From 5c597f5dc221f95b43ceac93a569c48025afd434 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Thomas=20M=C3=BCller?= <thomas94@gmx.net> Date: Wed, 19 Jan 2022 08:10:46 +0100 Subject: [PATCH] Add references to arXiv version --- README.md | 17 +++++++++++++---- docs/assets/mueller2022instant.bib | 7 +++++++ docs/index.html | 23 +++++++++++------------ 3 files changed, 31 insertions(+), 16 deletions(-) create mode 100644 docs/assets/mueller2022instant.bib diff --git a/README.md b/README.md index 724bd15..228cb18 100644 --- a/README.md +++ b/README.md @@ -9,10 +9,9 @@ In each case, we train and render a MLP with multiresolution hash input encoding > __Instant Neural Graphics Primitives with a Multiresolution Hash Encoding__ > [Thomas Müller](https://tom94.net), [Alex Evans](https://research.nvidia.com/person/alex-evans), [Christoph Schied](https://research.nvidia.com/person/christoph-schied), [Alexander Keller](https://research.nvidia.com/person/alex-keller) -> _arXiv [cs.GR], Jan 2022_ -> __[ [Project page](https://nvlabs.github.io/instant-ngp) ] [ [Paper](https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.pdf) ] [ [Video](https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.mp4) ]__ +> _[arXiv:2201.05989 [cs.CV]](https://arxiv.org/abs/2201.05989), Jan 2022_ +> __[ [Project page](https://nvlabs.github.io/instant-ngp) ] [ [Paper](https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.pdf) ] [ [Video](https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.mp4) ] [ [BibTeX](https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.bib) ]__ - For business inquiries, please visit our website and submit the form: [NVIDIA Research Licensing](https://www.nvidia.com/en-us/research/inquiries/) @@ -175,7 +174,17 @@ This project makes use of a number of awesome open source libraries, including: Many thanks to the authors of these brilliant projects! -## License +## License and Citation + +```bibtex +@article{mueller2022instant, + title = {Instant Neural Graphics Primitives with a Multiresolution Hash Encoding}, + author = {Thomas M\"uller and Alex Evans and Christoph Schied and Alexander Keller}, + journal = {arXiv:2201.05989}, + year = {2022}, + month = jan +} +``` Copyright © 2022, NVIDIA Corporation. All rights reserved. diff --git a/docs/assets/mueller2022instant.bib b/docs/assets/mueller2022instant.bib new file mode 100644 index 0000000..eb605e1 --- /dev/null +++ b/docs/assets/mueller2022instant.bib @@ -0,0 +1,7 @@ +@article{mueller2022instant, + title = {Instant Neural Graphics Primitives with a Multiresolution Hash Encoding}, + author = {Thomas M\"uller and Alex Evans and Christoph Schied and Alexander Keller}, + journal = {arXiv:2201.05989}, + year = {2022}, + month = jan +} diff --git a/docs/index.html b/docs/index.html index 915414e..ddeaf73 100644 --- a/docs/index.html +++ b/docs/index.html @@ -295,7 +295,6 @@ figure { <figure style="width: 100%; float: left"> <p class="caption_justify"> We demonstrate near-instant training of neural graphics primitives on a single GPU for multiple tasks. In <b>gigapixel image</b> we represent an image by a neural network. <b>SDF</b> learns a signed distance function in 3D space whose zero level-set represents a 2D surface. - <!--<b>Neural radiance caching</b> (NRC) <a href="https://research.nvidia.com/publication/2021-06_Real-time-Neural-Radiance">[Müller et al. 2021]</a> employs a neural network that is trained in real-time to cache costly lighting calculations--> <b>NeRF</b> <a href="https://research.nvidia.com/publication/2021-06_Real-time-Neural-Radiance">[Mildenhall et al. 2020]</a> uses 2D images and their camera poses to reconstruct a volumetric radiance-and-density field that is visualized using ray marching. Lastly, <b>neural volume</b> learns a denoised radiance and density field directly from a volumetric path tracer. In all tasks, our encoding and its efficient implementation provide clear benefits: instant training, high quality, and simplicity. Our encoding is task-agnostic: we use the same implementation and hyperparameters across all tasks and only vary the hash table size which trades off quality and performance. @@ -308,8 +307,8 @@ figure { <h2>News</h2> <hr> <div class="row"> - <div><span class="material-icons"> integration_instructions </span> [Jan 2022] Code released on <a href="https://github.com/NVlabs/instant-ngp">GitHub</a>.</div> - <!-- <div><span class="material-icons"> description </span> [Jan 2022] Paper released on <a href="https://arxiv.org/abs/XXX">arXiv</a>.</div> --> + <div><span class="material-icons"> description </span> [Jan 19th 2022] Paper released on <a href="https://arxiv.org/abs/2201.05989">arXiv</a>.</div> + <div><span class="material-icons"> integration_instructions </span> [Jan 14th 2022] Code released on <a href="https://github.com/NVlabs/instant-ngp">GitHub</a>.</div> </div> </section> @@ -468,8 +467,8 @@ figure { <p>Thomas Müller, Alex Evans, Christoph Schied, Alexander Keller</p> <div><span class="material-icons"> description </span><a href="assets/mueller2022instant.pdf"> Paper preprint (PDF, 15.3 MB)</a></div> - <!-- <div><span class="material-icons"> description </span><a href="https://arxiv.org/abs/xxxx.xxxxx"> arXiv version</a></div> --> - <!-- <div><span class="material-icons"> insert_comment </span><a href="assets/mueller2022instant.bib"> BibTeX</a></div> --> + <div><span class="material-icons"> description </span><a href="https://arxiv.org/abs/2201.05989"> arXiv version</a></div> + <div><span class="material-icons"> insert_comment </span><a href="assets/mueller2022instant.bib"> BibTeX</a></div> <div><span class="material-icons"> integration_instructions </span><a href="https://github.com/NVlabs/instant-ngp"> Code</a></div> <div><span class="material-icons"> videocam </span><a href="assets/mueller2022instant.mp4"> Video</a></div> @@ -478,18 +477,18 @@ figure { </div> </section> - <!-- <section id="bibtex"> + <section id="bibtex"> <h2>Citation</h2> <hr> <pre><code>@article{mueller2022instant, - title = {Instant Neural Graphics Primitives with a Multiresolution Hash Encoding}, - author = {Thomas M\"uller and Alex Evans and Christoph Schied and Alexander Keller}, - journal = {arXiv:XXX}, - year = {2022}, - month = jan + title = {Instant Neural Graphics Primitives with a Multiresolution Hash Encoding}, + author = {Thomas M\"uller and Alex Evans and Christoph Schied and Alexander Keller}, + journal = {arXiv:2201.05989}, + year = {2022}, + month = jan } </code></pre> - </section> --> + </section> <section id="acknowledgements"> <h2>Acknowledgements</h2> -- GitLab