diff --git a/docs/index.html b/docs/index.html
index 7548dca1ba452d3ee82031d423c5e62b2440f17e..5b9a02d6f6df03cf59bd20afd80c8c04018bb2da 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -1,11 +1,8 @@
-<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
+<!DOCTYPE html>
 <meta charset="utf-8">
 
 <html>
 
-<script src="http://www.google.com/jsapi" type="text/javascript"></script>
-<script type="text/javascript">google.load("jquery", "1.3.2");</script>
-
 <style type="text/css">
 body {
 	font-family: "Titillium Web", "HelveticaNeue-Light", "Helvetica Neue Light", "Helvetica Neue", Helvetica, Arial, "Lucida Grande", sans-serif;
@@ -206,23 +203,21 @@ figure {
 .venue {
 	color: #1367a7;
 }
-
 </style>
-<!--<script type="text/javascript" src="../js/hidebib.js"></script>-->
-	<link href='https://fonts.googleapis.com/css?family=Titillium+Web:400,600,400italic,600italic,300,300italic' rel='stylesheet' type='text/css'>
-	<head>
-		<title>Instant Neural Graphics Primitives with a Multiresolution Hash Encoding</title>
-		<meta property="og:description" content="Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"/>
-		<link href="https://fonts.googleapis.com/css2?family=Material+Icons" rel="stylesheet">
-
-		<meta name="twitter:card" content="summary_large_image">
-		<meta name="twitter:creator" content="@mmalex">
-		<meta name="twitter:title" content="Instant Neural Graphics Primitives with a Multiresolution Hash Encoding">
-		<meta name="twitter:description" content="A new paper from NVIDIA Research which presents a method for instant training & rendering of high-quality neural graphics primitives.">
-		<meta name="twitter:image" content="https://nvlabs.github.io/instant-ngp/assets/twitter.jpg">
-	</head>
-
- <body>
+<link href='https://fonts.googleapis.com/css?family=Titillium+Web:400,600,400italic,600italic,300,300italic' rel='stylesheet' type='text/css'>
+<head>
+	<title>Instant Neural Graphics Primitives with a Multiresolution Hash Encoding</title>
+	<meta property="og:description" content="Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"/>
+	<link href="https://fonts.googleapis.com/css2?family=Material+Icons" rel="stylesheet">
+
+	<meta name="twitter:card" content="summary_large_image">
+	<meta name="twitter:creator" content="@mmalex">
+	<meta name="twitter:title" content="Instant Neural Graphics Primitives with a Multiresolution Hash Encoding">
+	<meta name="twitter:description" content="A new paper from NVIDIA Research which presents a method for instant training & rendering of high-quality neural graphics primitives.">
+	<meta name="twitter:image" content="https://nvlabs.github.io/instant-ngp/assets/twitter.jpg">
+</head>
+
+<body>
 <div class="container">
 	<div class="paper-title">
 		<h1>Instant Neural Graphics Primitives with a Multiresolution Hash Encoding</h1>
@@ -239,25 +234,23 @@ figure {
 		<div class="affil-row">
 			<div class="col-1 text-center">NVIDIA</div>
 		</div>
-		<!-- <div class="affil-row">
-			<div class="venue text-center"><b>arXiv</b></div>
-		</div> -->
 
 		<div style="clear: both">
 			<div class="paper-btn-parent">
-			<a class="paper-btn" href="assets/mueller2022instant.pdf">
-				<span class="material-icons"> description </span>
-				 Paper
-			</a>
-			<a class="paper-btn" href="assets/mueller2022instant.mp4">
-				<span class="material-icons"> videocam </span>
-				 Video
-			</a>
-			<a class="paper-btn" href="https://github.com/NVlabs/instant-ngp">
-				<span class="material-icons"> code </span>
-				 Code
-			</a>
-		</div></div>
+				<a class="paper-btn" href="assets/mueller2022instant.pdf">
+					<span class="material-icons"> description </span>
+					Paper
+				</a>
+				<a class="paper-btn" href="assets/mueller2022instant.mp4">
+					<span class="material-icons"> videocam </span>
+					Video
+				</a>
+				<a class="paper-btn" href="https://github.com/NVlabs/instant-ngp">
+					<span class="material-icons"> code </span>
+					Code
+				</a>
+			</div>
+		</div>
 	</div>
 
 	<section id="teaser-videos">
@@ -291,18 +284,16 @@ figure {
 			</video>
 		</figure>
 
-
 		<figure style="width: 100%; float: left">
 			<p class="caption_justify">
 				We demonstrate near-instant training of neural graphics primitives on a single GPU for multiple tasks. In <b>gigapixel image</b> we represent an image by a neural network. <b>SDF</b> learns a signed distance function in 3D space whose zero level-set represents a 2D surface.
-				<b>NeRF</b> <a href="https://research.nvidia.com/publication/2021-06_Real-time-Neural-Radiance">[Mildenhall et al. 2020]</a> uses 2D images and their camera poses to reconstruct a volumetric radiance-and-density field that is visualized using ray marching.
+				<b>NeRF</b> <a href="https://www.matthewtancik.com/nerf">[Mildenhall et al. 2020]</a> uses 2D images and their camera poses to reconstruct a volumetric radiance-and-density field that is visualized using ray marching.
 				Lastly, <b>neural volume</b> learns a denoised radiance and density field directly from a volumetric path tracer.
 				In all tasks, our encoding and its efficient implementation provide clear benefits: instant training, high quality, and simplicity. Our encoding is task-agnostic: we use the same implementation and hyperparameters across all tasks and only vary the hash table size which trades off quality and performance.
 			</p>
 		</figure>
 	</section>
 
-
 	<section id="news">
 		<h2>News</h2>
 		<hr>
@@ -334,7 +325,7 @@ figure {
 			</video>
 		</figure>
 		<p class="caption_justify">
-			Real-time training progress on the image task where the neural network learns the mapping from 2D coordinates to RGB colors of a high-resolution image. Note that in this video, the network is trained from scratch - but converges so quickly you may miss it if you blink! <br/>
+			Real-time training progress on the image task where the neural network learns the mapping from 2D coordinates to RGB colors of a high-resolution image. Note that in this video, the network is trained from scratch—but converges so quickly you may miss it if you blink!<br/>
 		</p>
 
 		<h3>Neural Radiance Fields</h3>