu^{;O-sVFy50JWz#NzhfbG=;qdz0K#iTfe8tu)u-H}LN*C$QB4Q^WtYR7CzwPoA$5 zCiDF%|CzmD41vfPIr+jFO#!lAVX!JkL*A2sN*BnaAr&Ho^)cD)$?=iTb71?LD{sSj zVR=GqmB-nN8z^tG|2J<s`ETANDO51oE|DaR-!W_ZEB4WM&_+!N6#`NKJVEZ$IaE8j zTM(l1qkY27Dz`9U>cM|qqL!j-vNOE-q;+Llt)DY9ae+a~S)l`MXi>wunTD^xUaufb zFS4$Kn`ta>O&%_xlUMq`cG|yt!szAZsr1$sc2l8><m}jyeY#`9J(b{<B>*?I_IT4O z>UJVK%&@%HQ>t+2@6LygVH5#3pR@w7?bCd8k4`Bb_u2`!@!gl59smbe&g7=!-oERw z!h$FN>+Ru$hAtgsa66Qc`EUfX@^5IUBveC+P7FJEyZnp5okQhIHKULo#GUxxVR7-r zL3Id$A<%Eks;T3OOL_9RZ&R<Ktj=_b8dT(6-$8~07%j{mX`lK}3P^`8qgZI(Su`gK z^cny45dXiB(Cf<zy^vY2XmC^Eb_Q&z0feoSw$x_v-N?cIZnQ=VV1+0e04)00kn04! z++ny>7oi1#J1LKgmrMBpQ~$q`rC;kjq(UjcaKJnI2f$I(+6mH$vU6?V+IAe;(`Kh} zxOm?ZMtT{;`Aj_=`zxC1`G>gB`)P`Igj#n}nxLWvZ51sN$|IQ%7_d>H&#<){00Hg- zp(pZ=h9kHmXd1HoxD#v7wSBXUqxfv<q@GT?=jC*$4UF^&0eA&TT(cv0-6FVhz`LS8 zzYI<VCrzPdLLH_ccYhA3gCT%!2TD>Hj{yk6g?J{|{UGP)-L;xuvXhd^P*&6x`f|Q= z@!C5JL|ua-2gwmT@&VI9qId)gAbbcqlMG?584_%(MRx4c+ljTGup`TjIVe`C6WL8r zrP?e6S0h4okdIF_qdb@z3#C3nFOX^;lW){=W^uUW1WM<TV8!7A0Ff|Qs6CsBRH(dH zarIGRwMrIltsv2SW5G41NPI_KSi&u0x6+Hw$5)n?j4p9EFHmW9-@{$^lpsGxiP?G+ z{x_zkM)LO2Z?loRh2E$g7Wg`%I*4XSLhug;rV#`{fz>2@qW242wPO2QzxPJq2LEYo zHbN;+!apz1ao%{T(A`6CHnN1bJwjWkF3yUIse8tJg50f>Tgx<Zb3a;tGf`iZsDolo zjEJA9s1!Hb=@@uZ^{4zTsgp0k{-)?9KOYBQk-Qsa|DP*px~&RoRi3&FZjH#f48(~l zd@wJZ1fFk?!#d9lAY?F#={5NO15bm@ZopNWw_z2Hb%E<v%~66SZwzpWqIBv%qhoq{ zE7`<F{J5;x9{U>|6BEK41w<C{_uy~R)%^Z(;)M*>3ue)x9#;(VfCD<EU-R2ORPq%9 zrk!v79x72nFWjG>LM9Yt`mh!G+C8DAk*AiU2^Z<Jco@uFOjr*pFwN(XN;SVnqF4aC zz-T`b`wOHkpcOs=gA5-Ov!GH8It7RTYi|S~QW;2hz@5mT)8JM*1kvL_bJ%R`oQ1J@ z_VVJs`lr;z)=sLXb%1?6oV9h(U2+%tSumd<po5h3FjCrK9)pt#m}`H|Y%_*n3h6^r zJ+T`q4ucK#y%`Z20S0awya(5(+=%j4J6A|&q(Pp~@1>q~p9C<<CSVzPz&9hg$B)`U z?$|Ph0E3a0x_(dS46xO*j^of49V60Bni^@>m*V514*JDBr8~b4y}}LcWX}4PS8mU# z;$1F(EI~tAkc0q8h{xcSgpmXa6pdwttm_}lFF>2MY@W@1LTe~uO8OQx)!^C~cQGsF z6mejRvotnNAN!<TCX7_O!XvhyxX97TY(J55#+?$5%(av)ie3sWF|a4pJ_XNvhT~xN zM3NuMe5dY$I+Fl6Vd&&jH~kIt0<=Mx_lpAc^&GI~NdR#a3;aOD2|C(tHFbJ>7WF3c z{TvU2FN3njaiO%WYB_S6xU<woRIO^AJItxPKkT~_YfB`&re(gw3FQbXx!r|cUpV9# zRU=!V4Deu`KKyXckkBf?uKHUmjoKm!pgpF-GYo}fr8c2J9|HPwI`F!}<fgpT=5tCD zA4-!82jPW7ziHs}X;RA7^>rz53xb%CN11j%3(X{rXJ=NBg{k9c+$<DOruX=L@2Du= zfX>U>rvuE?VNKCd!UXTdbgQbH7hKHstmMr?6SkDLEsN=t3_Cid@UJxt+vFBR<NKi9 z;Mm4~tv*6TTGVd=;wQvqG4;wRpw@L`r^$bvmI@G~HF-H#F{PQqnr|p0cx6Oq7`jdT zmophkY@+pZn;?g6dIwbkm_<|nJ;{WhpjC4X*1~ll>wh&;*}MZXIf~EpB&<kp5NHr$ zknJ9%iRMeRf&dUfXZ2y&mp33^HffJ~2Hed%;IvD%N$jpS=6aUQFx)Bj(ooe6u-nKg z>h@gTknobvb?E1^@jt7Un*tlA95OfL5(jcgFdn$>7nh-$aqqT@=QI}6&PCsyo;b9$ z)WT&k{VG;#b+@>Q)fxNHI|!Uk(^jGawMj?HrdXo%z0qklMFAiFVjKNHTS-klMj9hz zh73Xo^eYhFUnARfkk9;sfxs>CxMwH)U^)&Mtt0vatYE;d<~xYESd^1q=G=d#9kfZK z%)3+nd~>%%DM4ecNyIdLm)i{IV(xtT?w`ItwHapNom>pH5?I&n1(07uYhKsx#C?ES zu*_mE`tySq8P>jBXd=SKkcaU?zaRDYsKBGm<-|n-7G*XSRu!}$2}9{^1<`@MD?$}E zKGYB5V8D4Z2W&(%1OTWIG<0uaK8QvoSMq#;)oX=mHjVN3&7!T7mb~+Pd`>@F&*1`& zP;P8z06wTB(zf*iZ`$+w&uLAW2diH~3}5)Qzb&Svx~8Q&$gq^GFp0luL<1hnM@MC1 zO>(wgk8r_{^3>h24<l~7-Og=yX!G~TSz}R%A*qMa2`LqJy*Tel$;O!2*r)?tqQSz> zwSO!G1H!lTwrl^K$EMNxCyzZG@X~yn6-SKV4rHB&Amj$vjxatx5W27+GF%YIrJ<|~ z)izq@*bBZ`Vn~RqzWYaDOWAx_GcQbmm8;v;@)HjD2NxqFZ)2lafconp-uh5Smhf>D zK~|wVgtvil*hY!ylxz+t2=y~8jAYl{V4XOIt6Xt2h$|T<Hy-Kxqxc9W8-!T(4>CA} zb$)$7^2GFyII>bkb9qsDh-9{aPJRM}*&miEqST;<Y6QFw+1F{QhX=XP%=mP-jV`O1 zHxUiHypKQCy5Hl<@!_Kw#R%EKRr)rIT6PADwfPXYwF^Li($>6XQ#*%y^zIwP0I8kq zaQ(D2)ju6R0$`!I_$qmC6H2(vrhv)<z;b`>1XIh(wj9}(m90E7mzKM#lBSl{Q?nDo z``U?_*=?R9Qz3)AmM)D|A|&P2s@UC9V`Gv2aqAAV$LaTUHN7`?d)8d$og3|MK{|gE zx<OWuWdpQnqHzZ?SIwS-!NMfa4`}ukYModxue`d4Bg)5aCM9N#E(e#SMv$ikkc8O| zPbh@TZE0|dH9g;9e!CHw%DpxC>HO+*mXCu83^E4(5RuV4$ZZ`S$+L_5U@1S`l$P-^ z%*C9}=0dClf-(N-j?`xj?_5N8Y1yDV44C57ZxlP|MS{9@QZa3LioG_AF_l^8G$S{C ziQT*s!$Wz^`IoQ8oJp+<NL}_Xz+USg-z*mSLXb!GOKx(!8`~P8n}PEQppytdy*&_v zSzwemqSHXI_ZhdZ?vAF@f)vQ#VlJk5O-a9FIe8OqtY~yAm_MrZglZGfj%KiC)AQlB zujBpgLIRIpRbP}lQ99eKoXT9cn9%{en7WZaPQCVuNylz?rxb2d$+}ibD)&kbWttwg z-wOQuj0M~*Uc)XlJOF2?445frzu%6RKEHU?Jmyc}g^aG6!k&;&)w!JH%~k2A^-`b4 z#&$dJ?Z1pEa{c}566gsCkiR>!9RXt}6L)BXL7n?q^A#L>Rct1g4M*O3z7|R<zRk*| zA}ny%n|<2Kk>k<giW$5VZALC1j?bIaLY2iPQDUXQCrp`l7wxfmEp)Oo%%^e4XQV&q zfIZRNrx~L^yqH7MNSxgMuoDM0rJXja(~KAvFHdSy=M;Uofq&^;Rh465=vD0XjawQY zY|-ivt)Q7^*O1<QtT_%h+Er6#mfEeQyjRP*_Q*M^NSch5?qk78dnq%04lY0A=YMoC zyzGK1!esa6-+5?1njd^Ra;(b&R((<a<+{a>2Tw9I0;i4-ur6)p!YQU8ghe~D0)|SA z(~dlZ=yE&Y>q(#+n(7fE673gn6c>0!LdoLp(yw>ghvoB9`}Obbw<@}o8w_@Itg?$+ z>CCpH0R(_xVm<-n^0mxH4`ek27}QYGmRWHQ7g|+1KFf0O{OIN9W?%g&c=ks}8aJ(R zcYAz+jy%o5@*A7Wb)(}W_EVPa9o#Zzz}z*5YZUIWO@`0$#yZImrqb>>Q%%Djof1}Q z<F*R;N(7F4B|;BGpc<e)h3ZjbdZ!Ruak<Int_ca8H!YQOUh4W2>Ter;VVh5!H4W9> zE32sVj<{Xx3ZeumHEqoqNhDf9&ct7oIT>Q<VJFDA2z~+&7Ykx{BzoDy_D5VrzDkfC za-e&k=3$8`SJXWn{RQ4|axZT?>4+!<+w(KlwQ~0d>q_5!^e`WYMX}g|CtQD+Is;xW zgN1Fc6I6&o2SdhM55eoLE*5!ujZi#hJgA_`&s=a2w_P8&Da-NcN!^(4g0&TBfr=f^ zYsYMEeNC{t8@svrMKq=OtLLHU8+eMZv|PN<nfbv^h8Sn{bmR~zJgHrkR&E&^^rX&5 z4SR;ut%Tcc-q^QJmZPcIgHwsjkTUJ@6x!k4b(9A?oMQ3kX;ile$uUz(Ze6~Ts)+9@ z#D3~Mc0oOD>>1JHIHIZ>Rey#h$b{tfT2{=K)fe~hX<prt&1d8S*aF{lFLN9p+%I^i zqK-49W)xZUz%#b8z_McJj?fPnpV9XY&bn=e@B8y-#NIRYo+;X$SfCfr1&qSGQg*#| z^Wa?_LB~?qGwPgB;^l0U8ozS+sLe_Bb~6n#L5iFWmzA#dMzdP3fZm7dkDQ+qI?!$0 z3Ja!YJ#xPNrW`w?$k-UbkqT|jtbBnaVaqj}uMS&V=kdL0BAR;B9cx%R=pC&WMz#Z4 zrxkc1SNvl*lIJ9IUZ$DLSQ7&G{w!KQ7uNai?0b_11nKWsapRio`RbZguwPHEJzRz* z|N66z0I4#OK7<aF9QJ8HF@ZaH55Y~!M~UlqF9gbITJT?X;jIgbrGjzoqmP{HaW^ya z>>329mQWw_k@LeYKbNc*hJ%v7*1UaWkYrt>RY)?pIw)Dy^MO~1k?V=2WG+(<PRMQ0 zdnkcHe$F(is04+I_Vu!f`ueHbD`FBx3%e>ap;65!R;WEPjk4>?NiO>ww!w4%6uoL# zm4mRWNPCCBAloH+yK{?dl5oBc$~L;BZk>!9rr}v%{{0XuswzD6-ouVTEMBHW<n6WL zEx}|niKGG2IlWYcu;4IUgR;`;jC(B$?>xRlvM>%;WO%(+wCAl$2q5v>8~kiYXeS*} zJiF*fW#Sgl{ytG3+mGHXA7AMn6C<N@sYCtlKOrK1Y}*a!3SH)wC)C)!^|3dJ2Zlr) zh4wwSONaRU+TV|wjXe;2S#UUYDWHZHqV!7%57?m?Q~a}64yhYUNv&>~?h=><-76nd z=5#-1)@B#?M(V0wsBC4hqYmC=unm*>Sn(VUSB3Ks^At%#Kt?W*8@#5f=p*bZBM(DZ z>GY*@74RYkEi0i6)KotwQeVJ67)dA^u!_P76~5fuYKa~Z4X6~CO8aS3J5&03k-s*~ zl_j3382BeC?5o;>(;rP*Y~#fEoTy=F<YwDv!`Hxq=ZE^O$+x*Bc^F(0bKbxD8s(1W z8gCN!ELwGh*Oe%Q&g`9iBrBWS<NFOz0yM`EgL>VbfHjf7#nf&bu4>wH;bwojhr04K zK536a!EkY7P%<M=#S2#$5a9ta+S(1PTc&?_#NLP#M{GYM5SW~EB3P)nOmA9w9cxD% z^Y`6Hn=OxoJH6#Iit?oLqr8>TW&K)+P#up0EIfDxaRc{fERTG44|~rkFLKC2qPvqU z-Y5K4niEaC$K|)l6RZOd{KQVycXSkt(;2F3Rdr8ZM+r1k0LjoIbea^+S%b6gR$Bli zA5*BstUL9d^7>BL-X%H(CDtylb02QZJx)#}-*mTpmq^|^F}yI#G9(jrKci%J(FNER zoDi?HTkTT26)lc#nMPm7r~Q5Hp1JAsWV#n@)8!C-gqZgxG{OX;;QCe6rvtVE97GkO zI|pr)0s;VArMII#IP;_-DDHBYjV?%#HAIAo5NGsNI{WcR3w{1RPa<qM;wZ<Q*Pc2? z&=i;DS3=cqrW4_5`cLYg+^@b5p(dsfapG`V8a)Q63XEL(R9E+lTO(Dapze{dP@7Ka zhS@}FN8gsO(d{a}R8Nziv#&NiCq|oIvF$$);aU$QDHb_u)_Jq#I8MakvB*W!@CR<# zu7KsCgydcpyo36qHI@-#KEJqEo10ntFWg-Nuk(deG`*9PArus}t_|Df<*W124&D?W zi|$N*<V-(Z^UTk-bRz70?)nHKnGf<0b_gN^53%@%3+%e826JOR>&sy?Z;F*Lb3NiN z#@N7Lt<}Z*{Rw#m#*Y%eb?3gW2psKNk__q=23*MQKG?N1fY20!0U7IHt(OF9w48i^ z*l<(s6D<_eZh4E78*7q7dhCIHSG)Db9(qQHlehkYDB|k&gd(Ev&-MDTvF$Q@JDs#) z`v7<M&Q0p*q<H<@uLrwXxuz4v!?Z1mt9;RJ#F-A>aI{8$CIh-5vzV)zzrWEgVvS{Z zK{lnc*G38ZNzKy@5)~sShnS~6%>_bk$$=8wF<X=tiE;VqbfG0?&b!>{1v9OQ9_BQJ zK%ZdwhMi-(J@bn5p5GsrkzcwN)a`p^k3D)r$-qp{(Q4l9gGWPAmiAnRB2K6%%mh15 zDUFvZEy`uk#KwuJvrLYTIeIOYrdQwf{KmaOGq7LqVuV15N_8Zkk9xwsiqT^@URo!$ zqps>)NYU4EPu2NH53xKSa-!UbTXB)RF*!hMgqxLBX@3`e!y89=YiDsK>7IpM!$bn4 z3M431(0o?pd{Lh{df?8-Bf}C*BY1p@ds>F$1;@>RuNgdLHt#nB*ISP<?qP5CTmEKe z&h(2vr~1dHB|J8_|4}WB2LhS*3ovUT#DHnxGmu7H;^pmb<hQrXEv$V=79y_dOxr6V z@D;1)*8VmufMne(o7ql)wZt)Q`ga0ONY3}qSkxU`Z-G;_`%`zMLY8ZyBMk3q(RNZ+ zu|GC%dM7J8>e*6RTqGT=N!hr}8@$v|mQnJVdRz2Ofd@(O7qume@8-2)kXW4g(|c3O z=x}cLH~a97JHADLZL@6j)~Naw@aFDRSm-HOo}9*tNUjD_?x@q79>Q(2OC(`hHu6)( z(`pE@CNSUv3gttn6Al4gU}^OkjSB(+l>u1)f)(FQ`|#zUtZe3J8T^vsjMLSk*=lY_ z%XfE9z=oMMTol3iHEoSL$;M_7%lnF%YM8G*gmXf<rm0a_CC!OAb1!PNJ%ytOGDO3> z##M0i_P=uwZu3)&8(te&`gLonHO#6rL?B9x?nO)wk^S_9M)Ng!FE_h;xtnMYC4Wa; zXZ9zxlTJFuVyXt_do;KvqgR{9+QM>I?fW{%x;yXTUq)0_eLuxLyw+9oW;kw39X}OW zu#L&fGq}IRYp^utRIFrP@g+O~S~Wg_$-WP?F<yWfs_xfdwysTbjF141Za*%1Q<hU^ zWJ0x(yM#`ORc29)OGQNB+ZazXB_&=_WO7BUOs6{{La}QzK|gJVq`Wb(aOy&sRhI@8 zM+xphRox@Gkv#r|3^6ZN8aI_zu2hmnTx54!uajYR_Nt95@10uWcUnh0(_7A)+34-W zt%x2M0ZCVYYt3hsfA7<FHPHbkzPx64pziW~Ni=7-j=ed|eDx>4JZ(>!$7{^=%V4nM zZ%IzMe355mL+xv8^5nT;iG-i~K1p$YDru^^tq#L&D)W{tIwwX)wP)8Py#9zHLGp|5 z&`SIXm^I70471;w@sjc@m$~NnoI(Us4GCphP8dRg%<SSD=euc0bRPQz1qjMIfm6Yg zDodO(5xcyldk@x@ly+#kHzJKQbsJaZ@tnz0W{?mxvIrUZ6Z4gbrGmyW&Y#gLf8TH! zTgQ==`C>m$OKt3~0-wNG4#jigThgD8%@Q2(BlJBZt4s3xqIoazb5ezu)jkHq7rVIY zFE<8VV?TMCA!b1E%|rKO3I5}clAaTsp+ENG;#Dz8XOdb8YqFB1B@e9F>^R@zcf3o2 zXXZ{n4K_m<pZ#$l!64&BH_=TR$6@_~WEvvOcY{~Tm`9S?G`@~zgo2T48!H{w3i@hd zRbO7(IAuGISOEv(v%8*74_&)-Bc%#Po}SZL_^8`_5{ZfAL(Y1^BvevPBRSg>FEV$W zbBctY-F7xkU&=fzloJEiGOiUc$8!48DVOHvN$6iJu>|+D^yD{sCkFxyKCy6oBpbyN z33Ap`aJf4Y?hQ**!Z6Y4iT<1oz2zF97EA)N=1p@n`LeTqO1y0I*JmAAHtYPn+K`_# z+dx+LCSgMD^<D~3_VS={EwlHloDVgcf}TUy`Ia)1Yj%T{uPtr~jNhqrP2%z#Y8n=> zqUlY~D*WiU@JKA|T+?p~lRUSNGmSat%+H6D?u{l9m}d(dpNf>3yAjHh-8N_}VYs)m zzVI$%iaN73WBC}ypzbMpPMqP|L@kRPCDFEOrQU<(1+j*d=^YjYaxyRDc@_nh#sbKK zyC$-1EaD0~i}<2ETCT?SmP!m<4##R-sZ!r2B2NFwpXcIVy;+hMPGwzwJz+I09Z)Zc zy&j2{s__j@q3JMHSMkbg(-+9?Shzkk`o~+3UEF-4->IbTJa0giQDQN&@0UB}n&|h+ z#yB>t+&F51lx<c(X~akWQLOHoeVViB@bBr9w0(I!VH0M*=ih}*xY}{mIvQ$(5;_-) z@>AA54fC^j(V%-|qvUfX%S3(tHHSW?W3rqcN|@7BM1KEZ%##fy?wNX95IdylDURr$ z%jmJ4A7M(LHy7(!Wh}4^kxx`jC**gu@mSC@249!Rt?F4ZyJ53*$gdzGGTV6JN2WpY zy0rcCN1uuIFGkn4UL8`S7{h-Y`Y7;TT7ppmx>p^qC|y8r+=KY`GdBsFO3w*rV)o35 zo`e^-@m2{nh8m>vwzr>Yk+(5QNYk8CON}WbRN>AgA#<ZC&L$!9DfYUu9{-xcSsU~8 zG55oBn7b#!cP?33riS>bOKbILm5pC$j99m_JA%=amSy*-{#luy*RxM<rDL3EsAoa7 z<XBpi8RFh=be}w{al?$8qM2&q_br!6stJ~@QTsp;jl$eWF*>!;VG4(CCzt5^ky(Tn zEtlS$R}&U$Y<OGR=TB}u_AV>@w1ADGsl4mUj*q43S0djxaO+VLNe!E=73XBY`(X0d z_h{n8i}7$+TF13q^7MVF<Jq=e!swB!;;%0$_h$HEMwp%+RrXuEF(cvyH~F2g@RB;F z^AE(Z;qnt_G4<XA$(W}PC@%Abxyo1!O=ujkpndYtxv8h5ur`m&%-B@0itjb9wz7!- z?S+j}(q(~fIHzk){Y478=lR=JYjbso&sp749Z;Z~HXfclY+1dY6LLxAithS*>+1aJ z!nX^F&)9z6(4@@8i@$H;E+d{DPq?}581#U+$VdP7GhA;ctEVH+!?0DV+Au?kpnq0b zaF@Iro@onXE}kQ%fFTVL_6_6MO8Jt|lD59O8#8!3nN{#4*1D9$vCrs68&k~a%coYK zs)`ayUNnrIk(ub(i(T-W8nGd-m<;%CsCNIQl|lH>_I8(M!{w^(K4%w#wC}lZzE|zf zuiY4BD>kowyg;PWOL~<kHUA3>4~O<<OhSq$ojmbEGBJa0Mnk^%oeOn40Xmy*1{#BJ z=HEH$D($YumY$sN891J7wTwMWZ$NQc+>NV~G4KZdM6Q`#cR}yu=oWDf?LZS-<)rv) zCyJ-JJg{z_#@LyCOBZD+J-#(sV!Jp(-z3nC%brb|NEEsDzO~@D$?Hl!i4B{yCPPy( zaw}iMi8ir_5{o7}Ep<Cq=Yp7ZUFFp3tH#<c8F*bQy-+KMdzHhAe$!!7b|Rvg^>2lj zMXahR(#@-XuIf^&5XX@5aJYx=`rm-zYT<5sv?8&^9cM$#MntVHdcQvrs@uua#MNpe zRuMkY3y=K5DoZnE#k$koK*Fc46x_!#A5yVwFRgM!f7a|*I*w)Eh#F~)b(*<&t4zE| zmOXZtHFm>NFL|G9{&qoUL0(A<`<9KWK-G|f?%dkokK-P5ZsAXpR?mclozbSBYgDXy z^YQ{YSEHGTZdiO<`4iINR$9rkqr9Su9~^5kn{wl$tjz7ZZ>ncKo#LMR>^ydds%}Rm zz2odo1x5`*%4EvvT9#Ut(3`}BDi8B)rD;<s6-w)NG(3XG8s7xVAHftqLyI@#)zuHF z9oWv#l18>XfuGL|ujChB=9RJ1Pr0-x|6nLO9`<S#;o~f(c=w4BsfgJ6!ln;=;vOyR zrR6vD-n7coxlbSdaC15R0t4(idXM_INn5OM$?H$1H0yMv-TCQQW1FZSSgUZU<Wy|X zYRZw3XmK;*6Vl-Vr?N^eowufOh&%TqlBS)o+|EZ|l5JExLVJ}(hZv)jK@(w4WqD?* zn*d{_fAlC!)oci{jJwY{D-<B&^NA_vjfvB+QMh^GO13YXo=Q7Y!6;>-YjsgkUupSp z^-!&A{_X9|PYT(WMI|JJvz}Za*L|WtJ(~cXust3W$2Y{zR^I-=mr}BuTFB@zzbH0D z&h=)UhU<;4s-P~0C(F*N>HaLcn?x%w9DPi_`j;+{*HsE9$}ZUI<V;;%DzeM0Yv4@( zefV4pqc=gurNDo}7$TwX+ew2i>t_I-dRQM**$Btbr`|V2;Tr{v9<jyW=~O1O6@;k- z!Wwl4uD&-6Rg&gQ!13#wx|i-%*_%o%@GPthPEwb(2H5oH3MdL%KH3r;b{cn?RdXGG z$o=rsBYAk#x80{xl`g;j@ouYcXeho+l}g?8D68)8gypy7e0+7`l9d{ihQrr;JWf?! zYM~0Wjek<mzx`%B{jFk~0JGRSTt}v*Ti%C`v&ptr37lB=4T~dtJ$*y1^F|pBc?}KL zPM^#eyd8xue(t|%A1n{6Mt{MmVoJGk-q4KKd*dTKD5j2^FH;mbKW3dbG<!`TDTac~ zoh#wjjVA{c)2PolR>bGYQx$A(eWT(qSD&8a<I%ZV)H6ob6#soOHatEC#+Vc=-@L6m z<ncva_r~<dtybpg)#tA3!vk)4Hm`^$EN=LbbLv(9BH=JUA*<`4KUzX<AD`EWz0hi- zJzt-%ajt>;;(6<uFI#J2KO)5@N=fT}{AjaDrKq#(=%81aQXalZ{PswN14i;Fy^Syd zrt(&Uc;du$&e=Ibk$YhR-5w-P@nRg^UIxR~-zP;B#h6F*hx^(WgDfX%baFp#KG4+A z_=&$8LZ<p$e!KO=-Fm^Jsg{y*KUcmqmHm+6n5O)Y^m9ik6+3J2l{)NXZ{~$MgQ*0q z$dPVBtHKu++N_OSMD6c=xNIVi>y4khEgj%;PEt)r^J;{vQlGXf2aI_Z(*MMQ!JHo& zO3n~m#gVaRBxVK1lW_0~OEwA&Mn=9KNqW`4{Yb=%oLola{$jR?$Weh;Y807+(EnJy z)0Y<kHhawsv@1s|=F(z;&qxVX46(-wrOzh6RULAq(|RsHw930A^wg%0X=}%aRkvKC zY&JEJAcKX<J>*7w-cNp^{^bHbtu3y%`UR^E+`*#5qPG*r_dT}Odw)d!;YgX3x#sRt zb?*17lO&tvN#RIQxm*v9U+h)1Djlh_-CKt+1>gILF(0m!Hp;2mQL%j2GUg*+GN&1S z=UCPn?ch{YQ^pk0xYyH}gD=Z3N*J3g_4SRrzi<s#+%pwpksHjOSFPeS<~V?-lbHXI zJQbR_YZNF$mY4L5xxjfa%u4UVn#+5gnnRELR=(_M1~?K-T}c(DyIY@AmpbS>+sHlt z`1UK^rlpNI^IbM!y{V4KGI?Jvn<FU(+B8=iDQ5n(i^)iaD?IS8_{ht7igdw+K(cja zM;wEZ)K<CksV}@OQ&dRso2BW?*touzN@GI_)`mk?yZG@Y&r)n!|LpyEP29;dj_OJ! z@w`I29TNDV&Q@lLZCRJ@(1go`_Fn>@)H6&$7y0r^^N$&=!xvvY(Qj)jUwtDwXY?HU zEM;D>&pi3gK2TJ|E^$QVn|0Hb5R>@M8u3@Z{Y-v3Dxa%UN#eQl(v`aV-PTI4J=v0^ z@(*&3*iJc3YZs9erICjf)5^u1$A9PMQQOVcb7PL4BD_U_DVfsEa6WP-?Kl4G8ruW? z_0kckQcKe9IVI^*D=Km5zHQ#!ZB^gm2{!Q*m*6T~uA!$A@L4R?5}D=VbzR!Qe?4?R zJ|(<nyhbTLoafCMErDP)M&D_sJgNI<)Hau6e{3vPLhF|?aCIVLH6VHoCP?{!-LjCk zlIGJhh-^EY$r2rVqxzRvS=Q7BSV-@eTIcM$ZowkFYOk#(VbKwzuOq#GNqdRks_c*7 zN8*L;L5hB9%7oJ0h`CJ5*}LBMIc-y}<G0%$atj|FZp?-)n-hq|I;na>60FmZo1-PO z@IIkeMrG9ZD{JBQZ10gqdM;_(ORp$q#LL?7s{fPT7mqxoXCDaj*JGXS9$P(zIeO&a z@hBH4Nhqst3XYc-R86w<%q;7f+Aj_ARG$ABzpcF~QrN=QXEa-_z*a6>kThA?!X7`A z-ICWJ9Srjh6brK$0<PVt`SpscS(Z5-eB$>ncD?1Syq&N+#k}S6NV!OsQ%hIn-E4~Q z1a<4N`7ZniEx`}nEu=TA^8=kL*cyjR#@rRjRdV?nvFg^UIcr0c<{|;9_dKP$uhf-x zgx<spqzjzt7Np3oXWNT0-;IgYa>;&M7^^}ozg=T}<n7E;wOhgT6Ayo$TVv4~PxsMZ ziHatL@RPBY5+^^fLyfs8I+{T6jvzx&_nd6T`Iw8ht+e_J&o|gj=5~KSNqr@$vuo=S zo+4b~;dz=wn{Tl;Z-c_(9s4y`pOaThdj5Jr*Zk$nbM42U53jzU+m)>Ovys=PUc1v* zbBgPMtCep`_%{`67g^jcH_eExdOAn_87`^&36ZMRlH!)k2@xar7Tk5H*?;_atIyhJ zzqoz6E+}Sb=)2^LB;Qlg2EKYr3xloXoX(##TJ40CrW&jX6U}KE8+Q0(^wsYv@eE|U z92LwviaB}$UeY^)ipy3imgRTqoNCg(u3Y7udvE=b-|x!Yh>?f_&T_Vp_Z`W%npR(h z{5hWAx$@3mpDt^wZWgDDDdg7dm<!Fu*-z!yoecH*{n{(2Nqn<l)!)Yb=1Gyod~_#E zk`?!OKG1SfF<6>PYQC1dvvQ-ej>)y^!6g`%>QI^@GdTJ?+%8^;&Ss=|y6g^}R(E=9 zDWO!i^~A81w5pKACmNr^@+cFUdu=xAO{2Gn7c3yVuL$)}Nt=$N@V@ucF+1yITAU0i zW#jD7(6v>T`xEdD*j%#2RgaHtYCi}t8z?!w5OniPBks<ZASMD8WybGGFZfT1=8qZ9 zh0?Hq8nH4bHZXo{)H!LGrdQQL)G1a_;lVWT?>%sUim2Vms-4GkhlJUgDx4%VP)-~d z+z=PeO*m&*eb>o2o%4tEJYmV{lOx-auJKAD0wbJtVH4K|)$pS_=T-FEq^+%JQ<RqX zM4bF4X80O^GxF|k|43@iR2x%xK=0jfDfQS%wL#xS$wf=i)=Pl~>Qy#WJRF=(|G2(c ze0c;T8HJKnlIGMev2899wxJXmmSgJ0=DJwl+ag*|Y`Z3&Btk^jIrhGFdGKU^uFA=# z4%dE*`=<Hkh3rRUXdJ_;cc-}`Bdezv3!7-&);+Fa&b)h3Kt`@k6f>m8DD}gSeDgOn z%}tE>5=pXUT250LQuZg}OE(XPounusv{A8`n0Ik3DLni2yrAi&5EGiKWpRfy<z0gO z-yX}p?LWRS1};Kx^quaqx}5u+QbYL9+tUP+zYi|?QP!6cr^!-IwoT6hn=#X}`MRJn z0}T<q(UgGLubHa})}|jv-Y>iPd*oc1P`fZ9urhP<;@9)V4vc3e%xNlLb>Pb0j@mZ; z0vAnhJ!s&Y=<LiB)!iH{A1DW)gl^0`En}$bAleuAD27h_!A(RY2Z}$?{j(a`c0%v> z4b2jBH9oqa3V{&q_w`>imRBA{#_l?(2Y$5>D1GuiuY`tXv#9E4{s2YTmx%T3U!<>- z)GX36)`sv;J+H9W)fA3M#Rpy&_*KBuZv8sy0sj7xhQ`zXDUzs*iAUn3&pLjs`4L(3 zy2{_iZ;QT|y`O^LKllDn4prR^U!6@JsHH|_<rHR>Z}{q4<9X{>wbGWa%-OTn3ctJ7 z5Eao=e-h(!{$T4VU=J-M+iFcmMIF1J5Y^+YV|lDCDZrLJZOtr1M1D}PPBUe9E7^EZ zr@(Y{;a(T!lE}qJ+Cl>h{WOvfO@$UZ$F3Jx3<O9t=3WiISM}}ri77C94CV6LZd+Xm z^wL(m_We+Fe0;dxUY}k#baCqjh^{u9h_mpy`U{r$o6!-@Wcqku4#${IzNkuid9tQp zYk^*R<%{COD5Fp7msh^zGG)#hPE=*7&E9x(y~iM5w|qUObOJxGy|YGNx;rfJxfmyu zx)mim@4oY=lvX~SB#cHoBdg1tSpL1of;IVYAH=1v0#vmQsdzJ>`kL~Rgg?+6mEV1S zUds<^xNLC)jVN~)r;nwozWSTh&B=F|HdeC+GM1j7#-BU|lfIU$$uLjzFQ0S8ywmHs z=Tve%znrBoKfjx$)L(1j;$6MjTC2<W@w~t_dFi32$`gxSUx%>8Nwqe)Btly@*96P# z&&a{!OQXqE^Xzo27>LDd*37>38&{8rRKHJN(iHz9I+}93L2p-j``Zx-7Vr$u+MU+> zlj^>pH4$P8`Gp7FgJR1wy-vFQ9;f_uDpQkc^!hI6EN{n@$1{;t5-!=XvVTy_JElXB zG0*>_>a_)Bw}q3f?fTxE`KLRcOAD4Xw%XOdXcC#8;9UO6cx-ro>~oU!V)v?P+wfJK z(B5o~SD$d=a<z)i$3q)K6yF!x-+uJ45YZoNIVZU|dhC>dsj~E=l{RPhn4<gw|KEqh z4QoOuynDk)W~jF+gAAhzmr2SkImb%tRKAtg`RHLzbKa*o{M7pnuh!Rif;j=B4Ln;S z4zD|*S{7k{r0d>yt@li(#<eh`w=w^WeBX7yONlpQM~N!2r=5<h|Gwv<sOmmF=CoAV z*@yRMqF*FStx2h$>G*CbJK?QmT_Md`^V?wir;G&K1b%#L>X_1#8zOXJ1kU_Vg#kRd zXwo<3XC50>*rdi!RyqCVGC4=p^H*+SL-?FL>u*lie&;F&&n-N!A?U1mqJQM${L0Y6 zc!DXpv83VM<67MeC!HkU=<rl!V`mi`&9cNymrs=L24t<x?Y-Wlb{{P_8W9!nI&Fc! zFTy%zcgBu*LBwfj*;jw%>rR>?S>ahvz%4E{aOu(Xo_u$7d;G<pm$Z??XAFo>Fggu2 z`RMDfO)Fbcacoim{c6yftl?oJn<y+8X+5G}U_YV{wd?=k>bt|K?*IR}-Eo)Ekd>{- zUeyuD2w91Y%!6ZeGS3lm#BtCqgpjPFLq;m=nCF;BBIC%O$2mF`$3A3les6s~-{1Np z*VVbw#ryqwJ=bGAMI3+@DS~-~@5&V9=cnFVz0wpC1o_*;oF(51v?FU^#mT;m49l$` zuZ@^wPk%}0doQRM9}mWU`_xxM9uMk~7~kNfG*3D!Is`sJjyCHhk{^xzy%^0-7eZwK zUUFA59Q<QL52l1OPO57TwK);hqn#-lP+J!W0Q(Zr!cM87r*n!RLosTfCuk_sGQs=2 zFc#;ylHpT<Q9%hjIK(^77fVg}B*r0-)A-uEvCS`EelJoey@3?@GPK%mzc`+4@m*Hl zeskGPH>k{@3CgrP7pc!Zvb(`sGil?l%(6y9#PWLYk8*(Kn3UKYD^|S`rVsYFer`go zS=gn*xJI<yAKtdcN`x_@f%yqsFZd#!o!gB~#yc|E;OQD|(2|r%C=t|0b1;1QGq@eE z)mFwuR`kB;@Z4eUntNB_7s>2~cw60qIkew+TU2b0?2>RPI&ci|{p_iVYc9^?LQ+a+ z_Y1lt$$mwlOw&v6MDe27Yp--|U8+Al7z5<>Fu>3uJ%h0E-XAc?>OOBEFz}7vy;qJC zdCQ*Uob{5$cCinw<z{`|VZu{HxnArQo%c1yk<ZWz`T^@{IS}DVPaPOxTMAejHQy78 zkDp{G3;?nHO#b8XXFX-@Qk52<(A6%4xrfd1Ts|9_<1X~@ds%<}N-j-MGH=zZBN5|f zD@%vS2_t0|%S`_FJZy)uV|D$e-r_q}R`Be#y*TKlhB%3;34fD=zv``2qN6S}EV%(Q z-;)tAckAsqvUA0>c?rRW*QDuS&wm~PmIcA+ivIHq=Olnx@U2!NbJuvU9vUIsakX;2 z#DrQ=8Thkz!xuu^c4b-K)VNl@T$Cqv$Uc4MDfaUH<LC)HFJbI{gTK3E(iF$|r?pUO z#XN(EiBp}C>bC7@nc%UVqo?$z-*tUx)9m%Pvz>R#c!F5tUfJpux3sB$wzqnt9uZns z3|h1SpVtP1LuITRR^CIi;&_%9OhVWQiBC{Mj;vD5Ch=`gYD2gE8$w=`>XNwNI-Y&= zemmCuBjYnp;cbd9rf|U<_MgZEcvX+(Fkz%`4X#HOcjcY1zSvA@nH0+pHaxV;2{db1 zPj-y$$<8os^oQO%_-n#|O;?yW;jGkF?guX~GYgwCOE=!GX?0aB6V%rLj#1mm{QoJ~ zu-(zBx>!!KNGQKy!h<C8hB8kr^O`DL8L?d`llFr0d<mSm3hp1|XdKo~SNl=#WmkdO z+Y1lk{<Lyqs|FNoMO$&hZwz>w+q|d}Y}z{(P~WcWON)v+wM(=ih>bzRn*@R=ewDxy ziSF>jvG6V-)RL&TC9x#1K=!G-4UKC)$Z9}LkEukDm~@TSCSC-D$??BGb$YPG2u{QB zid8FaP`6|1gU0^Zg%{!bN65wNkQhG}t62xFTlPMVB)L}mF;2cP-)^0MHXm%i*3)0n zg27(%GAFNj+hQ-{tNb1IamBnd-qd;-O|JQdrN2xh<Dr>M{rk;wkbr=Ezx+P6kDYTO zB64Gyc#*K&yJg#J4t@NdQr-EfH7z;`E>>jcROrXby}RaM*#}l+m*FX(=QxQ~>2o4) z&RKKGxw6QQkLdHs+9O`s<q<d>(F!BOOE%kwSLyv6^Y-+}{q6ED%$qj@jQOw?m*Ww; z8y)CGh0_m@2~&x!j!!#O$|q}r18zbFRcKmAQ(Duzec=Sk;~^7&z{;pAAZOo!gx;Q{ zIj)3cP=cuFHNtiiw(e}JVeo3{FFQSc8K#|a#?j0l#6!*JUQ2g)f#7880#@)*uh0qr zYi0t~rN#~J@mbRBIO9KiBZ8^@rxLWKe2kJFk(6!jN8gCvRND0x0H`wC=NmNgAkmw< z5l-6#Z+mcq-a#E3IbAZ&1&2{G5-js#<0RFkRDOJmyy53L$U7ReR7vG*{bJ4C{J8%k z;%9MRK)205G#fHhtX2DFKtP+qeM|0E3oft!iT^+OGYq7>BBQuli+}{s^`8V#>_;!} zzYmXL{O?(e1&IW954^+&;UgcUXXpWP&}~~?#jXf*G{(ewoLWa;!aUw8t~~w1^C+<n z%CzO{O1kn=q2dGuAwRGf3zFMCn#sIhE<>stdkuaGKsrxa`KO;>PJHQIR;LeG*909; zHLuAui(!L%yhGG0Yj2<rtDBTRS4$)?1$z98kG<lXj7w?8<x6Zn@Z}l1O(jb3R*S|g zGXIpU$DuhFbspf)C|tVR5932ziw+#|dt=Nd(@;3sOO$4^qJ-FT(#d|bUeiwAF(Z-{ zpXp(}_RY*j?6!GWv5-whU_Z#!HX{<T)b^g8e`5Eo*)w|uZ&oF?Po9<RqXulOrR)+q zy9q`^^m5H%cuZ7!{G6NFMr~i0_*q5~fj_6M_S$*3cO9NK@@>5oQjtj`)X<;*mTkMr z=Rwf3&Fu&HZa;SrzDsatexE$=Y!23)K%`iL$Z7?Xq^vuVp>%I(3O4+3u@d0?BzFiO z{9x$@G#-?1F+ajU^IrG|(s%Oqn6=~Y%NXm$I-}TNkp^_Xh2wnzfr}Qq-Z~4BQs___ zi*Z!hA;D)*8<WVfy^9oQ+dhQbmHT}eW$DJf`pd%1ItO3u)}hnAIXL)xXI9;=SzgWS zxr<-F_xn5Uuo2KbOZbCrUdrhJ7(81!7m52T&?**s?V1dEd%|i$N4DACoemC*E#PXk zNPvosxY`2W+u2eJvK{C>>)5V{7qIq>WDMl0Y1Mg-!iAaF2##_s_%WEB9pPs1h&Abt zOFjE)KFjyzi+>Wx$|+Zh(8Z<`Pk9N`Xp;N*-%-9Ih66<@R?h}MFUB7&FP(`I1NY56 z=3i!IZOz#>M{fAy$`ucs@BvlZ0vcDhoeH)i1TN(o8yi=CM1AMe+U>gc06+#;em)<Z zF@4*woe%07*^X;Oe$EDaBryi?cC@piH0GPEA3XkCeFU|6r?9|=FLs?9^ITwF4!9lN z@s8<qs?!Rg_Z&6&uZk)eLM_Y|znV~?fp2WIXovGHheYu|!xC?I=7EwBs7Zr;TuF~* zLBi9&Z$XRN6$GDs!k#WYSctoi><<3LQ&e=J)grk&SnMn;I5iLST9euysp<Nf&fnkB zQPa|y?`(k+EQIB*bTI*$OmxP8fnh}H;y(=b@2XDIze!U?-uQ(A4+t5djoA)j>3Uuw zpv4uYm38Ig8n|c;k6p*}2l*8FY<Um(MPI*Mt`Kr$&vDy2EJLr^04(w`i7y8cEWhVN z9o<m#=tB3*^t95!h-Sy>L~wKxux#N#O-t(laCW7wR(7;EwIA*t96Vx8++56>44dK! zU*(|zVvUS#V3iHvkiyG$vMYNHhi@`*+WEo*+SZo5>q?T#s;)9CI9#(x-H^*X?Rfoj zy^Q^l1?iQhmA!EJ>KDNj#NxkdX7^V{(Cw^(l0_Ys!!4DyH#6UDePtCv;+zUNkFQ66 zoyZ;neQK|lXR)g0Yuy_Mz8Pl%*{tse^?mtrr%}dRn1me?_)y8Y*A7R``FCG``ESvx z@#13u7{E>ueJ$gN*swAP%gF2|SM%+OSQj+hD5uiM)%F{JBpR6uy_bw8g?um!YS`o2 ztQdc7FCLw2&{7?TtY5sGA$j3@QJys>#9<CH$aIV6Pa8hOoKIh}M83RBN^b<kE=cI1 z(;kt}dvd~n0$^-zJ&w7{V=8}c^Y_`tfO%>G@mn)UEtMYe*{|!X8k4c*Y}V#t8A!Tv zooZvV(%-R!sy0ugxD9hSfLR;nR+b^EN->p3+1rf<z@OQ!+!!HgU_m7IB;l@22_M^T zO$I@C+pcO3Z2uH@qcAMm-mmM!M@^dvga&E|UMxE1;VY$*wB46Mo5ZreX=TsNt$8*^ z7~>a$LCa*0v*cZ`tLJJ2ha570V5+MK#cjR=?xZUUFx5~Tp&D2?{VaN%8~|LQ-Y!6# z=ENk4!dStF7HVjwMFCXH@EMdTX?14;zr5c-%QuCLp?yV=Q@=7GEH#|$#D#Zz6P{BU zG>+dxq0b;J;$gXQMM^#v@OyioP_k``1#M&P0FvZW_7!g#k49JqUxczf4)WsTX?5)e zatB*sRlLDV1HSixSII~74J%T&9l$^+IBDix)LM%HU{Nf;7&Bs`%q9K^{$&(Coe0sm z&q9!sue^cgYiP>oK1zrW8*>blB=^!QwR1&Pw(1{tSNQg0v#KpJuT%;a6Dl?66{Lc6 zLD?Va0U8|Sr$w=+P#QZIegHd`!%Iv)y?TfJH5;}(`)6JctRc4r((+0dAd#VsV8dzz z!VgxJvBo)hpzZHgqq*)Y2|%F%yIq5suH5dH-qsI_2(%o#Jm@kNwf|bdX}ta&hLRho zu)P_$5RI5EEc5wUc8gA47;0yQbnw~ePn<i!TDM=6llH39b(6181k_t3$&npP+R`j` zxr`csS~^%5-&8~;tG$J<*H*wYw@T3o*q$lPa0-IYq~>dc*^79<6)I))bWO>^A|<w5 zZ0M_k3e|Zrx1N{@Ig9%<MlrNklBEH&G0o_a5vxSx1>hZYP9nc+T64FC!prm2=B@-^ zM1>+q#r&<nh(Lam7c~DM=H*`Y0^#aOJ;eA|1T!h^b$f-(`8{Ty>)JBEmp^|kg7lna z_A${)JQQp=osjpm6?c9N8B@7ZN8qw;4=khU^G{|@OYzGt>|^R82Pk&Edo^Ca>gINr z*=8yO{Epi}ErpRn{=55qJw09B(4#fN*~@l%+s%2Xe26s#MXIKt;22c?QKOHz>U0l} zg3siw=7j(`2+#0Xx`|rm#t!9nrJ(u(n5Su!UN`<k$<u=WpS1J_8f}1)Jhi-^i=SOu zC1Wo87p>>Mg-7nG{SL*vB&faZocmE#Sf&7;Z{bi2NTQDNcTdy=PEc;K5r1VQ2qJcC zU<Su4GvJNI0@e5yXV@1E`kPz_Va+=!Z6``>%GK5iP4ie3ixw3}2)#$J0evsU9|YfZ zbP{r09nLWLbfNX3dsqIuV9`wtMuuM};HSrP36EmyY<h_S{5n#}P+u6U{96y&I=Vrl zls3j$i&q+P?Aya^R*Nbp(@iXDWlAp|(&?)c-k<3rpL=7)@CUVhQXyx9A_`ILsp7cF zH*X2yR()SpJcjB0e(>+=lrJ+|WWD8Dw;jNYx)r;=-ntTKZhA<VtMJ46g==bQ)wB0p z*92;ItFYyGr;WUMO<7%BWTD6BEIAdJ436YIboe1@F~D)T&qwu>vIxOL&uPEP55~Of z$5}KnpacdlIY<`kl1AQAa`u@qrWPu{OV5~D3vJG-xfou(IL<Zufu34==f5+CkWz0- zdF1E#Y^^el+4c@UifOMAIbf@HsX)KM9+_1r*9@zdCfB99H1#goBx6|O<5Kayn;`++ z|8{z?$rQKNrI0B*cBu-hH64r9!4cziK;(WWcC_X_mC;~dj!q226dXw7WgAwz<(dg< z9vQ2~1sL8@8jgSy%B;`hwf<TwK(7w0EmED3?l5B0^`fYK;P_T@sWom*a!YlqZmKr; zA}t-JlB6sjJ-@ZN=cIJfP2vmg*;$V1N}}%tCh{<x<38ymb&1xg)jl2ZzJYAiAFqwv z|4n0mC1r2a1GDL!SJvj|Z<u_JRf5@^s?-{qetOuP<q$+Fh%r$Iy1GguqwSCYmS@gU zCJPJ4RwFHWgzajYL$m3tC)v+T5Op%>i<lJTE8lTNl6&;8*KUcQHX2);MdCBlZo`mf zSt}uB*E%QAj$?7mHe|QKS;bDF^oBhsUsHRv8x@`4D5ZN09e(Np&96o{LuZTmWo1iB zUYWm_zln&jAM)q@7<EMAeQ1Llz!G{p{pfXh$|Xc%xvz-HfLER#T@|Q(W^*@><R=1C zsZTDBOi^0$tjKu6*bDD&06iDV-#^l$Lm<mbfu@J-pQPfUV&Jo8Lmj})AY^1El~}L@ zvMi6pLUHUf9Ly_fVX^00U6ti|%nM|rNk}Wq+eQ@oJ~R2^*K$7~m!=8!+uexfqM38^ z=pmPQ1sgrxq7}kC4jddV0)E6aRkhPZLZM`m1$XPx=*G0UGihgJ8ns2*zRuyt_TPpf z0&6~J2~%vTjYHd=qDs7N7mRl_f;;5h;a9Y>_Gp!a>Ns(p0=bx_M+9*N-Xt>?Ap8jn z3@&W*D@0`2c;bO4KOSAm@ox5~ar?Z6sGhM^VTzkHE`{*16-L=aT)lg@eoud3f0T5l z%%k69Kvm3lnFw@P&r3>VUBYJ|pSqfkHYXs!#V$3;S*#rUgt_RvD7w6f<uvg5Kp^15 z3c>$;J`{S6fq*8p8JFJ;<ZU?!!^X$5t2$<~<24M3im7B(kE>TFW+kEfxFof=ShV+| z7f6#Va60g2L7rq7>Ge<kzvV47!bmwht7%xHUm0sPU!OxI0lW#eTd$^cms&+s+96>1 zTSNbVPZ#(<Y^dRbgP<o-CvML+J;T7Je{?&Lv<3^hZ)bmrLv!RbD=z74hJpFk+l|Bc zU&{S68ckTj2W3$~RtD!&e}>^x);ycy1w|eWuFxCiFwW|d+w&icZh;lsB*d5Ql;YOm zWi5s!MrWXTZ6=+IRJ-Hs19&%y>b-PLbkb^;*ErU*E=8b3I#O?P|Gi-q?e0o&AhYuL z6)ej4F*y093jUfSJ}=1T9|s3Yu(<zr{e3+dO_RK(y|Mb1wY9ltDI`+b>|F4--sQ$$ z7hhf=&%1lt4JgZ6sQ2p!T18JjWx+Mp=X{`%96edi+10iCWOW?ftz+ulD{19ozgdM@ zUH;6tfG|u>fa27>!lZFKG$G+t)~Rvc8B^YJ*XJ(jnmN4D7fJP*9LvM%ah<(N-+J<2 zEV{h`MO)3gt<ua>6TD9*;J0WY_xd&)8ATranMtOy*ZRA2MR!UR5g)2t``F(n$fnL) za)s%-ol6Q69LfT)GxvgOI`WRU#pjjO800sjOX&Aa4jl%vTbv(5B$K^3#eF`QkjHWw zCSvFjQXzzu?;b1k2&b!4zoHzYbg(%u%fdBql~d({*~2_9&os@{ggF=(!fF>#bKG&m zyUx4Tei!&0jk-$5q8=YMa5}?%w%8+>EPlj8Cy*79v!OcD&4gL9_N_}*z}awhd+lrS z*hlFbkb$hWoK|Me>*=$=>Vs2X?%7h*<FFj|_Z3cE52HN_@1v<Ris(NM{OcAIrM<K= zQco9qjyy6PYE)FjB<4TG@wQy%#k|*TR@VI31o?SCIa#(O7y<!%_c80EY*uUzf7aZ< z(?>v^70^x;YHqj_vyZ1%!gf~v|6DUWYa^t9@}YQBa{BrJo6XCWVNIQg2KHl7AEXGa zRvShz&5|dztm$E{iGiv7^h1VoB-NJ1cGjkc)k5#a!g5k#LsRsC-0l`Bms8IL$v6#9 z&;}U1K9lyxo6CR)k>^ZpQP^na4Vl$=UT%3Z^P0(vs$#949(rS@i6m@%()``Z7Ucxj zw1I&?DElnl3_*``y`Sve?_YSNH%8ze^OzMAM;!ROS$<pX#_O79>~;dZx=n@m;^;ug z956u+H8otilf4yEF_vuTp!6-ww~rNISj>va99{)DdK?!=j$<ett^rG1N|5#j+vo4Q zct>GNl{v}A(1`R%f#nsp*US-*{ve>gte4y_$rcfr6DA6{i(izLUmKfju0y;L8w`)^ z9CP`x4_V)K%w_VNeBl3$$$PQnfrwZo5{~b%iH4)Txa050K!VAWXUgtb;r`{ct5bRP z<KHAlOuJ*9KKQzi!NZRfj=PwHyd=^HzTu>1wC)TKx=1BkdiTYqVsDNWq!O`)ngEKG z+vE6DZbR)Y`13a$HR2*E?KV9yTj#)HD_d8vn&7Y;zAT-ObpCjxKFTX`;hrk<Lit#O zTo&*NX85ANaQt(vB-j13#I*tw06lHR{C+7dp~-M-d~W&g2<DwjMHS-iR(6+1@iq5) zm(H+&M4KCBfz?06bh~2f-IN{2^5O%)Ktnw{D(dIze8oi!3-Y^#{*~{E1}aJjmg6>L zj?NQ`wm;!PMsFG3=;yg{E5pa9n6_sLX+{h%Y!JT!<#o|mbJ-l9&g88mU2HfEe1Gyu z%VyH>MU&T+bX5TQlW(0;6A$E4`)q&>2-4F^zPa!SNK&<{BlL*-<3?~Cd%Dg+C0tQ3 zLia%DJpb8^<BAT&<ll*W9<MMW&Hz1nqhef56741Vs{2qQWBu<4-ij}h4A(!G{@$u< zGU2@LLhD^x3E}_vl62*1r-zuEi_1>aq|jH1Yd$*p2~;3IBK*zqmm#*cBsD$orSZ(L z)Fb(a?gn6`C1SqPLAKAo#9oIH(~P|J@kZ6Ra`RdK)5!+JV(6jQZVhz*#+xywmiwW_ z$lBFD!AE>~m8GF{5p(Jt#?CA!evp&Lhl20!HS4WT$D$+b8@7+TucIh?;izoK{y!k< zKN+P%WN&hNRUR+5D<2YnP0qWo#&ZI|J(J|-EoaLX+`IM6*;r%wTYX5wAo)nd%S&1K z3MJ{99a#A22tzJ#>Y<Rq*|w%K%jYhl!YYdF5Nm*AK4bp)y?I022SZz>yZg34rVjI6 zm&9>g^8Ul}6_{3*$^!8+Jc|b?lKqN+n5HC-nM3*Yqt3Bh*-B;G;q7fa`R;gup{1bB zmhY6Yt8HdEFhL0sVtaOJP`M;lD$9pE*1P{B*!Dh&-db~Q#Kg?w>TWdqq@XWZX#I6Z zXBPF~q3V1=%5?Z4_E;PnwpmOwx))+Wjp5SZ-wyS=oNk4udod&4RBYQ=Ge-=1>w(4e ztgTZ%UZCn0@z-{UR}K#3E{TleXv$`+htl@iV=CkAHb@=mRs>rBSOP60ijP|3=RsjS z_$4<$rhE|Y>QZANrcV{ckKzjWn|*roijllZvQD4c6-91b^7YAy>&c%B*zmLYsN{o0 z($udfxh5s>GG{cUyCpziKB|8)Jd;}cd6(f__AqnuPVdziJ6{;3ATX^ZFP#JQ7UO7i zWqdl?H@#$KeR6g&E?F%y&_VZZl4VlET%-RqI4J1dYs|c`R~^1McKjK{TvsEec^9y( zRyf{-9*Ya_d}f)(kr65G>Qj9FbGb3Z2I?WA4%mafuh}R`+K)DDjMPg5cG!=cp{(nD z_h}r)E~jr?%Axl;pvTxZYB#DT<>u+TG$(^w_Mu8d0NU+C@5#4r-P{nMC@&oem=TN~ z1-jZ&iLS3ZJq$Eop5ZU1w4_P_&7zi`sy>$#Kq}NDyp7c?WOZO;&X0H4*$`~qsC~?W zkBS;tmn4=lSj+CN8NCNq`<w%x)X0&pw(xQeXvZ0u;sgo4jUe;D@{ipTpp9a(`Rq{@ zwgy}L>RC`-q&}Sr+Wz}}cJm~64`N<kc~9jZPlg1cc$CTfVHcv?!zSw6R|@4VK%r1b zZr*Qb20**%tNs8tp$kIYvnBycMrc5loQw^n$)JT@?=Oic2RR4&08aw^uAQSA$-*M$ zi*Ue^lj@2s?kDg#j<ScYenD2wSwBK@>2EhaeNEbLaN4i0>^Tu$>@|UnJOK3A={AZZ zo&J%B6iohBuT)|@<@&lo_wUF@FE4<{+Yz1^*Mq_Js#*4(f=jIt!$5s8W4_d+Rj3}9 z@D(8x#T%{s2{(}Cu*t*FF9f>55D`5d?RqB^02g05EXKp9y;&ffkW=$3_(lCx1gX0A zrrJxz+2*S3W~XDEzz!}C4<UH|Td#l=`RMy7X)^A6c1~yS*!Og~)^I#k-oHbzwFBU_ zg<*1p!?d)T*Pf8vrktjZLc^RM^ju2bTqKiCXMqQk9{Phx_~prL0x<CvxtjeXj}p4x zvu519VZ26eJ|wR#2Q@eBo;7)mN+4bFec>}WF?lKZ0guBa{_6bir79+u6eddeQ@^rq zkJk+4cdwNwd319pmqHeszoP-?=pF%^kv{vXhvH!s;tu0JED1<%5LfG75w$@Oi$jpV zR@{Yzbw9Sk1xU3nKQII<nT88NvO0Po<BR}x{blCcUp6)q|A*Yh52{{Q6}_Vx{Wa5) zv3&qVz(|THXExxD&uS#OuIpU8mcQFpcAc-a{)OY#wTUIxf2_Pz-N^va@*n<_npO1E z*|Mr@Rg(d7m+p^_-csH^94lQc6ZParfPz)%&I5#=o`l{ueAR@dN5Sa()5SoMSy0s= z{Q>N8AM6oov>-p;5`u7}9DNgHE1u04R34qEp$i9DnM}I*Hqb%4od%j>f39AK)=|a5 zn!<5q=r7Kkm$Mox!OA;1TH~=-vnBh&kJkAV?Nh)zH)mS%i0P<ggnKAnbzHv&bI{{b zp5Vk85FjICI2V{-{G#xj!baocSF!vGe?~jj3-o8Nx!8Z3%0-iKZw>di-<~Au37~Ru z`GSkI07w}-d`}|pk3Y@Z+P^rJF}WF~=Aj|gq0l{}VEMwOZsuXKJU{-nKH#)aBfY#< z+yN+7+seD9FSOqGk}>XZ5<V5-a9gwS)UC3krM{!PM>|Q!wum|!ckpn&ka+mshj8h8 zPrh)T$vK|C7jFN3Zxl~#KHhKc))iVi7d+PRU0fmbCo4ZVdpJd9`G+>Xg4;s3njT%S z5AH9eSXPvmzk2Nl?hp7SQQ&j6LGbz%K$_I&tY6*&!392`!>J%)#2`tcICS<+ea?Pe zPD<oiO<SkUBAc$0XSO(orOvAYa=cpgqtzr|+PZE$)Wom*DZM0CReKuZS67U3GpwjN z{pmY2R4^FS0=eFG>&n5CTp!i)+4uwC<}KZTgB1YwQ;1Nii>+RYsFk$R3!~(7Mhek& zV}1*(##eIQo?7S@j~0bWbtoQw->N7u3*+IA=8T7fQ-C{)pjwvr0MZnZP@v2|hq)KF zmf}y8`p^kbD>Q?FH!KO*u@lr+g8Nduu}#*XCtDM{dt=S=%}0yP@_;oh?qE>i@YNqq zfm@=gK4E`yg?L$bw^Kh+Dx+QKbWvLK=Gq$Zj%x*0z6j`Gk&9RXQa}*@A}+-|#Rj44 z1a;%IMQ$c}lH4Tk*v2k3nk1qqxYcDDYL-e&l{nf`zWKmEcyB1jY45GZ*0^q2?XS2Q z&5iJ9yv>=v$|%*1>h<ETFDi7CAT}(LmwXZ$NvI}!z&3;*(4GNKBnB~>_k<0c0BsIJ z!w`RN*ecSkiAv_hm6ux({?yoY2~+&<xB}P$Y;x~-jtJe)aAga)8d)gRe0z}CoU00A zelO7KDmV1niKz5#<~$EKz)cWBo0iam9_j<Mg|t&wHx8e>@Lt_Ydk;T(h8&SJnnTRL z49`b6b9QbA1568r74!;9@Ad;vPophrc=(?jK5Th!a(-6<J#P%qXyw)btn=uoBYUIZ zYFEDSp+_*lYEc=f@Bx-QZczg6)zNVcuq2JG=am<rY5J^!H>W^9bO#>ZADWKj;C6Jl zTeX@GDVTdVAmIM@@_5DiyVqa8rsXtf6;}!-g7-;yvF89jjY6B+RT2rkpnm!b_xF&W z<2j}FwD7+1xx?M%hL~;lKwwK95ukvoPm7-A3qDE;KX3zxYia5`EoTw**E%nt%PZ~| zfEK72L@K}@L9dkUKlhDdpodm6>67nn0g?!T<))w~8i0@DIuWENcqX@lmD;!I9@(O3 z%Em0#u)Gl7SJ?KrkM{%Ou(}KN*b;ajWLzoR3vRvyh}dd}B5dkS+2ef9Cllv}R*K{9 zU;8jo$hC_7F&!rtUAOY7ZvZDhq0J^UHoW2v>;uxiE*9LTAoyfx%al#&u(#dlMwp#F z2OtNLnt7+I3;eUkY!F*sxmGbxfNVp;WL=IPNz-LpH<HRoL`3nnGCWJ#m1W2~S;V>9 z8$`JL0fU@4OzQdet<&5<P@KBcuF{CzZC4?Pet7Fo>~!lxeP5rh$~p9L>lhh*p+Npz zI(Vy+om80Afg$;DmFkR-5+j%Qv5>I?>1TRNB_pX{37cQ5L%YN=BR=jo$!(=hJbKMw zh$b4=Q1XKO_i$|`J!^6aG(Ks?v*g@7jCt}acCE;!$?F4SKJ{Qmg_ajD{|X@IRHpT@ z-w3<$e(us*T87bgNHg+0Yxf0*Ep@VK*n9O(W$_Tl38O0^J^Rmu6yg%?>WV+$j21Ie zI5H8aTL5BO$yDf;q03f9t0?JJ=|U}z0pJ*9R>rIE2K=NFF0RB_@X1@;z<uO(dtHPo zGc+ht`ewsznFLKC1UbUn%FA5GMoaTI`vvYd=>vqgPU8ioZ}PqU4}|o(Ut?^|+c`Rg z#)K`dCjFX;ca3*(Y?t5XbKG2yDvAwp7~_>a!>|gdKqEc^@=~p|uV3{@fW2?$6yT+n zDttI+@O_Np-!1ojmI{20$_Y3D_yKHRW$VcaK}oE~`rpZx=YbD(7rcvmqf3nWCzkg; z4Km$%QVZr*?C{%n0&l$s83vje%CZj?lCD(98E3xs=U<L&A)aZRdZ>X{Dkp=!O}4z- ztJMgj?$Uk~6_>sGpt<=8tZ`IuRl~^XcyA29RhQe2m8cbzTCTZnlvj+kwN3vqm}tz* z{~3loO*XO}O+N41_^1vb9XgNbeKSPAv%YJQ=mK!ctL3U-fduIl9v!yzG#3et&x78D zy|+qiU0<UFkj^&)Ya4-h?6cb~9!8qQ#qx5WMfJ>FX!Y-!bdjX-K0KZ$t_)3^$GN^n z`%?WR6K=%EAMt{WguW7>HcZX2E}qXl`z0gw7)203BxXpe>eGbus;_?|_T}KjmO!r- zd%r2%`7!Yf&KYS?lbp4<1>f>bjimIBt%*Oot?$l423(SgVpf92^dm{=aQq8Er$_gL z=xsA&l9$SaWGx8Nk2qyc_w^<9N+YC6H+b2mvr)^W`Bh+N4}_aOyk$6&05$noHK9-P zVnBC%DJuRO5Mid%`z7OfG)2F%QrFR|I^BLef!Y9fqD1jdjL8jjn<Ad`p4F#yyWFqk zm1@*Miy)a(mwkqYVLFK}f#0!mDedJ1w~WJVUh8{MdihDYL&pN_OHFjCVrF;SQN3$| zOYYfAI*ohJU69IIMOg*|Esv25o+(P-2p<IhwtwKjFB`2MH?n;uziv#scz9~hI_Rqp z!>uQV=b4@p0Xe5kRaKS$VktgRJq-9tWD@$#u;MNBJA!36gz&u6^8*GqG%Bc>1%kf< z*5NdNN#5UmWocr4P;-9K_{idE&RtU`$pAH*3<>{G%!TD8Q|i(~D5(k~KD3rL>jykN zH^RE3)AwEX|G-_I3-+Py*Rn-VlHQ-vhjiREEGI8dB)R9v-9t?bW$vC!0;DlkfrX*w z!Si75QAb)U-SAXVJ8KSMN^ih>V+Y*<ff?f^o?VPA<U*mPV|Zs|c&rveMcd0Ol}og) zMr)e{gr8B0whHc(FAI0Iy$Qt0HtZI_SxR<e({%#QAdKACQC^hi?ZCE9pBQ6ywY861 z@Ix180qVRzt!Ey<Z14)EObK1hfQHox1bkBh40x-nuK<4w{%QT?B)QYpx)n00hm+K% z<BF3Mv^ITJtL}FIk_6)+!7>~()i*GY?Ye?kUUBsxOI$sT9*h*tB+5yEp1$5IQonXh zjFt6B+ZjIzdix&8%4H>Nq>Y7FdjAoPQ-4aIhW9B4g0C&H!Bm3ZS7lA|<$y$&ke#)$ z3RLvxqh)l587zupUvt^pUtnjeEU3vid-a8Tr>^jx*-4U@7ZZc-PmDbnDl}P3!-l@E z=`)cEtGhn1$p3iBt-Je+P7~>PNa#Z)%@2v&yX%oPi~x&{wi7{RI2+bZSfI2Dcj|vN zg#qVRJ6Q48gm(>9qe)f)#i>90-E7m81r`>r%w;EB8*<>x1qfjsw%1#jJdJNelSb$P zvCyIK#V@&08ng?oKBmIKhQP-mq$Qsw^*Fj^6|9-Q1{wVT0D()+T10sXtKsco7Hh6k z5!F{TDW`75nX1w*27i@t5;YL;d#3*L^u3pWB_k9t!xlT~$n<VcKjSog$)Yi*eL^b) zOsDw2|7KQQ>%2?@>gOZ@^u~Zc;N#k@b-b?C4eZc9a!Q2CY@x-~YA*OD<(hug+}8j6 z%T@FA!kafgck9XTeJJC7tF;qLb5(+|1XDfeniu88J(bg?Q2I8k!;K|(?_$rA>>Yd3 z_7++}tn$Cas(#(GX(!dl+V^dOO<CQ{r8hY_8Jwm!wNHX#x90xR5QQbUO{lrOOI-7D zV76508If1ZKiKGV{kC@EPWOZRKvR0jMXPzmX-X#=UUBpp;CwDeypbS2f&!d%QK$)Z zXg|)yDyg)Xe(QYtMK|76R*`7Yv%t{6F}1+!JK7<~o=n4kyjOaME$hvBQbi<h^!$rO zlo!POq;@)qdgm~In3sT~ayOs*TTwj4KVE%rASqoTY&E`eHC(@965xa>yLpw|3np4l z1K57;+pxX)HJ0$-ENd@g)NgB^2(eDe&)%da59SBLOC{H--#W!qReb1o{!#5`%>Tr( z#%GYCnfb`y-FIR-?eI;yTvqDfYy<TkB%890?@~%$19YL^w$vTf`T?oaeB!n1zz>u2 z77)u|!V%wAi(feDT1`Dqhzbap>NW;g62_CZ9yU4*p~ZJ>5_qg0*X&thp5)FB;!>F* zg(4%o63X_y?P)Fz(hx(XZ+QExB8yqw?1^QMCFy9Z_b`#MEqL$AC0Cf1o#o{wD&_J^ zwJT=%0$4`T41H-#f}~kfq;xkaN=-7;?ET6osj0ne28LCBSp`cy#t0+$|6L;XX>3b| zI#G+`5-kJy8R5@L?9=+*87+QC9m*gI@Ad_aIob$yyBLQEN_wYQ#mBc|3Cb3L+7k2~ zuIyvKykEECo%A)RZy;x}#wW%0lLIv*90;%{m8bqnU(jS=#vdj+8PQ;p{?`27)whpy zGGa(smDGEVtgJMeZbEz%I*rHbDt8=PH_;(}Xayjga6s^JK2%M$*05Jk1~QC(eI0z& zxiCU68-LRvu`(d#r4~JjTA3>V1oor6xZ1guh^2;Jn_;{8bQg^y#~`>$v?%aD%-j&Q zc<`RBTCi23v}3bL4R;tes3xFP;$YdFQwq^rZt&ef%dZ;Wevsk#<v*|~1fN*;IA>xS z>g|$y3=eK7oHZ6K(`YOAH#rOg!7t71yFV<9cR|0o5-lgkzJFtaP?GuLKP5~(*|sRS zO=1&cY+(D`g+W4l=r4v#W;o(2kdNLM6IarkWEc}HJ^jE)3jVB~Y>lt6s@XqU91R?M z`3=4=Ox^YRviq5-K`UFHl%@daF@+(~p~XG1OX}-Gj$EH@mY1r9_75tx;Z`h7^GcvM zcb~Ta@m2!Z8_?+Uz0q!K-0dviYffP{W)d4OT$gl*$I8`3nD({k5^IC~K;*QCI%R+U z%4*)(ls4A=W1I<jU|{=QmH_kJ53WdLt)8<vA5IAv?z2|(+FWe);d63Ye)v*5D@EuJ zko=R9e*T?MOzO8@4wjzt%`b}u05STRhC9E2Y0p_8OPlSVI*%s=%rivn418mbh~7~X z@@WNa5CiR)YzjhOem)rmK&{{seS4;c8!akx;xSzM^jqc)dlSxPp@MS@Z}o~h>e!zg zdNnJ6g~+*6ZrvWFzy+Bp(VjsBIqUm|MDR$llejx3FulYjxKV$6XY9VLPeWsB6VgGp zI<ku~`DYW<ruEz#O{Z#j<`dDu$+kBy7cz!^g`Jmo<Z9=rt$^7!$GsTM&?#B3Q@RV5 znB>&}laFq^`49DD*6bKxuSR`q!>boWp-%v1tRrp8BF;ss11rGd?78a!ndIfZvs9UM zzV%CC3PYw(WT4+Sv6K!)!Ho%E+)LOazGwO`2_XW+42P)|w&WH0yn6v(nwhX2dZve< zFy`~CYy}9Efv~z+?<#Yqdc(F(1o?2ch{F9NkdoO(DAXW6+nu9p3)q}uXR5jTfH@x2 zDd9EgPr5C;6mo05Ry!ZD#(vK3jdSjpf#qtRlu28>!>_;BTv^N~o>J`#1NU{I!KW*F zKPdV5`OWs;6%@z{KyiS(>GqQG-6nZeLXKThVT{%`+w1*`KT3oEvC78Epf#KK-p$R! z4+$;~Npp8h<0Bau3jeU;Be3g@u>hj}#u?_5ADH=6Rn4s3q?4Qd!hgo?<Wz4anb~!m z%;^d3TWVQ#b3ty<566#1%sHFyf&ckL{49)45Nbx3d~%EXx}LqQzB?O!<gPmRE^<#Z z^})FEulAygZn>y?3=~utarIxue8V)y(n3=bzfCmoqoky|2!j=ItP`4dVa9v+X`>wH zy4K$&OEjgE<Df%cGGT${|69=+vr?+Wma=&HEaP;ZX>Y;YW(7dryZjeJ#JN8}(GLXE zd-h2qwGq0P&t5oHHhdePTH~IAjUui4S`hEeL58=$gCL)e+o}~^73M48S!|fqbn`J} zI!5c_E~zg%X%da^%tn=k1`2a}&dj1#<ko)2!~@Bh{ub-s{T7^G>!s73t`)QufT^Tw zLX&bAZg{dB*JAmC*gmQ5&E?a!!&bJZS+sVZ3LwW_DuE@C$vMq)dI}5koxfmHP>zc7 zV#fRw1kB!mESRC{b1DPUIHzn%30WjQxKipn>^J6^e@ykpN+cHTxzn4ri3JkROuAzo zrEJ~IMxNfph0Yb-w9met__4Ap`cmtLYKViC+b74;4njuz6eZ}zXUV3SfT6F`F-C5- z)CyzZ?0%r(yLPyA1gmAk>Q*m$)Wa|62<6?i39PMGl1&|d|J>!L_vPrQ@63zR(UXrN zJHwA=%U5P_<U*8!Bd>lbL}hZ{YWHp6;%%W#$>hUr-`Oe#hR>2GBWkAW=Zhd7!-67i zDV57{;Z_%n^}1w&kTA^cw1y@YG7kq$@m=rQVNa5JWsaL)4O*@~@`sP>hh7np{V-50 zj3qz8E#-b-im_f~_!5$=+T$PA<Lv~vN3J~S03-KE&WbPf8h9>9ulKb1N^>u450$X> z-<EycR|S`XGhKaUaHzfbuSq*AmB<TgHU_tRSPr!3Rv=1n)WD|N5n5OiRfl7xDw$>v zgZxg9NpA-}q}%KC%T2=LYEZjLUtkb}K+sS?C2~eZuj3uIO6flS@lvIR0b6_w=3+{{ z(N$%We|e+jJ?bzLVRb<3COFK~ED=mKdVjH1vUw`%b<7+;phWQiV7x)*s#!8F6*Qc8 z@E1eB<{yGf_4)d8GvBS;tS4TTOsyb`$u^r2{e>@I%3Hq49vv``#!d$j(j{J3Pqn6t z9@d#?CdgdYli^AgPh4u!PSWEvwIWt%gas+q(fj8s*Q<SvRpkM{RPfGiY_}k|Fg^+i zV?_5>%b>>lGOuu#+21(geW`$g27+%aw6hi$YZI-0=_PK8Ov4^Nv{e8awSh`A>*&R{ za?gd(t*TI^k`gurx!9#jW6eN~`|j9Mfo1ygw1db)5LLzKplI!A%Nqi4XNd}-g|Sej zY0)@M*5?>HmYB;vW2(c#!0^u>u7l`=b4lj2k(R&rCU8k6Bz?rl)MNfuRTV_QC0X;w z*~e=Nt))7MMsuJl|LL|(xeRC+WT2BBw=;Klg;380p1kX96&meTg)A5SMUdmav3mc0 zcD%LpqZ}I~8)2oR^uDvZ3Qt-9*!KEZVg_oZ$>v1V4{+E{r+nv!lg`hVH4Z04S=%T% zug_HD3ht$$<Ssh$PyNz^7PYaS5ASd%7s>(j0_v2eOw6LzDa6u8%jii{A~4U;#NXjt zuGAQN$hHXR$1S1*1DA%$wV>~TE`!SbC(QiWM~5AE$x8KNkcB`qG@^uFUPjzH8EcsB zd<EXR#ia7N|0ac*8ImO;@>7}Xcqu-P61ERq8+Wa&<)-C&?~P*={l=e*)3kL#b^6>1 zv;fSH7!>19kiK(pMc}2W<&STx!>6~B1qP=oJIs(J^?8}uP*a)n^-C-A&;CY{<BmoF zjp*;iYuN+z)eUWI@FBs&tah?YADcw5K8v)83?P-x(f4Vtetzb?YKyWbBfzUC8bAl2 z^78N3X8D8h1Oq~C*%Rn*U$ae;^yZ+uyEW}oH+MiyMS0(vg*Z@p^>q*k@iz@w3<Lo5 zVl>%DotH;puf&q8H2UX$og>LJI2e|e2r_2|^be<S95o@Ek6`lv^{L^GtQ>o{4pixG z5KeM}U1#d|!pJ0kR<hZz^Ar2K`plhMe7DGyr*c-mZ0-h{B@gVpmuxmmabT^WiN<}$ z!&4cndrY5n=CY5rD{+&`U3ShgFuaSq8*{*LYrT3^1q@bu)IQi&Vt5=Wzqw9VvdjED z!pJCEdb^(oud52n{HF`{$mjevg`VC>nDq*_12{1f{*VrL&fZL)q5YS|9^#R2kJ`gG z48pIRF!pJbfW9<fNh<Yt2PpIn>*n&}0TsgzY1|!aoB{B*V@zyldf>RY#4b%llGHXz z4Ed17MM}_FRo=;?13eaa2K>A3PGh-JYY+kOtw8mTotCP+P*u&gZ8tllywrYOgGa*@ zufZZ2RH;i`3ck?#@=Q<^u5#ynUs5i|Lc0RBz~-GK)$B^4`t9>;=MAGuBdudyl<+Or zqs>`PF))Y%gD(Il$9T?x5E&Ukh|cKG@Za?il*eCVm_R||>b7V>GnDMFHYT>UXM>ap zGVZSH?8PX;1KVn4geDk^2~$-a*d*Fk(9!Q0E!mau<9!;i^Ekt<>h|}1AZ+grB!vx6 zCBJWxxHZWb0OF2&QPxS`yx}pGqamciJ;6AtdYAha8pqVaQTW&fz2?V~j^t7ZWzwFU zm8J&MxK&<)n$pp9RlHBV(%ph%wH$?LQb4XojNf&M0*AheiX?C0PyOB`ry;@)jniLn zH~~roo>JPPC{Detc8p2tH;v1}Co&DA0QhA5^M}{{$epwP8oREYRrT|RiI12HPnu?m zUCLi|2OJyf4dY1AgJmk2LuBY#Dx?=~@Z9lD`KQ0rF<+O$(tS6b!M4LenyPiXGg-8k zx*WhH>iv6hQiYqrS%ZtsmEIpcZY-Mp%G1!ax`CLrM*eUIljE)VxTFZj+k6Uf*(;i3 zLdD>hmw<p)i+`M@4X!hdvYoX=zRL5>YU`I!%!48=?k<cy(=c%5wfJGWU=9jPW6wKX z!BI5(s~wwXWY-BvL)H1}^%Y^^mgYivcXk)|$Dc}!Kh4!sl1&3_82c#uw!p9X<c}+e z;ZxszUO~nB@^c0q^_ZXPDzm<y7yA5R_=R=x8x}5o#_s(y-#D(6V~XleB}!mJo3D~{ zfA)qTvBK1v2b_*uyHnPk6<x|2h#+J@8M$6CWG;8D28%Y~xcMU@xkGFHO<$)Qfb(Z3 zN+Xc(5>URw%0J2|e1qt(={zV(W`Q+@|EHVVv+wSkM_zcFD$Ebqidzm@ukm+Nj8HuN zpMmXuxpDt^LBos$#$~i4IRI(JpZsVsbZckn%uVaEO|6|e!Htm85BEC;_Aq3>vu(Zb zj9Pej@&L$oF3=48y1nd2;Y#Zn(j(F$Zf;_j@c}aGvsrEMKjcJN8Shlag3moSYL#T8 zK(7;AG8N9u3;oT&AoAsevYTe&6RlZW?sH0~q`x4FBkoRGw(vD*Or~T9;(~GW#7ei5 zH%qap%q-Wh-kVcwf5sy!)X*wfIk~R)8BWq;PN>q*omS!W6WkCGpAP%DzenH2;?1nr zC0&!6K7L!AYBRD0Oj0n(%QaIRmr9k-eMoxZ0+xo)KG!&V=&-<SXkuqqL91OjY{shP z$YG~?Pn(6H@A;R;0D{e2cJ99lX&gQkv@yZ!_O!i~VvZv003dr79LA*nBgx+?8&v*L zQ{^`9P|`x(BNdP{1KkmieMJg<Qt+NDJhCon9{3#@BKl9f=q~**9v_EGKGuIQIh~00 zgS3NQTs7*iuM(Mz_E~0vQJ!HihnO=#Ts;mfTzfmrhaP-EDfUyqB9z7Q(|&Sz#GvX} z^I|;oz_o6vvU^%^<w?vEKw<E2=X39L6W+J|^C_U8L{MXR#K})*%U-y2N2BDT+b0Wc zlB`&m_FgqdB%~3v^R|xdt##}L+f`gTOIJLCM?y;EuHITAGAGx;uYh-MK_RrmV$Gln zxP*_9K1*>L)w5>pqmvuQCJWLz<}@^YKj854sVQb{vUYyGKjh<TcNuXeEL#rWreF&j ziw4_1ezjQG4XBejC)M6&`7*kGs4&I`;13o8B;b)Xa0mWxf}usTe6I2r85pJ$P7)vk zzG9YxV<g%wjsC9sywC9phs8!yI|1hv^PF5;!}Rx(waAvbrIS@v95A_BvH{;L_*4)` z74%w`b}dm<yAw{WKh>lup{#bUY^CK9GD-x69!JGvFH2m#7rr+{GluQ~6qjUKxwCp? zgQ(28k;FUbZ;lDi+T`QL6YuPYgZsxFTX3>Y<NGzfdM_&L-(fjy@AGWH*XKu1p;KTw zlK5LgK78DEQu%w=Fd`4aonXq&S(_--y@99N2!VjB;pSmK{jdIWms~inoMYbJeiK)v zPh9$Jjz947`ORLysuV_2`v?h>YWOYXH8p<o{_Mp3wP=!dK0(c4GJsLXeO)pH3$?Yi z3#>-)mvpPg8T#=9?b{OyAaqEHk!l96$?ZSf$y%mUl;~oU!HGAAgr`!-(Q*QgIJ-~4 zcS+-O7kft^10YBG%`Jfd)6x1aub_Qez0SOu<(AsV1~CN3<Im+`zMiTp-inmkr|^*D zfmsHVf&FxpR;6IP$yt4mINyjGfWtYNQ2N;6OXcdA%C1hhb#-9V;Bf=FY^0RGUhuNm zQJVIomENRU1ij#a6@S4UEPUTe*e0Zhy!F=54}+!eH9>H6E$aTR8sHLPwjB7w^!F!! z%tmq_Z;(2&+-|^~QE44eweJS5CvVM)xd8FAC9h4Pmg3z4hXR6QO1(##@;_~z?XoD} zAeQ8~)DA^7R(@S_uNJ_dVc+SxV$qEMbC2>8K34(@(vv;$pMr9Rrj<zA*$AC+%-5AE za<q!O+UL=-n*~PkMd1xEUnLWdFq^fZOtAs(;9GI8)RE`RCT|BiF7Ia?_Rv?iGz_u# zu3fvPEV=6@J0bqSJf7_0={~xj&A-OrtpPCW(&WlF0<Q%9tYo?kf7@>)PB8rol4NUd zZx{7lMKNIFglbD%n6uxaa808zy9A>vQws^VN_<$FeE-c^3%oSJaVMw}69%QNqp1zs ztlLm?l<A7x@&i$#g2Sa&3gg3~lI1Dy^=eGt$HAG^Ca0tXWq<?Y-B@zaey*8FRDkhl zBK~mobzZpasX+x3fdJznTV8kWa28VDnl6ZM3`#brV7eXe`Z^t|QZ_>v;sGjho<B^E z%)g~C3Ap8ah`d*=P3aJMLn5t`6BeEM@D-T-2)>5*n8V{*s`1Az!-jt&(O3tTi`*4V zp6F{Ca#U(wmz+mvIMpxQ4bTmonzc<l-ts+0P9KAjOD~Jd>hEZ7<eu$%<DN|#GXL6x zX;~=~ut%0gseQK3!5TSJoevzk&mB;-^OvnRwn7H#e|*si3e-l?7gl!`{v~MN(34sH zOX^WKb#RafdJf|}Q$5r-)<Uvk<5#KcM$l`$Mm!8;l-SaJooTg;_1#8V1ddQBYDDn& z49>T1CizvKznyiMZXy)Wi7XDcDO?=z*5!G4jxVQ=O)1)L`HC)cmgo(ffCoyC>>Ln4 zQ@Wc2P~~ho)a8?uc}slsngMm<cMf^+|LZWZYr<=}Zyfo2G2s7<oXHjZd$did&dA0@ zc|KyKvNs(5cLV!G8UHk3n9%S27g<H5?aU26Pw=VDoAjl?lJa5}9`?Wd>#B0#ZyrNu zQD-5elq+^4Pr-y1tq{#A=7bM(UxC51Y0}{W_NYkx*ZHKECjiRYf=zRMOnzKe6TVKy zeN5_VE?YTncAETsjN{p<)KYi)xKc<@9qltmiF_QB34nyJE)WZG>pBl+(`bNeTc9;F zSws)PRty&TI@$#&&<@o+`H))qUIGDB<D?{BW?_^`9UYQ9P@mcZ-57AH?)cQ<?DiTc zmINO$7kqJAx96@d;ZB3f6ztGsnwOo$){-TE&D0THEk7!iJl7Bg${p8$vzaNpfN)Ic zD^GKMoD1Nhpb|~mXM-y;Fr1VA)7JXv;yoZC;Fs+Zp*~Dwpy!+3LkSQxg@Y({C)LVM zR9*$g)Pt1VXV#B;`{FT6^!SuK#7fG5(42diWkdQkDX3lqoqT3J;C<ET0#E6g52wrC z;tPW`=8f*X8Y67gpoR5^H!eXO1j1@!2mB)SH#gB|%W*4HW#u1bo|B&`zFXP^18o8C zaC<z!fOT75P(c{P&^^kv##Xu$TifF+8HYj~7x%f~#f2#`ygresBwo<6+V;rGq|w=} zIsyP<eCqfq<4f3bNNZu<YJBb@`Kz0Ad|X^P^lp&w`T1sc7aM4RTN;@FuwG!x1q@kC z<un`NvvOf|wBdB<_H3KN&V9kVOWj@DUjgXtZDXegACpD?c4*L}YAlDeMYh4ba&#Ra zEafeXzcEhX0Lnna|5m$84eXPE#RNRR$^-S?=n{TPO`oX7Pxmp|7MOG+{lCm_vGw(Q zDvySQ@@}8r?a@+ByJn{c_{r$wdS`sc;In67kKrSBU1R-;#U7Jq8#iii++Qwn_Exmz z<Gp`1)_a8uUOwhXa(=Y^J*^l{#&t#UI7yxj=|7pld61rZihYeNE_U)o17~k#u|Z`5 zh2jxRzXZYioF~=SVEP_Wg8-jpYIsj(+Bn53bUDR|r+%W**Ni}Kd(_=k%Qyt9XjO5Z z;MiGhYBvozM+zSCEWI{2Ro8K*05D{>$ID3nFUH<G8qPKR`<2*{Vh9l>YDglYhA2UZ zXwik}ZGz~A=ut*w3!+CEf{5t7Gx~@SZS*!6C0cZ%ch3FDe&6$Z&pKzVv({dFubq`Y z=9#(g`?;^{`hGv(Mw#M*EZ|NmDB-ik9#rm*RW=Y|63Ns*8Y2Jz7bD#K5Pme|8WfPj z_PdymPW?CC0%9w|m0)ptx{KmyyByiXQzMy>XlWTf`88Io8(mJ`SRG`jUqL#lZ#w*+ zoV;8_sA7wSbjEQLnay`0%hJZ~_N6s3<Y3O!_ZM`HWu$ud!uwocrM}t-29245IwqGv zA_^-(f0tV|D;Cb<-2h9~_4j9?^F+S~?$DJMz8Ru64J0D*Zse-1vxSqMOdCKe=f2az zS1+~pHU0eYW8s(D37zG?rrh7;a^H!HnH!qPy`I~5*-8EsnT5=CR370Q*vm<j$qk}v z<65i*E>i6GFMl>SOF+>nR$|^s3t?wQXCi)fv+9jIzPcPb#B~R8y-3T<tfhczL^JN{ z1GFIX_Ip<4qQq@i8;=NMuW}c^l9HZ5A1lvJ9-czy<^_V@xjB?dyGZW#MP7habn`JA zY#=g3&j%6F4L3M76)nyIuc3=@gf(v-2Qbc^jH&qFg;ueI8qnc-=h#YqKr%(R&ct%n zi+mg`_!lvw%`_*JP7@<_T;lS$&f8WuD=KQ;HzCR`ynb1PzUQ82H{4)MI6TGuTErXE z&*RCGPwhd!%xkReI^qs=l8RiUZN5mbu_<6w*1J%!pz~bY_x1LpGIH@prCaPTS@`=5 zTr;u~@8$S%+0JWTkrxx4F$%|ti8IIrC5x2qU-oU&qC*53uI5;?j2T^KHb^ymyk5H{ zOBB)t6g42=doEDbD`ll_Z$gYw_jo1do5-IIBW+}C1j|f&*w>cIS^nF6v`6Kf!-Fn6 z@r8O+qglj<1@4nRk5|Wf<}W_j`uR|_w;?7$q}sasz?GtikmRFr)(=Ge=zcl^&P9ho zzoxd;E#qz1CIUA3K(1K3<C25yoVkiskt|GMr)m{p1CnCoLacrO#jQ}|!?RCSX5Vpk zX`}%+t%MEBa~=cE*(iyy|Kdf4(M-WdkDh>58F&ZZl9D9&c0m}1c8o#{{lyNIS5=`t z_=rjjvmPI+!1lGeoGxFnxk1Fidh710-TTzh%IB5qPZxh})2|sXHBqRp9Fax778L?= z#78baD_IH|G_-FLCu9^0pa6QyL|a-<M<=j+O@K<TwkRsV_OciQot&W>tlx1O|3gSx zP<EsXJ7A&%0Ce+B<3IG6`U}^r5l8@{&aBfXS}7(J2IvmKr|IE-8s6AxZ5&XLLgwu1 z5)lK=9U)C{9h0Y*xHh(Fa|Em|3Jbg)vCn%Q$IR%I(ne^8_F}d{a|Q_`z5v-2(nf!k zbIAF987MA&ETe_aEeS&R^n{fGHpA1do&{@GQP=%546-mw+hwo~9MpL@og3MPar|+n zQF4d&@q_-z7BlVKgk7YQp4h(U<dM<bJfrvi6c?ks-k6PCVOvRlib<sq6~cE|MycE3 zlLGrTa5%kJY5!v=1Oz4e)buca7vI6$#)5i)BLVofZ$RW#f-fmZjB!nWwdaliEm_4v z=G7v%LL?l#7K+iPpEn1mR-6DSZWaFt%h^-ru)#5~sW0H|;zvUjo+4rZg#EfG8Y(Ox z8duI~n>N<%9d5BP18W1SvK(2{T2MoUdx@8Y5fTu%{H^K)cUQC!EUEZsevfZ=SNw=y zf9vum+`i`U3y9LY?6*KAhq>@0IiJNm>XwLT?4Zo^kySfZvv+%IlaqC_Ubufx^s5=l zXSAgAoI-eE*7og?e(zR@FxcW|w_rpiSz-tptlddQj&sikS9|9qd+p0TIIH`tdrBdx zJ6Tm#y<CGqL~5X)v7*2*%KNfR;o+zF6iA)8Sr-$iGwOs^;xM6EDxvUcF1JTIDAgwk z`X7X4gM+HO+e(stbI!&Bz$2JZlk6MVJzbyH_MPb(L9B_6W%JL6`Hg;h*DtZE#XP5n z1#Phbj=2~s{=PIFjDVo&-`|%A_&bDJl`JF<(b$D3F)g=U?~!7E$K&LlXJzpOJ@s{> zJ(5u*7(_+<tIKZt;#kJQR?8dBr1U>u^j|eQNm!`+&gCRHGDr8s0*)JarFL{$6}_y; zQ>Q`t<d4L`*3&bms->LVSx9>YDH>uS!7F#w?2W1^f4bRbI{RqA$WLCE3Y8uC*2A8- zn><E0j{A7?`U>%bm^)7}s0eclZPu}n8t-aAZrRzT*+EiKR}Dp=Q-EbNt9WOQ27EI! z131R3i~Hn^b>g-Gu8F((`bHUn#^_M>a%ArB-<3lVnK>J|>zn#Q-WRyx3<WBHAw5VV z%Ru_z0eiix%lO>f^b-X(UZvM_G&@_``J=+&k_VuDmuw<VOu(PVd4aNTi65gW17>>K zH%X9Mt~gshM=Pt!NMBa|Ahh0^4JEHAfr54&<t;`}TYUkS<jzUIlLWupK*a|QISt-U z`ECB7#{4;LA$@xM=3JbgZ;u2DVA09NjfLqn1`kZ!rUyKyB<DGNuNe@qJvv`KR66xn z_a<jtrGKNnG!S+<|8g}&h}UQcfacQZQTMcL>*!u3gigfJr)Zds!PPpk`55C0Z&g_1 z<F&hVbd4ESlQBOZ!5O+@s&ZEKCwIC@AIPB!NuJ6dFQp!<+^Ao1Cv2~4QN016-$MRY z45V`J3rR8nQh-Sj;2a8pQX&4i19W6u`+H5SMiP8`rYUmf(rf|`WEW!AY!+-D*=+76 zB^yFmP*Z7nTg-?=k2m>ymrqjn&iZ*jU3-iuX;gkaJl~rf)BQ_co0QNWKrYs??=Le} z_Rm~qeESV_Z=WtqeVi5oJ^x$$*6{wHb-e<1MOo`rKIsgEyR>DvdL#W&;~opc7q6Wu z)hBlfTXfSWKw;^|Q?cU-hY^>Hf!Vg#j;9HYmsjE+JMafc{hN)g7PmD$kTrXrM_bh! zxvQI^h~pf-k!uHk4A1(TiwXc$ew%j_{V|bF6|(+?n;9^s=bk_A#!m6gIW<dPs5tFu z0%LDW!ZPb0ZFXi;T|TzU!z-{hkru1)&WfOC1zx^M{K?FGO4gQ=nD$*%{BX~$oSD;+ z*Yf0^hD#x1;Bf2)CSg}1(aoAJC*jF}r^i$0{IK0s{Q5iFqutf>|7&DA{lgf}X{1@e zkl>Z?8E!Q*v0$owHEVO!pdFT@Z)Bt^@ME>I2v<Ku^80s?cBAFY@Yvzl*w}(K1B)p9 z45M=E_B~9OLWMW{W}~EaHwtA8Kl!=|(^eBtW%KtNz;NX@Y6`2|*1|M6D*r6ZXt$5r z;Mi%)&uU?~GUN=i+4_7RXiXla{V*Kq2Oy#))9lFS0O7rOH2OqAmnoR%zdc|KC5N=$ z1+~?a(dJCnqIkIvqiK03LW`awx?NQqbhn>8x&w4(?VLKuj@Ty48Mj4D{b}hVqhNGQ zc}v{Zq;Sg?&Qon^{siD4RJ{*k-{}HIgtrQ`6UfOAfcWUXZ-WGP%}UAFaBlEbBw(~( zbEuc~DaVn8(M>(jx0-M}slk&}Gb||&UD}~pQ4n0S7L);Yw~j_@K{*tDN~au#_i%-; zR^^ygE_xF8J+k|i$>YB>j>&%+fK5*Ht*tD+9k4(5RcO<^FxUX7Eg8r}x$GfOjCc%Y zi%s)L$ClA=AMAF?bM}`+BEl7EYdWN?bD(wQP1Pex1WWmng4IlzD%}*O`RM;NoKVCi zF#%`*Z$#TWZk7_eL~zAn0q%%noFDtu>Z+=#bz5MCQ?>ZM8}SJ=hT`J%%_KC|7_6&U zUpYNqzYj*wj*TQjt$<C-3$^m^vamoByt&Gmu&D9s>i2hLDQYy=>6q;=Y5R#y3R>BY zm&m+c9�LL{19W#3RoHY_v?AmVRQJxA`#3ldDCzt^n4he-FKmgwduMOFM;$EXo5M z?>`NDdZ3Ox)IhR=n6{9AmG9lr0dtrQKo#zFKJeGfZlMHW3!@b-rZiD35iFjF@F>aS zl;a<L%Ul%z$vjbDCsvSKtvlG=o=r;4f$+6*r`IM0M(V@X)PY6Q-X}pA?T_b1QoMIp zyukS0)&+u3kIu))@nb*m%0o-qN5~NyL|=uK42NRAA^zAxIVafPEwL-3B(7+;Zd9RF zJ8oksMT#UFkEj@*1$}S?X!6}m_$UAHSX`SfzcfBzz1$GyNCI7^cP=cN<(gCm6};mj zl;N0&J|P|7+c<Gb(s$D|)Vd{;L*zT<`u-4!nveZigvL8X0r8MOcl$%Yu660MH-OpH zAVm=jVY^)Fk^09u@%@rUAB{T|vl(MO7`V-S8;a`FtQpM=m=y8u(eg(+F){wd9)mg7 zg>h7Kpc^yr>=7LSZJ+FPGi%(TIbBbc&=9NeyTq%xXVIc>HR@HOKDkZ4i<D0DcD;f# zf;)=3!AH3D#B|cUG=H&b-T0bhZ?CoSTzr%K09${oc>eAKktF`~Z@yn}1f>49XO|i7 zLc+F$qi-SmXyUvh5zmuywbQY^q}Ov~VowdPUI0V3>t-O0c>G%kGQZHNPuwEX5wJ4S zEX~b_197r2n;bCamP%l?npB}}1pfx+Bgbyj+hXXvIkI|3Z11Zl3?Z7@dAxbKl-J&K z4~)z;#FvGqD}nPqP@GEi#TVdMB)CFy-f}{a+Qp$A@c)SBPW}b4xf%D(eqp7wRhO#Z zEtU_JKXY}}Pq!ipVvqcE#Y)TZC2j_O{1e^^$@CyQ8pk?#xtVRei+Mc)hP)8t$m09L zP1eL0--@xW!_MWDV|N#_J}4HB$eY+H;p$yme~TyoQ)I&4=o4;a+Vt=?4=)P-O)iWV zCinAhRF|d_lG6-nEuk;Dq)kNd;k?!C!&;Fs_z&u&-ae-Oi1tWNzsjEPLGGic<9q#s zXM(ntznvrnmHE_1?)r+}8De-deMAqM$@ASEFpCjE2eH0ne~pvHq|@x<LHG#@QpP%V z3D1w6?E}Iiv%U9Lf+rXvDvP`tz)Tbn{VJGM1Mtvp97;UCI@Uq;gW}9)8DYfEPPJK_ zQNIfSTKyViW&Jd4I?!!`QcIJ@>b*33JV5iippx(-fB!@<v;U$)A4W#OF$5kB*8!#S zZAxWWPgr`m%p|bh3;K-}!v1UZU5NiDkzdUW$S$-LH75$Qrq{c|zLrH6wxm50a$>yO z<NWWavhBk8hMNDag|Vk)ux5jn*b!u!g<KoZ*eH>45-7=D120J@@`btWigk5=Mt1(M zjJdC-__AZf2uq2JjcC#oW*s=zFlWFc9;KizxVV%OqfcGtf(6Y*Tz$TfwU{#8{=N@? zFLRWqA=zRt-;+*uA*}`8yx^{OK~o)kF&1M_%9|HxBOXK3{E9A37OT&_5qx~pK)4)~ z>Nwd`oMr_hPIEkO$zo1DAb5Ow+VWPy?kS@QQ}F6beFKAo5J7<vQZTB=cUz_M+%`+z z;~*sX(E^Q;TJI)aUt2*&^vW)l>0cgB%fVY_={LC1!K$nuJwsR&`}>dzq*Z$S0XGRY zC~XSbL3hI6Z3M%kp%<+fgQkdjy}ffBeX8#r(*A-c;sx9~_j{N7UmL!d45w_3pw;(( z8E$MyLUYgmr}5~r7@EdBJOLmOhHZoc_EDR{DVQ(d0kc|?5dc=RxU7fO8AKJ}>0uTS z^bjP$z!J3dd0_-(jDK5aGldFsV}du3r4=h@!R8)-Du_D-UiSIXkx<RBe!&8#HG?(* z;l$<1Cly;=bBE#}`)StAd){pp#E_vtWpFT5fw`Bo-*kU=rL;Q+VC1vb8-pVaSJUk{ zIs05W^MZ9gvS{Al*}pk>3I9;puxD`K+HDCoTj37S`Lymka_<0}<b7QX5G-R%B{ARt z3_?a3Y!x>brKj6zvHes1O*9tx-rBVuUt0Po080EH(px~ssA0yzR&y^jQD$Uk=)x{d zdl-u7d)8QFzjGF|K>Y??J@eMqmgC`KCKez9&tFIY_OHra`Rk(l2-aw5Z%Rg<qQ<%p zK`u2e+d@s8sjGIwD(<ez;nKf`IWMU>B~J*lduTHBKmI0bq_HIskjD$|(wN^Dxlmk+ zb0pmeKD-YU?;s*%x*$XjM%Yf?NI-zNEdwJUNr-#!mDkeZ-H87iCjH9`^ENXT3r^!L zJ136OrY-6P;MHj~pM91{O+|Gs_dPeFLHKC2-8g%KkbMjZo!~aoQf=#=3f3e!w_8VN zCw}kej{z)kPIgUssXq0}%faezScX@Zo4V?D!74ybdXj}zuO{9!`7HN!^+{SwY^J=J z_gs9EWHCM7SmK%&;e>j)vEJHy`7|={A&sX6NeM{${Znf$HBV13bTp->qk_CC@CF*f ztcZmr3%seW0X?E@H0fx9=XsUjlGBrQ`pY4|dp7ulgzncLB-B5ENMs*B=INIDH>8mK zxhIA!?z#U#=keOUS4-2i)EAnjeudmL|CUt0iW@Vz+c%fHHAmJcS#_D2G#eO=FJYF& zcJ}W{3bzF1_!a_5<1F*1Yoo6u1b_<}K-qPSp~<Ay$JM1|77h}5(W4xN$mj6&uFsq% zbR;sNmnXq5UAg_)tF$pF%pDsuRsX-Tn(*krj_z=8`1a@4*{9Uxx)my~Pdp;VUFl8< z<H-~VYdNaEtW$jb^Urx1=R-&e<(#BAG#NcN(^v4LAr6kL(llk>6j(dW#?{DG;==T) zIYl!IST!wA9RJ_^vFUaSC;YZe4`)MYhQiL}Y*<jY1i#GLApR4V$i?&lr4G|KTC)oX zI9IZnF##D{x3>4oP-EuUNj^gq;z-zLsHZy<d;uUE?5{S^=51HUzBVO8g^Lg3%EB2! zrpDI4Zv2`=l0N@d2l&G-orJgzA(LR*SsUD8clvdN+v)7k!iG!MxGVnQ;ve8$fGr@L zUK9a7Uu`SqD9CoW$FA>oMSW@eRPDQ?ig)@G+ZjS_py5w(?x&~`rtX^xV4CQU0JpEl zd$fIA>9(B2VpOAhn+$L@6Pg3|8mg6Y`a=Oz?M}9u<{DaC3iT65y*xA-cikREWBlOj z=jpk*kjW?wICv#tQq(~OTfoSQv1ld4V4Z~*npF%G+@(+@Pd><bfTX%7|M0>PsU$;; z?e?_l!T<ZQzoDib9>oU}87$d87xi@<%ah#$^C^6DZejAWV08=0+aBEfn2v92b10Ij z;RUs?Zwo3|W7hF2xM+HgU_lBD$Z*4)6$6qI7K?@OgANYGg;K%sJjon<@&61ZwU80- zR3dXPEgW2&X^Q@(dDkQ2j)~5e`cl@-w$c+2@-vOnJ6_UL;N{%e*VG75<noUQkO%@L zls8zefPZn`kNu<Rv&z{Bb@nl<Y}-j7bjkAa+iDUE&kpo^aiI!6DZHUsSyoE@xi5iG z`GJ1+Z2_6UikstaXTZmnjBIZYY^G-jrhCcB>8bka%kYibc97FBDoC<G!3!I{#cL}P ze@7lj*_$5x+`j~_hOru^I@<Fu|2GHu&)hJPB9iQBe1tV<^?V5YJE-2Yv!Gs*;1q3a z7jM}+6b$bcbX+YS_Ae5>)3GNW!)mNPv2=ywzqpCtF@YLYkBVMy54VVGK^D~WOAWB8 ze5yU@w2u)$m=`^ItxfQ!Gb5ar>ag8A7B9zaXU2hTk+`p1>C(WhEHW&+GwvY&-0X>C zh%v%VO9dFgp+qISkH-DjozZ8H)q~)MK&`n0qT`mlTq<vx>cqM{CO4s}enywapxj)< z4SZ7}U#R`%d7%^h9FXRNpb5(3Cv_40jF4V>dh{08VjT{IfpbZ%mUqUw2AsRe5BeJ7 zFEb9WJ2*4P+F;g6<IpESMikAZk8TC;9xjWo?it6w?N3<=W%Xap_#3@+rAyQ?O%|h0 zpdpI3CvN&oQQNMaAyXY3?5vTZ*i>Y$<~{QaM%Wjne!N7;%gN{}5!cz4d9zVkYv~O{ zC*-Qnu7F^hUk31Cfj&InmnPbCH|0&22@>Z<+)4!RRtY#es><@c;wK6B-cFr^Og&Fl ztyH7HYtVhKW|GSWSFj_#7xJiUVSk}-DnaLyBxf0ZAq_*z!#XoWvR$p}rw^>1!L7lD z2(bVf*;}%4P>fn+%CUy^h9Y_WFVkfq;F#!aYtj1p-T^GbRP_+!vc|t=W>C*J+B-Oy zQK3W|UoiE*|7?gzGG4S8z4d8#xQskEd?a6BrRt)v98&*~9-T@}eoo%E_r&98x023k zVMK%nPtWGhS^?gC@K?jD?>@Z`7V-{&yY{a3wc;Mu+&GB~v4u`|{3tJI^t!4?6Q;3d z(#Trey9wUT;rd~wVess+;2zS1+;gjosZRJ-nnwyh%|}j7SUvElua4c_oQat<7zJ01 zn{DYJvGa;5OXq!pg(Sr6Xi$+o9m$DN?C*+1egr@LIDnLXTr3`r!>%o*cz8b$Fj#6Y z_Z8TCExYt?kNy;M9l0PiHyzAFMIHfC1gefVu~146$U2N4du^{!{HY=3Ph6btVymLr z5nF6c;=m?f?mxE~&>+GEcIWG}*XeguvCp`9Im?}-zk0b}tDtY8uMa}=-Sd7nLX&Zp zl&Ea+A_iTxQU!utt|dHgODB<Kyd>iY0=@p@kA1Y4h(in?vj245kp#o-UZ;4|5{@e| zb%o=CjY4d!v8XH9%C=Vev|*imY!{izqMMq=(94SG(NpgC#d9+0WW=#C{v4=TEu)8D z@$X~#5@ypmZ&RYZlN4d8-q*24)DP|?y&u@$d<hb>L@WLGFU5-9V*RPp{DCR0wXVR) z(w8!k_>;*>33T)roBoyG4Q7?H3|3w%MmSfm&uL{L*UjiC?JT?#FBqfWbCg7WE^kqv z^HPt&SIxU(WYiPLt+b_yM!(J7_0y3Pes-%OmBo){YUZnH&V1mLDxA|2Z^$O`oKa~u zz|Z(Ep1r?W=_}(RF<1FsaLw}rRsFWhnpQ@%q0X91uJFoD^!LH{_5kRcn*p?gH{dGF z0fIDh)CFHgjkCYrA!rIaKa7++Mn~4F^JT~XLE(D_3)jANrr=Z(<jNn3tWw<uRNl32 z<$}<7gKm7fetR0r?^)p==^NH|b~;A<y>y<ON{F7v@iY1)cg(5^R6?CcY=pteyX8*{ zlNJ5_GR9M!&}!o+Pbib-<>14K()ImxLOXMdKsZfzs4*JWH0oMGQHx*zdZ*~&zzUYd ziiWWnLXD-|;2a%OK7v`Fzn@Qf<P1-=#80ApR8GA6b~VHn|33baviWS!_qMqwxh1~; znlRe7y<#eBW0gd-nB^7sxblPTFJo>l?Yh#MN@(v8QGL5_Mj!cbkY;G7__o)BGW(pq z{AceqD)-zXdQq~ONc*F54h%{r5P;m8AG%3s*{-_j$Ba8M`!fpw2JIzn+gkZ@64@l$ zpjm#Pzaq<k^}Pq0Y|)QRc78LgLQ<J6i+1iaijwo~UEa!uwt<7(3ldnJ!V5L(&s4Z; z|43GWdlzusWhB@|&gq=_ymvBf1|8Oq)sK#)EJW|_><9X>Q8*c71y^5CpIsh?EP#Qb z1U{9NBuasGb?XJ33dfQR)g|x_m&a}{YPV%P3UNoCIf$YRR>#|7Rh&u^;tT{oWGOF! z>sQx)d3Xz-<p3!amuON?cPe5n=0SE}v-J|mkbIMRh9Np+{&)0Cl?deoK@g@2)i4#4 z-k#mhqgma|=ps;`Zzz`F#@XA)hkC^?7dfXWw>wMT{6s4xn@-!PlT0Em?DA^)`#-lS zWi~h{n|MNAf^e|xMqP0HHm{n>SCPmv5qmk(aOOBJs9y5XDZU~C)Tee+Ypl6t$qRPb zH*X}iEs|1|>pxpO%O0NJ@@!3S(2M2jj}lzjIm{NR>0^z_IH)zKNSU;+KbehG<c<JM zYrm4(T22V}yasm|*a6-AEe0k-5!*;yvm_VK;g=rMWaZ7#eLHP20!{|Gs><Om;4kN% z{`puK79ukdA7*TbnqudL{pnp63$XdnASkEX&+&Q3@G=k&`KYSFO5H_~Mj`H3f<XaB zxs#nfM1<v~4&Q)w@0APZtq9+SH{W~;H$-S)qQm7Ix#2sVq%0iP&NhUG+R^Q1xgYqd z_}@65(uF^2`=+M+X5_4funbuUrDNviltwu*ak8_V*D+8~7X<q@dq~p?oPzs_UrWJr zfz~4xo@N7e!43O8C6HoGke}Hg3d1)YL%sT?xP|FQaq7F>!#H!6_eWnrHl;($Y{3`R zTR<pWhY18gvs(p#GT7qlRmH)Q?tvIaC1$lS-!t2=>DwdDCIw3-&H?BopL`GxhX8vv zcm}d~1v;f}jyVrO)+njTl<RW@|K(Ol3@Q|`ic0Aq$}BZ|`9^)Zk)nNHL<U}Tuoecj zm$H`Gs#kP{%%wEND8EMCD`tH#|G)#l%Q?=e8)q9#XUq^V#OnYHk8xQZ+Cl2b7Xvu? z7^S$Rt~)*^g55WF)%~|Y#zO_s1q*Zkr~uX~!NV|W%`kgc*L3bHpkeW6It7?a@A>bj z0XxA%(FJe=z%qP{WEcGf8Zednnmb~Wg}yiHU%WPeDc-yO3?>z{a;+gM20r@gqplqe z+)e*G`#&WL>%4xr;8w1N|CAp|zm=$J7kVqn06a-S))PDk+~m8pTEP7(%4BymPp`|V z2v`cSkZk+l`(^Rls>r36pmE{4c=RdK#9}Vi#c_Bu<!V31G}(~kmBBHi&_k+&V%+gv zhEK?rV0PPpkC^)|&(fM=>Z^G>fb7Wi)=<lG^FtY!Z^@ox-OwSUbU%MhNz@fym{s<T z`gS8a4+f3N7RE>4a+-@iZ;^p5(}BPZJgDa_YZ%*9g!!Uo>b}qr5g7lKYy%+-OIZkV zjbDC3q$P75F7Rx*>)(Mr`Fski8&%F($+QVYdOBG`3GTFZ^MR)ciF4~Zvy_Ez{XTw# zraBRzvme01a*m?{g3e*_>m1guMV6H4+TpW3a^l>)-&3AUkp@6pCm_mEV*0#%IThO` z1trkDr|O;W>g+WR=RaV55)C9S40jIGM4yHP8)Ndx0*%Qw+{&~&Et<Zu4Uso~`nP%m z8<b4SE_p0j1xh6}R3$ucG99jbqF{@7C=@OU^X0&Kx);oo5HSDuDvW@aPc0?nTUOLq zPFIfU9=lB9STnME!rRlONaWf;1C|x43})Lo3Zv_GM-`=|*Q%Gf-G@rQ-lK+l73ab0 zF_VNL(fD4zuo?v)y6gBbKkG=%x8V4E^r+Mk5$nP@OvzVmewlKCH<}^W)t?}{gg4Lb zWTF{W01Ve}HTW-(v8mrrA}5@tR@V~p{;35~t_#36`5&J>h*FA93GjL#c@p1wBiUBc zH4=3n8EW9R(_1of2B5p9u6>$BNIaOA*xhma|5wT`-(avNyJeVcYG*gU$<epE)F7zV zJn1|D9Sl$;^zm~2Y3`Hbsq56_5s<TBGf2Bu67ueyv%<H?n_HT*t8oc6qprG7%8~@+ zIm=iRrIU+4p)S0t!Zoa{v?GV>c5Q1Hj!td07yqCrkY28?+YUACDhXxYRc67h|IfVh zQgxx#YLE~F`F6bFTJvC(cQP??A8^KwjvaXO6hQRcegB4*I#Sj)i<`w}-xS7*%q&Nj zOD*R^fO&ng7^<0x@%$UP3L|!<Ae6{=bbj#&+<_li!Ez%5de-qdji^Ab{}l#PbYP-0 z2<HEPmxWY>V4<Hl-q<XOTo1O)?mc)wZ}MMUGH4*AWE#4ctm_82ves*AWW#IF2{Sn< z%aevt4Aw{!j>EQ_`8`tw>ODV|EZ{c)D3_t?V4Av~4X~(V*THeiHx_x?4X{eH5ZxZM zQQs<4tV;(0cXXfzQkCm+e~gr8o=><d=`fgfPs>aOP5T+m0DYn1wQO%;t~Kf@pn`#) zU{n&j(dk|c0%ka0gzv~+Vp`XHE(q6n@ss}m#>KIFrYX9NNRUqwm9NWZOX`J!Ujz}y z>>k|(?K~UAh-?s*Q_x7s>@N`PDf>C-{Lv@pD$X%v+#h;Ki7$X7YY7Te<^QhjFcf#9 zDWVG^09e^)*KU`yuV<rPz)jk_J~jmnS7cmgzIE#k{tD0G_z0f`w(_*zI&~b0Ijw6p zw0E5&B?=|w0{ZnF&0JRxufZJ6lIT9i1_m2bvM-{g?tPnm{GomlK%yC6w--QbGmiQy zJsiY%@COKej=r-ld12m~hc|c^CI&?f9c(*!Q4j<gXQc#s`OB3b>ZmakE_xAtif5hH zo}7!__Y)id*nQlT*SZW$iWEFj;u8h%NY)Tp4ZUp`PDs!c4qeu6Aar8xWsUjg$(718 zPugNju3-=#s09eNPxAEb8SI{)*`KjG_A58GtW`Y+0S?dWc|4R}ZzctQJU;FYrgv<8 zqko7QkeBuU@Ot+3%B$X-clJVo>G1n;iv|IS5uM-EBB1!OO@E=<XW|=ys^@9&EG&?W zzjh<kK6?Jiys#LP;g^iM^#haS@ryOtn|-rQFgPdR7lE|M-rXV5D*Mz_{TwdNCSG1C zQC=`(;V`Mx?{!1`O<k;PHyQ2-X`MDX(VRXi*y7?Ya7M?76)GdZ=(gQ;jhA!KOIG{8 z*mYz9&YLqM6p}oAnvMlPwLC1BDniV;(ce}4zO$x@PVe$zR^!NC81Mhy1t=6&ev1u> zZpfKcGYK(9+T!ZWJBz}@`3$(zJPa&BOmI&{+GQVZNDiW>5%aCDW!oLW6i`Cxh5wip z|9MkjLCDT_O(%0urV($^_xg2`q=Ibo>&S+b0+B~z3E#i<QbI_DIT;?02nd%H13)8i zY3WmNYkJ8Dm}%|LpC0x?bIz!Vy_}{W8SRQF9UV>Ty@P0U5BVaG_?~hhuV<$pdzr_D ztLo0_oh2hKiG|lpbdXgoMbVqL44FZQI0D@ee?y;6>25wvjLq?lIB`|H86+pB2hU~& z<Sj99@b`sViuj6$W<Y1@zhrT)(yQ!=<Atb0arPm-wu+V)7P%zkv^Fv(wEVPse0;3^ zq*SZH4E&>eIS$BCh#m+iiUsF43JB7}!UC+aPYuFEma@Krfpyf_`nDeI0o9OjK!FyK z1btAu&(P8D-&$JkOUv<0Eq2;DyeVu(Z&vTzGvigl7L8N!&K@SkbUHv0L^fkCiF)F` zz*_YAuD9PP(H(DNbr(~etks7mG>$Lt`KQM`XZCN<6sjk)7As&cct>!B0=fng#%CGo z&<Hxq9NN!X|F9j4Q5CnFGm1T^KXHu^U8504p9k75?8$@&DxEr!N4P9&p>r1Wt=r^6 ztaH@X@U)pB<7=kz^>O2@_nT}=Il#s5>(SVJI|vgR!(6|2)rG>qmDL%wT-3Rl;tN|r z7U!TT4Eya`3}s@0@TxhKy0o;>#@3;@21SrlgxgqIu^jh#`<_0UWFKwzw(k(B?II3N zt(CW?VPH|oC)EsW-jcWm3}WM>+Dyw)2wyH9T&}Mx@9?)!nju`w_OSb(GI2o_yvySR zip3hGi-x&iV%M4Ktm(Z&1NxjG2`-${#c2@{&l*emH_-PRp)0YCvii>W1$&NdES7_T zOOy8Jnp4>w1X%820)kPjckr@&jw11|<G0-`)(HUv)o{OnJmFU#Uv77KTb_u?2<@%K z>_-&U*iF7w*dqF&+&xl^CX3gG<T8=#FYn3R*Oj@(l`ZO2Jd$j8B=p<c-=GeWvCzwD z(jqaOhAJS3gCYHEH-S1YqKoAwa-I{!*ksk{B{BR`7yO(XEHcJVaS&)MH(2H#&5bQ= zeGUFY);Rs5f`Ll!#IDak1iB=i+tK3?d7~o{ND|g<7xvNo>}Jh1WGF>qISq(KV;1<B zd-qPwkDQeLQu)jr{%5Z#WL(TSsqdj}S#0_mQmgEh!|lMqvM!7SR;X^$DWhzlqN9|R z3hGww3nTWd18l}R^q~Qw%vJ!#BxLj<CW|OuumE<nw1;de%Go&*U-AMciMSRGn0!|` zwptKmzk#%qPEJ$5GlSag;ljZX@RcJZ<4JM70&J_UIn<bCd~j+Y?fltBK;A>d+TVwR z(2Ivg#{7eVplJ>wn+Dp_DL|)5337N)jVRRV>!M3Z5O;8hFH1NpG*IA9;(GE&+onCe zR!28lhEUw--K^9uYiYzQ&0g~XP?vGwl}}I0VMmcBniM9?&NrE_n-#x!XQXA65$fmC zu9$e?GJ+TyftT%%-K{Y7G^l-}-Nu$nEco-}WSKW4_yXo_@7^oxZ^|z1MTT?D)}sE4 z-8lp6M>$&{=UlBk$}!SQ_T^}o1;GRG#D&NH@kyJgNpUBt2S1CVXJT7taqAr&?K@_d zv&+>2oGQq_vOZOWN#!j41|)hnyMXctH@BI&j*d4MWwQ_u$xU>WSP=o5y&Cn7lu&;S zg0=X>Xk-r@i4eHNq+y!JF)5Zsp(jdk3l&tuYfX+l*uz|&GExDJ%y*?ZIAm-h&)WAl zb#M*gAxuT<Gm#AWH<T#qBaxG{wBjB&CQc5XyVWlO)~j=9dB!wRL0Zk9{YAek6&{GJ zgRpvoGr6DqW|eYuytcH_#y8{8QGK!9MY+7nSfSp`KrbTPQ}q{A_06bBvaOexO+`?K zSruGDcrFr@6*zA0y2EH?x-x*Di#H`-B+Gl~?g>ZJ!)PnhB1?SLHXrmbM$p3$?VDRE zKO)TQ4l2zbtHGP!B>5MA4kwnP(hH!?$rec%B;8*$eNldzzsjp|a5OLY%GuRb>+}c! z2LvB`mX15LFq9ZK66qQktN=bh`lI<^q7O?>oN)JIkahCi0A*9gcJ=p!&FT>qDz-!? zYkkC37&jc>9<%+Rv=|wQtKK2x5)yRK7iiPpKF)~>Xm=L4b#Wmw)VP1(V1-?CR9@Xe zb0URr4U>eNlwbBLZYdH6cIh}HiZua^`$<!zABuS$;%Urhv^8foZ-H7Th0|N}K|S;N zD*rD40vtox9Ka3`v`Mz+i8kx2O@wMCs~nQw%@2`E_2`J_SF1=^`)tpV#sdPqq#(>k ze9g-;;DUq!sLyZHx=pxeesS)TcLb!UwvLVvde4<&$A(MPt)r1hs;>tf7VS`MbVQ5M zUNx=_03<Q8;hnKx^82oAcP_X^rR=(6x=YHKb0?3)GZiku=~mZ5=2M*d!uTzYDX)DP zNcMMJQ~JfSM)eZecdKJGi>V?}b<j!ar(=WiHek_20n;x)w=uUAvEC%1+WARRQM+$q zOs6k@U}CK6{vgQjuoOK9&NxcYKM<e=n3%mD92F|KMC2PohwipLEgIGtA=9ct%4^#v zl0>HuaMap4H{uGspFS#eI_hc8d$H`*RP=V3)Kj4I?&FI5TzF=ig_0x8W%HJtKA=Ck z*%#`2OJP;3<|@L!Tms#242@Qr0%J<<7q3K-F95l#<Lwv>eYb1KSv5&J-}BT5WzoED z1COYab^@Q%-a*3Kv=Hs(c<<d=h1a4YJd#1wwUq;Ypx_SG_Mk=4q6puM$JNSCY=pUu zot+7ADfyL_Hk4fyE4XN2hF=mXZD?jlDxo|sF?Fu!d_z%hDSHLz0kn3Ha7lYrIhN#b z3$+n}$VQ)DVxHO;($Yk}?+u)LW$v^M0tnwh%e&*}?!&;VKRO>k-<UC{_y(M-g|!-i ze#(rQo?g4+OB_5HuC(nPW|aFjwt0iKV8+447uaK~l}7&I-Heoi(Pi4fY)ZZ1Ag`iM z>jRBHCHhg3ig@ahC%({-z1@PWaWl#qw)L~n3Tw}H@BmI1vVVz5$p1hoK45|UK0KZD zISi|<!rPIlGEs+p(tg+74a_@al}Aa5AH=RniNXk`AycW^{?zq%Z1Cf0>N))6DVpA) zi5y%;G6AC%QdGW}I9YSUdLON7?~j6L`Bs2@^C=*8u{Et&zhLe{SGGoVQDX()=ri^w zB*8ClPHf;qc;e0z?t?GYTV0~6($X=pv2)<QmedhXhhG}Zool%6{l=zr)ilUB%2CwH zD=`*b`+<fS+a4V1Ck!i+eVj%2&AzIs=;zN3LK5kvmLkFSH{&$s2j~F8GRFJr`CH<w zyYcs9e&64r`3;bQSo<q3FZ8`ZPZI<XaO^($uwLH!+>W<HKzX7rmqwNj)}PZ)N(=yR ztJ<vo7bGe#GE5K<q+-B5y4A>Y)#crcj`VC+YFH$c1^ip6UiWY`9JyjzvW_`|pjL9i zt7ZK_4wi5F6#U6r6lf@F9$HwLRpmL*v=clMjjGDxO(CH=ax(X2rp9PqTJ0_~_+Z31 z)?B+juW4b>vU0AxwXanJ(aUmGzvFGz&dx%GCfFbw?(yW=(K|@1Z^Dr@ZU#%>_f~G~ z`bae*3?g*z&FU<0@Yr#_Hs?1m>|9w-sL=zoEh!kqgNZJFFy$XXd8yaKlNt9$<>wCH zEWgSALY<>1>|eFPF?W6#v-@_M6gCFFS)FIgr1>3`eF}XMS>R_E_CM$$CG>e)^n=ZZ z4T3^~^V2_~<@fL3ual6w5g_U}{f|ovgWDHK@KG}9eblyx*%Nce>QAshpV`1;F+DxW z4T@<6hBn=U{jre`1sIEWl-Yb7wqPz+`<dMTOWH$#RF|zT{1T4;!EsO9z(Hm{X~Ybc zOIIKN%3`gixGT}QsFLP6=fIhbd$EJ~he1~|sye%NR@$a6(rA?(`Y8yb2`I#lTz)he zL0uF@I5jz(8wGz7uPD|fDK*;kGbl%X(<S`+trrOYvr(?5p3}%{EC2_KrbJMO6Nl8D zNED=L53vbI?<rIQi~M|+S0}PF@Dhr%)LwM*1`cSI<I_Uqs?GY@DU@G-S^UrY%`fv$ zo)^@gdI<0T@+F45jap^4J;?mRw|gQ4Fquc|_3y0wgwheY@-LY0%LINIj?`*rEgVC< zX-EH2=qzqw<bZg_vt0J>*w&eOh=Fs2pNxS_wWvvsCK}L*5lFYBlRi2dHc4*nnoDnw z5p4~}3&*j$2^cqp(g-S;`k?e+{qq+jRz4bYn4A0iPN}17JG3xt^Jq2o+{TD^a>Ts0 zGP-n}=w%G&I^)vGWn;x`_$`q93>r8KgAnscc%z9zG06$SS3qP&0J6o)G6GfPC(-rV zmk^~<<Mhe6-98kWu5dYItpv*r{;ARMhMQ^6+zhmlech`hH@SlD>Av(?tM}DsG7IM+ z<BBQv`0{v<gVXcV3_KI2e}?C61Mw`t=&9!K0eGS^ZGFa6f-nzXb)pKGON0iaXC7=j zJrlC6?YV%;&hODGQy?<CZP!$!hIvl}WE6YCKIym*3Egt<6Oyjh(Wlay3}=0Ix;ayc zc=){q-6-9c-5B_g;J!>#5v2^GNXJx94f;WYZk9KyFKcIjx!n}RIyK6N*BcEL!k_NC zpF<W4YStnlMcig(i<pYEGzQ=dTl@O@PC_Tx3owV)<mB#vOa8cbgQ}R)2u~1_u3k9S zUMFs@-5FHgKsqpozj5D>??oBHkvlNAGeHOojw-jm-3F`v483)f0?g)LRv82=BtJ^_ zK*VPI%L-c8r(~~x0G)x`D#CejZ?L#D6(s^G2>}ycEe@ohFV;%HO1G<3b`Diej(g}C zY*XC>hnL?RqQ;~=J{qTv3F@rio**6$OxXkkHZcLk^r$fb8KyPYh`@0Jssz8D9nWKJ zjJ9ac)k|mFs%PiT^*J*h&$tyZ&;Y&9txh3qBjfJF^S{Azo_Tvb#dMl{-XDE;w)ZZ! z8@cA>_~YvR)<<7AV8X|L8tKHum1P4%3i4QQz-5NVwT89+fPC@?TLLC8^#^~5B^j8D zG6D3`CeUFxX14Hv+;8FS9x45U4$u&z7^6wXX|osie7#&u7Q<uIG|@1%na`gjRr~$L z5`cu=L+Gji_~X{4=sHG#&NSFNkOx+ulP3Y_K*NS4#}IZfM`5-XZh8o(<D@KWc;Q#b z5TgJ~1;41nE1-bx-3POOR%n1QC*18G)&cBH(6*vBdOLOUbh6kqz`%30yaZI8<m9?_ z9_8ni^Z!CVg6&y<em4SostQLhv?LfjlvJ|uQ7;<0J|xrCp+WTUJth!#DBKyYXmX%L zL_|s5dIyr;*?HXC6lV{Y3uB?43;0S8=3=q;#W$`V0Fv(b=)6B;V|)s3XnI<KkAKK9 zbw1@$+G>ZT#6dxT20CL8Ayde9*&RHj)&2BwHReH@jPU*f-?_DvPuAcFV?lRmE8QQY zF<+m-<Uf7+3R`T5B>hwD+o|5#w!D$4RiLH{ZaFxj;PSC*+sXLTBtaSjjH}LyS%c9L zbV&wiYqK0Sf`{4QwbKU3u@9b}ERL77FnW%`nTM_w$$de+@>~IvJE9<QK~cq&Ym4Xh zPrOx=PE5-N$(5wU)xFR0DSPuZ>x>gg`4CUtaY)yqZBQG|1u4(=rvk9}iCsa6iRmda zx`sOOW=-~$78oh7{H)UA|FvahMd3%V&K0v6nZzW&0#4R6P__<ii-`y*pL&;lu}1Rj z(3oHDQS)b3A9Dv3?^6AN)c>G={8}TLSti^S-1=dwuKBe61d7WJETXZ&!<D!iZ>E{5 zrjImQ1#Q3)FiI3$1s+~FgT$Z3PE-l|ti!A!)OdHyGN2sza$ntu=u#u_DcWbRt`^X+ zeUxdNK9Q*Yz1_Ms5Ydy-(Y55-?ec#%rb+6%y06zKCBfZmSN@Bc<0&x@{ok7L=+tm= zy)f~^h2Ilod)LK{bQX@}M$2oTj9Oj&coVm!4!m&A<$V6l-?;RpPc0gv^~P{{y8Rsv znkRWc2tKVH#S809?ZVZ9`&Jz2m2sO@vdN~?H0q38eb863<ehX;KdgrSRgWxa__`v- zMf9$Z7bPclUk#nWkC%{n!ukWB7AIbQ;fE&z<4>27|Jz$x)=N#svN!S71lE6{5Blx@ zrqWxcs#-j^P8UbF*MXc8j=kVuj@-V5B?sOw*B|B&6z(~gd904Eg=fn}$@|r;RV#`^ zSQ8SVvD=Wm)(m>1uY2#+lsL@Dy7%}p4vbwk`*DJ=yjt+t;yQlDt^3}bCt-YY>AYz^ z@h-BK`R6yQ2%7Nc+`M^+2Pk-iGxp7hI|O4FX8IN~eoGF&bBF}CCo!H*!!j;lf3!X> z*{*(5v8&ANKf=&qB7FUodN$}Ff>QVwHa(N3u{E7gV*gy7RD$wwbA7#lGIk^SJkIjH zYfY&tnW)mSYC@|1slXzzv3;d?8Bi+$FU`Lh0QSet_N{=9dMDP%BOA)3-UJua%5|xb zNG=XL&XAo$#|mt(&Sxz0Lgz=T@5*w%GVcpUy7mW5bwcKSccTp{fIwx*K`zjKkS~#d z(Ibv)8ecLn-gUFc%U4FG50H;D3wydReEwjB%Wf&s>At*Lf_n#cBG)`vYv(4l*A~wX z(SFxl{Ac_6x<YmFRhArw{EiV(2DBwI^Hu-BU7-mxh3XTvF0sAytnBr7$9_Cs$xsF= z5CzNfvs!j+{roXJ?Qc)VfLCinzsYK3^)SsM_IEV2fhhnn)ranaffx_i@((B^3V07Q zbK1)j^<Y4Ip)tHXY>47Y-#5d$X#0}<=Qs2%L0JGaxM6+)v2$m0b~F$$0X*Hg!|*{V z&W)6}!;qYbfQ<Bfp2P3(NK|wTGv38IaDl(HG*!Rt!wX(CiLR*4$oQd^t1G{-Oyo7; zKb>nz5w4sE?d4GLU(bm{`FRO&JO@9WQwe{%@a%ddbSDhB6O<G~Nw@A*{4gf1r&4D@ zC5<4b$A)dY`jwnIQ<mSGS*pfrw&m!_#~KJ+CKcolx@2eIsO_L|56oq1g2C)BI3T|f zl^?_41nb}YMf#1%#A0jB74;LSu+%2%NScZs4|@+eh>8OV=z=zgt-3UH?;iq(5=uiL zs63?Ce~-r3?lly6FVS)4tQ@>Zey-w3d(&JyKxrJfT37&XdUSDPxu8Y`+y^Eb$<rG` zL1X9PYfY16B;#%Mb&o4m+&Yw?XE77=6D*R+J;o*uKN_O64}vs~&qZM$V-ws|h5hHE z-JXkS7OoGQ>MYFB5I8npgJ>)IQ!W+%ZXy_Z=JOs-uJC}5gNehs(itgMRK2Olx3kH$ zhEhNDM{@qX6>X_N3Pc@WZfNs(^ah_JXS|kPCfy*90OCKPap$PoIWGGM({M5Le5&Ge zlnzaNPH_<jtv-IZOS`<TE_%ExcE2`do${ijk><?>Up!h~%)eKcFxT!lP|V+@oNFO% zr?LQjO24N&Fg5)vrfy(HdjYH*ke!rSrXQj@zRbLP?zeN;T6@q^^ks7`t6<HA+zH09 z1Y#dRIB@JvX-*QT`Xq4YyOO4YGP;n@K52&ZF=A$a<!HG+MFC^KoLPd%#T6h<Ki`+x zgh|AKcwe#2-1@^@sM9h6TEO(~vk{<hsAvUoIIj;<pB|=SuJb4e#*9>|-J|j^3R+Jq zE?Rv{p>B(i%-L{{4_hW%`ZwxY^2$Z!HZK1Q${&UOU6|87402p5hbd9-fgW@4XYot# znHSLkSuAJ}Xu~YY)+j*-6u~|yQ`qvwoyP=O0p|)C_&r?<iBah=t>3F1atxN=&YaCn zC@8%u-XkV)LWJt@)RrYt)f+Ec-zWBd2~NKkQ3bR1_gt&WJg@tqz>!EOj$P1xf)gt7 z=0MfAbkvjb+wNX^PV*0p5-stOxZMY-!T|YYS=Sq?IF|;iiKu0!Y#Nv}6?FhZM1h9s z@N`ORj^;T1ojxj4psZHYx~$CWz1W@Y`=dP@gkMi+TU;`E8KVu(_PI#6=Pv!*rOh<w z%lV<2807wCuO5BlOjjxM=+4gk+RDQUmenIp(f-zxyprZzyifU44w3utpWa))-=Nbj z$A2<?F0GCKciR{`#-X(hWh$RTU8xP;ynnKjt%`yu`$#6e8|~%?xKKYsD;6rWp%Fhi z1H?nL$5*=6<Pi%x<N+nc{f`{rYT^L1R8RsI_o$&6$+1YrDRy>%KIVy73o8$Gg#x%T z^RjIo$IzH>k?}Umd}qhjWYRXOch#8kDUWrVg2;jB5s{tB|2euD_)hs?QsleV=1%U3 z_t^a6UQYYa1x;EsW{*NQ`@7xni&GJTg+}1VGXr$-^O8D1e4F_^+y#IYJtqTDAr2rk zh?Y2E$eGjDQy(5F<zP9Zhe+ifZsxuCfCgt3YYj^+y@3d1_IG*jK|d;J_van(m<D?i z&Iyqs%34f;54*77iZi%)5oHOE&hR!Bac`0h%n*D#_YGhHXG3{un9|4#SR8H{MrBpI zNc3vairc>PHE<T*Dz?u~nuiv#@bAy2vku{&UpRSqux<B~IJc^$i)ZXlf7^?QSM!G~ zmwjfXQUMkLboniwjC^82uAR5<y-<dDP|6Sm{TTd>6f2`)mAob4@e$stn}EB-3$w%l zd4M%9XPW2LA3f%F!c8=?+(5kqnco(^zj}c&^A|nJ&CMrlNB6ObQs2;MZ8)FD>5wd= zIeCugR;rOLs};c@Y3ffg0`Cu>pAVQ^u2lRV(Ya&)nw}gkTKEHnCld<lvp{t#Ie8Tj zd&~jdY2q;nZ;CC)1CDf^;h$RSf1}LjM#g;`6rMj@%87BiO{I64R@)!EO*}BXEky<B zP!Lyh;iEQ6#8P1+ScEN)zA&%=T~?qUzMNyHwNska_%m5yLM)wTXi%bx6%P&d#x>v) z3y$>CO7(pI34WQCSN6?i0bnT?o-iTutxLgLB5cKWE*kqWk#}_hK2)$e|Jf@;p3Qcw zQVlqP=*h{2|9mH$1AUf{dHNLv$#<j-n|@eJvcFT76Mpd7w3a}9YRI?Qa1wmL5)pVm zn1!^K_lG?OE|O<l!ao5yKw}9}$YR*E8olHoJmh2o>3E~z1OzWGL(?qN8FSg{Zmy$) zyR5qMok*nJqsoXv0}-{CswL|n=)n;%G25U(gKm$Z($_mngGeTIb!W4L>Oy8JmU~Ua zx9wco-*oVX@WD7TDN8_#YuXQ>9R)2iYJ$GVmoUOSdB?@#RL0AH#Vp&>7P6ypVJxfs zx5xLA%(XCu>hLmzi@v^Q&3e6^A)~(LH_xi;1f%Ee?aX43gfdcQ6}1Ak!DjMxq};?# zfm_>J&ARw_f=N@_)ud<><9@q3m-LmB6^m7`W<$5o(|3h+z>Qe9XB60*jTJK@;C0eY z$!2c`Kgg0G7`LEJW83ff&$+_8SG^+8W7E{X+E=R=ayoVYheJrQ;VzD!H}A{u&6j`` z?ovhab!EwG=de(n=&-W61qqym94BMK(S!sikdS4&)pdCBsUh>XK>svMCZb1h0|T^| zWrH%Lz5+do0~NOzE9!~_m4s{;b}Qp|L8O6hnDB3!bLBn|x;t*R-N)93>A4(tP97__ zJg2U=66I0{jZb`K@%Y}l-qMEf-rEaJc71&Gim>Hs7)9gsr)4oQ+?K4~%92%8Q=!K4 zh=iqjPD{F8fTD~FIJRJX!BX5&U519yexD9=GEp-E7r%L)j}esg9ZE@_yZNW#U+rq< ztj^=-uM;)K=__kC$#=2bw`-BkVKqeEWrc>UbG2JtQOkw(MxaqU1~O0_*XsbVU#Bfj zP`2qN@r5LV=}SNj0Q4eFMf6KvSv;A~bgI7G-!#VBFKq;G5+{un5HG!vyNY-?%bj_s z%sqdVfcIR>^sS9336hoW9+lvh`c4rV-(zD>^e^8;=#RI=Y)kZ)DRFb9mur6fs!AHV z6G|u4E<FDQ(0U<@w%6<(CNN4J+VRq`>gDSj*tu!SX{#57m!q`uTxO^VRU!RIEio3) z-Ut#u#M|E_0Ba#)#xc-X88;<4q{%?K5EQDL-BLKPgp+7p0^{hM1W>FPEWOG8M&fVK zOKS5xk%sCJFerL1o!<*b<4Mdd1a|Xnhb-9fTEL&)WnnH`ks6rzH30uYb!x1+YNMGB zbj2X&l%d;rc}uFiZ>Xm5&mZUr`k<HG8yDsL^g(cHBeJCkvvl6R7xcd7kSoWe|L;Xa z>73BqzRZE2Y5|V0>Pp(T)ml#g;cwr;T&f3FAH%#dU}y00Sl9(G!!pfeoc|`^(@#(D zzf)99eRMxzNHd*rAz@ul6;Tx8DV}}*{y<+}<as~i33L%Hx52eTwG9i4J#txpuJG)z z&{Mqnak<zXktR?Kz}_ga?!3K_CcVC>6@~M<!rK9nnGC87u0y||N#Szz4A{JYOu+3j zF!d=2y|s2uXlUoj`%-ZA5Ov|Uf%6H01YvyMFb_|-pcXatbB=xyI_#+vJh!mF+3uyI z)pr75314>&{_@%C-w`)&;kQ7A_Tc{;kXk8FH?6o({4jR&-?lVH9-jez!+Bz`M~&vC zT&fHx{^zF>uQH^rO62JSZQ9oP>elms+`mh^CJiGx(~Ft!2&rdYKJwZ-u#<9+pD9gJ zy~LEwQQchb^;6`I<Jiy-;po-t@AexvPxtEKVNXxr#w8}!oozf9TT<Hugp90~JHfF= zs#QNFwG5@>24*gO3QDo5wYx>i<sZt?7>&^BADWVEaUGJ2)AxP}JbpkQU(Ox1?0$z! zd2U=P+!)hMC@p)W>tr3EMnrJ?2|o|PH|8h}*K#!*y04>;5lf$KBL`3Ns@K!krG7FB zvsvfi`6wwo!#7SiV;zxDlZrWjzNCLfQBkqPv?Yu&jLo~hIRNxQG2F3yzHR9=;L8D7 zhB@l~QX$4OOJ0W<AJm~h#Nh$6{n}2V9^{nH%p;9u0b8$=-+k}1$>-CM5@L?bV?HqE zArq|j0Ut-?WzG`%7CKqj4sH6fC4+?gWF@Dijq~Ab7MsHyYpBUXZugj%z9 h{fk z;Y4xWUb0Zq=k^<EtIu(_LM<M&{FpN%>PwEl3BDkfP~!pzv&W!uo8I*t=BqjmST8~7 zOPAEAV<t7A*TBrp!6|iV2GZ;}{&hx0nA1BIPG78{8UKzejTz9K^5ga{5J)KSt7#5h z8E7_x2QntS9W-SV)tVHf)mV!lOdxYCbmyWLd`9_yQTNtyS#8_D@In*|5DZd~v`FcY zP(n~p1VI`>Qc5YM9~B7^X%M9(1nDjb6$AvNJ5@j$ly2TJANM|YyYKnE@4bJ%&*z-& z-jA@>Tyu>%@;kmGB}G0ppy{=|N#s4x((lJI0}!EoSXkId>lLn0GyzT=0CV+Y5<6?i z(YD&fKdRm>bCJeO{){em#s(mNB6`3>b~VbMhcxD_ebI|&eH2IKe6-wd`@@TT#+yMJ zei%0H`g2Qe$>J_4&Y7&EjU<?|R4_DJ-!c&m<5!<yuPP6YUI)fh_1v0>%a8XYr%XE) z`VA_X;CeT{6xn|M^dB0{dcEzO|IlcHz)Ag+Mw3G?E>&(iTZtu;=kY}1Q7+t3zjr?@ zsdd%&@p^Kwr=3?Db-^*Y>UAkznQ_7KlnY#e;U06t(yKP9Z6glla(W%5&d<&@#7%#! z(J?BVGk<5c$VMo69N%$wi*4EAAi+CV*%)31-;ngIH#OF5^RMY7nhWA)?oBtDnB1%j z5bqQeeOG)rg5=wacZ-m{(<xs}<XUp2lK+)X6mW+<FOwkUGAnG^f!FK~X9^c&#DG)s z+0)6pl69vmY89=z<gCVg7yZEPeUx+XM0)O8!JBL8^pu+5P~6&6Xo8vItOZ_(zacbS z{6z+HDIBH<huFDkifVlZ=#!q&nYOJ=-dlF#osE_%mQ}H6xLbJpGAl)nj^Il&b8uvS zyz9~u@ci=SiH0XM71Ohc>~-ZlM?74lWl`;!o)(xJ2ZakTFuo$yAXJjTnZj28u7;{o zdt~5x_5H1+ZqoSU(CTICL?}t<5;_nOp>OoyUiPXmW6Q9XHhc81W9!10WwO)2)Z{(Q z<#$%yQznfK#QyP(_Xrh#vbrn#K4B?p_D~0@&WYQ2H<O&l=I){HIdCjjr;59sd<r`* znnhHrdYzViaaA?UfA`Z7rHaqrjt6EQhrY+aI5(rfyk3293-(cJwZZ~y-v0by6OB{7 zFG}{RD2HT2pw53|+din)V!`uG&lK14jIDM-sgiMXh&mWkLYN6}e?yZoOkc;Zs+z-q z>f~#-O4G6X#9gGRSp*$0R1ha0=!Jd%@nb;6;xU1YORCSCZc^WG$1#SR`}t$ASc&o( z!muzkWAUdR63hzz*G%MkXT-V%u;SErblw8fmdwSbZ+@}#k3?)}sOmNeSew37jP5lw zo6c^omNZ~|N#RtA*<3$bxoBdPc`%*$UCjmJ$^;8%#xR&@LYmx3bnuK@=qU5Ud#E8y z$xG_01vt3^RF3xn_5V)U%&P_3#=qT0>>S?d-R6}_Y)c}{?ClYaFBKeUdzK%(ZD+o( z`Ftvi#NhsNuBcRA+HjR?xt8uJ^6zE)ezmC!0c%HAz*Y9hjTp5f*<_acg>|vw)4uwu zy0psFodkka+zRy>caNyhk=CjXxEKxr&Q$y`RZZtNWtzJRSLubJ9fRnZ3SSRnD2xJz zI+koGbU(zAw14{aZO3wtuE}y=#B;_QAv4olg&$t`IkR(SG|ca{d1K_#N>uWysuk~z z2!x()ymuv1<*IPvyzS1&we5sY%<?g`2M1z4Q5@`OJ)BK8updrE@flzJ;8K4%D!`9< zntjstBD9IiHg0t>3`dLN3A0phk$9E)>ZCR0fp`4(t=2?uDZkGDfJ>=ck2J9I8tn!q z?%$q}oXN$ft85=%PVd)OQxEOYEBJmWw)pu$(c8sWimiNXJ5+C~It}88WtsUXdZp91 zI;syJoGB2tR};csw%>$z#n0*4(QzNZP@X40DZ?sM3vvtw=KG8{Q#9S|KN2bdl9h>V zDTZqJ@jF*8d!dnww}S^-U6ox6KP;XHrm{QQF)9`_S=t-17=tX{ghI7eVJP?GWZFml z!pCtohlu$@OD8oO3EyYJV9WADjBElFlf-62YD$bX7xf$&DRxP&rvOBeyt4UC^VD6* zjQ;d-R|8-$($cFFNojS_IqN8z;X3lMI_qd17mU(qHm{IVSQ2ujhYq;@444TkLa0!< z!Is+Zn|343zB6}#DL(ynF7LZ))$aUUJBNaS+k^(UO)ga{bM_}3Yo-7S@vB#04#_!+ z-ubvDR&@8t>MSz2dng&YyNgy!xKH9{Z$|;{tV?QYjm_5T<lT|E075~}#Gw19JYRFZ z<9Cf{p1RkYsQ|u}5EOPXzACl4R4XmZBO2?OpAY1V5p87FP4#mS8ocV*pZD2{>xfg& zt*r6J?X{R44agu|`>ZH9z|vP}ePXQ#IHG&ot|xw=Jh-$GH-A`}-R|Zh11w7Xq>nx$ zAS2BgJHFu}6?x<s-k?G=-I>mBxDbFnUv^w+_CKL7pN;B~0#-ecIMV~(90j>_>88f# z8K&{aw(jwM>i2voM(^5`^7vCfODO#bUZ#iF3x0`O{V>s6ETUpB`3?<rVM*sl&&&gB zkJ2`<sH!<kcQb;Yw{uo+t?s5F3|yMt_!*~0ad2iuW;Ah5-L&3!4*H6)fDAK8>v`*s zs|?u-F_@?l9ShlCwt2XM+b0C+_c{ah1CIAW_XH|Ku*%?)2AwY?rZy)NqS6!R%-NQV zNcQvvM6*!WKa-24w>)ny+*Pw~T+idTcpXtoMFIwAUbJFC6vi;TtKUPZ&4AqY(pmdV zeAyVWXjgx_7&tkaSg$@FMrpu^jU+)<7Vy#++f2j>Yp(}CR=UVpQN`6BXaF2gEk#se zmj|P$JVlhJ5z_{KemO3#ZaJ^dWPIUWvf<6Q?Yy*yf3}UxwzmG%i+Rjvzd=qj?$)K} zUWTTY!FV~CI0wX+zR)k}I7~Zqy2))hceH`GX?ktnuqr=ACkK~h^~J(cvV#N+*DOC} z36NKkm2fUlOJ?+zWO}IqRw9`#U*vc|T*}IFK)v-bumPc(XkWC`g!f=1r&IHivRpm) zX_;cf<7p;}2KG8?i@f%<hhYuCGg63n837&=yH`wZ8`8uwzuOmjO6<*JyeRVTX)%^$ zb63q@WZ#WDk2nX;y>t*=S0}6BetQF6#Zx5Q_<Jgx4RtdDn}#><+!;KPb<5Pf?@7LO zKUC_e3RNV^&*ymM>i%wN-zI)u9SkXB6`szj9O-hK=^7!ie()G(yy*qv$LT@cJ_-07 z)Iz(z`aWR{!M_0*jgEO=zq(@ko$_SpW!UyF2`h_ab=F|<{<?D!J_(wvDev#PLHw$D z7c>IlmSVz+Ptq*GOld-yDaSeIA-3OK0-JL?TNOqCJ)d97bk}(<wyZ9^wb%yH$Ab=e zmvsYuz0oJ?`!ELR8#V}O`+DR%B~UM*d-6fkMXBgH;<l${e;4W{Yu2NWbyiJhMh3OM z=d-x@IcjS<j9D)t=QGQO3(aV79}GL3-ElKEmc1&r)K2ezk|dZ#%-2BwCjJ&=jBt<d zAye<sJpwPnJuayHeGj?U=pOjY*ENHFATZ*>I*R4l(S#`Hbb%^)c13F#i3_FwZAB{} zP}0!Uq*?2MvhXv+fp2NS+F^&ZALascxNuaX0zW-gpS-Ek^deMlwIe<#Hg}a+O2uFX zNi4p*JHET1srhyz#~Bj7FOBN5h1(T7b34Jq&qc3p4@+!Ig+*Bmzz~{GpFTxDXV-13 z_PCdQw--qTb`(8=LCCOc<mwY>DuwH}ESH_HLffSH6t6!{qCgdcM<B!u7GD9SgH09r zrCMl{+k;B@rwMcDRO%hs&R~-LznAKCqG_qLCAu5r>wryJ_?Xk6=^-$e+#KjSw=NE$ z>nuY*nmWEb2BApn%InzO*<=_QaQy+(tV?nwtVjkL*A-y25=NF4P}r1JU_rh8?tcV6 zOLt~c_E;8vlfX{TSDg~Sj&>C&b4cp#+1~ySBvQP;s3ntu3dx+;GoS9=^u}SBi_4zS z-TH*{H?BUlJKuilXBoezWp{Jq*a$-v9MPcuI<;p2x$icTc<fd_fzFdE>iOo*&o|!? ze{{@Zh9I^9HP=`>wY?e%)3OSzBo$RqOV{L|U#L7JQJTa|DEs87)+<RDBAg2%*T}wn z#*@4PW8gxaKlnTuh6VURNkUCpS{LSH5A1ZqTZ2|{#HCnN)ZO)(0Q=9U84(#{Zwh{s z2uMcIT9;<eNnvMO@R&*r=aL6--R>ZIEWjTje8E}7=35OBw9yIsJ=_O-^M=k0(TA{L zO0#&93o_hgs)Svb_c3^3_}9Up_P>^v&(5{tx*Jn!8WUd;cKmQqmmyUxJqSS>5}RCG ze0AGft|uBfYCt#K#_19%&^UJJ8P74f{q;Jr@e_~<geS~HgR;@^ahR3z7%>q&X`=o8 zfCCTz`GAb*0q@kCEuX@zLd%I`#U);%$LCGzj({q4gLO$h^VY*~>gYXSAGzBg!o$7? z^*JzNI2+-UPRI}ufkZLLR&imHX&{`yW`ckXk{o;%1Xa@?4{|Mvivt5hm(KlADN<o+ zyk?u8wy3#8QP^)FWi@sXJ5xUs9o@IKOESggT@18JV*xq+vlEaTz%Xw@^f37?@Ar_U zqLi-{;POH3rcMLZD=1``n5@v5rojyT{h?@RAgRbWL-F^gY=%2qD|2h6!vW?BwM(T0 z46Mb2^|oTxn4C<;$}jCET1+`;s_cB%0uctd8hBHtlAKzmS@uM@?kE_+IKNsWq3Z@y zwd?8b_cKCi(@Pr$<lto<G1U}Lym>W3aOeRJb*4;jD8&c0IVe|M!~m)U@00mECHDJ$ z;<mGqW5SSBJwvQQf=N#=wp|Oq!dWa$D!%%4<Amr)fYivqoLeCt!h!hOipQea0O?@i ze~CKggQTI^8UNj<;l#E=vjtY=4ODV?iNRvsZ(K*ru?^ns5dp${-w6_?&=h$ieSQ6; z8pL1&XM&tO5E1Ll!X+~faonLf;r#@|b^kX>i6toJTeT6shD|_DIGQ!nd0+}LYL@I| zBOZ6RsY16a(U6gaS)wZyJFX~sy&+O%I(nEH{Z6es=gP8n;}Ogzu-;WHd|@{(a>T~E z33550Veq!5HnAnV-f@>)m)_2j9-98i?C;z^3}X}>0(BgEWS$Fs-v@(jT}M!63+9*4 z^ybe;uaqW@G5cNPJje9UD>6_P_jlR;^QKspNyZ!@hCABL!KZA2<-q$pipm*KeHn%R zi%3*Ox0%WBdg}dq^y|3P38$Tf=%qB1C42Ad%%J!23h<v>tB2fYPt#!mRV2Muj*c3n zFpX)g%YCaWipVF98eTJA$Z=GlQLt<@aR6KN;+Q}_u-09(w{y&9ovnv?83_{f!J5&- zw9s0Rp_Y}`EC4F`>%{+4LhzM$KHlKYG`RtR+n%Nb4CG^xw$C>Q=eD9Z5ue+TR}edR zS9po~=Sf`ufYO^;5fORD(ydv00)o(lRm4{0@6;ZTQu{m-5)$(ZfPu?RV!m?lZ^i%5 zV>*Cu-E6RmC%3Is@{h6P#S%t<P;G95EJqS-R@GDFPLTgP__xVeK`)d8vPM>7uluf5 zd0O(WzwXNz&*y!9QhCuC8!m%9&N%#X%MJGFsX;kVO)hw6i0Q<BzQ@Non#ByLnu$SG z#NxT(uh`N0b<-5};$rpt{6<GxX4LwpKHZ<`CIZ%f)7y;#vslPGa72uN)RNhM1~5@# zbc!!e`aN+Sq6M9U;Z@EE^TW@JI$ng5#DpjRW6GKjM=4UN0NcF9ZJ|N+i3V}e+Xaop z<#C?TmfbDMgqvtsF5nflMpR<fL!jJ5C%WYV^fX@amv2U?Q`MCP!i)Ota!89GPUZ{| zIgVpApi-j4Th|{Yn56GC#ZlF;?YSc)eamK2SB}s#ec3J_nEJBCjxnKw2oo&oZjNwm zf9JxBIWTX@!GLXr9@P5|PX65?ukeI>+1v@v%<xuj{k=sY(AvHC7SMW}z68ge?+F;? zxL=oG9@TtE(s>!A<NyeEGqDQ^IAX&)<noo!$jwa`dZ$jW{qlG3pM5A|G1_ajpX{(0 zCr!ajwqHtt$!O0?A&Cga1jj966GES2q-zjo6n^dr(nq<CB3Hzhv;Fgzi-Fqf&CyRE z17`g|%6~F@!pa!bglo9x195tC_Cm45=PXuTlZ`y7JjIbBQAB`5Q;VT;9q>-w6p^M# zoi|6okm8>o58~m^E(@=QLVyTK5sviOXHeOF-vehYxXB`-=mhBPopEI2*$t4h@%OY` z2n&~?puALgcRa}L2ZR7Z7mJs1<^7IhQD`n15E{@sPcx#v0B>(Rv5Wg=jl0E+Ep$aG zW@q1p@zMH>&zzw$1v|Rwtq)eqTXpu_GZ&VuN5?q~q=<on97(fjrS=dEq*IM@{1E}x z15nvntqb9R)dsN-Z@VU;qYHR&&~!lerVrEP<6-(;OlWx7w2>v<9Y)LkNrkisdaoJt z%16`zGxrKT#)He2r-^kK1ozU}1@r@}&^%%>n9uSOQ^1Fqcxo#c#B;W(Ge-IV$WOp2 zB(`c*S&Z|6wRFOo00|S2CYG8-E?vQ0+Pwj3;9guuHd}ZyIeymN0)oE~0OtA3`&qlh z7Y<K48?*2-^mVORR4_H{+AXaMf>y`hr43b;q-dv<&7PR8i0P84jQMK8^6M~E(k*i= zUW@z=@hi_V!NvyfhA&UZ4=xE63GR~Q_12#`f$UXppaHSU2y-B_O<wK(b7^8#+=~y< zPSLVG+a=e@QP|JK#6&A-b==WqxY}=JC#@C=NT*f??hkc0b?2G2Rn?f#78YC_kWCzN z-3g$feB07v&-AS^BR3a|Ao1--7P53_BmTL_WmL8Oe7}5wP8iv}pOuH^e$~n<(o~js z>jj@K5%fHIu=uZa9e?cV4*QhHoKN-Ri1OwxfIm<aqn29`Jak%g_VHC=wV&Q5MW22A zA$D;HQT{agPa&2&F=)7+u7Ku9_mrj<)(uOeUMntcj=todt`sjvx67qEtCxtX#=!{- z2rnIBJwif3a?aEKSj8mOeQRhtw6WeDaL_=VAH-+hp>q~ajGwq-Nk&Y`&l+?udh5#} z4bXf{jcQMGs$kiKqRn@oQ(@v`v5!e#j+dPPoUyleZF=G0S#&S~7S*X`9g4a#6EnpC zPd@^{De4Vs0PWmKcx_>Fs)Uy%Jp2;vo^ql`>E3-~=8pvyWn~T++^Kr|0Y{CiZ7ZzU zvP6!|2#jwEX5}c_8NRkXa_wxzHScq2Q>*+}qnvM_&JJ*9#vLcCtOn_pd;wneepWXE zMW#!>0pyi0rGQHTi4`Zf&XSn`5#pNa%CsIWI|S6(j_(QS8DLiX+7`)o1hW*ZSW{d} zA6idu?fM%YooAyxTtuStJC3rtCYe~OmCgS>#IoT_<FYHC<OUiah{C~9sN^Q2+BVUf zX3{$pU&(H($NZ`{X?4CmgkN4e`G1x-GcF3tW5h477pNZ2{%3i7RwWZBi^07cMLa6d zL{hvynF_2bFs>~S3SeNq5#CpLV>);ArrYRELtxsN+n$}P6CGN+>R2m9k1r{fE~Q(C zBA*8;vM;u;CJ>3Hl7DNRq2S9Vd-dVg15yz}GPxd<$Z%f}bmw&taBl<3EX4uZji*og zX$fw@NfZX5TV$)D>fAja=zUCBGr@yOfZBix?<3eDZqT@UXpk1*IbLt<?7XNsFDosb zQS|+Q;}71LGXO+}UIA2IU6B}r&YKk@;K`it?J8Hp6CL!nMV~~?CPv@}&n$Kaaz?%F zl_sne+{k|xB`j*W%Mcm~Y~|lD7{REa`Sv97{Dr139G>^A@$NlLR^5mm2AvzLQ4DN- zCQ!-)__*OZd&T<%7%J@wUWlYNQGLB?$`uTY`5QQUf5^3P8tkU)2~wx5BB4zYv*AmH zW?4IhbED3Bw8b+E{Ke<KWP4{B?QT`Fa~Fq`Gm3aW@GijI*ImsHo8JfbVZrf!*Pm0V z&8bVn>nf2VW~-UoYkJ6DNWs_Ht~kJ5f-zL@)?whk4j`*sC!ZIikt{;V4cvak5*d%i ztX$ri$p!<C%MPXnRVVo;`M7&{b_qWKtH6Hgglpb$m!BW-R2I<XF6-ttkr=*gXE^Z{ z?)ux&We{)whTHVebbDB0F!Xc~EIjT3a+q-Y6>?-e6mKP;q*ZuX`jho?%1Qoio?UN6 z*G7UzpR#2Hn21ej<X8=eP~Uwm_|%#CZ-0DM$%}CQu+-X~l*>kJPLyz*zrRPb*G}F# za#(eo{X*a}t=#N0b<2<r#mLqGsi*iMMy%o5Ot4rxaKu<<fxG8-AoN`d^4FIvMk%SF zS;?0KE`@Kn!0x2*@?I_Eo-hxKrH>c$yjNps(%kw&>JD^|oIouW8{*Gc;I004t}wC_ z5WdqJz<U&WJ2d12P<ZhlA0S3m>Ck}kaHTubR@3>8rotM&tCP93fk~hgX66eD%M`)S z>jjt6>(57PrF34~^YkzOn?V*O{3I2JX@p#x9&jk%KgmuaoG=dISO|gw2w3%>KIHcE zG0N{SOYF?vujm8HLH~bUF!b_2F9@zN7E3g6@%3r>*FMC7S%;}Rp|$fK1uGxX<Ise? z`wu0Iytw^*0)|plm68ALG@?Ai#O1`zT{6|5vTlG3Gg#oS<C){>r)cOgxJpf&!pdS+ z%gB!?(bmO1{=GdfmDwtA*RHPE!Rhp1`{j5L!}wB@^^d49Nfq}ct-3WjkYg$Tl9|N> zbvJ^TNFpW3H{emlSZrL5tfGYvvC$D48Pf)W)0Ka&(Cl*Y=B~5<q%^_!S84b~ocRi* zJ#(~@icG5rk{|tRcY<uz_GlLmwAqU4VcuxQEtXsxo~5o!zx~SRd|YEgTBPqMSX}kD zKLt83LD!9d?Z?BGV03O@Fl9OsV9il+5mRUMi9~G>Os06b*Bqib7+v5)zasm0RQ>BU z>D~lZula+?+H<4D(Sn%AGtfzx!s%s8Wo?UBkB(aml&I=%P2Q}3$!|VF?*G68#Xo@V zZ<Rmw8K4(!3oVHc|9ph+GH4pXcn#hwl2qWk7g#57hVz|e-L0=fXTKNpNf%g<uT5N& zDX^sds}a8L=E}K1V>fXLF2J@i(F%A^7ic+G>`j=;Yr7hZpoSTx^OqgB7h>FZhA+|C zhm>y3Scj`z69Y(vFXc-056hmMdFwx^#ywZ=Z0*GunLPP3zfg5LOy|r2U;<uS`?ucf ze*<~0d--1B9HqQF>Y(F61rvVs?8UvPh+@r=DBari);dNhtf9LoyYKdyp!FeaW_8*` zf-Poq<kYDAHK!or2AOT|OXn{FTx=a^@k!o>*K-~zGw*U(5Z003>cz+^+UHcNvOXue zSpqXmZu_uZ7hxkp;ka2QFf3J&6Usic0>2|Ry6VR?<aEm0O}r*8BxqRVT4oA|IB5ke zx+i`C_u(^Q1{qf{C4WVQRbC>;$?%h2BrEVL@uiK~2qmk<Z|cW~@~Go*9<b9Fu8K^s zkOyw;_0feU%6Y&P6*o!w>dvlIzp)&Q?1U(fjK@Gdw-=F0$RC0fj5J+_qy5x9Mrh^F zy6#56mkvWGTp@=sz6&pcXOav({Yg8||9n6De2;0JhDj7FzH<r97iVW@uSF(M0w^R# zru247T$WPxW}vzdwo#UC#^Qy=iUJ)Y^06c-lPmfCosO5lyozQ%IC|}sXrxPfR$fR= zn$iG|5ejt)UM}S&i7BE^BMs=cLTR{d=)}1IJHjxuS}ln1h1xJ`lH*Uk>3wsuuZ683 z@ls%ahEIPZC1&seP{&w%fE1II*+u5?1sQS3klb2B09=^hd`5VH4Y{nEHYG{W36Dvh zwMl7%vgI9{l4$(!!y9-_CsWKn3ny{p8=hcdXJe>hXUBczzWb?~<F?N>Kb+Wn2%$<D zU_x$Mtvp3{1ztWevBCv70A_XRSA+Z3m|TT*nl#-ALhJMA>QL6m@VBPwr&&Qb6=*gt zy9y0gA^<r=14a_LT;BrUuB`ah#I<?=56!K(*!`-T(G5hItU8-_Nhp(rF(?*ynAwQx zC9ritiDjX>5zvE?Z4CD?@BP2ibbbitN)IqCh&z%bw#-mx$|xjmi(Ft1a|oo15{4cV z{!T~YJVu4oNwaKd&qttpu%mcflBAg50$tx4auooe0Pa<US1A4YgzG5efPf~%ZM`jK z+0pcR{r|kQnouHJ?dyj>*}U6U{ST=VcFc^2IlS5x5CZ4%!rFMhTt$37(7zVCuT|0D zdT`NDuO~pemR;=b{m+li(KRL1wcx3Db!GARULV507tS|=D~fX8UYmy`*iGG?^{)Dz z?V%kllyHFo4h<&a%-0<2RGgsT@TbN6%LX&PnA(7S@rDlZtcSr)%$J(3HFcHD2n0eK zi`%+NAb?2yE&ERLNL0*sxGE$>#56VePQS~n^(28&3Y~*%%sO~-GmsP*mLdTO{IH&$ z9)RhP^wYj7G^($wNZ0CHBVKXsN;6yD>Pn*?OkFyGd3aNGmj1<44wX=#3BK-Serdo- z`=&kM%w^~}Nza69#AFcd75IyU90bI0YyEuP+^sAdodj+A#Z6`LOPDwH@3R`-<1XV@ zq~tKu_{|zOi$XUbrd_nD5EQVS>9rD1ViVS;#lFiBn^VBOFuR8$+6$nVM(<i;6r+Ni zC^<WX7Xn4Jmk<E`FN7zmS`lC7oJ9$sN=N|xX-9rLSj~bc^{b>Z*(dX?@8tJRtx8B_ zCr=`{AOv_@+jI3q&kSsehiG3x`dbs>AZj7XxWntYl+7vzl>SHTi+*&Z*E}g@6$^NU z0J7HdF@&HiVy*wu%T3#C=2a87z7QUo{-KUDLkXgyoek(8$*v&$EZGPuuH^#(HUO$0 zv^j>AT%^m;XdlKs076(PumOu^Zy>#gF`Vpu&=zs;%9SnpYi(g+vL;)J{pvE&SB1Xq z#`C*Dk<b;qv!nmkGFDx-AiI+Q8~lqk7PtRPLjpgcQla;Y*A6(3bloz|M)3^`d<cPh z=}I?8xx!Jp2IYQNTund!=~n!e?_2+vPJ`i|y5xRSHeXzA^wPk|eU_orVFAxRYIDqe zJ1G(X_&E+UnvPA*gUpAVyDLY=U^2<Nc<Jds<yf-RrtCRnrEdhIhxPF4<HxXLYsPDd zIY!bg6yzebWO82yfln7&v4bIZq6J<7SH!DV!AnzJE3WF-k$3(NKlwpo9x!|W_$k;4 zT@BT%uy!TB$6`OEFZEE6^Gyf5lvsT%5rAsV$Tt>7t-)~lP_WLbDCK}ixM7i||Jx$p zMT1^dI5`ThXkXiJSAo5bW*M6BdTg`5P;^wAXfSiWSs<teC&LzmeF^WQ>dps+*K%!s z<XUu<YZ?C6T1TDepkkGL3V+Q*__J`qWVP6jKT4QV1(JW?U216S9Wi@t`wrFlj!ZXI zyjy|xGxcU>7_<L*WjqZ8Z_JtkQNUI2e|a^kH{4W0>K)^#p(P5FETS4a1ZvVq>tgo| z#l<0kxXa9(VMJ$?YS5%}VH7eT%vqmxh0gZ&+>WkVrY;B6y(^dzv~c6U?1#ai!#mD8 zuF1>L*@1ohgg0H>R3S~cd|oU(>|_5UeKWIBp&C{uvk^vqgbD`u$LG+Sx@T_cIwo#b z?5yk<LTdoN6EW}-eGgFH`~GYF{27~X9?kp8CxZL>n`;*1_j^SkO6A?qm|;Qt8mKB8 zms4Bc6MuX0@XZXI`W(jvW5@P*de%$yjtQkd_%j2+l1$`4M7rc^`oC{}PTlEI%HYea z`1PXz=uXPZ2FUA*b9rdsf*Y0(zW%kJZw5gq&x36X7hCR*pOca&{ZoZhK@DG$Kf4CM z!z-}EiVpQ5XPcs;bj;fAqjtA6MMhB5Uka5yu9e7O6s~RKLwufcC5%IBL^ab%_0Xjd z(tjV<sCioEI<A*Tq00pGK$K&cLafzexk8g>7P(h`A{*NxeVMaqQZz1d9jK)O+H(4? z`djxEC?crf3g8+4<!3)gbaPE|a~s#S0NqI@0PQ8<DvF5aHByi{bf#^$aU6dsN8erj zYU`#~^r6qh3C5^l13GBYD}%fnOmUla+G(Poq#Q-Y9Zz*kuTKM>$nUBF<_%FWgKluh z5S5Z!%Nr`tdkmy_y?4=J!%KwZWZ!!m69V7`cGeTU-7KzWvZmPkAeVQ~!}jU?E?vZl z4rvT@KBgBJpj8S;vyBg33Zwtmu5=}g3f>6Ovtw<C)8~ya{@9C;K$o*Tn9wg91w*mI z%hZk>Qsf_$Gh|Q&+JPr1Jq%Sbi(;TzMf3*6J0|GJ5RwW>E`yBI`*U;r%SS~#8m6Z! z#x+gRKJ7&&f&0nHLd9&})skv~GjanUrI6kb9DEQzU9q#xBlROg_1~9(zTl)yrroaS zyde%3?0tyAkiZj5<$z#xXOsfLw`&&;IJ{yPZtJ=x^vwfm<YNE2&Tn_Q5O2~5?fOEx z57U$!+v7t#@*P_CgV8(&)X4-XY%gMkhjhe5#8j44|CY*m2oRg;QaB+@eBVglvHQZf z1rzg|-Nf8}C}}sJa<l9*x(F2X!Z#sIc(*eYb$<{}A?tsl>GwNLgHbiYsslSG+)a#c zQFywNU)cR=&mQtB62ZF!7i5%f98mjkw)1R9O1iU*<PGUPGDq_%j)gOE=4;;n)SKCU z)+$|8dF6?s1DWBEg^k;8g8ha;3OvChKL$6P#OW7s#l`ZCQT@(CW08@zT-XkTb*q#$ zQ0tW3#wRz}f2nv8(NXV9g?fP+;#4?$_G~HVWz)M>yRp?{)L<vSO0<8&cD}EI>sosV zy{`b7SyI2rJJ$6<&r~=?c*tat9-!dV9=AVt(aV+@d!JbgrSE^<YBuzN4t(?I<l(@l zzUCq%ks5EFG@E^m{-s$JLhjMta_K}mj66BC4td&qC`l$?kC#2?e*$)%K9qe`2+qLf zQ#hvBPe@?k-0yAff<f&RNH}W)<KkYDdQ48fJi#SOmXcc7*udfO{MdUofIx?`C`Jlp zcis+^lU7w#UE@?9|L>0k_&<0gDcvRyqiQy?)Doq++edjKA+U0j0gZ*N!nu22Aq4eq zEC;V9MjrAW>0G-v5_g+<dnxJ!cAD?M|1j#P!$y4C-hQ2JziV|n$gh!TjDLWR%FY05 zg+zB8Z_{}dBO{}d(J(FL46xy2Ki=NB``?#{+D)+lli91DtJK+7O+1_j9?bTn&n__s zzSJnNyM<-HQGE3#_?ox|T<@iTrDp3AQ{X;AS+S~Oa_s9(LjYjlb|4wG={rmbb29aj zz~j8WiwZ=#5A0l9>W_;{-`N|`Jr?60{d4EE_J4gG9yHSiJK*6=!G`P4-5JuN`WDM( z`d@#vRb|8;b_>7?CBW#Chu&vtsrKmT=wwfB(vOCSVf$?O+rK}xXEIP+@lek0UC538 zLQVZ@_JHVDRweT8;1%&(^$XEG`1&v?0Sa9^Z4g~1j@E}yLH%T<$iuq^9uIr(j-Vw- zK7KzQgBa3^@1=~D?d_-MW}o{=M;)EL>OVQzO-gcq?_ON5al?z($oxVH<BnYqWGqu> z2i{FV4cg$n>BF!6`~DJm{OjNT1ocQPK=}9mH%_aKoodra`z#{bA4O|tf%&*X;a}t{ zj_?kL1pIRm;vZ)vCLtuSc)7uFdV%_X2`ryNU>BSq2KLBC&&kPjUUlE6IbGk#eA-KO zb5?dSK+^uI6VL^ibHs?=&u|!YG&yv6ccUNd(l+G&@Ne;}-f<`bV?7^^A;~AapL8+9 zB%!*=+updF;+*2{W{>?x_zbG{l|eRJ1nTCj@|k7JFLi-V#)D8kPz${(Y!k8s_~ZGv zME@4j0N#Tg4X+w^C*7{pA+mb?h?`d2rD%I=&fUB>&ukqc_p|c7z^S_k;aBqgxxqmS zPU-*pjD~nDNNwP1U)+PYF!{LV0Ixo|gX{WY3+&7sXa`@=4!>m)uUr07L{>-<9eB}3 z=3wP`JzUOkszKIR$f;(EI`cF45sKvNs;Y^=Fr|IMbuo~|42nTr&99|Yl`nP(g-<$L zHP}<wfU3gep8xr1Hon%M2x8w0k?60?%@Uc!RVTe8pKh?S>$Deq5a>MHlo>$eTT*QD zvGw)CthKL?57|NTdJ;mkW-!EO<zMm`J?$;9Og$CjqAcdL__N64L&!vNi!b{K5)d-q zf87fy1|=-A=Xv8bR}=o~ouPqlqo1a;#iAz<Y|S0_X@33iuE_8+-u5!*`yARuN|3$@ zVM*66R=!>RtOZzp-tIX_@j(0ISNWBG^?e$(NUURt?1la*J|oB&zn7XNN@sp`GtrJF z*N3K&PdB&z+G80yJ5z>dgHQ^1@gXj#J;&&ZV)S_ps9yMcu^xP5*XZ{o><N1LlHJ$6 z2>-e5+egR0*bp$Rrlgv?&7bpb+giUm+~Mj=$`?6A<SP<6pCiG*?$BdI$)S;x&^e!Y zCHziOl*4?i^ar)B;%ued0Q4^R@lM{wunMNizYW9*I4VE=J_nzgg0h#AjLZ|wJk!8V z+v;c3@p3GO7kEvZWBV!cNR5?MRi`aE=07_&f%3K~GBJpA>yJ9>HZr@2J(}$`&+Gsw zNh;VC=^>W|zw)&ov|^B`SclL(>5R%7(=RXiTVgB@T=q0#>L_kGgx|6|9_K1?-0`Gd z42+eyyNs1&Ec*4_&!M#dxA`5CNiMe+etZ!D@}7=DYrO&3Ei(!0=GY4_#he`$SAfJu z`zRO3)%crrvz9!Q@gTc|0*8N<pLZMW538DUmoRbvx$yob10BlluuLQbUsWF2nVVkT zxz-@%N$j&t?<0LfRW&q!h2-MzC0)ZW>0`LQ<csTGQq2MSk`Ds(_r2scqWW!mp-hIe zR(QdEA;=D#Kf}e+)>h?w>ml*Ite0cjyxH>}KAF`r5;BTsd=(M<g(^KG?5S@V=bix3 zg|ViU5!bCq{iVS1{_!y+jtmVS!~S1xBl)##zK-oqS4Na(fyG;tG(*G2Gz+bw3RmtA zdBz3M6j;qh1QOFI>M=T~^Lf~69W#-@9wqBlxam?dGV7YCyRwJ~t_vR&hNRfm>hC?? zYXP=#`=Td-)*448-Zqwg0Q>Mzz_gix&VBP&uf7*u-h*ETfVnZEIsYJQ8!(-3g+3jv zfNBwN{V3X(Z$s8tS$x*2n_``zLC)hse8j%G^zq?)eMe*Owx6oZ3DsK)9q*^|z#q7X zU$;F8^kL3zH&XLYhzSekwLI}|zyqYf&f9-x4L7X|Idi6KZ9Lw;JzcBNscah!AspXX z>ArnvX}U*6=bb|bTV`n-K=#g0EMx#F_&A5eWc@V~t-X(B+f07g@3--7B#yOu@<P9- zHq+BvLXe09J@UQ-Jj6I!d!g0+)I{(7h#$uU=x6_aU_=5MT>{txey}JZQ`0c+Qp33d z;5XMTd-GZVWE5ueejLEwDF-==VjH`(a*h2&>?cEho~z)upqnMKdg`0yso8AeC9)wI zP)J_ud9fkOV&tYPtBCdPGx$3nhC4qNIlk#hO!$?d@~fa>w;J9645D_(Yx$OaYL<Nk zU-~vs_m^h2!IJ`jK7>q#hJ~f%<>d{|sp!ni^@Uzy;_v&~@Kic2R!^t>f(cQ8CZn;s z)Iuub_a?s!UoL`$d4z-O$CB=?V64Q1YPnZQs0)rEA;lHCXwK{+lht!w3I*+=<GR#w zGbJUZ6&h+&q1bm5@&vvaZRuKqV%w|3K?%@aIRP>3V_o+xd)Hr|D8cT8^Vy9nA;TsD zXV+Hks!3<89&N#Ma5wrMsq3%3@-Py8=<@T5C%?x=B>4zlmMuQQQ9(y0AW&a2D^P!5 zPOJ(3$lwZ#0NplJ1hQ-o4W+W~a|7=RS<JRK*CvN5Dp)4K`)L6_DOP!a!>%{EZ^uJM z>Lx%LmAy#m`0jp{RD8*ICW-fCRG;zgJ%w-lkA*b)mI(10L=gBgycD_@2X-zVB3scC z)Opo5KU!};8hZ1`h}c$;{?ajbE8;uI$dJiiXyRsQNUmfYujOVas^#9T6Ttfn`Bd+n z$$5ViV3Mxskbnbft1ehd2V`p{2df8qq8Thzq&(g}oU=F;Ber>Zdvm$~j-e?i(^g<K zB-3#Kvp)qSOI<tAS?EI9apdi`_|i9VK_W3E2DSMXG4YQ*D-H#SK_S*MGG1kPj?nNB zwWr1K@hDA!9dVF}03Aar-1=9@4Fs@WD4S2%5TMbgV$lfa-lAh7w~BalYaKi$a}H;C zCFf7e-xV6G&N5^ilLbSz8(jN;csgIpaH=1$_o5f97x%bsw32sLTu?8hm2~PK^Nx+- z`k0pv4ovsQ8=3pt3U*0Sc}$ejzp<1N@-T}bg)hM4|Av;Z=R(D<B<BJXrNVPM`Wv*( zfdmY6jm1p0V{-R@o9YYDef3X|W^fq)Yx-tCpBRY-@3+}2%hS)ZM^fjbgL7h*C5Ym_ zH(4EK9}CJbGDCgQBri*6atr;wm`eBpdoO{!Sq-wVYF+gL-iRzK_umV?xo6+w|I^>~ zWV=>k4JcgPtKdV1j3D{$;4J^cQsP!FmqLKI`$98q0cp}h+OQc#7K^^<afdTk!Y@yC zU8xVhLMzzG-dA+}EZ5Mw^(N05QUCDpE0(=-GrjVPFGsB25g2l^kJY$Xj;$|gxeHj- zesQj<u#%B+(5r}x`=LFv3HSUcMaQ`@spVg9Kfpe)5=XlCJy&hkbUk0?0oHf@^|jpY zUsu1BTP(BwnCf<@xF++Yy?_Iq(lx{`S^J2a-ztK{$Fks8$!`8`%0M3opQXU>x(-M) zmI;8aw6?!hSpwvv84Rbzn^s7}bqp)7-+XcM$cXv8w2_gOp2U!l2_dHRAh~i>Hem7| zNXF5#JnVwC+#`fF)>d~R>cT19h02d)wP_l`&sXKH8+SfEJr<OJd?YC^Qq^!y9Xp`* zN(B#51h5)QtHV%_x$J(x{G^BdJMcfaJ@Pq^bj}dr81_#UpHJ)ayS0DH?KpgaVNZMk z|AX;dtfaUScC?yf;-SKesS*3FrLL(sU(QxYV9@HIGcyh(VqE~C8<Y9v!liJNC}2Lf zY^rn56si@){#5d+_gn8AJ}_EP4r^Z}pbn#rFjjwU8176>t+p!UX3PA_)kk*-z|+_W zJ&GQwKaX+nDZPmN@KSX8tEDh*eH|cb{IG2=j4Hhjb-|XEoe5}qa_&eZdjo6vSMa@y zrRg~DC)W^2S_SGCOL;PO!BxGG0x(3VcHFZkYiHy2r<(UInD~8NgJ5<E%nb^DIyyS? z>4%`7WN+fU#Mt={_`pTt&%h;?8@a(St^F?OgG<(mJKzPGK}y9(e7R9{&U9m@a3#eQ z{{HXJ$Z`BL$lGl^TbeR=3*!h@OH0-$xEFszmwsc%us&g3f>S<S>xyOHkL@tpwGw-| z*ZbQn^mcbaoJYUl454Df9L$>R{6wi2*~GL*mI@}VbsL}3>dFlNQ$h{Q1#GXdL-2Rd zzNr7LwHRlYeXiXQxWKrJmpn(WzM)n--7~5y>v>Gz`B497V?BfN=awrQH*SoKIg10j z0LGVLI3i!#`=f8QNync_CrnP>wZHR1UPeYYe3xlaW0Yu;%VxXEHNUkjC`jOAJPHoY zk*pgZ-WQ(}Ja9%Um+{#VIDV%M+rQbIl3Nl2kMjUIb(p9jm5tx9;C*C`B~McA+J#9H zeQXb8d}8fPPy;Bn_!I7%EmH=ovfYix^!s!{*(vC!ws}}O6EM_%bhvt`Z<(q4V}S%{ z6FB)2cM*pCak|z`p~8fw#4Lg7%94S7g12dGdzk|7Hm)}=6}Nouj0H{?3_D6OdAC?) z$VvNke`omrxC?Pzz`zd@gW_h%$HGzEGrf*FLH)KOd>^^JdD#2*$9@wMG(MpR?lVq1 zo-~{mI8_){YP0$oDgzE3uPFY2B2S(Vfc3?w_YY5BE9CxyBe{}9f}7sghQx>A^hf2w z{q+vJBwu)p_S1*WNEdk+Rgl6Lpoh^&2#nfW`r|p%c53!ISi;1AjcmV)p~#kpVwuQF zy+8sjN<Y$8M!k{x|8v9Kk+24kTdB}T&m4lA`XF@8SuU=X5~}jA+T;xEW6%E2)Nk!R zlD@A)JWn8R>pcr(AtC;mI`7n=QCoI#B`L;D6L9vH8NSD;8ikqJ$7CD*;mP;?d2rq% ziVDo|8Ije`9ij_E;vP*<bdE*s2ojq=rP6DF)=$`eZcxX%eC^F%)&+@`HKy^g=iHWT zU|0&cJIs+;BO}rm$@DVQA}7`FO{zq8?!EhO!_ux1@T<taTCK66dGb!?l^~stjs_<g zZm5trYgV|GmE51p@S=B;Q~shVb4_B)j)a;=x&jJ2`FFov^uIEpH`~XyXRBWhz~8u7 zaI&zUY&^t2xlmYw&Eb<``yO$VP;nTfT)1)l`j;V=(|&FyqN~ryrFBZ|S~k}fKpoln z(TS=7kPf%KF|?DClcS8{dW7)F^c^?9I+kHex_`bn5Fpgpg$w^OtO#;#c!A3JK#7Tq zL26vwtuMI5g<Tg`Af(sKEMHIAUhk?%kq<uUH2F3OC2Ah%un+mh@SkY6W!8W=_mRh+ zac*f%78w|uEWXu`IZ@!STdEWt6Z`lT^m7|*@>_q2ZS^McjWnV|^l4xnCV#xLUM_*0 zin#mkwf<Vi!(c-9{~6UjK%IF3d-Tl~!SeH}-pI3;O*?Uq&B^1#6H47=6s$ma)dJa? z^oN9dCt*@)CsYd4Q!~pow>DOgBAc~8=gJ|@{K(0Q<shhmfPWe8LMobFn8w%gC$ePs zrk<4)Tl0QDb=8rY{b{T-z$q7@8FCVG8aFgFH0;*A$(a|oH|A0u7k;2bl^5$`g|r4$ z!e2Y#{jZ%+{SG-UhSQJE-?|Z}uSIFHY-+#M*@(M1He35s%JHG+D)K>}K7H!pZ<+f= zzzOcgXVMsXKK$&1@44KjW3mz<CqR-_{^fqrWt<|yG`=@bq-89Zu=J?vd{L;iE4CI^ z9)IiwtIm=aP;Z|BY^Tq5g+{LN`q0jHcs<h|<v4cYkAF!31WA9mR!9>V2DWjtFM3*( zL~2C#XPkGPt+@G`l-{B4)2-_a!UyYo`U!n<nw!RCbI35vgWz9p=rJn9h6xuo>^neH z5aBDG@cnyw;njO#j$g!vLz|9Ca<bN4l!&1fHUSCe{!_wnn|R1S&UQ};uv%BKXJ%xq z{j#lWK2s4>_?qm6<xKm}dFzROq9>_Onb;#2cy1n0WY=&rQb}Q7tVfUYbq^1FzKbCh znQ{BKW->$dJBCyNT830KkBF~ubWvA>f?T@fNsx?k(vpN}pf!TPWS{cCvI~<#ogH@u zON+ZcofcwKOAC;8Bamcdt~|^Pz?z?d`aXgBn9^!(Ruv?wPs1H>3P_#N#DW{M4n9Ul zo|%fw{DYoqSaz~X(pCI-;LewpWp;I26^M?1Ec&8sRnXUv2X$Bb@#fdMO-*CM0|(PJ z^MhDWoK!v|`E%pf#kDe-wX)Hb`76Z(o}R|)&4K!Z@tcEjn}hStYpgsCSKOMom)+;C zyIBKz8vc&4vUF_4G8X?6b@pqYxv?b_Rh#1C;+P=)<`7-xo@@NYMdO^+=>k#hk3|Fe z{l;fD`UV0T>tlyX;>UM}Xy1bLmJfApx|J%St6Hy>Z7R<eeDK$MKYEZ_P3Uw*A^dMs z*Ug7`;i3}Hv#lZLkRh#*A!kGN?Lhq}m2-WP_%(;t&j;&cJgR>saxX4G>uWOP)O9H# z3;*{AmxkPZP@;Jd;WEtFTLY|CzV*Uhx{%cGfBy{p`E@_CF&IPhAi(Qi3<2S_CBU*| zfJ-x#Wdcy}s^FupFHQ{0{QAc))gJuomwq(GoY>ld?&$=`aZf@4Srve;tnzF(Guq9P zqTW0{B;K9M1egE&6JRT&3;r0CD#8)C9cq%6c3H_R`4&CODDPoa`b+lE74SI!{zzJ( zW<T({vW>scKwd7ba~`0yW*|QFA)o>O{@^xmA(M(-9ELEz4c!^ErNV!5Q-DrEF0cLO zuNr5a^MC&m{Au&1Y6`!)H6HU$_ALnTx}dnR2+`h^pv#vp+X0oX`DFWBdKi!LpAW7d z9okhTGqbnV{wFdaGnDBYbkjnxkIoLg@QOa2>(^hS_A`*oj_;p*S>++Qp&EQr(Pn$_ z3Cq5XmqUdQ=be4$o$KdD!yjdnxE=GTDEs$!qbu-TJ=dB$EnX&89%YfZ{p&j<C)kIh z=Xe)NKr#IBsf}XF1oz~R53V2OCI0wGzW=?s|M-&OD>AEpe8}!1`~AmfpAi1_|MR=u zcz5@o-(b7Y*wH^f1o$$=KflA_kP`ai^Z(mraR)wA!XS+=FMZ(#dZPdT@7#Mr<du;M zeZ~0ATBV^>2Nk1?E|~)%+glr{?l8=eQcBsXj>mrT#ta<1vz(lOmnh4bf0<c2|CA}v zTi0<kG_5rHX5`F+k-$sm*(w2?lb(~q1L-~U=+F=6;LKT8Y%N1}C%8-I0xm$mSjN-n zIdMHb5Ag+vT_~u-gn8JVA(2Bz9j0Zd{sSUzNF3W4szZDi!CaZ+1y#o#B-SH6O%gk4 zh>BKXdo>=F+k|a@B-@TP>QWvQ{{`6<e4q+rP?LLdO{QL&XULb#zBqULsE>4<1S=~m z9PwaCN9v73JlNo<A!t3Ah8T#-oLAI9qqoP&97GN(nq(~w$+XA{cY%I~KFbm)$MQHe zR{0#s2dz2rp72lz3uu{Zz?vTgNlrmaFmRpgkM|x@gVgpCct(j^^xzlyuUSOJTzE|M zDNWG0feL;|1A0m?$@XC^Ql76FYqK_)Dsk#~Gg{BZL+mZ{U%tdXCL+Bh+0Cw7st%nS ziKwI=1^o!RlzYV&=Igmqlau8T;-5y)N_%WQF)<NPf7>kby%6G3aOr}nG@gKLLkHAT zl1b@A<bn{&&a%JgTzZ#6*UxX2OJGk-M`{CUL><!Hw%1HtL2)7<)b2gO-ej#pD-GvN zZN#kK{zj43kDB*n`cgQD)*F=41Gn4S4*azU)S63jTu2G^L4cY(;X2LbzUCY4x~%c# z#X076jRf;|GX-rZb&$)x&0kkn$LF+YIsg#m^%-mTR5_NQ7H8~NEjQn8>M%WUF?@-o zqyqHUAg!JK-@cSALJq>b#YAgjPy&Rf?Zva}OH&;Q^1;W$_qpZRO(=(khbIjLaGW{Q z0_&)MVT2G~h^=o6%4l8P*|%9C;FUSc##XN>3}!<ShzC?&o_EXvZrz+0HCAOy&{3X$ z)_hJ?Znk2_Ei@#=v^Ie8T>V~Rs#qw7PoRoOZ6I?#j1n*f486$C=0ZNW+T#GiYg{dR zDQK-bm8&=cb&1xcF1^gPg|R6Zxlq6ATKaJ<lRHq~bRSO|WK(-8|1bXQ5RS44aCaju zAjj=613<pj=TvmE97`M=%}Xaz)6&|(_5i2!rMHmL7Xe@st30GRUW&VxpqK~_A#!}z zA@QFc%67B5v^-*BGBvXk#5(Ee(*tx)<FD7D>edcrr5DutH+Ae)KSrpc`IT_0%U8eq zz8GyfzwitJbCF_zvOxy|2^<n%jqNN@Ra2XUn4lv|zY<*cw}8x<gl6F~NKPAcre|by zei0l>0~C=Iq&V*M6{Hi9&?G!LNO?I3-dGZ}Z1H{@x(n#J4gi`&tRISc52u;WZSw(2 zRG;PGP))iT1;}VhRHkULcUl~OEp<pNuhTX)HMJxA_NA!1ANQZDZ(UPp%{Qv2fUGj! z_=2e}v73m4x5NI%1+-YMNmD1>Exu5@c5#_3sJ-0PS)Sj|qy|+WU<U!3#cDhd!E15{ z=78LAbSy@^vs*Bq{l?DrR{Vw~k1r)xSi-pF>Hep_z8xj@Q!k9>N*A7^xXSp;%eN2$ zA}lFn+Ltt&>}f(FRJ;x=fXuaM6r3W>au>(e9GFxnkE&H58yQeul)F5)Fx8sqE57=b za0~Fh-rHqUy|WcinCS)J2a15Evf+{6#>HJkge)u*FgCd*$Ee;8R+yZe?53In&XMUr ziT#<biMAwv&HOuwr=lM)rFTUNT1SKX7C%34lW*20i(=m;0IJKLr~uS5=)c9$aJ^2a zSyTwA_M@%Yq}xGtWvIL%_Z+Y$NVJf;KG$U1D1X9j^|h=YO(FodCZW^qa%ySq2_A)( z8OBP3Kz&1X*8u(6Q~!7WjRhDHVYRPd2fAS>uW`^caI55l?(PN`%-YyE{*r$II9OA? z`Kf;NV!g1tMo?gmiHJbTPEA?a0G!@@&}Kc5C9{CHo$b2ZQv-mW<E~q58ATsidahrh zGb$W(N`*#<iX2dN>d<p%u{hq+vII)W+K1`Z@^sJ1&*E@i#}T(p6Nonn4PPykjPzCB zC}eZ$l&Jesa2RybiaF(lhK6da%nr-|;5l>vrU41KtlkYa1jk>iVdEJ!Z#7HL*AI^^ zVY3~eeZL!u;FeHUH8yqtVUB>|DegP83#E|wtz?ne;rzTf)zt(dNVx^)qK=64xaqND z$Clp>Z8gpo4U<BPWhCerbdC5afXTE#q&f{6%ipmK!7fgI{_*7%rB2wa$zi=PLs@@% z%b;nGBUiIPVtXN(d?(1FJ4?UC9<Us@_nvUcf|65jq_C|;W2A7wgJ0i6GJ6u_k7yNG zM1aUNxUGKMtCe-@Asyt0I)TAPtHjRCZU8jYE0$Lh?rwHK@i73e1$03H(4c=pj0ff& zDWUe@fj3%e!Y|6_WZ$mo1@jweGXR~ILofNv48Z$Mhqv(=;p6+D)|i%;*N%?ExD!w_ z<kO2esY6f!X_HQ5C0_BF1tHiXN~2a;cr9pHc4vJ6FxM?uULNch^Sb7QiyI^_icpZ% z3Dv{#p*~^VBR!>#xuDhiAe$6m7bQAdRLKHey2I>;eY)4iVq)g4gB2>=w$ea7cNX2d z9c<WVk?W^(@6)k!8_|8_myYX0BKhrteU$Bcpdq*o+9Vgy^;LEC_32l_ISXt?FZ1$l zfF<RC%Yn|;n_7cA#M1%$P|J{>(*&z|e^K_*OkWp@SU{#;LJ_kKtgQtq62(smk0pS; zAMhlly8~-}^(9i6x3c1ZjURF91<wvyPw-x#Vz`GVjfh%}mRi=+=n?T_%GxX%Lv>3- zD(bNPJjA*Tm3IR4^U<j~2|;izLP1GJf4cdV?kXWV`#u`mkilqU=^;FHo-B70jJcmi zIhZ-LEVM{99UVHICbNL9q=%&t1e>?SJ%RleFfM~5`~h?heQy7m9q?Rkcg_sFyRYzR z6V$+S2eK;Ly0SYRU<TQ8eYwhoe*6Naqb~GDp_-Vwq+PfwI{}iEmYiI>z1HMjohAq# zT(BWZctu3G0^jY)GrdapBjFILX=s>1FAR6?qC~K?k^Bhk2EV)mG)z{pBL!m}G>vY^ zX-iW!aaTNeHRd^;Xs?!a*|A(J7eYsP8Aucn50C*(5wbe+DYmatfG!%U-YwOAU}-Hu zxR;UY(!39{4lj84MfEm#JSJd@@_|@{rDPh0OY_Muci;ABb&*(cXm};q)S01U4uIrb z;L4Y#Z8nZ@b%STWmioA|0fFVO6zx=nFMt=vC*KKq3axhzmYSJ#bLh0|0PuJjO4q%B zOE7`RGEF`w_^Qa6Z|le<M4pAq7pN-2Z_K1!@~1DjH(WhF5BQ}zmL5R*QtNaUS`TTG z%&wBAO-|nFgD`uhmf8QA@F^tdFlc5kE%z-+y9nE>G{QE9>+ZWBJR)YU{ElAzn_BJ% zPyUbo10=)>`hoVq0IxO0hB<IJRp9^px87qMdgbTW+mf!G0JD4t>ajryFk<^Usw`N$ zZ}h$BGv9=EztsC0Fk)s8_&ArDFFk+eIQRX#0ayvQmK6tEE3U6X(5tvqv9rasz5&xi zQouz18m{Sb%21gFMPv>M7H}8542^>lQc})-i4wh8=}Dpj0WVMQbI5m?!3j_)v>Grd z7zU>&IAI)`y6QQh0vrCLF^bmJ3V<2(jw9qKGYcTJmaZ#fyz*U;c;JvP`TFRfL73iy zZ%={};O=wOWzkyTTB4PfL1EtsKzVrk2L=~)mx+V(ozSFJboaGdn)++dO4a=-!z01h z)F34><uU}T28aDB9$o=Z3zQW`<QgLPXVb`;Ws%z!bZ5I96j`Y!3GEvI3Y=Tt1dXE> zFYDL3vo*A12B?;xJIhhvqNsq?)&96*s|7Q7KzApj%qj|boR%h!xw7}g#N0-ew~+a{ zBR<mYDXMJp%0uO@M+Q@v>5x;7vIYpfniOgCH2T5!{rLQ`#OB?PTH$$+2La{Z4l4*M z|MBt3!F)K=QE;B%NcwV0Kpvw5^xuoEyH(!gPE+ZHafO<J3B|T!04cZu$+1wDGB9EY z(u1t@F*Y^noknQ%?t;v020XVaIDqGjyd~V<yVr8_G+Y2Z^f^HP^bOECKNu=&vkYsw zp``eX*fs!UkH?Vez%kHG!tkT))I7wPO?<+vDpWL;m6hYb_vbY3iIefo10ptP%I5rL z8^)<~R(>5cCaXMjnb<ZA1NuQR^+Iqh{1nTX-hgK?Mke>gP<>rpJ9vaIj6l1$*M+jh zS8zcLLnmVAEpRvpbs_NIpVdabRy(j%#UW9>62{&FL&%gfXI9||-U<EkZIdMN<<lMT z7v3OHEX*@(M~)jpK*6@0%M5Qc3CiHA*i;6O9>rn?VQ~I*IW+UU-3pejYip-5KNn&$ zMy^33fPFR4gcW*FnF&TgH&PW)G}xMWMRQI^Q!}NWt3n$(<BQ98ww;kz){I<N@a@$7 zX!u(JGna{SQ6TKS_FX#WV(v)L?d|i+x7W>4ya--mCj?V%PIE&rKM+z$F^gd0lATv( z&-oi|EclMuO|r~`ewqNn{Tu%DVtm$v=b?M*D%kA1j|ZFXeS1PV2^O>!G;uQAOhP~6 zyXfKm$folxCM^(Nf=F)ZEv}%T7mY)J!;}gRu7dF!bmo43{m`=T$ab4b%*n2GMZ3(& zzG2PGi_Rh0ocH?s+N^YVsn3Y(iK&S)1NF5))qvH3cdW}?S-@0@UO2BIRjI6}r3{FO zp}H|xAXAj`kt8?+9{Ba^)1P9Hzn!5YDh5c#{V~C5E#a4QF53W*H+>~60ma^~8_W5f z_nY#9@6g=tv4QCS&MV6Tgfq-Uv`^qDRP+MSD>Xa(Ip{=0=u!eaN{7V<->M{y?_7FD z_4*1|*$q%(Z7{w^R1BteA%7G?g`*2jJ=+Qi?SA1Fy};p?2mNxBFwW^q{f0b0FN-?_ z@usUkzfBI7y`y(q)gJ)+CG1@BTFPq@g`dbD0ZZh1u0}OOyaHT_E6NI90e!vs=JudV zQm(~_zm#w<cUqo)JGA*j&}l5{emkTCoywA4<-(xMVgG!3tzw%*@QUMdAJL}3ffGTB z5emsupwZf(lR5*cHkZM1^vM{Glz4MBiiS77gTqbMte|eMbpYCEs7eRwlgM~7lJi)w z@vz^Ay-s^w%gu5T?e!=roHzcX)SlAl4Q2H+!kP4Bs>F65gHm$rd+@nbVH#N+DRgs& zgw{Z1_DV{`r;+l|4-g34QSFYRRzQdv@K@vNhfQYDj|a79=)7~{S2!{O9yBVnZNXEV zF;Rs+26K2cl)>OLsyn&`VPFRY!BZXk=HLe*jVne6j-kE4#rt5MW&l$35>T%YA0(l) zD$?#|W@Zgji3<@4sgPtzfuIiQ0&x3e!nrhZq+uCP-3og0AOr(-#c345G64p*?X?#@ z%|a<W!bLIX<+QF1fjjMT@NbY`@y&Btvq6w4@PgMtW#38P_*HWPvKXg(e<J69(0yks zZ_orxJ&n-aScFzY>1JqQ@D~sJJQgmW^a=hw6Ji|K?X|J}Cn|s|1EGDVAS6}-Z-W1J zH8HX;sB3`}dLi<LPEn7k3Hs2i#<*`gHk5~YFGRS5`;u>b9skF2C0GO$ymtb4A`a<S zh`SJyP<%F00+4ZG`3rkDy}&S|qe2IYk{n(fIw>NcL7CuW!QW)rfohe8gN6QPf&mH} z-=0qD?!mq$g6kj;Ck5Op<@6fhABs~=Rg(`w+*katA-u*7-o<;~FHW?Xi#5G1DlutC zQ~pq1rNIdS`Qi3&P;0fs&Zcep|HIgO$Mx91@8d5wvdSh&3T2g|l!jDxBqY)n4ec~( z8%0(rRA@*jO+{%VY40VKkThNmX(^50alYL5`+k2u-|zSF_}zbSYrL-OdS1`xIgaBv z&$CuN$xQuyy%;i)z`)f?0f(5+e`#_)ur64qfsN`q#?&=MPB_vc;uhG81LBrV1{1{& zYB9N}`Hw*DSgsKFrjwTtoZF2dqN{<l>Xb#+mvkNJ5XDq#CZvd&EJkc?$nJy6nbj@u z%hj|dl&7~#Q&}OTiZL{J3kijnu-oVJ(|k*o*lNNBWkTqzQK%N9@fhRmbkVN!F)4Nt zSP(39aBJ@+!V%gW$-ILmh`2agdadLB%U`lDGeO=~l7nR0EodD43hhBP3GxZF0wZ`+ zxb$0}X+^l=#}Fg9<`-BQ(=Ts5UM_cnKiq8dU5QL6V*6YCJm_*KjdW_WaYgubi^K#l z2$24*GYn)w9d}i28s0lWwqXZQE8Mw}YU+^GRKiQ0)R}<l7mw_sYAUx3T5F{F18AFW z{3-pMG$y4~0at2kCjCxrthODJJ^s$?k)^|v$LVmBGu`d^<{-<$uF7tJWN*fw-4Vde z#U_U{O{UidOc&o}^Z-(WWOR!nQr7f<7Rq*4AGpWwT!IOJrhfW>4wI1d*P)M$32ad? zsH_#=?SwP>Rs8fR;Aun%U=P2d2@zd10$&NhA#IKb?UE3?eFCa_igH+Pi&t;#n_L{2 zzy%Z&5Z`P~?MBvc0^YIa(VjVJcuie5WxC_x>>3cj7$7K84r<|*b4}05Er#Qr-xv%q zv<?T(kOm0@zI#;D=hWY(=W7Osw}05d4k1Pewvxz*6Jj|YU`~s@c6M@R{qn%iW<NO? zVnL9_OOxt?PtJYC0j)>`Yw;7&c(fV>NA>CFY+{D?4vBe*>=(rnNGRH)M?qatpxC3V zIouM_HIDg%emmpPtkcBid(m?O2k@>;7pzu_M|f64sWDvZ%~)oqKi1M)`2MC-o{9;? zJW&>p(TNXVqCrNgeU}Nq*Mq~K;8YS39#Lt5DJYtkux|CMl^>i2OCzo*fw$V0+LJYr z30&))w0-AkzcmMwplSYqB{~ftbrAgHo?3+ZF<nqY9MjS=`v-!6rsWi&iWGuvs{b<1 zzWQLWnXlQ;Z~5g0?XIp!W|DTToJZNNEXGL=qRjAdLpQygef#&DqeWY}0gljfU@e7o zS<{+mFZBsf=?Mh|`?y8*_ZHOJAtBF%3i(rs+=TOeDVryaR@of(IC1y*WxxQM#$-X% z;HMA!dNL>ucGb*JAKN?RK*+X6+B2}G@xU`aAm}oUaYH}R<FJeed}R?-&M4G4cFYi% zUB(Swxli5ceahT;{XEurE9{Fl<?gJtDOrFRdjIbp2E3U5@s$)V2qRoTtPsDGY#;=V z={vFcz3AJi$XdK$0_T(evIUjvBLfD>eQVUg$#q4Y2!UQ~a~U}fSWVpgV-*s#IcaTS zsKxHdycT=p=+Q;y3}jTAK-#)s!IR<TayR=F7kzSMZomzWMI*UNLSvtLaE=ROmZfp$ zDF=FEw6H0{0|IDpBF&2eHYHhoc`IEQ5^+8qKIp!*-81N4izz=xRQmGG#cB0OHjgrg z!AE2$CcvDoZf{zx6Slh@`HVS~$~CA25ZtigC4erCkZmqzZ!gW*bc5@1<!4Eh3HW9n zB<slW4bGzuM)!nFXZ%H&?mXy+^(mSp5?~Y4;G_KAg?+FmVloI{OvUfc7sqo@Z7s7Q zC6PcGY#<Cb7`!*oUYU!~=JwAFe<AggR5^^(R0_SYrr^4D&v6f=*EXc5j2R$)Rt9=q z&?prML^@%XUIIO<(y&Cz0h=z#{P6q{>T*61+(@Vu<$s1UU%lf{%AChfwq&XH-ICTJ zP#qs&;&{xb)C{N#t0%kz-$@WrIgP3kQ=E}pAN}O;hJ18ddwv_CH?#~!KorC5+ADH^ z)<=hhy#>;B3iL=qM@NSSQ`fmShu+H?XQ5kgm>NBwGGc)G0Ejezzepev^o-gJL~BaE z^xAQ!0al2<&*jpn4mhcoSP+fYlAtbt<X79xLeF>d(k`3+x9Q~lXWx-Gb(Q~ntC4dZ zo`gRHw*RrbY*6|pPN|J%V@%lxy<=6Dn;V6II-CNhwlp~>(!n9|^GBd}8N$kKN7dA# zupy*D>MZzFF{J`_Bo-<mRg9gL%MiW_oFE)0rj4*xWbLhXXWSiEWczH;Ki&v|aa!I+ zeUSEBMA`Fj7V5TpR^MQsoB*OC$w$u)=KXcnRg$GL@&f`PoU*_x^?v_+n(IjWnw(O> z6cB0s@Nv&TqJ3IeFpY9T+~E=04z;_=JL?jwBMz^k_M<wSQ>XKY7J>d6^U-7Qix!#w zzyI&Et^l#??q@0KYZ@QiQXC?uOL)t`y9Ec&YKI?kgz2?Ih{VLdRe|XYAZ%h{>e4Z! zAGQ#|IBKU~c!{^jgtY5ft&JO`j<=ze^(WPhan>gkc<pLlk|!n_z0pT+V29_VFOU_o ziAK9(IU4ff-^zPd&*5Ub#LabVNnZTO3R(lAlh;bZdQ>8kCMJz)4y1AFGlW&vVl(Xu zlD1>j+d&R^82Cd40L*991Osk-F!k*D7f3aqI6DKf%}l>Dd+uue<9dAAKfO_B;LR?` z&eBD=Pe2=Sp1n{G(k(gGtqntW;-0*6v70%1xG>Is1v;!Wd=_5v1#EL`<YopV9G~!~ zev%Ylf2#0UYA51t|NU>0+8>F<zh6PQnI>5?hGv4k7d0J#bI|~$0EA^Ib?<p9?_M|G z>#R1rV#>Ng1ieu@8IF<B(MtFcM8yRK%-t*J5uBucZi5Ki0iLoXaR|yAdIOu!{nRfl z`1}hA#Ze^Lgr+jX81f1!<0DMu{adhIowOHrWlfBy!eXWivoT(;L25=-Y=4S;{>Y7| z#{)dqMcv8+GW*4WVtX#Kar{i(`@;)}KpPdu!1fxJJcy(`4eBzSOXLCI0#3Rj6M70h zMHS?Zl1{;IMB>i?xlwfrY|RU_w(cMf3y*c*f5<Wdn?$-<;l&);ejnt#%m9Tbq8ETO zJ;5P*Q8Pl841jttNRJmy*<4qaO&mFPY;oczY`9pOLJOY70K8|YEBaYJnz3N@Y234_ zfx%;du+@l6v|&<4@U!W{Ix29oNBQTMZ^~Wfcc-=<EsSGRJJwU>%z*0+n7=mE2Nrw` zpPmdw5LKF_BD6fJs#@9aiX<9Owps7(B@HIJi?lwAh$x$}=7CSI(+1!U2q0B}+NtX3 z#Im3OUDtC((f}Qv)AA78;mSP)0yTg3{Z;SJxF(!gE|Be;EdC$_tmcMPVJ^1NxxWOm zm$8yEna+*kmY=i`h8=~+*zC~Vz?LP<b*vd7K`qsg@z{S*pdw3TGX$c?9DlyjP*#*( zeg!Hl26~$0jDHi8$l>ZD8vP!z!V~J?3XDV*HCoii7$-Ta#u2rmQ#8G(Q1M#{;<ac> zY>8W|-F3b+efax*4a6mgAj1jah-p=NAbFU4Q;`w{*$CMmQR~Hn+lKXvK8IrGJqzb| zI_iTEL;=kWc!}xJMp+205ZwS_FQ7_woi`mK?4kw%nb^|J@NueRUpcc5A&h!dNUi#0 z;qIiF(TV-Qe)jm&8dJrF=Nw+0xbqso5YvENJ<8(b<gC?bjZQ47AlxPA8fO%!0IsZQ z?){@+Mk)cwKcw85Tnx2Gg$Fx6frP{sbPp4$;6cgL4W_d=g{ugCGktw-2PlpeAJso* zxlK4`yuUDY7T)j_P|>>q^W<sN@wWpVPo&)H)~Y?b{W+FwlqVPubaNEGV1fpyUfb-U z(Tu{9Q-!anV+ddYH3W!ixi@+2uxTh@Kx7=(5AZ)XdJ8ILu(gy3%tx&FA^rx2c>Or# zDP_Ja+3ed?uGOrnDqu|}8?u0IzCcF}qBP14@WSFygJoD6977#NC$q7ak@gu`5W(dy zKTaP|@Kl5$J_3O7rR$g@VSS`VpcI_Kd%`0S`oy%!^P=3ScJ#I$;ZY?BLjnxQ$WzHJ zw3iaU2J$zy1AsV&&p8T+i^{c4D#E?!!lcavzgGc3ZN9cY+UA`g$<34xfVnD7;-hu5 zwzXHUnx_of<Ie3m|A)vrYH)d;F$!a9CF;!{0V-W<=yOtH+ALCr0obi@pES82s)}02 zhPs=faE%WA_>FdGHLt6G0xEPMP;?hT<J}n62i{JjqUPpB<Pa%3Jq{Se9)UBmu2$;n zl~q&?*@z_4b~!@|7{+2+MGe?h=tdUt*p?}5@;-=KNhC4(1x^Nu7AFj)K?c}Ch(OO% zP+&Up29DAWm7z5S8OSEuan8KB8YcX+Mt70Wm0~T*nYxA|fKVWn3A1QSrJ5uNp%127 z96o%D3^)No_crQXSb1yjm;^hc<4qjb;->dAt~u);FAbKh23H(lpzAjFlByhub~I^t zb;ec-<!1X`3*!mQAQaj4cYRY$8gE|d&s%zc)tiV`#eD`>P>7}d326>!yu+xB3U(ao z-r$9jt_@iRAFzxj8`37me+wugNV2}DQ$Gj4Pi7NxgU7J{x+KF3zn8WhyYT?@w14(O zDw%-?lNf&)5qlX~<Nf<NOew~u-fucypJX1h>)PV-Rzkz=(JfaU1_UPgBQc@KYg}W7 z&O*%*0~GQYGAa-t$-s1qh(rvMakv>P<~Hu^r%#F0xo%w0!q*Jf*i;DUc@<S1L#S7Q zd?f}@*&t#F{)Qx~{7!_!X`*}+@D191Z6p#g#+r2pc`Gg-he>CJ`oJ)pkggOJ5jXR~ z*Vp$_DK``*Fq;h&5BB$L1<${K;bThkC=a4I69}sWs-}PAD2925*px`s5P6y9>JrmB z4l@*Qo>cc9=X`!5hn>sn`~u%R#I?&d=;BCq!Fwe^zO;JeEO<bZE*a#O$|H^?Mn55Z zeot!GB=E^~cu7kWwS1BIY%{EbqMII#R)*+4ApU|e<|B|DAMhooZEXJAS73i9Q9=N{ zOK2gCN`vj;wyHGZz~fS`i*n?6P}ZiEPj2vFPVlDswfUIz`5>T`2vK;$MobPaH?VVY zrQ2~#Uu}a*HVt&sHHSfcxjYJYh2*@97PHV_BpF99k3Z-3I_(mpcu)aEI3Nmmsx<+* zRbsHLli}z#2AURUjpp#zearW&bXC@Fbxyq3cL=AHNUcQVI+|F24j$>MB9oHKi0u=x z;T!4Jk?`7o4>bA+_9DQZi_R+Q$s?&|z9z-SNCtUfrQ;_YTjR;oX1@SfO56*D|H?95 zo5kui{I5)$`PqV0JhA-Ip8DA`ohOhUClyQ7e}Ek{#LatWX4>4mHZcrC@rYS<r#+u6 zJu(Zi_pB`N`nF84tfpwgMyB!@po5yG_q|Xa1@Jq;;S?8{fvekOcjYW$MT!aVBr=bN zCb@f}wlt+)68W*>Ig10A*rP&_o$vfD2*Qk!{xz9B4X!_il0@*BVq(PN1&v8rAY=#E zJb20FVaZSLZ6j+9=>QAj0PloqgQXn639C+l!%l`YB^$0GM5C}26I%WBLtICUi>whO zULZC6TzSCyNr;>R_(9vbBf82Zp50J0>ld+u#865AZN#}{VxJ?!OWezU67g38mzd#) z+v|=*!^{#`8o*YH#Kh<y5C-6PC;VqJ@=r}@44ASf2*0F%)*}M4ARGr7Yc=V#uI*e& ztmdv-n}Vh^2TM5kY%?ID_HbGnpw)wHD-<{Nh#~#Q4-&w0A2KEo(3Nl+>@qF4j}#S| zm51$Goey+mUSB$Fu{xr25;Ytx$g&BWbb|;oM5Y7_qGHut0*;k7Grjp^v0BE4hE$oL zm;f3?@_Pz=P%;9JckJ7hhQt&dUPtr|5p4@~i?Kbbev##$QyLBi$Vv#s0bkNG&~nXM zEELfvj+}89ONXGHS_OpH<u_nxbF9c9c1&(GuiS}#;8-mE2b3|G#Azpi0GV0#@M0IL z&+RM#7Th7IfD&{hzw2rn5f>s|u&6=mBm+rD7e*gECm@Kw4shzJ8Xhsj>xv1K{o|iq zp4=Akh@akf3ieLk4Z6r0>tzpDw%h-4-|&Xx@vljP;2W0v%m#-PaLET9r>;Bwy%d!% z6*tkRNQJ<dL3ln#m-Ea{HNX$6^NB2{gm(-<{EXTxgb*=c%OQ&l>UEkFQI8}@Nkt>* zx?y`zU$KewIn0BMK_CR=?(}`&%H)fn7y(ayTv5@B6cQwPp@5X&DB6{mF4i=oiuFC% z6HC(81*(6XyqjPHQcEDW$^q+OLhWp{U58t+7HNTjn2^B?(|r#{^Gvx-E8MM-q2ZPW ztBWN0kT~;oXBv7fccIN&BJlHi+`uE<yO}^$C9J>g^`qug*D^gTCj}`#Sz`m!aG(D- zLMy)?XNEqHBb369JCh-;Ba;4ukf)4(U&1o@)ybZLi<@E73;UsX9LH9xPt#MXr>E*7 z=uI;~>5&61>MN1Sl5T?PuB}ci`1?c>I0VPr^=2CH3&;ZQ@tXoVCgFzNAP10iY6d|9 z1QMnGuFV=}`DRk_CF9kXfH*y7>Vi;7ZS<~QFE~jP5PJ3qwQ6y;?*`KX;SBj`6i)oO zEC)ja-umQSXzAx_v68y|wo`XLed7SPnWH6O05}*&bryV-S<wiJl`g_lZ8baxiK`jv zG;frsZi(X3UmN*p^6ojHZ|gBbrV}aARbiG9pDp<sZ9-Z#TI3MuoXp%wn!uP>uOu~| z0Pa`EvXb&O%I?mgp}vv9E>j?Nx<$?2n5*>GI`<lH_%L!-sASH>)ZL>5J|;YzKQ%oy z^&??}sDAWT?*XYRp*RS?cu(ChL{WP3Zpc>6aLb9%*Ss4&fUIkspFX8nw(1E{o~wO3 zuO`7j&oJ8Ye$EmeQT;2(k3PVtqIC0g`APsyil%crNv^<CBzgA739=d)12vj2Ywklb zsF;8>M((?11#x!K(Jv4S2L#q312JPMwqgdBcDv-dIBSEdKc=d>Ffk+0*|nsz*p?JK zF9$=;5-O&c@b&B0OK#q_N&qCmB^go86t#_@Wm3m>r#(1hng=9s7gy&~dy`t`7$dv} zHV)w4ISr<vb%{f)tuxHZyY%;%1$xkLVTNdOGY-XpS6goZpc<kg)SZ2@jgub1r=1Ow z0-c_q5%?9f(T*5{l12VO55&a)2AaeOP6~J&(w?t{U9~zNvXJ|>JVsVo{J+t_!vE)h zuM`aI0hRu%bAY*B8N)aQ1S|7p&_ZVZ>{rH6*o;AD5n20tlDrFIdl0XtXcY1s2dj3u z+vu4zkWU1U!2}*@^^d_GPe+8eI$sz`dpHvqPWtC$cDOI~{_X>$=IVmb(QEdSt8Q^; z^^cE?V{E57NzO*LLrP*!EYDlS_6(gLnw~i<Xj`)<+HWTI@`@dvq)iKJx-3N-$hQ*) zEn;99IjYFL4EIAM-UV^-C@TwE3E*&dcHdkUiS|5u-0)RWEK?-x8;+Pzhg98&0At{8 z_JqhmG(y<+!1_Y0Vg&LH^)*4ZzE~x0mmWe8AYLKLj*RpBt*vm_s{Hf4#$A8BnHKfz z**?gT4Q!q8(^1e<p>Ww?Q>mR?50N;Ka9ASgmQ3x05c?2xoX9w{t|v7Eh$q?{oo~Yf zvh*<F<0TBzo(WGtCS+uT;eUxm92q4d4nTl(Tj<5GdLLr>p&K=U=2sf+R8EbrrY_>J zbx&|1Xhn3=p@-{0p;{Tr_(QRObrDQOkQao9KcyG~_wkr=T%t1p4TTjtd^BFev3#p! z%uo>0f#uFW6b8B*HCZ?cyaNo|9?abE--fuT&5-~OnBX{8dP%e$5R_QNNKfgF`i2vA zgxhb<^^P0R>2}%UTciY&SV{5$x)FqaH@DsGDlIjK-vTpcP+*7MvP!W7z6~7C;kY3w z2ue32j)2f$9~C>pVNqWN6L{`a*g2D!p4-O5KU)SI<rtCF)BtY$fNA5%gFZJT0q;h) z!B7zzfqe6dlsDZvoReK}E<*AnjUZv}0TD+CSh+s=5t0SpaEO)m(N^1CdMEtn&!24* zZh$F)9Bbij(Y*n0I<{}P-Oy1K#af4ORFTsA#S*kldActeIJ~x%h+6z~`EwFIBU~mC zxj0-432@=-%ZSWpO2I{a+seV$1Jg`9igHtGH;ETe2}Z3S(obWo2V~dQ1+8f8Kw7N5 zzRKH%zy0UfKzkm9AS9B&qOb3~mLelre)jVuNH+HpzDp;$KLw`<Rx$$7m>N*ITA-}4 zsDP3ub3^3sB_`}Woxy8Ea3#-x|1O38Dv0R|-%@Pp`UvLPnB+B-)dKhEaLD={gzjl; z6+c2o7}JUaJXeXFh0s}4l8Ni*%|(i-fR{}yr<m&vl80nC4nTb3LDC}V84R;Rg%PFg zDC)s+_2mZ;qzB!zc~L2{rZ}ip_Nmy)e+Mn1#T19*u64ZAf_T_3u-)5j^i<4{JzE$2 z<_93wr(7M_o>5yO->}K@%%y9$ATI)HzB}uI2GRnu_d(7-^Ix(}t1-Yf5fvkQ`ZB2* zNZZvqPm(xc3y#z`jjxV;A~r;b4%qP}E={&_ezsB}+F_-USl#kmrfHMQP&MH(0Fky+ zC^HU8qbc=ug39g%fZ$7|>Z!Jo#2*LQe~hd-<#ks;46y=Bv;%T!0MQ$X3upm1V|fTh z@HI(t!#|H5K5RB%1fOtin{aif3{*dd0E%`vHvyJCC}vbr1sUy0wy=G56Qf@P)hlvI zNrS{p2RT(4m5u=5$W-WQfo@<eLN6U+x++8s96MiYx)#O9o4}?PhzvD|%C`DLppW{3 zYwG0NsIx2lVwBx-JfL<^>vI|%Hf@=eJ20x?V}XsNI|uD-3X;bJfi6Uw&rl_TnD>CO z>;x#!DgYc$k!S7(d`B<tMRy{2Qt6No#V572CaS8c;h?FQ=%#OW$jIKAjSj8vixY1y zXq0XeE2*5$E?OjqJ@2&)kOs-Q=hs|p%!@Ay3}o4uw(=by>y%QKb9sjHWshcCa@~!- zu@MW3f{ep31IiUR4DIJIxylw~+-dNM(qtTvW;bHUOe(w$swTFyBkzqS>#wlgbNF(T zXi=Bj#P1Ml>_eM*{knCLHZGz<vIOp6k^2!gn1E}jfFkA@nagsoTV8C@zO=XPo(eKT zl?hy;qG4Sqr->gCa~(%Vyhqf<4hn^`*XJh>0NOC_{O}xL3ax_mp|2n6tbJ9rwKpi< z6EnI=@*dMM+ok%wzT$k){?E@GLi*=KIq{5;1#)N0T<lbnRWG*9H%53zl^7%?N+m=W z{^c|lpQTzTXYLiRp9h&b+zh`^NZP}f@TF16p{N-f?Cx4wR5svXKH7bK$-F*C6?-{9 zXF$~zkeWP0=t-Vb1^JZCcrbGLO5iP<;oZnyBfyQL7{kc<<p*2pVdsb)ZU+egA>3EF z^zRjx#vvsve^c%y*?I$D)@~A6fzl;Gu`%?2(L+wDb{$oUC^$M5)1n;sAnN{G-q8R( zJwoa;u*FzasW|@8nf6f2#7r81`VL6CwynypbSU6fyJV1SC7cQz+a{u=%3F{Pl_NA7 zK=2m<J48GBZR?(u^C(Or?q&d(MhB9g$~e~nL3;i4#Umw2{wA^P$tT|YHTGqW+abiK zRCfVg73|_#M^|M5Kc$1z0Eo(e$VC3wHyeRw!1!QtmN7`YkJ#UK{pEY8(lHh2WrxuH z`!;sn*zv0k&jB6hU#E90TI1!_zRiDKWbd0JXK;Kykv1?5zScaVLN>%%Wsd&buMPLO zu67kVd+7(b{o0T%ZQB+K?_yB3+sa3;Jq7H+3!nq1;l^&NyHYzhfc6!DZcQ4!z?%8^ z=#76#X18%d93k*HbMkp^uDhAY<J(d9QRz0`N6iMwuvQ>P+MxIm>OYg1gBY10-_r7a zh%tAiZzo`4Z}maItaWhur(s;;QOQCHjX46H^4vW)ml>~lV70x-hHyb-MqSaVsi_JE z)Tj95-Qr-`dj2|W8Lq_9Kan-u(PQUgghnO&br}1h!hBA^32geZu`!??`+p6cMZ+E? zU;53WqPs}Jd^<tv$JpHWz2k-}u3k6d5QNH~w?oR`U}-lh4gw$jfQ@N_y0X|lDMLeq z2U{F&LwhrT5(Mny7r}0*Y*9z82u#*T5|5*F#OvJF#!~*n>hslEVtbO-*PMcFyAQ9v zX2dBW%VuR{jVzu)$u|QeOu2!t+32rcL&GHCsifn^cCB{o_F1u`qv44vDI$D3aSx(m ziGYPQ5NyRjvul_^#LepbVEB*Ifvav^A$FpLDU(}E*&=0@R9At`xWHwrU#TSkP%d*O zT*NI~ITyT0C0~Re#YIJ#V}qIqYy)ZAb=4kxjC2K(A5*|b(E}eK(xcoSu*|dQbk3h~ zKBDX|Wm%zqY|8h0(zV6k9>^gJCS^~|05#$k6c$e6;Fi$WI<|&eWlXX)(v~d5>U^qo z1F(ZC8l@+auA{ws{Pdv(xuQN!E=^+sQ81Po6#%)>_l=+A61sZ87w^jn;yv{Evg`a% zPOY=+aTWptIe51<fNdgMsk^&JjHPDBhH)tR35Eg{5C}zzegZ>8Z3nETXv0dXPWLE2 z$aQxgp$^~?@_(H}<vR&nfSFLifL|;c&*Xs&{hrMJJ4eJ7GMV15IhzWxkt|qJd5zt1 zdpxTp(DbU_@V>dph6xZjDBvJ5o4WFUe)XDLDWrQ6ZQ^<H{Xu8HdL7fz(P5_XuwW=E z`Con=GADG&&*~?%n?;p?zcoSOPPyhWOB5HeBJXvu%?OMtKi6M+%7k521z&GlEMCi> zeuG4V{ED=l;LIN5J#YCg!A^O6OnsMacY`__bvYuyId!)QAke0)WYbz@YU%(K;UQ9n zZS77*CqKVFZvw>dPq(&wp2ZG}DgdrTVKY#F#&P6LRm_esUt8eKQLkPd$6JaRSZ??P zImA1b>WuhxTv&~4AS?RMtsFz)7T#49ut^Brjun|p2A})R1$FKoX~f-Pjv1+=2rnE# zGF8Lpw3#<GFXH56URiasOm|{L4I!UHc?+8I1md>>rJGJ6w8RpP-}$krb+}}MDhb*M zn1Pzn!Zrx|`ZR#EXVKBubv$gL8Wj~g5U}xKjp=*0Sl_Bdql3h3;i}#g#gH>rF$~cK zuF79sRHd{BM9Tn0x~V}0|L8~2S&6C_1tY%~%qNxvVH^?Xj|WD)3ff+QRtI`6io+36 zbILMf;4anSA>%UY-?rAwH7`CMU62=0mk)CBGfG_m3sr+f5MC$KI{LpQgT6l>*nQBu z+zyi$H&B^muGxhh?ud0pJn9o(s+(eM5MyHjN5H=>RTiMUuStkZkostEDR!-6%#fn} zc=6`SX4J2!`M!WsM#G!%6~ejg;MsN-Izp|1HzwIEXw1$dtqRzH`Y;w%&!+5D(HFqj z+{AI<kpha;T~*YP7cGV3-+p<@?l-^oBH^Wk9L!+80qkl>^`j_`I7n0Rl8|+VGtoAV zTQu4V9^ye7r<B@EKa*HT3E-7bi0y;?N^wLBfePv_ufeANsl^)xC(W<e0kVRCSiK#d zi)LpT1T=%PMGWE+4ioqIW#&##@pteh{iLWy$Qd`#I2-MeC*7_663LkR*VX%n(fmr6 z5K<RlEt{Ama4i=!`GkH|2ut;d!-Xib4qojfB$Hx_Nr>Or?g%srUcXmelq9%*eFAV5 zmKCEBu!OGFpp|w&EjF4_7?Ubj?Q<5X9S4d}+{z}kCE`(m)jB9qqqu?aR|1;xcwQ-Q zBLeH7@n+RGA!V$Gb2&-F42dA19m+)X8PwvPML!oZ-oM6ApEw1Gl-^UhlnkiWPNdT@ zFS|+>Ex&f{8p(6_x0c@j@hq4CLB$00*nW-aHjZi7ab0N8m4J1s11zY)6t_o;OCUes zbQHzaG`G91Zr9SQGGjI&EFDZl>0mvWH52TZn#cP&A$B&184yi*+lERZb7+Gkj7pZJ z^}gqR6k;=4eR|QBRW?vwQgs!TE`s#Sfhk`~04?NfQ78{XjhSKsaO@^x>(dbAcfkd| z_=CuzIy8)FK@~9d=3A(2iNGU*&JlTrC??=ma?`uP*`4$?gP7eOJF*@V20Ni&_72>| z<>s8xU$LKf8WKXHh`O$*Vq)|`)U9A>U+sZY?uom4uLuPc3v@Clv3!Xh9Zt<Rww%0c zS(lJQ4gj~gqv+@%rizY^1;ICHM^O&e-x&2TF96vi(nx@0CpS6`-SnyAjZTPh*0z}k zR~RgrPx@B7?uI(jOd-{gfb8@?C@NyR_gVu&jW(_cQGW#lj==!k44(58@=02A(md5X z+%XL*O`Z2GJy3#Cxt3k*7W0prS*1br!l;<d;?)<ndejvlyEoh<)=FN9xDwh)%N^TR zP(7ikq2c9a)+`_oTib%jX*kTHK|HSp7j**;;FrPVNEQo0L=rZekzt^bV><0*6j7bJ zi*C1NK!dtyz+lV(bqMj(C!JYPTo)n3e)<3qSY?G^R*i4%4X<&!UtQ&ZW9$_B;k^9H z?3p1UqGsrnn1CvT@+V4xCrJ;6JfRW`6Af|YAhMEhXCSYEI9C<?br9F8#P0dy<XWGy z6HtnuXaFrnLpW&}iBwUf1z6Q$lONyj44X!bAAybl5vm9drwXN{LhwD)MMa~346n;x zMj}te1fW%tU0wXy6@3VwKLEipB`O0m3)~WjpQO@0Sm+s9GLY2sy&_?f`r;;eSJ1T3 zq#0N6e}5Vt{*LA^iAA;NktQ)ZI=Tp}69W#?9=e{ug-(J!Bew<oCOt9~pDgnKP#p#g zpqS(^@Zm<PdL-d36m+>%bNZ6)x-cp(k#$<o0R#8VB0N~6EPZ71L8>~BLFEJy7^LGP z1@opGK}u}b?*(FXmRlknZF&yui6jIRtCwAG-TZTYqoGWo{>9B`z<gMSu(1$3lv{N^ zK*8==!K)<e<*x&0ce~$(>Y{lznixu;#)gRoous)#0^a!#Q)(DA!oI|A;x=@Y@EsJA z#8vxTw>)vbnmwr#KTo<s64JV%odC`9evy!naJy#=t6L9xhK3>}A`#X^01I&WI3$4P zNGV9d956r>1vbh(6d}JS9VQlKPs~_Zw4r+ox&i^;vmiTSih6K@;0zC0hBcFVKOVp< zF;Othf$EMSO%OwNVzb7eR-guiy+()uQ3Wvf-s9c2%McR@e;Kh%@Abq2*C9{RY&Df3 z#IK&HIno<rVe3Ipc0x$5{Nc<G7Tbu!eE4IW_uC_TxjerS#Rbs(F_ol{UqBeeQc1(w zbO8+WR^Jk2<N8clM=TLlPL(8q1S(JisFwx*<M8fty5OOiI(at<HMym%!wKdmJ4MJm znw~v5=A!@R!qgfR<iY5jQOX1wx5XZVhbdK!Mzmm$FzzExyZ^?EAlCFz-Si?XEKDQ$ zb^(87Gr1X*R&r%<_&fa=hmnQo7jZrl#dHL<C)sy>l-6xJtgUU1Bt4$k4x*}%ttFrw zdZqNaH)z&vfS7N?<lpm->j%g|z4Sm)2ktqU6w!F!mRZ2SI+h8UpeWT>&rsY?i5njP z)NgO<Y~T~CvPa*Dpr#oY(!lfgMPsv;kH-;8Skek|#^?j^5;J637mym~v#u=za{*}n z<?7>pdefyvi+G`7!P_jak26A}D3NT6;JKx3PrtZ{>OdL(u@W@(a6fS^K;TvKdPe9c zm<9sXVb_#=A*#|Mh>JQCgeA|kQayI;8Qnk=aOZy5kqBUU)YsM)T@Q=_3lmtgZOg+? zR4;;ex(j@xNA0fs4~RLRLYCJK6Hy5d^VRMQpD{RsKOg%{AsXy%8%|F-%*SIilQ^rr z43`&j9KY!1A(icJMkGAm*dA>pZq!yNL--~&YBPZ&&`3Y~oOHW!*Cy-paIv8eEZaBE z|M@o~@9BJM&ZAHZVgn07H%ethM`AUh+X3OV&zI~wVl)5uXM!8x0T7^8A<*lwJG|W( z5FYRr@9|9FS`?lxg~Ipp<Mn7=>zn}l8%B^fl8~VnLe!3(FhP=|2j87s2T9~WEu{9^ z=$=6EFR}PICFeAPsbe>`qV12BoAWk?j^}NBjV@k?-1L`x-XO{z0aYc#=b#qGcqW{n zS`w%V_^UTxAzwjVB9PAAA%8IT(?6>UYUU@@)(HtN%v&MOj7TH|5)`_>M1c>X7}O4! zG_c5;H7V$!Ea5Z|$APoViq>4g>y!u6oQZ*4x$(n<nM3FO&F<EAR%cYSx?qVAVbiJz zlSZb|PC+2R(@wkIzgh{bLqzSjO-D;hsa5L=niYRRP52|CU#&?~6A3`!-1>Qk0`Q<e z@Lk9M`8QgG{y`J0SXCJ>T}c*WXh;<ms4%QR4~dh&_7bS<0ObIZ#DtzQGz5K~NI?!! zzgSV~7hDgdvir;8>e9CIM=`86G^<uYUXz5j8`$d+MBp;NUaG<KMB}?;9so}zVv<n> z>D=S4EjkYE!~U}+)~=)W%O2^`T^0q)%Cwx*@P!btiFxv`;8oe^N$WYO9o^Lb`)`J5 z4$U86Z2u0WcLm^BEC$q#(3EWS7Wj+tisT)%(N$upCYTbEgZMI^EF?v&xgabtsk_qu zr7_eWHS>QfVHws@)P}}A1d<dcqR=Bi?G}0MOczFvy9qHd2uzL<#Cv$2P59Sax{O1w z^5Uzgqnj41R~%!Zu&9tYcGpatkkD=9k2!t-VgY2POpVNZ-Vx+Wq%QO1!etobGLx6< z?h=Ib9^UNxufs^Z-Qy{+8wk)Bh^<)-UdtHR5O-9MOd@v8_MDwvv3JOtUdfiBJ_*M3 zxWAjlmG^BvDNrcFs8i6M%c0=;_^vm5^Aa|9sFhU;?L6r=-RSm6;?2;3gt>}3`-e_? zplP`o@W98t5>duW*uKOrGZep3&u2Ev-RkRNMK6JZKOYDcxWHW|>jOPe08wZ_ALzrQ zfBdBWaqKk)DkgBNQo?9^QC+R$&zE)~38T{(DGOhu9w|$j7O}r<a5&U_4ukJ`Xi(2Z ze9!&c1^bdY9|s}oK0%F+^bg~y*x!aKefHX!RML&6lJX{1QzyCM5g5PbVSXn|&dhkt z&0;7v)jOtn@vU3`F_m=Cd#|VReYRYd&0xr_%=*(-8sg|RCys7p{7^3Ac0+GYT*h;{ zqxQPC`e{>Kc;}1^PLe-9b!>Ebf7fL9jk89iw&5EXQ$gd8eWsR}y$NlQSQTu;&9U?q zKL6!m&MBiePAy@4-t&#~pD8nzw38C}gl=TUo2|j!u70bsXJ(=OO6Ru;mX{4=Ch-Zq zwbr2yrT_Fv#UqVpqpcqGu^d4kOMGzP^!+^RgzCM1%qYy{x!X0xJ$`!OIa#zrW$4Yn zYvXi0X#vgiz-!{0b-|g*J}tQnzZ9{dE%~s`A<mtL&OqutdIkNF|DKmaO;zO=Psz|@ zTCwgsVxFgn)Uv9n^LGC4wV}BYK2tYa;5@zc5|L*7AItntYg6d_<<ByA>NQ$SIe2`i zCEj8SW6G}MrOo&PW4dpAa3R{&q6e}SEr!p$rAfFyO^+Chg-Knzet4LN%&s5&Oa72Y zm-F(ZuBq;Pv+AW}&FbMJMjx`;)A`yg^)+l4U%%>BO!CjX>J73FG*4e@xx0eFuv~O< z@n1JL)_6tCTDjLcLxl6BC!Q99c-_AR;f$G+S+%19X#Vp&D~;RNYw4Zt-BxyXW|M0h zKNlNvVN}T?IsFxU9?8lJYr1y-_;ylva0lx{vi|pnFeDRsf<lyx#8;b+rgEpT2TWot z6h%`?)(D%|-gzQ_E72Jo^!|SMq$x1ht}pn+l(|v2lcRM+!aAtdMl&n(yHTAec)oiE z+*|gwv^<|Un56V<qS?19^<`C33`*;Y=b&r&Xn=>i=7+&YJMG?RS#|iMi#L$K@zGzc zs;c@=wc0b)cIDKht{bR)TjO);gE!Y*?^CZH=31^FmQIrLoU~B-r{EUrTYAF<u^ikd znGd@@wtRPCgg!(`ZJwcLi&$Di&zm7<XsBt=yk1pZt;y|`vi$U1xg8b8-wdNxXsZVX z)#kHVbWLK6&kGlt;-l@Mnq{`O<LR57o&ucV&1zqlu+0_vre>m0u<_?C`7$59NK)YQ zEucfU)yBeD@B4w~3gfoa!nsL;rzSDdccH&5Yedq29Z|mDWbw{@3!c<Ip!5z+_c^*e zORj4r$68S%hqY$t{?DjusS>$}p59ZYf$#TRo)vla3>tj@kohU-l9IPEj($)<-t)1@ zeXj2V)QMQWn>N_b*Gw*-e0@{H@V;FTgx780W$;N}2=-tkTsyC^mLHf5dNPM@^wC8N zH3t5sR%&!IXGUC|%6Ri_v)SXfCLdCzTC7WJl%B-qPGVf)d?7TY;cZeDx--vnZhzr+ z;kF)*%3St;k9p6c)8exj7v40+Z@8`Qng6cz`V<Bqci#5Dx5R%L9M+^1zCEK=@pj?$ zuLlZY+R_(&6Pm(5(OFx!n6_Z}NB@ft^jzzfGvrVH=L+s`Uz1Uo_xE&$m4@T>s~PTF zF5L5QUp0S5)9aHR7pD8F=2{&RyABI9>iwVNerO4;v()FJ)%~Wc%8XyEG5I`VcOQKW z=%Njysou3}ACfrV_@54$ZS6Ts-+BJ;PX0tnY5hR;;)AzJOXGL#(o7au&Y^{&vwC^k z<!4$3two#k&x$WZF0aUz^qlm%>EGY<c++}Rgt3;ro9#qd?9T6>mdlm?n8NsW&?j;3 z70xI16-PLC&duS?R*-3}3`V^BUk3S)(NS)$=}9iW!s*6+gU_6s!M6o3P<|^c*ZB8s zo)?4l6h6YI$-pcAJwR%Ro>G0Tmznv8k+CGM-Us!kRn=<E*4)r!$crkZc&Ki*IN+`N zVB~Pw(45x&v$0xBjk2D|qT}&`|N4->j!m7+u)JjK0|S+RX~nGbJO44)r%N%#>A#HV z1~Q^|r=;|9dcK#z(5eT5Rv3tozk`2%)z~)l`d{#6AqHbGrp)=*C$Xvkg=Sb!-k8VX zz>v3}B0jkpeT8oYhBn;|t}kE3{?-b=apCfRUfpLNmZiS*u$S{2UF6GK-+6j<%KF0W zb_#qE|JOTOOpVLMIbKsQXg~CV7Oy|5`Yz_|B!<`2G5h}67W=UVxYL)yOZuC+zqCB4 zHKymf^zSAAI0s4HP#KPf(9MjXH*&is<ThM*Va{;xoRNLv@HF)+suy%Pr(DPj(o>N0 zyohhiwg1m9W%TsEoWsyR@8qLYmU+m*at<y3N|=SDnbz8Kr-%JwpY?IuL8sY_3ts<T z^3PBQCxsLq<7f5W6|bi<B;Vef0oPHrfgW`2{Gh^YD|Uz$K3o3hLVq8JNm)(1S5<fI z8B0CDaBrBQDS;DuD}}Fi>iJMb+XrmJO9q(|lNcxewdCo!wQ>xfRm$0AmNyihrsuOw z|CLfcn~|5fvGL|7g~cm*6k=xmrQo|h`+_6uif;dXMKyVbvoYkGXpnIY+UyrdaocZf z`Ls8+n`%pFeh}(=?)HhM8Z8)kys6FN!;__>&Hi1J+_yJh9xYHkF17;4rGILQ@D;0> znx0c}cR2m>NmDjt<J?T2!|H*D&fam@%C8-$p9RS_K$6u`hiNMOp!#=c`tJ2h5t|Do zChyoVvYkGaV{+nFTzm+mTAq&n<--GCzEH1t<4rxrkF1S`ORxps$a|jCyqgN~2IF-p zYg~kW$CLXO6=-^3haMq{z5tdU6A?aw)+5nSF7bb{LFx$-JEZhv>Zi0PZ;oqg_Z_*C zJQN-KNuwlnX_A*k$a7bh;?e|zimQvn3neUW7ZjeF2r&y(oyZl4v@?w~*Njy3yN3aE zJ6#LolrF^_+02{lYn@;>=7^Rd4e5JEna5Q1hXw@KCmGrV^huqzQ@C^_KuqX#ZhVuN zP;Fg{tF|cnbk9)S{vGa=ym)7WT2Bt~xGw$UY4$1Scp1Y~Y##W3`m<jJ$bbO9Tec(n zx*-hUx`M<Uq)t%`0WKsB+)^D>G+GvB5EVrINQT!Ygx_P+J9Fm1stV&Ji{JY9c60e~ z7~85HGkm(W?oeBz@}x_Cx_z@gtqV6R_Ka_}DPvxkE+KmTl;jaKXWl+<kbPB_C}%kS zWVli51Ev4C!_R^cf~!HOn^b3bKcIzra8V1*OQm&4YzJE9Ce*0`1b_@Gqi@4Zsxlzs zp$PiXQHJOt1oYMF!3f>;RmU+)&{KIu(e-cpR2V*TuBCrMZr7cj<~f*EiE&5Od|BuV zPkpp7Qcs@7mdSr6jsqCMjd53$`JV<xQb`OJs@?>gOQ;+ON}_M!TLX)(+b-X--*UG$ zf5O1a4##4%68C>xvBKfg!!38T^dIs{)-AoQS#e4*F3$IGo?5oN)fB1h3m<|Dle7#2 zI5AFOuCPM!#-D<+fBR-WXDW?e`|q5A%nJ0&1Yc#E?<=sW5QtdVU|0Rqfu+bPRREUJ z01yG~R=l=q^fWuvYD&T`U^n}iF3nP6s}_iBMMWi#Hwh&@ycbd4VKGG}aaoXEbFIT& z1Dg{U{<wOl0|+<yTGX~lp8GzY@ld@j`OPDCl^L1(2%|cqdgFR>PyK~H*7IknI0@Gy zAMv=r9(7}M9|~6wt<8)7_$NPO_;~#lJZ&=LB{A+`EXo1AF4RUxu^7lW*BO4-Uk}(~ z1o(3l5@CsUY0yI?RM3#)_>$@35vY1pU~IInh7Bz|R5?_Jn!5+0qD*z-o|!OBCHn2T z+KURNFy777aLp;)Eg{MC;^<LvITibavi#a-&prsw+x#M0UPAJBRGRDEm@(C>JkCLF z8SZGMkzWos`F8O)+GBhl{<H>%Nv5GX&aD?_36~+$CgzZ(UV>VVRZIoC!#A8HX4E4H zZ(C52O4A0L+}x;}Bxxc+i#(%NK^SP@>3@I4I(vz58_gSEzkcBI4J`7!uA3DR@qM7d zTPjh23tftb7ln@&JlUznmiN6YsA2M+#=!lH!+c&1<^DPqw!-d>ne+2Wd(k=RMJua| z`AeAH&vRHk-LM_)u^ruet}ofNor+;0w59q&1rjt6O-S-0-+pl9k$K`3`Yi=_Sglvl zn-3Yf3cUj`TU5O2^m2yp$++cr+7@%FAcP;A(0`yX$xEm5i-l6HgZylcQ;a;VLq7$B z#g-&)Q!&s>O3@7w+PUHy@79jd`!T6}hj?*2xV_iB7XtKP+AmG!T6_&omys8Ig^P3h zH1`n=aOBjJ5=}v$y6m5Av^z|_@kZg!8}+IUli52=+@%v&ie+@DQWm-&+0)EG8&{nS z>9IbW0R6t6=7#ZgezT7tC-7aBt+I+**s*4TXe5nq!`1YWz~9pq74k<<3<Y8482|zQ z%thJ*gOk5BNx8Xp*lkoOPc^yJO0A>W?dzgNIiHkQHF`>LurcJ*m1Gpf^0&7R*;)#; zlt>t9C(L!-wMN9pDWz!RM;pxPSV3v+oi28pLIb&(T%OzS#AVtt<l|YrVMAlNd@w*S zBiP3Drl)P0^aC#M-ol`Xw8Fc}tK2>RV!Xa(v0C5PLwUBL=#LHRYXZ_LuL)h^{l+YG zWTfQ(`FLzSe0&W1{ui-*6Iz3h(BNgE&cI{DEHp&LXKJM3`c&?yUXJ=-%5}dAG7^<n zFB<#x-fGnJm5eD5hPXv8ebt*-fePXz*T{hNavcTR9V`s`233^53v|e@nss=suZw!m z)|#@^6A2>BN&0KDDa84CgCd2aJ4A~zZu*a{MWY3kwJz-#BEkwy6%r;r>h?5u-j$jv zeI_?L(IUz4LXKKn&;;kA9Ep_=a#h5wDg%pWFs6s><sYmOx3DwNdsa7IC;TW)se7w! z+>XU7L*~1vix^}HA3u6$q|lMCXsNFrHVB{(df1~)>^93qZo4iNWgk9vnl9`1=dxj3 zxA3}3em;8^la;2s=KdXLho{kfI?7T}QIBzYJk6f5S&T+2F&N8wb^nsalg3FO2uk2j zby=u>#rcezdQaXS?XuyDRpYp1bjSTamt+OOcZ@xyW<KZjVBfKAp|!5`-zDVgKGD5P zCju%%?Oa6zdjn#A=IF}4j%<**!R|0Q`IY1_6OHV@cPrWP7j8F_jhhygV#(VQyyC#( zmHrL7HBRcB4GE72{RiZa1JtIc^SHoT)Ksq3i(F}^X#LzlmkRk4L^riv3u#{@cTKKZ zC|}FwQ>Cn?n5%u3SaVb0BCZK72IFgvL;vc+x7*Ve9ZBG-&|hKwW^7l+Hy7>rXV2&& zOCJAu9uHPnc~qP0yH59ITEe>T$=HwX6SN-__{z=KHv}afJ^DQH*Q_rR3rm#Zf7OlU z<Y*dsrtk`05}nMLsiv*oX4|<~Wt#teC(jp^<+~QI)chLfd3gG7U#E%hCXc4eVAuZ* z=G<AI{h(>A#(TTx3eC}v=vV*4|F0WMFp_sDdi~`}DJFJ2bJ4z>I_<?zd%KE!Y|l#B zEMR;V$xkQ~QJ*ij<Kq|qpN}@CFfXcnshPT<dh+>=4=FcT#mWu5M3sKJ(K2~X-%iWK z%UY(dMV_{XTT{7T8fqHlbFMTRR0|VLo51Mr^%z$n!lQNb*G=Jsx$p@Ie!LwQN;n5? zf3Cd#Z_s|!*;8@6XU~f4vbhRv`=>E}O@pI!7do@lJtxOYMw)pf#i8lus-UY$zg<LK zvVO6ps3vYG+3@i6=f4;o^Fuu9+CCQ;El$<VcG=I9Fn3_ygutGMJu<y&gI0r1d_w>8 zG8{d7dRJyQjIAxn(qGb%ZHbwj-I=znl9&~=jg`ho-Y5-QX<T^s9`Cw7&lo578+~cN zhrM(P8>ibZt?V9B9vW*5dVzj*qdF?Sua+?w@2-_@PaM&n@w!mRHfs-T;T-iVBR?un z9NshP&m+*kgm34+H*iNL`+=Zc%~RgTb480}Pgk|i63F(M(K<88!|`Zi>Z{)sW2qb% zNbWo~8HMIW$81Z(AeL-zP<pD+wzX+YI<Uw@spgm67W+!`Hfe8=*LJG|616v5O=9G~ zGtzSj(Veay&^eI5J-je-mUQykz6DRym51BE?OIY6j0OiRL@?@CUs@n$8jP33hq&GB znzl0AN7zWW*NIo_@Vwu$j9*@*r=~GxUUWKf-KPGj?fOCG=E^{+)dmhH6!_=M+}|{w zp>k&ZU`bc#gIZu5^Bi_dig{IXZPkdt<}{O1ld=+-rgEm^plfQv>8(#Yl`|Gkm;QHK zwroo_5<Olrhih?`xx99ROR2)#7f1*~Sy<-z%C@Lj0N!hcV*KWx*|M42Iw#Tgm2OjG z-hp@P;*N|%pcA{lc`?K1y3DM`iyIofa|HW^Z09%%%(@k;lo>6e@0A%n?ZVYT%*_3R zJ_+3GpL>b@RK;Y`mQPPF@@0zf0CaX9U$mI9knL%C>t?ecPyMj-qRJP`T{N#bTYsud zIdC)#Q(+lgPfzx2wrV!o11LP_`$eZvt+@$h!&y$h^S1LhcOFsb_-1$WC|^WFs~tUB z7UE2XYfGlV%QRkrwOrqY1-U#`MN?8^L-<oa3d8qL5po3t>qQ1~XL6iRx+O!hC!}ML zC!g@fS5iUgUZQV%)Z6Zw$eibExVmk5@{>JF_<x6~{B-lAFy}MN5Vmyd&a(C__r8)k z#ieOFpjh{&KNE>&8r3*CKdLt7lTKDypZ~e&etUJ%SMHkjXp!pMC^may)>|sL{^Q5t z&dj$<8I0KuIsyf}Sw;^Nm-A%o%^6O3%@o;~P#ihynA-lF936kQylq3(b^P>PZhxMu zKThi6`iuAUl<COtY*72iv2tjU{l(N9jL!}%SlMc+TYl_r!(){jZ5^yuNAbxdu5Qdq zt35Edyu0;%siD$<PDRab^Mrylo16=nrCcvR6$n(0;h|@Cqro1%1}kQLS)A20^~MoS zCHn#G*KrTnL;uAg@)K6M28HSe{5FZyU()ba)F;4&7YqRl-1RNKWV=N*X!jEgQ0#sm z_WNmO;?m}c9*fTRTWo_`x<$r=2AZc$mb{_aI*45G)#H0Fd2i!@E}ttBp~h+VDl58m z{iEqiTP3cL3vk_z!DOQaL9z;^@q7n`cV}OE>@7u@vg<n*`n;3Jzn4RE55G#^uC&VI z*W-kYY(mecDReC_YTj(Jps{1s(aFiro*91U7ki6E9=bl7Dt(T}wPgF#NB%;W?*HDm zSmC|<;VC!#X8hO1r2N&63b+dG<yu`Wv?hD5NS%9o=$Vm<x(UE>e{k}{23rni*UV|) z&>C`Q81DQY>{NDCI<Z?c2<TdhPiM`3l^+RZV@nbreX(-e<a4doetaO+LVk_Ng*++O z1ulmdykLJMd)ZkqoPF{I&(XiE5!+ekO2y6}c%;87J6+P1S+H?r?mQ7C7gH@@B7ZMy z!;O9G2Fw)~*ma~D38q>)lppF%ZoZP`;(5gL*O0ZtduapPV9ldBcOEC?%bL~<%hq)r zYGA$!VRo10)nra)1nwQ&Wl)w-ma)uA|M&jk?J?Z1yt#od&2Q~6d(rCdDOiP@0dj=a zIFo;_IV`tthiLS(^@9QCdA&?4>t_$SzHjwrzo;3&b_g|WlNcT}GS+8m_inRinloM* zEqFg?+nFtfjfuQs#trY|c)j>7(xrQPEZB4XYtJ=|Id&UZFl%c^g)~>k96y|B*1S71 zee2*v{$0fZH!WX{<hvh}?%dlPIlRucyYxfjdEv*kdzF&p-Z}iJ+%$uacfOs~RH<1( zwMBM&{QY8BAoI8HvR`$R!&aun=^lPAet*oTbl}d7sB0sSEe@%^<K&rscjvi9-`Mxp zu(H16v5AFasd{<wW@zFuNnyKdi!wMZ-MW{0JBm$ZxS+MR__Ss(2vzR7y!f-jlJ5~* z4f_<c7aG~8G-V%b>Z?{eKJB2Vv5yer*HqRP|7x`T{r=69MXOCyWK4tp%zyt?cdh-l zOm)%Tp-_g=ZZ~JH^@2>-IOlcW-XC*rO}pJ#Un~7vIqatL(vuA9b(z^~^3>bX-C|3l zJZ{I-9m*SSm>Zc{mG^DfHIiFWttixwQ{jvL5w9o*p*$2C$oiY>AD4s_&z)~Y7RL8+ z?RFIaQ~XJ>%G+1bQ$X6a`FCdnGsR!PS18+;Cu<---nsE^FngbO{6N&yvA!vctUs(& z0$X$?=!D!O5-CQzQ@LL$pOP3aP;a=p#im>Nyw;W}3+&AJ@Ab}P)cKr_KP{2C(J#tr z^Ul@k0p5bw-|{ZCe*DO`gUu_mZLdJxqB9BVTdrhjuzfb_?OOWLM&9vs(_f!fX1R|5 zrMAo&veZX4#Imfqjy=)LU&Z{{ODh~Mea^QF(MTGZpP1ji|Eb74j6$Tv+&{ngy6qOT z%9!bCA<d(~-5Ww5w5AFUwU=nwukY;TXxN!tex)Z=n}xXRo)%5Hw?jBwta%Y*>D!<= zb%<Dz4Wx9p*(Hc0g`e|mq;r~GHHWn}XVLCPcM<8i3wv`lj@R4N-7RGA!vO0KR|hv7 zT9OynkiX0GoZWuMcbMYw_H*~ay<4(p4*c2>?z(eb8VjYrD8%{ug4)0<rNZfqwL&a= z>J`^%SRuvSyu9&7o|2*M<J1eckCY#L>KhV$o|%5PZ}it}jn-?JWz`{U8t}>}-BH%2 z0mHolI~mrGSEwIfTao|P`Gn6^xmPl(mD+NL8(&{bJ>kM+Q`RnXDctfpt|8Yd0Qb4u zbLxUF%}^^JUGyNGielS^H<iSq%e-~b$8FthNBB@yuO{`ma+-(s#o5$o2Ri5{mNSD} zmNcE-dra72axK^N&#oL#8!SqqbGE;FdwRv@D;dGP_t?eiCVf+JNsOQS*v}*7yT0k6 z*o_*~hab#p@1B$2!KPC?m8rSq^E1ZunXLiSod7#n2kPl)>1~cc3%QTU@?U7%adLgH zUbH*#1N8hJc`nKa@94S8xE?WB;<ENit&ffCikjw%bH&@Ea?hPv)R_9|vg>rlFpMiG z!e3V{q&d`wit@A^rstH-wpsrxzo50~tgYd$)R6lTCw0{W$3$!WYj0Q%34Pe!k!NL7 zdg<|w3hrK>Q+D~b_G>?TjOgpFh!UJ-6XTO0&YfP;s<p4R;DA>LTYJ^i#5<gJ)l<bH zxfh;XW4Us;<JW;f9owHHd%|3#&AL*|R%Ks!w4$rt`Q^FOO)I1E;-{;4dPrsQi?XlP zw=)RP_129O6T0uWJUvrDc5JQJB5T>$xre+byBD#d|JT}QY}S|LuP@dqy{_cImRR}O zZq9YR_ckWoH?MD>;C`HXbf$H7hMQ#88t$TIo!l`kht@^Oe<?h)GP?9AR;d4)zItBo zwB*#-PYZRoL_`S(Fw^%Q<5Wtvc<nzB_{cBWO6s@k=%zhRvm<nW*F;Io>C(K!F+4RK zY`I5NEPG#H@BQ`JKhL|~{`_;lEXaD1KW=>sqmiTXY<Hcm&YZ9_TQZLn&$O|4^d)$O z;*L-WIgZ74Wh(-ml&9TFd$iV%t1vQlcI&ch?8`lBSI&!kwmvC){n5oEhr@(yEjHZ| z{4@1c?{<WRPqc8`E*<`7vsAXoe~@e)uob&Lxa{ppzd`edFV5v{yfkBYDnAU4$A+Vx zQ@{MOOIounJH15rmp?D_j81;ITt=BCNUmWP_j6%qVpKzV@Yo$C?ZmfVxnI~G6KG9- z6E@r7^6uDaavol3i3PWcPc^ki?5kS$J=taMo5O00NA9Sp?``#&NMW+&cU;hE-Ib8a zXE*s0N0$`eG3hQ%yrMdrKX*}u#ToZmI}1}vc=x}XlPiJ|&Oc0LOZN9aoh)z2%6L9o z$ggHTxHB_KrRRI_qQ$x?-dQ(xAHAbG-+y^YG*p7&iv&&Xnm4Sy<DWY&S0@@d?!8}y zS))>)^htcm%;)8IXBeg$`a8WhisdfoO$-TYzKxNt-yZC^dd<)1VG~Y|`~5Upuj6~q z-HH%yvug}}s8&~8d*?6T3{JJFKc=-l2wtE4wv0TFj)07Au6=;_7u%1?9=G+pYKEk< z-L+P+j?&#y!Q&~+hk84)s-?ri#V)}j>t}xIWx6V7#`*>o!&-G*TeRqtYpMUilFVBj zXXI*|zotw(i+ppMt__IsccrIoMTQFRtYM}O+;IB+HMx3tC8Qh;{)uH%46Ib0*RYAU z4qPwY9$e>j!lr~fKVjqEhM)?CreonE+hiK;E`qY%UVQBrK#Wv{%)znv*;U(JrGDFd zfDL-z%ha`dX*o+g`)hgTuCiNXiiV;7__ZU9eb(1r!CQI}A$--%$j^&gvo*m@N^<1< z5~&<hiFA0k#ksMt@rHGl*}-j+A!iOvF?afz6DTWmPVVf7b8ZfS?pjw%Z-yFPl9?6M zG%3>lX;z{)|3}@KvLf@Vr#2^EdQ$;*uxpuIaG!DM!-py_d1uOI&wnU;DHM+7BOJ8c z*U~P9t**^t>{j7U28Xk%oP4XBePgCE)-Ge64NP`?ZF%Q}L(8XPm!slY=0{?u#AHjm zZd}-5c+5s~^V0<phX$uU6$0VZ^61FSl<%3=Cw*F&Noqg5f4QtE=UlFwIU*p^VE0Df z?&9`!a%G3Qn{VM52&@0DImoqmLb6M9%A(<^@EHuZGi*9f?k${qsk!!C5%YZPTA|2p ztwk>!AFSHj^yn{nADZx-H%Y|O`xb}t#oCk`@?p8z!ko!ram>3XdmDHJ>PD1absZjQ z;7Rsyj83z>T(m*KM^JC8E`Cq)>ecWKnkM5tvD~ki7dY~-IahPcZ}CVIZj0p(z+m=3 z^J#}7e0kQ?nUtP8n)OunvXX#l(?~|~j^B$FcDYVM_iFd7SHG)#IU@Q^<@Sx9DlxTQ zwn`^#Y(-v^VB*ANc|BGr;N@hP6(Trr^Oy3vp}}F7`h*pllRdr~UCVV?&Tq0eMMm}k zS5ir8-97XDYj&Hsrix#2Iwp2;_pMpoH$R2;=ynUSk0h;>?M<Gr9Y3)7_~u5J_fe?| z&N{f^-j)*+dk#tdKIiQ8bcK2F_Q<Bn;2o>yzqGtq_5ESDXXuJ7ceFKst=n<$Qdg_% zZT-?OlAf9gW1FVi1*!V+NU|X>`(t{I<=<~nLU#E4e#G<i{~r`ih?Z$vr$y_qm-Oq( zt}A={-5gqX?~rZ{atXY7{oQC)d*_L=wbmQPuch;KpBi2+)T+-M8L05&NIB>It2QPg zubZi+YF7N+`CB4qgPpt)Z{)LQ=Y;&y*WRY*+ABUGBCM<>@w#W_tq&sl9reM2w@*pl zvi-;kEDG)HQ*^hqaed!gH8@M<{^h|92&4;wpr6W2FwOS7S8Fedxta~>2UkF-G@)p> zZO(SNeF+NI=xgI_=>J>x=df&u|AVpjbs`sjWhB@*tYoRJSb=84<S7?6&MKPcWtQO~ zuc-KQx23`3EiL=`HPyz8a-3etY+P2?p!RiI%qy9F9hH2KR`>@rNeA(Cmk3%2T-S<Z zuAk)UU)m)|bWmtFr}BI0y3d&|x5cbBAJtiSvXO6_$b;0-#2}@u@;<M;^;%yQhs&y6 z$+a5ot28b(;O6=+;*}(F#eDh4<mvN&3OYbepinA;rdXqEUEiksmQ-&2wc#E6e*4kX zX;Xdm0%tgSO4;$WHif#zb!wg2ytbZ=p^)9q1qdzk{L-Bz64Gh`GZRP5vMS|G+W1Nc zKxmJM=()3cZs8c$$StQ3MuI@O(0FLqDKCoyIa2dy5Bc{iuQ@G!?r@&n#b1K@lJ&=q z0!6-%)0mmxpRSXaYqj!4tB=y?_}nUqIlpBu0L252?LP5pO<n35`6-dSIW8V5PkB9> zmsoVW$X%JdKFH;hixB2-&ryT?L&&PMW5_A@_WeYj5_^HD4{?7+R*Mgv@Ug8ON+@s5 zeC%<=Qz`cQ+}kcv+@fQhv+g*3o)fYmA;;yYJMOVt$kx&*Ho2HJ&3ap2gIcgpN6D<L zDvpNSgoV+~ORcVD?bFn@JCU_4TV(`c2qb3b&g>uIyH*+<nna<<6@(&rtQd3za$Sa- z&B)RRHW_|K`88<RDOIncs+x9CfHwg_Sd;HI_6ujrJ<clR88D`cvbc6hjyJx(F%xrU zKJC>!Dj;rh`>ezt70IXDn?gj}AJ|CG<?rF%)hjkqvF>0d+pghVJ~vIhG%Hs*HMDyD zD)|&@6(ZK0EUxx;<6eQi4_q=|okj1u1-+*lUuS6R_;ck+v=&|qTiM<k!n7zI?p>n% zloF5tw|B`y7gXK+PS$UIVL6Zgn_4%DK^5SS|3ALoE2_!%iylPz6p^ZkfOMrOMT!!n zgIGYCAXNyFCLjc)BuELMC{jg4dY4{9O{hVogA{2YB!JQagn-mQLYY^8|Cx(fYvv|v zDOc}P&U4N_`|Q22)<2k-N18$&rP#3&&*Ki7o?PHr($Erk%mX;V{XckwvfRA$F}3l_ z#^>2qFhTiRt06PexkW5tW&A<o;+8q?SalvbVV=B?M<{-#nQOeOi~F8U$V34o4&`R{ zp<V_`#m_kkjXJ^NoeAW8EChdHW3GFD^3&~t%l`%$Wda$WgZ{g?I^LNO+X<~+nS9A) zo+W_1sI}yna7%7{dY1h&v(K^2xO>s9ua_dY78p-yP2Z$Dck$n%cFdN7tkLtkt4x<E z@H=fqfs)%ofXm5CW%>N?<b2<uw+2KXmcaI#*62F#4c@_x%`oqaYCz6M*_<A>t~o<S z{RVg>GIEEQxK8KXg(0%0hY~IDiwpyS<Y=P!61h=H-_>SO>fPXTHM2#>Oi{;I@^PC0 zR#U!Y%E#o0L^*gd1TakoftOF1lcLU32x8+27wUZ;%z2l8tkqzUlmO8Y;o>oO0elt{ zn`ei4WLMQU7)09%=t4h;DCf&N#2ujx-oNC)KPvyw($AmA2xldXwPh1N@X1_3N7_mT zi#bM0%FRJMkEm(c|37)qLF3|s(xK5K948<SF#5R6ZTNa@WB3tEhQs9aH|uPk{>>A= zkkqMR8Iu+F2ilz*MeAi#V~R}EEh(z;*O{h?eL;M;3{jO38R+E4bV@|XG@$*B2?nTO z?yOtV)dYw=AOuIVY=Y7InRf`@N?m#wH2w32HP}DC)Z-ay7akGZ<}Lec>3Hj^ap2&= z>01d+Nfu-!XY10^7k%sM&ojwB$aKBNA5}Ka$uwB|M?2j9rxBxnQ7X!P(V|A#MSHtH zUYEa)eM_&;Abe4>8RTB<4;62ps_!45U5cv8z_-_Ao{QW65wX#H?ryjeGCNkiPv7xY z`&KG=ozjD)1ljr+!OzWQ{;D|u=zv0g|H~?W@JZdQ<hlMU3zu!^)WCk0u_1dNGahSY zKr9a&*4MQOFf}i{`9yuOW?Sky09~&zUx7_*_Jf?P5A~1rv$;a}o<}!p1Md$`zi%}- zwko*G<&JY`aV=XX<V>DAzxKLM>2_evxBu2*gdv05%VN_MII11N>MPi8_}=y=rwQu0 z_Tx5!w`X!-h#$oDyT24}dwN%c!gU#U#eF`=|94Aavu(;UY!1kv&wl*Gd+rU;N!ovj zCdwOMCpS7SmX`gy!WtbRB?3wRj+To{uxM#mS2j~kJY*fKW5!@$jtL?rUn*y2dJ(M4 zG9=q3)Xwg>c@(}fag9l>J%2Lzb5K@vuk6Xo4P<beo<++(#`iDX_kW-t;ctt$o;RWQ zY~Q63q1XGT<Ok)Qn+g5jCB{)SXjO5$nrw#}{Y31L>aBI_9}58?I=(I4Z0>ptEb!Z= zhsX1d+1r-NVGlT9ThAq#Mq8E5fD$FxXwUW>dY@|T<u$;WHNqpcYNI6-JnRah$WWf~ z0tkBRaOz6-veLR%-eB_XdegHM(%Exj&L?m*kpLCes3#IEp8KGm02j*ki%i$(A`!&a zP4^~W{a~>&tc&e%5FXr!hpjs(2FqvFvKSup$cz;T^DI4d<bER(Oy?V<5d|<jFu)7K z71^<YU&rhSy%ZE*I{~oje+L54lNe<u)QG|_+kL^G2R`~#k?^{J&^%`M2^i8*{_jDd zyxCTw?j~J`*OB!MjAu!`?KmBFre$BHDGpr3ypm<)Qk5rs5k|dp@WkTsqk5HBqMnt8 ziBe2Yz^|2(Gu&DFq*uZuj-ww@IEk6F9BM^P0dAT4ThFTolB5-!4C>-kx;@RtCz^6- z`@)LsriOtY+e?#@sRz|+XeYgajaXh{n@8IJa1SjmAf6-yvzx9gBsT|(FKV=9I1Hy& zt&Pbr-Dt}vIHp(t;7M3jogNTfBAeq3AI-$gbu;UY$9;-(xRd^W5D{Z|C#8U9R*Lbh z0qEfWWAYL>4*@H4$oFR6u)%U2N*p%qzYG~34gk`5uGNH8PA%sc{9j%2x$UD!bLq!y zUN4g^ysgNUOEtc(21V^#i`EP~OWu#GXq#K!B?jqf2x%-oLuwFe{o85V4W@OxP?66f zf6=u!XH~9zS96$&FLoG1yrV1GOQiD#KX~|s6@SkvWtqDVTYWJ}OG1l1o2z87c|9O! zVZa}YNE9PJGVQGdNp#NKmB_YGd5Kvl-r(Xtpn6}!1vWCIdr5JrQyQn01U>;sz?4r( zWoUxi8s+$6A;<_brU+EHHz_B*vLQN(ZGd*Aa^v(7pUhT2*ze}e%IS?|r(oSRN-)P; zbzIY>fN;)7@Wy0d=v?Mv$x7Tyc_G}i5imjHu^xQMneN7~q~Z|V2D;E_B6(f)EZucg zQ)4<Ira9-^O`c~K0c8e~>e7AfpEshPggep;Ws)OgR4fvsIP>xMbV@u8HYT5^AAT;l z**L>C>Y5UWc$euY-@0Y^<y)|3;U}1Hr{A)2f5xD#Ozkj_J4c8D*)&Y}j`^>o@=9V* z$?r;)Mx;a<vP>_3Zav~d+f;Gj*5e>Gi#{W8RgFAlBVJ}KlPQ_T4cnOA<ls9bWch4_ z)DhX^Kt>*bNo2k6wq8_b`GV>aELbUwF@sv|<00JkF;cdEptp+pJHxnPP9xp)=sGYJ z4g6m0_C)-5uy0VWA+oAR32PF&ymiDucS-DjZ>t47^PBi!@~gqP(H!3^u?J11Y3bWp zqN3IG&k14LnS;1{7A3i1@UpvyBjv&wJfz?@@_p3UcqmM{BLByUZDeI-N>t!8V=*EV zCDG3W@w(3|Hr$)2eP|XnuhNup((L(rp*&q?(`s4Wkic&fdG`0E@0uEySSjP8`IAR@ zwXcO33(f(Utw{4!aoz3<p7o~JH14x+go1Nox99oVS)fCUbKHaZYDD$$>9BF7@ZUX7 z>EaN1==S3{ZT9>G$l$@OlKOeMHbPivMp@J+h>k_d;0h2ZdekBn%rqY5I$M?kwTy-J zy@rA*8IIiot|n8&O5_AR-6ht4-!D@7pNfU6uSe<yjh+rQ(lFTgLt8-Xwx{+L^d?eJ zW3scnFvhT51xLQUdh3~V@f<_MfA^Kqt(G<UvL3qGdN6*^bs57^H37nqS8$x5WpX*+ zy3DH#*eHM9Wex7i$_Falit>xcb60;>&-?nCnT;RnRHL7lN;1_JR06HIsOYxuC|;{` zij-hZh~i7k+WrBtqJI?UN$~%z4l+U9xOkEhC}<=ulX2*Gmh1M5OMz|;`%PNv%Kq32 zra|cy;|2oHWeuKk3|Z+04Tjm5cOJ=#&Ss7;XFiv0Q|EuNHMml|SBd02vea8oeVzia z;*K?V%qLg-WW>3Eo6{65c92-1>=Km9v6wviK<WlA&F<pCyRq-e%lYiL${*MCx5hAU zzc=OC+a9WhmfjtZ^@G@d3BE);IT#rZzJw0q$FEaLia$=F7Wa2YbAI|VM4zTR&+)H7 zx@h)xx|SgUw$$L<qoT2izU<z^6~kIoV~Y)a-6TQjeSS+NcKH9~I-<P$$>eWu0S^1_ zM7Sg7N`lr#ivBn|?5x{*mG*Jp{5!{xFn!D&m>@p#EYFxIu6jd#VpIt=dT?4{nReT| zd*zn_=-KT|Vz+Z{;E6}^{yZ`lN&2kd!f|%^C5uvA*TzZY>YJ6NhlgC(OsKGLO}5E{ zkpB!yb=gwufTyU<3nDrIXta5YP(uz$K*1PqN>-x4m#CKTsrR`3FY>k+OoJ~Q=-d`p z63%5?B+&K?7C98U;ybG`4Kh-%ky@s)v?NQkjUa-9f;)}Y-E{cJ4!qVSj4gu4cbg9S zWNs+(Bn@dPu1D%MX1SB=tLg!BoB!S=Xbk=uzDIyH?H^tTlHapCqEz+4qo#NrgM*9U z98vt8;G?`s#E6<p-Q$gO%NPKu#V5pVWXqRy`^#N#s-!ULY5W)Z{o7w0_cY}h7bTgt ziSB<n`@OdE8~ET?WsZu)6CbuiUC?7;TPLUW{<KOPMP))JgBJO-FB{=}nQ6ACG9*JR zZ6#yi0piOkI1G`ydVE>|$N4s_1#%5dpg|6UFJ-?6;3;*#Ipn#I>(9dWcS)-a-fWe+ zFul>H8us6pP72-xp1c%0r9?v<Cf*_p`3U$3^5W8-{nFR*wjEV_HTK&vefwR+b_P%r zAybzn_!~`icKgH6`(*a9nJj99$&LF>DLzg^?oKH_<D`2|Q77L;%>r*`k_QTf_}ffg z#{D+MC-y%3c{f#rsH$O>-t7+-I`@g6ZIE+5I%;)LhO%X|W2IBikR#qN<NWw-GwYR; zv;+2hW~Qx!n?3lXN0w;bZ=Xs}aG7?4O`BnhErYTTgESt2dAc^E^_39JE5XPNnN7sX zySD&*?->5KZzj4KtL`^H;VP?4u=o%qXnOhNUCuVJP{S(x<%1{F$nBHK=53e$%F^MJ zZBXJDkElz+C8g}=*x6Y!zwG3^Vb^gveJY>poXgeg2F#}!w=^%ErB{jROL+h0YoL&N z(8zf$&3kF=LWdV4#a`11`|3)ZNqnSWx;oPw62j-4>2F@qIy6IEd#*4$#O*g$5olCP zQ41tDrZrA@GkCfe*zyWcZPd*14Vj>x)C3!eRV8t@Bt#d+F}tQa!uN!-o#+!N_(u)% z!u-WeENE)6i$QUv)8I~(ZmJXZ3tp-0WRQai5p*jT`sH={?MG5?`zMG}{MTPv?2U<- zASz>du9C$?n|IaIRab3ipK^_LlQx^_Z|y;Z;3&0;I<+DvT}U?q9PeSD0>!UXk3)y# z4o*#|LIn^Qe74+<h!R2oDv)0(6<mRgL+2u+AXndGwfa|sw)Y;cwt+m7I+0(v`P-UJ z6gQbFZ8jDgvlK^66~o6@9<E4+C+_Ag&-dAL%f=}qRuHZ=rPt|%f<yp@Jd=BO0lZ^M z<W&4-jQ>$9DENM9Li1W%?bblhB_0-`BxqS~H?rGV#RVL=_qJ9PksQQ`xsj(G{E0tB zhK88_Hhy!N=ot5nf^%ii9%TIHlC2U^lxg8q_Cz67c-ma5u5jQj+@h$aH}5mQrH4sM zu&2e&Shp+qB@}APR%iW*Mef_LrSyjzZ7r&m98=w->Lx}4Vw|NeScwGBK|rO=_H5z2 zH{K4|lCF;8eUzVB)xXI_Kxv-oYkkr19Fv179}?-9({l>sc~BwWk+f5?#q!L^ZM*oR zcyFXB+P}D4nA78MB$Cx5B$T)9cIy57lVhFOY+lgkZkcpGN16#O0&;b_qbe7bZ)8=e zYuO>2|8<Wa6ln*e88=1P!KlXf`W(1>VJQ{~n4O#YBt5qK2>~|CfAwtybpSBs@?>Al z;M*OR!e&X#q!zOoD7xBEJS9El7v=*ZM(r&64KmIOoaw%w#KPx#298IqbaUUre-rS| zD`tV4C1I2owda!{>F(s!7fcyelRQOc^d%mj!jQFKUaW_FgAVMIA8+LEbWrS-o-}5| zYfA2@JgkSa8adc?{+X4Od$i2u39HOLu#?<-fTp;kT#db-4ts}MeN+1qZR$gc(|lAn zScdht3N&<-KV_4D!d<wLORlSN*r_M_nl)A$`$dN#k0Ikr7hFNQmC@YhexEY7MBx;< zs#0=sA)v!*1h1NPQ!12tKhT8)WOL?|M^FQgkK$pr59a}@cV0Gyv+Z8Px`Wnt7r(Tw zs>k-pM?7*;?kIKa?eK9qQ;kPv%p^%W-wEa7A@*M1m^1oZ-jINE4RE@gRQ)HKbU9#n zr(8ub%{=|57E7iU@&pZW!jD@FT=5AZniHT-wrzECl^ZLpdr~(AFw+m0V_#zyw)}b) zRY})*FYyPM{gfX)YXZIda@-4$XD54s;^#Fr^>3pl#~DaTOte?LOyr^a&o`Fq%k&h; zgb_<<!W;W#KJ7Ml{$4Sj=D2EWOF(14lKF9B)%?V_($zPp!)1s5PrV=R*dI2JkM~Ni zkmub;e6#6mg*$WnFSLIz+$=3sBTgLLR^OlU@sJuL4so=vZS3?LKL0a*5JXlA%nI#U zsF$q(KXLw)k;F+m@pnksP=bl|9!#ksz_bq8oo_Q(D9#7Hm}$<yU#el!0bv;5FIcqb zzXRM?LM4N}rB6rIOI#pLRqn?KHbpUfU^LF;a{KkRfdboLVhI*FeV+4^&&hho00Ur{ z?|;Wn<Ww^Y5*+)3Kd3q}fWN197LWBspMy2hORYbPtPHKKl09hMVv(KNcB!qtP%Fmx z_{Q)l6hXsJI^C&P<LYl)4!F=bIm6y9pl-k*=4YVJ^p@Rx%=CBN6HiDtB@N{;scy^h z;`xoD0JgP&F3_A4>Fm=uACf-Rr}e?~w{x^WMd1PU;3=<tj32{|%Unk=Eo+8)N%7VB zHGgA8%@^)Gd-cS=)gVyh6zkI$%ulvEWYhUpX)~BYYvOi2amOn(LZbxdhcHYRu}G4w z*f1vE37T!D&&J%l9ltvM009-S=Qhd3w#KS>9F{&|;IGjbv0$i2=2^3GwEgnNuQUpU z3!gy=I?ZqwLiy3H6Lp5G6Oqt1{e<AprQ8n=?&H@KT#?|T5Gxfu+?`caGF9LAEFJUv zx5jiXuc7%boTdzXFO;;6r11yUaR$>oaX!%bamCS*ZvJO=$bwinl(4$t?P&3IdCv0} zTwj0GSI8r2eq}4j;WtgneNJ;Zgg3qCm)o)h0`o66s(mMl4M<7zt1nx28i1;*U%K|T z-3_H3Q<0VDi2_d&tbS5o#lF+e(&V8i`&e`gYsHk3x+_jrd=OZKnK)7<Vs3(^e`eMo zs#Z4-^t*hB)ge}^)}sKlGZ6uoy!Y0KfkN2J02}}GBR41T2g#LJ>}41n-VCfve@1j0 zT1>Hd?LA6mDHZE&^y)+WXdzpp`96;?{{46N#Q<hrWjJml($1?m3SxklMX9f*-?p=0 zGk=O&d$EHdulMhZJ#X05J25(ZBUz;0uRc`k%FHAR$7KU2|9LmxRFvJ-<BmqLqw7v_ zl1~)FcN?wyTaK<z3|o&Bl}D4l83>GrkoL59<o43FTh4|~egtN{q^nqL3{0w7Y#{9u zl~)Vm(6@x34n9vGmI2F}?70Z=bHhuUO+v*KmdkYm1w4wp2B+5YYqM)N>dTaGt%X*p zqXrxcZIr=fldpAYwU(dmn^}z%^M~$cM#HN-@Dm%GR}DdSU6t#u2?~fpQQjZv+z>_F zS2eLfz5oGGBrAJr3yP4aSR@*q1SPv!Ox8;}nHp$%hd5h&e@O~L@$L7e$+()5Lf0Ld zJA?$OIoQ3et>5Ivckg<~J%R|6HFdX@dUMHp8R_g#;p+G0l*QHH_$+H{-V@d;Y-6B- zS$$yNr;=umS@X`SntWs4GFsDKq}_7b%m#U)1r%ISnIvwUy!-IQ^f*`h4h-yZ_YLNQ zfsmQmQ9PCQg&kLA7i0s6DaB$#N4!63^G;``Op4lbQ|-lP;1}B6O>E7WM>nRAKcnm| zvmK;9&)!+M)MlFP#Z32D(7>I}Ma%4a;zl(*JU1eQuH%@%`e`hcWktP<LM<zsH+x>l zPpQkVv2n?JJ`;{n>4!}bNfNv-eHcCxbp`6fUN#1=JJHjsMWZDk_RaPMtiJa*t~pT# zTqV)<2&qyjoMwpl_X(BahorO0?9VokPQ72?k2^A@976!A)4ft>T60@%<OsX~5-5d{ z4w}w4=KqX+d(|M~nuic4sIgN~w|LF(>NukhqK?>SpCWy-ci<t<_G~;;L{U0?cN`-f zZRez$*NAeBuPi+-sZnQwgybK$lqnah9ORa2j3jx|nou^t?H+LxSquzXCB8pgRv;T* zzL=^Ojtj_DNzILkRlrd5txqyU!*P?3n8U{R5Ur%h!0oFaPHCq6FDRO2))^Obx~t$J zk~1FdX!lU3nMc0kbkPPve~+YZl_aOjHS|V>j<y4Xx3lXn{E%h6QrRH<2ii*-=O${g z-bh37eu#vdHcFluJ%|BK-qS;ejq(535#`+}k;3IjS&e0}EuK-wys~5HB@dBdORU5A zrU%wAt%~gxQX~G|3-C|=KiGK+RE9af3py03FJ@sFZKqvFEbNrUuh)^4?73I}uuLR( z0uDiFGdcZ`b;D2eCXN>0C%nsGcjC8>b>e@o<^;qz9mVhMlS{qIZ=TP#`BYWhCM^2& zIRaWGCRbk0I^{U`$;gb~G_Kl%xwbpAz4iQV9n473er`rJ!ikPOOJ|gyPDlzB2Dkgx z_Gxq~t!F^dXmA1@J6$7^=s)?IgVMV8bq@GH_}tVu-I`m&tvfyn{j*<>$;~Ob&W+i5 z_}q~Nn75P4J3`00Wy1YLegfxawxleR;s@M^$Gm#JZZ{BXAKk@wR#*3(J;YOajZQgn zpb5H4m`G(*yII1c`k7)R_C9!6?L&=&SHc-Wc4t!`=<$6dEWTa5Z)Kz3esY+sq-G9b zuBAuT5q~+5+%O%(u5#|ndr&iGAB)Lq;$0riN9Go6aZlENVeo=C<lXsALm(4^ja4sS z*^HjhznFPjHMs!C=%iPa4P0ywFAtlVNAk8)XOaZGQk=iHe>`HZ6_5d@3ExKgr_v3d z_6zj)tLK5(>z~8_nfi85P3))<ENTV`W1VW(Ai8FQi_4bHypU{Y;a5kyR|6?gfB`|z z@ljqjc~+*zb#xy>alT4E3?3DWcZlP}p$ry!t~t}v$8s~3*1x(wS}Rovz?6Rv^KZCC zdm?eGyedK-6^5-0H8tZJJ89nSu8e!)3Lf?-cpleZsae`x5?7n>r3vM?u@6XQEe-i) z*Vc>-dW|EHiHXMG`)%wu`6Jw$ysdP|jZMhvCJFD33uM7;x0x;L0%T35HqQhoR3*3E zkeR6jVSTwhs7!2RN$bU$LIt+vC<G_+K9`j96y8t0)-NW#n;XqNVX+2`3DyWSL9G=x zI8O7nukQWq>X|qoOuq@W#L=3XUmVqO7oG^trQ8>bvwO-s+EgkKC<q${Iap>__hY&z zDqPXuK6@UPd|;;vrzL&6blL7ysA>G)5dTtg5LM%8F=uHjfTXL%sQ-XJ3Mik_YHm?| zQ9ktmm<7vR1Pzs=$Hoq<8*Uwjo1&Z`sij>@dt|ZzzMR@{8A1Q)MpfDA1M{%|(!4Ex z!5D74$5`2B@s;z{*x&-cfaShco_@wbw&J04s+*tnxG&?qFL5bgnyt~KsCndx+4tB9 zC$7s6h?CBr29^enS}m{<)pkA>WfyqF^=bB&%VZ_R@D+dDxK|T~l5ZM(e?+DobaNk7 zHqrfd1_SF4?fESyy*qT#-)m!=8Uh3&u_~8o&z^lJaUp4G12I-t)mr@iRHQy)?EaG| zyOP;$g6>hts^mA`<%HHYH+-o?_`5qdrcurJ4(0UmaR`15IVk}HJW<$?P!>oq5N|$B zM@`U~qNii-7h{}E{WvvQA9;%!Xppkf{5uawY^A0g#uD!#BJ+hogYTc6*xoewS`~t2 zpL9T#DOl$6`<x@(YcOpnTc_Lp1M|Rrc%rCe$iVQvi51#7q4g**X#H1yBK6s&v|73E zVwajD72VwOlqbq>ZQ-AD6j)evTfdF^oc%t@N=P&<)ZRhcikYcZt%&I0kP=&8M|}KX zgQBeam8<=(n`9H&+6mZcNe6mFO<5wYhP3xEN`G%#TIT(Qw%c~~Yj^5n3!N<Ixpp64 z4}>6B^I}tF)-MiyJnuIW=BaNGQWOWaWz7>bj%!D8mUWHYHF(weXLV+jTz~m4<cm)2 zJr{dmiYpqBe91Y3%3ZCzzBrhJE<@tTAXBbHXUgvMpqStDG-wsRgHGk+Bhip8A4)}^ zyzhL4K5kVK#$j36d^1LRh4xYVt`qPW1b^;4!@t0>IcrU*C|cWYy7PcWbz)=#3HPA4 zSQ+!G*6MS1)%{*-I%c?ByJ*hehn_0VJm-{93O%Zdldp0%QnntsW`klWq7Ulpl1;C> z7!Wupw$OmI!~1~K(1+$c_IlK@mEFge+wI+Eqxb~ci<^ZNKz2L7v_eAiX|2sy9L{a( zk#gWy6UcF6j&E6b`^44J717+FF`)9Sm8?CWx;QND{Veph4efC}^r9IP0*ZSa`ELW{ zN=5&1R5u~`Gp37sD#lLRQ#U)zm3&E>Em!*ah;O~|+}}m|mzSo$EaFd7rnhyb(#&u8 zsJy`2)VISwn~8S2<e90s?lwTfCcvVJkB%cUg;z-tY>8lnF3|GoZB+%U?GBD+6-=(H zHdc%=zh@?-&f(^`&wal_n7aXQ1Ec8WscyVO+TNW710+5E02%2_ZDzM{@@d3-;NJ>2 zpHEbqtz7(6{Lap-Q#{sA4n-_Ar(bud`n1K%5Ev_|7~VOBsh87tlz;H#z4m$cMwqy) zt5TKqVG}l}c(dPQnv`BV)_oq@QT56tqXv<7qhijPl$k5abZUFp+s*HRrDaNtwOPWD zcBEZ^)cSf5igk6}{HKDwrOjIXnymvW?&cUR1o!=RU(z+Y|N9x|RI1CX)xAHdK9MQB z0=nFH_7<4}9}jh{ZSMQ<aN*B(RrhDfS)!eV;7E4oSJu)<eUJWf@1t@uF@qXvKfQ1# zCkmO-P?l+s{*wK!R9)|XsO>3oN?y4p?lmh#d7Pxa<7n(;ac=ko@15@?U;o;2p+btM zX+@-w-99By75=O1xEwhSWmgZZz}?e3$|MsbUgI(Ki#@FN-bdHYTq#=Htvrgqy4&x0 zeG|~<^`c#y-ad1W)u`^L41`x*%t_^L=f$|!u7pm-wYO%i$E5Nre0PDlzoO|ve5`Ya z?Ee0gI0j@;Ou#VAiipx_HvBJjIlDNZ7<XJ>n=#F)QubNYWkPpitgAd2lB{NU)CTHf z6SxG}()F_5f%Z6bc-Zk+zt1O^N028^z0GyMTn9d-J^zHcdKe7DVYR>@8t;J@!?nwo zAHa%S%aq^s8D1GN%QClkh!2gD^*^`rGqA0-2+z6n#AT?W!oZ_{;F)OYnAP|VM-N&O zhAF?#@ToWOO^o!_T{7f2-yyCl!oBoKbRl+rui^z;{&znkbY$ZC!uGI3N~UjRcQp#s zIHJbkY21~$#{Q(HcuO?4YeMimUE@_inCs~?-i)Ug;F7z_J(G@!tSV*IOmI;JzjR(m z`!v{JT+xZ>p|b2i`nXdeF(0)O)bx>hV39dH)0&6mSGflV^sL=aj(@fRI0$C8&h>D+ zG}|EX1C3^oe$U+e9?HW>C384&nhOm2Ef#L+a`1`8JN8{lK8#-RSP`5ldmB}YJxUFp zRfyFB9`!Xm_V8fc2e6w{s%+Y*uaW-%>8Pq|EYl<1lcfa2-3Z6+WgOdzU|x#@U);Pl z<Phz&_lg|#trU42W92Y8T-_gR#2g(a)2Jza+`-*;Pt5PnPlx4O2Z1xn#YPaPz*$Uh zz%mLt-D0E@M1hf$<K)64hZUoPCVSoCBUwjaDY+jNVN;d_=M%ehx$>b&r`c=W)pRO2 z;R#T)jO%Sw?|VS};Nst4Ikh}GZoLL-F&|Bh2X9s67rK909vOM{z|rcVwUvpLMWo|8 zNzg}MgGJYG_iVhE_Mk`RMZNd=DtFfPUTuQA8>?zl9S-!<Yb56m2EDeI>^}6rUub#t zxl@x<Ps%i4Ly&5DK@6<)y;8rS?)KB)y@RE3q92x9%}ENtJCc~WCUiulzAA{h`R-EK z(tT#8Wbn5Kj@~0S5@aQVw3il`6%(#rP$}|tzs<#^wO`F$xBT3OCjs1Ywy7*;52hg& zp6mAXd7@Zhd8J`xO`&}hBtY<~ZI(@Ltg?%b(q{-HJINLz*DXu)fux?bU)sy#Q@wMX ziDbPJz`Q-KbzjWSO*mX3S(~}GPJnCsRR&pmV?Ka^?nfM6fv)Z=ziIiDt^Gu5JhY_t z6QI(w;1tJJB0L4t9yux}j6bqp`6xw-@U?)RJK$?tvd$E{Z^oFX2}YHVtxQHKTyD~x z0I$m99>6kv6Q0z>R-6==C{{_<x+?vwq08@>!9MXA+D(1QZbGYKxiL#2fbW?^+VzR) zj4o+Kx$|U-q4o=gs>_N`t7G>3&&%n*3tIcCdYS8CWFD-~vskXY^stF37SJYn8x90> z;{d?xL@MO4J4EWQ@a-XC=qTfG5prBW*a)UbA`WRY6!inallhPyV6Ix)udyGz5bGI~ zr%L@9=dqiz_Tn~7Ie+bICR7&wa~K8*nbOS7Y;_%a7^j5&AOWc<PUm(y@z5T6CH(}I zrj3&bPzs*G$aAa`l_Z--K6|Sm_tqGl^{A$Ax!b13>gaDTSX%B~K}>V#q9Wf1f`J83 z)7_|yxbS59s{rL&*i~M|4}$4i&XF$~JE~0aK1%5M$Adt87(cu>7i0Ir&aUoJoLV-f z?=>pVWb%_b=Z!Ae)+`0v#%6&|fwr~MZjqQTkF46jKY(h+qMrBsR=hX!Xkg&9vWt$K z`&0fgv8apfvIf(^5g!|m*x`0p{ukugGeh>@hkOJ~6CciOC82u&yMvH}ZH*HjCBO!5 zp-&R|84yh5-`kf7`pvWjC_95^{)8*`I0(`#{f7c)t^r<FO+mY5ki<a3yg&tCLME=5 z@hwb(vi<_3?1QODgb)%PS6eDoBuBD%GwTxgd7R3YS=8q1^)tu$+>4@hxVzOZS;L>; z(`G<3)7e(aI?Ijq_Gg8=kf4F55AMdibLvhVLC}$_U?P6+!04OYdedKz^-t=ZM%4@T zYQ^xyxd|R7dMI6>GL_E=2xNVX0=qdR1`c#zYA4LfNb}piCtV9K@I5ioijw;wHt8ZC z+ZACtm)s?*HiYSunKPa6<nm$mp^-lp@!6-4ql=#ezyDwdBjsF)i?mDWx~b3MHd2ff zyb8!v(uG#P`;rrNTIePPkN{c4P+F0P<B+4oh=_6|vLA2@7Lp108NC3=>Z+}68X;Dn zI00%6Tk&y03&TSKe?l30TGwGR{{7Z7^4RLNnO4BW0e4kn|66R0|F-c}?^pB2DvBiY z^=Y0@nDCknrM*Ce{%8j`+GK;)$l5TOSm-M|3w~EsmdG%T)mTc|lz0nf>su~mp&~L_ zJ!c=~Bg)dM*K3Fc*?u0Z0;-3%YBP<ty&0T~suvq7C^Gm;ulDc*h{k^bAs9fJd9gU} z!xiewdm=yf$Gc{`D-TD^ohLq4znt<~X*E>|ZT_CL<2Bh9Qs@2F_5|MP&(Hpn^u}QI zEVzpaGX1rJX;p5jp&IZgJJ2TCxd_UYKTQwG&OUV9*;rj&hA7VDk7bRXkowfn4fk8I z8TXUr%8`zL`0OWFR~w*i36W(}s>0o}voyTJ*hX@am_^my<_Np-DJpFZcT1uTC9q0r zV~<n`#?@e2R3+NL8y&;<0SFsT#w#j$-9Y!YjZ(?>F?LFOy{wVk=0M)}+@V`_5!)rJ zm=tN+Eelzbh_*8z<pc!FbycZ5BqQQ5T?co6M}up}=EF_L*|elcMiFw%n)}NF^z4a$ z%|C7e{xE-ylvt14y}XP8BO%8|zzVB%=<n|$An=*Gj|1dCuL|yeWq3481T0Ow0Y&?g z?%F_#$Aue^l7jUg!4#$SoK|GK^=>c~!Qqq`Q0D%?(y)wuiZw==F-LpIF&i{L{*VLg z?eXKFFBSaTK4}4hAI6?w`GdSvSeJA|%c$<D55_Vd&s(HVwFHMpy@TzT8G5hs#ioM2 zMk`(H=HFR!Wtb~2E8Bh^X9+4hHTlYJUa;)alIS8g2pTG1u$R#sV3ZtT=QT|F${$ny zV*Bltb{h}oQS2b1`!ip`mG-)f#EO~Ej}Av@@vC{PkC>yeb-~S+4%}Ob+RPlOF@m*8 zka!Q$tJ<Vlj9;KocxRD2pF~pPgQ8vSx50;WA60<I@ZKWeneef`UIB+e&^m_Dp0hVC zY`or4l>SCl$|mp&U7@x7X7T)p#q8DB$CXK37&c!|7fTz@OjSj?-nzzhxhu27&274} zI7y;e;S=;fc;=7WM)r1tJ86Cj(`hrAID%v6DT*A%aLu(g3(*bWLZvfo<ns!_^#%Qj zpJ~9VxDa91Wh~cN;2($4v4K|L;px@si3?L7xb_stpzOX1rl!sBtP=??3E4LGDLMjw zF`jZOysB`g?5t8^y?=z=fv!?`MaANUwtHPi@#U;Bt|lMsdW=?ql)6T>&McT13x*~^ zpzklV|9S#z9eNT+(n|<FM-`$I(l<4t`#KL;C8@ZJ6%MUWH!r^BFid%htGGq)ea^rl zd(83F6?E-S!!zlcE(ym=i(;amt}8d!yfuyws8vDqeuIKm5!jKsAwm+R6kG4hl>YzD zsj$+KyR@4BJEz(rgg>`6n76R@Ufr+m_5C_G_e#=jcEi0TqTuEoX<Oe!zV$Re$$AXR zNHP$~hpP3!v&;RM87->FxU9!hIbv~|-Fl>33s1q2gp)X-Hlz03M?A}qX65wzT?{wN zkdBO~{5VLd9P@JDW4Rybt-z>7Y?db$cv5bTiq#gF#6?%A(rX$nUj?oR;8$p#l$5m4 zM5;{RKLGT2!~yaD42lx)Ym?U<9pMgG9sn*+cTP^J)Lr2FUS8!|+t#-)L2=S`0*iiX zM27s3J5msVI=D=Pe=u0};b2O4_ghd8P8u5R7JIWmNRd?WRB0ZiP*!SBZB*JmMqT_? zSD{6~ngD9UJ{iymghI~byagwJ{tu_ec@mAM4@TsFMfZbjC!2l&pjY+!#2@ek%NhxY z^cW|kKpZW@e^tHq+>NsXKtXr}%=3518c<OQUZs_rz!)Cf+gOm%=SCtVe!u@EPrB5! zuZkOfiRWs#0(5(lYAu*eEDziL*KsTQB%Aqyxfbi4sr>ZEX4%GZ$!B}Z(oMItF?-<B z1Tg#f-T66NU=j>vCY1@sb6-wwB67Q_87}^@I;~j_R1xfne|@pm5gUR1Me4gZlmHRl z`}Z6X2(bEYiBT^TWdH7lj{p!+`u_bDFs5TWTI0yxf2;cEHJdxRA<g$GtD0o_%9>08 zy;KwbdrlMWI#SpBqjLN!8AX57lloZ;HLM3GUMx^w32r)JRnSgu8F@f^9O*+<!a2NT zh%ZDWDFsg;7=g<pivEyI801>43l@?8z_h-RUineZbo$xTmMUwz3o=`u^q993?Xv%_ z4()-aBQ*+9Tj$^O!EU?GpPI45VItVuV&CSRf2AF$Vet6Xh3v6;ES0((R1)^3^6z4N z_GYe4m?YFBnjF**<ps5mkZL_LuTKPIBvEX-c}@xW0uAnnzuv~zhWrP8768Iq+~3SA zLE~gwBN>nY?(@l}*<85bzgL?rjcz4F7g;=Cg+)ZPEQrd)zgJxl-YN>A7Hy?;t3H?k zQnfw{%oe9V$$EBbN^Zd9XFWX}^=;~Y0S<w{hkCp@fAqW70H5*G8RB<6KpiU9+4W*d z;t6WI)IG6580hTY_u60eQg<RYIvd>qnkGUW`)6|aQNfE7EPZpGTU$F#&#Yl#HBHYl zU)hn)j*6KIflIn%{b1>0yEIFn-*|+H`}U|pyRb$SQM$@JH88rgQiD*@OMe*m?oLv+ zsY8kmjK5AlW;6O&=f~B0?r>Eg^1Ac5jl^BlJE)h7xu>-MBLLiC5?6bjfsXy=-<V1) zF+!9A?pWHkfPq&3U+p1E6Sj2$P%8RJ#-pPndH@^vYte;^`#B71Iy2i@l%6u%T?zk1 zNyv?VnJT^DekhQ3QMgwxu~yS>Pz&f^K~1yB<~-Y`%hL{U2Ft!rec_XzFna6$_%5sS zv6-b%Gm|@Qg;bl@&t05qtzaL6@TlXs8~1N?%2=>2cJz^hj0dM@P_ENLJ54#(io+*Z ztIij;+hQ3ktreaxdY=P%=~#c2fDhKBY46E%2TN91IyV3!0~J}eiISmQxa-wNhOpr# z$&$gcXk9i$A{jvwBjwV~CBI-EO}wb^TYgdQav%omb}M|Br+F<fzwXt&ME^?4Fv$xu z?=&Jn_trJ{dc%GCujTNK89>;<JsvQ$F#e!UEjG6u&E#JK@da`E1d97ve0BE`!+4z3 zwGhZ(?-xhe?<iK$SEA%Dt28%#8exsSG>D9>um9OL75~J1eQl!%8av9>DnRmxbqJA> zr?x!Fp%DKnP=8P^&7}D}nmVMFSC}Oyj!nuZJo5jxwztly^y<$a>0bBg9M_iRvYVFT zwx2VBZo9wlFSd6;(lO9B^qPKNzMQh-Pof9|L|<wviU@LN2UMg{*n7&Xd?|blgSi8F zalfe>tU!Kb9g;oW{1CwJl98-arp23jv^n55IVJa>hZS6G9~QK?tOvA@6sK>$2*Y{3 z_oo?C<@Ge8K8Qmng}nQ%S^d_|J>+tT5+0xL`w({rD{apmYE||9I$d3U1<yy+RS!wZ z9<7x4BCL@dg~lK^V6X}MbCNOe)RtegnBDCcK5kUu25Ym@4D*c58|g>O@TV(n%GM2~ zExw)b$Bkt=E1O9QeLhD)KLuLZmR?G;Oe@7!P4ZCI*8-(E4Ce1+0V>(%ck+*VY_Q;{ zVSRAw_w#uo*zkeMAHS1+Tdh-a0d`r_Ec@=0w*#ncZy@*JYY+bb-V3z1oLq}aSL%>K z9DVHfOw2Xs9`Hw}03qY!#mu$G6KB&41PkIEE~i!q-j7p5af5cw=apc!@B%(e1p*d@ zaU?;yVLrw@pl1MOMuAgNEOWW84uF&1bc=tA!`4d8Z{xkGYR`0gm095I@uu(3XSE?m zaW&X5ga;Qk96%&*X%xZK-}@r9GVI&fCdP@+oVe%{D=Sq(d~`rnVZ2Ss^*yiXAQswb z3bu8y5RWS|zGs-x9?#+$-Gs+wh=~qh2{E{nu{0O7vp#p#5<_i;4#6t=xhJq+ojl~E zl0j^8<x2LJDYtQ577PY*!8qyY<_8C{kSIB3omiA!)AB=CJ>H}19aXpjzV@bd4K}ax z?hoiwbl<i9?wn9^VwbnlkX3`EO2_xX51lFC#CGV930wf4wPiJV@T12(_0Pc9ti2}G zHqIa>#hLS>CV;7!jA7N(3k+@JeUU7!AybJr(`>E@cSYA=e}1Elo6VgW`4agVUS%RO zKt)(^@Pj+5?o7V!u$fY=PIS)EH{-uuu<vB?Ja6bUtl(06=q1;Tz5>DfT+f8VwF;&% z8DiM&v!NgVbrk-HCKhyvF)q|BzD%w0L5E~pR?_2nATV1G?R6^YVcD7K|L?X8KeTLo z_mKvi&g|qY^<aYhtD652ilcw<%|r+y`!!7kudC1>MXy}!$nf-ThF8>`c-bhvMv4=d zQJdigi8b`?MVTF#uV%YPSz(!Fy~4R$12Aml+N5xePf<@?2;uOc8E$ZVVvc?>U%c9e z{rNDO&*z7Wio)9g!>np2g@V7kw8&m&99Pl2II?s@B^)(y<?nHf;=ZhI{eXaJ0?j2$ zH^b(_TiJeW2V?dNh}?QoT~$D9oqFQB*`CA(QLBmNKAT@C6<#nIHy1q$zzDfQf6=pF zVvKbK8>~~M^TQ&iW`*)t!);)RKzxn~hL0LtMYk+2P@FV4QjaKCucF&pdyJ08{)F+! zu}ENbFH6@V0%_g1qHi)ZPqY4h_inTF$+qugxU449=@k@eQ)$+NmHO`NykB&MiT3C- z#|2!ic!l)JlY(l9qc`pLQQMJ!LXF(LmX`qUBWoHuPMx|c_nG>D_in_=A0LL@={-Wr zE=}FR((GskMSSj0E?hF$2Xer>;G2v->vaCB&@9ZVSBI?cfLN`IeQdhO^zC5RPtm~| zo;3#3s3%s3HIdr2Vza_B0n>w5+6fD{XlZ-SPD8r}CMoZxz0=(UZq&%#b+Al7y1w3* zN6m7ILvK3GfKtd0e{Pd}=A`H1@w?B&ufug|Bcz=oziAoue%d5v=QC~e)Z4JXV0t9T zo|t*cowtU1(o~ze+lcuvWwk<DQ98J?BFqxbtd?S@vZ$TO;-N80xKd~^*`YZ7#v;Tv zS*5nIg7vEPgtNZ^KDFS4_*9d3YW0v&`m%Yer^PaNR2cu`v2US(Q>Ea`6mv!Hf2GmR z0bl@;<Y|A_<O>#Vr38K2CU`a6Y<z>fK`q^WH>U31J`DX)DJ7+E>sf;K-*Fa3{d`?` z8@{5@T6bHb4a3Pwn$Vi=;Pd-VsM{jymDV!e1}e$>!Zj_bN?w`D*Gng<*cNJ*%dhr{ z9i7D3TUXkFNRJfkOtyI;jxn$Qwno`gmp5XzhH&8;;<?Z6K)082<8stW_O$8FG5rf= zin=)~nl?DPXq{H<4c<_9htT^fF0`~$NvBm*K>4hvRGxu`gaFaYch#Z@>>AyRQK*Bv zzd4jue~PESmifo313}t5)T$BtONwzjx9e{F=E0;PRCA^Dt#S&nd9Q!<taf*_GK`+) zb5=TDLd9~$ZOEW(mW{K$FwqXJ)@>f~(p9RbU|<xxt3i6SiKy_tMQ-)B6jeX-)FV0R z0mRL1cRo4&nL`NH{IEu{9QPJ*fOw1_YO0d8-4wV!>MKbdc0FK)$(?>?3kpx{Ot*AM zK@4DkqtVRCQca!f>vMU}u$n_hxASk`UqeM+TtgY=-QGEs^o2V!uK9c}%?28=iVC~B z7#RW;=ZK0ypJ%QRE(tRc_We`eSXwORmi21xu$xmpeZSBtchDK<{G|$cOHYGXIzP%P zt;l%FMSGMyY9H}#w2yPkiGgnCxXrHJ<()XBrHV2$KK?w6XIr4C#z~9hkD*}qt6Egm zpR2uB|DiH0=R3mE3)-ymvVR&lSTT#=w-+4ktZtP1(N$Cv7$Hqu_h}wm(kv+Z*Vjcc zCSG*~PDdFM3^Hkh%c`Q=?7h59oy)8lI8$TJKq-t3n_Xfv5&FomC_YS+ixli}wt9kx zyV`B8J%Q|tsKSS(bpp<KQ^5GpoLOZq!YgCKCx`XCFH%?S<_@60ox}Ez^0^i|Ju=d8 zikC(gofW5U1dvX%%%9OLcfDK;R95<)f8Q%uj{$UthZ4z?7fRO4>u;sMU(QF-W1PZr zF*VutMatAgJ=LEdW?k>by(@L^)X|)OTPa^k&s1BfEO_3}>~5^r(;@OTk72DS^~ro_ z?8DJ1pQl|G77rI~^J(&S8`t2&)h{|BXf<a@5s7wjQIYjZySK}BRqbh$JeZM+u;zSn zvqEdX^aj{_J~_5t9mV>Bc5PRcX1S8ZeK~uKcGCg+<g^n2x>on?<pI@!yT<wEdb;U6 z0S3B(;rnNSt~44s{2&L}{>WK`wZ1eP{7w^Hw#A<ZvY+<JOLzfFt6HgKA3NiB=8Hc% zXDBmp0MF@{I2eIy6O6*Nsfk@UDdj_y%f8z=sJzDO76k11)y3|I0GYSqn(NhM-VJiA zm4(5TQje;ZpnW-9_mtUE3H?<wklo;Mxgo%`^xhrB^i>&L$}CXpM(tGXJOxgDdwrbg zWMVaWXa}=V7FJmio1p(b29hR}Pu8MT@2P$^h&fX}X7Ot$(OC$-p0B2|2`b<QK=J&5 z?C<X0%}62~L&wf!{+Dms5UbXln0wTk8Oi;fF1nJ{-eUHTDC2eL^3qg8refnD{L->T zdant};mg2~1a`>!K-q5%rG%Qlera9pArkoJEI_E|r_3zO6s2s&T>ZGCO*!!kLDN<B z56js}PEo?^vkJb`U%6y<TGmzpXk&+>DdCQ*q8vAo8*}@rFrJxv8MG^*I=fMSZq)nR z2xrpEO12KxXEY_e@xA*x7?=2G`i{Kmp+wZrN8TVMQw}I$zw`XJ>j`?N&mZ~eL{^kF zLaQ!0a329ur9!5E&!XOQ-HY5$M@3E{40VXZMep9h%@?Zq&#dcPqUnbzwy0ZU6kHwd zHTRSPUh#<5#6L_0D1|I5<!is<JtWuC6fay!0SS2~xP=qG*Tn#o&uTM%@h}DURK9an zy?IyXzn$jSDK6D!0V`JNYBeF!RK9(!T)Sk#b9Tv&V~L<_oUliD?9|{9IEaAs$=(w~ zTA?+xL$dFtcdKcvzSMc$+Krb+kT=XN#L;`wBsOmOU|c{A5T}oIXd$TWcaq7+<u-#H z{>7^gb)^9zwA0x(-3~7APyHWqrc2(0`Bu6JBQx~rr_i1|RyE|e9g}s4b&u}wW4AVB zKqVMg%%l`D0lJ~t|GwEf0ccirY>_JioK@O(Ql>d|L#_5dG4BwSLszUjZ;3q3B44&} z;_v&+c|Fi*JRqBwW35yNHrL4xqi^o4qNz$Z>*?if8JmMbxf>aMJkp($_6Y1w4W(+% zLl0-u<(UhxEns7dg5f3Or-Gt5=91x8xr-xvR+E+^B0P3I$2SmAYp#0oL+Z8P9CLHb z;9*Mx$bTj^4cEQ52l7zS70!j1+W{+YXz#TTF2_we$un4=rXnIc@|4hnzxx=yMwfSl zE2o#jbdl>Q=v%_1v?P&daZ1EfNtL`WYlGm3bL3alxylj8{#@x>)RT{Ae?cE6k{xRo zab)Jad7ka%n!GZk<>bPv<zH_`NCwEr0@3&|2J!iKm7r>j`pi><Y-{2!NgaN9{Y4b0 z61QJ{IIG6+)I!8oNEB|yYfbdANMTg7GhFxs0Fr4ea?D9k((=jf6)b7`SRDn5!)uK0 zI_l*Zff(=SH?fv3UhUYDl+RlDg}MRdA5&+2thDR!)ARl3Wi<$rIOdQNhzZpR#%g;I zndqwjrC>Sq5}5p&LfzBwXAe$11+7t2sfbE`LivlB3Ehi-29|~zy=R>mz!AE}z=p0L z;LTL-v7TfmwdHa!x_=J~+^C{2_OK89fX~TMgPVyf8g~wsBCQ`#W8U=%6dkuoZHf^C zuZcB!Sy~kBvbZd3zDWvGj<g2gCHJczD;QR3IC(p?aoP5irj&b3Rd3?c2Sn)5fq8vN zlpSVL!4n`cjL2Cs3eJi&nog;Ley5WJZd7C2CT>6j`=^cXnT>1Fq9E%c42r=k8#_d& zMgE?Z8N)Vy69<w@Nw@4AmrbKB8!#<E_crEl(xjD{UsEb_3feI>?w-cnlPvmkQp*sX zYb~z(HQ6*NuwW)rS{W()=}Q`)b)_WxfwEn_4;%{hPGq9dYD99?_su80q@`lerqazQ zZ<+a&Oi#LYE~fsz9`@?TAu`^ta6gHSl5S5PJaa7{3oPq-MS=rwXo6?o#i6E3-u;U| z2-vY#)pfV6&PLg{+*fouRq_XX!o-wk=HY%&jL-5xGefV8622M4_Xa)$($Ce>o^Y1q zZTfqM6z^D9C+IiJDb=Tj(|6nx+FwsLI%$$}7}!2kA|QtsQ>EIj9(Br4CdtXLKfhc^ zwrKt&x06eU-UeAB0E-xeaj`N~3di{r9Nt~@HCXV@qGSJGBi17iDOK{r;NnZ(25QR9 z5B-DXbu8<^0#RCYxS>U_HB3!RM;(3~ZNoJjj!x?C@ifcFNzZ~0rKhpkd#SEp;x?`f z*4Ofry*M89KR<3RdxE>;BsjX{)mS~;nw;EuclP{KrCF}u&Ks?u_)h++syK9*0Q_b9 z#Q0P>?<96iM)BK^8mIOwi**=%eo3zacp_`N9z7+|K84yD-|V0Afz2|pr^Z+rWO2Mm zFIqbgNf%at@7B96VhsYS$#Uq}vFC?1h-gq_AwZ!{5cv?am=t;!*!$YL+gZh?qI=v+ zhM{!#x)5)aI;u0c3QvU&dj*~a<{F?mgnapA{v1CB3u?|rNvt&_tiwQ}>``&=PgUI% z)Gh7&>9&&e$=?{P6f#*7QdA4>)D?Wv1s7Q%{n)nJ|1cy**SKM}#~0s@?gb2(iMN)1 z>-{KydZ4SKukgE&6v?=^3$wP1-?F^!{Yw77UhkJHFb^cmKz^d>8LoAFrWv8D2o)@{ zE-HI;dAup7`Amj-+^g508(=O+BfTN(yB>I-D@N4vSrRP~;E~@+N@i<A4`+of^4g&B z&kdWg?<bdj5?AIC31Sg;I`1;yI*N0-PyRw$gwF_;v|-1qVG6+jVZTq>3TTgp`!*b1 zywNR-o@IF4SZA<o#1L9l{kKxq<ZV#i9?o2Zphgl{=NctP>&#y7Rd~<C#hU4FdYIsV zp3@y38@}`cVJtBTf#Io!SNSJldt+$_O_HMK6@1Q(wb{^A-)!ro7HAu~Hb4EdF62|F z=VHg0%JpHjR*fdc-kUUThzS@AoQlDx5Gh~W0^`>jibeX5`W98gC{(XRQtUNQwVvSY zgO=fLx1%9&e0v4&{#h+wGnRD6M=hE!)}F<t=Pco8h9~j}`JO6__O_V443&d#UE=6L z=YHj|+b<ijNwIb?yvp7IHBGzTf6Z-W+a2JcFn&B;kzG;w0lg_*7G@X?K@nElwkNcp zhpCr=5eZXAZ)=Eo!5c|zpnoMXwr)~+d2VjOe5a&Sb~UH?llJ%Gb4ToS?DGGZ3LbgJ zyl>WpqMNs35FW|8r#<G)Lp&I6lV2FG)8)|!1l*AO)NF^?e{4U$K@;eAxmWpaWm8hf zJH}3o|Cte9o6@HK7Jc=Un8I#=-{<V<?6_@}Ck<lsY0NJ$zRc8Yi2A=Md+&Iv-}ry{ zNKrYYWaMO4_D)AA8L6xY$KG2U3WsccWJLDJ$jZpx&M`t|Wn^<W$0#z7k#VxQujBLi z{=UEa{_p<BKOVf_*LYvo>-Bn$*Gp;7)dQT~qBM5{HT}=*!0Vi|H|^AhuO?q#;VFVG z5)tSh&WH~@Dm+DnEp;ez(@MK%s!kd0X7@GcRFZ}=@KPBp`Byi}RB^iAPoqXkX7TIY zSLPwzCX8@UeqUd7pdOg7C_~PsM3~n>zjF#VA-a7~{ahO={%Z$Q2pvjPl(WI%=7=1T z*p0J?1k{d;G8|NaY7$B#zH<(j$#w?vO_8);zUaJ?a7<El8#sGLjgv>^(UP>%7gkJK znmuNiCv0GExA(ROirKX(CqHW}p>Np@y`|44)4z1kNb_-D#~z&S#wUPfWc=3zk*4dt z6WQdxLOWjPx?Od2@c6_DC%*4Dl(*4W<Og4sTw9kwUeVXTJYJ6gG}OnY=QGq|UE`?o zZuK`@pm1{eTHFaA>iSaM>ZJzHmwpD>dr22PDfnX5EX1jbOOsV1?-pKFI<a1~eUy5; z))!y2w6_~sq{18sijU)%vc0Xz1<=gY)d)51U~PT9In?|YKbXa7`<c1r<zM`NaUG%C z*z~G(R}dK7#Lij!L$}hn*<E(;{Aw@Pk9{<WU7M{>g)8;4YJCT6-ZATD?%*~+?be(H z-%CCXPTa5V?GyqjB4Go6YpS9$i<n!CdPrAi%$W6mBt$-c{hG_8ZJ<@w@ZnR+D{`6} z16VR#aTcmovri!bBB!OIp?1fivtlE<v0ub-ve>P!H;)Y8BNwE87k;$PyQR3auIFo~ z+HC^-a|Z{lTwa{_mzFj&Kv6#rc{ncVG&S*K<HtV-8rN597JAn_bkF3A2{O1>NF}JH zZ{30|9t3N&UuJFCkMUbKMEUvpig`Mu$Z#{+^^_CO-DhiXd1PwMp2H+A4ESpRuRvws z#e?7O>Mpv|%|qTB`WJ<nbJRE|ILCf~wLA<pubMf&3^()xTnMc!;^X=b1!?Far6|;Q zfN8cU5KeCag;{tAcRBm)D|4}4BuYTe!%h=+j{s|XrQbilb|!%1EtNX~m3H$dSHd_w zPq>9!j{<dh>lf^zvsC82H<dX&sVo1))JLEWBv`!IYkCVm3U$G8Kc_C$Wb2-cWZW59 zSk`7f@p<dQdE~Lp$?9cn$I?H^s;#?Mr6i%CE>J-Ph*8pqhwNgKl8<x+fA2po?7A`! zs>J-b#T}eXq2U5SEVvFOgQpo#@>k&M;b3+8mi+zq{Re0zmo;U$0(6wzci`Z7bF-EP zn7r#x4=41c49hh{p6U~^qwRADZaqQasEi@2L3*G%WR6=ox}U(5*MR8}d&%TkV35RR zBcMtSdHHXx3uZR()F3s0(MvNKuIgwJaNmhSkH%J)y)v*m>m+R=hvz`wvbb}lH;Yn} zP|9aOG{UCe|K+F@^`{OSGsT9YTI*jA?^<0UmT<Ck*JVEV%UWDv_VT6JK+lnZAq;L3 z`i@e}QM20QAmv3~R6&E(V?%L@-11vMyW`OJ_8mZ4HudvSG7Xg<6OD1M`7I_}2L4+} zMK&-0;O|y@<tMmlqWLHj+-;?DnyzKWj84~)Wg9F}r*jroPO+V6Guf^?d%Y7b+x)+R zI2w0dN<)wE`@waq)iRc2|H)<+Zr1#jq8ft8-a94!?NaD<q0`Qz0tSxKgkOuym0Y&5 zmgZmSv-oNFmM772J#doY(*?sdWb)FCGok5NK*=+OXN`Xv_q860_vv_h@As7(E|TiQ z3++^D)zyJ)iKFLMk1&0&%%igS+U>u+rg7A63l|dk9wGx2lkPj`OzWT(y$eq-4$W>i z(y+U{0)+e8mvN6Qmq1s8x7@)TifczQxl;M1JfHert}8<76`%@i6HGRQOc~KO5syj^ zl*X_*W1bRO=SK)Fr4yFKu7@bXK6iJ|@rx}%LMD%^ih{F!0YEjqlhoEW@bZ8nc;7^y zk3qB#Qk}scQLBXedYj6ycVZ+R_p{W70D_2)RLzjH`wI<}I4d__Rp|Czz;qpFXZY3; z!6+4)8K>0M6~JYQy8!d@ca}C8%VG8Ht9%H%KUGuH!W~B|9L+g>w)rDdiBO?+X0d9p z&ce`^o<WKc%SbvSNCnD%%%;jREBFWBH<=ED1C3|<<gfOpcB9~x{H^Rz8phWQ3H?r$ z5%*1H=X5@GuKL8lSA|~^vf!+(Of5c2d7N?K5fGW7*gVT;ca|6+w5<Q8;)a>_H#Dup zezmG~4TV*)K<umJk(7u+osTau<%6@Mmadf73RcuB105@ld{;JT8cWRVa8EwgSog9# zL6y-@qb#M9Co1o%|C7Id*K+;cm+}e1xZ1;=5)FFJRL7s~b`~66@oiKGw;R&(%7pC7 z?liJtE(>pOtm!xjHApqB@2)yr7LHCSWU`?|7Oov}4DU_6sjHk63N<e;1au<qd~gVD z+tRi~-@vFoPu4$Pzs%;rsgRG-i0ORzXKt=#_We}ISRyNA@MpNW)GxV{vZ!#NsQImN za2=>q!aU8HV>&PRK?3gnE9FY?@X%1S`ruQChD+Wakns;CdvtKmBRI#;8CHcm-;tE2 z_}n(5y+6~HF5ANCUHccoh5fRlrsX>Kn(OT1YmF@|@30PI?;U9`f}thew%|zV_dWm; z()tV&LxkaOec*+r5nN%Z^g)WXDWY$Pj3$-GR(G5IFT3^Hol+!x5+#?T4~2c~T>ux+ zo79?`&fgs1Ez407G5ey9p~p~I%l1jDU`}sZCO2SoqCtX}_0<12Eorcb8Aq1k2vboa zCd<2S)V}sOCajXlrbEvn%p5&c-?SEGF3VCOQ2*0~yZj7fMwWDse^1+3RAC-@-Cmh+ zZ=c!BO_yE}X0}27u6<N*DYgOeQh>U?@~gN_L!_PlYT;`KN;w6PqON^Elk#F#Q~zCR zqKL#*phUB_l&GK;0?7?N5SK6y4u_J$)+&3{SNjeviS}BhL8r?6<DL>2*t}Ovp+H#n zKD_>dt95<p)`(Kl&=yDV*E=OYX3@_0P;=y8+giXA@v7tzg%-RZ1Uns8qBK&!h^hNq zCFFrIwh%u2J>d-L5ats5I_MzviI7#iaz?cB2nr8=t2!!orwQO<+b4hTOfWtA#<Lt| z|L&RS%S(_MMaFB8>Q;${X^Af%srxIFV{{nF-!&l=izxIakhCrz8jbTDRpRw@2l!RO zx}HU*mBTwBc3thE_H&<}R?3+c>d@DO2Jy_AtUFD9VJXK1{z8Equ9#|{LU=;%lIdi? ztJlM0-VF`DpknOmTM#E=i%;LbKgU@3G_?cUL@gRTQqZ@w#Y6t&b%R%muwNbB`@B^@ zE8+;-Qfhh5I-y;7=T5*xtfq^!X-+rS*FB4*Q2$MnP*K&^2kkTMA~<t9&b*vwv5I8u zPN#*WE@mHVasesGdav8cN6l5%RQKx=*UScj-@=_-%MNuxKrk(VMr?0;6yqS77ckkF z$gK4^)LMvj-wlS3s``_%WgZ?cvK_mtO9}s2lQXz;#wbogc&o6ek&EM1Ts<gM4=0gs zex(ARFu~K8->vIR#T$I5q>qfZoS*+G{+ApflQXU;f@Yk}9&~%AS#B40Z+qQU!x~5M zydj9fnUS>m3gPBM?Rq{)k<8L0kZM6%Pm9%GtL3&U$rzA4xJRXGkL(Gx+f0sgjh&Ei z<2z4HB|K2a6dYx;;?#lPJ*o2+T+$bV8%DI^9C+VY1=gQVKg>F+f_!o<AViST9be;F zhf+DHUn~4Lw9Lz)_754(VtomLPiapV`Lx5@P$JAeSo~wwVVdSzOA5_XARAInX%`07 z<!eWd`NvN@5I~4vqu9(s%MHk#LTU|YBuE8znesZsR~xsl`_j3;mI^j`kp-pOfv~fX zrk!dT{<n)l&oQI`?t@$?L!RAbKKu8`Hwv@f0_i?Xxv5A!nV*`wVN=%e;lX-a+s3G9 z0sqAlK9>KV@h!fXCBy0Z%I$HpQEd0Grht70Mn%A6pT=HW?04v&R94F%aAp3`V%#1f zu2^>KxVemr)lX;%|I?n?=&ks7)#2D@N0Og^^}6olj)DHQ4iLBP7V4lYEYy;!$Sa|X zU!LRUc^#(zvb5M-`yk-3<@UdK{I^d#f9p58N9BlnDQ-iL{c}cgXr9mNvUS2iw&c6d zhd=nMHmZO@66Ss7&EqOGbw7O|7u7eqD*3AXxMp=!E+ouctwV1V`}n0tOR!g8vhIJh z@4$+HmbT9#)DU*Z(|JsB(|Zat<25YETfRSm-SDl8N<#&-VdV@HwMP-0$p`x#*N2=H zToP%PX?56B=1?w9+v7LU@h3F!3tt=263(piNj^zIEb!H{X*+lJmElQ`fkA-b|G>^l z@Nz6NuJfjQ^fY4w@ea}Sz<0#K;iyzVX_!?ZuHFpsc~Sm}sGSMm!ruYn5AL3A<W z@+Jx)*D!NH$|=NQj6rmd#{f(jD1z@ekWQeZy2NJm!Hw=nj^W)~@_P|Vkw@;JT-=jP z^h7(lv9!z=1TMeq!#f*LiV7H8AJO_Ie*&q}Df=YzT$P*Z52-JjZ8DfuG6syo_(j0r zeyrd!x>L@Q><jigfiPEEM%I=!u=LJz>F84lO}0=hHBPFuQf~|$ZQ%fOseKQ(*5wkw zEC0|fbNH4BlaBrta6=@|y4)TbE@&Rf1aBC&94khq+ppq*iq>$|aE4X$wmK<|Q{;+s z+P-hI6y;b&gR?!9_gTb{&sY&W)%KP%_YIKk<?!W9C)Km_^t0c@AptK=bB&}=UzxPd znA23DKiS{l?P7W8P8q#Ajorbx+jin;BG5VmRV<s5{!?`x_twYhdK0(L8$R8+Xu)B$ z)w6;j-Zo^cE|XTDlx1_KTwEx?)US`+ijd<4QERz<vV%jp*zg-k->H7XF^+p%XwNPj zrs?4lxY)bHQ_V($We84H?d4gP?~efd(FC8-)n}=;-y2zPC=Q&jB;HNwY@DVEMZhf0 zQ0;n!ILjs`8#;A7v*l%u;4I^zeGYl$6bi_j2vTM5>*oY(!(S$*jQWN!-QSaB_osiR zuMXElVOPm;MjJog-_%Ofh657~V+U!a@2g||{vjrc>ZZ4Ma(M9HpKh%GbWg8yi++Je z`$bW0*f+czBU70s=%Ti9PsMy4Q&|iFw|rhLu_(I_0LXcCN;o|Zg`Cuq;rT`r<mW|x zuK5?M>`>%Qjdl?ZRjbeR7T62fU{7%X=M7{0&QAXokGvYs`snVOK=T@wW(Eepl0>VG z+%&H)0*)OZQC$6Ok|1QEXIcRilbvr>B)^k}oiH`Du=Kb>{<>vF=coTzx0e{A@`V#$ zTK}i1fz<N97+cM9Y|&>URHilH{tPeR5uEsCGnXiiPdSxB((FYxpJ_PW>+f4n{7yof z8lI$CC)%b?^onN|pi5aK7~qX--LWryiW=LZp>iMP?m2#X4#NiFe-)j;Sr+XYEOn!b z%3jlCUP2#@B+^pyuM&1DN`!$D5LxY+H}Wg5u~fRVL#C`m>N+rQdDPwU8C6+%{KR*a zNNmw<#;m;IHl##0JkX5OKX_sU=&#(w<8F=px3AH)q5{NC6{v!)1xyz#Aj!0VDcYIH zgMaZsLavAAa2I_!NwHVy46lcYwh}7Q&loOelOCDYucJD=)wx%t=so|IddT9}=g^?V z*hZ&@NJjJ)dik!nNpT5^QP`z~j^qBCGBc72DWCM@!G-M5KA=p|4H?3gM<ru`M|qLG zQTC5O?H{QkxSYdYEy|kpkw>t1yXP{{IP)xyU=9R4cy4h0DO4fV;yUT|-jZG~6nWF# zxYM0-ch#M#>a$L71b!lx+x4h;lHfC160Be>TCu_!Jya9%x5w4=CIhFtWPA9;viuXn zQeZRG2aB73YrdB0VJcdz#1aX=^pjCx?_5es4GRNb*F~3Dg$Eb=6ZH-T$spz=MUj`y z`z^MQ7OTC_t@2!a3*4mOS!w%{>6kQq0Wm&)_dJ&bCLL9`DBFDRE1M4m9(HL)G0G~t zlq|%GT#OmV-9yvZ&W8K?rFQ5tv@DPQvfF}KRwS5a7I3YWGtrhs)9pVCc)kt#rqz?; z!R_z8$ISHu`L`ud0r{P1R|U2M4Hp)@AH>g-6lE+E`F!MAeVYRK!7vILo7}mNLKYmF zGb-?I4wK&o60#{S4e74ZrrHiyS|$(|YK|qep+lB`+HT|SeaT7c5*8_{UoG#ipug`D z@AcrKNYvH+|1(07?UgdIs-BBmEGPdjC6r%`S}Iqw@ImtTm1f4vlJiV4C5DQT_guE= z`H|aox2?LxCvDCV6OQf|p}$|N|A6J~8<IlTMv4?kVGsMQb5sp0%8|^5JEygt)SVZm z9@e>&SW|E-&L_>fCX~)9GNQ<5&WZ5mBn^j*S?Xbd1XxJa@t)F`Qe`G(=+ND{_S+Ur zE*c&IGH6n9=In?6`6>q-9H4k~N$So8{T0KZs!3rN4flvo6H!+zp@iG+<2z5xKa>gb zlG@RIdkCi0O_iU>X^vPHl;$sfIyZH6H2-6g#Zb$*ENRHSrNe}6-~WKMX{RcU)t%~V zo?-UzFGIx@zyM04k(dy9y0|LFJ9hl98k+^><uPe*MhO#?&i@6EB<?8irOxT2d@9^? zZa`5wupSNuv|!E{E;wGdddT5Z$*Td~NwZP#^IEz`W_B5nLF{yKj0>ET9QDUJ3GdRj z%!ro!&_eT>+li`1sj;c2QWgvmJ}=k1cUvybVG5~7ZN=o3MFr+|5p7tSa5<i%Fj;J& zg<cnlab@EYVb0e^YU=l|K}-A{6USVc?XF5=$(&*rHp9n;`EKq-X`*<m-2Td58od61 z;$}XssqqM?71%nzqN~0iPq4^R`zC&3xhu$z=U{m-qm}5$E-&zK9~a7~FhVUK$q04J z6h?>&+^PG(y$niCR8*V}4sn4?S?wYRe%;+I9U_^R!oxX>ia1qNLQZ;1pU`^&;k@n$ zg`p{10y2{ZPZOTIW*PUx;;xCAiM6Oeo8MInrWEB8(2I&z2>3$vpP6QVp_<@zr^Ll{ z^zL*O_Xoix1siD*?NoB0n)^lIc{|4peS74sL!BA+M*5GP^!Fl)r*)4+$||h_KUkRK z#nB{|YS;W*#;jrLly<5s>@l&GOo^Nk=JDqFAoa3*G~NZzY7;q{k{M;?2Zv&N>GOFN zw~D#jzc(GCTCfyV3$lmu#-g_(Vg<skC$x#gZ0|qYu4ok*j<EpE-Pnyz<0T(*feOTO zLdgXFS~^1MObWCTY1rJsOxJ)?#$q3i%bFUpaAS=b+Y`5ac~rtGs#1}bcg5Y|)y_Y) z+uSqcUv&YQU|0~cn`1!iR#j_w^fJ)>gnP#2Dd1vR&5M-xpDJaD7I&ZWNI!Iyucy4g z9KX92ykt2cWyIETVOy>Hbs4n{o&AKvgPhHxC{R0@geP&aZO1qc{f}fs|I&{%HD>C@ z>BzIN-+<KhHfJR2itE3hLa4cUl2Gm_=z{levG1SCUM#Kj$K`&+LvZov#6RyXT@h&| zW@7X12YbR&Q;I!j-fjWYXdmq7v^mL#wg?vY7ueo0q13r+-$ZXX;dq~SQ&rGP+5-k# z_wi?Sv{NS5BXooF{X;=$A7hK=2-Z{6Z+51r#s0&Ux5B}QTe)Ps1L(xkFI+CK_5=+* z-4-_qf7SPNT&g<87P=f;%c}(h-d)kP0D+OqOt|^}*6{wbQ1g8L5z@x4tu-c>rShqw zwk)G<z{|gVGmr(Z=88DTk`@!d1m>1rr|2!()iK}vv02UXQ0=(MxE%YzIbfJI!`S{} z5@Q8z9iL&1@H~R-Vb`o83Dn{yCMXJaiTL>7op94_t-5Tv;Nqz(N<<_~GwpvW>=HKI zvoI0e#*<0%8hYM7-L1<{>P~m-X&q*aEHO(u4QFHfXucd_2@5u<$x>x3ikSc6ZiMhH zRVXviutlAj7EmuG>*;Q%u;6gfp%<R0f9({(q)g(qwNm~52BzrqsO#OwJsqRJGyxw^ zuhcWAeX0)?1UEI+c0AH@+8gm>m|?`xDm1f1lbb?^4*dC08fqywg0o7m9t@7ButL5) zt~v`buz=MRh##+H#-wX0FJQIPw*DehuP{%;mk};UpA+177a={>eF*8uE}cEQIOmZF zsSe$%v%R$w4@`UdxH>OW#lXB-;@iSOV~Qsm-*hGN!x)WDo&*`M-XaokpgfM}Wr}S7 zI5IMDq7`b+nZ1=Y6?}DkH+LE<*vwI&<+r-`#)~yn<%uZtdkm~abL}w*0VCs2@62qk zGZ4F*36Hu3@{qsmU~;5V>d5u3oMDZ$$3rFJj@+7)%_zFHn)xQ(w1uH(LGU^EjPE2y zHfWZ$VPP=Ip7ZLLx4-G<Os9bO-Pk5A*l_=aOE-P9!x}D@918#xF`X{@BIdeyNnmh} z6F}4%l5|P05rG%dH(=&|7nbvk(%2AICbTTWP_D`H$=tyU5=u_8QB$eb%oubOk@g-; z*Sfd>FRFBnD!6Sjp6oXyb>GESm%;HHO>aY0`sBfzbs{nlCm6WpCXVkd9+tY%|G=B& z3RTPvZ^2srfzc8epl^09Q#gVq@^yfUs&OO8VX|GM?c&y-jgq`{P3Ua><L47D+%u*L zf{BDF!Di05h3o}b_Z~ZIR;vg*chkY1fT%$HrXhWcPsc^Q0&eZRLChIQ!N2llI!p0q zT=eeYQ4?|9h0O2@R6GB{xR7AN11?+Kcy+b-zVr_R8Xs~gr^h-Yu6X6)fmwAyjx#NT z^y8sH-y>2*kh5)H1FNX7(69(^8<-l?kC%UC6Ap!erS;V)BV4sis#KB)s3hM4od4KI zG0ctWHBs_bZa>OOBbzK#wX5blJUzE>iH%P);3YYP6gouM8PU{SV*4IbpcK7FY!f*+ z28!|=8F=;_=bY==fU(n@rJOtrJp`YBb7i_P4xtoO_kuEBv0X{C!f(nw`n90#C0pru zoO0!LzF+N_uB#chahW@py^(ZOF;sXmT$=;lKg5bsDj;4!D3apu_EfqT)G&{mHqyv~ zX_Ym{=H;{B^Qj#t>b!pAR-BW#ozNS>GGf1P<^cZc6TF%6_6-_+KVQ*e9=pJ=!o(3p z`c)CgdEHiHAU<G_DCp^peW#|cnS7q!d&hO;k$+Fx24~#c=&;}q{$>MCF?4husZudc zaUY@?Js6tLSJ3Xg&>cfjp0(g7_xkLv2yOT#gavR?5gxFcEu1l#zLISs?6>MU(W8Ca zUeo0qz3xq{Tfx+E3%C283InjHuIS4r(2RgdT3*7Uq1QH{+w+X<yZnz3S(S;eTk)}7 z4-Y$KC0#J8O2~etzK~VE$3EBw7N4lxdt)xE2db8mm);Z!#E79QKZXX`eQOk2K_^!v zkb$}$iv032#gnK+1m;7#jvqoFI`mq(OGLm!Otw(8hh~htV36Qz-}!*|u9dqOx^y?q zz#j%ND|UQ$tA?qaiK^>&CHWbuM2PIzzW{*E`8=^N7JC$$u2z&8n$L&p_{(x!OtyF$ zrY!lUhq`Kfp&~_<<C~%h^ojzl_a^G)RIR^wtXA>CTw=7K<O1Hv1=<$*2bVH0;3>d< zG3O|K1CtnN=elgamkU}GFKt9r<S?}`S-w_Ro(&sn{p?Kz$#L>rB!>iC9TTKN-ZG`s zvv?v<%xqL`$gEkR?k#=!;Mym5C$(`JHa5eiRHvvs|JiyLQ+F<xxP#DA2JHlaWv5(d zk9>F7x&bExC+e@)pSFmx*&vfG_gf>;-J&Alr65_e9&5r@Gg0U{iCKfXhp?K3Uj724 zN50HfO}PS#=9*ZXP5Em|)CcTF)#_(n>-t6?4p||z4^r7vfDk+ac1F^ej&$3fnj<8} zBfKox%%1&Ski28#qp6-`Rums2l~LwyHoi(-q_g2hX*K!g?6m8OD{=ubVrxZ5u{`0r zSo`gs<H`*N&c{-(D$qK9#;vTv6L0KGeRCd_tpo6&Y&{Ri@WqPr+R8uP^`WIJ$Fu8D z|Ge|o-1qt5e8qy&b%l#7XLSwXf`ScHRI^@%$Ddd39Fzuzz0-~5_x3fU%so6K%k1*b zyj3{gD2|&K>~B^QCVtEMHYd@ef~FkUzWkMxq*}VYBENhAunr{s8wx`jDHj8RS%4te zvaZ;&+uf=zO%D}2<+H9Z-hOX|s3!2xX(DHducDo5=g#Y^h+9D<^Qd_9qefP5U<+1B zQ@e682vh_(#3RhT{NOQ=&@^Ore90GkI;ZLtTmmk*ko0<1MR<yA@N!a)seB<!j~-k! zs*7lRMgio6qzMhr`|&CY8PL}IkG6aHE#1F|A;;J8?K-?Ss>IEZoUfhT-BPi@0BiiI z=#l3nLebadxJOiar=Ej>liOV}tR59OHWO6l^o1C8)qecmt8zbR)m*ns-VaNc?(!r3 zG$x&^oZa2=`qz6+T2R#Y$?`i3KQ=8q|MuF+^<ryR;&lCn%4`P?R}M<o%k<+9X`)Qy zO(9Q0@KHbzmd$pKufyTB806nP&miwMXLl?7%Z#_`TGiK;>2f|^KKL4(*QeLsrxZ1J z>}l!V<Pf44`e7_dX%Z5eT6)zIbJNWpYG}+tt+%{YZxz*MJd&sUOuNh{@beE>Q_Rb( zPGx-63)5+1d(0AnwmbUFv{g|3MiEat{(xqH!qDJ3L-R_VrXLwQpoJ^bh(a~$Oz8fX z9F<ICqH1W&w@t?2frq|Z1fu8F>YV(%GUT*nN*=y=IBOvn`-1O+u-Xrosd`*|qm1J< zjNy3oOCR?jUJr-s_k+3C+XU3B3x4R0jW)*Ug$j)U&Dtb8`qi&d>QKffX*3TLL1dif z>zJ`B*)X$?Gw{4Ny4j`d$TJJ1#k)GDm7<PQQbq`9>YSdf{xkaX31x=>M(^&9Luq0@ z*C6~>*WC<%<!yw6_5}8wk|a(d1R^g_%C<7smNkbc^ycpnKxJ92%cI9h!Fzpb02|4| zDeV#IhxTv&o~IT!{r*VR>hE-T=ylh3-$zS0AG1pCFUKAvkE(?gdfiXep7HiQ{lY@p zi?NZyynG9h@A3j^-4h;q;GZ8I)G57GlX2MDFp%->t1!$>OqdmeHks)lurmU{l|;}i z-8=h!x{xI)M_8NWuXHw*SpU_u)}`D~)(o6Dei(NwWbKx26oRvD<71(d>}T07w}3v3 z;KwrPrIGZZ9b$sHFRS4|b{Na~j1cK-a)g)r{@%#_Wdx4ZJ?^aAtzERv_nMbzhpN%p z`qEV3rgeS!Ma5RawEoQd2y+LA*@P;hB#;|Re6^X{rB~Q18Ppx0!Z>f^41!PVw-7T{ z>mwdO1loW0v#TU+3fr2&MXZ$}*rKLG+?fKJNS7+hz)0@$%?aulP{(@TDgs=mh-~<p zQW#59U)9pzs=v3<<X<?6>89@YYsrVVxD<&aq2bACKkk+E)Xo|GtDST=P_v|TB#yZd z-pDegw8~?nu`2=~C+BDzh38yX_YwV40&8UuE?lNSmK4*x>2V6rFYNlGu_|eLZ4_(9 z?=}34TWG|S`oP-qZNtSf;oxz?WNEvVr7h@KcP+x)cUV-bup`$fB-|L(36%~j9k01@ zuaEl|r5j>Cz#~lKr^hw?$lmaEFi~WB56?m}uaVBH8&b7c@n?B`H_6_sMRU}xyg>LL zNM(Sw48?s8;nG#;-Y*7eIr;im8Z|{$KcFC5IeQCZH|1Wjx)W>d=Wy@YjnH1@Pl$zI zki|DY+Yi}2vNkQE%!Z*Xveu{UFnvgVhS5feD^vpy5$}c_njH}XQo*5&2Jo)PJFN&Z zpJ0>R2n5;8r;6{TUZ6R|rGfMzvCn8Y>mMtAFV)-5(#{44?jX=nIY9S1i2Vt^s+}+` zwc(Hm*Gs5;+dtIh9Ji~ucP>Djwxxb(o^M>Cxaqqdkj@;DA~z{<;Gy8#bc9jay7_(O zv@mPTe{lVi?<ib9htM~Kt#~$C$EkUgJalc{HcnANou{g3OI&c8<Hz^k2Jdu7jw*T^ zD@yeA7N(dqEA!h&wL!H~A2DfWZvI)&V3Gf5sgP0eSz`psluk)LOm2%axJ}9O4NLKd zxjQS(##I%_#k;|Gd%Tb#V@)MDu$|FQhN^+*;V!)aOx0gP(C-;IWmsCvo%*BxnYgp0 ze#sZKPFo}=kv~LJd9p7UW(|zw*s$mgUtB>WSJ@1o<lR~EReF|^uWL()7h2rdN2kyi zG%w#w+q4wD6<+8W`{*^iwxXXaFUZ9iD%cs^n{{_sUw>jUT}In|<Xz#cHH!PUeD`Z7 z^}ALRDUS$w_2(?0JJ+Gki4Hf1|03fS=vt!x0jdiLKWdilE`V4OXBg)gA%n6|@_zdL zA+mpW3T6E*#f+jC!{%`m1bDTp)7a?bw}){bb#yy2T+^DJ4e`0VV<k2<L%C}|4SF-` z)EzrNc5y|FPJXO*B$~w>V{#skE#JIuCtzeuZQG{UXj)bh(Nty#uN9U@7#}bTJ3^hL zJoCHjUwaqB&AkjhFJ?n~8oHdG0N<{sXegdOFtvK2UZ`aa{tneG!an%f`P*OHHyR<J zKGXR;8`VAY*(SnVp+o54J}@Fi%wZXuX;`nH$h<k`MFzeNbsW<W_6sucE84F6C!r+d zjBMyKAlYASS$T;n_yJUaz{IN?`46}65`>nE^i@3Gx(TgDP9YQrXc`Q1kEi`uoBG<_ zy%rbpqiR^L+nIjnR~gBwsvu1HyXfC%Ix63hPJ4J+Q$Qf><qXfxv!3n<Mm4TWM12XK z)O*9?CT_1E(nAZ1q4>&YI@~KoQ2bYIHHMmXQMYT40H}tj?)h94;r^B>I4eE@apaG1 zWa9LzlMf|bjZ74xj()8o5J>-7(&nhj(uJj2BcAE<1d1pmxv!yJEj-6F*o&(SSK+tR zbgu9bR?5?0P931mVvfS(U`m_)#8rsFuy%e0bYs2MIEg$a`FHHu8B1&$n^Q-up9u$b zZ0|?M@as077CI<2qH^bvph8yLH?EyWzW07=(F=ERT?*2W;E^89(z)M{5Y^N(k0(p5 zRpoDK8hNz31=d4nq?AnIz4@E6H9j<ge3qlU;!eEOMDhRdzk*5xHrm>SO;5B#H@XFz z5gYu!Hw~@xK}Xd?Ds~3R)^eHZYc0Vh=Hhcwc4<x9R|ka2Aip@k_e)^`i$cHrsq!<$ z;{dutT+j~^3wl#mIu;2%kQ__cp6ILi(VXj7x`xV4qhBjjP@@<rUd7|3=RLP4^U+oD zT3_I~cHzC5WmN_r50a!R$^}st=9AtxDrgaTZQ)#~K+jWi5yZmnho8qj*PZOFC`Xc$ zi53|KqrMCZb{G$@PhMaM56^x*6x}WI?Gsifxlqc81xd6WzHGn}$rN0=*HzX~X`p|i zowhro!&3e9kdMFF>G0zr{PEs7+VEjZJyYO}ku>@~ofFh`PeZRS0X~7dQYxA-sx`;f zO2pZ1Q&WYO(l@uAZ`}O!NR@7jCXd=YJ!fFJuIiq`#6K@talF5rVp{G5=>Lcnc%DIM zmzR$7H(66AA2Px8HpWz*nKPk6wo(~7ZJ$()o?8%n49XdK_Sf8XW0v@Wm%Q&FhY}LZ zWpnloQfhqhicklaMr=XL<(B9(I|k^DA}3f+gsJiN<NAuC<yRA%0CVpWhU8=wvfUbC z(m~05*K+#5IPhn#dd*30&%)&O9|yZL)EX9Ur(Ly<`noDGFq<z;Al4JUk<{MqiJy** zwP02rnD0s(*9W2s4|L-ml6&{L=qfl44iIEaq+?SjYzY&vw?VYYf+oAm6jDiMl=Le< zU!~3d@m+69_noY)f9;U}s^VX_KANp~bBtfvgCT$02=o0{(`UcvcZ*~K@lPN@Ms4}U z-+j#LKz*MuKbw<x-O~n70~Vp}|Dk7nv*|8_HK%N=kJGQ?jh2+7lyn1&v?x*C&c#4C z1uWkw185P%Y}%IjAsZ;nOJzTP4ky${{7lAf1!CmT_9(yY8=eE<CO6rR|AbfrgO>E| z9PZA&g$&_T{=fRK78Tg|GWL3Gx%~d7Ht(eZ|Dw;iBbHU<K57}ZbQTY3rky%voN(Uu z<T}kejp{=PsfpQKP5;`;gwPfAtu@ENrnrwQP-E}3#jTX$dpVsc-063ZDnzR?o^?&g z8N1#1%`{4}3fhLx*(73JyMKPJc#&xNXA(@?i#u-_0pp@1TTn2f30DXM_UI;<YSe2m zZR*n-|2#~1k;B?DEMToSUim9=RjRD4d8@<%Xwhvz5A9s+fB@?5G-_&Iw$|i8?cjFd z@(W+J=o`U7H|CgZW+Mvm5AKxE;D81%3d|HS!PInO^~xNhEDta%Y4VHLCP{bxY!Gul z@x9+V8^8o2B6j9JpZVK!ArB6-d}in}qJb*%)K)=~P+ax<{<^37+*a?sE!Dli2fKj^ zC#Fkgd=ml}tkGG9I{HqPe2?i(H|^5o6m>Jm1+rXV5^Dl_NBWa;XqmW=+oDa$<<|U{ za?=I$+tn7;YUCU!&4?$9kG_i*Q@f)emrojBreo13e>**#Z!&xvbTG}4B5fxG>Z=fe zqN)C8b;8BTH!NMUCYn*^oI?a3<mfs<#$#%~@t}5?P-E9?@=1;G0=0h|C#K^6NS`J0 zt;?R$o#63<=Hq6kli^}izkSDTLBElbz<nL-qOg~c=)!o*B#@(ck#ZCvjPQMHqm%!< z6n<@X3%{ols+DazoD=T$U2|o-e0i_C`B24kJDW|=f0NsvvxCjwXUSDpN9T9#Y$RcO zH>HQdL2PU+s6H@Eh(h<U+Erm`fq(FDYn7k3tM?7+!3me)&?hJJET8c9;XidA{M%qV zG@OZF-Bk-pyllbYlV`l;1S|q(l8-RdO#r~3{8HG!EIAlMGSz9?RP7;p13SrDH$y@_ zs&;Juwj;~aH%y7CK-w~yIHl`nSr!OVoZkXOrup^~ZObHJY8TkOs-jL$y8GY&1o-&k zR}f=Yi4&?wA;R)<Oq{xmJ_94;+{bXCLZ7vU=_4m_fmqJ5?$m~S@R;(fbe?W1Soiq( zg>1ah+oMD{W<SArGFIMd_tD3+3;Gfj+&jvR-p4pOGutxU2#fr@yUSwViezon54A8Q zXKR<_A5!r^L_D-R!nM;B+jVDd3Z^9~T&*B|zk4Rgd-aVG;B`<N?ceQ^lW}=#ZjJR( z-8qr6zKfkC|G6;L_i5ype55(>V-pk=5C+kEsujCfqdy<GVLthXS&>8PIyr)u?#mEK zNpRP1m;a<4pma<d<WSbAgGS=v8&z|2)^)@ZXTei1p{?|dcedYI)?QFb9`DZ1Jvg3y z@SDEuRgjVAT*9XM$+mjJ`cAOKXE~Dt9ClQu$)0{HOZOKLsiGn$`2V`6p7-F7Nur2L zSpD4JH-$keKfwynX8$+7#>aWDru)6K{VwrHYplD(X}g`nM3-`y8f%=G>Ikdya$Fyp zqiyLzpI6QGbM}9a%c1G%a7rsEy1H+n-E(ve?ORlI@8!_~>1)-^al!Kz49g*50wMIZ zkS|>v!Eb>ZbZE|H66yF)(Xy861+2`!wxWSjI}@&Rz+BF9&QhrPa5LHTq`0bAYWs-v zh1UH*I^DSBzuPjGI(?WovDfP%<U8fLkjA|LEU1RD(~aJk4==u5NWfF}R0Wxv<{{0$ zs~(F=4~>K&MfAtztQ&4gW_Z3zduBZ7E!&&1BOw3I9QX&Nt{jQBIlMjKEZm(5a`vv# zm<=;zyej$GDKkoeIn><J`XztOe&dm`<HDP@#Q-$emdXVWEOBS`TLYQk=<1u5fJ*GA zRT#MJS+@a&SSUhahDP^%a(Cl_y^_f+m7Nd~xwNE08Sn=jLS`DmzDp`|?{4?z`}Cx( zxp7Ob)z1FjCzNIE?kz7D9xgt95IY+wUHbQ6^5l4j@p4R2X?>xXx!Y`eMCHrbc3c_% zOa?W>P@y=YXkc;O)iy3`qIWk5cH-{9c(g*iPTY|k>=O?`E=}t9<#V@!ROIlv%JR;; zVLA&@SOYUgx;zW3T#S<Q_^I&b0tGKeaKv8e((v-m--Y45%)FXCt);$9=NtE1%Uj~8 zCXNfVmoxt!<_Dg6LMFQM2T_Tvw0<tyv!=tiUuVWtfElP;BRk~;F%6HF7+MoXOSIT_ zzEH|&xUb@FF`D{ROaLz$hRZSjM_B&^B9W*NF(oBb_xsA_%cOO@J+z@SkgVx6tKrW` zKFzK&l9(fDpvUBl<<@KpvUZ#(SyVhMx-$2Tt0{M)z|z*UKI1{23U6@D*GB(VKhx@o zH(p&A;-xj5F^F*cXoWor=?SYBU2<T(ZZy44jwkGdi9xOLhw#q3xyR53LA#YX<{Pc$ zo%MN%rmIEDxis}?IPl*#onZ_ZyWGMBJX!!IDx&?eBSGtHtr(=0BdedB-P)s(U_3Xh zrJiuR@19oEcCK*e!h;h}&tFugJnG)Kq2If+QDBMI{Z9^D29>xw-#2aF0>|mRL^ChR zEs%#a2S&cck<F}2zE9GRR&2Y4Pd0_S`;J%o++9AvlW(GfOEycCqcs(*P0&N~HycN| zCtbr=_mNu5MYs4Go^#e;R)MCzH&K8y<b8<<D)_*No5NFx2i0dDN#wdj?7M`Tuc6Xh zj!fRTyi;=0v@Sfl_V->)6!7Rvy_%-EH*yw+VWWY#L~8+y{?%rZiKVb86qPeY0`nL# z&mjY^b{eJyxzpTY?;ZZS^#1XK{ejK!=H2kkQA`uDfBh2cJsw>X&)gL}M*ZQ#$h$M= z_kMFf;00cNH|BEUp2mXV=5FS2-&c|Wf9>J*L8|J({I$Tf;wQUp$C3>bU%!5+<8RL$ ztIJMvX-e4WZ_=|EE1sb5(F|wtl5xLdB5UQsZg|p+W;iMQ@z(&mHIU&Te}?47=-O>h zL-bzu`BSm_&sg_s;iWsHu3rx|Bg~r+Ypc4&Sf7zP+Gfaau1`#f&mUX_Bg(~*MueAt zrlCj{puhT`ZJ@-|tL*Ej;b)v;&v#2o+nXnox#9$cJMd4||8d%)_ojSA-=MZPs0k=+ z#Va~ahzH>bqsNJfh5ih;r;n~#B2RpM-kx(e9MW6bz`L3yiVH+grzCwOC$BI)Q0}v| zw|7Z^$GFWXhLUXg4iCom(-LQ|E_(^3PNW;8UD|qysW35S@qOFM(jl(z1~3upvV){P zeu~!e=g1@9>Lz>LStCQ0vcu;r+Jr0v;d22(v@L}wmKM!b5)@XdeK0t1iR57OqJbhH z(LU(zynZ138dnX1ejzuoq{0u4nsZ54%NhNyw(27yV0y+^xuQR8??Zpu_0n){?k)&l zh#0iiht625qy=<`f9`Vx=S?)-{{&&bUpE09Gu5kaw1GZX?2g?EY!FD!LtDjVXdx5E zWvD$A{!}w*WHeC^_IxXBmDwrWyVu=eKdC!V?K#FL?ehOmGNjf>qiB$x9x*AY_rhew zj(VD1HrDUr#<!!UvR;Q%m)pY~8t;hOK7D=rh1%sNY**J^KT;nL42>$WX)WCnYyIkf zt>g)^c**)flDz98PBei^;^k8-H=+7(TFcffdw*8f*keuhA}VN>hyHI9d2+}WpqFoF z_k8-nG-|t2xgK+%C))*Lhk!q)bn$`Ll=$=SN?g{t!k2fTh404YYU1ghXgz4wZ!=*{ z>D`?8T!){v|A!#zXl>1z0DMWAWS8!k6aL|Cqhk58wB<vprOc#XZZeX|Zt8lWJg0ke zmC#~B*Tlr2CE!YDHpyheMxOJ<q_5z;>A^uMaFnTCAUi)&&BUOv;sPT2P}-K1t~<g1 zZeTjkV@UrMQ}T8=t%CDU)uQ1LzeC@0{>`xwF0INY85vBI4ttoIfHe-(W!<a|77)r6 z8ZVvSbkjh_MnqTEEq=9AmB7ZP$qG8>aJ_T)o<$jkxLPKmsfZOEMapp3KGAJgvgH>C z4w}Nv+v;SpQlQ6!uc~SuDX-{%7)F{Cky9~Y=JWaNw95?3iOjeF!J^?R6h72AOYTI6 z_sH0%%1psInug<(e)@lnWDpB7G4cX#Fa6)}g>C$79~`uUX~48BBN@FWfMjZGrReZE zRM}j`>&=fzUQUD*E&lQ0|M-_{kB?M@f4m2%3i4$w<5sspgM|gE)~98&_9zWs#}%Lp zJzmpf6m`r8eh};rQI>kjM?8QzmxamcGd_LYf0r-`{xg&Mp|mWc{5c%lh9G{|!am2N z^9VNfboc5Q;fwnVGfmYr-L0O@VYy8t9```#H+O>G`PvDu%o11*t?-1)0M;`nJwNEh z8xuHwSobJ>6UGSZ03AWn1PYpADZ);Ow(<{MQkxnWniToHkp&G(P{Qkv8l<++Ggwri zgt(nD7Ud@C`4|{GsxF44)5E)0gmq?^USg_;M!YPXt}kt1$4l1%BdAK-xz_x%m=(TA zCGqG#O3*D4_sP9y9;vIeU9QPob00P%JjIua!|pSLZC544m!9u$TXrlYjGS3ncI5TY zYoL1!0JUNg<ldhlEJ*Z!C#x$j_};kRo6ef4%ZaS;L^#}>^H=L_7{-U3*u<2_e_>}} zExCqOVtaY)?*XaI>{>P#-(B{^zY}g;-4bkI9^csvksrAkOwEGn5?^}!Ry3Hp@f#1S zzv6!xUIzU+UnRDS%k^#j#|5FT$n){k0``G|qs<Ww^o{E~qkmT?*|b<VZr-IaPVW}! zrptoWue54Bf;+SBpU2UEyWc>?d@{LOJX!y>AM2A`S^2XFHkR{I`+@pzZmfeOcB}oD z&0F)oJDe>ezg7z0fR#4I`Y99dt}&XY)X*@y?$wkH+yeQ&Tex5R8g0wq9XHR=EI_O1 zzm9POTu}jf*AhK^Nml*yv*TFoBZ5G}zKo7Gl`&$_Ze(4-8s>#)?o%5QLw3hE3>r<Z zEOV%Jd!A2o`mXY>g0{SRYue)k1nm}~j0jX<;nq2ec*_H>Q6;CvN8>~h!QiEnkiwP( zmZ55<L_^QV^(3b7i6wvYupEG0wzDBs*`)X2I;D5?;KqiMW6?7u5gl;m=(Tq}o~9Bz zWQm1e5e;g}0)gdCBP>QueTV;*AFAAbx5{)6rHxQ;-$Lt+y}$20h>Ml6wtm@M>_qGG z8QArFZxlKYDM*$Gt|Qi#5?(w{XBvInlUBpZI0Hz#x{-63OQZz^EFg%y;sa%gf6e-% zTu5v{90^D{`$eaAQs3NZc3f8!L;V!PVVnTHTcme|6AxegY^ls#5+|@Mqhnt=|CSr= zZ^V&I+^WJaj5QlGVgnEMx5TFunoMFs#w^USOgT|4)t%?S{PfQ#PS(GETBv96{N(QI zrXUmB^)qj$HHJz9xd16MYG{3-q@}JyTpj8<UB*8=+g}4GWLCtRmIS&-0GwyCtBx(# zp|$*TKe(@x7(s=QmI)JEc7j_kN-tumG)Bz3vKcwXiq|)>&WA<dc<H*#3_|AxA5`>i z=FmZ^o=g7<)(h1eR{C66Na9eWoB~mbrC1jr{B2Q7h4hOD+rR7o>Ju|gcwyWs!gY_G z9>w)1N6+v5wI62!7Eza5<kv~pt3%e#DYcJy7IMbM)-6aLHp{`Hm9hL`=i9e(!<_g6 zoK)^R;mh;;gceXJB8*oejR+Mzn>}@^H+(qS<z?yHc;>Om8kz_RCO#8!aOQ5UrZ{E8 z2|CXeoCyw?E$bk_mbOr(d6~zvpWIJs_y_Qt-Yh7#aSdo>5JX9E(!F&+g5%ep>zMtV z@2H#tPqXNVoG(~R6OZ#}0;0k3k_HDR?!bQ$M?oMboz3+Ce20i95+Eu=6p1u4A>}x` zxNBuXI~#Zm#=~f9abIe9ycc<=SRs9GTz3;P7*F^jo#sS)?GoQ`1S4vh!nZA4f0=?= zc%Nr0Rl?(h)wgql^;#U7;KM;E>V2=dN1p{P8na}IPT`6(vJ`IieY*05H~4Zh<V_gU zD76I>1Y-9OV9r9Gr&x=4E{;61)kn4Y`jx(YgBuuD{Pgrm)xAlCLO`C2a`iLGY1qr! zyp4}albPYKL>(r-v{Ol~#l#AMM`b}<a#6K;ec+H8UpQ^gFwvDugZsMyfdtDz$sv&Q zBv2vXkq`O1`X6oo0e(8@npb#y0tx9;^*2QH;L5Sd<?c3wdu6(9zDJ(1WWIe3YxN@N zoOJ~u@?|$YbCWt_g}OB1!XGIC^p=yEeO6V3QW#dy|8RD`Z@R`|^8{0mfIUW>G)BsJ z89i3q&EKkV=u58#h{<?yXPjueNX&7pqU|J2bs51M=RHn%Koq0BZAfG5Ya%d*=~F5_ z)l(F{U&GzezjQ7@<8n*=fX%;bx!r<{k8I~40ZpXfBFXTHp|P7}zx29nrCMdbuyI0J z#8Yx#HT>&=c0zqw)@dQ_#33Z|H<?+zQCS9H7W-AThmV1^GTFgnc6LmRyR(EYOE3GZ za&`*PR694E8jZTtO0<7BPD3UxbZGk>7^Ou>0n9X<X_V!E7l}E=qd^(p`Lj0^Ws2XC zL07CeIaJn;nJkb;Y<AM*UyW-Si)2MA)qSWvm0~(=-CGZ%;~1qL>tg10$cBbQioFv< z8tr5O2Wkg$-p(wVi;yRDqEHCL>@KJ`Lgw=fX@bjv`4-^5-`2r<-N#pC{reFcE~5ta zG_D>Y#~CY!DMy!T<zcuciQsqMH@d3nh2=|N+r~``lY?H1NMG0SUa4Edd(k&=n8~C& z;Pz=)*=a5RGrpPX#UdVjDyD99p0>Jw6`XER!lVDhDA{E%Wgrj|*E#c?RCK0c!l$lY zu~my;y9|7s>a0^k?Cm31aoMMYn|TXy2MgiuIZa}z76_Bt33`6ufXp#W?X&SQYL?^K zIp1>fc*&8yP)iNt(O>eR=7sABcT!h0!zRsAAO_h+2>>`_kwLUr`v1Tg0gp6IP_`*( z+opP-D$`Fa>hD?Deft8a$7g1CT`!n_aW(N`^+DTdE%R3uTwNox>-+Z4chJphaB%Si z*%6)vN`0?@`c4KkQC(XOlZ-cC-YMT^?#!im-{Q%6$$+xv2wu=Ge3TBBGv_rE1q4D% z0iYd--Iqz6m5HM0vPk(!26{hgb-SE=0$FxmS#vn2t*x_<&;91bOk^GOn=1$f8@c8q z7_&yGCtk^2lYP$9@|^{Bm;LElVI6PBX~8^*^nXR}k^XPQ9PT?xn%X9fSP0;lo^h@! zy>2OK$A$KLEU-0q-#Wi3p`+B+CN*9FWAhhGOMo3C(<B$64^kd*PrkbBdi|`xG!e9T z;!2dWs+>wxVF5i{9{N?&ESum9+JrHOnjlWvz1#u-&Tpsd6*B?Dpev@`=o#>@vv7xo zIGXdA?3|@cra*hY3TL%Go$W<~Wq$28y|n?sMy`ok4GEJs1`<5sj9wq&&*il0uB+8S zwfwT&G^R{!3o18K(6pLAN99&8BEi$VNuX0G8)=KOL)~J?Ak3YO=7dzDK?iW*bx6P2 z%hh2g4c~4guyPlbX%9Wk7^BceF2MQ|@^;$w#=LL*9F(J;?o$Lj&wSG0<UUesYA5o% ze+~xswX#TLP9tP?|FJR{TjDhE#m7HTWVs3%JUy_OSP@qtvVeM3SxbFn&tGvh=sOPg zqVo}Y$Qp^<uUHn)Lz@WM+FtC46@M;Wva32!Bem0>R4yi5SWA9>ZQW;s^LM=*5H(rK zQZUI!S~Jl~9s(aOn#b2<FHT71Hyj~XHj0Y<!@%viaU+-vv}<^6t`3}U_{jN&$~k|8 z9>KJ4(T?kXQs8DDA1^@^wbvTveGxvD8;ZWkTK7b%tornq7J3)Kgyl<N;3jCjl9Rtu z|Fi^5<u4byhapX+c$>bEW6=KX{Wj8{(fg2d90nOwB%Q@fCKi(c5RrHNbnUorkZ$m- zUGy5vtKA{FFuA<Rl6tOI!CJaZezJbRJ#WMFqk5CK<vaO?s2i$7rI#9mM@Jv(=(g17 zZR-K~TZit#n7pKWrrJ<!juvlA)^&+*zqsDz8HHp&ATM}XW{Wv&XKn^aZq{{ah}kKC z81PH*k}m`jeWqdLVd2=f7d=kN78u5X*Jur!&xr%G#-?m++0w4>`|8t!&c)>Bc3x}a zIGkKrnb#;&$myGcDey3=0j<LFAmO3qYwtz}Nj(GR_f$Z+w5^x;z5|t7=}K#U=FH&S z=z58Emk7~&cenKDD&a*uS<ZJ|O4Pw8i*Voxu%rH#6zmVvk~VR0#~*HzB`Jle(1L!5 zGybZv{_xI0|Ki4ya<*ff7+Y$R<o5G>aP#Dc63`#3HzR^phtDnZsK^goVBSxPo((d- z+@fovR4upc!qXBEwT^pIL0aT6AL4BQHbOUw3Qre#iG#Gr&~Oe7u*gCYO-8*{k=p2G z*NUUf70`Ui1MX(JeV>u>amQENP}*Ia(U3@bhzM0g8rtb6SIT%tFtf1F1zWU}Y_e?E z|K~ZV{zCBUW*<<_lf{LagAuh@02JR&ZiFG2*X#iP056x7266Y^j6N~J6@aFa`?{D< zwg+>2<AiVSCa9P9Ys=In6+`ooSe7fXilY49CnHi>!UH`Q@0g6uVk>3e$q506-zUu0 zN&EK;<B7I8nxw_$<u3}<A*u&4G#BoFB0akP-$#G!W`Y>RdbJ1>w^9?N18gX*6pVd` zozg5QDQgtSK_EJ}tK*fTJN`F6Uh55CyZ4R$coPY=SO@tC#-@6*xifW7YM|tZ!Yk2Q z`6Q6AvQo+pu}6K&Z)7RsBjA$#_Z0IWlC|cf%#B<*NooEo#M&w|qOC$zQE84_L~u_p zr@QTg1D!uF$0LOfUab~i{8fKud1fkfc<H`B68U!_><y#vD3*Y%qxdcGTMRn<Y$W5d zD@)`t^mk?<ja11Y4Sn-+qABoljE0l0-Y+js>5=1tqMCNlWzT3?t*4Zkh3F^xrff1X zdKlLN+(-331&oGV!^Bg8Bdnh((a47D27Sc@?6tmtP#EYxGqs*-V#v`-)lm5OnFixS zlfva4)En*Kg6ZtH_D9z$Mt&{!$v({+kt4)UH_hm#9rKc&4a!8|*&?K8CoW|g@!5?f z4#`=isV&2_S-tKg+TS)=T}LS<XHlNGnAr-DOI|#hI^UyAdFf&MOVs~E*q4A)y><T| zxp8l%x*0RmK;{(5SVCPP$vlOSOgZN9XfQ+>GNnSK6f$S#6v;ePWTtS;L+07}uYJ1j zeeb<*zvq9R=RQ|w_<r|y?=^hZXRW<<;@z`~kdl?7cO@T5QQxk-o7@PxaQwt;dEUZP zY@M=L%`{rrRpqu1<tF*z<ge6lk^`YmKZ<EPRu*H}RFJHG=5bQX#W(pH%ie?cv}Z1~ zvAl2#wAHP((!KmDN-%xU-O~<pCBVb+7pv!;aSqZ}Q@`cD*M_Fqd3gnA`!Sx^4DfXO zmc5%Y9B|6xt|vFdBcfiow(V^calMGC`xA3eNA6Ofw0m|!*{)wAVJ<&G;-#H5qs!NZ zmJs{lhb~uIS4}F1lUBSj;|Awem9KEDJaUbC(>EAY2P*fPD$sB1ZMoH}!Js=EvOSlI z<aygqv2C-|H4D17MKqA^0*x0Cvavf)hhev|psMCxD{OsxP&&W;dBQGjL;0Q<^**q7 zGdezVj`$*|oMTb=+@aIJVQW49!DVJwaBmyBX=SlZ(Q*RxSbg-Gm2XoPb_+NRY;3o^ z9DHW4wjq8dz4~L)&Aui>O7>EcWAq_8#z54J$K^e(;D=9qPYRFHC{Jb<pyOQg-%QU< zxY>>4p=I@IZocjmhkL*MLyHmzvedLz(1pNsZ4sB8XOLFYfd5+d1aPxSwiQZDt@@_; zg=aPOB#B)m$?41HQ{xfaS}0hRM=-|Uj8qvG!fzA(E@orW;ZO=Yg{v-aUcO$hgnb7$ zXW<31y|;wt?kgBJn7=S&vNMnze_$y2Qj00o!T++WHh%8+Wp5Yzft`DDQ#Y2Zxpa-8 zU)yw23cy28o*#CL#tZY*!YweR<sS9@{?Xg-Vy>$d?fcjfTww8Rj&_%CD{8TETxym( zj0xl4bs>Yb*!A7sDGJxgTkSLvM<-Vmq&CF;Z)j5P#=H;t0aZ|B&5@cHz-?v9|HaL! zi}sdq7WwM(Ost^VwIJnRJC8!^;q?6izHpsM3biS89Ui#O3Am2v->*ZelF4;63tm64 zTBvmzzvO&vSUgAEd5q;;VQu5IE(Vi+;uY)K<Sp2_Wc7;blB7b&%R%zxwj{DU0f5N3 zbV&2}4b7h{tCuUS&bNoghBV$kK(@51PiLSk?dDn*MbkqvDvbZ2AgM*Zsq1YC(xdHx zA&D<pW6Yq(DJGcV2TlPf{Z`>jmmGQXoBkYkfG23Lv-6wVDH*L%-Pst-<tcONslq7= z`!Bm+v2vYgpSw9a-iirS0qn6?fTZ=`k=B#d6b6{hmL~4LZk-!=Cc8Bv>^F@6#U@tX zw2s|luUTC*(dtEC#8X<S;3!1dz-IXC{TG(~^0akET(r!{`qrq|00wg*YSHbB!X9iz zth2163vVG*$@~BJ@kLQsbMrS}Dn)P~E<vSm<_F9RmkB^+g-nuRZ$=YDM&(3R-A7o_ zA9v&bvfLRu-7kQxrs3IK4ga%va~Rj3bhls;or@MGt8=wiB9b?JdbXSl^HQL5CbR5c zr;VQP?rp(fV!F<sJ$?CaCy!=DH0W|}@KrCy4j%Q5v2Xak1?fD6KVIH;dj`?azer%7 zK-Xt~GQhd60`{N_8;ByoT)Votk{o{Jj=d2EbFOo=S&{R!_se`PNjUyuUxO%S<lu8= z<*i-*<p=^O><>kB`9EK!HG7_6Fi#_=vZyS;onj)gfXL~7z){y+PAF=C6Gq4}3m+jR zcpW}eF!{mJ&|xs8Dx|xgjXI$r<J2__*PP(dqzXo5Y^1gQA#ZKJpx?JCXj1$BvJJ-$ zKs0c)NH4y3oyWJt_%npKnAD?1o1UooBY)#eVq)+5u0Q*r{9}+2ClTO(X=7$K&daQv zHAaJZd%WaB9mJax^~(k=sE&l8WS|yS9CPmck1ehMG|?fCnCk|5b&i`6DNn_r{{C1y zjeoHwD7qMr9~nw?lK&a7V~$4{R?8JF?#4WQ)n{($Fc!K*a8pCgU?bA|X2(ba6)f`h zLIeHLxdd~9(368ISTGL{cQVIA>j~KslSWj%oXXR=>4C<`U%zaUIOPfVC2ee1AeXX_ zuhQWM8C8M$X;w>SXnP1Q>F=7UK<;7%PaaxIwpS8Xk4yQz$bSU0niq<+{3#e27slJ# z!l+M)V=yn3|Ih0vmK^^MX%Y-(G)A?li69f1WRx`n4OB7M$VOjTR8jI|1nbyJkRih; z_<#~(o+cX|Sch$n7|deBA*)erVx5L?r<?HDZ<vxgLS-V_$f1rcDT1yT5TVGSAiC}1 zq~VJk?L8Pw^F>L_kTMGe=6&$m?mw-=6+QGF(cA5;8?TZ;=<HQx-Cp?lDNJ^HOpZ}v zO8(g1N!(Z`Q)sz_uTAswgNvfxA{bHf1oqNOxuwVgTi=9uupv#iel{1VV9lRJNchDY z`w)kyymK?)8sdL83g*jT7#}KLry;htPy(&-oKaOvn)Aw|_N;aE#@D!>ZMip#WSD5x znZ%@?b-2uNO-nM&71~#JkE<kLtqN}c<o?@+92>Aq!Tm!+*E06?I~<g-i~1zrZ?2O4 z*v3vp>s}|bC|v`UIlzNpLqkiCm&`CZ{xV?Adrr&$(k9<?1%6B_n)PRdJwH|vAHMKs zCmeRU>XOZO*!p}~XUJS>F1yhwMSadjJImC23%BUevq{*paGVMR@#S)CKYg>C+Bk?@ zffYReQw`E`>`IV5pp{lWQy2Wr!y;8Yer9_7uy}0asX{vy#)P(Wy9v8rB|Bi=zdp}G zdk9?x0~gsi^QxMRIT?1XVA?oI!TR|N2@5cgMmL>T64uPNDlyqw_geSoCYN(rBIQvN zsD^WvKr|KLY0?8O2a${3l>q#vAg{;9u5jFhxY5~on`4PfUtd4cuzynLO`;ZkK>0>T zc5H9os01ADd{}CIB#OW~xTai08Ioxe6j(PR!N>h^IED8a>(o>fyMeJAMQ>+kcWbhV zdkJsgx~544`6NZK@hlv~O&vsE%~uVJ=1l#JcF!8Rd-~pL<-yMspvU7BK)j_mEjCLw zM!_*<p6{qkE^bQUmQ-*Daq~<#ZbvwjZ3K#H9`J_CTvC@J(685P_<i~o$>R>YdZC|h z%P#jqI2Kb6>fLHpRFum?&Rm67tBsH3CcLw<!^3!^r)VMnem<IMB(RjsT$%c@VD;1# zZ2dKRFDgq56S78tGi-0~vRG2&g1%RzB{nwT+w<rUW@sVIy<D+HZqu&&jjb+WI3y)v zI9%SuWaCp@!`#m7Tu5-;eaQj7-Xh01_wr%(g@QC$`&kPp?<unD&Qo$IpI4TeeEDqD zPc~J>I_bK~+QkC#0G90jwpLIve70;XcXk<ffENx{m1cbv7RtSyMwCV@v!_iAy5Nhu zuzay-6TvVafOjHroRd%MShn}Ryv?j*{}N9Je&nHWJ2M5B-DOM6!KvQCokAn;nK#&l z`Xihh-LXQ3BRi{jyphMZ0CEl%?6IZmv~bzi$+}1Qs?&GRtBM6`n)sugS;muMc21gC zJ*Dm)%d7=j!QTybK+(Hi90~UOb>!e1W@VC`8j`ZLE`%Q2Y=(W2aP*DFme1zOOpu@M z=zk7eo6GfHo$aREtDl>|Qn)`kH0+PnWyQ(8YIn0*xPPCuGq0E}u(&_P#Q~dgE)Fvh zcAsPepn5cpneh_K;XpD4=}Vzza@;i{PgP+VB>8K8tV2IlLHsXVOk;`Oa4LY{Wj|x5 z8ioqaPS%0%6y152jqTa{)lVj`S}2ygJm&7bd8O#=qqv!K^A$`z!#l4Pztp@5jNEIX z7YsW+c11sP@K4@bJsHnfedZ{fI)y3W3TzfhUEA$))9+UxnkCqgXZH7lb6fmRS3tc* zjCjk*XA5HPrJob5yk?*<M*ZyBtg_itsDQ+Ie5}*hJ)v*PWECpC{;C36?SjHC(S(ZN zpoIIAEx|$|^(~a9DtBgla>6@l@3l#vv0&0l%Qw)w^1+!207G((NCVYHI#=?g`^*x? zQOt~gpqZ#66U&rMelPM=4JP6$B<%~{fz8=aMB}pWFV!w|=<lhwP4XDJi|uo&t%vie zUMbQH^_RIfDlr)!6!CaRbu_8WX;>M~y0JJ?yIb$CM%oVbXH?GO%%@y*3Ky^2*o;3r zuNW*QSg@w#N%jaPM{aNRi^o8Q8VBAr!(39Kp8C)>Pj!uId+)C-Vwnd>ld}UY0R68S zIX9oc)*p%^oqc3$YfJk3P@EBu_sX=?(!(hAQ|AYufCvsps;av6#CN580gg;kms?7v ztA~^4PLK|gf<nLYCw?0f<O#bks!L0N=CV_Lu5|fu-H!dK*ykBb^X<pIEdomdwam(% zWTW78xnZ>&ULLyu0vgF?p~w32HjfU>&!Lh(1!dbD;_Z(faL%RBoX?mv-8OLyw=<@6 zcI0!?PJs;E8^l&1yZjR9<OjuY&-F%AVG!3CDDP55B|}hog6Cs0x^c5_h_PsVxyzdH zm`1-w!p>rbnf%Oi!VR&735n3qVdrmhACvmb^&S%}>-5ff0ubpc&$cvmJ^+xoK%j`3 zV&vW_wo6f3)Uc@xj#+R_=9|16hr!5|xzB+{7LtsG3cKrNf$WKvGcK%gm4PoRqIzp> zE#f}#i{jCNNc_=9Dy&n>mDHJ5$D&=fSL2Jy@6b~@^NC=p&QND4Q`@=;@__Jea|db< z&yl+XonjlUku5cd!*N2AvMGp};tFFXg28S2L2fH%QTq2S@0;55^(s5;sdrEqbWwfM zrOTuZouZu$Of|-y><!azRDGEnv9JrX&V{0=_i(|zh_3xJtS9THczr#8->dujrq%K9 zHJ>J4E=+OHRiZ5wRrS2f&3MTK!{tkgPS!34kq^NR6QJ(kh;fYQ-UKQBPrlDSCUC!^ z>1hA`tG{qpOB(%0rvQl)LL#{}XBuE<WhjYh=A68tP|k-38Lvjz!0Uyf0rea6WQmJ2 zVr|!UZ(U0I&CXgi%`0qN1NwP=K(p@eLW&`V6xnG>s1<WXFH?vTBWqyF>3f$NUz&yv zD8NKrGBv&or7Gh({Zo7^q~9%(*tCEA4#iZ=UKCeZbXa$%6FwzJHF~BPe$IM!*_@lO z8}msK;mlw<V6su50YU8U%Qd_FkK0u19Lx-SZE3Ci$$z&p^wIj@5Ki87-N5twA<~@4 z{(DYLo^}Xg&fT`}3QTkvZMpXgHcm0`<);>bD>|;yo{Az`u0L*f=3loX#eD2{Uzuf` zJFxo$fW1ip0TKQWq}e0!>3jb+dkAHo`rWWvr<+1JBEv}92`lT^lr~v<UWzoPAJpc5 z*NK$wY9mWfV}_qhWU9cH>ioV_PS8oNpwWFhm5qvD1QS7vVm$?)m(^tRz-<9L7!Jt% zn!e_}N=9CMwXkql>+U+WrUb2gb8oh$23@Ek4v1#LoFgYinR4yl{5@d%4zTchJv*o{ zRZ%_ZPhKU^T~x_pKM8ny6xxR<{GrE=!F)RVuLmbZdqN?;z0^#GpUE+gco=v63HtxO z7=k34Hso?)^Nnu%<Ckm-$X!R=DmDv0beFj=y|D<YYe{&PG&3l_;r{u>$5l8P8)ved zZ`108!`npFHH7?U>)x5-g7T5ysW!X*_@i-fpn_*}#dVQmb}B2gU~@x2V0b~5g<|hf zbG^;dduGP4Yo-(}Zj};y7OUEnlW#}!WF?bp@yUyRWgo4iGqdyT2ZM5v!6r33KDaD& z2$pRj-*d4|MKpFpR)XObPTluIRYZd+>m|Gd=Do=BCcT)Q+bdI6&_2QCll|^VK7TA1 zw`bp{Pu*eB^s|oJcmqiP*WVxKlVhsS`R-OvAUn@XgSi-}_v?Sc`TtIIAPNcFZW$f$ z<(K?Q#^%tPc%v{?Wi2>h=F>u4L+lcCqc+zog9lMWloPa=VbAh~r{H#kCR>_*y`5Il zcH>a;f>Bt7QTsEFv={G=pqshUUuZwhdzu=1cb{*<5pp&_oNyHsbU&qQ|JI`-OY57w zRTvJ50?eZ;Bx09Vz%eg?0vpx)1_Hwr<EbgnnyTgH<nUiGZHzw^sne4*hR<mr63%2h z<;jq{7xU?-x*+t_i7NF_+_9O4<#I93`!pp+^8bwRK1IV>)<ug-JwG}MK_-iilyQnY z9@0*D$fj1yFdAtAhC7w}KQZC|{(_S9i?(7VVXSIm6AFF*dezZ@ar0Nk8hP$puRq~= z4C+U=uw`zbG?;Vx4y#LWjw2Mc@fV#^gFv)^;3kU#Q4AL?g82tPL8a>Wr5??Ui_um1 zVFg4=o<J1+S8)2j10f9^BZHl+1IxIWQjYmw9r%%|@Go9Fu=vjcIVB1EM_ZNC);#${ zld~faE#L@v2C0R*k4$ZWaKP1aA~r27(X?SKcveU_EbF;ZLujI7+|M_hzPH9C^8~)h zZe;%AI-QrT3aZLw)c&pXV*y8}Zhz*iw`Nc%IiZNvzOWiP{jK=w=rE6w{~6kh7XA?Y z#-__lym8$v{O(Q3^3ic_0rZBw5!G+VxS*My8?xpKoG+{2h&=Z)qU}^};=|7%2kL*g z3kpmyPtOY9jfVKPG^Wut`k&D(T}it=q>)Ds#Z8@p$QXl}N3{FfKGLDyUQg9tIjXk0 zEnVABcy4^aPz$IL%o%W@x^d7Bl_cd4;ilO(vce-m6Z<3@95;LHf@mrZ$wElNf!4Xi z=15bay&~stZI$gswdZpcX{(dV3xddKG2=`C(vTf!W174%lfn@s2iik&e`<h{fRl-4 z{q7&$@{5Tn=f=67H<c}uDc8b31R6C!1DZdxcYiZvBr}f@tr;>m5KnYfeWG;z);I>- z&kw5Y@8<XR<Q~jZF`a{F!!AvYoQDETHq#5|W;PZQ=-|3TD*v{k2X%InV_ej%&+RHX zZyCx~n4;3_lYvP!F$oU9L{R)o5%1gt+pfTS+%7V|tEkRQmCfb3ovZ(4)HCO2Lly=G z>mG$L_C<nRuB*w!JoF(d)ULS`P5S=-4kZFMs|y9cCX*H@Y{49cq~xU)`!ohiW@A1> zGOn71GlIYP7yR2jdw|*~P?_75w}gHW68&9kjG;bdT(Kio^HmI!IX5Qtr!LUoV#iyx z00}#rzFoWkbbWohEcl<*D&_H&zL-x|w{~nI1c2rIk?i^#-1#0GBnLd)X<-^jeC>Z} zYj*mojZORMRCXio=>5`Vo{<x$$LkB~_rHpc+Z)D$X%qg}>`{l(L-Uv)d9(f38r=5M z$WC>)I2_ie_f2QzH5U<ie+F}o?q7cKhq>NW7N8tLqX6^rg4OGbct(i%H8pdydq2iW zBDeoG&KzWzV=wfc;dMK1chd`y^XjhcOUBXMtIHF2s@fiXsOoB<B2fLANBz5y<?PU7 z3eK|LQ*;ddSh(!^pw0gUDxwH`Gu_3~wg@GZ6(3ej-d?o28z2@<nqE@E<?jfCl+%h# z`1bIO#l_a!Gp}!UcZG4gujG3teeV~yQ;G8}k8Px%6+hRSnJd~(T2h~XFDWxx(ndz6 z&jyy!fkJJxMf+7r8@_cLdCsQ<zbnrbE%@mVpW;YAoR&BsCP}@#c3z#l#~M;f{MW@9 zY4u6s%=xbcS%Smk4`Y6flh~7CB^-Fq9$2@<pTY<~O?xu`uxr(#g%nvFA~c4Wx6lso zKScF^!QxZ-%f^_eylxU^f;2|GIhMWD|K}IcP=m~`fBlrR8{=~GXMTDE9Wv?CBypp& zGe|b}n3vIUJ2H$h*UwPS?2lyhZBnjTllPJ}dth5|fjAda{28!QdqFw>$4t0{rc*;h zJ_(+nL>3!s1vHE$B=mo>|Nn&xrSA}2$WOLbK1TjKM)Wu+)t{W^e{te9PB4X{5j8cM zidy)~Of<%;%gc~v;NC|?hROYxbSiiw=_Iq^{Vaj)?CiDmnY8Vp5V~)GQ8@S0DJ6Bs z#n?Uj3}M23txdhSgqdrc_#DwkuIFz<3-MDw8_z>J7!MThC1;T8e#(kZ?r>oInSVMQ zXS5P;r!$o?80=ZWU;fPO{7s~n1!*DE|IgPrqX2m8y}u5+@oP`(2sAz19dUH_{!at~ zH8H_3U(^iF%+}Z$bi1&2ir+2`sy?m;1<rhh?>jmE<c_2)g+eRzxAQxZP-F0=+e}(= zybH6J^=G%Z@`JA34^=CSOugQ|Gv(i1quXAQab50X{mJZ0!|Y?8Qcg_`tKZ9#X6$3h z?RoXls`fWb!A)=8pR6pJNsP<6B2oSjvs3#EEUG!k#m&g5@Bj46oQqdL-s+&JMfK`h zeA>p&%0tYRUw=9dNj*gJ#x|cC)-KZeD5U;EUyr%<>TB_5G4VN=!1opVekQVr@;69j zXW>~sb!>WgnOJ!HU1#?dY1uEGN2HJ2QL4m4V`S%vHcT7k&t~eWH!L-ju=k2-cAS2i zZ@6sxML%<Pwb0qZp!P%6F7^YMjdwr0FX<>mjKRe;-fFiiFAw*=y6`N4sWR;ML9vg? zWKV5>`gl0fH1Ga=>e!dg+5~1}_XEY^=5MsBJDtp>kH^NA$_iuFzYY9E-8McCJpq`% zkjl<bsUDKDSKsh)--lF<jl`*`XTv$-jx!e1)5e%<<g3d6Ngd25(^9@ieM&HGA|P#N zhnKT)6*A+e=^n(yFqCw>cF>-ZvVP(e2;|rWp9HVTSN$A(c`5m-zT&E#owe-0*gJ$C zqw>W;UzoZ6*G8CvBSp*~U>cx)h!skD6pXN;W(qAYtGQ1=cPJF~D-Z#4DI9mGT(|OE zh)NQq^Z80nuy^z}oEbw`UvS5*x(DsxVLO;GEnWPAEA{w=PkHKL$>U9i-gdKgMulo* zrICiz!|?PIT!8@WxO9M_;j(W37V+qbIWwe~FeFPJ{K3|A(*RBtuazG7IPS?R=@5;! zp55j>GwZ|7=++w<aq5_0!UW_Kx|5T8)5lxM3XY`x82TA%H1bSr$d8dLmAog7oK%Jo zQI6Xz!bREl7S?}M;S{3t?y4Sf&Gt@!Gib$PTBUA$^=CVI<I1G%+(1Ry>*}*teR@-2 zm%O`<%{4~GE%pO$z0qy0WOb)M!{+F%A$W$1?{i>J2<EA5?vID?KMyB6kk}Daa1l|U zr6H@Gxc2@?!`&l^e1lt~l7yISpXV}@n&A(qM9MG59$mTPQO!DV;~K@0uUhm$METe- zYV9w{+-IyQ_TJKmbGhe3LDv-SFiSvpNlcT-haU`*D5K#I28r4_nXhk>8M8Fj=iC}2 zSvh|{CcI>8p%LwYI<-VZoHKT%+qyB!xa<Ia5Oz)pl`JOA2_|ig93gz8!+A^$KWa*s z`F3aj$Ol%(=x1=8_WV4TdJowZ)=gX6XE=*#Oxq*>8Szi?6=I2WT*pe~9lP_Mf8KNs z7PG5cs{ujjIgLoC$6>%LLEp~nOT4>gQfPxD_Eo39VXp?#rY%tpwhAr%j5Iay#!L54 zsAH#dYa6t6jkV)NOaEjgZRbJ@inWBkbkYr;I&>J3QEmD;AuKrxZ}wVrMUbWhZEw5_ z^w2!8QWx95?PWFZA_)&EH}%(^zlw^%)yh>_IR7UNQWQlKGqRB!z44m#PVQG<g0(2Q zMoD2CLEaH;7F8^{OF;(y4>9XrRJEeSPMZrm5J}`jAOnyS3hG%UqX$Yx9;l8yvdxNo z^X3HU?+2>Fk+R+^Y+g<0k0cyKyX}<DUTsa3UC4{8xKOzU1a60}sZi2Jd)ml+IIeuF zU1K}?3ATY>F@b_-Okxdr_r$`9b!ZgX%J6mz_E>{K;evCYi$SW;#^N7@VI20)<ql^+ zI^L1(_of`yQD%vlL|jjTZGIZKjn4~hL2{RYf-Yb9qh$UAD~!X&<~(e=-BBEX&8Q6^ z0%%WQoQm8+<U$ba0kqp65MRR1!r$bhJzL1%ll(50|L-I4KqC<TpAi6M`LJ^rCco!j zIgCI#wxuif_I-7xrW*Ol+3d%?5>-_dIrp`(t&UxX4QptEy<tCEuvs%)cnJ<+zmKPD z<Cwg0jdgYWy8VtX5*EPB{`v=xnL;{mwws^vl}1tBgb`WOk+e-E^|3t|sk({E#Lp!V z_!ST?XV*^{MFu^|nt0N}fOtt1uU%7MUEz1+P02R_1oGmiCN{7Z<;2@l*_lxq6~glT z`Wcf*NKQjhT3OnUXk4wN!v-CgAXGFZg%ZagWyoJWnr`Z38-aM;Dyp}F2R`tRCb(&| zqWB*g6lZ*fkIor7bUOdYBqIQap&4i7dF2q3G9Am05vBQ=*%mD)Bm>dn-<3KLncUE_ zxG|*!2S}BCqlkn9tK@s}rdQ#-D*SBg*`D?77iv7U90GavkLw~;3UMtMtGLaITzd%X z@hdY^qtNi)Sl?!KSyxAS_4@WMRQui2VM#r8%B{Qe5OBA9B_I;DH3*-|aL`$;cv)R@ zd!e^dqSp-S6E@`p1b7UKU^6>r9G!CvIrHi!-RI(0`WO2veIE`xiHS4)O1b)B#eSd< zI&<ImmLOf76iymHqwTyOJ?Yf`tx9Qqh5}je<L`h-!n8-*@}7Vr$uDYTtp-CrA9Lx! zRD}$@fx+0+y%8oI=}=-)i}LEQ<r6`wHU;&3Q>Cpj?|xS^pr5$d`dE95tThZ!hs&42 zW;1Yr5=}0OzJH~2Ep|Bmx;CI3jvRu!DnFh<TdycFn0`cZ`ai->)$L_*j5jB3AX&l5 zV5+Jsa#^Ww0B;p+){mHMe__p_Dca?eF83FD*^$Nma|^*IWnXpn19maHt{nIojNqdF zKkF>oqd#Zr5~RnbvYEQebVmYN&#ugIZrc%2r|A#GQu+NhV?Z(9W%JIgE3~)E-gW1e zw}s@&EIV$dx3k&17+Rownw`qdyjN5`lt{yM7CIWauvC|Z8LzlPz6E-NpE7cP^ksM> z9a?gUOy2nRY|AaJ*$tWl_Exr%s7k~?|0o<eAtVTpbFAZ)COuDRi`PhR5uLN3a3Pkg z>MhIy?6BC}@E!j19;D)txR=$gN1l7JxfY9R`jtV)a14e-Q($OD+9SCi46g5bsOGR5 zg2<~&vAwdgB&D!vc<<sSAW#;u5BgI1(y5ifqOI+G~Q+E07`&$1J<uLE88Njr#u zT{#Qo@_(@_dT`scKiQST4UX>rWLGf9pRym2YT6?tt)ccsX8yfjI3;w=l`ITL^a`a| zCMmDbc4G2I|5Kn>fL=ZQw{a7WkxKyK(-vkl%YsTDMh?b#d!v#E%tC}}|KYgBvnJS* zEK(W8-XGcVD`wo`_F68ZwzT;^WKH2egSgCy^a0yJvuSi-4IbIQd&Dgp`n!^GS(fyF zM#cma@uF|?IDGUews-jnspQ22)g>vYotiok_rVuT!xf1VC^`E7@PQm8u<Gx?{a_)M z-z|gw)G<u^PvI$vZ^vBEquFd{U6)D_@LwNs!6T!|MJd(a>3m8ThE(`u@&tUe5b^m$ z0?B%=k%mO>MimJ$BVt`&0s$M9?>$k6xk&j_BSospzxEdDF^V640cYWvTYPdIhj|$I ze^1l#E7pM__gHsc-H<*u-t>Q6xcq%OL=7&j65qADC2Aa^QpW3`KhsagAc&%=YjyS` zwUzcEWojWQ;^YeZe}=!`A_@fal-s?LKC<3k*?g#XCE)cXC^z}(U>VVxHodhU@9ln; z>v9d?-rzb$LF=a%MxYLJh2oU7i?8p3HGDhT^=f9e_#(sGY4C49Az#r%zr9z$3tg1E zXlZ&s?)zO<xQJJ==)8Wa8&snF^d_Ptq6uSOSnT1ERs;JqV3WpJ&&PdLc9*1w-(*(b z3Zur@fBk9rfC{&olGo<Ge4Fhrqm=ud+Q!#+i7@pmUx-uMhY0rFr8FVZ!yP-7=~3jt z_Xpxa+g61SoZ}<`s-{5j$jlNzs_*47*E_MX@1}!hP&GiJ4mg?*Ov^)dG3vL1@cjN# zeJ-EXczCc?za63WIf%g|J$5KPUuf5TY{~2w>#>#uo-<IC7O}5-3t=fa^M`2XLzN2k zB0}YB@ZKZjOh<2Q&DS=%<2Q{<2ttnhRI;-{P#)kQg`g-jM#(~(<0~rW+D<yQNV`fU z=AV-sGo}wfcgDgGix#|Iks6Kg@N^nEs}->Snj6OyhSOss=9tU-MLM+JBt4AGUvKR* z?}{)FH!~tu53dE)%+rN4OR$-DeK(h<{PC4iIX?tF&~iEJ85u?Q_RqTAt{`fvurpZJ zc$hqKH^Iuxv9;=_ZZC%AF6N1Z5-TJ>LB=)({{@&kxb4Xuvl_oGp8f=Ku}n5GLAL+C z^*)C?_4n%HouJxzy3k=x4zWz!`<xr^{b+xD#np2QXks;?pV16RGXL?qi@e)EUR+Md zQvBm}FbqY?e}DPEN0pENc>O55`^Q_qBkB3aOJNAD_pkPS#hNCIk2>o<+-D7vi#Bl@ zc;Y^Zm9dWWY4twGztwE<pIJn6f4qfThktA4f8NU_!h3#^YppkjIT>r^%jw~J|9UU8 zE1Xl|5o1USU!dHt{}>1==mg~Z&-eb1@&5Bm=h*%+iCkVvP_Ou_{_q?fMqv$U^ItD6 z3wbCT3Y5DOZ|v4>xd3S0h!&bmP*G7Sa;jUHLPgIAK?GNVL{O2l;lkP`9klE5RphKP z%BtMBF6Ht4Yg>?5eiv~EvjC+Sm|sTo8ik`!LzRWwoLgVpTCorBua>m>sypB|dmEYX zYc<Jq&vhNhd4gIE&W_|KZD$(6Z526{vwbY3DNADQzd9#v_O%5?oY>hht9x!jo*L*q zp0l<Y1lzCP2W^ghU!$&4psp5_+w5*_$WL6(<ZGO7mK+pp^&VIp(Zwz65;S&3G)C52 zah1>$13D>zp<lik?oi6PJ+87a#Dv!~SxRB5N9}o#2C`^Njn2uJCrG<D=vyZoYV~Y! z9^u^i#yPS%NURKgKM(C*)?rEn@ymwzLupBVrKpw&O-wFvn`{J?WB&R+QPz8eU&Awm zL_Z9!-5-oFT?;UcK#fZBN=pwA?8-~srn|V)65Jli4DAb#sFmND$If{VdXFnk*3d}y zakYAU5FfG8@P72f^@~1s;(1(1@WE~U(0g)oM`XVJwh$2{a~8FRqVqjjaiejiV$K(K zP)l2u#Ln#P^BBI5-B}-Nbgx`YfQil3@SW6JC?Av6*x70&8VQ$wuS%w~K1?d$*jXux z>ntBVu`tX@^cb(U5nO5ITEXLk>rnB@I<yx#k(+Y*0(%GP%TT8h=LjpN`Nh_pxLF&< zERoqYmz;~Efag{k!Uz3cElOwJb>mVoZh?hbWW^iKmdh{Q*_c9IbRyy^rY*6PuhJUo zk0i+~ai3U$z)jns_!~vZP>8^Y@0@p1-<aHLq;spRE~+sJ4GleQs!B=65&c<RT5V_9 zl&CFSI?l5`Gq_{F@2>3=zEM1JW201NR4n}N#vHDiMzT&Tae=<O)HOq9;=INK)O={+ zL0tLSvu7EZsx@|dH5v}^tQObGjzE#xGoPKsq&TRCG8<RCesBdZ?_cf|x65B)3$Fg! z2YRi<v_i+Ng?Ds*7deP)wT($T6G;u6#CgupbC1L$g^R!L>aO%HV{>}H4@-#AZ7|&- zm^K8`u+nbJjRcO!WEBtXDS`D6K!q%*&6V6@d~4le;;PKLJaLQ|eC|=wo8UU)8YfZF z!M&`v{@ra#0;))p0hM6ii130IYw*nWDRyamoq6oHU?tvQmp-aA9+8{>4H<gbrEl$* z=mXefJT987<i*ubq$LSMd0EsdEb&54kn9B%;wtAee1SPoB$XkORG_=nuh3^wE9t?r za5=B>>hwbatz4scd{3@L&=bT~A&KJH?5b@*y>B=V2!<s;+d$Dh^kMsk-Iz#ge8#cN zS2D~#cM?|b_sv21-S2b0z4xJ0`z9W|K9_AyT7MDqE>Uwltp6Qu()urYp(3L=6R%f3 z-*0n9Tf<a<qS&u+lsFE`ks9zQY1TncFagh5=Oh7ef&Bza5$|q)6+N}0{(&5`+t4pc zDi25WgLXY#wQ`4{e^glcl=0lD0!71M-wAMd&B=4CbAz1ygT(zwYj==(N7mFRc}}RB z9_Sw&EFFDhi@G+&b>erHQN^L!!1qAOI@eC)Bczf^o^Roj12?K^U_Q%1o8nN>q;SR3 zC16R$lJU|w9A^9?(AIq$8(vOeg3>%daB$<+Wo|P^kr$xvEwmSa^$t-CSFML8N|ok~ zu|hSqax1whd?7>RoNEg68=d${kImjeldbPT@@#A4rOu$5Oo%EB1+4IjFC=9RY7b4z zzXym20&uv5I!hgZugwRD_$2G;>G7FtPeS>8H-oN`=5$|)c*#`HBb`DK=(t4|o+S<X z&h3jj!l|G9c4w%?z0!I9W4NCSX!5l5;JW&}xcs7c&2G@%acflU76KM*r>1vcrI0K< zGtoAy<V7(Es$t*8mm*=e**?$lF_2lgrR|=cp1najhD}NDfU#lU9>lr2zVU!=N_t3A zYM@pO$B3LjNRZ43cMUnmcmE+!U{g(cv!rT}<P~!>vt*Bz{3K&!7=yOumh?D5Ufka2 znC+_$gc^GeG3rIGK$;@~YufZqIOw(WZC|x$1}j*DwpAu$7fq)I{xo{x&K%JMIJ-GM z=m}Q~&C+TFLL~9)%}Sbg+}Vx2CZ5-T!bcB*ZQ+CY4rhRZI(|@<Y=%~^FZm&e1PbDC zpRZwJLV6ME=rhb(&7N6n8E32`18zdtWNV0t32}d+zMCryN}BXXl6<haz|{_EhI?I} z?}TPpHTx64-x+cW_cn6s(AK5#c^`$AdMG#C*UkwPf+-^-1AbS7{MQh8GY5Jcu~7tH z?g32;_3XNG%*-<<Bg1{J!rLGX*|_bg8pJmZ9g$x@uSu`uw7uNP6z=h!H$=p5J~W79 z5t>iEECwdaXu9W(?aOMx<z`2}{Iw=)IjugQMR;ub8t`dGThpyOcJtt~ialDK6ScM) zvbX*q%~!TpM@C46_bRPVK~ULrUSkND($zL14)l&b?Fsge;~>mADA%wn2lT0=f5zd+ zV+s3HOZlkQ4%yBU(5s_k3GRu(sp1)hYjZ4Sqz-OUt)5|9J=xojWHvsA#}01y55|yq z<NQ`RLv`8Z%j<*0O&pz1YX91-J6?d2mMx<Bu_V+p&ew8^;1{LwyhotbTe6VIrN^!- z&ho3y3sd-=DN?5`Xd8!>T5i`OoY(MruvI0pbqlRbY%6YOk>|mHXQxo_tGWt1x(T4v zANzoBj6xH&@KQzgkIK#dxrP8H6TU%Ex)CU<<@w!hy%ZeDRUoVLT&KP$%5PT7Zz+-> zG;wE;D4=WX+TpJv+5g*-CtPUKM^MEh0X11%#S^y|KsSv@rXKmh5}3VP{kN1G?e8VM zi^FeOLL;<l_SwBNgQhdx`6_bXZ_?F~j3FT7!>izW2{Vqkvc3s*_Xm;{6KZ+RV=Y&T z<_(OEW01GR_Vy0wkRapAOfO-34u=OXye>}wB=j^hD~rN3=>Ga#(k}C^oM5wRuE2ns z%z>VuCi|VYe&-Gh;29;k(Y1v*ykNL@-|z?$OoEb#S0qS@D$Mw1egB-FyXOb-L~c-J zZvr&odw{A+NoCil$Q3}_J0FTTQ@;|KDgD+5$RW)F&0jybGc(wL5(_0TnZiZIH9{kc zNyKt=*|TS%h2dfO?a%T;U@umKWXFkxg@uQagpIt?@J*Lldq+nq(KOxeFs;XLHR6MV z>mCm*9Y#Gl$=AVx9Yu>sK#dJ8p(7qDdZqUMO0@U&H8ugSTnDE5tkm|>XVP>C3JKi} zu7fG`?#?k&Y{L;z!%tK&-T>vOE~Lx~e!CYhBoB9`-QGc6*>3G@hTfCEjWP-?@<bo0 z#U^nASX+NK&yh%MS#Q5O!V3Dv#!$zKoOA3ZV2g!T;#Mm;=W<u2@8-yKers&4?5q>1 z+SYGa(od0u9l?o@XlHxHY&8#V-S0zqhtv}fO;s#f%LSNl@9}E6tAKV%tac(8mwK2A z+HD`=&Nde8yxbaI9<z3*-+<izLS|+rbijW+(jbr>J?FPt7UbuL+RvfKTF)kKh^#m0 zRv!DhuTWJwBTR1NnkRVYqw>pI@`nry?S9bM$Tj$_RdY5Z%=uV*c9sns0*;#~_5EYv z-1xKbShdFzYEODmJ_YG*IS4=$)a@QCX~}_%m(=ETJ^{QySRe5IF=e3e3)Z+5>jk*! zB?QwwyBkdoqmc2zn6WnUDA)#x(L7jZ9v<}6LIMH;3q_#n3n@$$=Qy^$QZ_nne{rne zo^_XBPZ(Th-xqm>;<|9z^s)6%ah1nE@)zah@qlAI<wEoN_3L`ES~gyUVXt;(86zZh z<7M^o#s|qtZqURS<mABeAUKd$UM`4GaQU>QNEE5Fohp7wb>SK3_BoP50w^pY3-|a0 z|CcJ+o^cd01;b6Z-7M)iz}9U29Z-!9$J$%U2C&t?kR}!KWMA?V8JY)8ueR4;o9W6` zMEy8(113-xN757{REcVs_eS10OlL#+GPrJGAy0<DuMr8F;J478Ca3L3(DhUDn_KnM z7+B77uSe#Q)OZ!V(?@?5@8VX!mHePW#{K&MC|F;{5ijqphQ27QjAC{k??nr4GJnB$ z4afZ|Ciu$_pNBSw>?~);L6y8>;?7c9;~aRmMwAUf#rna)<qI*{(Ikih&gBBf;=|fH z7V9V6q~3+dwglf<WHIuYuOZnI)cn?SKGak&+q2nrgt(0-9zhKZWrkT=BLIw?*+Gu; z>{$}FM3F=hEIozXWF%@$8YZ)FZXJxBpml<4Eb6n0{rdK%qG9qNJY@`+IzkW!4zi4z z4y6-^*GrN%OOk0lt6CDI2_XVm5tN{TB<sz?vjC}8W0d$Lb@~MN65_KxWlFa)hl5C^ z0U6mOcuWF{Ur25vRHSn4;;kuQ5{jM@cX)V^6!Q<ReUKbM4MKfD!ebGZz(SMIdZeG+ zbe_RmIN~7j2!a8^JkOL=Y1vM40o-C;d#Qo~1mp_{FCIHQXcR8HFaSc?h!FVweX<Ds zLo?1lOupY@0<&b3mT(vx_5OLYbCUfoQK*idWC^ezm6+H|-9zpTeL)7aWa*RY?d?r+ zg;!)cCwBV_`l8;Ee&9RVR-F3_;U8;fa?Pp(hv2)b$w`10d<X)j{IdWK=sDNxRJ^3W zNW>%*_2gS?%-_}UNm&EfXF^}&@i<-sdKlNR&w11iA=e^O+fCVDNkB#^1g!Kck10bq zd0^AgZ}D*r>?eA9cZT{BT9P5-IWOILq^>nL$th{KW#x9}!<is5*$#o`M6TqVW@VQ| zdOwd`F5FxJ*jaRvxV0Ecx)lVTwA)*&AiE&}0Rck=pVb9OzXcI-azfCvmfgKCd9xwH z(6b-H_ZrwlG%^H@rY)TyTFwXK=sgcGa<Od%K}UHl8RB}YNQk+S-<QtLPy}pi#Gykq zSK(76`18<avZQ#%-qElR!W+R^Y+M;VlZnT-<jrp4hAA=QBy?;JA+CiJA9@TJ!>2<K zf$t>0z7>ciVISXVi%>(@Lr?>=TcwEeb_Gcl8gKmycwIzYdZqw&7ZfYaLqwB#5;g{f zOl9MD+U5oUt5R&QiiD(e<yxrBFQv&>oSZ5690Hv`^VcSI@m}NZD98>S1RMTj&1hx1 zTdN#WkHQ@D!7B6!E(D$&`AynwnlF*KHO6F}=xH?{qFZi0^l$(!%!ne8Q0N`HUPA|q zZw?Gz4J3+R4*>*KaT<-cW`tidf3H)?!tZPhEq&GyVPs?sDZ+2h?8ldZ@!;6{5f<&O z4mN|M8)!nAC1g-U6mF_?nwsjHIDp<zX2wALW*J@p#o>xX96|?AoIbDwHM}fa-a<Ub z&@C$A@nz<;b#Pj`PuzNJYS5?@<-Pl-Omt<Y&FBPx7228SB<7OPBHA=k12U04)af_V z8Dd=K#_r~zSiC;^I25@oz>PsWqZ*zKS|NxJ2$Efa%kv@o_S|D&F;RDVph7x$*woZi zL~eURgNe@LEqMq+F*Up}V<hoG=7=7AC((#rNfY@Ps+GC94U}M&0r_8aVBr`V#6!4~ zVY+?YX$&0BMcJj%$Bx3tH!>jdBm~%&A>fNV=j&AD^45AfD|LQokN4oFdh|N?On+I? z8Z4x&<`F+MB=kf|nrwc=^{p{^)2&Y;+n451sX*tjp!4^y?}k8|ROaFS1t@r$ww5<6 z2iPw(0Bg$#;fpX>2kr79hU{NgfY`D`tX-HdD$h`dyvY!)d$FPuAcU-wfEhx;S>^#B zd`OSzi$FW-gPZvB7YO;~g(cu<hpo@@+ge0Q`Jhu{ukC(MkYEN;aAW{LRf8PW4sGdf z)U7=P+H^lX>GAyvVVESf2=hBZ;Gwa#h5X)px^6{!qvG`0{>1^<7nci6Sqk6b?AvAF zS!$3UaQC`rzZr*Hj~fD5r#b&Zvf@?ocuHt__(x}-s{M%(7rL{Y2aY}mDgc418py3* ze&X`!e2vKVClLnNO(&ALQjn%5GkQqG^Sl!vEw&9}PmclVI(qv0{Ad$TC7ov#;IkJ) zWON=1PGF)LksAHbneL?R?jbPezMAyUPKVL3O3=p{yXkAv58I9cM#&C^J$!yS!#YWz zE}=*SYlcA?h7fR^uMzRfU8^zOsu>!I(h$z7Sm{aOQ@))GSaUsj>>7*5FzcXRA5cu3 zBgGxac97yiG|{l>XmDO`6xGV)B)x-c^^iW=8s;=bACbm91niURd^nhoAddYDBnbn! zE;8#;E6o`0*<=y2*eZ`-n*eTRh{^986D`fdZ9r{mxp{e)j37Ex(!6I;H%QzbWIB@Q zVNMF*+@?Vpkf{wdgvbB!98fAE1lVhQ2yrB#*}gNjD9}PN0V$-NM|hntWPTn3Pe<X| z8$r_ax~9I%S87e@l}HPFawwQLq!wtX{k18b^(Z>py}cUFE@r3qUKI8_1)IIkd4kZq z_tw!p=6b&-k%`@74va)`Cmi2LNq1<h5?sHa-&B#G?T{GwsTvqEad04^)>bMloE#sP zszkM~;nDN6+-Dm1hCCG0YKo(HwwK1@H;ZkSybI=bV%1&Bfp-sB)c2e<=QEG6JI}A* z*o6)GGPSCby?8;T_tm%y$K2|atBK6&cFEk>Mqew|ReseKC+9w9;yn`+#OdeZ2Q@J< z`>q4hBnqt-Py5a{iMNgb*&lP8g63%E<Ks4$+$P&!-AEt+TxovnSXt7y+MZsRx`ww6 zVt3=yeQRQ1@Cf$z85dsfILhhq^(N=>56|^4ZGBGDXa$CiTXN86(Pun42>T^d-xIWA z>{}3LBE$rZO&yDCBAJ4<>ItV#Kuc;v=4l@1)5IN6dEJe9(+9a0wWBZ!?b*_XVy9u) zz8DJ@&2e;VeKB7nNp2lTVnGOB4PIrx8;Uk&65OPnglnK4;{nV0R?Q6%$Xf#P%m;Ir z(Qhm2I@vBW5}}AqaQ#vbVw&;YaoVK9ivZ96(0Q~;|8=<h+aW&Y-D_lO@y8DJ7T83M zCE@(kABu9%m5e3!VH<@Ozuu-3-cmT`I8a_icTg)$y%~W0D0dLs174M|CeOuD0`MM1 zcKxNU&xytPGDmyno=<>o0>>+srjb;6^o)s3lHZ1n+uVSx>K}h#!3hiY32hi#W-kL} z@TAuf@4GVDA%KTxY%;o$QUIW41m?RUy~@OfVP^Hy1sF<E&-D!Kk)VwHaJdaWI+^cp z`>x!kSqSD0tAhZ<YI|dO5h7x}RC_Vs!nm|SRjm%W-i%P|Bwq>le%DR_Q*%T@Q@r>h zs7<R1hv&fz-R#6x2%eJrt9bjPS&m=3DB;jo+(#FY(Ss%#g6IHEtz%5|5vvoQk4Sc1 zxm^|R>^+^UvV(d{OYTxmlJmue%dS91?$aL?&o*JpaRZvt_E%a|jV91cJ5xV@^peUa zz$0!ufQDMa*rj7xjXkx?0P^PfZEvi1S%h0!jgr&JL;wTR4E$X7I&cQoqqjI`S3oU0 zW=}kn$N43K16+sJ-VCu7+bg}@1va0-p0UQ2&P-yr#Kp5=G3@{q`T?MbFZo(E0M;>j zd8$*y=#CBSc?DPSrZ2qL5%w0xMn}^NKh+N0$E$p`HjI5S*3f}pkX6>p#i6j<O3G*L zdsSY5BO8C?&FUb!)&~zB0Oca7Yy5Ul?0Wl4L4N*vWaM+~`ih;_yRDOAHYF!$rKfWY zIEd-$v{BVMv22HfUQ<h5pfzN{>JdhB(i8E=2ss_!PDE6X<ZwO?3A^qK6z<s9cefjb zyx}i2y)hEv?R_QAix9ClST#Q)<koT+&Q_R?0_9mhP~puK@*+(=;nC)7nPcT*i*&}R zKBdbCcaF6J`Zv4UuAgs3$T6$N?rg2coJx048cI55`A5m%a&0(g5>)gV3uQT7URrB? zEGc5$nwUVz>2rgYS@daNDZkc>%v<N;>}LB)2+D27U0}^(pt1O+MBL7L0IT&2xFg7L zV-Sbe%Qgp_-TCqb&udIy2wJ<2w<Y({=*Cky6s$x1x^%myNU$*k_da-^XSZb>0|y@P zbN6%AI3L(jP1SgGagAJ1WcM?S{8IqUmah%oH1z-GJy)?hn&>?nk8J6lMn>TSXioA~ z<An7gY_$9QLhVbsHhAQP25pYb2E9Z->zz5;8c;+zB3R+E)0FJdto8*T&C`bU*qh_U zk2n^83j{{g88TBRZ9B6PKm!_KT7(L>t3F%JK*p&%MJcp=rN?#=HG`M1`E+m)G9%h7 zJ9`WV{BWIMn4<O{zEGECTxJzS%ids&(KBv-D8}o(G#-hjz<toSD95L$->ne{^HbuD zL_S@?q#1?@cdHJfUAB561QNg)<Mf%uc*LC-M(RtdX{ARHT>^q6QWd>TL<Mkt5Of{g z>fYjRf-A#QK7w?SR|x?L<SbYg&+qRjLEv{SP|zG0LEgQ5;>BZZ9h{feZS~j^@3(!F zce-h7(1}gfYl%nRyyANmRd?$7s3#|#hIo2od{^f1#GO8~Aoc~=YrXO9w(-5ZHF<~x zWC+n(*ox&ZjpVc^xrzq7ruyJv@{x89sATloe($GZr^4477F^SOSbFW-zWYpmM%}eI zGpLPKo-JQ&A;hXZIVn~&=(kzLr~OR%e#3zi*GIsz>K6Osz=B(YSTY(0=cLPQj6d^y zx0`7M)+jNa=*@mW(xJRA`qrQ;q{FWkIrRH|XO6S_aF4|k${I%j8$~-p#0WgI6uLGd zH5ZZf0t|jwTs+BpwxnZWP1hCs5Vqcoh)PXwas}0!2`JKLJeh0#OP~07gS0uM>^hDL z2{nU~jKQ$tzyb>jni{=Z0b>`-e#)h;Rc=!dzcHEdhpe@J*Yh}&N5IgEEZnA(tE1%b z;6k<xiD{$nkqRge^@KmiP&~f{amOMon)fVdVvNBx{TDp*aTOd8el>y3ln2(}2?Qlt zCctJjKB<@q(urKdPZjn$G!i%Q#EhkV9pZ5!JKg!#q>G`_Su36LwvC`AaICT@QPJm! z-^Rjh5Wd7zIC6N6C(A%ovj8a;{>)y`jl~#U6a9cl;ek&>#4OYk|NC4U_yyT;>Dgi| zaUhGD;Vu#WZG5#`ZgX18A=SV?{p>rww{+Lqo}MlN1Htsdyw&J?wLVZ&&Sf)&0`5U8 zRaPxe;x**fuMW8N+DqB@6lgQdu39N=`a&c#3U8r+UnJw~{MRa^{yrd#;?D1W{S`2v z(dhXeP%Y=JwRvdJuqyM_pFGd7$U***-=Npj>+WYN;hFGH4)}@oWL6nS7K3si-{!ut zDk_nteh{|!UL8W~O2bmwQCy)elekqA-@QOhD}Vqc-vU`jUur&Mv>`&?YE*^OHySbi zz&E_`+?*-09(|CeV8DQE>(+z@&R|x32KiR#8}YFD(TPTI9m3*FeXqRRHB|`kr3gr& z*q{Z8VOaP*#+L%l=m<k{Ma8QW2a@5w0O4=r_UfQK$v$kZX5SNK62p$v_4%&$FY4kq zv@3}_oB9A?V1#ubA19?<CoeOXSh(V78U|_+aC94QGmBhZUYj4*Z5$pfavZdS`87+g zZ`$q40!s{au#W-==!lnDkc4h{FgrjUUtVdYeP=OAxR59#1*F4gHfcAz62jtWb0c!c zNYY6YdOqs#dL3{0<x9~-D0R#pE1k-E4EDl}<nkb2Am9kIvIXrs9)Lv`qG!JxGi(}D zXO_Vvm5Hr4%b=9H7xJK5hg16m&a%NQMvXSZ2-}rDztZby4ag|ZeQp4mW=r%pj<}=R z1W|1(92^AMhXI(P5^yZm*(McOh>&9pj!Q!N1VTY?T2_h7oM{LV>lA6Fu0}roMGk1% zX^`q!Ff~Zb#(>HxPOmn8zwkaO-t+5CN~`nd&$|JD>w8IvvGg2Dl5(~}zbS!9A^5?P z8qf;}YiwCcO0v0inR!BHC-c+ExKuddI$UO<ZVS>yu^`pkm(s-H2Alaxp^To$dcdd` zp5CTSU$Rwe+>f&w1u&EVSq)VVK$zVyy*?1c=xC;f7M0Ii3qQPj1;4%0$RX=BvNZ8o zV0my8Bk%{(jqx{~CXJ6y*p5bUD>ew>AX$sZ`GB%q`L(aN%fV&Ed0!vv=vY`Oo4(@# zHat|;Giy(!_pvsBoYNf{o#tu%eyjcNOeKa6qfPPh*L>uo0gXZC<1rH2Ft}mN`*q(( z0CBz%8~x5oZ+)*`1QBd(TBscXu@iaJx)QQf#tcC0l9JzLy|tiT$TA%RO#L7Ux8qqN z-G;QO{Oc_$ETE0n(dNf-kAEiw9S6u!qfVu_!rKP|mFKlQ3B~wtvCkp^8x!jpg$$w} zpE}}vI&5uL=`Cl^gN^S1BRimk-<Vlyv+UU(;CGxnA=56rviUtIFLO;*Rdo?1WBQhj zR{Xr6V#qmEsIV?sF(}p+pKf|PgoAhtRJ;XPQsHAt!{wffdAivq8Cz>2=k@KX18ExV zi~1$NaF1fAj;KF*2#Bf?aV<I1@PMslbCuEvgLRlk2OgusQ6djj((l$Qg#BELuuYpH zU9*~G|8YounPxL)pB}w66bAN;H@k9U68qVFXUde=fW9tLI-YW-w_|xNy9G?Yon^fl zRh^kUo7BBSk<~{fgS3~oV)%n%BCGvQVwoEkz(`BOvJ6%YpT12&Kmi4q9Cs^W51inZ zX9Z+$@={X|hM$^zS=Bz9aa)m2wxEyN6{$Gj!I;Od(*;+7(sX~r`tWJWJk+O4w@QsY zshY|!eR*!nvJpl9jLKt1#(=g0h(ZOWzOB*C({42kx>v!0H!$4vD|+Y+IMB1#z9@!u zzA{fpV+&adK+h+UKh|a$x}<%42gs^Z*^n-Twj=Dip^@!mI)S$|{W-hHDA^*wN9kQX zdkd1y$I4tL9>m8Z%(>iYDlY<@&>z9ygXS$}+`BJZprK%!Pjm{pt5}TQDw|my@SdxR zR;fuz+0L4N72(GRy=6?N>$rK9@9~wcu2uPEZtrkM$HvBP=HhJJm*QTRtqp}b!}=Ip z-M+^nz5p`Pj8NDnor_o^^hB}ylzJXW+|iQy!;eSMIGN2#r+qb725-}z;&TV%u?3h! zt7`{TzHYK3V+^cjTzri9?u$wwbNSY-NM=T5SNpW|BwWVZs_14yAE%54<;l#8Y*k<D z&PA$|pPHH~x>1*2$?N4Aj??d>lUuv;<)tPs<gXjg^yaN(EUbb4X2H*s8=uHcBcwJ9 z=zt(c9#2)N0SIc)+KS*qar6LglxPwK`$R-nA#T8CYj&@80RgBxaeo)XeUx?;>`TqR z(FdtVkr6@OU4rsIusC3eJd!}wnZ?9ar+e)*L<1m?IReOHFm7`WFOSe3CvMBhO86mm zCmgqBu`>RV7h$L~Wk6Z;h%?bY%yOs+iH`@D*8(A5?BjuTu+xo5XvLW>u=s+PVa!s> zbU6Au5fo2T|C^AO(y*zqe75%Xc76`Tq+^h|&#haX0{YS<`H5zCEF;b;i}Bef;pV&{ zPDuwN%R9TjS7?du`A*I%Zgl}Uly&gS&-?DyA#7vlSmF9@zM4+nh~?Y%6<A;sJqUO5 zApi}KHkJoF+himvyNbw}2I?6~?MT1uEcv6E!FTr`84YB0(3@2m3m9Ci+2A1Nu51R~ z0L(ecXlNHnvZRnJ3n<f%OPvl1ff$?sRRR(5@yIT5zy_doAUBC$=Y{PWqWQbwxn*EV zoU88q<_SsV5s01QQAnW<{!N_8$c4Y`qy$9Rc0C0)9N0Q;De$mQBppq5Aa&6QGr-i7 zeVt*Z+Pwm5fl2`2jz;rqEyP<V)}yG$>al%cgNl{j$2F!e;9jR;QJ>#a$U8PK51HYT zW{KVrfZwG@6@|w>Ysfc4DW^5~8|3GuY(Ayd6bfuomxCykKx~M-*`8+<&7jaocFO?( z>S}lG2Jt8xZAp0i+OVhvN({IGKm5`TIR<3@ac{3Ny-ArDv4bZo>CiDGB)AW(Z&R-E zBIp^jk61O5!+>N(-VLHU!jGs9%oCx`4BNH(d|Gk^DqHy7!4P2cjqXDr0Q6%b!uD3e zd@rO&A6n>?X)-Xa%oGj6(G7`u%r_1?pElF){>mCIzvJ=EpnCG$R!l~EZPGfvPx@+I zgdN}`?g22hharl<k3o@2kpa^^VS$~U?ajEdyH>7R9mAA*CVQ00bZ&wt7J-dmPXOK9 zg2Io2-^&NrrX;^H5dLP+@`xSSA1|E@9U)|$Q9O{RouMNI0sbE)7QWhRxyxnKlqJAh zJEF&Ch&6@QSDxS+L^@qewCmvt^3h=A#Uc9X^?@L55otytbTvb7RK4U-T>yV<34ms? zhRL)EBwKE(Gdl?(G%!()3`&)6AvVp^d2JwNR&}Q;4{VMkoEF!L)xrq*<dV#guyN^C za3%SW!PL*tc@06IfUZp+m0_Zs;MSm_L&+h8(x*Q?SIx@(aDeb4*Dxklawo6#J0S5S zG&_p`4jS%D^jwRac&-yexQ{d2e?+|r;&!DMAC0uZSw~6s-B3ia2Ey%cY&%<kau9M# zy_IKy`>ZBOfV|}cA%lWCz*`a!cO_Xz9ah`J<n-fGoW4t%=xI3-NMCAG%r|&*-LuCg z?e(pfL~F|-fY}yvcYfQS2dJ_e{Ah>6(Xw=fzi0qHWP0@fO9Ozw)YKz^u^cG(Bv4q6 z1DXQRl`ndK0XUL8K!E`%8^GyYi|qcYqXJ=YBS^jA=F&tIAf$7MZmEYNsI<K5bkTX; ztaJ{rgbr?qcU*wV6Q#myA9-3&O=bQOmOk{J?xHKOSb9o+kchT|$PEh?xD~2KWQuwn z%CvWGU$$J!T`6mVXz|gZLx)O$Z5nG!RuqtaqCHyMKDS>(MhsnwO~OvkA-9IH<Q)a; z2;yZLXs0MwEoN3%ErD)W2S-H$m_TF)5P;oNbI7Yd?1>OL*o2GMHv6S@5z<7sFbi5n zm4Mcxj7qEa0bD%t*Dca>Mzd9u01xuv5(q62Ad&y3Yv%9KN&sh`Kx4?tH^_3gz^ZOR zwO~vVL~ZGN-1i9_AcFOX2emWafx3vycB<n72XNg1jiA*!ljF>Y)sh2%7a#8lNj^)! zFmY0^Km8<}iCH<2d2TD7>ctLXc;Ge&mLHuF&q=8zelc`x27GrFr~nf8C&?hxco?~j z|JUA`|5aVC{T{a`+Z#<o1soU(GYtX70YMSU7%I(K20>8}aKHgj21W2`Z(=dWRuIyp zBvTPk96=B)85B^$6hSZ&1WXac36SZ$uhsCJ{hZhN2hJ;gvP4+x{@(X>eWvSPntyf{ zz56F`K}VI?1g2^$JD|w_*-sQKK6*94HAdIcV)nKNU+jAI{3?*OiCP}7J=?Dg+x5us zl$FNPQrMM^Iy+n9Abf7_VW(>gT(VPl^tcZ-{bjdvNbifmDWBNSsDIs|_dR*6wCepq zU5)#m@#1<He|q*Q&qVeipjjl8+!vKjzdg&!HmM@Q{N;@aeV5!*_1o#gEh~dV>ZFe$ zl9h9@nEABRQw;B1?D%;<wQ&s|>q+NsGvB6>HeREquKh?P{p$RX{^etz`-_r-ymC#8 z|DWB6O!JAHu7z`6+$<~WK^=X1W8P%LnKLRMx(0SX;jp9a0hDuAJogN2fL%6EQ>r9p z-t`5`b=v$5xAf3oT|GRq7f;v!$-iM8hzbRCW9CnUds=h40CfpYCTO#|)AQUND?0lL z+}`i&ZgUBkqhA_P)K7q;iFC_e)^OE$Z;f$gUN7DXTW<7+0taezSzhjv<m2GJM-;f@ zp+^q&@gh&5Hi@><IODeSo}?sR{j!&>cV~y-58XGZ@!A7)wjFQ%s`u!_X$j%^KFb?B zMP)L_V0;QoNpD$Xr|2AzItXR!$-qRU@t42;bmT_JZs%LUQN685p9lF=%h1UAmKw6o zE+xUvb)>MKoxD60N?_^wm<18_Y`SQ2NlBt2gJS2j0VrtW>h%ww{<H8;e7NHH{|g^( ztxh;Hj7{bEVt~<y%R}B^!z4LQ)B`N`#gXar5Dr)Ss=cAO8NB#aKDScpkIQvWUDt!E zx6b`v=jW?O=fmFP)mBx+UACJ{rAmF+?y01ZPG{NEwz6`T8Mjw&kFs1k^tcz_AfLT^ z3Mo&jprK!{ATMvLOC87bHFG>7biYnrM5g}a@Vwd9cVi3b9(6~^PkNAu@jZRbq*R*Z zwEmeTg$lKCAoFi)pSy}mgKCiOXXyYil@!Xgo>G^-C0Pz%Bn6`4H?qT520*8V+1muD zFS*tIR^P38e*m9f-}oK)^xpps_@vJTeLZ|R=gi57g8U0nQOn|?$FZqDzutag)%}wt z<HOR&_*6aohED7FqI=P;hJK^p7<3T`Fd0iDkgS5`H43qM!oJ=Gk46ntS+tlgtFl^s zMZl}0*jZ-6HhL&(t1_<5n|x7p$i+i-Epkt$ojJ2DzA!77nwBf#Feffu^aOD~;20;) zrF>zqV0qg=J14nRdv;Sf%QxIgZG@HXmq?yiCdJWX&#!Q)Egfm8J}xZ%VCoLt0++7T zSN=ykkNurZP0KG&d$sE*56G^!ZBhGa^QQ9TWOlug`N7%#8G1}N*nRY|hX>Jp%cCrM z5qi>SH8sF_jEGh-b6!@BLgW@3xxK%yu0N9emsust4T73o|M2*U7?Iz^JGmNXUj|AU z)lnA`;)N#OPEfmmD=f9?+zY*E{PEf=LYKd=P=vh5q??ceeU@D1b^2O8A&dy#tG(Yx zrPe(``?SuzI{t9ioBa<{QbWQblG~6dwk)61r%0^}OV#QB;kUPTv@ELYS+ng~7GO40 z9H|pIQ5>l+L5*oN{KZR_@adzyTtscL>y;HoR6PYhTo}@3q%E;-Q-Cv>K$k-4ET#=n z(+=SZ@z0i2`E3`#RYb8>mrT=5$VM>iQ(j(rYR3mX@muN(!Ye=o0X)<Oj$R}dh20-7 z-fsIc-eUgK<u6$5XDfXiZn0ltk1C&l?J{`+165RxfB6~f-uYi;`)8imdcOb3y~_<G zQ$K}y*`N-ka985ui#uM-tr450C`Nm1Lvd`ZTa4Mee86#RiRxH~5B5x07$e#qm!-BG z<(()ifB6shr*wKBdsz2Pz2_RAQ9W79<Td>FuN!a?fusW4W|T!xz;mkBb*Pu9e`|U% zY}}$}R30t(`+(K$_ot|&>YEK=N33q|(PJRS@(X!ZnT-ifHY~U+5SxoZ?f2$<G+M3E zXvu|rgLmHw)f)8v^6_CZRbr5&#@7Gk^{1^lZAFx{6vU@^ZB-QmO|v1pQ$HEX3sP~I zD$nbWFYD`jpQ|hjL{RtjLb2lcZM5R-(~550;8EyMJFe^Rx_;!~4*gF)`J^7Q=6tL- z$mK*Ee$^->)t^2oJf*)Z-t_mGmffk=-%nI2-2_^yK%6(Flb0IyvsGOIZqWeW6LY)Y zd+$BR`&)SLrRt?X-v&nfBPg!3Ehrfe5N>=nl|M{BbfWEtwr{BP(<tqyO(9EeAnZ^R z(Yc4{S_B<-yTF>b;>AVH+WxQr<TC=NB7&Bj{yaE;a{OW~Sw#6t>#Iy_;UelCsmqUR zKu>qJAS@aq$_Nb8(-ZqU1_|E^PfS1e#DIZ=3Y4uXH#c<i((mSn(@+aUVP1FhXoYJ{ z83d(r#m4l;JCl!xMdaqWm;5}BMi-71GefLs2SU>g%+iM|6uc~}uV!tx(?7_GGbC+$ zGpqH&qeCBt4K?0anKlYpF&A_-=`6#R%CFtJU-IxA-Ud}iV<8$Wu;{wq$)LL%mVz-` zMGk$!aZ_Jx&~U)>(I@sabk!|8k?Cwnu8-4mEj2tJ1rSO!5A<2{NgIb~#+S6Ys%DDd z=wh9nUemp*rXU4qk}X^)46E^_h>V4B%~4od(Hx~B#FV9*cRT?)Op;gZQ?u>yof$Er z#x#H*3JJEUjop&#oyIq0(&~#P#c9;al*<I5W{5ScA_YF0$!0GGpg3>Nr}j8`A@D5* z(Xxb#CH<hL=3Qo7T<~A7>o{aQK49kS`p-8^6oOUNErLJ%d`LJ%&TK<v+GwbRyYsdR zYh(Y`T7|-t?U6$3i!?7raMhJ=Z)H`MY-#!G#Uss6znmTp&@V)w8U>%WoYd2!Hdu8o z3e9lHZ8$Pq;WuGA+&#U(Q0qwH#k_e-Uaq=BgsS1vz+qAFnF86^4*hqJ{Y-3Vtkie; zK<rFfLLru+HWrS8?QGO;CbGFHv?2u<kO^ihMzYn#Om}#Wp7Wyz7+c~a#qaL-8a`vg zO~qG!ci#JasP>A@mbyVtJ`feP;_DCoDZ3<vB{$yj{6V2bb3ynBH+go1%HEsmd#vq* zoHp4_og5t1aT%ntLg%$GT+i2~ju|<>P_$Ao#}{MMRIN*it_M&VIqzJdlQde+aSI?U zbadT{^P9D$3MWnTH0tQHt3*4<tV)6>v=^w~sq;VKxO}f;lS-!rq+@mHSHSa3Hds-d zt<GrbpX6fR@<ab>yi+WV1)3P#f=ccUaJTl*sQeW5fO=4(?qnopLVLjoKE1dAiRVob zWTcX)sTso`v*45syq-v7w<5j)&wV%~DU#i2u!^8Z6*5VRTX9T#S97whRRMEUv012) z4ZzW8d5jfks9?CU3D1sN$<Ap9n-;Qw$~t)E?Jzm2x^2177JPFJd%S_HZWPUYS|6Tc zF+zoMz#y$3a57vl{c~J;k`reGFiYGXrJs*cDBNP_n8@?Vxbz&<8Y649<bL)$V$^QK z?%&bTsx7{k49j_Q&@@$bV<{T}WFiioIdkTu()mtAHP_nq;|FSL6(?NsmA#ouNTOf` z<0Mnm$-&TGXxY0h)Kxt3ZNJ_aZ-F2az!X9Q(r&DHl|P0ZzL-}!HMplU07uJ>=H}wM zpDk%VXsFhxfrEx9;>Ot)Nv)JK^DubkopmVz!14yLzmu!@4kj5F9;RkN#NFr+6<`TW zv*5)6z39g&RGfC+ToE40D74!RGL&W<(${1Cat0BHPCSa?k|hy{6hrwqoR`lGgQjd9 zIW`<)EqSKd9o$YK8_+-gnvp4*-zY4UHC<23jAWM<$;?JoNPlkwPFOhUm}2>D@`>?2 z#lH9BY>SQ^IXGtJg>B(j_yvi^ZuLFS%46UD@N*)zmlJk|xI_9+&#k$L<Qe+NNPeAp zUuT0_<}Y`~sVp=5hsvaT>F0kgQAk*#iGq=^u?AVwG?}cKl2YLpmkLn=n>ji3fB(Af zT1unO^9L34YKt+Y|E(5>LZEN(2xMn>V%3}@pYFGFcu7=dEjwMff#LaHJEu+Y*gZ=< zJS1^U_O33$DW3}0Ohs`Bs6{Dg;pXXV6W+sBp_U#^2qXJ$r7kZWX4!Mnc|Qq>CQRY| zNl84eD~c=s81e4NN*7q5m}VL}GZC1}*_z{D?gRvt@@R9Pbc$fA!+h{OFU!@JcBi@I z2WJN`z;wfBlQ_9vR7($!>zL)Y`8l~9PSr=l@YY(udmbL*&IoVRnz3P7_O9nG)zjqf z%F48iU9D`af~i4~(d(IGail9AAYQPhnz|jQ7Kchb*Tbmq#mWPUD`Kty62GEQ@rns^ zOrfZ)T*oRU`<!T`EhO4Idt2XY7xpb&fI4Z=9!OnE5yRic%4E}>>7v1sg}RQ@r+#NT z?~-XYr_DJl{qLTA@-t;%|EbM)FG%dd@TFNvy_T8JS_F&>fw(yumCK*^o_(_M4du34 zq$Wn3{9PAHccUarZXLHTr)(@+R|5~5NtIc-xtd*-IAddF8Pv_*^mF!^r`3JF_vDoe zKvHRRNl8iK)kPXzn8*QaaNd}HRsuU^RGhRQ{m{%utC`VEsUvev+eD8sW8urna)A;) zRJLnuBH21mX)q_Y1|=nlw~~JDj(&4_a(;mcQvDU)*bFfwg@WTqG~U0uXYlQRX!cEt ze3W`TqXdITq%q$;pPF2i1Qk)!M?duC<*Wo<O!fVKJ0aj!e=aO<NTYs>?P%s&plEzJ zLd8;NV@Ca}WhxP6ST-6U+!!cLA)?Hilx^$K^K&Q}gZt~iFq|G6XF#9~4pCAmHCjZn zoW992LC;yoBfr;v{6yZE!-o$``-<P#freB-iy5a^&moE+5|~%}icMYwqtoxn6^8*V zJo!rkS)02MwMypr^A6mOr=Qa|-^?DIzu&}APY>BaL!`BBEmhv(<-UXhiuk!&MA7Z$ z69Pj9$&}JHNvm0Yxw!f><6q%N)pNX}DXTX8%my5#Xd=<dCWED;kODw8*K_^;?-|oP zuSelgoUaXL6Kb<-Qx^@{a`A<o^pZxKH||0nTm||dj7;()6s6iRL9ZUd6b{}f<QKUj z1IuJrF&)fN5x9n=-*S0nSmoz`I0bVnL^eEC6=zY3MK_TsOLhRcqlUWvKL4mOGxX`i zYNE#u(VjK^6FyWM9VmjCpM5nM1f1Hba5h#_w+;dLrGt;RD5t-;*6r$uM!1sdw!&dm zMF)4rNQrzpiw}@!pf|;e3?MD1@ynH4!LN&@E|v0P)Co~+5*0g>ZEtO5h2Az~)Reab zX%)755+bkQNj$i5xK!^EZT1kbR;@jMbe&l3>nJ+4yep;%di2=h(N)Ossx>lfDM?9d z6xl<F^MY`*a3|}rfqc)v)mCxnOcCE*AD_J~?x(@&WMP`5CEH}(Y(M_^D){!R*)uQr zJs!i6aTcT97;72yp?L^X?!xv*8lp_IL}#Y_w8}BL(!niSiD}uY?ZP;=P&XwvUQg|q zST@z4d`SV%Ut3L0K$zmS)4HO9378ehsFrr2M2hq;yH*F4_pSZ~HM6Ut=PMs9l0~6z z-;*%WTmda3=9!zVND$4%h#RY@0(NXpx5KVZEN|%?BSXVz&a<K4j&9o9ksrEOLaOwp zl^Qw)yow;^b`(Kd)_XBK%ja>)f;)P8saU0(SF-YJ@}X8MJhUkAv8>_**&L&&tJ8@c z3GGwuNWt=EEa{N&8BIrfzo{VwYPMD+k6f`$+5zdd{8-n1qU~O~YVG6#<XAdy?vCH} z*zTsy*i9qF3bL}AzOm9EkBVU0a`JM$O!%(p>Nt!5SV7pS6T@XJ%{GXmrPGdsQ!M+n zY}2HtuZS~GA)ccpMyXuzwivTSakR6W%kubI9T>lNZ-EPH>N;508Lw)e?C<upQL~@7 z)mgTJy#%f{ARUBD&(zbiptH`+VTY)zzN3i)_H#IYHhk8_eOo1_P=f}^R#;g%2X{3Z zQ=A^u<%fux8R`cr-H`og4dPWeGa9KU)8w&}>ny?~UiQsr6_U@%!_OJ7k!xc$KiOgq zKJjtWCzl2e9(ZLs*~^o8LJb(|En-EMZO#dOU9H+R(one&S|L5{-VA~lz^&A&t+4<R zpBf2t4jMA*P2pkO*#JTm0s@|i7Meyl=t7yrfF})yR*&4RJ{1}!qXzZ=8nHkDE}9MZ z8P0fQ6n)QFCT!L3G;@GmDIL8Zs18NPZSI8nxnj{e*H1i(`50S~Vr$#cdUtTCBx-y% zjX_Fp{nn2~ZKod;qsM8h4Yv8@D|8NO;-+j>Q%yTT;JgRd&L{UmdxLMIAZb$Al`oGD zqe(>OxzC(p6ecZl5-*nwey;{-CBc^=1mC1+nv!f)4b2ceob5dByZK4O#bM59Hu{O8 z7QmKjkT62j)K{|7!sPhYyQ+_U*SNnHPr<*Y_vqp66S^V*=YpOxN!i#Ge0KY3<35)d z$jAEZgGUT1M^E#x0_q$hSStw{pJMm>SK>k|=KEKz3Cn`SG$1#*)K5&|7(@UCO@m+k zlxzbLa-*9F$xywRFQhk-xh<a;zcKx{TnjxlB^AZsW`=^MV!?RQ6^^dW0Txek$OU6I zrY&A~KCSw-{MlPe>)8;ylBVUwuSb->*Y8=DsD|kiC7e^tYX=KB-eHYQqZYC=8@0Ax z8W37vR=6IKKrT=bKwHJ`Pl3OAgS~AalL;5v!1Q`T{%C)Z00IdulwKQ}W$JNc;Oam` z_tl{XILUEI-mqNjg3oelm0KLWsebpsp$<(~8%P(7<VQvWWUMg2lyDr0aQbybsk!?B zc2j0CG9pYf``BfBE3$Kk5L85e>SQ2jlrVM4^XlNnnm+jYpNF7y71)Tf4V8bUH3&+U z(5omo8ZVJKx(moo>4-bzb@rB>_lsNh#XMC<hdR=+qDUM<feQWAP+~Zu6;UaMw#%&= zbK8XmdgJpI4;t(B=IdHp-w&dJ$@4U&+YH_$a-p0yH#V&Lg$D06Opbq`MdT(E&AgB> zeSaZOL`@ig2oLSt4e-s6t*ErIazct?b#*0*U~mGUB{MDFsKte7Qw<V23gTtTZ#qiJ z46XkaWr;d7HHOzK<w2T;xK=h2#r!JQ{-$hG44;pMolC4ci=COW{-^I6TdSO_kS4W= zdqx6AW}U-8>O@o@>B4~A65A_txHd<2X{M}`aA=_dJzVgpU_i_U4H*!_)`~(|EC8{q zOQuiyCds@JWc{KP3WA&lf}tP4VV;vE2GNZazXNERbuw1*TFQNkr&q>#UmEaw0c!o5 z)ROccyEhW5QP3om3l4!>46q*Gr%;wxl|>%zo|@)7js|q2NZeo3N<g59EV8>AGtL^$ z0}bzUTz0`+<6!(ruR#~Z0`&tL_&m;=eY&PT7Y-~0xj^7e**T$eOBa}phjxwuImduN zI+QJhnxat?Op?i)WL6P#cy9tdqLHQw*fwLioH2?<IJtdAZ1t}y4y!gA<orWrZ-+Dr zv{hYx>O_B^r%dF%E9{N$c5b>G0)&nghxZP%cd}MW9?P?|<uIylf^?1G1pAdisSdjt zz4u-?^=i80w@tzL^1#}e3(}|XU994sg>ia^*c&p3R?O8Z>XJi{w-y<dumd^ADpqHX z?A;2eQWc?l&C#!IyR>^i1rWNE!8=XPS0oZj5lv_mu>r@>hR4)f=}}xA@Oc${MybV! zzvjH3Mq$kvKZGkj?_#94_bmTbEso>XA!AJp1pKXI#nHiMWCADlZS<!Z7hna9W+S)j z`71+(@-l4+;U0pRC_x5DY&a^>u|-30PmOWx9f;Puk%)*A07)uhG!J7{M&4dCdGFM* zOoBB9<a0GZFuTmb0kp2je9I=pmKfP(7yR3Fs0PuZ^HD2P=%Vw2V&sQWO?AVxd_I~E zKMLjpcx-s@ZqgxgrY|&W+$&;c17l$;<qXL#kX#L7yop-o>i_klpdLBkmP~Y|FgYQ` z%kX8G$cY806&gvSEg7_TWyhBWg;0r%Vl4YQAHWGk-Rr|g%J{LJ&j;Wu*gS7`&Mz)} z+?gP_dO;)^y?giWwW4080EfJh8HzCg#=uK`L(f~Huep&Km9??1boY=m-{=wKRCOh8 z+`d_ncSR<Q9y>FJIz00n%)%!`Jv(m({0X!F4Sn<X=L0<J**np!9hk<j9x@l9C@k0L zK+REB5(rWRrFP_?e8;N#b4~$%7usI_nzQuhf$v*cy`yr{O1xHbIGLv|JETbj>(Q;_ z`y`X#9=2qp<m;%n*W|RIXkY4ZB?Vs%jWMV2mKgRkUZf;l{T=;%E}<Rry7*)=cZn;F zHStQ6w8XyI2ZbbpR`$Zdox~q?WQWvZuS$~lDqYf`qc3lvWYHB@$WxwpVqy2ZZio<i z+RTY3&;B+trEOf;8x)*zu9+cpj+Ge!Job3%U0^GPTG9~Ckd{+m0Ew72k`&mt(WNd- z;P#CpVk+J2yRhxoQ?)he*PBaK;v2hX4cp1X@j=SC%I|1K$KC_8cZuP}WH&f!mtPh$ z+?>8}3j19wTra?49`$t6nG@=BlE?f>_a{BiRVjS9cj<zw6xIvQF<CU7)9glx+NeHm zkPrwOg^5TK0u)Z8?F51@_HFzLrjgs0*PW0R%kp^A?j`(DO`eCEtSRaEE_hp`1edGo z#Cm=4@K&j00bsFDISkh&T}H+hk61~syJTX%rr+><?Z3ejB_d8ib{<QPR-(*-a1_I{ zTZE)bRDwd^;;s`Wn@W;=B4<c4sUOj-5j3?=k{}))c-vDTN{@rk4W3Gth_Yo;95s56 z8n=sfluKfYjT6WD_s%{rgGLpl2&xaCAm3`3YiFzFZ6%qAKpA2n^|)Wmd+GDK!JYTq zi&QVg#-hA`9g&1QCu~>vg#*l%i#j^3-NTlR2TtzvMxia>Z8jh>MGCcl_tP&&if-l} zHt5Mkp%=BhOXEL<F==yejF~=hW@^U`XGUtgX@rHm!x54(5;`NGrZJ`&vJi!eK7(yB zoCd5w@hCtI)fFL}T431GSAw+Z8G1fi5y10k5XVj%9r^IfftNa(yRWPPPf1tGs&$bn zL_^CY`mxM3fo5UL|7k!Ri^Q%i6k3I8qmZPCc&3G{R_5GYWo3!8{aaNxja8E}x$jX8 z4C~?#-GBR~``NDhCuxeJ>bX&!A}QC!(uu??U@K4V=qi8cr}L5&krkp(3LB~&vQ#LA zn0o@2r=jIc(i*H%7u)9M_q{?Pny;{_b-ZAp;y9@@(xtOaqz6g0nO6%5{kWFwloA%9 z>%0jTR`71$mVsO7@VtBHuex9BJok>+8MW*WW6t?H&N<8e_GS>ad(4zq(rQKgO>~QK zZ1O(JS&SMx(@0r}X&Wg(7;pAQkqi?m6rGHLjK)e1Y2hJPphjjP`nid%gpM(bTTY&? z<G>AJ|8YF+H|Nj$(!I4ivG>j0x^X2L4zGP}+S@cU|0;W8XJ&}Z#^}$^Rdv#~o&R3W zI3E##z^I2#T|RaSVE=C<kWyC3odq~e=a875y`O_hU5=a)#_;a;keGRj#4CYK`+&7y z5{5C~cq{enjV=#nXGg1b;Z_)&+AKjH@Vy7I(&rMsl}p2X)6Z6xa0ZNZAr*u(wM_q~ z%H=#|>LmoH{i60!v>HJT`DIx`M{5xfo+3q;57nM!;QOx%G}`+TGorg(=UvN<Nj?&= z)-KF2$bkCkGkp>#fBC6N^*alpRx*7txVyX6Pbzp>nH<g#=H2D`kkg1{*%)Ars7(pg z6L!0vnrhaPBOw-%_lOg_WuMD|H2PwJUXeN)w_U=i?7K4OCl_}iDS46s5~+@BySjs@ zm8zRc^Pa)0Dr!NNQpQ9=lgOeN3fYAkPHSnmzF0C>fM=e^jMJ|uz7`u?!d4h>NgT>6 zR6>vS>(`S2@r-j`mayeIbyrqFS@{^!>A^s78MS!(`s_Bz&%#ogc#FyG{A*GRLS1I= zPTk<{Q^j8<s>MN18AqeO*;vW6mwL>a?dHQ~L#3Yyb`I_SBFW67EK$aZPEn8@sj%|W zC4T4pu<NE2F2Pa^9!#LxT{Z{utB#A>_rmjDK7C_kOyScecP>^=wZU1nR7e<!hJCs! zzwxWSVJZ&Z&zj52#jj(!J#nnp$q!_tLj7kyHjE<>>bH>o=A2D3N*st~vNvaIQc`1t zl}58vH<OK(UP<Nt96nFc!Vz(<1HT)=cW0~Cf2(nD)vpL)C880@e8g{Qz_HWUeIY|Y zOOj83_av?E;bC-o^|tE=%%q>1L$G`h<A7#cny`=$Qgv7Hchh7`G-8(}3#bo<$Y8CO zk)4@Qi8zsjLSJ(4a+s&cuTc0aWv?yO;&L!cK!AN!Mq1)?O2;)(T;;_an6hT>Dl|}e zhd*ShbQ(J(X}w%&zbeqZ5)0-@?}4uT+*4;h>ygsY0e*9D?U&AohR`elFDbz<$qFma z94&0>vyj(Pkk3CPePb|Te&QFjW5+&d#}&!X!)m^ifFhd1+UPMeo{HF4@B4y(FTqI$ zZpzrsO`M-(nRVM&)hA0P&b0*P58%K`-v!USQVuBr$FIXXrxVrapKF8!Z|C75k4zc7 z<(sA7D+g^j;RlnlZ`R)CiHkRLP%>8%OH-~Rwa?yEL&b8?q&=6vTbO(hJ8Ko&d4eZ! z1Sz!)_~J>A^=08h{g$_zr-6gzQ8ft>lvtfF7q^s1e&$&FCJJX4Y5rL<(V%4+9MlK9 zy+R{0coFna__#>^68;JzgM5n06$pL80fBEngB)B_Twy!R28K4wZEuOV|L0~^c|UF^ zuWPEFOaM0;O);9s_K=Z?Y9NQ!tZnNoIG5E73rl$Ro5Xjfod)0pLYxe}Ezx7j<+hm8 zpgf+MC((>j!x}onGcIh{<k8nQ*PWC?>DlTH$J1qiPXBxhuKQK+piz6ah+YDdf*H(6 z%5M3r0+3-a&NW<9b<!;TE`k?(WVP<K?;bEvhFKf$2#pb=1Oz;+)Ub_<_T3K|?85 zhbUJPZJAg#`PqLsOBu9$8Hq92UWeB1$nlZ6u{G6TzSEqcE)reF)B5eFTzE2Zi>SSo z87pVoMvqy(IRtW627~YlFZTz6H#6VjgKH;fO!>&zmDj)qM(29LD0}g)CM;al@+u<6 zVF$^N`>29T0&=rzJO0DJ3PP?g5nU;%e88glcJGE!5jHAQ(Qy8_jcJ)Sa?<14+EW8` z>^L-OfOL6}UEpRVBF0p4-Vi6^%)YE(@8+eEOHDRB^7q^cRGh53$!_}Ofjx;MOItou zdE$1ysl%d}%ga@c$4jzd!|e=h4sQf3=B;yxVXB*EVlF05^IYHz!^-5XTU!+XDzqhd z6-Cfm$efy*coq+Xr}`$9&!B5`()kWScN-JHofa~J>{E(?y|S|(AS~{M`0d{K(dr51 zs0~P7`Blw3Sg{mFrIhTMqQ7snla(@XbTlPKQccC|gRw*~BILXw1f03~SSBYP+&<wV zh=60G1Hp`zc13)3G#zbKi^>1xhqy9~d3+Jz+SS^(>IbE9!1k#}(=#|9)DS(hZ<SA# zIQX2jMjr>ju^X9(NW6sO&NZRFRb)I}A=;UOus2RaPDj7LH9WaZRMva_ToyH23Xf<( z?MzBr7sqI8uFuEpv*Ay||CHJnFR@-O(-HM@<%ax0!*sORB`fDM>WNw51{D%b`0(au zVpObO|EpftLymShxY%gB({9((Y-0Iu`j`z+t${KhLp><Ot5veedRkEw@d<0ITeF8n zI&6)pM(fW)Er;@Bcqrvh#`p-MJ$Gm^kug{;P=+_+u??D7{TCk&4aX(haIBXOysw@) z!YIkZ2ul&i+sbM_Ixf&7r*QM>LxH1zDZbC9is3#bx6DTg+cSvhSd5g*e@AArD+{Td zBdAZ2TwOV=0xZB2n}GeWHmN2-{X?Um57I%!nV=Ri`1Q3u6zwI@*f&rjDWUz7u>ll{ z{}y2I%g$9jcHwm;;%~KJtA<MSJyM2K+VNk_KtgA$HocC>ETIo^e`Il`$0*f6=&HfX zz;_oO)I!}}&1HE1s9=Kvtv)cPzst)@<TMW-Y$HZHE7&eU+TpfrI*pt+-Zx&6q;>A3 z1aVMek5oZ46J~$DJnpgxhE;&J(zC~T$DtkBh=WA{3|(fL9lX9@2XCsEXn-sSkhC6i zeW_gdBzci_H@>~<+R-IJ2sK+RHJN4GMwVAZV6t`*z_Sg<G9}H%DX*7Swe~LHX6ZeP z0n4`2D~KRvh<0U8>6Nh8$b@uox?pjinL`b(0q8X{f6;oD^V)t<#8H0y!)xTTwY@v< zg%yj2!nFYoBoQW{OO1S8d)tq$HRX&)%b8{@D+YJZhKJ|I<cVxt<>DkacbAl^6naU@ z=M9spuTNbj_jqGWytarGmQj$KBDtTMs|M!^2yf>utr?<q3WJ?=W>@vZX+jXzR5Pip zBOTU_vVLN#mT<2q+TrIzMxVNJp)87St1sy$(I|*ZBsf{Z1INdxj8MzOg14dGG*E@2 zg&o({{X1f{NV{^_$*_L+<Te{#)K^z#z2{xLRL#CIWrf_(<Y^?4S&uSu^z>Z8*b$tY z_>JBFL(;Hf7m8)5f7`>mhNq{GT%pPTbNY6njJ*$c8#wXZN&7FC@LY-{<btKutXimC zQ|OqQ%+2dP5;;y>Q8AoFZuc?sqNcQSR*YtZ0Yv=R4$+BI-AnZ9I;7Nxx=D1q9!lo) z@aSz+tqKsb+&)t;8H}@)D<;X@r@|q~h}yTz3+qids5RrBZU}JU^t=<!`wKUn2eKA3 z+Blr}ag*Mz6$k{AYA5VY^>X*Ef_X|daiYERikDel-<Cx<+`WETPvd}_QBd$`HDmHB z?gw2sBhw}5G77&$i+Gf9GUab&Kq`m}N<_gb#OqL_0&Id`r#tVL7pHfq_FSF)Dn3QS z;Vxpmips<#m=~MZddU6JYHILxrvfQZN{jiRd0<k_On#BjWF*BHIT}DI0P=H%fV7tY zk-0hi>D;1ir%WX*z3ow@q0Ayn9cv(Ix=^XZ(&25XSx^QwVra}#7lE^MM28g&a~*;{ zib*aKnmdnquOfS<jP!75Tv5i_2}=|L8YFtV%B!0#V}s6B(wk1{5wBfTFO8gQ@CT(1 zCIio+oyxjUcxG2%=qMbvdQCt$a4U)mmr)pF7)ceVOS(t<5zF59enuqD;+r+IKgwkV ztY9g`9nJf={I!UuA)+i-7u#ClQz>&*k`j>El_=^&R@WXY{@d3MX<kDoP2(bOnEmD+ zxy@|tT~5m=S$}x+;CZ!uw3=w_ZCjd51BEA6>b3l8$)T$;Y#vUvnNW%10=pZbl-!YZ zi-g*XGc1DfvCvcz0;uA@rJNWB)(}Sr4riv67vxTr!p%!ptQbQ|*+XW~j02zE7l~aW zP@*6{sLg)ndVVw!=ePS8&?0C{d7Y5r(#Dg3!Xj~wmFJzc$wVs>QtwLTH3o@_?W}S2 zMP%tN>F>Zk8%DRqu2TLEw!4(eb`s{E;VeiZ3sQr`)Bs;o>L2{_bn5TSdSFKk4d?VH z$zj%3%AhsDq+*=KF_dD3C>SzhX^LE<S<@#iR5E%8xkxtvR^y6`CdV_ObWPoy<U2^X zQX%vYgv|lN%WY13YuX?|IvmY*_FXZJQ(_sD_U^+&OZ^s=_Ui}cOv(xL43Z1V9EDbi z(zXXu=h74`2C6xuXv(W^<eCY&M?=`=?RWKj5ZCA3EoV<XogC6NPwKklfzpsST9JGL zarr4I(*|!6=|mI)p~~3+izZZLyQ*S#=~TU^95BbV{c=r$Bo%K{bp*6wU3QeAgKSCa zo%GXh(Wj2#w?iP~)qo@kCS`Dfl_N+pc_>=m@2nrSyGhzjYk+88!Wq*55Hf7ihOZK( z=n**CEf%z|+;O3}f|CQ205d<6xpl*HReEx_4K%An=2+RDPSUxS*V!|LA(zGIAlXH( zv`?_Ni5iu8b5{^zX*HBjsr9BgP7`iQ5VM@UGpCtBvZN##aym%5QAU|O`MIY+nO#7X zkuSyFw$AIHHjQ*ovdD;F0eA4*X#j@YAss|2LUU{>i|7kMk}C>5_*-9@_GTH4EOFh& z7xnXiJ&@Vt9|;?kIm$k6KhRH025`uZcBI_+6gL3Z%dlD}Ke~Br4=B5oYWpty(WN!Z zz^LO>+;Z-ExbH<QLK13n@qmcF8eJU&-#31h=flpvEU#P$w(<#yU`&C@aNeJ~L+2#| ztvki%6f#Nn<8w7lM00Wr&OxP1T)2T+Ik(B9ji)tUmklge70umW_|-yzlS;`%7Dgl~ z8j8`4Fpi0-WDI2hi3+>6>1nf))E$MQEzw{8d)Axo?J$16e7g4UUyJT5VO-Bg+PL|P zdE143@~3!h9TkJPKSSz^l9d1E$+#KRnM9ty>uo6hWD{(J<yvYg%cA~|?^OQ0-+%f@ zv!ypAzy90TNVES)u`fUy`Qz*TI3{xc_z#ueU)1ma{ntNZA^utt7U8d5B1gjduY&{c z{HvDyRTShj{8bc`tMFG*U>W`@3M|53Na6pBqLAG`?A--Z?i~H~cB&lkkF6J2Wz1du G+5ZMyO#(gu literal 0 HcmV?d00001 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/linear_coeff_vs_kernel_ridge_margins.csv b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/linear_coeff_vs_kernel_ridge_margins.csv new file mode 100755 index 0000000..5346ecf --- /dev/null +++ b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/linear_coeff_vs_kernel_ridge_margins.csv @@ -0,0 +1,53 @@ +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_0,frequency level of Little Socket,-318832172.2086933,114636041.36645955,433468213.5751529 +X_1,Core 0 state,-750825726.0535247,968638849.2592059,1719464575.3127308 +X_2,Core 1 state,-1136889782.8201854,1203698350.7748914,2340588133.5950766 +X_3,Core 2 state,-1461095066.8930154,1156874732.6674967,2617969799.560512 +X_4,Core 3 state,-2851620839.593662,2484680012.8657327,5336300852.459394 +X_5,frequency level of Big Socket,-219090685.044323,251237789.89416486,470328474.9384879 +X_6,Core 4 state,-3311012110.96559,2938092695.237851,6249104806.203442 +X_7,Core 5 state,-2884690358.215931,1772970016.057762,4657660374.273693 +X_8,Core 6 state,-2511497256.669151,2316636754.615268,4828134011.284419 +X_9,Core 7 state,-2563406395.758262,1988033960.003158,4551440355.76142 + + + Ordered by kernel ridge coefficients, highest is better + X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_5,frequency level of Big Socket,-219090685.044323,251237789.89416486,470328474.9384879 +X_0,frequency level of Little Socket,-318832172.2086933,114636041.36645955,433468213.5751529 +X_1,Core 0 state,-750825726.0535247,968638849.2592059,1719464575.3127308 +X_2,Core 1 state,-1136889782.8201854,1203698350.7748914,2340588133.5950766 +X_3,Core 2 state,-1461095066.8930154,1156874732.6674967,2617969799.560512 +X_8,Core 6 state,-2511497256.669151,2316636754.615268,4828134011.284419 +X_9,Core 7 state,-2563406395.758262,1988033960.003158,4551440355.76142 +X_4,Core 3 state,-2851620839.593662,2484680012.8657327,5336300852.459394 +X_7,Core 5 state,-2884690358.215931,1772970016.057762,4657660374.273693 +X_6,Core 4 state,-3311012110.96559,2938092695.237851,6249104806.203442 + + + Ordered by linear regression coefficients, highest is better +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 4 state,-3311012110.96559,2938092695.237851,6249104806.203442 +X_4,Core 3 state,-2851620839.593662,2484680012.8657327,5336300852.459394 +X_8,Core 6 state,-2511497256.669151,2316636754.615268,4828134011.284419 +X_9,Core 7 state,-2563406395.758262,1988033960.003158,4551440355.76142 +X_7,Core 5 state,-2884690358.215931,1772970016.057762,4657660374.273693 +X_2,Core 1 state,-1136889782.8201854,1203698350.7748914,2340588133.5950766 +X_3,Core 2 state,-1461095066.8930154,1156874732.6674967,2617969799.560512 +X_1,Core 0 state,-750825726.0535247,968638849.2592059,1719464575.3127308 +X_5,frequency level of Big Socket,-219090685.044323,251237789.89416486,470328474.9384879 +X_0,frequency level of Little Socket,-318832172.2086933,114636041.36645955,433468213.5751529 + + + Ordered by absolute difference, between kernel ridge, and linear coefficients, the first has the maximum non linearity variation +X_variable,meaning ,kernel ridge margins,linear regression coefficients,difference +X_6,Core 4 state,-3311012110.96559,2938092695.237851,6249104806.203442 +X_4,Core 3 state,-2851620839.593662,2484680012.8657327,5336300852.459394 +X_8,Core 6 state,-2511497256.669151,2316636754.615268,4828134011.284419 +X_7,Core 5 state,-2884690358.215931,1772970016.057762,4657660374.273693 +X_9,Core 7 state,-2563406395.758262,1988033960.003158,4551440355.76142 +X_3,Core 2 state,-1461095066.8930154,1156874732.6674967,2617969799.560512 +X_2,Core 1 state,-1136889782.8201854,1203698350.7748914,2340588133.5950766 +X_1,Core 0 state,-750825726.0535247,968638849.2592059,1719464575.3127308 +X_5,frequency level of Big Socket,-219090685.044323,251237789.89416486,470328474.9384879 +X_0,frequency level of Little Socket,-318832172.2086933,114636041.36645955,433468213.5751529 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_big_socket_frequency_level.png b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_big_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..5d24e7638e3364bc6fdc43fd6244ae9a30901d3d GIT binary patch literal 10840 zcmeHtXH-*L*Y2hxh>Ax+sVb<T2qH~DKoLPeK&47Yq$41`6I4W`DI!(rJv5afJ=jnY z=|#HIL+>S&J9j+YbME(k<NbHXbqq%!B-wkdHJ>t{nSjg6a&$CIGzfyw$zPPYiXfyI z1R?3Cri5pN8oLMKLDcbrmZPezsiTXLy$PaZ<Y;GY>u7Cp{eZKHy@Q3VjR3C@FF(%# zb4N!z2Qfaro4>z+*Vf*Qufu4r0zPD$-NkDT2(r@%{ZEo1m2QC`-0$RN&Z)URo$T>) zR9p0YKWn!8z&3x*!@GA!$>2mt=XN9oTuq`Nqo6T!;r^t^6_{xga5$}e-?((6Gnu{X zt-WrUhte<Hy?WSgmtAv<AvgC$jH)4pqT;sbBP8Sk@)+_{FMVDq2k#ELIIKT4O%NT4 zbDruJpZ~nR&$YZt+(p;Bs*exuY#+y4JUk%Oyfg<81Y^X7fnV+=BBb!Ad!*C|Vz}@B z|KY#ck~F_o5*t&=c$KY{8mT?|_j5<qnmDl_NCUZdm4UjtI=<t1vb6N)GYqmM>y(?b zp*~#v{Ehg12+}Y1RLn_X+qP{QHTmQeGtBpcg2ETZ*b_1`xB{DzvjbsaVQLy0X**cO zMn@ZyHEKwBh8EqQL`Cgeap{)XgR|{_Y0(F-h11iCJ!y3NOT1KG(ao;8<-Idomn6Lc z;cO|jUfCtK(jy)Bqs=7I0}uM!fg55{QaCSMxWLWL{SnWFSYyyPW#r~+sH;E8!eVnm zNO6>ZE|~Z96n3j~L-<y#X8-NaA3uKVtn?xXEq{G=D;e%~4;x!<oP>vESJBOL3basJ zC*=0v?%pM@i<dHZ_wHS1v28q?`{==7HVJLH5S9}BQklziTXLvmR;Fq?9_LHOBw!l! zK4^dP8~>eDqM`_LcBW(<su;hk?%<Ilvb2o6EiIX<RgQhHZVjlZswU^?6jQeKxb%79 zo6|!zvb7oqM`qkB9)yHwn3x=v$|1+K?cTk6aMpFuxlCPK+tP^zcXgdG`H%w>uW4YA zw>aL8O-qx7HE8yvWn^4De{Z`*KJSSWO0XU6o)ev&+HMuSl&}h1-FyBj3eVAogNKhE z9dAliv}{fb7QWe;GSyRN;M6rYXAf%=(qd#}OrM*ZvyzmvvB@2-i*<Q(iVV~2<h}Nc zFNZ)_r)S`N?$1}rex!;qKf*W!ah~i{r`pNZ0{gYVzBS7pbH?q(=CaS$@;ym8W#y1# z$B&cM!nW9q4v--T`5kyik!7obOZP2*&P<=J&9(kJI~TqO@>vdjdScKiEGenKckf=h zHgz>ME=kGFn0k5!hP3?rd}c-_<o1ns5B8S2&L$l?bSN7=P!?6B>chx<W>L{n)-tRK zn~-q!+O=!GPOGb{!EplAh)CHZ4moXB5=`*vBxHDS(0pa)Tj^q(4is~$(|B8Ee*Wd@ zN<uCtw}gbAO|ec%Nl94BSaZ77On<d@f%zlZpnZw3yH<UbUfPA0PoD6>3J!3wTtQUg zC36-Q9G^US!YwAIUE#jiR5o3SO+4?f5T>A@uxIyNeKV`-)vE<IJz^4siI?uf(PoY# z&s>i2@u^6-FXZD715C+-IcWN=@+zF`2(+}cRRuN^9nYD>ovj59lOi76yu2EEde7jh zshb-F9abvLJGd+f(k|@2V9rZUcL2v9=}Q8I)qEMAMYf+OAxDst+bMRzDWBYP7C!#X zzy4uH@c?3o*(tSt8DPyDS^GO&0Ja5UqzJPS4Pg4Wk2y)P9ne?q`n+5}FDWT0{Moac zzzGb=2q}hyflr?&w1%U&ONoRWx922~vc;b<_CJv_tOKDOZO@C}{mU<VnVGGe_8`J% zVIgGJUthe#QzO=Qxeb3>$q0Jk%H@jbvCq*04}yb-JkKJq;FHy`PeVkA5V0Ob3c~mw zZpe?FdgGTsf<wN3{W=HGd+^|e7!AT~CqweNuCBGqwkjuCF7();L(;%6+WCgQrBL;w zl2&cmjp5v?OxbXN&8do!G2*-kxt_Cg5s|4l(l9Pl-I*56X=5rrYmevV=bcvPOeEH4 z-ehHFmJEAexpD=-LCbSgC2srG>#)%A)8DE4Ls-R`y7gb01_R0DegA&li_q0)<0utb zo4T^HG8{q$WOO{_H0jC(D88_isHi9_8%;gE9OY+X-2D7k;4a&s<ZsjOL~iG1Whv<A zX+o`Q$dMS5g&fBKwF5j#w>Al_@Iu+*@y<f5MxK67U95=JWM|>rs;7dy{1poei)2De zTid7cMPV(Z-?Sk|N92N>99E~;=Eny`k#3fwtD5=trnAthU8q=5Sy{v0-oD>iLE%BE z(|FpG<C^%@k@zaSBp@nA#I~2N4(Ml>b%+>gRCIJE&>g;FxmQ(M`gMC}u}N(NzN<Jd zgk7q4R9IA0G%GuMJ5Rduv$eEGP}#S?(90nk-c@m)bMiMk3*`O${P0bwwe8+PYisVT zVvZO4Hl|#ddyeq%Trx5;>f<~HMK}adNmq(Z1B6@557#{i3Q}`(E8#?;N>5K8mIBBv z>9H9a9##m8^OzDviMMnhM10}n(RlN3ul>Z_=2F-^CirXhVYAPk1m@s1sMHM$kBR9t z+!)WR%4J{grwU663)}5?cirJVVSRP}(}xe2;S!xiH?dHLR?Aa8_}&VS{OiCMTCeFT z8m5<hhJ@kP>1_C}y^v9i;IT-PfdgL}%HZ>b$9^n|?cY!w#PJ0{pxXu1tFEb;u92gC zjg<mJ2UUtgHVDhb{|wQNQYS30etE|I`_#cKqD}bI2#+j^r8Bc{f0=VVV_(*D?8J#e zu^mVtKOp*l@0BRcK`ah&aI~f=F=LaFd=l?%<j8irh0!Zm4kVvG<Yyapnraua{iMV2 zrDsw;`Zv3ZT3`Fo=7f;puA^|p#oAVK|F_(+kN^7JFVDo&!ATHr2@J$OL(mZoImD3T z5((`7PsY#?LqbN$b@1RhGRp1wD8&1TYzW%tc7_dWjO1_o%Su4@ySsIJ9O@;|Dk3aR z3YmW1$13hTaeTS!XRC1WH>>bW+{Lo9z+$aAelul#-BYj9^BVANzNMulQ;!)`hx<aK zoRAY<jrFwMS>yLXjZyr@jv!43jzGmxOUij}yHOLuN@tUI?WOEwSFz@;ThA*uCT$Iz z;u#G*ue`ZO*9_cuSiW9rs~lKmajurn3Y4)fZa>iWvERwTv97P2=h(5PhX>CyWh*Kw zssiD>G=)vckKqVGyyNOeR5dgrrmD8Q7r~V^PJXJb-OI?>Zm6fL`xJg=?ny5y(kLt} z^zG8mTaKjyKBYcYvlsU#<kR^~!0rHhOy85@#bC$R7sL&;mzP&LcrG@*GBmaR<j}Ky z`YWU8q7#YpaK`W0-&pR`1ndhH2Zx4gf=RjK1d{(CG}P8H{^?T|6Eia^8;=V8!$*#I zzidEuk@J<$+~(DNmC%->qk{qg0J*l|EwMWI7`FH^4J~aeP;XxMQBl!r6ciMnK7FFe zuC1@v1VTzC-1YP0=HZ!;m7&BWFiClr{~%_X{sN0;RGe@2mS21H=#lUIN>Xz2UV8e2 z@(L;{kzJD-;CwhO))vN?&ba0?oX}38=a4nuSX)GmAK=mC>o}m6no`b_))h=7FqWF7 zWtN!Z=q@c`>yBL=X(=f(CMG7nU8q_V+dPA}qyis|7gufMfV0Y7eMb-PKWg`u{%lp> z)|0M13=G~DJsr=Dg`6ikOfQlnOZF2T{CXw!7fxswTyD?RBf=&Gv=w7T_~KH@K?F`t zQ`1%K0FoaCLIdp4;P^l2{y!Lk_1)CSJ}_XCm%Y3yq|cxK%_bXSz^iMaz6q88-^l_M zRkCdDLWS1WR@6Isue@Q`M!gB#nIUE*&O@0kRL-V2mXsPpRPO(kInkwN0zPTib3u9f z)~#Datszpyw9l3Ykz|PL{Hxb_N(MeZ3T+zVB(NaLW5FW5`6$Z)qv8;8m#OfYfk$1F zMJUt_|Lkl2VK@F^{}^w>if`Pwk@4ci)yBrgKkli!#33gH!O5}+P^@nfrmb2suAuFa zE^j1yz$IQrMv1z-?U51iTR%BKC;z@NjiHiKu>0~<4k(^i&ISm5+KU%2a81y7m@1&{ z>&}p9QZ`A?SNC?ZZx$|t>#V3;%(3lRISa)iJQT%&X~%-`#5W|~xwnHgOA0zLXr(Zw zj~+fe0QLad6Cw%Lu#l{mLM<ljJ+5Jn!;oa<<g{Y*DzjQz)F!{al!GcR!%G6J;d#35 zCHIQz2f$i(Z}#aRWzLgXxq4-kHt8uTqj^3X*a)6$Nd{YM?V3GDMMN|~N@+DfwlJnf z>w9KK=vYo)t_fwgUDyQBs%vOaMyRGMQ}D9_2L&5V(BrV8t}_X69}S}$pv(YM+Utkl z&CK=u6#1p4rPYmPzZ_K_?XSM`ARwSIr?@u@J_a~=1Fu;X#(6@oR86ncu@SU6M=_Fj ztX0#X6)l5}`mOa)bv`I}@ZqY+@?=*!6}#t2J8^MwoiIVSxf?k^nE<_G+}zu`4M08P z*9VV+{8{#t7P>FuQ&G1-#|9jT3xKz)s;Ukx6PPP}>SBcGZ0ci#6knRwSq`hgelNX= zM7RCdVhb`xOD|Zb%sI!>%Bm!c1d&H8QyNf@G77aS4qp3P6al4w@+>U5pXF@Y9TK8! z!%BbDp@xM;X6r3PD~O1XfA{GBTAf7mj(Bg7;YMze|K#@Hh@wDrn;*{nQLi!LF1f_Z zq22Jx5TDO~FS$U7ze4Q~S7KW}d++Cc_`O5l*PrOm)`T9VKb!jpV!Hvh2SXycHp&4f z4z;6=^19v6>luh5UHJ)JmG<$kUrR$@rUILc8n*(|x){^?ZGa%5nmxFf7^cOk9-Z2V z6IM-2N0py8+^6SQ0FJ{$sew2&8HY-wf#WNVehfK+RxN+uZ<y;HoYc(LO61imHE&G1 z5SC)oQ)&U+tNr3eKvPpw%<&^cYw18fGk)xEs`@9pj373`A)=%!PER5ukMr{8R+qkd zb=s{$U$5Nt3YbrW&OeZZcGP*@!_)I}<Oe_2jR#H}srKe!E2fpb;`2r}p2rTaKb<i< zc)H%HqD#;up06@w+^rj1(n)Yg?mb`T#hbJK(rD4j<&-gP|Kf*_AFnt&JNFm0kE>t5 zp5zyRBv=f8j!wqoEekE0-=kZO>mc37&YlOI4JCU2d-m>iYEAYD1L;BAYs0r>7-qb` z)cTK*<@pG5gxF3eRF{H(f!10l92n}rX#foti*=gmKgW8;^>R~sq#KHI=y^H4#JpnT z;@CPi1CGWu^ldJQ0Hze>LfKl6=anb*tq+U1<1^E<@9%^@KoEGY7mZLnXR2|N^<P?J zAu?#ozLpGhcy@ny3Y@^`Gnd{*RTYU;)bK#C<i6OdSwg-Yk%Nv&^@moqCZ4Av${!Fb z;BejBCwbXmQd9D(s;W~z&e!x31+rvUFR}b#VD`hLGq#|h1@*+kQAFek()~xR@}FTC zWQ;oAhF7<5lm1ZVnRZD8b)1P-?YTcYP9O{%GTxTc>_^MkQtD(C4E@dTru;MP&3`ME zyV%+L`h7^Ef>CUDz;^x{0?}@Q?9ArMfSAkF)9cr-7uXLepc}UjwqX0r7xC#IJ4EzW zf027o^*>nccQpS!d8Iu^h9P0|TDbD7%`ZfyHUaI@8F+QgoyZa4*TiVRh(#TVJfV{Y zhW+@NGrG&Y9(hYsJzb+k&_zG09kR^7>+es+e*!=z1XU(t-H|XcVO{r3T$8XotvTIW z@gyQ5tvOvqq*O&sEgXPMTKn<w(K}ISRKXO&jR|Dr(~y<Dmv$*S3F0i&52Kt9-EGgP zByXhR?Ch-XVP0O|`vD{eT+xJY@7`2M42g;fCcm^)47{(^hldA!oemy6$aLz)eLxCR zPhM%M_A@c3s{kt5P_`Tnxe(oXH;@3xFPV7|JAuC?jL>-2gAZ9-TjOJ`4h#%bb#q%) zUmp9{HoN|DY%F$kbQBjB73F%~0Ng*Z-_#Es9K4a5o{q{r>OgzF2{+%pe~(6F!BdYP zKTd|_<LvP*nFo%5wRpwPa*GuQ-iKRIP>mR#X%fS;O8L;n7bc2}lU<sqPCLft=bwZg z)GIj~j#b0qEj<o=DH_2Y<Km*uo?rEZ$IIZFAG0M_R_gojV7&_ef6(3uNG1|E!I@jl z4Sr-gX^5fR!IA;4I}370)wD~GIN@e%C!LRjO9)%&cBmh#Buq84x^yS1NUqADaVH$r zVux|)wbfH_?U-lAH2n~LIu3u{Ul%PPH#9Va2A|-4=~u2_l$Q^Xmfm#3&Hr0pUG|6m zALbSiP>qg`)~v__604p(tQcYbG3@ZUixeORd?9EDiXciO85|e{gVlL{-S5{9`HyaK z@WZ2j!7gN>5FFF$o@U2<CHmXOWVzbEaLM~0b^V{g<j?q7IlK!xV1IURE|_efA^UH^ zmyE0|F|GUy42iCrN55PP!W?MfK7IL8^t-`@s*fNV+%$yrhrJd22N(OVTt~FG3!tO{ z0RfPu{Q=z~>#x`U1l_+Z(E)YVeT3d+^!%VK?IjPOJQ!uTwYl*lX&~C<f9}75P;RM_ z=oVQ=0~=+}%-HpKOjmS5d@fWBY4}gsI}My8D~LKBvoIG}Jcp4ltq`!ZmbuubrlyW9 zj5TZac>iDe>7#%sYF>E%yFkX{931DNR<FRz3$MSUDYWU)#%ktO;+Oa;SCa10F{ecf zm}No6<-WN((wb)=Rk1!-dro-==#_5Bs~v`r#y$uPeDe75FItSdcPAY@e=j2=V>F8Z zM8YjDURGUNP#_3}EVOp!H*cMrogK~z(Yx)#%3GD4v<4+g4id$xp0g6xp9oHc%RQOX z^NZzD)h*%A&A-%tT$J=VxutAw$rfL~Jhma(r#>	`BbHRKHjn_x#lrx7=lk@+)2B zswd~k$4ewVbgTOMctU+tXT&iz1G9>AK#*nCYp{ehsvRt@tzOzi)?)_6HhOoQzzEG3 z+xAs9jzohSG}sMB9R3B8p?2MCez*N&dtd@Xm>yWzwKR;(k3nZsIuxNZXkWr}X=xFx z3pC<DHLAo+G^BAKEy0jy;?DE@okv6b`lcaXd?MyNVeYi27W(oct9IqY#Kf$O4D<ZT zq$FuzUFaPk$G5u4C;y`hu*#p(>04`C^eYO0kxz|hf~|9qpVvu-rE0AX|K|6H#Kb!B z)DiY?BhUUCenY5#ApZ-b{1EOFXB^PzmsBr>g~!MDjV=McmA~ERz=T0CodYam1sxC5 zX}g37UcD@Ef=bb+E`){0#qkz*<v>&+-vlKi<T_&ref32S*`S8C#qmPhKFJ*I!cU(f z(I$EVw5KMRIbFc)i}{zQqLA2Y#!Gq?7}x9oK9K({-6xCtwX=`&TDm4N|5>1P{);#` zzH~MTcdf<Uw~s*_3AMV>6fS%_6t?R9Yf0k1J^eVe9J|hH4tG6&`a8>6coby)J31p? zIgW+3($8$6w(8?VysW@>iiSkcO6-dlr?AHTTV9(<1MwS2j%Qb!y>a*1oR1f>={_w1 zIbY{<V}IbR!&fA;?I1u1W)e~W#f+>UDI4={rD+c(9X$!v(U5QSrogb8)bHLsZPprB zSeN@~qQ9U;6DPV`W?!CK*oht@-x*Kmu`=^!rw}|(xBrxk7h$OtrWI*sac;6<T<qrt z=T`;2)*Lr#tJVY2QI}Gz@T|*YqkT91X9ydp*As-B3T748u&r2(fZT-r)y`@tmelNQ zo{g@mjo4n#c_oMu#;BxLd|{)FodlC-zUD_l;tkoX$&DMMHBy_;Q4b3N7?pQ)0LNhU z>}(DDIHV+KfQ_bS@=bE=UMa^lbG4psua+ipq=qgS&KzRj6EjBM%RMg8S)_sbT>Q>n zW(b*G6quidWcH1V#ohLSZMk~btgK@<JMzx~U^Qw4C}F{4O{sw}_(_Chr9_u^apJ2g zfTXqFdr3h4JD1wS0w`}4sf_{%M^Zrj@ZbE|+k*BBEaYvi<)K+r>+CLaUFuE}Psw;` zX=ycBtuGlB#I8yn%Twx(js@sPN1V{XPZswTiKX2_qe~bq=)qrG!S8a*Ygc(!Y!a%r zbaaZWuRu4>qde;ADV#lzt~)}<W?T0XVZ**e7ee<)eUC{YAjL}q?}Hz6Zfs2Zv=4+z z<;HKVkCZ|Vll@>qD>(Q9VAHfdE(fyLv7tx<4Q=h1;rjTzs`Vkh7zvM}sY-$kt!i?~ zY`pf4T|j9Ns9%tk#mh;pJ))tZK`Z2DU!`7cBp;eT_PURsz#22X8=2>Z2`2QjEl))q zNXOaT2I(QBwt_)v*y%aPWUpIm59?)TTHD*LmL|TU2leF9qeM*uFZCv=`e~1TU#dOO zgd`;$VwLpN3PXLd{MAdBf`k%T@!0o=PMx|60|3Yj9?FKWWTHFuNRF*>cAy3gosTDT zP;+5K9>IZf!5oc|Pd~gR|BR>b&AGwHD(F0+IpN$LPI+h+)*vE#BR^f2z&!xrULp)( zt-y%;5}=DC?Xqto1Yd!fE7T$CJwSPOWG@poJcVyh_%Z4?fXJ&~zMKFv6nwhWMrJRl z6Xno4p>L}a4mHku%>q_?TuRCSF0bb5`pWO)vvh9bM^RB3A3l7*P3o07e}rBGHe5qS zc2{A(7!qR&C$t9RP#34MrVEU`x(zF{1I*$6^;=u@DkpLwOGA64m-Uj&E#=C~>I1XU z`W5b|t7%SCdfYeN9`MW2aNw0~zZ}te*cpv>%t~=*uA$}`viQZv@#`|7XXfsEuMe>M zSX^4M7R-b58izRd)926OU6T=AlWm}vg`TVSPWTr2;vVN%&P>n(g-e%OnpLE7o*UQT zff2P!>{GjKir?koL}SDl!W?J6U+|i#rb5#Ll!Pg08Muxe`}BH&nv$kpDFLDdv--GJ zMZSuZP^nEV9|!>j%^MDYOi+FqdbsJPF9%w=311<w1YQ8;c<jAeYaqOmKM=cGIxxF3 z5L!EA&kb9M_U1aa6{)b`YwO3JCWBtUacP%2W^!f%d3L@q34}B?L5|H$W^r+mX4|%J zFX_oo=oGa8^cLE5Y%N9`62nryzBIFf9{>}Y{S}q=Ll5AmbaVg(c-Y~2oLNL!wMKev zVLD5~V~Gnaz(7rC@v&34gZO;AInl%$%28_l+fEqb7DC>e4AWm9i!vYvfPy7h1u=)= zAaMRS&uNcX;a#6f`AD98GWV5nx1BMFJvY?h{7Ai~r)N2e<#v4!CHOi(W7uIu(rKyq z;Qo#>m%JlNF)8SLzjA${Ns-S2#%!H0%|d%!2k2HeyuG#veVSN}93JIyYo-0P@%8C& z-u7Y-d{^2>kI=KT^T{&_nm<H?D>AAb=FnQu6~TH#p-&!!FHnSqy_T}8%g7wyH-5hz zgj!y=_q!}%qDl`aSHo-No4=S7K0HOG>LRfXo?fQ%o;3!a0HvPdGTqB0=9ppn<>`Jc z5%Y!w9DO?E6hJ6JbByFl`vbqd@mJm4{*L}EGhxEat#akt833ie+tA(~Z^C2@zwx~g z7SSZ=pJ33T46%l%2R8a7+tTd2=dKgaYdGa$><4yI9qIsDtpbx;2AD9Mhgc4VC^vX+ z55n{UZ6eTK4JAnE8g`zU!Pq-Mq-x6Yo;3K|!@ICMo0KCbhDJuLno{I_ZDWB>R8hr- zDL`wbmq*3SYuZxK$?L|(t5muBe_Xty(yQ#0fPj$4k~OQ8w=OuJW;oA9h~1T-^mY1m zQek3f$a9-ZSXhHu#0CX0N{F!MS5Nc2)=J=KAt{IkJ;}Hbs8SU>FzYIKvr`bA(SRFJ zGc`?vz3dTk9KHM`JbbidB(C{wz%MyL6XrqwUV_35DiVv~a4-c9Bg*KY5^WzcG8%j~ zM|><{1q|twBbA+0#=iB*NN3B$*O!ZH<9Sx!-v(%xyWYA(Seow3L$k>kA*+ZBW1ru+ zcGMKUmtJ#Js064naFStSsVEvu6%-X0ab!D3r^=?=UYOLjlsK5lTb`Ws>o+<xF`#Ws z&&1T(zxxaf3E&z*Kpqf{Ccp+OB$;ak&w>jfMQm7T5|p6uRy`%X(>@*9w-d}9(jN=c zd~{ZpM+O$?r;*veX8<^jUY{*5)Mmg)EWCE;s=j_NOlHxv2W{wJ^nuQ$Enuc9A~~u= z{K}4XDzuCh9?R(c=UQ!nxLduxyUqQ3z)={08CA@EI*#UT`rfNU%ug4F-x0^7U8v@P zyaJv4qNS;$gN@%@NOzyF6Iq0bZ3gfsI+2Ii=de70yM3rOvhdcxdz>U+#X^|A>o*EG ztr_O;->DBktNihXsVN-G#qsvMb`VQ5)S#gAG=t4KM)`P#w=**{lmr<WnT&!0HJHm6 z9C|T{W<WTlWEkn>Rc)3E+jM7~yF)p))MeX_N<VrWi|q!HoM=A+x~_5VoG&N^O4O*w zM8EfBYU0^tZsY`B50i#!8-9G;3C0{kS_ZHb9h(v`sGw3+n~Ql&qV_2;Yt9B^tQ0S) zCq?*Lzi0RB=X?QZ^JsGj>=F$fojRy7jB1#>+d&lN<KskLfl_a@`)ov_bjHk#g@8)F z>1J^c!@_508OVMRkzg1xWI<1#t`gq{BAHuq)7(4*2%mGTPNYxG-u?xk=nj4J658hB zG{8YRt*^}DCjXSr>$&u#f(CKH_hbSYPF#gA#5h6ow|CE;49z@!CUgu7u?M7n#R^JF z=s1paWcyTiN%Lz>6Fyx^$S67#U?76#eSA6bzlMFNP>o1!m3S{=4L%OcW`K5<!k2Lb zZF|q4#tW60j4R17KR5{Wihf~<v1-L{s$yB6RzFzc$GrTFrV;GwUk5_}oA&qb&inuA ck6LG+k9})vF7zrK_6(7~pe&OsZFu|t02YOCEC2ui literal 0 HcmV?d00001 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_core_0_state.png b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_core_0_state.png new file mode 100755 index 0000000000000000000000000000000000000000..930ee26b1823398d9b72414faf3026fcbf76d1f7 GIT binary patch literal 11088 zcmeHtc{o+;`}aa59W-#1v5^d+GG(k3ZNfHZR#Jx8WF|v(PKu&T70EoaMPwdI=0xUf zQ)JwR4BNc<-Am`&=}hnSp6~C^_wBm6I%jXzde-yY_h-7-eXOb?Jsm3@f*|ym^Jg^> zgwh8=DEet>;1ki0-Cy9JlaA*uI%?vsI=WoCVUDO=a<sdSbG&YOd7rcS4F^k{?Fm6q z!D9mZEF2x}93+K=Y`*`1AnwLBq0URQC2)~#cIWjR5QOm(`j;YEF3A!>_)0KmPiwh8 zpX_mS)N;DLFq5<^`V6=7D{kz4%2<KyJLeCakB*_b!%#e@6!-9#;dAT?SYdqDs*i<> z;+1{Eega)JM-GTQ{DqS>=UL9B$2GeyU1YKh;XcHDX{RP;pMS0A##gM(FQ&8@!91_N z#*>TZdkXW$Q@G4$?Y#4B3k2%3x4^p0wsdm9KM1`)B`t!O?xEX<AU>Cl_`pYZV-QLN z*>m^*fAPQB63Z(t2v1sidaJI9XF^jGw!l!ZXb>*Q`cgpo*I$3NBD~I^q<k;^vjRmi zgNY|8G&U}7GJpa>tUkA<X!`m2WlP;Xdc>z=zlexdvkNZz<xAm+7DQNO<U?d=L`0gH zP1oq?$2jL|3ib*jiBD3pYtf_oEK@nr&az8fK;Qu-ZS<RmTyn-EjZwO<t~M;~-O_ry zHVLPWP?X0EH$+@>*@7^b4?hcp<EDxG({W2^!A+Qd{yFhOq!fXJ+NT1G{uV4r>*B@a z*w_O_afsa?>Se~CGXF~LF4E}73YXKvPoM6w`IJ4Bx|(i~ry42cqJzagDs-8~H$;ew zWA)*N9?Rz_9{Bk+D+`sxzkh#Wl8~n+@5|5zkK^>E<}tr*nRSPt%-3?NaA~*fh3US` zV`fzr@1Gu%yt!mY#j_PbEL;WavjvLeTYce4tb2>y;0I^T7ay{Tt5#N4cI8+G<9d83 zs9Mu>g^n5(=2SI)Cb=_na^i2_rYya??bIEAKR*ps)c|SE!0cDACIhG>Xv)gSUugRm zwY9V?8p1{S1O;_2TzJo%S6frl^zu?gYPx@5pss>Kl{QyVPL7swW?miiN56>IoKd+i z1Bb?i3lEf(l$dtyilt{0OSbO7>voF?390Sexl_CS+}X27goLJ38y`P^o_^9{xK-~e z^3`SX1$oY#xW3+ege?eJk}W$)*_oor!y#dJs>o%!y=-H(%zEJ6{gwF^HRAlqpr9Zv zEVkc3HBwSLDUcCCns%%W)0zfztF&gBDPlDGN<DL3rj3v4=bWz(J6d#|P*Zb$Xk<iJ z?@3ftW=%~^nyfEjGK?^ZFKR;UIKl*tQvF$kQY~8&ofRqig}pQp@8s-kjf8{*-C`kb zZUswA%kYy9iMXEj41+Y8Yda9zvy0shfjv7Bi4YT}^7!~e57|#@i1#=K({10L>rS#t zNJ=8!VU&Gz=<uOKHG?xpPM*{Y5;3d#iJnvX;@n7MN3wcc&eaB1^qA|P2<6S0LkWn` zmL2g)Qj5|#bLRF92M6?YIAz>N;WABMKUW;a=;`Uv(Jobw1!QGq>6f_YdXb4H#Db9* zEg5;esjaPAPQ>;G{1doPlj+)mq!0ZqA}z&B&8t@v>+0%S<1xEQlZ1{b3Eg)|KK2I( z7W1OmDYhWHA9BisZ$C|y%v@IR(@*fbR{sUU;V3B(-<641jaT%-3<aO`s3Q_TQSU(5 z`9wror)Uv&KVDO~GTJc+@>2zqFe1@<n|k{fC_w0^ckj*u1la8Wtlj)LBslnBV6{BO z7CV)vlt4Vf=%tWyVWv~RUjx4V`!6bfjfSpVnIDTA9ks}{YO9+%g0Q1c#6U`tBiH_A zF~41C1c*+aTwk{4|Ka(`IGqfAd)a+H)@R@@zAImX)xIss%!LVIKv(}SDM4@xJ;D(B z^y!hzjx+$QO`w2-uC1+gpDtN+oF7#ewdvA=GYyw=!Am-gYfZ}X>*C?Sf>YBSihB5X zc~hqI5iHNH-Mc3Pkn)(d%XF@U*EZo|HsP}COJ+7bh1x?yLo1&ey%Glo2GXWjU{kxh z4f}4)eyOEVf-^PcDwCjGT3?;kEhxD$q?BvhqyOyLv%=M>qO_jIp&Pu%k7t(-!qIeN z*9K_&8JU@w&Ig5y<Gk7?0p1+v8pQb}CH3PJ1KS@TRAfECiL~B-`}T}mi7}jB7m9>S zMil7)>F=MNaOyB}NioQ?ZL{rw*3Gz>b%sscwl!5dO-oNNrL*&*`L%1hMQWCoDaFRP zP-<kNIYF7_S6|;W<tKvQ`tBI@nrBO*O3UX8-&}{04{5e6yLZO{cJ@ueZ##`OpMz#@ z@fRv}t@I2E4i>%k;kjhPb}0C!wQ<`1`LUK<%NB0WrO&>w@WMn-xOsYSi3f3MX0XjR zI3y$<z^?DccxwvrA#6)iKRj-<xt{y{N5$Mr6*SPYX`ZVK9cz1-nVBUWM<1;(M{N{z z*>v0Hb=xkI&Qc@D%SdQ;00~Rdcw1M#ecTy&`Oqg%crbK~jJmMw!<cQ`w#~XqE2*l6 z9V+?yb~~%EsgI=dL^7^)Sz&Itp`|vMhtwp`_-R2BYMJ#mT<oxN*!dthw$yZQ*l1F{ z$+|{RNN8w+kB|3z*C;t}W6i`1>c++|!bPnUOFdVuI`Bs0UAflsmCzY4e>Gt`RiEwU z7%@LT&zGmEp%D@kq@i{nu5D}RMcNN-gRDvXs9|RO9e}mY!oI+PJPQ}Gyo}Z~+62Di zguF}?&X_dI;n)77cA#<Xl2sza#s(_=t-5kjrV2(lfA3b{<j~D-jhmRbzWH&Y58C4Y z*q(p?MS0AbGiR7sSyLZ9+OgRkrQ5b3?BghtD<b_^6sG=!0(J~2SZJ!rBmkDC>AkuN z<@%z>9+99$VQ0L@rB8d4%NVJ5l#5=X+w*^oAHOY-<u(oC%PMLWQo6okEsE>y{thF# z*FPOEI*8aE`THleOZFnK@bd8~kyl8sr05Xe&+_}=5!~F|>S}AVq-c<>1GM{o2N2K* zPk{oZrt;-uVq&a%3UjL-?2T)b+gMXvgf@zlbeT$zj^5`q-D?yfj<fa2fumWN1z}-B z5Q9@u;qqR~dTra2Iy-xVJaJ7<)85`bcXgsGSD8`zs}Hx@i*)kpqBW=l))QABFmTCs z`_#hmu)YAHP(QW9X%adXz2|EiLSoT$>8c;$!9S=4g~q|}Y5`<g8^#$)PDxHaGW6vO zN^Vk81mKm{sZVkyucxMk9%k>~_LXsMeIfXuj~uY{K8!Be>-~cVKY<cRuPa<yay7ql zrPW#t9;Rry$J~^UpI_8r_(Bh$$2jn7E&<?-_rQVJy25++XyL!LHz7kwS=lqM#CV#t z6-wX2)JqphQi({c@MW|HVdk{n33wWQ;+krtoM6+A=Mu~#@7^!j%dL52)b{aCQ%Bn_ zYg0Uz^(+L57!Rb&&&M~ON>ETx;FFUpt1DbvyLnDQL8nMfLn8=a7QIg<NY6|m5u~-b zUZ^a6JB#2E35ia$4620a{t6m$g=!#pnwy(N;6eHdGYs<hxVaO%JU6k!#po=J4{^cY zWbG|VKy^ZN{W+E`IiM13y7SfH;7jM0-d0q!<ydNBG=Td-g8{f5#+<nNzN!Ds9Z~P~ zn-5t<m8{#-KLP~g++4mvFb2hUO8%?A8ikNv_E~CbYCnH}%?L4@oAm$=o`fsr=DgzK z9WGL0VmfKMneDSf^=+@NsgY*_y|t{Y#<k@nP_4!Y_-CpjX#VuY3$IUwS!UH%6P;P4 zN3_Uz-$;}<9#=-zf%|GCsYXr&P?euviv^av@3qnr)%z71#LjHif0Nf++5ZJW|JGoA zTPP6*RG@*nJR&UI^u52@5>?p#+FyW4{aDaRy6WnW0W0ReRxlDcw)))J)ZoUhpQ*nU zBK)u6?!Rx$@ABhsAjodN1)v<kwn*jk=g)rk?!81C7wjHL0#c@Tt`sHWd-<;zQgPA; z7ByHM*zxJrwYF??<&wD%QeZv$_kmKeOSU1r=H=m0<P5Cde6}AI(BCZKn>6~v7lyQ~ z2)k8X2ru7}BUo40{O_vDYGLBjCNO%Ppf2`Yb?)()E<ueGC@&37&CEhiclSa=!47j} zV`JlrEhtai?_(+-7`RND_@oIcw=|I~yRqglG(5Z#2JP0Nc?JN9?M~kXia^k?2NeT~ zhspYRwi!`tUwE9jzz6r!42dfu)=)^sRxODS?=o`X17%lgrX&!onYz0AjRM0>X9k-# z6LHX|BNdQIztAydg+xqhZq_K7sbYibY?<mQY6Ef0Kc%U!p9-J%*<^MQu=W5*;}5c^ zUuq_)0x<_qJ72$^Ub-}}Jt01RbTY56bU^mE#+E+^G?2_vrAFaxvawEfT3ed2npRU% z(l~wk7Vad-CaOd#_yM*mPKx3ns;vwtZMF4II~NT(7qJQNgnsFni=e!yrKL4A+H-$5 zk7Iv11wgwYD%!zKfX0i<>vdNS%CY-=CKuOdoY&`71P*4tiVZiK=}k^spM6r+N!kUV z#rg~ECnyEWnn(Lf3HR^c4~mEDSq;^N)-^O}>*$0{uV-f;mzjCD8$e&(&hDlA{AkPu zh>4V0U?OC_21jRVX!u;9K6PO|lwVh;fQ)*Yv7{*ch!%V=&M6Ds@jZQ5y9%{;;gwYz zUuam^4JS&Z1AHvPz|6w3=~pX%6r?ECvGd8u^tdqWYk7m<sW<8H%~me0AFW;a>3=V* zf9%`JJZ~iVXuzKgGN@vSt-!ukAfbON*{h8&Y+Tq8hD{;uP9}AHQwwmd|6beEFmk59 zy4IL#ULUq888@5FrPr<cpR_%?1y-X?F@@v>f~eytc2i-XJIvrT(RmDjBRM*{e6vRn z`oQl0NBMlqdCGWw2zj`UlEvOMV97cV%c7zr#YK#onr@V==NIRqHgKC6h6UNZ4sc|h z4REsd_F3)=6DgJcEFBiByLnVCT9egTk6*dRz%CK}?8LS47+=ojtz0*;jTk8Xi6QYQ zO3srv;uQke^#&)OfDc`mBv`MnEeFL58WmaqwJBjR>NjuR^sI#Pe;L`wPEoA0ckf<S zvFjH@on~fc>S}6|oui<i+)8@+KnnY`EH&&bw+307bno6hKH`A`2f%1K%?z9amocCH zAK84@FWI?qy`XNgtV|^J%?rYzb>R<kH|aGRj1^UkS3^0A#2U4Ci@M>%C*~@ob2*~A zQZtXOejXfV4q00F7%L55<7jt|;36a?uC{%#x2l-hV6=*p-RPU~jWSogNw0e8Iz{?J zaK(qYxmRpGN{r7bDiWU3`qaLic0Z-_>0Cj$;X0!ZlFw?k-So<p_}RI+wDkJMM%{}S zJDCI5F+rQw-1eR;@-^;^$HSK>0v}&sF9#z4j$B(W&xxp0`R-k32!K=cr6m;#0Y1Lw zTU1-omd5lM4G)#yq5{twG~Y9C1AK~GP0>sm2O4i}QIpF6BQu`cVcf#C{&lO&`qH5D zJ2X8JM!^)<CriKg_&b-?<^p#(xz@T+eu$Nb{C9#{OFccv%Z=XcgMo7RbN)Z05)W5A zL-WLkqJK}{&z?uMb(AP5teBd+0TtQb{m|h2p7n~*>=4<Q1g0R->tDzngQ-U(lgc0c z>=(XZvPl?lZ}1~N;r~8joQXiacgxxC4FkPU<{Q*oHVxS(Ewbj_%l->>3B!#TwAU;P z`RbLKn>sVR$62p^?@-B&&k?^Z4Z5o1m;aKp_=My2LN_Q+schzIT^9^3&|K{gIQ83u zqGlxKL&-)epE4cu4yM$f4<`Oj>w;ccy3FTBnD#Wk{ogR?cvK;SjydKr<?S;Q0hHxv znA?wSxVt9zgUT4xrM8<Hs04ErdHeQl$B{@EtHu{HZMH?=mJ1B=e9BlXmMRhTf4+eH zxz-(g$BwB32(|M>-Hd%9<H08@YYfzeca8#ozsak?JZfU5mjO;ZpgIj-n%+vh@GKS+ z%$)*37|M;e@7&3~T<K@EXb<H1;KBS+$i?WN?m_TsABdWvp~rPjW~$|)G6WpLMID_) zNCZJVzt0ogx9?QNU3yJWuDPpVQ^$rQa5|2TISPTC8Nl3zBsY-BLnQY!0mPIgZ6X#& z;bZ-oh5GBnr&p=T$@vqs#%Is|GCMnq&sPIkmvgz24way3IvE<~<_VY0%t9k0jV9*~ z@$m3VOLym;RaER4Bf?Wy(0ZvO)(0U71A{x>mi7ci;l*ALwG92-=4|u&)E*vQUJS_4 z(joAK=z}29wo8>xh{5aYDdpv-Hj}rgZ^;|0jKW~m!?q$99EY4&@qg^KlR3J*5hm;u z*PG+-uPjWa<>ZL;71q@$LC5ogmR1M^sSyK_XbSK;iFr53lDqvZipXJJI16Z2tuili zYniwAQNw&J1fJk+gAVcT-+!7jP!R+~P&|vV>uD;QpRm;d9Ha*EJ_|@lCEaG@Io(J1 zOPPR3I#mMdK*F|LBJ!kz0))dFV7lE&;|Ys>-hGR29;K%XP;Xfq^ch*68xb|HV**=} z0=^S<&CZiu33#KTuJ7956eb*;Mxt7jSLJGROG{d}DnK|$395MDi2SUjN>GlVR8E#j z0?BY&a>}W+=b7ISwffzR(@k~u{e{mqgEKA5Ui*|-L%Qn%E>{$PcjC`TLaDK%&ne~g zk63kie?qk}+Unm$1XTT>sqM#H;19sF>Aq7Z<&`JUv}v<nD5gw*XqVr#z@{kgm0{D; zb3RR>a+|q*W25uCC@=QV)K+&?y|o|WdIZ1i523<0YW>IifBPbThX^8}6<lMWWgnA3 zd8cCXd-G;&Obh&VHQzkQb1INVPVVIGsrlIG@_xGyTS01UK7zTMN%FTH>O?cEf83p_ zOuBvuJKFF@Qc%xhAEc&Rp~LZo<U%K6Yk|Wx_%Ov|ajL7>&4KDLTC;)wCrBtASSWIy zY^GwAj)v^V8gwga#Zi+F##P+z2B7}kA#rNEH@B(7kDL2(tAxixDOrs*C(to4wEHph z<MYX}=ln%3zoV5QwQ7zxC-@uRoH<7tYf;QBU9tL>{9p94=O_ooX@2!8goU*~fJ7DZ zBE<FB%a<>2Y6T?~m5c=xA++`N$BT?mXFls*(($;|Jv4zOwHu!~ax7Br!5pK>9mi#2 zezTa|>qgRqE?ce}zN>U$Wz7S>sR8tL5~j<ZOr_QKU9!nr&ho_Pn5b06z8)W+E)W~k z)E%GO;P773(=o~X+&risrY#gWO&i8l1M$ZpJ=lxX?DdqS7uhR|)83Vytm3xUGmJ|L z>k2_G8GviXFSwzi5p(&{=AW56D4ukfoB`7ufQW^}$H((2()084lSmyVX~4taJ;b<+ zvLK8Eg+YX$h4}rIR6w7pA#v-VzV{x&%A0&+srqbmNCN_{i=$EuknC?ziGOPM-o0)r z1m$nq1D`#`Be#s1Ji~Sb=0;qqBp>?>t_RlSOV{DL?l$1oCj(6R%a(SWM<)(>I1@mr z<#y2id`FL}96NSQx0?qrt8O7E2SRzPJWv>4S-kAGV9|6z)PCSBiP)hA*-XdVU$<); z8m0p?V1jn-+Vy3|HRSno0ZjNYv%4t70@zrCeAIt+^&!Z@q@nsJgyrMV$>WhwboPT) zW02rLG8hJkjt+K8Hr7|czdkx-4*q{%Ki5`iGcz-E8bMy^C~J3Ulu0tcm1w7=q(ICP zVI=ehSI}eI@Iq!ad(6R*t18z^7*F!eg6HJ7sxa5%_NHNl+)Ucb9>O-53k3YRZM*vc z(*Psn<SE`cNjZ&&)YaD?#sDdaCCvzVEKI1|+TweTt$kP&qBPOdvozba@pd(LibL8J z3;5pxXGMZYIxRW*e9-%K27}gZbo;C(LAbF>*hRxuFmZ8Z3YD#C+`4tkxq5c{>f&_A zy`2X|T&4`Gau}e}QAr;zeCamYGAFKm&?=B-vhrQDCNIGlLgdohEkKtSN<0?Zr@c2k zWMEbk^sXatpl~LbF&B^>57HDuLeCWl654XDb!C>n1b3Bq<n?@HZ^#xvRUuU7^Qr)j zG&ra<IKt9ZtOo>N=nQD8Xj--evU5nST7<lpm4Pp+rYr&~S985!S#^Um7U0?4C$g$V ztlI@(=2y9RRENE!iWH5+>cD7?875+Ia+si>kLt&RTtKIS+0z#l8ekL(o(_$|(GlOF zF&O(`VFv{b^Y`61NzWxMk3^-p%?-PMd92tPdu}^0uM(_CzsNZQ8hSEd<b1ISQFnD= zvMpKtAmr@zLpM;ILa+70d)*B)Fe-}QKF!&x1OmW$qB8~(Ta1ROX>?T}S0+><@!kF1 zVo45(${XR3I+q4;NF{<<;e-4LqOaBpM!EEDySdL_9#47=$#^s*XhfX%YDD~W)y!i> z&W|7ov@c$?aF87NOxAaS390VTLPGO(y)gY8ix@O3aOop2_GR|>n@;u=<()q9b_0vp zH}LWCF|o6!qh=^jX5lH03{x(r&u^*wM1(hH%fu)sC_uAdEi95b-M;LE2D6;%F6hcO z_YV`$iv>ZHVN%vR^)vt-Ex^c=2rjoZUGLRR;&j=D7gV7o1nxnujm8a(No;Oq#$|qf zbTV`APZSdIMIu1pXe<%5t{%RXfjt>!gOEs$!tI0NVT~9K_|?g6^kt_h-Z2~H+nsKd zT}@vflv^Lno?8)&{6b!vYb3%DqKSYjn=HaXA(qDRuGMeU!C6Ja9L}iNRb8X4+1^rV z<f9^2n=hAF^65J?n4s9$*!h;I^^n~YnX%l1lCTI4*_#(3wVUl>;o_Pmge^`CK~jQd zp)hb&2C$sX$P@5iBs#e-4?S^$K@n`i*b9%TkC|R1ess*CUANHaz3u?GGydsXls2Se zXc`O|4;b*8sxM!+GMzHK3b{lfL{sR_qT2$wiKOdS(@-0MdX4kv?-_ecijs%L%RT}W z<(j^sJZkXzg8bc|vUryt;(7|508W}<S94%Kg3(s4Ufk%0q^mFLiI52%j8v*(ASXRb z`)RN1hC*W><9tE$;9)#6h7M~<Q4o0m<7k7FW|Pc5$S&o40i<j2p<nOb9ly`>q6v6y zb6&_Y-9f}cPr~)AU~&iZ6IL1boJ7^gR2YtoLjM-wieQQZ@uwb0<<`zDv(0s0e0d7O zwbHL&w?CX<@L^MSc7DykDV@yBuQM7THTCGwWOsq4_j0{SYn&ouALF|6MhQgRt&p*L zuFX`#Q0A$aZFh}Oixm?S(<sPe_n}Z-$Eog<lbu=ecWCG}Kvd(T4==A9g8GIEKCdRb z9B*5?e6?hKg*e_6bEhG5pvoa*a0R!qfCColDs)OyeJ&9Lc%iA4`WU1xyxo9m(V$jP z667&8?`BA5oi@meX|b_qptOrktYZKNfUrM8P$mjvd`$C+M(H@1e4&AMY1Zlj0f)wl z=z+iobDnjq`No3&!Ny;yV0SmtK$WDXr(aMB7x}nbO*#e!;bWhDx$xON1r8%9KtyOr zYJ!G6aPVNRSv3PXiz{&_H9y#ULXd!e`4S7UGc4!{I`8}#r$~6ze$q-3|J#cZhdf<W z*`i{L3!#`35);Q0o)~L@O-F|z<n_g}4wwVNq-lUnxi>QxY!Ii)Q{mH4#?3H?=EI;H znFDFnWN(SVbn#q(Kz%b>qoS70?}l@}im%OAm<w{eDVnF^k&!V1Aj!;bfCYp;dK3+_ z9C24!9{&dqLJrZhikz2mpKn?xuL?<3-&maLL9w^kI1^0DvbjE$C`SjFFAd{N-Ca+b z^23#@scj3#xIGs>U4sc~Nc^;{t6epROHH;wpSTyCE-=GUH2wtD)d6FpAp>!XrhR=M z%V5CpaL=*Zv%c<c)J~mWnX;&1WTY_&OF%;cP=Teqerj@LEfD*KLtzFv&Xf9mI}xpE zB{O~u>cU{;hwd$=88$=<+zA7R<PtvZ-uN**X>gV6)M!gmAo`96L{-azPdV7w(m14? zmtOk^1Y9+=uAOwYh9I}A%)1Q5XPe$)Jt(teI1`?+qQ%+8#*8iFyQrJ&!pyZ#23{k! zXP{&Ug!|=2!F-#p$(YFo$%ItP6EzBa)DCl0ZRnt?hiv?Z4!xUN63-d0T4+wvf)^+7 z>TwFtk}Bw+$JlGxJTxRESvyVV!K5~@{h;q)p?Uq!Dp9gVjnZ=u0=VSxAjF6;NL`t& z7ix=<-`baiCFEFE<Qx0KRNN8(fsT%D^BolwwZT|9SKr<yuqUm!xO;H~D8+hy^kch< zc+ZuR**gAG5(?`>Hww}ro6(2(`1QfWgKbx?*Vomhzqzy301iK|*K5^A>arxmpuSux zTSrI;6U?UgA;3fxkf>e%DPp?;F1Od6cr+qtB@ZCH=wLbI>lfiva@tb0`H3^tTxAob zTRC0JS9+$suF3Ol*yUz5ynmlF{2|g>o^Qm=kXYST)s`(lgh>khbJ|m$pEb*A>OXvF z2dUw-I+<q;#=mq<6}Sk%2u6PKK|#9&CG@xJvJsRuujf01=*#cQr=g+IDR|C+Y@DJH zd1|iLRpgQh3RdX8NvzX-R54kTO${mLu*iOpntFP*9b#=%Rj*M!b;q9i{poK5%qO=X z@cS2UGnCVt1DzLw&2D>bV*v61TG4pUZ0$3nH#XC_1f|XhT&W&#RoZGag93UJ@sQtR zetg?H=-iJm`xb?89A%o!l7(;$4UPHnw9IyUjgf(fQ=sqYK`2;4F{8c&X9S~pFH)Mx z7>J`b@xGgJwmpR?>jEnUA0iL1l))sk0A>awgpp8P<B#ZM42*H<i2mk`mf?iwiX#vy z`nnKMOf;&Wb{<q1{iYP?E<=hE>Ittcq(Y%YO1m`&)QGdAX3y>cT%=@qI0B{)ku>zI z@dma9=TN+*0d9s>Xa=ET5RDt)H5|Y^c*Cb!1cqW54bVrCGq^oK0H9E@n&^8+=g$3V zTQvEakEpDy+y*d+X%6AloUddt83p20hvmP0`xbo>M`mMfj*hm!^T}Cs;}|rwwBjMC zKrNK8@XI>S{rmR^l}h34;Nj82N-8dvhSy1yU;#n#(B>kp!)!ZI%PFBS-CF|08`F}c zX5AEhTDM0`SQrbTL(n`lCJX@;K&V;WdnzuCK52do6J$1UB&7r%)#pvn7OmhTdz=Y2 ztdNC(>O~)mG}U7OFE*&_>xZL*1L)r|K(LiTu8rjUd<p2^r4M_%U)w}H%p9+JYi^33 z;bDMMAnk(dWRP*WkXk|fOB63#eu#Ds8gT;zq3<FLzke17a~L9A53MVw(Wd=+VF?hc zk{9yI+9F+gEi2LrjzMmRzNe#j2{!fL&hq~s{f#y67k8zNUOq~9gFQnq=Ty()&zRo+ EA7l?L$^ZZW literal 0 HcmV?d00001 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_core_7_state.png b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_core_7_state.png new file mode 100755 index 0000000000000000000000000000000000000000..4abf85049eed8e5c62fe698dd7b981ae66045b47 GIT binary patch literal 13554 zcmeHuXH-<#*6jgpvtnpP1wmVaWD$uHR7?eulf)7ck(_f>TWJH*B0<RlO0Ghn$VpL9 zqQrtC3X+N_P~`B|Mmv4CzkB<8@BMjWJjbw5tLmJ+_gQPMIp<p5S5~~Zeapcu7=~@f zT{@?VVe~#2M%TS*1N@6{UHcdKA?|Sgii4W<4F_jKJ7Y}2(80#S+QGu~+F>VSJ9|@W zD<OVienH;DHys>o>?H&QEPww1zqOr-K#SpIAzWm$%_VJn3}Y}vzv&WW;!QE^Bp!F} zjJiwsXotI=hQ`Y3*IBwf$L|){smNtEp1hTQ?jRrE7SCrx(+z^<xLy?r@yUosRm5pN z1#`Rf6QpAmCo(4`f`WqkLe9pYt!^V*)MwVMU;mEj;_)+vt1Fvo9d_>xvfmL#bCYIS zd}1<6VvH($+mT;5BVKN(9n20(+Fx2r{sDfL<ZtqUANP)6^ze`OuuT|tbwB-K4D&Jk z|8M-C9Lci{Mf@c-+&nxa>n>?w)B1Bed`roFaIOc_c;zqpvuK<<_w&+HRRQA#tYFjP z%&6M+>v6<Ncod9>IXN#{QZm0f9*{l*?<s_yd@@}rploB4=ATSQeWe&7!6hSu|NQwg zrN}d%SV@P8M<|}Za3OEyl+{o4-RH$fBTUT9m$CIVSLY@^OL)wsg^E~KbnU?$AAIz; z-i6V*G-lLF4-fCguwujhr~Yuu4M+dW)Ay$~CO*A==T1|i8Ye!49!ofjt?yQ0XJ?mi zn@*6Elk?Euf<<qk+X?Y=eEn&-LTSrSm|~cSf@r(VozRn}F`B75rk|qEP+l9Ai~H;5 zIV4IrQsYWWPCJfLG+4ctUblHwrk^yeXS?g`%X945rOlf+Q*!O&;}zFoShQl=c}%a+ zja2sdP%_D!Y}S;dAz|C|vsLl3Q&4bl<kx4!;uW3Jd)pg4XFKAn!$i&DMh8#c{58w6 zt)D97x!_P8DWy9!G^CSl6~SLPt;){9L7n^B+bPBe3yre55^Ox5_sf)qx_TU1C5_sY zH}onjX;jEzP#LaoHb2=%$YPOlJ0>Ec30FzymEW~%m)qQDUtzB$7o4iC?d!9$vO!Ot zyvQFfS`2p-i%`7#^Un!6InRhW^fl26VImckm1@JysX<|3!^3u%&#G4?hco7#oRf1U zpfN=|Lulq>O^xQ+v$u71uU(5t&&XiM<vWjSo;h<%H|p14cfNoBK6hbBQ(OCaxMF-8 zAkkIPtVRCriV8VDCQ-%W#g1`@YGHEtYdm}b7Sch17Y$|QZi;u(=w(kYb4sRZ=n3PB z_kj#9=i2V`D4MrT&91N<$j>TE<r5ZnR;p3*)aVFb-e<q5C1i9Adwl4WW?PnJL(KVy z1uGe9YHAvKdLtA&JG%k{corq^)0+;JeED*n4_~Bb-khQmCSqAb5#{B*eE05MD@%CU zvURKds7%v77M8JQP7#qTir_kW`X6`hwAp2XJ>!&;(wA9X%D8>|_FBX|;2Xnqf?vY* z3RhPa7nY`K_wL>6SYy=F+Z*)!`A~C~SrhmB@^blrn3$L!_wDO%E+29*>&SB?NMrn+ zhn(AA9Fe^@`1sV=gd-Q`!=070PRwcK3g4Bq)2tp7w;=3#+%5>PvAuKDGJN;TF8Ctp zl|mQ?&TZn&M#rgY(c$@lD6Q3%Wzx;MpDbI_&JYV{LfJlkwz=7!W9vpujCW|#(Bk6e zmh+cc$@%H0pHANVbT}%U6Eap5g1cz4f+rxZv(P=CR6O4wmN(n!&W>}R9Se%;^0vC! z>C)?`lXmqMi~ES6)WTqF9yKXB)1vi6w&>%_&yJsY`SRsKDYwkW%;GVTQtoDb6+v6J zZJVAGr^B$h2YmEb6{M4n^Y9F3X2Je$e)#o>iDVfp3vw_N(&l~O#%^8_tM-J+NjqVS z7G*e(DMxV(Yh}ae(}=g$ZJa#w2~#d_=}|Zg@tq*`EgyGcaPe)j*m?{*zU|M6`ZsTQ z?Ae6*FRUz%8*2wM@9-tc(_!jR4<-^g6hi0n)?+2sY3sNBQ5UYzZ|GJLx>5CO!;m_F zlB%kzhyD)iG~Aa(#HegrUteFM<8U+lHQ^|H^dH>+&nqt7cxK&1!Z0CU@yU}XX07Qj z|5y!!%+e<^)Gn_(>{nr@rQdd9^bpIrQGIax{^O@1Pwm8*b+Rm4wHLeG#|z;v@s|2| z4z@Jcp8K4NZC!w73{jimiH^7agaro&b8~Q9Ff}z5rplN%^Y#r4<Y$G4GYgwHUzWYM z&32glQl2r}3-2}mlCxstBd37~XKra}1LscH__Z~?ejj#vfi@iPwY<=j<9+GUFK5r5 z)gy-R>AouUW#HlB`k0Epvtc`gv8K5ry;ui?Vqi!}d~>SqV&0F~>Akw`bOl$e3%=gl zy?eLA`@LE@r1AD#HQ0g~nGkW0ft66`J{##6o}PXJ;5~ag<f0YT6Kl`5j*_1LvZup) zb=hjv*4DP-!-r25K|Hhy9^%c}u?}iea>!!<ud>&0zy7@Z{kwO^eE4ulDTD#Tl!xI0 z;iA@&{P`m%wjVtCA+-=+>~-+O^<QFQV}qVOOMt+?a`7>9T>!g$jhLpHS<-`t5A}5w z6(9R1Z-mJ5%yQW<aaKF{Wv=}IHPU@d1u(dlGMiq>ujaesP^LMVAT+ai(<bH9r%zjk zz$tfY&=z)d!-@dJ`8%AuJO@T}RaIjE{#BrO86-eRl{j1M!sO-TGL0+uS+=I156E<% zwSqsqr@iuPY*hE#FW8gW3(2(|P;n^KoFH!51xQYEqnVAiW?aO3FO$4h7rQFEy6~`; zsli+bi@8v~U>{M7mS}0ug&c$UxVTFJ7alVwK6<nb9&psmj?SK*YlVwr`Juw*nk1wC z{(iHTG(!oOiD-zMM3kMQ6q1Lb6zq2v)&?2QSD9XuBXjg<Z)O(2^Py8tBag~?butq~ z<NzSk4(USl&IAPn{1o4i*xh~gk7^mu(u!e?hq7ECyD-d*;ad{&(m{B~Ui7a>=M`t( z0leTHA_eabLGn1!nzVS>*v@I;JxRYs{r?^(Bi>%ut%5KSN>Njqq3j=vS_6;Gm`~T$ z&HLf_zZY*v?~>SH0X!kfdqw-qnKOC4k5B!c(=#RO7>)@DD5dIVYg$<m5aIY`EdhJ~ z21@>%%KuGfniv}c=!R$Q{qe^fn!LQc8kC>C`}acy6-&hzciu4p;8I4A`$vKfIJQHb z3XF;xr|6K(`Y72hU$4E4i@Q1b<s+24r`N7s3xx1pUYsR6&BIwcKH!tyln1d*B@??` zS;<KnJo-+p#!X{kf=2f)_#K3=vf)(S-10P2uDpO?HtTtJpHYq92XES*^BS?2GC!t2 zl2rNi>(^Tt7|52{9j}N*3l&WU1_lJE#oR}ZylLtm7>NJ*=k>-WCW|rZ(Vd8qLD|l- z?iw2gIiW!{#<npqXu+*IJ!kb%*gbgkNPWDskYw7xfvX4bR##DZ@#&Ltb}y81C3nRM zaz#bO7YB(B5!grm>-W1S=BX{OV<ntM2HiY+{Y0tdtlo`V1q!0GJKctFmq&<LhQ7M| zT$PC(sOsG1!h&^IBE~xMAr<ul;`Z_Be1ObAmD&@^^xl2@oXP}M|ETbiIzj-2ocs4+ z*%qxa6B9N#Rmh^IR9#Wy8#nT1v@|ujg@n|;e*J2~eDv_)({J9qv10PcaR2h;qQmO) z?C_I|EMLFX;Vbm~TwJytg-_!;@}12qgZa#wQ=an|FWJ3(^@<xJXKJ7}gsnPUTuntq zg<Aje;bT@A0vYeE57Cw@y*MI7-p|Fwbx_<cj!?Yf<~ZJ|FJw}qZfcr1tp5fxD}Q@; zYtT2~9Bws<qJ1xYR#3n_7p83s6>+#HY<|q*ss|1nsHm+aLy6X3tgNi0O_Vb5z|H** z3adIeWUkD5uaYevy^!@yN=Uf$ltV!k_|r8bBa&TTMMLL)I6mbrh`E`u4&7km2wU$9 z7w)wUZ{EXk^X<=@2be|0#kD_v{K%-w0w<Qbe`?!dcsyQb{(W_Q#3#LBgO4X|ybBNb zsG4!3`ZwC_bFpxNnq0(BhfOd6ApA{|OHvnxiCVz69F}S1Z?V|9p1ve@%a$!rMFxgX z0C|54pz(Vd{D+l(=Sj>zRN6BS(&-gs!u(n(qCX7fzn67&a7`1u*?k-~`Ca`PZr<;6 zakS;NET>YWI+U}<*G3odA?vW6bUS@~JKTm-|4MeTYiqC~mbJ+T*kYXz-MSxl?K<LH z`og#}ID)haH95Y`Dqn$5Hw!TbpnbHV_^7<K^8Cd{tUU{~jq3z2?25WUcYR5Hz3TgS z?~d{DrCwMjr)bBbuOjh)$Pl3W%@Q9vN`Y&JZZW@p-Z2@OE|TYbUr6LJR-_?bzZddZ zUZANJdo7!_d-qp8w<1P)Etq-&7X*Ih?=VUt=TVqW-i%I5OQUe_0W92SVY_kSnuew( zb+9fLMX>H-O~k3ayLP>B8l{+ml%nK26aBe?P))F`74KT9*>KQ8)4noGZ<_WoGR8xV zaU5w;nV+8r2L8Z}Mty17mX(Nm%F*;#O;hs~lyb6pe8bRJ3Lu=BZXtuu)_uI60=d+t z-)v+}&`8!K%-{vME?&II!_Tj%rDuCLm{&UnAcIIj#rzeQ+AEiW8*nyCNo4twhx_>I zmuI_(?DE0KjvV=%;wb<{-Er{KnS7^F38N?|o_iS?5uXXC@E?HP^-?V{y&Rht0RaJ- zHlNQzP_BkAL*<?B^_St6lw5k`Ne{f8nRz4&7T4kjH5A@#AFCSeEY#J_vQUBOb%4|5 z5f;{Pb#)Du@h*zP2YUirNYu`_!37Kc;fEgr;-aGugBZFLQ0C7{q+7RP@Bt6uQ<3N5 zN!Q8i^NWk-P-#15&P1~;_J>&m@E!5?_FgMZ*MP$rmTsU8HI&mN*xAnqoV5FL$@uzp z^iW3+6(FLn7%7<uV$y7+<uzeOZJC`*R8$LTz&Cd`Hl-WO(?(j=0QEEgd<yMVeU8*P zX&u74nIH~<Mg<#do3wj#H%0^m1v%CTGV<v-JkdbgR4eq{02&r+%6JdCG()496BFa& z&H=bLLkxKS&T1X0>i;)b?T$kd$DqEyc=4i${|8L@F1D#8R(f^G9v=eWy*=0mmh@M~ zF1Zdqfw<thjXM&~KiuaA9Q60PoCPfC`>MWOZmlSPXT|>mI5;S576?Rd@9y0_Yc*?= z4<=~_mGv7uWnG~+$hhIRVcY)bUw+vHlm&8kB)t5(vGGveFhT9~X&*wtq#Qh}@Mcav zJ_QJPjjLCqdwO~@ffrK*0578-zdn!g^6_b0zWk`ZzTT|S8}Zbx;^Kwrp;)*Yl3#fs z2iKrrf!Cnm3RHtoN!N4{OG@0cXZu0En}KSJlmHIwBk^XRe97;5Ed%-zYKq&+`~W)+ z(WauMN%_Kww_D{dUk+reekLdzd%+L%Nx<;4y*!#X$J%p4#cZ#QMnMjrK4kdtl+OUq zsZ+XOK3G}azkk1?rY4vTN{xAMnV*&C($Z4kufKLv*F`&Jnl@b6;VZl5$$S@{E=7RE zKOQ_tZQghAAU9Ay#GHH?ST)a|KTq<6`tMa{TUk+|uBqAYHtHZ@o^1nRCXf(9_et%y zTpk@DMdZ94r9~Fc&QfX#_q&?4!p!Ul!q1~9RJA>w%<)<MD`(9JA8QF#;kSEwNvh74 z%ThU?Txa^bO1DOsD=nwwy&~X`+OEtwQ>AEjo5lXD%6IJ0R95~~C-Wxc*s9s$&v)-e z*tY)x3e5hEAPBl~v=dlac{z`eP(!LE*ennH{X^KkYfSrLHEr$0s;bLcQPlP8*B=uT zYq3OxmkEG5AYeCQ>wpX3OqCZ{z@L#6p013@-F5Ur&VtND$-0Hv;?-1CK*8H`1LPoG z|F~Of`jad{8a-YilgItlVe#X|s|H48k5s-Fdkmum@kP?Lry1UX;OKRW09uVh#Nfn< z6Nvq7xfAf?-n}p3Sq{GNWvK@<rSX*lQ{l?OFu~vFN!&j!?v7oPb@|TLmYoIjDZLz= zoIK*<^VcfT?)K`g)#K=y-^3*()eLQ>%{n<H<?_)1%gHsy11y)N2`+$B?Plck)ZK)Y z-2HR%l|lve2Og&iCeGvWj--;xKd@vbUS=5w2s&xqu4h?Rv!>)<uc>QhD8s+k-G64s z7HwYdbFr_#UoL>6sQ0;74#VPYHvY+!`?iTvA(YV-fn41D{LN2jck@yPSpUE_lNx3~ zk&nf;_Hh5kU4KtUem98AH0h52OPUMKjCSN_Gw&!j)rCaW_Z%yn?QEEt9c?2s#RIYG z7Rs96|LpxkMjn86aMS>78mgWPA;k%53KhP1n)i6&th#~0n49NB_ZcYq$OW-lUYHq8 z7VYwAph+A)Tw>1&_^7<GrGH2FqXR-G%^Ht^ADL)BP$Q?Lqy>3?(s``iY*7@{yP=^W z0fn<!V?v!N-EsJCD!$>BLZPh$B%w6Ok}H49;K?^1iFUfkf>6yywqf>6N(wK@tVs?Q z+4xM*$YG-UjnHEiO-&A{;aPNI`C-;Y+Sy%R`Skq7W#pF_meg`>^IXZTbwDtcZ{AGM zb%z&(1U0>6BAy7yIOHeVX=6U#mQ5VX8|DY37(#45)?Ydau#yXqXk}$3-cQJqa#G>> ziM}4i4aciajTaonnVqt|>(4`ng+rZmd5z>SvQdF+JDV2+KhXCcqmYt8!#5Rqx*G#9 zH|ttUS%yQlgV4z_IJM>uyAcoqF{HiUZ3EQd%lJ6)?c1~2Gw=fXAcEEcT#HX9^U^Hn zba8J*AQ6o*=eL3sPNpo=(a~+$vBRkizCTj7k1oxy^d7Z2HSC0tkiKP5P*6oxmAZ$= zlD0oMEr}5I(-7f9;WC_1pf@tGsJpn#ohO6TSJnd0MNU;t?g5aoSl6lkp~dlHGMuZr zj!qI1Wc9!7IvN-n>PE3euE>V%2jc)C@<}0qfrB75>L?_0l1VKKNE5T}l3RIT$3XxM z2HDeJwyEUHPLL1b=e{zR@XeX27V?qx-JzkP@&p{LxZAhs-<Opk*Nq^0Z=@q%%gbxb z)v5gPp@qpx0UBtE2$9I*;^Hi;jwH0K4^NIh_~n;RquE^q&M1$7TKe^7bznV37Zga& zi&}Y&)nFJgO#usx0~?c_lT#~SV9mM%MqQDfVz#*PhaZL-lw?w?C*iy--iXMTz|Vw3 z02%+8s~aWP(yhNLgVYHQcYkH3)#?xB4xT|UTXkpg+wvd`Qv_cAU*!Ab)D&#^#Zz|Q z#%NoiHID8KUVqDW(e`L?fc93oe^?9B{~+4`TjEfv^@eUD0qQ}7q^oLn?Na@3S94K^ zqh!a0ob2jtJBwlbe?br+H7<>}f7t3U(jpkNV(!a7+TMl?k8{vZFx<m&S=qoKa*0Wl z6QhTMoXp;xnR$|A*`|5x)-8k*V6WA-h#oyE3%wJ|t=qOa3>#?&qelv275FCCkt1hL zIgd?GLpu$d3$&!~?s@+ZteBXOPdUvY;UC<;uL2hP%y^e~nGtj|f{=mWwJ^k)z1$G5 zL>_6)2#Sm(fLA$GFE5}0p9En#Hq-zxGjX78eaQi#8#fyhRDj~E4%9@TkAh+{1ro7l z&mQCDts>pMcQ0=S9I@v@Ce+vEEDezTdk-B-ou3*o?<(>HN9j3Z4Y)rgqF^O~CMDVS zUSMZq%b|QD7ttdlBSI`%;EC}Na?XO^c~HzIx@d9i6uAhJJ2^VK#IovJM<Bws>d!_X zT#bQQEc(HNE!n4B0)U1jfx~X*KLk!ee@#R(gY?{K>*D1sXg)cDXTS}a7@$`kQTq(e zL=B8e^M{Wf6||^9y_=ALYQA+BD=QJ|HfneP+GcdRk4up(T2;a9p#I?hJTx>3EHiTO z)2C_=_riBve8I8)R}5*o`AD8W_Z->4Jr(p4JC4v>V^ZbggZ;2^W4<LkA1A<F;Qz94 z+zQX1KPO~CM+1@>EY+e5M(XP7gKgHu8ZIt5Y{-HK1h+Dhh)@L2iBM()HKgT<rSv8w z4US%X+(;wiiOA&uAmIjH3H*-D^v{MrxaLW2(}OQ~hy|+1&xCeYGKfFiY?pU&9KQ32 zq*c3^6s=JWx%7xn01E4Y@rrs#M8!P`&War>0!f=DZP_s&HH$qMi1(zJn4h2zhl8Md z;OEx_hO54HPYdY5rKJ^n*{O-orHDlXC2Y(zRYN;O)}(~<*a%g~@a=lkRhk~Gld${p zi`&ddVi1p3<jk!)jKBTfb|yBQB`0Cxw_CAueKQ)G#(+H9xi7!nDlmAL(Lik21^B00 zykb*hqMCW~IYfkO_tm1N-S12#88MZq0hv{8Sa1EC2zIm1?1hVB7}j|n_3n5yQ@-cg z>>7pnOP2m4=JEMXG~_a%zr);wA>Z;$+HW4^M1o0_r)I!(@gA+YoZVOn*WX`TG6^;S zg+#M6eB&QRND#m~Xsz@L@0s7I)qlpxzkt+s4}HvMf$w{(sf@p~e@(_%IBxtqrV;_n z6Df0G;Yp?qujDRW5=&hLzQW^M`Z<dRl%*k_Zhs&2m_Ge_M7D9TVr)%Yy%(Xg`P%bd z4u`Az^6@D$?~pMeD5$bHJ5J2<*3=A!NBK&iXzpxlYb#iMji`D+!N~UVT%6JH@+vad z1??@W2sV0&351kM)w35Wu@`^|<04KuYl1%r@e>DDq-NV{gmY&der1voY8E;%H!y%S zzA^D^FI0-5;bsY4Mq1erLcK?jjIOS^$Pxh`QY$PfDhe73fe{h<v4Y6t*~6)r01Dk| zR9jmcI;lb6Bqj(Nl?`^kxnsf{3#3*tzQJ;xjT4iomAaEtR>c;lZ=Mj~0ur4uF=s)p zT8+XB_pxIMb^BMByH-;{31;tX&9=r@N6FwJnce!In`D9<r45snprhCHSP(c27y&t1 zA3l88D#KN>6Ry<=>?a|{Icj?CIbSH)IydgUnhz#r9Pq3kHf+eFKtI)r90lAXX>jl+ zw9O4*&3UwDT_q+?upQvA2xP_hr#k^qEz0*fW4deV#v6RiJQCx+ecZgfBPr$5v+ec^ zi(RXPTIt2hb#-+nqiqEJQ_%7|oA0DitiE^W&S-Gyzx7i9Mwvt`60AD%atm+uHZn<o zAyw<rK0VYx`|?x?5r#aF7Pa&CcJ}s;z)PW7O_u9`Q+IsAM<30G9O#;G@lfcf6s@kf z`yCLv0F6E<7XfV0xHy}bm`GTum7IFS;=N>B9dSwvX=5-Q0VUK`Re!>9b8*!j^_Pr6 zE$-S#DWFk}P(B>{g0#2=1?xBmV4L0Bvs^dW41RjS&COjOhkL57tQ_6aawSzSx1Lt^ zD>xe!wc|3bGeKGgDi8x37+6L`Y9Kyo@AfDm=T|q|s;R(r%Hhk0UFXl88w3?YeySv$ z2%t=iWC9EkZRG$)W@nck@bqbNM@Udm-;5iq#N-fa$s@OnPh$hL{aCZKQ5)~{=;1$4 z3Fu0JIpKvi4)xERW2%Y|YupPghovbFw+9!1KYf%{iyjmES78(iCOmlL;luWO+m~mH z_%~vQ0e={fH$OQ!`K2pI96BY`O@CvDz}5d9HcUVtRFaBZ2^ghV89)8k)}eAhqf^h8 ze_hjeECDc`NC3922DF^w9j%(W(#7_>(Fw}`yJl-&V?BRqhk{@7@8wa(4E~=EKyWGn z`6w9xgkTgfNC^!5Q6W-N8(d&j@J@E`*+cSPT`^nq21Gb0V)1M&e_R?QtTx!P_0ebU zWLma~XhjV*#GB8Iw1Org=Q$2L48072Xi_QnXPs>}g=@P+089Ee@~JjdSRNp&2?b^{ zu}DWrdOnVjKPFK)T`wQtmAfcv-+x(Zro{*`6;K?)-YXuXZP`j-yG`{xN7oPGlirwC zP@sqK1UiVx)wQ)sV6cF<LYR3rGGc)w2?;Enytf@t!eMYB8eogO@{Q&o4FvLQ*3>9C zC@3){rHYn^rY4{tA~4rp^D2GhSsVBs;ah2K3ubBxH6)HHHC<1$w_&}F*T<xUeTBac z+XCld#|3L>^Armer@qb;G_N1fD{pkLP)bVmt|iejBxxA}>iWeOdX`*=yM_{N`6?$r z%w=6|Jq<*Z{o?|-?j00X*Dt%0!O&=8vH!>(as^yk8*^w>WkBx<I^@Ql(5DM#Lj=#t z^WL@t*Oosscqcej0qN8YX!-Vw`UdEd{foMHGhiyG5iThxIOZo`0Tc&Wk_aLLI@64j z1n8ebq{6HP_^x_PFMF7u*^e956#9$L^7pqb@;lV<Ro2(VUIYvJ^BXEv1R(iOEuGPC z!xzaj&%nXXn318?A}#0Zn@_v%=a=fVM!nXr&mp1C*ML2@$zEpWs`I6lf4#-^8ridF zCDr|;(DcA|CK2^)tBydJ#4rQ9L;c2$R{)5~QXJCKovFoasXC;JCYkT#%o8#gTG`HJ zg7DC(>%b2WjDv7ReHiHM6y`aP6Mz#ZWoD}5aJYatV3!F%i(n8blx+yy?#61-u9Sf& zZv)h`gVB>raDNMDDCPld&?~U*EgMRVkF3|w(tnwda7=1tt``Y12yqX`P{=hFlQ2vS zhIOFQm;x$7T~fBNNYNzdB|;+&R}T%KzJb{&rce;`vHN(hM3=L;U-p+?NFd}<xxsI| zOxCmaORoKS^B$x;;e3Zd@ljhd;?WggM2Q%w3$7-IQltlE@`R+X_^fn)`yw3MwIX;j z#Wp)CPs~ewf@Soh76bhJ`-zKB^35RnmzF&6A%=l?@11jr<FR)KQVa@ppn*K$c;EuG zlj`p8;bg<XHlzt<+w>|6{mpYtc4AT%Q~lLcFbN`E`wxI?zL>{+)S^8{CA;13;aKhf z3vxXY5<ZL`y{(*&EYg+b#kI*6@cW3Bf^UQQbQ?2Flu!i%PZPOt)wK7eIl=C%WV_mH z98&Mnd65lwP{JVrf;R@zO$(l^-6+rjDK~YnJ{y1<kf22XPUtX50i>dd^2yG;mGxaK zGos5Yv&CdIiUX2ZIRx*OYtAa!`|kc8IR%9#_#*8+BR&B<nS(N31rQ$t!}U~lLSNAv zQv1{<AC?{)F?8k#SioqAVnae1u_GWV9QPmka)P-pTOBIgfas5~b*CN@F)+=L1l|z@ zWEHuui3fNvw4xf3ss$QzDWKDP)pHqIec){czZ=it{L<f_1ObG$$7b4`q78(z8DzX2 zWj3m}$Cht)JE1SKeB&AS)5gXxL4`R?52~P!BOH}Zu~#9Ca5P4rS*LIJk=+d(DG&V{ zg${$Cjvy{FOeT^cBH3|Zsy?|<8<~m@04$RU+q<;V#ICPkploN6yaGgN0e~6CJ~$wh zK{lY)a9))gXfq=;*&)3!c(lW&bbEl;eB@M!fg28J0<|vI*PkavCMS4t2iZ;_&87~z z9j;|rtr;e|C|F4_-%^>*%frc8p0_kvnd-gN%W9DNx+u}AhKHM*w=z8itcYQ_t5X}9 zWUgi2S>OsS4^7zNz}Ax`iSq_9nbZ`o#LC0N1E0nBX9E*yHYXPLyZKRUsk1AeeOa?W zFMZAufR=Wsxcw_*?J8Hx9-T2y2+BL`-4AU*z5B7s7(C@vYG%ZHe9jtgypyy_!>_(X zl(*207QhCa_yY8#c^G!#qeH9a6I5bRJ%X{Zc9H<l8Perm8?gedv}!QZE(0fRw6B$N zrU>1L?{^1LsFQyEzE#ou4QReqz~B?4I>9;qMAyK8g}oOw?<>%mLFAO_S{L?FoWbou ziXq_H)D(2v1W`t#88fz7c71rZDo@1+bjGwn)q)?W2g78;K#0&B5wN2aDfgM2nbifx zDROoa-hEWqva3iRIASMnwt*NqJZd*ccQ{Eu7>Q%`oL+m#(6{8`;3!)>-*yE$!qC=O zGcp1LZ=!x+o})R*Q)&6};{3cR5J4U2lUU^qaaafI3N&5^@K%LvqJhUWjL-}mPhpsj zLXBT)L%hE~cQ)~*d<gf+lj>mi)Pol$@Ns#enp7|oVP2#38MXkr#^+GqmoGP=&_JU# zThDtwL;ycFbCpV5Wq1iC7Vk+5LX9?L9@zI+sQ_{IP|eqm7!O~auk{Wt{ro9OBN+|U zpt%FRgj!jc-asZ7$c(&5p~dg!7ng*DPB5Ct$ccOcvyRDH#O55^-bSzz5xECX@9S6X z7I}q%rA8UB^HQM0m#UwyDYG<jM|!S%-AbuTBsevW-6eE|b3G5y9L);cJV}da05Zs- zI)jZIl^cvNn2NB6hf^AMn*S4ko&%KCW8WHhYLNa&s~4}(h{&%2=mm*h(Fr8d6L=0H zzQBq-^>RI%9BLR?rBgt-$t~2%wu^bMLQ6j$8bkn8$>2$%5zQuOPy4Y*QBu1S=TTT^ z8kO&W$*_`(d)x4^1pp|s&VpS3q!c`A-|XA>%6nxhD)f{y0VV-x-FFxwoBhpQM-zv_ z?fGVTZ%ol&34V!84S;B!e5X_tLi+hm=)?qym(oS7J9%+v$P~s!IH3i^WL@xNYuWjP zp>QI;*r2!EKcrzOkd1#o<LAbXIM9c30qN=K;5YO&n?O(GptMI0Gz8<|_s$i5RfPc$ zurScHE_pcF|LxniY&gg(G`Rq`@t|ac=vA6)DGY=|iGVh>WVl<&GP#yJ9K5*g2ba<V z&`b&_gX-r(7tx3)G)su!lO+HW7IC-EK=n$pDgrhEK<hx(cOJs8E`+eHy$;770MGW> z_`{NLcf6xLKd#GbG1b6p-WXvX?12mgA|BfEL!VyA!kJyG5ump>nBAFZUXsoWBeWlC zYint|Z>472W8uU3w|`-??8wsq-&hUCo7uP|CByNZTi=DdlUw`SAhRKqfuH9?Lye=u zp+Nyysx#k5p)SUI;<H6U)$@tYG2k6(AW|^dR|yV2k3y8RK9E-}Aehgm;6h|WgZZ=r zOs8NTc(^t<H@6vrBehbXxZUmRdq$YlN--*btli}?<p;jPbpZAb9njrGxl~a&0tvDQ z%yul(h~6Zaa%_SkY5wN+4@Ji^3=C@ui5&KDhE^ROQ`MU4>Vcp-t><H^-0q4K+cx<K zp9B{t8L*&PmO;vaQUoEa1Jay!MuWy=Kc;UIHV*Nptt7LY$&i%P1-ClY7H-|1Q-^f1 zhqA_USvXlia-GW#STG_Qc@9G{-;K@y)CM04VYneh;=Mz8^X;J0d4+F&I*qmstyJr+ zsTaRpF-j-$+~~EMVG;UnaR^N7qWKG86NbDKAc!6x=zQ<t&T2pAS(Q60IN-=cmv)c0 zQq|a)9lzLnzAD#Qu&c8?{M!dyJHUKJQ<<#mz|H#~4Ey^?7(;PBc>JmlOvl2w1`N2S zPq7$%3}6ROOanSFXpC_X{Pfi2vzCw0|0JLW{yxGndi(Jzi0YFbb2d`Y9i(JghM_1! z&004QDQ3B<i#=hdL1jkt*@#WUEGnAnCS-x@xm>%t<iC$!F9EE-L6`xo6RMSr1(GKp zurgOJLj~@k1M+J485AZJWb49P^U~LBQ6H@3GKgE4uwI+^g}8*VP8A42lKp@pu6X@B zAbZ(H;G71Ag&}|NBO^Om9BIs}Oo;qLdnXYP8bO&^S5YBCS{M(c0&@*yLnGy28mR$A z2EjoqWsn(!;o=ZB7%^N-Uy_KuMcj&*VImM1O#lz-rx$m0-Ju&8Dr(J-Lsp^J($|X} zw&jP=U^_U|2z#jaIU|3KVx28wLv~!+6KJxcnF**Nle4qVZR8wVBV4hh=v<Xh?I29e zpn-8TvIvemP8FcPz`$OA?ZIZ*!fXo|mS@46g0&acP{`l~fRh@`#;2E~4D(#59Ew(? z03$<_GT^J!5%lx*h|c4ksZdRkU4#~l<_>_jqm7YCWP@bHWx%fm@I(0tqifUt-b=Dz zLNtHvE!VHzMldL(_?l>BPY51Im;DI+&nRh6MRV3~{ac5gcbk#vibh93=cD!#ZLm&O z?bT%!m{vmt1dZ?_^nt+j@F-ZB$u5SulA4VsYNGI;7GN}@RM!v=^{*2W|G^UY-)(mM g#bEq@@*Ydx_<N$O*OldJ;mk1HdBt;tvsZ8bFA%Lq!2kdN literal 0 HcmV?d00001 diff --git a/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png b/kernel_ridge_linear_model/marginal_effect_exploration_automatic_experiments_samsung_0.92_base_Y/point_wise_marginal_distribution_of_little_socket_frequency_level.png new file mode 100755 index 0000000000000000000000000000000000000000..60f83879751e01c6265b7d50a2d8698592b2a418 GIT binary patch literal 13224 zcmeHtXH-;am-Pii6ctoJ6bZHhk`V;S1qQ?d$w`nXf&|G$rU11~NYIijIcJb4AVE=) zB$6f5l0kCLb1wGS_S-%4_RReI*4Jx6+1y(<JkL4%?7h!<tfU}wfSisTL68I3E0<Id zgxCu~i2C>JhQA0lb`Qdb2u}JMPSx53=VWMSjK~|}Y;IfQZkydW;b?4UZ)R<EmPe3> zkL!df4rgO8%FAo{;{+aSyIZ_p4ChMWB71GFXxSqOr6Kx5lq{KKh9GBYu$RuOIfqa7 zxVTdr$4<>AQT;-c`!UR5&)vIRIo5}F5s{MYra0E{+ljm9c}yry`JA{Xi=*%srFv?3 z+?eK>vJac+E;8u{k9Y5W{Lxj5`XKG$8;8%yKQ|ywoY;DkAV@Iqihq*1yu9f?9;d6@ zy7?M+L9*q#?qm*E?O}K#pF;*t@PVuxAw7s76=$fW;D0KW5F!NGf01Yxf}Gj^{}23M zmc-t-hiD_TYM`;O&m-;gXQd(?o{|9s@gmRWl1oyEXj*L7&+<af`rlVZvMSJXMn_Fc zjNpXYr-6Y94-OpfWT-qsUBP*fj*erjn^Ni8wUBx<L|E&|5$=HJ&*OF<pflax+H|ZU z+6e2K)WG5Lmhs(};Cvg8P9ZKXAL2dHvIm$jI(_)%2=ms|_kBWAEPSgA+~g;al{?4I zntWj(^12t|GJFc|_=e33-t<8XLX03s9}w?BJffwa93kJgPZe(V&5yW(2u|oHBPS=v zjkmDVP*Z<lAoU{oIaYj5?d#7oYaX;K5-@!G>l3R&yCK<p)5Z&L-n=nyPW0{d+{X9q zf}qNNHbCCrmT?`9oy@oFT8izm?0v0O`QSkFXk%Qy{fNT*swz$lM$c_|YEc=|5pfev zMUGHYo370K<~o)Ttd^#c@x)5ZX-a2tx=-I9vzDw~a69Ez6kdZt%(3MOZ`o*E9(-%b zMvaJG%rX7z*RL&w)_wXt=T4m(xI1~n$SCmHGvz7F`}gndN_rBGz^R@CA=AWqFK^s; z{Pra#<9eZn>3Vm!j`XEV0ot^O4#jkLciSyv6%^W9QdG0pP9r*xyEje>Ms7qdF9|h& zy?vFWLSN+T9s>=Hpb!2`S?&6sy70>COX658wx*$BnMX@YOMOWP?xX(xkPHIPk{KuC zpK4U)*XzK-!qWN5HcrodR+@&Emh;S+>=w+kXU}SCYdQ0IczG4!-$NKhC8ei#@80DQ z5=Yc3-rnCQXkJ}qr>ojC#fH#V93q|hBsSd=Dd8rYaa_<mKs(Pgri#gP<L=yPEFT}A ztehODLrTcvL^~%dYhvmEaRtk9VVmg8p1~Zk-N-|mOGNt*98jNV%aF?`S?aV<Pf}o* zUi<aeUDDFh>>?ss1Obl?=f&|>xwE%Esp;s1YouR`vFs`^oBjG8(?E$J{c?W7WZ5VA z&z=o@{(PXcr_{|UAwJ#|4x6`UM)Z2DTP7qX>M1b;qJ)1i)(SFq+T%IoSVF_dn7Ogx ze*gac4hAx>dzO7=x+Ej+%%mEsN;g%fT`{Elbwqp18Td)}BML&!GX_H@w>Zzl`_cJr zzUZ+<Rz!>vz2J&A6#sK{>f1$(c=XRVNVapUVzSXChz7i8+5?Lqr6dozXR~ML+W(1v zsud9QCiP(n(?XW2Qj1~a6KlsIg=g#mD`!Y@P3l!V91Dmqjzc2o@crqV|LECleldm1 zpmEE`dFhT|<>Ze<>%}kYqA}LPhY0V2r}&YZ9}bb)ytzwi-c^wC_U&8hBS#WLLXKwW zmK1bP26JC$4X#x;-%CNUWOxI<vM&6Uz5-yxyfe?tye&PHtG20cYf0z;qxdz*pBC=I zZk1t-p`oFuO~2Q2LG93-x(@Q{=JqVpc1-vr8O^n`I*Z%(-aAV!LtSzH-tNHS%_PZ9 z?7kyhpHD}*t5^}?igdhvd={j|kykgw9KU@Iwa%qEs#5hmG*v4kHC0q%X*e~Kv$K^T z8i%Yjm6W27TfI8p*w{!X?wq|e*|nVJudAcORoJC#4tqKy<j3yiw)9Q;%9TeD^8zMy zM>DkZW#NazzH7Mtg~eD?f_ABEeh{xdkAGF%R8Pso$7iQ#@qUAYH}5}u=oUOWI+}VE zin&yv9fVs4Lo9!|i2dcz&`?Ol_Acx43>LW{QvjQxpo%Clx21FxI}9ryjCI_K;&v+e z`t=6np__F{kCn8H45y@|KCDh4KLx@j2j2;dz*~{O`t3`(OS|V;?oS`oygUIy$SEm> z);7BijUcirkSeWtW~x{fK=(X{361&)F-^eFwN`wZdRig{gXrkzn2WSMJZx-N&YwRY zNT7wX%i|YHyv5>Qr8;if^FAOTz_cM!!u)ged731E;_RqXeh4cIi&=#ik$Fq<GldAz zgn$6*grp>ko?-_={7<R6P<OT=`Ff!hY<5c7_Lf_H2;aqrluT{+C^4oZXCNBf-vU?w z#>!r~qNJeU_qMXKwZQT^;GM$e+TwF&V-pjO6a7i|BG7Vin2IX!#fvoUeDf65B!$k` zF8237(E@nSIQgv}e8eF9nA$6A=9h!fb2D3$PftN*z)_u6XgTZIm*_Pv_(v48DugGO zGvXVjjw1ALUq%rFr;_UUQE9xGgdN5M#NQ_kv12Tqs1b?^5wym@mS_zpc@g#7+3fmX z@)CEdJy7CW(=;vm!~Nqc%pGNj`jMTKjSzKEQBuqNOIq!eJcIf$L5}WnY!W5j{Ez4P z;Bzc)preC)e@a}Kd`TxDR@A_r6Hqe^f4s@>H4`y73bpme0ozMNI@tzyItwh*va`<s z+Oe~;Ubbk@EFHygYG$fIU{KT3r=PRz9Nk>*TUOSFJ#rI?Mb6#+qSTxy-weqC_3>Pf zZ56}sxuQ9|^g_tGE!(hCz;(fNvb#uic6Qd=-@m=L)D0g_55cso6J)IA_%N9~-=e+E z=h#^|Z*<?(aZy|{l=6I&db;UitDfQ%{Q8piD;vZ6QI(U9oZ{j-tE;PUJT0IbQ3^W3 ztv%Y`9*Vwh^1G<5$Tbt~aNiVU``vmWN%`LR`1nic!y6jL+_-V0rknNDsf)1nT=_ib z&S|8iq+qV>L4vJ-m6(gKO6=fi6?KJ#+Y%eRIusT1y?Yx|)zezwhrh7CzFz&(rAsLe zhYlU8sjn{`wWp?~O?&m~i(A*EqrQs`tOt|*I}tBJ3&h`KXTIF^g4>PL9?N3B^dc%z z_$93bjEtRK4g_+k91e#|z+hnQd4&@ZjVwJ~`4{J)nneVJho?JEcA8Cf7a3a}KXxqT z_3PIv6LWKO)W?pwG>%-6l~wWZD08Z=sY%V-fE$*54Iy5UWAsmI!A&;2fA@}!n>(YW z80u%R+oygPNZMYx`fz=uf|e1#pd4{+T@%0Ds8SM#*dQ|DBq0F-@kAuMla=Exi$Y|p zsHg-)MrJxpv|$N{4<Dwcp-BLk!ZxkU4nSz~)`yFz+S=M`1Mw)Z>`Hw9gtkj$Kf>02 z-1>FQ-EX%^AG9cEV79BKgprN#Q{?@PaWa8VpGJp=(*w|@K^4|6w2D|;oH&iGsjE|y zs!${oD{-361a#P(_4jO{QWTGY!o@Bqs17M!V6g{Y4m0qGcxA4ZSASt^VPRok+ks>J zmo7fopAvfs4r=mNMUuc-UOCGDUI9oRq@_&?tG8D5eNnu_1ckqfq9_0{-BesX-N8WO zb@6Yqw{j=JMV+S7Pmz@=8(iTQJSwvDg7i=>H>9krGG)mXzMx+|1GWEO(&-Ow`u7L+ zohR{Pa^6}USzK?&C`;v^*x8mHvb#Q2qNw<dq7W_k2INN}QT`A+6_oVCHd43z7}`3h zWOkUYFc~~dMTAptO8EC}sC?;}D@K7xRvnUpg{l;eMOaUtPLm7fAqU<7;7P;8ltn^D zp@WMut_`XlvJ2F{d+#1T0KE^!kIn1&x!a$=yfj*@J{@HWXNyAFnJS*(p*eCy4_6Mz zFf=&m99;R3a-EG2mLE@VOVLlp<gPTnlw(}0R_=jE`4OlCx1x0r5Ym?~YdDC*d1>BI z8n)2rWln(zr|rp%j+PSYwz(G@7bgg$X|k)Zfp!+2_x8{$;?Y@WVCB1d9J?&dp>Py+ z30n8+zzejFx2EO0uiCkYGdfK7>dN>9cs{-lRj{aMN@XA1q}=u$^-O~=gO~=;@zzB7 z7d*wfSFid&>c1{Tqb-R0x_M))wChsGt=jI>z!;%gWVF17yOs?npYj^`;M*J~XtB^J z!-Q7Z;5_Sm^VXJ_i)0LdNZpnM0wEwOYFalZCnr;YA8ywGL^|47Yi)DdGfO>9gIz*G zS3XRjXt0WnoxKq_E^fKUDY!)bJ0Z?w=76tE(kmlXehg_4_ZfPn+A%RP040IUXpUU= zrTfPfvP&3=7KiGo9(-$?omANT>uxW3xH2u*wG-I!o)V{&#jMwJ-i*%uL|7FQlSE>V zCE5|EK77)<cbA5Shf_5&w8vXgo}aVsO^1K3a-2iduHD;x04IM<cLxN6f&BLTvJnU} z&Dr_Y-26OjzKIh(LecI#=SG{p4j6j?i)?>bFRa7>MMb>yM;@^oAU4H-3bmVKNp|X4 zF`t(<C;dn&8X!F@D8=XN&aUx@UBB~-15}~Rqd!wbw3hvSiu`=w)j<KMkuR*vv}B$T z)7VTp{81#CJXT`p6g_sz_FZ_4e{}^$5a7&5G48MC&Ut2fg&C#_jVk}aiXq&Uly_M1 z4l?|2Gx^HZt1WecVl)SF89mB~FoGgPg{q=Nf~JS_cS3PUwW7MZdb}y&$%Ts-)ge(p zIZjmEAt^8Js|n<6jg{U<N=B9jg}`-ta~b~>q+W&If18d$B@Mta1#f>j<I5<a4HQ|; z-Tn2~fq{IdX+0)ZGN3;a-#3z@>!nfEPHKM1K98nmXxDxQQ8g&>+PNmaPP&CwJuPK; zH*TF**%ulHeil6HvW^Iw;y^X60ujm~A254)4s3S)B7=Cc1KT91l{ik?6;^-zsMJ@6 zm&<tK>#KhG^5sAi60h3EY{QETkr*YJVc$G4a)ivL`=OLLqd)7_kmxR}5_tf59;cGO z=vH<f9t~UDm&*lRlVx)iu#=eKSH!}O->yyelxV&<XPLTCrSM(aa&Foh@_2?cts8$x z<7Tp9uUU&&PpDZtw*0WqI;2)vwc=lrnYQN~Kfj8Li%UY=(9jS&KYva){-=cIU=e~a z<^?{Z9h6`@@WHG#Ref!ylCm`(`&_^0G|&MvGqZ%Y4E=IFR2fWBQB%ifXJ`L`I)Ipg z1VSuSN=^ZR7B@zHNF1QRzhF`Rs-_k|c>bIPJ5c4XnWa}MU_X2n1ijgNZyI1*FOKl) z-G+n)%KHWsH{@_MsLjQxp6dtb1ZH@w%T^PeUewiHMRC{K31E+%on8C2^UKbBizL|0 z>p){@H~Z02NF@xyUYf@^Br?+DP4O=mADDi8`iuHgIMhEr^ayw_f+P!nr+oB$s9G%q zEIklWuAFI++VQ(VQbD-@cNWC3<^6s2iBC$Jc$ig?#%5o*6X)NPi|@v-e*dC+{eE~e z|310@#7wP;i4aMf!H<W22uhj1R`_tJ{T>DYVxpl1szm48$BP-4QFR^_hbFr-7%w=E ze+)OaSBbj8*8qbmej=+}k0)3TUDF;6;5kq5#9bC4p?0A=Aop$q+q!n`S~AMedSAN) z=k?toAp>h`KzF=7OJ8~~oRUf5S47e8MMNTCP~j!lo8_^&Rt(jXLlTt+>NR{a2(RY) z(qwD&c@ki0ieP=rN*8kT@C0>D^5jDRE`WRS##f9jS=nNT4^+_;y;g%b_zX@;Ymxme z(0dlu1Qx*f!h+i!v3?9<K}CwdDiakV#s}h&6Qx^g6F<1D(LRIu;rdpfqtlb9_N?VC zZ~4}dyVz-w6<DOGqCx<{Gg>+c3D3ZwJER4V&++^vX*QQ`i6dG(Yf2@*D?iLt&{9gP zK9XcJBk=ACuu#By5F}bwWO$Fk`SW)`Dh`%zf<FjyK{plDJ)NLAP;X}ATel`!HT46T z>qF1VKxu3Q4IdjDdy-o#=MswATdNJ8or1f7MKU;b$5=agrg&LosSajKcA;Bo58DFi zv9>TaP>SEuDSdWI#=IlPxTd;V8EV?{7Pvg4l%6a1a&mLkb4}zyeQ0d2wU^6E>_&9B zDHz3*b5G~cT+=Z{wNZZv@s|=OYpo#lsm<CTZcc~wmsO0-M*b2S?^7TxGBIdC{nJ3T zt#g2)R-Je?G`5-(6PV_D;1BKwjz!_xyr!~a71Dq3DiN&Gjz9VR(kpj>4{wfQGMV-% zbfO7oLxGx`Ji5hfVmr~=V)L!<8(KAO|8H6{FHd061tXv7CH2RXL9Ix0Exq{H2LmIh zf)ciCv}Jqq5>e}2oMl=sxU~Hvke2;qjBelfBI-VA7+hf>KjFnW9Kzo3dt3;W{KXJ! zLv}?0VPR`&>wpVsU=o7kssd^-|8_?XN5fuNQ6UgiZ{J=3fu{hmnD%)|-*Yn`bvct1 znNX2L#d`HKX#Ql79qP6_{;7xwxik0&bY~2t?icF6vWW>3FpCX6drOvpx*t#<&6d7( zc>DThq=vxG71-Aus*nSdG^Px{9;8is{CJv=kB{9lRFdyG1r3AaJ6TjzROJ2W5nDdb z$&(kX3a?9U%-jQjwta(vsvIWjkeYQeb#`!Bwr302O+#b}hlqoY`cSZ^p33{Jx|+^u zJI16`ovBwG6Sf=^4M`kTv-U-+(lnjZ<~2Hz`WQ{)A@<rKlh@%@MV(tb_7{fJxTBsQ zb=x&#$IQY4wX(0|rZM<Cup<40V{W_7{9KE;xYFz5JPFiLQlg_z=)Z%QN#_5+NaXYQ zv9h+dc8bG9dzL29Soz2BzV4NLq}f27q4G9m>XtA^l+@M2XFzBu`&jpa<%J7(o!0q` zK8&Vil{G<lCvL7UTWoEtx=v&iE_^)Y|K$)9!ozVUJ_uYuHuyj>+zSlKLXdPA{F<}1 zVz{s}LBMYC3itJbt0E#Iz5HxgG;`giOOs?6T`t*=d{PH<DgS2mVICrq{?rzOLHd$Y zh|NLRXVCSvIq7!Oyc5?kuFF#y5n@gnhA8Vz^Z)LFD)E7<fl3k+P&MJ--jVUvsN!Ua z-o&Ifdxq~AcRTursjNGdaF+@+z0r=ZK@EP;zqK#^q_=o>9RTCBQ=@c{okK~==FtyI zCbgqc_aOAY{#QitqlcLf$U0aYzu3dHKm3ywqKP`nUQ#5J`X5=PKern8@7TD}z+$u{ zBcDx#jqgxbKT%>~>t1m|tL|%Hz!xvJU0)naiV7;31Q`Wg30ZFVE9UAxghn&hOjEZj z_M!Q?$sL;qploIMg|+$DcaL4iQ<CzGswmLxdinCDDA+7T>%W3?bNX~u2|dRB%frV2 z>fe3~Ar`i1<6>cDg@9Lv-b&yR9-U-RI_BU{4owZ%6@k4lrhD?_N%s&`1u_Edy!9!( z5iFh7LTml$VlOXbak5ME*s)_nQ-AeDof=1eWSbW+^$4Si?a~OxCyARo!25{Ud1J*k zFd#t3W*0A{9;Bi1R5R2hZrx(FG|jBGxuM#jS?3lo;~7Nk;=4zncY&%7r^kMNnJu=6 zl#5^Ke7aq*WUA4$xW#{7QUo+z0Qd{=h;R+Pwe`O3OxMM6Gf;O!Q_sQJ017ot2n-ym zd<Ov+Sa~S;PRjMdOkxs}z~Ep_bG)8j<jGT~I2Vor&r^L!!GIf8T5aY8!vp}VI5r)= z<7ofxPzC7CG|-69mzd9-cNT|F)vH&p-e-&hUkUYnK{Tauu%e|MrEV-{uqSlz5~yVW zNooEmT!e#*3)Vc28M}AyUT<%26{ywBW1+Vql~K|S<|`h^ei)z80}3WgI>_kHpA6yN zY9f$LF&7_>1FH<<H}<x(w{Hc4j-Po$)=T-|=6CCpB=T>q&s=apjoX24fP>0MszmtU zdprpUZJ>+3tE+2DSMIHbHsApGr{n-d<6j@yquff#_IqA_kJ^D`_+v#%rl-xFo<oT6 zo*lCT?Khxl{->_NPQRf$Dw8l$XGW@)m6DxV{t|T_WS|`@+20%Xdlo}?*5-W(YN!5> zTC|n-qoFXV`M<`pBu#K+o4ooXi#NB!Z#eBjDBk`JG@uVpNsk{n78w3X)1cnw6B*on zr<8pf^ho(fxFSPS;W9s*0?S5DLD7~`*qf>-xw#PAm8Dap!mXXBWMh*JJ&L&HKF>ZG zESg~h|7}i&c3J<IJwsbN*r`6dt3=^~7D3=+3!1mEf$Jc<kCsOb{M~%qSQCF?l$cZI z+VXUk3=>`raJeP70h0#QZ~Q&2{=)AUc;|pLgp0(1jl#*!UR}a-;)E2~rl=eXUB7wr zrYS^bLfiWfA2<XB^SjY}-O*W&s2@`e_T~AtITvrm;9_0%h5-u&hW4SAp{V<~-=bus z3sOdnG(QZewM{q_4Wy=5rKCzmc~3c|xNy}DY)-!~C=KHePRjB4!1>jVKWMQ#cz#|b za3J*&D#cjzOC`fSb!u}`2WL0$4j~;K9YM?%Km!umB-cjcG=MDDb|*o+YRJmUrZ~WX zT$D&p&5JL#s0J|~`Tidn7qlcb^)74#fP=Iq3pQm++yh2`nbV4qYT%CpR`RUQc3TyK zkrW7hXi#M}KCZ3&wsnNifpb6ocB~2Eu5E$_0S=gI7sLB=fO077FffP)gH<-8p|(~P zRw{J;(&fu~O-sMm<7kzM%#x|%+I^d6p}FF*`2;6&l|J|8@GJSBen*@co|&;JIrXLH z5EF5VUTHD-sqw(UrbVIa1E1i`1{5g*a->YMn1QD@WQBGksr`hB*|2CQ0-8c7xp$cC zRJR|lQwFyh%pjJ3C>?jYC8^;?<o(dCarpLyPd=1i8c^1}udEca(oX`N;VT5_dD0x5 zX(nm_9l*)LBJH^`z_j>|N-<e0*F;uc9_^{(gG7MtD@rW3kT%ySn0yUkIa_7<=id=E z##*eNyXgS%#G#dnf(#9s>p$nU)O~P{I~d-Kz%5y-KW6PeYg@+}gJ{GYIDT#v><-7O znWFS`t_TS?4T74A$_;zEzSV_hMd-*HIqi>HTYcXm!RYUcb+6592M*Cg2i6<f(xAkw zNRg6~62f&4QqT)WLwC<?V`X;ESv+{rQgLe(8tI==iUOM8=vfn0WhAWv5(EtTBw&uI zu$qolv!S4CQe^xYQAK|Hc6!;`I49}u-JJ|+HE3@Fh*JB)ShMfZEN0Zfbn3Q!I90yw z;Y%kd3x*x1LnuoU|7`x&#(aYVKz5pSU)lKQn0tC2tHu(u@2CiaAMf^qYY7eL9{UCf zw95fa1D}-+jO5hT=DGzK`m*2<fzeaC{N~QLjgvQ$W}U^`;M7}?@gKt^J-0}gMLOVN z)8X{%fYJqAwK*UB7%Vo2h00%IRtKrv?y3LcUu7g8a^?-%9R&tP*f(X*QP^d<INDel zCS)Dy0EKp<Y<((ss%+hA0(xhTGHLvYWo^)8$tqn66EvtmYI8pMI>54O07=jA+?>#d zV;WfO<A_;~9<b~)zI?gH$;a1NG6g%;){%S5@~Zlx<8<#NKH`bDcY1<cur}aNUfJsK z@!Fj5ZF{SeBip$j9_sJ}du+_gIE*z(m#_CsGh<=sq3O*%vcRY)-s&P%RvABfv_<-W zf`J1Y23Q8I;5-nL`^xM)*x|d-%xTRrmP1`ELY`HRC^#LXuoZ;xRaYi3yV2&*MM{Zy zNGj9SxgoSy(d#}h4^p^`Axk!7O<PXoIjcObUa)->63MPe2OZ$J?9Z5y6y>2!pm)Nh zLlY@X+$9HeL!5~H@F*m76Zkp{QQNCgfIfjev#E9dl3U65$S6~x^$RS34h#+GMa5vB zvtsRr8}*t+CWP8Ak5E2S3=_bDZ|2&6hpZ(*juz!GaPKA%{LCWD!EC^9wzrnc9l*W7 zssOM&pk&Gf7Ca8NLV<|xkl3~>fV3(ZC1cC4d#O;$g9_vF%}HxCrsV8~C-4KlLgrvy zt$lsM%N%ih0DW)piUH?phH-%n0qtw=9#bV)Me*hZ8K*#db!}z9zjV0=LO)e2H?hE~ zXS~@bFe9C>M2E*=yafx!^=IfPFMyLZ0UZM6kxvm&TsTm(Juy#xBFrLF8Tz;RwgZ>3 zDsVu+tce*v`<}M*rP0IsF(n!{uRvxfBmlPUdTtre6atx%Qob?7yH+K+6@z+RLPDCn zr3(b+5e9ZJy_KP23Ep_OM`B~9vUd@Hu6e9EDc`vE2=)`5la!Pfz&te_UFt(d*DGMB zg<<f;ZJD}hr2CGTf+ylS65;gCPiqWZLKw%$ICSc=X-xoo@8WW=TNbdgg{}2zxw+}~ zwcrskk<EM_u-FIuB{NYo@$uuw+Br8L$48M{`ZG!Zmre2U*^fGg1U2vluqvQ4C->s- zdsx<i-ww~v1m3)WO}`X)_VVb}!M=!p`t+b!oc=Qc;qbI%lV=L_#Gv`7eEISNr?%nZ ziA+_9XrHx;=U6tcU^F(-aN3#+E_Z%X?=q5f0j3rb3wvGVN?jM{JY2ajnBMj3Yo6jN zHZN_XB#&(Yv2P33_eg<Ntas}Juj4lfj=`(}1$p^aO395ADY%y++pcKfv_plDN2g;5 zbmwj-i%q|7ww7d8dd3F^r1^AjDQed)mqCtB7i_I)(;hiu{`S|sC_w}#|C=tj8%FvT zSXbyN<$G>>BqSu5^;g_+ovS{*2px?;j<?&JecRknk*c4cP6G)Eva%g+AKl+?aQwM` znYWLKs3_Wz=<NchRRugtPzuH}gPcoi6Iq<X!q;F9XeqM5Cem07h6pqPL7@?{@Zq@i z6#`W4EY!=DmhL!oOx=grc`tNY60cjAswXK%X@Eh5<^i-Nf{QGnox>90R_P87T^@v8 zkH`9Cna_1I4t}fJ9O}b|V^`-#CW=NPn;~iiK(hebx`JO@c*(vRs8wW_01`#OxQ2SV zNK%sboaFZQd{!Ydx8Cb(>&w%cT?LkS+5*BxXGntujGLgm7i{lwrtOu7TVM+T@ll6B zn0FYIwVmldkLsDGqBu#<l}aW7n9iCGh^B(YL%Ur|(|uV${n$A;WC0P{LimjG4Bimq z=j(-fCq;3i(d?>;Y@pwv71@}sm5V-QIoEC)hFs=NNHcUm3LL9A7$X^l4w@Pa!AZQy zl7f;BLu5%11X{p?v`ZW<Q`Q@{-JzMMgx&+3xpXuuz*|P`La3la?J|qX1s2~Z`g#56 zMPgy`&|wm^dk}BGeR5+&aytduu&#Y<kS@f;#5c8qpb;Ovmx^^X@r6|rsQ=XKRz>fJ zm34}}{nj@;w<pTC<e<`^gD|mhM{}6{@X#WM)(%=UN@w2g6Se*N>lSpf(rz_Gdi(h; z`Khmsg~y;C8>Cqqz$LEofY4|{uwIj|P_OAc8&7?L->T=<h$j%RJdaIRJg_P>g*OWJ zpa#2ufErMlXUwR+oi1C?L=hW>DGophKmsGZiFqiHiC_kn&VLev0E%KBo2_EfEce)i zu{_r4S7<?L&A5&Zq%=LII*qn3#EkTxdHZRJF6Wj3rhuFsM~fZj91S`QCg?D(CTP}l z2?~5GYzuCEvM^1r)Ri!Z?<2&otT=-urGkzlSQhpq{#N<0>llN2wI-90<6U3{Fngl~ zhCKXk19;7VQ9|A99>@~zT2ZGlFKC>#I}xQ_k*>nST15?~nu9Nbo(mzCLB{A@5q9>L zLTFb}4}>t+1gutpimEC;D2qc4S2yDMfxGrtFp(CN89{JWrdPmVF_hTem~VqxCFk3U z&02JUL4lW6WveC={crB|I-pfK1Jt87+@dy^w@}Y*QgC{@oJ#FxT~^szsu3@~3AmyK zkRn>0P7^={zw+(_9&f2<ScE;9(?A3h;ujWhuoUqv=O8cIXMU@6m>b0QxX;(q379@@ zu-7Q?_7nT%m-DE6Y?xOM{P^(-Rt3rcI$r}!X#VazQz3ZE5KA8?9n+wbiq3N|D09k7 zSBXP`fcM01;g21h*jBWFh`JKxxm5&6z#Oq|b1|4l7b0<a*9z#R7G-!f$T(Hl(uL7D zf7kZKZyn8U%v?|;fov^rZHb+i{vZydq#Q`xjZaYnE9Kkk<tUP)13}o4vai!%DYrjl z@-Q_LT?wnr3HeeUGSBpNWmSJykntEWl;V*{w*{Dm!V)m+-_8nJv|S~@+~2qMDC*}& zmwC6p_T}F4A8v@sdSO)zm0Z3FEW#G(vqgxzsKArYOxV5<HW_<sE4k8tj}Q;T4p7k) z!T3;ym|K`CnN9_HfV$15rpbN&C0sxQRiS{wH`!38jyCfe;~qj|XVOo@7(@YX>UqVT zJ9kj-fDS&vX30Y66ecQ0Svd);glum$mwJN%J^nfhtp5opXPU~&&w&1vZ7y9$Nh4Zy zt;#nYp%147NvIA5d1LLsUE5&B<yFPE1!m2c(fJD~0Vv##M0x4~-ll41MfUl1z2lRk z^>c&8rW3LXXY|~#g~ERY^i(r&x<zo{#{i}mJeu->HhV}+JxPIYX=Li80P=&MDu3#- zkB$2wP)tpVnwG*YbMa_n7~ts9+%1k5iIG|6l9FU!Aza%aJ~MzzYw^CGx$Cr9Nhx_7 zTKs8{aUkHl8TdFE26#NXVF6!46dFSWzH^<-Z~yj4D+N}^I8btGUf&RUQ&zrAlD+8C zL7tvP`vdvxDfn<3g^>h)%ewiIhC)V{!9!`u$secKvS9}7B<et;soZwTU)=5u9^A*= zEdao-r>Wz7Q~Rn)@#~Hj0J-PlQ?*(BI&ye0R<)wbrO95Zp&HK0=ROf}RYK>WB~FI2 z$F7ze<;k!}Tw~ouR1icc1A<-X)7zCV?z8^ZHY$o0M@Ln~rR&}eTbaP)M1m+>CgQqh ztkqfUkXGzC$x*#(?LES0W&Z)yM)p+)kn&4JulLmE49+@ltXV|zkPV!>)y?Xs#qZRO z*f4%K3w3sb_wmyZ$G@Fe*9`oN$L?C~KihWQ8Xbm0sh-uV-*&^yT-@BfH9oYZ_bL^J zE1~t`2rt-cJX!8Isf`X(8-4I;1Y1_nbIZLxQsO#q*~$%;(~J7(#2NC+9Ci<#SA?;w zUI)Ox9jXA4GP*upt_g}z5Wj{)`;Y`2K*boiM%qw<ouX*<oX<B%ZodYBx4LD$)2Ubq zMGGbjS8-~je+G#uc=O{yblzFtefEC5Jt?2C@T(RKT7F<Ba4R#0Vkh;{K>(z}8qBQm zKux_yv<04fOR)#n3~sX-0VUs>dM?rgYB2Q6w>PK3dV3C|=^!cup?iu|fsw$7*(|#D zFAN|;qhnEO58Mp}xr8=an9G6;B*eqG1AcWVm=0!$KSfHQV{H(6dVo!N#Kgi&Ea>Er z7ZW=hn-Wm<0+@8JsHjj`zW?j5S45q9`+?;xLYdV9DUD`XQ&ST&R;brGuHme{@AqfN zjeb54GtpqXCc7?ub7{0BAt9lmp<%(g0*j}nqKbnwSUowc?vD;KWO9If1^V!Gc?pKD zVFcC@or5V}9eyF`zGB0|%xpSb7m7+s(5;E!8KCVf$ahhXjaTSoGP)0t@4fcBg>HW_ z7)Z|K*$FBg^`_?LR$y8C+WcY63|d>wpxPF@?Hk4*vD6(M3&z_r(m?;1L9Z0mMSe_@ znW%UMywBm11HQ4=9JLh>RIT+vqfP|+UdV&r;=pkKdAk0eHpc$s!GCWwf4}1Y!w0sQ YE^&v|^9o3}!<r#jX@yIf7Yy$H2Lms9(EtDd literal 0 HcmV?d00001 diff --git a/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_after_removing_aberrant_points.csv b/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_after_removing_aberrant_points.csv index 6d0e44a..4ea1923 100755 --- a/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_after_removing_aberrant_points.csv +++ b/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_after_removing_aberrant_points.csv @@ -1,22 +1,26 @@ X_0,X_1,X_2,X_3,X_4,X_5,X_6,X_7,X_8,X_9,y +2.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,8236960890.90969 +2.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,6956231392.081026 2.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,994906080.8659663 1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,3998672440.749671 -0.0,0.0,0.0,1.0,2.0,0.0,1.0,1.0,0.0,0.0,6532788063.289651 -1.0,0.0,0.0,1.0,2.0,0.0,0.0,0.0,1.0,0.0,7249844128.351241 -0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,7650055845.407672 +0.0,0.0,0.0,1.0,0.0,2.0,1.0,1.0,0.0,0.0,6532788063.289651 +2.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,8321129010.784183 +1.0,0.0,0.0,1.0,1.0,2.0,0.0,0.0,1.0,0.0,7249844128.351241 +0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,7650055845.407672 +2.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,6806147312.252427 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.08333333333333333 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.08333333333333333 2.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1016987763.6032282 2.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1980229389.772511 2.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,5377240292.736961 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,3307720550.5370083 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,1.0,0.0,0.0,5789616901.049658 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,1.0,1.0,0.0,7665772326.561901 -2.0,1.0,1.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,5072151352.996373 -2.0,1.0,1.0,1.0,2.0,0.0,1.0,0.0,0.0,0.0,5822958761.806049 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,4149980287.5936337 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,1.0,0.0,0.0,6611133148.221605 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,1.0,1.0,0.0,8224428196.629629 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,3307720550.5370083 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,1.0,0.0,0.0,5789616901.049658 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,1.0,1.0,0.0,7665772326.561901 +2.0,1.0,1.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,5072151352.996373 +2.0,1.0,1.0,1.0,0.0,2.0,1.0,0.0,0.0,0.0,5822958761.806049 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,4149980287.5936337 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,1.0,0.0,0.0,6611133148.221605 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,1.0,1.0,0.0,8224428196.629629 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.08333333333333333 0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,997516184.7000968 1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1014996574.3865615 @@ -26,9 +30,35 @@ X_0,X_1,X_2,X_3,X_4,X_5,X_6,X_7,X_8,X_9,y 0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,2905397356.669485 1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,3029054692.61153 2.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5058399218.983161 -2.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,5026691733.102776 +2.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,5026691733.102776 0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5947637003.818383 -1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,5035525633.343237 +1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,5035525633.343237 2.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5326600510.288329 -2.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,4059018123.5159216 +2.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,4059018123.5159216 0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,4062233415.93208 +1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,4153496621.1304984 +2.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6443423519.784533 +2.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,6519117311.516021 +0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6448575832.027497 +1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,6539495281.754154 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,1.0,0.0,0.0,6473246073.976255 +0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,3145168392.3157244 +0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,3331046015.069652 +0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,5724131219.984087 +0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,9166575000.916658 +1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6540008502.011052 +0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,3321398441.599851 +0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,5549420363.04308 +2.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,9229945635.620207 +1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,7263008047.412917 +0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,4385426351.149858 +1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,5040602049.508794 +2.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,6928278461.367919 +0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,5821399464.43125 +2.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,4809102669.532892 +1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,8795770993.306417 +0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,8367150566.874451 +1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,8895689149.038376 +1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,7282684688.88371 +0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,9080672696.233337 +1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,2991522026.5766816 diff --git a/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_after_removing_duplicate.csv b/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_after_removing_duplicate.csv index 1e7c029..b7b08b5 100755 --- a/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_after_removing_duplicate.csv +++ b/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_after_removing_duplicate.csv @@ -1,31 +1,59 @@ X_0,X_1,X_2,X_3,X_4,X_5,X_6,X_7,X_8,X_9,y +2.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,8236960890.90969 +2.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,6956231392.081026 2.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,994906080.8659663 1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,3998672440.749671 -0.0,0.0,0.0,1.0,2.0,0.0,1.0,1.0,0.0,0.0,6532788063.289651 -1.0,0.0,0.0,1.0,2.0,0.0,0.0,0.0,1.0,0.0,7249844128.351241 -0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,7650055845.407672 +0.0,0.0,0.0,1.0,0.0,2.0,1.0,1.0,0.0,0.0,6532788063.289651 +2.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,8321129010.784183 +1.0,0.0,0.0,1.0,1.0,2.0,0.0,0.0,1.0,0.0,7249844128.351241 +0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,7650055845.407672 +2.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,6806147312.252427 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.08333333333333333 -2.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1010122436.9405816 +2.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1016987763.6032282 2.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1980229389.772511 2.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,5377240292.736961 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,3307720550.5370083 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,1.0,0.0,0.0,5789616901.049658 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,1.0,1.0,0.0,7665772326.561901 -2.0,1.0,1.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,5072151352.996373 -2.0,1.0,1.0,1.0,2.0,0.0,1.0,0.0,0.0,0.0,5822958761.806049 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,4149980287.5936337 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,1.0,0.0,0.0,6611133148.221605 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,1.0,1.0,0.0,8224428196.629629 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,3307720550.5370083 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,1.0,0.0,0.0,5789616901.049658 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,1.0,1.0,0.0,7665772326.561901 +2.0,1.0,1.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,5072151352.996373 +2.0,1.0,1.0,1.0,0.0,2.0,1.0,0.0,0.0,0.0,5822958761.806049 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,4149980287.5936337 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,1.0,0.0,0.0,6473246073.976255 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,1.0,1.0,0.0,8224428196.629629 0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,997516184.7000968 1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1014996574.3865615 0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,2018619748.5607243 1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1998856653.9939156 0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,2905397356.669485 -1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,3029054692.61153 +1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,2991522026.5766816 2.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5058399218.983161 -2.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,5026691733.102776 +2.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,5026691733.102776 0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5947637003.818383 -1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,5035525633.343237 +1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,5035525633.343237 2.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5326600510.288329 -2.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,4059018123.5159216 +2.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,4059018123.5159216 0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,4062233415.93208 +1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,4153496621.1304984 +2.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6443423519.784533 +2.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,6519117311.516021 +0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6448575832.027497 +1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,6539495281.754154 +0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,3145168392.3157244 +0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,3331046015.069652 +0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,5724131219.984087 +0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,9166575000.916658 +1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6540008502.011052 +0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,3321398441.599851 +0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,5549420363.04308 +2.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,9229945635.620207 +1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,7263008047.412917 +0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,4385426351.149858 +1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,5040602049.508794 +2.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,6928278461.367919 +0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,5821399464.43125 +2.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,4809102669.532892 +1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,8795770993.306417 +0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,8367150566.874451 +1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,8895689149.038376 +1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,7282684688.88371 +0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,9080672696.233337 diff --git a/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_before_removing_aberrant_points.csv b/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_before_removing_aberrant_points.csv index e5d4a3b..edfb261 100755 --- a/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_before_removing_aberrant_points.csv +++ b/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_before_removing_aberrant_points.csv @@ -1,36 +1,36 @@ X_0,X_1,X_2,X_3,X_4,X_5,X_6,X_7,X_8,X_9,y -2.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,8236960890.90969 -2.0,0.0,0.0,1.0,2.0,0.0,1.0,0.0,0.0,0.0,6957102505.948323 -2.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,6956231392.081026 -1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,11285968381.230984 +2.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,8236960890.90969 +2.0,0.0,0.0,1.0,1.0,2.0,1.0,0.0,0.0,0.0,6957102505.948323 +2.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,6956231392.081026 +1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,11285968381.230984 2.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,8096707069.234942 2.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,994906080.8659663 1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,3998672440.749671 0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,6501654671.113798 -1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,8089829466.394849 -0.0,0.0,0.0,1.0,2.0,0.0,1.0,1.0,0.0,0.0,6532788063.289651 -0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,8964027358.211496 -2.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,8321129010.784183 -1.0,0.0,0.0,1.0,2.0,0.0,0.0,0.0,1.0,0.0,7249844128.351241 -0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,7650055845.407672 -2.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,9340120487.55429 -2.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,6806147312.252427 +1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,8089829466.394849 +0.0,0.0,0.0,1.0,0.0,2.0,1.0,1.0,0.0,0.0,6532788063.289651 +0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,8964027358.211496 +2.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,8321129010.784183 +1.0,0.0,0.0,1.0,1.0,2.0,0.0,0.0,1.0,0.0,7249844128.351241 +0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,7650055845.407672 +2.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,9340120487.55429 +2.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,6806147312.252427 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.08333333333333333 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.08333333333333333 2.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1016987763.6032282 2.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1980229389.772511 2.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,5377240292.736961 -2.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,8296551953.00833 -2.0,1.0,1.0,1.0,2.0,0.0,1.0,0.0,0.0,0.0,9400881802.713095 -2.0,1.0,1.0,1.0,2.0,0.0,1.0,1.0,0.0,0.0,9963434196.49885 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,3307720550.5370083 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,1.0,0.0,0.0,5789616901.049658 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,1.0,1.0,0.0,7665772326.561901 -2.0,1.0,1.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,5072151352.996373 -2.0,1.0,1.0,1.0,2.0,0.0,1.0,0.0,0.0,0.0,5822958761.806049 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,4149980287.5936337 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,1.0,0.0,0.0,6611133148.221605 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,1.0,1.0,0.0,8224428196.629629 +2.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,8296551953.00833 +2.0,1.0,1.0,1.0,1.0,2.0,1.0,0.0,0.0,0.0,9400881802.713095 +2.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,0.0,0.0,9963434196.49885 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,3307720550.5370083 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,1.0,0.0,0.0,5789616901.049658 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,1.0,1.0,0.0,7665772326.561901 +2.0,1.0,1.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,5072151352.996373 +2.0,1.0,1.0,1.0,0.0,2.0,1.0,0.0,0.0,0.0,5822958761.806049 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,4149980287.5936337 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,1.0,0.0,0.0,6611133148.221605 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,1.0,1.0,0.0,8224428196.629629 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.08333333333333333 0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,997516184.7000968 1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1014996574.3865615 @@ -40,9 +40,39 @@ X_0,X_1,X_2,X_3,X_4,X_5,X_6,X_7,X_8,X_9,y 0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,2905397356.669485 1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,3029054692.61153 2.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5058399218.983161 -2.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,5026691733.102776 +2.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,5026691733.102776 0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5947637003.818383 -1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,5035525633.343237 +1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,5035525633.343237 2.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5326600510.288329 -2.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,4059018123.5159216 +2.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,4059018123.5159216 0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,4062233415.93208 +1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,4153496621.1304984 +2.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6443423519.784533 +2.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,6519117311.516021 +0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6448575832.027497 +1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,6539495281.754154 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,1.0,0.0,0.0,6473246073.976255 +0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,3145168392.3157244 +0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,3331046015.069652 +0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,5724131219.984087 +0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,9166575000.916658 +1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6540008502.011052 +1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,7245431755.278297 +0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,3321398441.599851 +0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,5549420363.04308 +2.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,9229945635.620207 +1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,7263008047.412917 +0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,4385426351.149858 +1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,5040602049.508794 +2.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,6928278461.367919 +0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,5821399464.43125 +2.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,4809102669.532892 +1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,8795770993.306417 +0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,8367150566.874451 +1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,8895689149.038376 +2.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,9428892010.8998 +1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,7282684688.88371 +2.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,7595205906.032112 +0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,9080672696.233337 +1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,2991522026.5766816 +1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,8754497623.153894 diff --git a/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_before_removing_duplicate.csv b/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_before_removing_duplicate.csv index 6d0e44a..4ea1923 100755 --- a/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_before_removing_duplicate.csv +++ b/kernel_ridge_linear_model/model_output_data/From_summaries_X_y_before_removing_duplicate.csv @@ -1,22 +1,26 @@ X_0,X_1,X_2,X_3,X_4,X_5,X_6,X_7,X_8,X_9,y +2.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,8236960890.90969 +2.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,6956231392.081026 2.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,994906080.8659663 1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,3998672440.749671 -0.0,0.0,0.0,1.0,2.0,0.0,1.0,1.0,0.0,0.0,6532788063.289651 -1.0,0.0,0.0,1.0,2.0,0.0,0.0,0.0,1.0,0.0,7249844128.351241 -0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,7650055845.407672 +0.0,0.0,0.0,1.0,0.0,2.0,1.0,1.0,0.0,0.0,6532788063.289651 +2.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,8321129010.784183 +1.0,0.0,0.0,1.0,1.0,2.0,0.0,0.0,1.0,0.0,7249844128.351241 +0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,7650055845.407672 +2.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,6806147312.252427 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.08333333333333333 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.08333333333333333 2.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1016987763.6032282 2.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1980229389.772511 2.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,5377240292.736961 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,3307720550.5370083 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,1.0,0.0,0.0,5789616901.049658 -0.0,0.0,0.0,0.0,2.0,0.0,1.0,1.0,1.0,0.0,7665772326.561901 -2.0,1.0,1.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,5072151352.996373 -2.0,1.0,1.0,1.0,2.0,0.0,1.0,0.0,0.0,0.0,5822958761.806049 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,4149980287.5936337 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,1.0,0.0,0.0,6611133148.221605 -2.0,1.0,0.0,0.0,2.0,0.0,1.0,1.0,1.0,0.0,8224428196.629629 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,3307720550.5370083 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,1.0,0.0,0.0,5789616901.049658 +0.0,0.0,0.0,0.0,0.0,2.0,1.0,1.0,1.0,0.0,7665772326.561901 +2.0,1.0,1.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,5072151352.996373 +2.0,1.0,1.0,1.0,0.0,2.0,1.0,0.0,0.0,0.0,5822958761.806049 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,0.0,0.0,0.0,4149980287.5936337 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,1.0,0.0,0.0,6611133148.221605 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,1.0,1.0,0.0,8224428196.629629 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.08333333333333333 0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,997516184.7000968 1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1014996574.3865615 @@ -26,9 +30,35 @@ X_0,X_1,X_2,X_3,X_4,X_5,X_6,X_7,X_8,X_9,y 0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,2905397356.669485 1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,3029054692.61153 2.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5058399218.983161 -2.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,5026691733.102776 +2.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,5026691733.102776 0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5947637003.818383 -1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,5035525633.343237 +1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,5035525633.343237 2.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,5326600510.288329 -2.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,4059018123.5159216 +2.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,4059018123.5159216 0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,4062233415.93208 +1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,4153496621.1304984 +2.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6443423519.784533 +2.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,6519117311.516021 +0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6448575832.027497 +1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,6539495281.754154 +2.0,1.0,0.0,0.0,0.0,2.0,1.0,1.0,0.0,0.0,6473246073.976255 +0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,3145168392.3157244 +0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,3331046015.069652 +0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,5724131219.984087 +0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,9166575000.916658 +1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,6540008502.011052 +0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,3321398441.599851 +0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,5549420363.04308 +2.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,9229945635.620207 +1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,7263008047.412917 +0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,4385426351.149858 +1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,5040602049.508794 +2.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,6928278461.367919 +0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,5821399464.43125 +2.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,4809102669.532892 +1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,8795770993.306417 +0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,8367150566.874451 +1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,8895689149.038376 +1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,7282684688.88371 +0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,9080672696.233337 +1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,2991522026.5766816 diff --git a/kernel_ridge_linear_model/utils_functions.py b/kernel_ridge_linear_model/utils_functions.py index 9eecfd4..1bcdf30 100755 --- a/kernel_ridge_linear_model/utils_functions.py +++ b/kernel_ridge_linear_model/utils_functions.py @@ -60,11 +60,11 @@ def convert_from_configuration_to_base_Y(configuration, format="google_pixel_4a result.append(0) if frequency_level == 0: - result[4] = 0 + result[5] = 0 else : - result[4] = frequency_level - 1 + result[5] = frequency_level - 1 - print (" --- Result = ", result) + print (" --- Result _ samsung = ", result) else: return -1 return result @@ -1249,7 +1249,7 @@ def inputs_where_d_X_index_is_negative(pointwise_margins, variable_index, X_trai -def plot_marginal_interactions (X_train, pointwise_margins, cibled_indice, indice_0, indice_1, indice_2, indice_3, indice_4, indice_5, indice_6, indice_7, indice_8 , X_meaning_dictionnary_, marginal_effect_exploration_folder_ ): +def plot_marginal_interactions (X_train, pointwise_margins, cibled_indice, indice_0, indice_1, indice_2, indice_3, indice_4, indice_5, indice_6, indice_7, indice_8 , X_meaning_dictionnary_, marginal_effect_exploration_folder_): print("--- In function plot_marginal_interactions : plotting d_X_" + str(cibled_indice) + " with regard to X_" + str(indice_0) + ", X_" + str(indice_1) + ", X_" + str(indice_2)) fig, ((d_X_cibled_indice_over_X_indice_0, d_X_cibled_indice_over_X_indice_3, d_X_cibled_indice_over_X_indice_6 ) , @@ -1406,6 +1406,177 @@ def plot_marginal_interactions (X_train, pointwise_margins, cibled_indice, indic +def plot_ten_marginal_interactions (X_train, pointwise_margins, cibled_indice, indice_0, indice_1, indice_2, indice_3, indice_4, indice_5, indice_6, indice_7, indice_8 , indice_9, X_meaning_dictionnary_, marginal_effect_exploration_folder_): + + print("--- In function plot_marginal_interactions : plotting d_X_" + str(cibled_indice) + " with regard to X_" + str(indice_0) + ", X_" + str(indice_1) + ", X_" + str(indice_2)) + fig, ((d_X_cibled_indice_over_X_indice_0, d_X_cibled_indice_over_X_indice_1, d_X_cibled_indice_over_X_indice_2, d_X_cibled_indice_over_X_indice_3, d_X_cibled_indice_over_X_indice_4 ) , + ( d_X_cibled_indice_over_X_indice_5, d_X_cibled_indice_over_X_indice_6, d_X_cibled_indice_over_X_indice_7, d_X_cibled_indice_over_X_indice_8, d_X_cibled_indice_over_X_indice_9 )) = plt.subplots(nrows= 2, ncols = 5, figsize=(27, 14)) + + + transparency = 0.007 + # special trick to print acceptable plots + d_X_cibled_indice_over_X_indice_0.scatter(X_train[:,indice_0], pointwise_margins[:,cibled_indice], s=2000 , alpha=transparency, c = "blue") + for current_line_index in range(0, 50): + d_X_cibled_indice_over_X_indice_0.scatter([var + 0.3 + 0.005*current_line_index for var in X_train[:,indice_0]], pointwise_margins[:,cibled_indice], s=10, marker = "_", c = "blue") + d_X_cibled_indice_over_X_indice_0.set_title( X_meaning_dictionnary_["X_" + str(cibled_indice)] + " (" + "X_" + str(cibled_indice) +")"+ \ + " over \n " + X_meaning_dictionnary_["X_" + str(indice_0)] + " (" + "X_" + str(indice_0) +")") + d_X_cibled_indice_over_X_indice_0.set_xlabel("X_" + str(indice_0) + ": " + X_meaning_dictionnary_["X_"+ str(indice_0)]) + #d_X_cibled_indice_over_X_indice_0.set_ylabel() + d_X_cibled_indice_over_X_indice_0.tick_params(size=8) + d_X_cibled_indice_over_X_indice_0.set_xlim(xmin=-0.25) + + + + d_X_cibled_indice_over_X_indice_1.scatter(X_train[:,indice_1], pointwise_margins[:,cibled_indice], s=2000 , alpha=transparency, c = "blue") + for current_line_index in range(0, 50): + d_X_cibled_indice_over_X_indice_1.scatter([var + 0.3 + 0.005*current_line_index for var in X_train[:,indice_1]], pointwise_margins[:,cibled_indice], s=10, marker = "_", c = "blue") + d_X_cibled_indice_over_X_indice_1.set_title( X_meaning_dictionnary_["X_" + str(cibled_indice)] + " (" + "X_" + str(cibled_indice) + ")" + " over \n " +\ + X_meaning_dictionnary_["X_" + str(indice_1)] + " (" + "X_" + str(indice_1) +").") + d_X_cibled_indice_over_X_indice_1.set_xlabel("X_" + str(indice_1) + ": " + X_meaning_dictionnary_["X_" + str(indice_1)]) + d_X_cibled_indice_over_X_indice_1.set_ylabel("d_X_" + str(cibled_indice) + " : pointwise marginal effect of " + X_meaning_dictionnary_["X_" + str(cibled_indice)] ) + d_X_cibled_indice_over_X_indice_1.tick_params(size=8) + d_X_cibled_indice_over_X_indice_1.set_xlim(xmin=-0.25) + + + + d_X_cibled_indice_over_X_indice_2.scatter(X_train[:,indice_2], pointwise_margins[:,cibled_indice], s=2000 , alpha=transparency, c = "blue") + for current_line_index in range(0, 50): + d_X_cibled_indice_over_X_indice_2.scatter([var + 0.3 + 0.005*current_line_index for var in X_train[:,indice_2]], pointwise_margins[:,cibled_indice], s=10, marker = "_", c = "blue") + d_X_cibled_indice_over_X_indice_2.set_title( X_meaning_dictionnary_["X_" + str(cibled_indice)] + " (" + "X_" + str(cibled_indice) +")"+ \ + " over \n " + X_meaning_dictionnary_["X_" + str(indice_2)] + " (" + "X_" + str(indice_2) +")") + d_X_cibled_indice_over_X_indice_2.set_xlabel("X_" + str(indice_2) + ": " + X_meaning_dictionnary_["X_" + str(indice_2)]) + #d_X_cibled_indice_over_X_indice_2.set_ylabel( ) + d_X_cibled_indice_over_X_indice_2.tick_params(size=8) + d_X_cibled_indice_over_X_indice_2.set_xlim(xmin=-0.25) + + + + d_X_cibled_indice_over_X_indice_3.scatter(X_train[:,indice_3], pointwise_margins[:,cibled_indice], s=2000 , alpha=transparency, c = "blue") + for current_line_index in range(0, 50): + d_X_cibled_indice_over_X_indice_3.scatter([var + 0.3 + 0.005*current_line_index for var in X_train[:,indice_3]], pointwise_margins[:,cibled_indice], s=10, marker = "_", c = "blue") + d_X_cibled_indice_over_X_indice_3.set_title( X_meaning_dictionnary_["X_" + str(cibled_indice)] + " (" + "X_" + str(cibled_indice) +")"+ \ + " over \n " + X_meaning_dictionnary_["X_" + str(indice_3)] + " (" + "X_" + str(indice_3) +")") + d_X_cibled_indice_over_X_indice_3.set_xlabel("X_" + str(indice_3) + ": " + X_meaning_dictionnary_["X_" + str(indice_3)]) + #d_X_cibled_indice_over_X_indice_2.set_ylabel( ) + d_X_cibled_indice_over_X_indice_3.tick_params(size=8) + d_X_cibled_indice_over_X_indice_3.set_xlim(xmin=-0.25) + + + ################### + + d_X_cibled_indice_over_X_indice_4.scatter(X_train[:,indice_4], pointwise_margins[:,cibled_indice], s=2000 , alpha=transparency, c = "blue") + for current_line_index in range(0, 50): + d_X_cibled_indice_over_X_indice_4.scatter([var + 0.3 + 0.005*current_line_index for var in X_train[:,indice_4]], pointwise_margins[:,cibled_indice], s=10, marker = "_", c = "blue") + d_X_cibled_indice_over_X_indice_4.set_title( X_meaning_dictionnary_["X_" + str(cibled_indice)] + " (" + "X_" + str(cibled_indice) +")"+ \ + " over \n " + X_meaning_dictionnary_["X_" + str(indice_4)] + " (" + "X_" + str(indice_4) +")") + d_X_cibled_indice_over_X_indice_4.set_xlabel("X_" + str(indice_3) + ": " + X_meaning_dictionnary_["X_" + str(indice_4)]) + #d_X_cibled_indice_over_X_indice_2.set_ylabel( ) + d_X_cibled_indice_over_X_indice_4.tick_params(size=8) + d_X_cibled_indice_over_X_indice_4.set_xlim(xmin=-0.25) + + + + d_X_cibled_indice_over_X_indice_5.scatter(X_train[:,indice_5], pointwise_margins[:,cibled_indice], s=2000 , alpha=transparency, c = "blue") + for current_line_index in range(0, 50): + d_X_cibled_indice_over_X_indice_5.scatter([var + 0.3 + 0.005*current_line_index for var in X_train[:,indice_5]], pointwise_margins[:,cibled_indice], s=10, marker = "_", c = "blue") + d_X_cibled_indice_over_X_indice_5.set_title( X_meaning_dictionnary_["X_" + str(cibled_indice)] + " (" + "X_" + str(cibled_indice) +")"+ \ + " over \n " + X_meaning_dictionnary_["X_" + str(indice_5)] + " (" + "X_" + str(indice_5) +")") + d_X_cibled_indice_over_X_indice_5.set_xlabel("X_" + str(indice_5) + ": " + X_meaning_dictionnary_["X_" + str(indice_5)]) + #d_X_cibled_indice_over_X_indice_2.set_ylabel( ) + d_X_cibled_indice_over_X_indice_5.tick_params(size=8) + d_X_cibled_indice_over_X_indice_5.set_xlim(xmin=-0.25) + + + d_X_cibled_indice_over_X_indice_6.scatter(X_train[:,indice_6], pointwise_margins[:,cibled_indice], s=2000 , alpha=transparency, c = "blue") + for current_line_index in range(0, 50): + d_X_cibled_indice_over_X_indice_6.scatter([var + 0.3 + 0.005*current_line_index for var in X_train[:,indice_6]], pointwise_margins[:,cibled_indice], s=10, marker = "_", c = "blue") + d_X_cibled_indice_over_X_indice_6.set_title( X_meaning_dictionnary_["X_" + str(cibled_indice)] + " (" + "X_" + str(cibled_indice) +")"+ \ + " over \n " + X_meaning_dictionnary_["X_" + str(indice_6)] + " (" + "X_" + str(indice_6) +")") + d_X_cibled_indice_over_X_indice_6.set_xlabel("X_" + str(indice_6) + ": " + X_meaning_dictionnary_["X_" + str(indice_6)]) + #d_X_cibled_indice_over_X_indice_2.set_ylabel( ) + d_X_cibled_indice_over_X_indice_6.tick_params(size=8) + d_X_cibled_indice_over_X_indice_6.set_xlim(xmin=-0.25) + + + d_X_cibled_indice_over_X_indice_7.scatter(X_train[:,indice_7], pointwise_margins[:,cibled_indice], s=2000 , alpha=transparency, c = "blue") + for current_line_index in range(0, 50): + d_X_cibled_indice_over_X_indice_7.scatter([var + 0.3 + 0.005*current_line_index for var in X_train[:,indice_7]], pointwise_margins[:,cibled_indice], s=10, marker = "_", c = "blue") + d_X_cibled_indice_over_X_indice_7.set_title( X_meaning_dictionnary_["X_" + str(cibled_indice)] + " (" + "X_" + str(cibled_indice) +")"+ \ + " over \n " + X_meaning_dictionnary_["X_" + str(indice_7)] + " (" + "X_" + str(indice_7) +")") + d_X_cibled_indice_over_X_indice_7.set_xlabel("X_" + str(indice_7) + ": " + X_meaning_dictionnary_["X_" + str(indice_7)]) + #d_X_cibled_indice_over_X_indice_2.set_ylabel( ) + d_X_cibled_indice_over_X_indice_7.tick_params(size=8) + d_X_cibled_indice_over_X_indice_7.set_xlim(xmin=-0.25) + + d_X_cibled_indice_over_X_indice_8.scatter(X_train[:,indice_8], pointwise_margins[:,cibled_indice], s=2000 , alpha=transparency, c = "blue") + for current_line_index in range(0, 50): + d_X_cibled_indice_over_X_indice_8.scatter([var + 0.3 + 0.005*current_line_index for var in X_train[:,indice_8]], pointwise_margins[:,cibled_indice], s=10, marker = "_", c = "blue") + d_X_cibled_indice_over_X_indice_8.set_title( X_meaning_dictionnary_["X_" + str(cibled_indice)] + " (" + "X_" + str(cibled_indice) +")"+ \ + " over \n " + X_meaning_dictionnary_["X_" + str(indice_8)] + " (" + "X_" + str(indice_8) +")") + d_X_cibled_indice_over_X_indice_8.set_xlabel("X_" + str(indice_8) + ": " + X_meaning_dictionnary_["X_" + str(indice_8)]) + #d_X_cibled_indice_over_X_indice_2.set_ylabel( ) + d_X_cibled_indice_over_X_indice_8.tick_params(size=8) + d_X_cibled_indice_over_X_indice_8.set_xlim(xmin=-0.25) + + + d_X_cibled_indice_over_X_indice_9.scatter(X_train[:,indice_9], pointwise_margins[:,cibled_indice], s=2000 , alpha=transparency, c = "blue") + for current_line_index in range(0, 50): + d_X_cibled_indice_over_X_indice_9.scatter([var + 0.3 + 0.005*current_line_index for var in X_train[:,indice_9]], pointwise_margins[:,cibled_indice], s=10, marker = "_", c = "blue") + d_X_cibled_indice_over_X_indice_9.set_title( X_meaning_dictionnary_["X_" + str(cibled_indice)] + " (" + "X_" + str(cibled_indice) +")"+ \ + " over \n " + X_meaning_dictionnary_["X_" + str(indice_9)] + " (" + "X_" + str(indice_9) +")") + d_X_cibled_indice_over_X_indice_9.set_xlabel("X_" + str(indice_9) + ": " + X_meaning_dictionnary_["X_" + str(indice_9)]) + #d_X_cibled_indice_over_X_indice_2.set_ylabel( ) + d_X_cibled_indice_over_X_indice_9.tick_params(size=8) + d_X_cibled_indice_over_X_indice_9.set_xlim(xmin=-0.25) + + + #_ = d_X_0_over_X_5.set_title("Point wise marginal effect of frequency of core 0 according to the one of core 1, 2 and 3") + picture_name = X_meaning_dictionnary_["X_" + str(cibled_indice)].replace(" ","_")[-16:] + \ + "_over_" + X_meaning_dictionnary_["X_" + str(indice_0)].replace(" ","_")[-16:] + "__" + \ + X_meaning_dictionnary_["X_" + str(indice_1)].replace(" ","_")[-16:] + "__" + \ + X_meaning_dictionnary_["X_" + str(indice_2)].replace(" ","_")[-16:] + "__" + \ + X_meaning_dictionnary_["X_" + str(indice_3)].replace(" ","_")[-16:] + "__" + \ + X_meaning_dictionnary_["X_" + str(indice_4)].replace(" ","_")[-16:] + "__" + \ + X_meaning_dictionnary_["X_" + str(indice_5)].replace(" ","_")[-16:] + "__" + \ + X_meaning_dictionnary_["X_" + str(indice_6)].replace(" ","_")[-16:] + "__" + \ + X_meaning_dictionnary_["X_" + str(indice_7)].replace(" ","_")[-16:] + "__" + \ + X_meaning_dictionnary_["X_" + str(indice_8)].replace(" ","_")[-16:] + "__" + \ + X_meaning_dictionnary_["X_" + str(indice_9)].replace(" ","_")[-16:] + ".png" + + reduced_picture_name = "X_" + str(cibled_indice) + \ + "_over_" + "X_" + str(indice_0) + "__" + \ + "X_" + str(indice_1) + "__" + \ + "X_" + str(indice_2) + "__" + \ + "X_" + str(indice_3) + "__" + \ + "X_" + str(indice_4) + "__" + \ + "X_" + str(indice_5) + "__" + \ + "X_" + str(indice_6) + "__" + \ + "X_" + str(indice_7) + "__" + \ + "X_" + str(indice_8) + "__" + \ + "X_" + str(indice_9) + ".png" + + picture_title = X_meaning_dictionnary_["X_" + str(cibled_indice)] + " (" + "X_" + str(cibled_indice) +")"\ + " over " + X_meaning_dictionnary_["X_" + str(indice_0)] + " (" + "X_" + str(indice_0) +")," + \ + X_meaning_dictionnary_["X_" + str(indice_1)] + " (" + "X_" + str(indice_1) +")," + \ + X_meaning_dictionnary_["X_" + str(indice_2)] + " (" + "X_" + str(indice_2) +"), \n" + \ + X_meaning_dictionnary_["X_" + str(indice_3)] + " (" + "X_" + str(indice_3) +")," + \ + X_meaning_dictionnary_["X_" + str(indice_4)] + " (" + "X_" + str(indice_4) +")," + \ + X_meaning_dictionnary_["X_" + str(indice_5)] + " (" + "X_" + str(indice_5) +"), \n" + \ + X_meaning_dictionnary_["X_" + str(indice_6)] + " (" + "X_" + str(indice_6) +"), "+ \ + X_meaning_dictionnary_["X_" + str(indice_7)] + " (" + "X_" + str(indice_7) +"), \n" + \ + X_meaning_dictionnary_["X_" + str(indice_8)] + " (" + "X_" + str(indice_8) +"), \n" + \ + X_meaning_dictionnary_["X_" + str(indice_9)] + " (" + "X_" + str(indice_9) +"). \n" + + fig.suptitle(picture_title) + plt.gcf().autofmt_xdate() + plt.xticks(fontsize=8) + plt.savefig(marginal_effect_exploration_folder_ + "/"+ picture_name ) + plt.savefig(marginal_effect_exploration_folder_ + "/"+ reduced_picture_name ) + plt.clf() + plt.cla() + plt.close() + + """ def plot_marginal_interactions (X_train, pointwise_margins, cibled_indice, indice_0, indice_1, indice_2, X_meaning_dictionnary_, marginal_effect_exploration_folder_ ): -- GitLab