Skip to content
Snippets Groups Projects
Commit 67beaee5 authored by jwangzzz's avatar jwangzzz
Browse files

add scripts

parent 8d347766
No related branches found
No related tags found
No related merge requests found
File moved
File moved
File moved
......@@ -6,7 +6,7 @@ import numpy as np
import torch.nn as nn
import random
import torch.backends.cudnn as cudnn
from knn.__init__ import KNearestNeighbor
from lib.knn.__init__ import KNearestNeighbor
knn = KNearestNeighbor(1)
......
......@@ -6,7 +6,7 @@ import numpy as np
import torch.nn as nn
import random
import torch.backends.cudnn as cudnn
from knn.__init__ import KNearestNeighbor
from lib.knn.__init__ import KNearestNeighbor
knn = KNearestNeighbor(1)
......
import os
import sys
sys.path.insert(0, os.getcwd())
\ No newline at end of file
import _init_paths
import argparse
import os
import random
......@@ -19,9 +20,9 @@ from lib.loss import Loss
from lib.loss_refiner import Loss_refine
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_root', type=str, default = '/home/data1/jeremy/Linemod_preprocessed', help='dataset root dir')
parser.add_argument('--model', type=str, default = 'pose_model_9_0.01310166542980859.pth', help='resume PoseNet model')
parser.add_argument('--refine_model', type=str, default = 'pose_refine_model_493_0.006761023565178073.pth', help='resume PoseRefineNet model')
parser.add_argument('--dataset_root', type=str, default = '', help='dataset root dir')
parser.add_argument('--model', type=str, default = '', help='resume PoseNet model')
parser.add_argument('--refine_model', type=str, default = '', help='resume PoseRefineNet model')
opt = parser.parse_args()
num_objects = 13
......@@ -30,7 +31,7 @@ num_points = 500
iteration = 2
dataset_config_dir = 'datasets/linemod/dataset_config'
trained_models_dir = 'trained_models/linemod'
output_result_dir = 'eval_result/linemod'
output_result_dir = 'experiments/eval_result/linemod'
estimator = PoseNet(num_points = num_points, num_obj = num_objects)
......
import _init_paths
import argparse
import os
import copy
......@@ -24,9 +25,9 @@ from lib.network import PoseNet, PoseRefineNet
from lib.transformations import euler_matrix, quaternion_matrix, quaternion_from_matrix
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_root', type=str, default = '/home/data1/jeremy/YCB_Video_Dataset', help='dataset root dir')
parser.add_argument('--model', type=str, default = 'pose_model_23_0.012863246640872631.pth', help='resume PoseNet model')
parser.add_argument('--refine_model', type=str, default = 'pose_refine_model_49_0.009449292959118935.pth', help='resume PoseRefineNet model')
parser.add_argument('--dataset_root', type=str, default = '', help='dataset root dir')
parser.add_argument('--model', type=str, default = '', help='resume PoseNet model')
parser.add_argument('--refine_model', type=str, default = '', help='resume PoseRefineNet model')
opt = parser.parse_args()
norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
......@@ -47,8 +48,8 @@ iteration = 2
bs = 1
dataset_config_dir = 'datasets/ycb/dataset_config'
ycb_toolbox_dir = 'YCB_Video_toolbox'
result_wo_refine_dir = 'eval_result/ycb/Densefusion_wo_refine_result'
result_refine_dir = 'eval_result/ycb/Densefusion_iterative_result'
result_wo_refine_dir = 'experiments/eval_result/ycb/Densefusion_wo_refine_result'
result_refine_dir = 'experiments/eval_result/ycb/Densefusion_iterative_result'
trained_models_dir = 'trained_models/ycb'
def get_bbox(posecnn_rois):
......@@ -235,7 +236,7 @@ for now in range(0, 2949):
my_t = my_t_final
my_result.append(my_pred.tolist())
except:
except ZeroDivisionError:
print("PoseCNN Detector Lost {0} at No.{1} keyframe".format(itemid, now))
my_result_wo_refine.append([0.0 for i in range(7)])
my_result.append([0.0 for i in range(7)])
......
# --------------------------------------------------------
# DenseFusion 6D Object Pose Estimation by Iterative Dense Fusion
# Licensed under The MIT License [see LICENSE for details]
# Written by Chen
# --------------------------------------------------------
import _init_paths
import argparse
import os
import random
......@@ -49,15 +56,13 @@ def main():
opt.num_objects = 21 #number of object classes in the dataset
opt.num_points = 1000 #number of points on the input pointcloud
opt.outf = 'trained_models/ycb' #folder to save trained models
opt.log_dir = 'logs/ycb' #folder to save logs
opt.dataset_root = '/home/data1/jeremy/YCB_Video_Dataset' #dataset root dir
opt.log_dir = 'experiments/logs/ycb' #folder to save logs
opt.repeat_epoch = 1 #number of repeat times for one epoch training
elif opt.dataset == 'linemod':
opt.num_objects = 13
opt.num_points = 500
opt.outf = 'trained_models/linemod'
opt.log_dir = 'logs/linemod'
opt.dataset_root = '/home/data1/jeremy/Linemod_preprocessed'
opt.log_dir = 'experiments/logs/linemod'
opt.repeat_epoch = 20
else:
print('Unknown dataset')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment