Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
ptSpar
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
1
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
coregraphie
ptSpar
Commits
56a37278
Commit
56a37278
authored
1 year ago
by
Abd Errahmane Kiouche
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
f18e5224
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
(p,t)_sparsification/p_k_compression.cpp
+391
-0
391 additions, 0 deletions
(p,t)_sparsification/p_k_compression.cpp
with
391 additions
and
0 deletions
(p,t)_sparsification/p_k_compression.cpp
0 → 100644
+
391
−
0
View file @
56a37278
//
// Created by Kiouche on 1/20/2020.
//
#include
"p_k_compression.h"
#include
<chrono>
#include
<map>
#include
<list>
#include
<iostream>
#include
<algorithm>
#include
<random>
#include
<queue>
#include
"hash.h"
namespace
std
{
bool
test_insert
(
edge
&
e
,
bool
directed
,
graph
&
constructed_graph
,
graph
&
compressed_graph
,
int
k
,
vector
<
double
>
&
p
){
uint32_t
first
,
second
;
first
=
e
.
first
;
second
=
e
.
second
;
if
(
!
directed
)
{
if
(
constructed_graph
[
e
.
first
].
size
()
>
constructed_graph
[
e
.
second
].
size
())
{
first
=
e
.
second
;
second
=
e
.
first
;
}
}
bool
insert
=
BFS
(
first
,
compressed_graph
,
constructed_graph
,
p
,
k
);
if
(
insert
){
return
true
;
}
else
if
(
!
directed
)
{
return
BFS
(
second
,
compressed_graph
,
constructed_graph
,
p
,
k
);
}
else
return
insert
;
}
void
get_neighbors
(
uint32_t
node
,
graph
&
g
,
unordered_map
<
int
,
unordered_set
<
uint32_t
>>
&
neighbors
,
int
&
maxDepth
){
// Mark all the vertices as not visited
unordered_map
<
uint32_t
,
int
>
node_visited
;
// Create a queue for BFS
deque
<
uint32_t
>
queue
;
// array_queue *queue = new array_queue();
// Mark the current node as visited and enqueue it
node_visited
[
node
]
=
1
;
queue
.
push_back
(
node
);
int
currentDepth
=
1
,
elementsToDepthIncrease
=
1
,
nextElementsToDepthIncrease
=
0
;
while
(
!
queue
.
empty
())
{
// Dequeue a vertex from queue and print it
uint32_t
s
=
queue
.
front
();
queue
.
pop_front
();
// node_visited[s] = 1;
for
(
auto
&
v
:
g
[
s
]){
if
(
node_visited
[
v
]
==
0
)
{
nextElementsToDepthIncrease
++
;
node_visited
[
v
]
=
1
;
queue
.
push_back
(
v
);
for
(
int
i
=
currentDepth
;
i
<=
maxDepth
;
i
++
)
neighbors
[
i
].
insert
(
v
);
}
}
if
(
--
elementsToDepthIncrease
==
0
)
{
if
(
++
currentDepth
>
maxDepth
)
break
;
elementsToDepthIncrease
=
nextElementsToDepthIncrease
;
nextElementsToDepthIncrease
=
0
;
}
}
}
bool
check_constraints
(
graph
&
original_graph
,
graph
&
compressed_graph
,
vector
<
double
>
p
,
int
k
){
for
(
auto
v
:
original_graph
){
unordered_map
<
int
,
unordered_set
<
uint32_t
>>
n_v
;
get_neighbors
(
v
.
first
,
compressed_graph
,
n_v
,
k
);
for
(
int
i
=
1
;
i
<=
k
;
i
++
){
unordered_set
<
uint32_t
>
nghs
=
intersection
(
n_v
[
i
],
original_graph
[
v
.
first
]);
if
((
double
)
nghs
.
size
()
<
v
.
second
.
size
()
*
p
.
at
(
i
)){
cout
<<
i
<<
"---"
<<
v
.
first
<<
" "
<<
nghs
.
size
()
<<
" "
<<
v
.
second
.
size
()
<<
endl
;
return
false
;
}
}
}
return
true
;
}
bool
BFS
(
uint32_t
node
,
graph
&
g
,
graph
&
constructed_graph
,
vector
<
double
>
&
p
,
int
&
maxDepth
){
unordered_map
<
int
,
unordered_set
<
uint32_t
>>
neighbors
;
// Mark all the vertices as not visited
unordered_map
<
uint32_t
,
int
>
node_visited
;
// Create a queue for BFS
deque
<
uint32_t
>
queue
;
// Mark the current node as visited and enqueue it
node_visited
[
node
]
=
1
;
queue
.
push_back
(
node
);
int
currentDepth
=
1
,
elementsToDepthIncrease
=
1
,
nextElementsToDepthIncrease
=
0
;
while
(
!
queue
.
empty
())
{
// Dequeue a vertex from queue and print it
uint32_t
s
=
queue
.
front
();
queue
.
pop_front
();
for
(
auto
&
v
:
g
[
s
]){
if
(
node_visited
[
v
]
==
0
)
{
nextElementsToDepthIncrease
++
;
node_visited
[
v
]
=
1
;
queue
.
push_back
(
v
);
for
(
int
i
=
currentDepth
;
i
<=
maxDepth
;
i
++
)
neighbors
[
i
].
insert
(
v
);
}
}
if
(
--
elementsToDepthIncrease
==
0
)
{
double
nb_nghrs
=
constructed_graph
[
node
].
size
();
unordered_set
<
uint32_t
>
s_neighbors
=
intersection
(
neighbors
[
currentDepth
],
constructed_graph
[
node
]);
if
((
double
)
s_neighbors
.
size
()
<
nb_nghrs
*
p
.
at
(
currentDepth
))
return
true
;
if
(
++
currentDepth
>
maxDepth
)
break
;
elementsToDepthIncrease
=
nextElementsToDepthIncrease
;
nextElementsToDepthIncrease
=
0
;
}
}
if
(
currentDepth
<=
maxDepth
){
for
(
int
i
=
currentDepth
;
i
<=
maxDepth
;
i
++
){
double
nb_nghrs
=
constructed_graph
[
node
].
size
();
unordered_set
<
uint32_t
>
s_neighbors
=
intersection
(
neighbors
[
i
],
constructed_graph
[
node
]);
if
((
double
)
s_neighbors
.
size
()
<
nb_nghrs
*
p
.
at
(
i
))
return
true
;
}
}
return
false
;
}
graph
compress_graph_LP
(
graph
&
initial_graph
,
unordered_map
<
edge
,
double
>
edges_scores
,
int
k
,
vector
<
double
>
p
,
bool
directed
){
double
compression_rate
;
vector
<
edge
>
inserted_edges
;
vector
<
pair
<
edge
,
double
>>
es_vec
;
for
(
auto
&
e
:
edges_scores
)
es_vec
.
push_back
(
make_pair
(
e
.
first
,
e
.
second
));
sort
(
es_vec
.
begin
(),
es_vec
.
end
(),
// sort by PL scores
[](
const
pair
<
edge
,
double
>
&
l
,
const
pair
<
edge
,
double
>&
r
)
{
return
l
.
second
>
r
.
second
;
});
cout
<<
es_vec
.
size
()
<<
endl
;
graph
compressed_graph
,
constructed_graph
;
int
number_edges
=
0
;
int
i
=
0
;
for
(
auto
e_s
:
es_vec
){
edge
e
=
e_s
.
first
;
if
(
i
%
10000
==
0
)
cout
<<
i
<<
endl
;
i
++
;
constructed_graph
[
e
.
first
].
insert
(
e
.
second
);
if
(
!
directed
)
constructed_graph
[
e
.
second
].
insert
(
e
.
first
);
bool
insert
=
test_insert
(
e
,
directed
,
constructed_graph
,
compressed_graph
,
k
,
p
);
if
(
insert
)
{
inserted_edges
.
push_back
(
e
);
number_edges
++
;
compressed_graph
[
e
.
first
].
insert
(
e
.
second
);
if
(
!
directed
)
compressed_graph
[
e
.
second
].
insert
(
e
.
first
);
}
}
cout
<<
"number of edges "
<<
number_edges
<<
endl
;
if
(
check_constraints
(
initial_graph
,
compressed_graph
,
p
,
k
))
cout
<<
"feasible compression!"
<<
endl
;
return
compressed_graph
;
}
graph
compress_graph_basic
(
graph
&
initial_graph
,
int
k
,
vector
<
double
>
p
,
bool
directed
){
double
compression_rate
;
vector
<
edge
>
inserted_edges
;
vector
<
edge
>
s
=
get_edges
(
initial_graph
,
directed
);
std
::
mt19937
g
(
rand
());
std
::
shuffle
(
s
.
begin
(),
s
.
end
(),
g
);
graph
compressed_graph
,
constructed_graph
;
int
number_edges
=
0
;
int
i
=
0
;
for
(
auto
e
:
s
){
if
(
i
%
10000
==
0
)
cout
<<
i
<<
endl
;
i
++
;
constructed_graph
[
e
.
first
].
insert
(
e
.
second
);
if
(
!
directed
)
constructed_graph
[
e
.
second
].
insert
(
e
.
first
);
bool
insert
=
test_insert
(
e
,
directed
,
constructed_graph
,
compressed_graph
,
k
,
p
);
if
(
insert
){
inserted_edges
.
push_back
(
e
);
number_edges
++
;
compressed_graph
[
e
.
first
].
insert
(
e
.
second
);
if
(
!
directed
)
compressed_graph
[
e
.
second
].
insert
(
e
.
first
);
}
}
cout
<<
"number of edges "
<<
number_edges
<<
endl
;
if
(
check_constraints
(
initial_graph
,
compressed_graph
,
p
,
k
))
cout
<<
"feasible compression!"
<<
endl
;
return
compressed_graph
;
}
vector
<
edge
>
perturbate_solution
(
vector
<
edge
>
&
s
){
vector
<
edge
>
s2
;
for
(
auto
e
:
s
)
s2
.
push_back
(
e
);
int
max_perturbations
=
2
;
//s.size()/100;
std
::
mt19937
gen
(
rand
());
std
::
uniform_int_distribution
<>
dis
(
0
,
s
.
size
()
-
1
);
for
(
int
i
=
0
;
i
<
max_perturbations
;
i
++
){
int
r1
,
r2
;
r1
=
dis
(
gen
);
r2
=
dis
(
gen
);
edge
e
=
s2
.
at
(
r1
);
s2
.
at
(
r1
).
first
=
s2
.
at
(
r2
).
first
;
s2
.
at
(
r1
).
second
=
s2
.
at
(
r2
).
second
;
s2
.
at
(
r2
).
first
=
e
.
first
;
s2
.
at
(
r2
).
second
=
e
.
second
;
}
return
s2
;
}
tuple
<
double
,
graph
>
evaluate_permutation
(
vector
<
edge
>
&
permutation
,
bool
directed
,
vector
<
double
>
&
p
,
int
k
,
graph
&
g
){
//double compression_rate;
graph
compressed_graph
,
constructed_graph
;
int
inserted_edges
=
0
;
for
(
auto
e
:
permutation
){
// update constructed graph
constructed_graph
[
e
.
first
].
insert
(
e
.
second
);
if
(
!
directed
)
constructed_graph
[
e
.
second
].
insert
(
e
.
first
);
bool
insert
=
test_insert
(
e
,
false
,
constructed_graph
,
compressed_graph
,
k
,
p
);
if
(
insert
){
inserted_edges
++
;
compressed_graph
[
e
.
first
].
insert
(
e
.
second
);
if
(
!
directed
)
compressed_graph
[
e
.
second
].
insert
(
e
.
first
);
}
}
return
make_tuple
(
inserted_edges
,
compressed_graph
);
}
graph
Simulated_annealing
(
int
max_iterations
,
double
initial_temperature
,
double
decrease_factor
,
graph
&
initial_graph
,
bool
directed
,
int
k
,
vector
<
double
>
p
){
auto
start
=
chrono
::
steady_clock
::
now
();
graph
gr
;
vector
<
edge
>
best_permutation
;
/// generate initial solution
vector
<
edge
>
s
=
get_edges
(
initial_graph
,
false
);
best_permutation
=
s
;
std
::
mt19937
g
(
rand
());
std
::
shuffle
(
s
.
begin
(),
s
.
end
(),
g
);
double
cost_s
,
cost_s2
,
T
,
best
;
T
=
initial_temperature
;
cost_s
=
get
<
0
>
(
evaluate_permutation
(
s
,
directed
,
p
,
k
,
initial_graph
));
gr
=
get
<
1
>
(
evaluate_permutation
(
s
,
directed
,
p
,
k
,
initial_graph
));
best
=
cost_s
;
for
(
int
i
=
0
;
i
<
max_iterations
;
i
++
){
vector
<
edge
>
s2
=
perturbate_solution
(
s
);
cost_s2
=
get
<
0
>
(
evaluate_permutation
(
s2
,
directed
,
p
,
k
,
initial_graph
));
if
(
cost_s2
<
best
){
best_permutation
=
s2
;
gr
=
get
<
1
>
(
evaluate_permutation
(
s2
,
directed
,
p
,
k
,
initial_graph
));
best
=
cost_s2
;
auto
finish
=
chrono
::
steady_clock
::
now
();
double
elapsed_time
=
chrono
::
duration_cast
<
chrono
::
duration
<
double
>>
(
finish
-
start
).
count
();
//cout <<i<< '\t'<<best<< '\t' << elapsed_time << endl;
}
if
(
cost_s2
<
cost_s
){
s
=
s2
;
cost_s
=
cost_s2
;
}
else
{
double
r
=
((
double
)
rand
()
/
(
RAND_MAX
));
if
(
std
::
exp
(
(
cost_s
-
cost_s2
)
/
T
)
>
r
){
s
=
s2
;
cost_s
=
cost_s2
;
}
}
T
=
decrease_factor
*
T
;
}
if
(
check_constraints
(
initial_graph
,
gr
,
p
,
k
))
{
cout
<<
"feasible solution ! "
<<
endl
;
}
return
gr
;
}
graph
compress_graph_greedy
(
graph
&
initial_graph
,
int
k
,
vector
<
double
>
p
,
bool
directed
){
double
compression_rate
;
vector
<
edge
>
inserted_edges
;
vector
<
edge
>
s
=
greedy_edges_order
(
initial_graph
,
directed
,
k
);
graph
compressed_graph
,
constructed_graph
;
int
number_edges
=
0
;
int
i
=
0
;
for
(
auto
e
:
s
){
if
(
i
%
10000
==
0
)
cout
<<
i
<<
endl
;
i
++
;
constructed_graph
[
e
.
first
].
insert
(
e
.
second
);
if
(
!
directed
)
constructed_graph
[
e
.
second
].
insert
(
e
.
first
);
bool
insert
=
test_insert
(
e
,
directed
,
constructed_graph
,
compressed_graph
,
k
,
p
);
if
(
insert
){
inserted_edges
.
push_back
(
e
);
number_edges
++
;
compressed_graph
[
e
.
first
].
insert
(
e
.
second
);
if
(
!
directed
)
compressed_graph
[
e
.
second
].
insert
(
e
.
first
);
}
}
cout
<<
"number of edges "
<<
number_edges
<<
endl
;
if
(
check_constraints
(
initial_graph
,
compressed_graph
,
p
,
k
))
cout
<<
"feasible compression!"
<<
endl
;
return
compressed_graph
;
}
vector
<
edge
>
greedy_edges_order
(
graph
&
g
,
bool
directed
,
int
k
){
vector
<
edge
>
edges
=
get_edges
(
g
,
directed
);
map
<
pair
<
uint32_t
,
uint32_t
>
,
int
>
edge_score
;
for
(
auto
e
:
edges
){
unordered_set
<
uint32_t
>
neighbors_u
;
unordered_set
<
uint32_t
>
neighbors_v
;
neighbors_u
=
neighbors
(
g
,
k
-
1
,
e
.
first
,
e
.
second
);
neighbors_v
=
neighbors
(
g
,
k
-
1
,
e
.
second
,
e
.
first
);
for
(
auto
n
:
neighbors_u
){
if
(
g
[
n
].
find
(
e
.
second
)
!=
g
[
n
].
end
())
edge_score
[
e
]
=
edge_score
[
e
]
+
1
;
}
for
(
auto
n
:
neighbors_v
){
if
(
g
[
n
].
find
(
e
.
first
)
!=
g
[
n
].
end
())
edge_score
[
e
]
=
edge_score
[
e
]
+
1
;
}
}
sort
(
edges
.
begin
(),
edges
.
end
(),[
&
](
const
edge
&
e1
,
const
edge
&
e2
)
{
return
edge_score
[
e1
]
>
edge_score
[
e2
];}
);
return
edges
;
}
unordered_set
<
uint32_t
>
neighbors
(
graph
&
g
,
int
max_depth
,
uint32_t
u
,
uint32_t
v
){
unordered_set
<
uint32_t
>
nghrs
;
// Mark all the vertices as not visited
unordered_map
<
uint32_t
,
int
>
node_visited
;
// Create a queue for BFS
deque
<
uint32_t
>
queue
;
// array_queue *queue = new array_queue();
// Mark the current node as visited and enqueue it
node_visited
[
u
]
=
1
;
node_visited
[
v
]
=
1
;
queue
.
push_back
(
u
);
int
currentDepth
=
1
,
elementsToDepthIncrease
=
1
,
nextElementsToDepthIncrease
=
0
;
while
(
!
queue
.
empty
())
{
// Dequeue a vertex from queue and print it
uint32_t
s
=
queue
.
front
();
queue
.
pop_front
();
// node_visited[s] = 1;
for
(
auto
&
v
:
g
[
s
]){
if
(
node_visited
[
v
]
==
0
)
{
node_visited
[
v
]
=
1
;
queue
.
push_back
(
v
);
nghrs
.
insert
(
v
);
}
}
if
(
--
elementsToDepthIncrease
==
0
)
{
if
(
++
currentDepth
>
max_depth
)
break
;
elementsToDepthIncrease
=
nextElementsToDepthIncrease
;
nextElementsToDepthIncrease
=
0
;
}
}
return
nghrs
;
}
}
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment