Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
CD-BPR
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Arthur Batel
CD-BPR
Commits
0aaf8c75
Commit
0aaf8c75
authored
1 year ago
by
Céline Robardet
Browse files
Options
Downloads
Patches
Plain Diff
binary_bpr
parent
34ebd4ef
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
code/binary_bpr/main.py
+10
-28
10 additions, 28 deletions
code/binary_bpr/main.py
code/binary_bpr/script.py
+1
-1
1 addition, 1 deletion
code/binary_bpr/script.py
with
11 additions
and
29 deletions
code/binary_bpr/main.py
+
10
−
28
View file @
0aaf8c75
...
...
@@ -26,8 +26,8 @@ from datetime import datetime
dtype
=
torch
.
float32
print
(
f
"
Is CUDA supported by this system?
{
torch
.
cuda
.
is_available
()
}
"
)
print
(
f
"
CUDA version:
{
torch
.
version
.
cuda
}
"
)
#
print(f"Is CUDA supported by this system? {torch.cuda.is_available()}")
#
print(f"CUDA version: {torch.version.cuda}")
if
torch
.
cuda
.
is_available
():
dev
=
"
cuda:0
"
else
:
...
...
@@ -49,21 +49,21 @@ def read_file(dataTrain, dataTest):
kc
=
flattern_arrays
(
kc
.
values
,
kcT
.
values
)
num_kc
=
len
(
kc
)
dico_kc
=
{
k
:
v
for
(
k
,
v
)
in
zip
(
kc
,
range
(
len
(
kc
)))}
print
(
"
NB KC
"
,
num_kc
)
#
print("NB KC", num_kc)
# dico users
users
=
df
[
'
user_id
'
]
usersT
=
dfTest
[
'
user_id
'
]
users
=
flattern_arrays
(
users
.
values
,
usersT
.
values
)
num_users
=
len
(
users
)
dico_users
=
{
k
:
v
for
(
k
,
v
)
in
zip
(
users
,
range
(
num_users
))}
print
(
"
NB Users
"
,
num_users
)
#
print("NB Users", num_users)
# dico items and their associated kc
itemsDT
=
df
[
'
item_id
'
]
itemsT
=
dfTest
[
'
item_id
'
]
items
=
flattern_arrays
(
itemsDT
.
values
,
itemsT
.
values
)
num_items
=
len
(
items
)
dico_items
=
{
k
:
v
for
(
k
,
v
)
in
zip
(
items
,
range
(
num_items
))}
print
(
"
NB Items
"
,
num_items
,
len
(
dico_items
))
#
print("NB Items", num_items, len(dico_items))
return
dico_kc
,
dico_users
,
dico_items
def
save_embeddings
(
xpName
:
str
,
modelName
:
str
,
embeddings
,
userEmbDir
:
str
,
itemEmbDir
:
str
,
grid_search_id
):
"""
...
...
@@ -76,7 +76,6 @@ def save_embeddings(xpName: str, modelName: str, embeddings,userEmbDir : str,ite
"""
u_emb
,
i_emb
=
embeddings
results_name_file
=
(
xpName
+
modelName
+
"
_
"
+
str
(
grid_search_id
))
# save embeddings
...
...
@@ -90,8 +89,6 @@ def parse_dataframe(data, dico_kc, dico_users, dico_item, is_train = True):
df
=
pd
.
read_csv
(
data
,
names
=
[
'
user_id
'
,
'
item_id
'
,
'
correct
'
,
'
knowledge
'
])
# Compute table of positive and negative items by KC and Users
# and the dictionary that associate the KC to a question/answer
#num_kc = np.max(np.array(list(dico_kc.keys()))) + 1
#print("Parse DF", num_kc)
num_kc
=
len
(
dico_kc
)
num_users
=
len
(
dico_users
)
# Find positive items for each kc/user
...
...
@@ -112,7 +109,6 @@ def parse_dataframe(data, dico_kc, dico_users, dico_item, is_train = True):
col
=
row
[
'
item_id
'
]
if
col
not
in
dico_items
:
dico_items
[
col
]
=
len
(
dico_items
)
# Warning, all user's answers are positives!
q
,
r
=
parse_it
(
col
)
col_neg
=
q
+
'
_
'
+
str
(
1
-
int
(
r
))
if
col_neg
not
in
dico_items
:
...
...
@@ -155,7 +151,6 @@ def generate_quad(dico_items, triplets, t_trainy, item_users, alpha):
uu
=
item_users
[
t
[
2
]][
u
]
t_quadriplets
.
append
([
t
[
0
],
t
[
1
],
t
[
2
],
uu
])
t_y
.
append
(
t_trainy
[
k
][
i
])
#break
else
:
t_quadriplets
.
append
([
t
[
0
],
t
[
1
],
t
[
2
],
t
[
0
]])
t_y
.
append
(
t_trainy
[
k
][
i
])
...
...
@@ -278,7 +273,7 @@ if __name__ == '__main__':
parser
.
add_argument
(
"
-bSize
"
,
"
--batchSize
"
,
help
=
"
batch size
"
)
parser
.
add_argument
(
"
-lr
"
,
"
--learningRate
"
,
help
=
"
learning rate
"
)
parser
.
add_argument
(
"
-mode
"
,
"
--mode
"
,
help
=
"
CV mode = 1, GS mode = 0
"
)
#parser.add_argument("-a", "--alpha", help="float")
args
=
parser
.
parse_args
()
dataTrain
=
args
.
dataTrain
dataTest
=
args
.
dataTest
...
...
@@ -307,7 +302,6 @@ if __name__ == '__main__':
FileNameTest_temp
=
testFileName
[:
-
1
]
+
str
(
i_fold
)
dataTrain
=
FileNameTrain_temp
+
"
.csv
"
dataTest
=
FileNameTest_temp
+
"
.csv
"
# alpha = int(args.alpha)
print
(
"
dataTrain:
"
,
dataTrain
)
print
(
"
dataTest:
"
,
dataTest
)
print
(
"
dataPath:
"
,
dataPath
)
...
...
@@ -318,7 +312,6 @@ if __name__ == '__main__':
dico_kc
,
dico_users
,
dico_items
=
read_file
(
dataTrain
,
dataTest
)
embedding_size
=
len
(
dico_kc
)
dico_items
,
t_train
,
ty_train
,
item_users
=
parse_dataframe
(
dataTrain
,
dico_kc
,
dico_users
,
dico_items
,
True
)
# print("alpha", alpha)
train
,
y_train
=
generate_quad
(
dico_items
,
t_train
,
ty_train
,
item_users
,
alpha
)
dico_items
,
test
,
y_test
=
parse_dataframe
(
dataTest
,
dico_kc
,
dico_users
,
dico_items
,
False
)
num_users
=
len
(
dico_users
)
...
...
@@ -341,7 +334,7 @@ if __name__ == '__main__':
write_file_doa
(
FileNameTrain_temp
,
emb
[
0
],
train
,
dico_kc
,
dico_users
,
dico_items
)
doa
=
compute_doa
(
FileNameTrain_temp
)
# '''
# Test
correctness
,
acc
,
users
,
auc
,
rmse
=
bpr_model
.
evaluate_model
(
test
,
len
(
dico_kc
),
y_test
)
acc_list
.
append
(
acc
)
...
...
@@ -350,18 +343,13 @@ if __name__ == '__main__':
doa_train
.
append
(
doa
)
print
(
"
Doa on Train dataset:
"
,
doa
)
print
(
"
AUC and RMSE on test dataset:
"
,
auc
,
rmse
)
# '''
new_embedding_value
=
bpr_model
.
user_embeddings
.
weight
.
clone
().
detach
().
cpu
().
numpy
()
write_file_doa_test
(
FileNameTest_temp
,
new_embedding_value
,
test
,
y_test
,
dico_kc
,
dico_users
,
dico_items
)
doa
=
compute_doa
(
FileNameTest_temp
)
doa_test
.
append
(
doa
)
print
(
"
Accuracy and Doa on test dataset:
"
,
acc
,
doa
)
# '''
## test oppose
# acc, precision = bpr_model.evaluate_model(test1, len(dico_kc), y_test1)
# print(f'Accuracy: {acc}')
print
(
acc_list
)
print
(
auc_list
)
print
(
rmse_list
)
...
...
@@ -374,7 +362,6 @@ if __name__ == '__main__':
print
(
"
doa_test :
"
,
np
.
mean
(
doa_test
),
"
+-
"
,
np
.
std
(
doa_test
))
print
(
"
reo :
"
,
1
-
np
.
mean
(
doa_test
)
/
np
.
mean
(
doa_train
))
else
:
#alpha = int(args.alpha)
print
(
"
dataTrain:
"
,
dataTrain
)
print
(
"
epochs:
"
,
epochs
)
print
(
"
batch_size:
"
,
batch_size
)
...
...
@@ -382,7 +369,6 @@ if __name__ == '__main__':
dico_kc
,
dico_users
,
dico_items
=
read_file
(
dataTrain
,
dataTest
)
embedding_size
=
len
(
dico_kc
)
dico_items
,
t_train
,
ty_train
,
item_users
=
parse_dataframe
(
dataTrain
,
dico_kc
,
dico_users
,
dico_items
,
True
)
#print("alpha", alpha)
train
,
y_train
=
generate_quad
(
dico_items
,
t_train
,
ty_train
,
item_users
,
alpha
)
dico_items
,
test
,
y_test
=
parse_dataframe
(
dataTest
,
dico_kc
,
dico_users
,
dico_items
,
False
)
num_users
=
len
(
dico_users
)
...
...
@@ -403,16 +389,12 @@ if __name__ == '__main__':
write_file_doa
(
trainFileName
,
emb
[
0
],
train
,
dico_kc
,
dico_users
,
dico_items
)
doa
=
compute_doa
(
trainFileName
)
print
(
"
Doa on train dataset:
"
,
doa
)
#'''
# Test
correctness
,
acc
,
users
,
auc
,
rmse
=
bpr_model
.
evaluate_model
(
test
,
len
(
dico_kc
),
y_test
)
print
(
f
'
Accuracy:
{
acc
}
'
)
#'''
new_embedding_value
=
bpr_model
.
user_embeddings
.
weight
.
clone
().
detach
().
cpu
().
numpy
()
write_file_doa_test
(
testFileName
,
new_embedding_value
,
test
,
y_test
,
dico_kc
,
dico_users
,
dico_items
)
doa
=
compute_doa
(
testFileName
)
print
(
"
Accuracy and Doa on test dataset:
"
,
acc
,
doa
)
#'''
## test oppose
#acc, precision = bpr_model.evaluate_model(test1, len(dico_kc), y_test1)
#print(f'Accuracy: {acc}')
This diff is collapsed.
Click to expand it.
code/binary_bpr/script.py
+
1
−
1
View file @
0aaf8c75
import
os
dPath
=
"
../../data/
cdbpr_format/
"
dPath
=
"
../../data/
"
embDirPath
=
"
../../results/table_2/
"
datasets
=
[
'
assist0910_tkde
'
,
'
assist17_tkde
'
,
'
algebra
'
,
'
math_1
'
,
'
math_2
'
]
epochs
=
[
75
,
95
,
5
,
90
,
90
]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment